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Abstract: Giardiasis in humans is a gastrointestinal disease transmitted by the potentially zoonotic
Giardia duodenalis genotypes (assemblages) A and B. Small wild rodents such as mice and voles are
discussed as potential reservoirs for G. duodenalis but are predominantly populated by the two rodent
species Giardia microti and Giardia muris. Currently, the detection of zoonotic and non-zoonotic Giardia
species and genotypes in these animals relies on cumbersome PCR and sequencing approaches of
genetic marker genes. This hampers the risk assessment of potential zoonotic Giardia transmissions
by these animals. Here, we provide a workflow based on newly developed real-time PCR schemes
targeting the small ribosomal RNA multi-copy gene locus to distinguish G. muris, G. microti and G.
duodenalis infections. For the identification of potentially zoonotic G. duodenalis assemblage types
A and B, an established protocol targeting the single-copy gene 4E1-HP was used. The assays
were specific for the distinct Giardia species or genotypes and revealed an analytical sensitivity of
approximately one or below genome equivalent for the multi-copy gene and of about 10 genome
equivalents for the single-copy gene. Retesting a biobank of small rodent samples confirmed the
specificity. It further identified the underlying Giardia species in four out of 11 samples that could
not be typed before by PCR and sequencing. The newly developed workflow has the potential to
facilitate the detection of potentially zoonotic and non-zoonotic Giardia species in wild rodents.

Keywords: Giardia spp.; wild rodents; molecular detection; qPCR

1. Introduction

Giardia spp. are flagellated protozoan parasites of vertebrates and a frequent cause of
gastrointestinal disease in wild and domestic animals and humans [1]. Giardia duodenalis is
the most widespread species in mammals and subdivided into eight genetic subgroups
(assemblages A-H) [1]. These subgroups show distinct host ranges: Assemblages A and
B are found in humans and a wide range of other mammals, including rodents, and are
considered potentially zoonotic [2]; assemblages C/D are found in canids; assemblage E
in hoofed animals; assemblage F in cats; assemblage G in rodents (in particular rats) and
assemblage H in pinnipeds [1]. Small rodents can furthermore be infected with the distinct
species Giardia muris and Giardia microti [1,3,4]. For both G. microti and, in particular, for
G. muris, distinct morphological characteristics in comparison to G. duodenalis have been
described [5].

The zoonotic G. duodenalis assemblages A and B are genetically very distinct, and each
group can be further subclassified based on genetic information determined by multi-locus
sequence typing (MLST) [6]. Within these subgroups, assemblage AI forms a pan-global,
almost clonal subpopulation that is found in a wide range of vertebrates, including humans,
whereas assemblage AII seems very genetically diverse and is almost exclusively found in
humans [1]. The subclassification of assemblage B is less well-defined—in particular, when
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classical MLST procedures are used. Additionally, assemblage B has a higher degree of
allelic sequence heterogeneity (ASH) in the tetraploid genome that further hampers isolate
typing [7].

Rodents are frequently parasitized by Giardia spp., and the potential zoonotic risk has
been highlighted by several studies [8–13]. For example, in North American wildlife, the
prevalence of Giardia-positive beavers (Castor canadensis) has been estimated at 13–30%, and
zoonotic transmission has been implicated by several studies [14–16]. A recent molecular
characterization of the genomic sequences of historic samples of water, animals and humans
from Canada gave further evidence that beavers can be infected with zoonotic G. duodenalis
assemblages A and B [16]. Another rodent species that has been implicated with zoonotic
transmissions is the pet chinchilla Chinchilla lanigera, where mainly G. duodenalis assemblage
B-type infections have been recognized [10,17,18].

The roles of zoonotic transmission by smaller rodents commonly found in natural
and human habitats, such as mice, voles and rats, are not well-resolved. The few studies
providing molecular typing data revealed that these genera are mainly infected by G.
muris, G. microti and/or G. duodenalis assemblage G, respectively [4,19–23]. However,
experimental infections in mice and gerbils with zoonotic assemblages are possible [24–27],
and in some rare cases, these were also described in nature in these animals [4,28,29].

Studies reporting the Giardia prevalence in wild rodents often lack species information
or genotyping data, so that the zoonotic risk cannot be estimated from those studies. One
likely reason for the lacking data is that Giardia species determination and assemblage
typing mainly relays on a cumbersome test principle, including amplification by the
(nested) PCR and sequencing of genetic marker genes, such as small subunit rRNA gene
(SSU), triosephosphate isomerase (TPI), glutamate dehydrogenase (GDH) and beta giardin
(BG) [1–4,6,21,30–34]. However, these assays are not equally reliable for all species at all
marker genes, and genomic information is not readily available for all species to elaborate
more adequate procedures. Currently, the only available reliable genomic marker to
determine all Giardia species is the SSU locus.

The aim of the study was to provide a new workflow based on the available and newly
developed real-time PCR protocols to determine the G. muris, G. microti and zoonotic G.
duodenalis assemblage types in rodent samples. These protocols will help in future studies
to better determine the potential risk for zoonotic Giardia transmission from wild rodents.

2. Materials and Methods
2.1. Sample Material and Reference Sequences

Trophozoites of G. duodenalis assemblages A (isolate WB6, ATCC 50803) and B (isolate
GS, ATCC 50581) were derived from axenic in vitro cultures using standard culture proce-
dures [35]. Cysts of G. muris (Thompson isolate) were commercially obtained (Waterborne
Inc, New Orleans, LA, USA). Fecal samples of G. muris and G. duodenalis-infected mice
were obtained from experimental laboratory infections done in a different context. These
procedures were approved by the local authorities, the Landesamt für Gesundheit und
Soziales (G0277-17, G0207/19).

DNA samples of wild rodents are described elsewhere [4]. DNA of Balamuthia mandrillaris,
Toxoplasma gondii and Leishmania donovani were previously extracted from routine in vitro
cultures and available from archived materials. DNA of Entamoeba histolytica axenic cultures
was a kind gift from Prof. Iris Bruchhaus (Bernhard Nocht Institute, Hamburg, Germany).

The following reference sequences (GenBank accession numbers) of the SSU gene
locus were used to design Giardia species-specific oligonucleotides: G. muris (X65063 and
AF113895), G. microti (AF006676 and AF006676), G. duodenalis assemblage A (M54878 and
AF199446), G. duodenalis assemblage B (AF199447 and AF3898), G. duodenalis assemblage C
(AF199449), G. duodenalis assemblage D (AF199443), G. duodenalis assemblage E (AF199448),
G. duodenalis assemblage F (AF199444) and G. duodenalis assemblage G (AF199450). These
references were supplemented with the sequence information of G. muris and G. microti
derived from a screen in wild rodents (KY114167-KY114486) [4]. The aligned sequence



Microorganisms 2021, 9, 1610 3 of 11

fragment comprised approximately 250 bp, as determined by a Giardia-specific nested
PCR and sequencing approach, as described earlier [4,30,36]. Currently, this sequence
fragment is the one with the largest sequence collection of different Giardia isolates in the
public databases, including all three mammalian Giardia species and assemblage types.
In addition, due to its comparably high copy number in the genome, the ribosomal gene
loci has been widely used for genotyping and phylogenetic approaches, as it promises
supposedly higher PCR detection sensitivity [37]. The design of primers and probes to
distinguish G. muris, G. microti and G. duodenalis was done using the Geneious software
tool (Biomatters, Auckland, New Zealand).

For determination of the G. duodenalis assemblage types A and B, we used a previously
described protocol that detects the single-copy target gene 4E1-HP [38].

2.2. DNA Extraction and Real-Time PCR

DNA extraction of samples was done with the QIAamp Fast DNA Stool Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocols. Real-time PCR
assays were standardized and performed using single PCR approach as the multiplexing
reduced assay performance (data not shown). Conditions were as follows using the 2X
Maxima Probe/ROX qPCR Master Mix (Thermo Fisher, Schwerte, Germany) in a 25 µL
PCR reaction: 12.5 µL reaction buffer, 1 µL of each forward and reverse primer (from
3.3-µM stock), 0.5 µL of probe (from 3.3-µM stock), 1–5 µL DNA template and add water
for the final volume. Reactions were started at 95 ◦C for 10 min, followed by 45 cycles
of 95 ◦C denaturation for 15 s, 60 ◦C annealing for 30 s and 72 ◦C extension for 30 s.
Real-time PCR and analysis was performed using a CFX Maestro PCR machine and the
respective software tools (both from Bio-Rad, Feldkirchen, Germany). Sequences of the
primers and probes used in the study are presented in Table 1. All real-time PCR assays
for specificity and analytical sensitivity were repeated in 3 separate experiments for each
run in duplicates. For specificity testing, 2µL of 50 pg/µL DNA was used in the PCR. For
sensitivity testing, a serial dilution of DNA was performed, ranging from 50 pg/µL to
0.5 fg/µL, and 2µL of diluted DNA was used in the PCR assay. Primary samples were
tested once in duplicates, and the results were presented as mean cq values. Samples
were only considered PCR-positive when both duplicates gave an amplification signal.
The inhibition of PCR was controlled using an internal amplification control and was
not found to be an issue [4]. Data of the sensitivity testing were analyzed using Prism
(GraphPad, San Diego, CA, USA), and plots were presented as mean cq values (n = 3) with
95% confidence intervals.

Table 1. Primers used in the study.

Target Species Specificity (Abbreviation
of qPCR Assay) and Oligonucleotides Oligonucleotide Sequence Reference

G. muris (Gmu)
Gm80F 5‘-GACGGCTCGGTACAACG-3‘ This study

Gm169R 5‘-CTCTTGAGCACTCGTCTTGG-3‘ This study
Gm104P FAM-5‘-ACCGGGGGTGAAGGCTAGACGG-3‘-BHQ1 This study

G. microti/G. duodenalis (Gmi/Gd)
Giardia-80F 5‘-GACGGCTCAGGACAACGGTT-3‘ [39]

GiaR 5‘-CTGCGTCACGCTGCTCG-3‘ [32]
Giardia-127T TexasRed-5’-CGGACACCGCTGGCAACCCGG-3’-BHQ2 This study

G. duodenalis (Gd)
Giardia-127F 5‘-CGGACACCGCTGGCAA-3‘ This study

GiaR 5‘-CTGCGTCACGCTGCTCG-3‘ [32]
Giardia-152T HEX-5‘-GCCCGCCCTTGCGCGCACG-3‘-BHQ2 This study

G. duodenalis Assemblage A (Gd_A)
4E1-HP-Af 5’-AAAGAGATAGTTCGCGATGTC-3’ [38,40]
4E1-HP-Ar 5’-ATTAACAAACAGGGAGACGTATG-3’ [38,40]

4E1-HP-Atp VIC-5’-aggcacacggtttacaccg-3’-BHQ1 [38]
G. duodenalis Assemblage B (Gd_B)

4E1-HP-Bf 5’-GAAGTCATCTCTGGGGCAAG-3’ [38,40]
4E1-HP-Br 5’-GAAGTCTAGATAAACGTGTCGG-3’ [38,40]

4E1-HP-Btp TexasRed-5’-TACACTGTTCGTATGACCACTGTCGATA-3’-BHQ2 [38]



Microorganisms 2021, 9, 1610 4 of 11

3. Results
3.1. Development of Real Time PCR Workflow to Distinguish G. muris, G. microti and
G. duodenalis

An approximately 250 bp SSU genome fragment (see Methods for details) was used for
the primer design. At this locus, a well-established and robust real-time PCR to diagnose
G. duodenalis in humans has been previously described [39]. Furthermore, significant
differences at this locus sequence between G. muris on the one hand and G. duodenalis
and G. microti on the other hand allowed for the design of a G. muris-specific primer
and probe combination (Figure 1 and Table 1). In contrast, G. duodenalis and G. microti
sequences showed high overall similarities, so that no G. microti-specific real time PCR
could be designed (Figure 1). The data analysis included 104 previously identified G.
microti sequences ([4], not shown), which revealed a high variability at the 3’-end of the
sequence fragment, and this region was therefore not reliable for primer design.
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Instead, an alternative approach was chosen to distinguish G. microti from G. duo-
denalis: First, sequences were evaluated for highly conserved regions shared by both G.
duodenalis and G. microti, and a PCR was designed to distinguish these two species from G.
muris. Secondly, the sequences were evaluated for regions that distinguish G. duodenalis
from G. microti to design a G. duodenalis-specific PCR probe (Table 1 and Figure 1). In
combination, these two PCR approaches allow the distinction between G. microti-positive
and G. duodenalis-negative samples.

To further identify and distinguish zoonotic assemblages A and B, we used a real-time
PCR assay developed by Vanni et al. 2012 [40] and modified by Pijnacker et al. 2016 [38].
Using these five PCR approaches allowed us to identify all three Giardia species and
zoonotic assemblage types (see the workflow in Figure 2).

3.2. Specificity of Real-Time PCR Assays

After the primer and probe selection, we tested the specificity of the single PCR assays.
We therefore used DNA from various sources, including fecal DNA samples of infected
rodents and the DNA of axenic cultures or purified cysts where available. We confirmed
the expected specificity of all real-time PCRs, as shown in Table 2.
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Table 2. Specifics of the qPCR-assays.

Sample Species Material for DNA Extraction
PCR-Assay

Gmu Gmi/Gd Gd Gd_A Gd_B

G. muris Feces of lab mouse 1 + − − − −
G. muris Purified cysts + − − − −

G. duodenalis A 2 (WB6) In vitro culture − + + + −
G. duodenalis B (GS) 2 In vitro culture − + + − +
G. duodenalis B (GS) 2 Feces of lab mouse 1 − + + − +

G. microti Feces of wild bank vole 1 − + − − −
Balamutia mandrilaris In vitro culture − − − − −
Entamoeba histolytica In vitro culture − − − − −

Toxoplasma gondii In vitro culture − − − − −
Leishmania donovani In vitro culture − − − − −

1 Lab mice were experimentally infected with the respective Giardia species, and G. microti infection of the wild bank vole was previously
confirmed by PCR and sequencing [4]. 2 G. duodenalis A (WB6): assemblage A, isolate WB6 and G. duodenalis B (GS): assemblage B,
isolate GS.

3.3. Analytical Sensitivity of Real-Time PCR Assays

To test the analytical sensitivity of the PCR assays, we used extracted DNA from
axenically cultured G. duodenalis trophozoites or from purified G. muris cysts (Figure 3).
We were not able to test the sensitivity of G. microti, as no adequate material was readily
available for this Giardia species.

The assay designed for the detection of G. muris (Gmu PCR) indicated a high sensitivity
reporting 1 fg DNA with a cq value of 36.3 ± 0.65. This equals approximately 0.1 genome
equivalents for this species (estimated genome size of G. muris is 9.8 MB [41]).

The DNA of G. duodenalis assemblages A and B were equally well-detected in the
G. duodenalis/G. microti (Gmi/Gd PCR) approach, with a sensitivity of 10 fg (equals about
0.7 genome equivalents, cq value 41.0 ± 1.52 for assemblage A and 39.3 ± 0.95 for assem-
blage B) and, in the G. duodenalis-only (Gd PCR) approach, with a sensitivity of about 1 fg
DNA (42.3 ± 1.39 cq values for assemblage A and 40.3 ± 1.27 cq values for assemblage B),
which equals about 0.07 genome equivalents (estimated genome size of G. duodenalis assem-
blage A is 12.6 MB [42]), respectively. The sensitivity of the former PCR was reproducibly
lower and did not reliably detect the 1 fg DNA sample dilution.
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Figure 3. Analytical sensitivity of the real-time PCR assays used in the study. The G. muris-specific PCR (Gmu) was
done with DNA from purified cysts. G. microti/G. duodenalis PCR (Gmi/Gd), G. duodenalis-specific PCR (Gd), G. duodenalis
assem-blage A-specific PCR (Gd_A) and G. duodenalis assemblage B-specific PCR (Gd_B) was done using the DNA of axenic
trophozoite cultures of assemblage A isolate WB (A_WB) and of assemblage B isolate GS (B_GS).

Sensitivity of the G. duodenalis assemblage A- and B-specific PCR was also similar for
both assemblage types, but only about 100 fg DNA (cq value 35.7 ± 0.29 for assemblage A
and 36.5 ± 0.26 for assemblage B) or approximately 7 genome equivalents per PCR reaction
were detected. The lower sensitivity was expected due to the single-copy target versus
multi-copy target in the former PCRs.

3.4. Reanalysis of Known Giardia Positive Wild Rodent Samples Confirms Applicability of PCR
Workflow for Detection of G. muris, G. microti and Zoonotic G. duodenalis Assemblages

To test the applicability of the new PCR approach, we reanalyzed 38 Giardia-positive
samples from a previous project [4] (Table 3). These samples consisted of samples tested
positive for G. muris, G. microti or G. duodenalis, respectively, as previously determined
by nested PCR and the sequencing of a fragment at the SSU locus [4]. We also included
samples for which the Giardia species could not be determined in the previous study.

All nine G. muris samples were confirmed by our new G. muris-specific real-time
PCR. In addition, the new method revealed an underlying coinfection by a putatively
non-zoonotic genotype of G. duodenalis in one sample (Isolate 301, Table 3, negative in
A- and B-specific PCR). As highlighted above, the lack of a direct G. microti-specific PCR
(as we were not able to appropriately design one) does not allow to formally exclude an
additional underlying G. microti infection. However, in this case, a lower cq value in the
Gd/Gmi combi-PCR compared to the Gd-only PCR would be expected, which was not
the case.
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Table 3. Analysis of Giardia-positive wild rodent samples to determine the underlying Giardia species. Reanalysis of selected
Giardia-positive samples from reference [4] by the established qPCR workflow.

Rodent Species Isolate # [4]
Previous Result [4] qPCR-Assay (Cq-Value)

Gmu Gmi/Gd Gd Gd_A Gd_B

Microtus agrestis 118 G. muris 27.6
Apodemus agrarius 220 G. muris 35.0
Apodemus agrarius 243 G. muris 36.0
Apodemus agrarius 301 G. muris 36.1 41.3 37.1
Apodemus agrarius 311 G. muris 32.5
Myodes glareolus 328 G. muris 36.8
Myodes glareolus 334 G. muris 27.9

Apodemus flavicollis 385 G. muris 35.5
Apodemus flavicollis 511 G. muris 30.1

Microtus arvalis 443 G. microti 36.9
Myodes glareolus 451 G. microti 36.6
Myodes glareolus 516 G. microti 34.1
Microtus arvalis 603 G. microti 34.8
Microtus arvalis 495 G. microti 34.3
Microtus arvalis 496 G. microti 30.9
Myodes glareolus 502 G. microti 36.5
Myodes glareolus 508 G. microti 29.1

Apodemus flavicollis 518 G. microti 31.4
Apodemus flavicollis 524 G. microti 31.1

Myodes glareolus 559 G. microti 32.9
Myodes glareolus 561 G. microti 29.7
Microtus arvalis 566 G. microti 31.9
Microtus arvalis 568 G. microti 31.9
Myodes glareolus 041 G. duodenalis Ass. A
Myodes glareolus 056 G. duodenalis Ass. A 40.2 39.6

Apodemus sp. 207 G. duodenalis Ass. A
Myodes glareolus 340 G. duodenalis Ass. B 33.0 30.2 34.5

Apodemus sylvaticus 305 Unknown 1

Apodemus flavicollis 348 Unknown 1 41.5
Apodemus flavicollis 376 Unknown 1

Apodemus sp. 400 Unknown 1

Apodemus flavicollis 520 Unknown 1

Apodemus agrarius 576 Unknown 1 32.2
Myodes glareolus 554 Unknown 1

Myodes glareolus 555 Unknown 1 31.1
Microtus arvalis 567 Unknown 1 35.8
Microtus arvalis 569 Unknown 1

Myodes glareolus 591 Unknown 1 36.2
1 Previous nested PCR approach at the SSU locus revealed no typable results [4].

Of the 14 G. microti samples, 12 were confirmed by our new PCR workflow. Unexpect-
edly, two samples exhibited a signal in the G. muris-specific PCR with relatively low cq
values of 31, but no signal was recorded in the Gd/Gmi-PCR. We can only speculate on the
reason and favor the possibility of an underlying double infection with a lower G. microti
load that may have been amplified in the previous nested PCR approach. The nested PCR
tends to amplify G. microti (and G. duodenalis) sequences with higher sensitivity than that
of G. muris (see also below).

Two of the four G. duodenalis samples were also confirmed by our assay; however, two
samples were not confirmed, likely due to lower sensitivity of the real-time assay compared
to the nested PCR approach used in the previous study (see, also, Discussion below). One
sample was further confirmed as a zoonotic assemblage type, whereas the other sample
(exhibiting a high cq value in the two Gd PCR assays) was not confirmed. Again, the reason
is most likely lower sensitivity of the assemblage-specific PCR that targets single-copy
genes in comparison to the PCR at the multi-copy SSU locus.
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Four of the 11 samples that could not be typed in our previous study displayed a
positive signal in the G. muris real-time PCR, which indicates a possible underestimation of
the G. muris prevalence in the previous work [4]. One sample also showed a signal in the
Gd-specific PCR; however, as the Gmi/Gd PCR was negative, we do not consider this result
as reliable.

4. Discussion

Here, we provided a real-time PCR workflow for the detection of G. muris, G. microti
and G. duodenalis infections in small rodents, including the detection of zoonotic G. duo-
denalis assemblage types A and B. The workflow provided an improved time-to-results
procedure for the analysis of rodent fecal samples to determine the Giardia species and for
an assessment of the potential zoonotic risk.

Two rodent species are well-described to harbor the potential zoonotic G. duodenalis
assemblages A and B, and the zoonotic transmission has been described [16,43]. One is the
North American beaver, and a recent study provided the first in-depth molecular analysis
based on whole-genome sequencing of historical outbreak samples from various water,
beaver and human sources and clearly highlighted the presence of zoonotic assemblages
in the water and beaver samples [16]. The sequenced samples were mostly derived from
in vivo propagation in gerbils and by in vitro cultivation. This could lead to a potential
bias in the propagated assemblages, and beavers may also carry other assemblages or
Giardia species. Pet chinchillas harbor zoonotic G. duodenalis (mostly assemblage B) and
non-zoonotic assemblages C, D and E [10,17,18,43–45].

For ubiquitous small mammals such as mice and voles, the potential relevance of
zoonotic transmission is largely unknown. Most of the larger screens for zoonotic pathogens
that included Giardia in their analyses were based on the microscopic detection of cysts and
rarely included molecular tools to determine the Giardia species or assemblage types. The
potential relevance for zoonotic transmissions was nevertheless often discussed [13,46].
Here, we provided a new approach that could be used in future studies to facilitate the
determination of Giardia species and may help to assess the potential relevance of rodent
species for zoonotic transmissions of Giardia infections.

The results presented here indicated that our workflow was sensitive and robust for
such purposes. However, our method also had clear limitations. The most prominent
limitation was that G. microti cannot be detected directly. We based the design of the primers
and probes on previously acquired sequence information at the SSU locus of 106 unique
G. microti and 10 unique G. muris sequences [4]. To our knowledge, this currently reflects
the largest sequence collection available for these species. For G. microti, the sequence
analysis revealed a broad variety of genotypes even at the usually highly conserved SSU
gene locus [4]. Due to the sequence variety and shortage of further sequence information,
we lacked the appropriate oligonucleotides for a direct G. microti-specific PCR and needed
to rely on PCR signals obtained with primers detecting G. microti/G. duodenalis or solely
G. duodenalis, respectively. Notably, a previously described real-time PCR for human
diagnostic purposes [39] partially detected some, but not all, G. micoti genotypes (data not
shown), hence providing little benefit to the current study.

The analysis revealed different sensitivities for the various PCR approaches, which
was important for the interpretation of the results. However, all PCRs detected one or less
genome equivalents at the SSU locus and about 10 genome equivalents at the 4E1-HP locus.
This was in good concordance with previously published results using these loci [47,48].
It is unclear why G. microti/G. duodenalis-specific real-time PCR is less sensitive than G.
duodenalis PCR in particular, because the same region is covered. Possibly, conformational
hindrance at the gene locus may influence the binding affinity of the primer and probe.
For the G. duodenalis assemblage-specific PCR, the lower sensitivity was likely due to the
single-copy target gene used for detection. The lower sensitivity compared to real-time
PCR at the SSU locus has been also described previously [38].
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Whether the low-level detection of pathogens in real-time PCR assays, as indicated by
high cq values, are indeed relevant for zoonotic transmissions should be carefully evaluated
in future screening studies. For example, in our original study, an analysis of 358 SSU
sequences derived from wild rodents revealed only five G. duodenalis-positive samples, and
these samples were not typable at the single locus genes TPI, GDH and BG. Four of these
samples were included in the present study and revealed either very low cq values for G.
duodenalis qPCR or G. duodenalis was undetectable with the presented PCR methods. Only
one sample revealed detectable amounts of G. duodenalis assemblage B DNA, confirming
our previous typing results. Overall, this implied a very low zoonotic risk in the studied
German rodent population.

In conclusion, we provided a processive and robust workflow for the detection of all
Giardia species populating small rodents, including the zoonotic G. duodenalis assemblage
types. This approach could be used in future studies to estimate the possible relevance for
zoonotic transmissions by these animals.
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