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Abstract
We show that in positive characteristic special loci of deformation spaces of rank one
�-adic local systems are quasi-linear. From this we deduce the Hard Lefschetz theorem
for rank one �-adic local systems and a generic vanishing theorem.

Mathematics Subject Classification 14G17 · 14G22

1 Introduction

In this notewe study the cohomologyof étale rankone�-adic local systemsonalgebraic
varieties in terms of �-adic analysis applied to the deformation space of local systems.
One feature of our approach is that we apply non-archimedean techniques (formal Lie
groups, affinoid algebras etc.) that were originally developed as tools in the study of
p-adic cohomology theories. Before we explain our new non-archimedean methods
in Sect. 1.4 we sketch some applications in the most simple form. The general form
is described in Sects. 5 and 6.

1.1 Hard Lefschetz

One of the applications of our �-adic technique is a new case of the Hard Lefschetz
isomorphism in positive characteristic. Let � be a prime number and let X be a smooth
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projective variety over an algebraically closed field F of characteristic different from �.
Let d be the dimension of X . Let η ∈ H2(X , Z�) be a polarization in étale cohomology,
i.e. the first Chern class of an ample line bundle on X , where we omit Tate twists as
F is algebraically closed.

Theorem 1.1 (Hard Lefschetz) Let L be a rank one étale Q�-local system on X. Then
for any i ∈ N, the cup-product map

∪ηi : H−i (X ,L[d]) ∼−→ Hi (X ,L[d])

on étale cohomology is an isomorphism.

More generally, we also obtain the isomorphism ∪ηi for L[d] replaced by F ⊗ L,
where F ∈ Db

c (X , Q�) is an arithmetic semi-simple perverse sheaf, see Theorem 5.4.
Here we call a sheaf arithmetic if it is fixed by the action of a Galois group of a finitely
generated field, see Definition 5.1 and Remark 5.2. In particular, semi-simple objects
F ∈ Db

c (X , Q�) of geometric origin [2, p. 163] are arithmetic.

Remark 1.2 In characteristic zero, Theorem 1.1 in the more general case where L
is a semi-simple local system of arbitrary rank was first shown by complex analytic
techniques in [27, Lem. 2.6]. In fact in characteristic zero we know the Hard Lefschetz
isomorphism for any semi-simple perverse sheaf, see [2, Thm. 5.4.10], [7, Thm. 1.4],
[24, MainThm. 1] and [20, Thm. 19.47].

In positive characteristic, Theorem1.1was shown for a torsion rankone local system
L by Deligne [6, Thm. 4.1.1] relying on arithmetic weight arguments. More generally
the Hard Lefschetz isomorphism for an arithmetic semi-simple perverse sheaf was
known from combining [2, Thm. 6.2.10] and the Langlands correspondence for GLr

over function fields [18, Thm. 7.6], see [7, 1.8].

1.2 Jumping loci

Jumping loci in the moduli space of line bundles or rank one local systems on complex
varieties have been studied extensively, see [14] for the initial approach. As a second
application we show that jumping loci in the deformation space of étale rank one
Q�-local systems satisfy a strong linearity condition analogous to the well-understood
situation in characteristic zero, see Sect. 6.1 for details.

Let π be a finitely generated free Z�-module. Let

G(Q�) := Homcont(π, Q
×
� )

be the set of continuous homomorphisms π → E×, where E ⊂ Q� is any finite
extension ofQ� endowedwith the �-adic topology.We endowG(Q�)with a noetherian
Zariski topology such that dim(G(Q�)) = rank(π). This Zariski topology originates
from the observation that the elements of G(Q�) are the Q�-points of a multiplicative
formal Lie group G, see Sect. 3.1.
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For a torsion free quotient Z�-module π/π ′, we call

H(Q�) = Homcont(π/π ′, Q
×
� )

a formal Lie subgroup of G(Q�), or more precisely the Q�-points of a formal Lie
subgroup H. Note that codimG(Q�)

(H(Q�)) = rank(π ′).
Let X be either a smooth proper variety or the torusG

d
m over an algebraically closed

field F of characteristic different from �. In the following we let the free Z�-module
π be a quotient of the abelian étale fundamental group πab

1 (X). Then with the group
of characters G(Q�) as above, any s ∈ G(Q�) gives rise to an étale rank one Q�-local
system Ls on X .

For F ∈ Db
c (X , Q�) and i, j ∈ Z, we consider the jumping locus of étale coho-

mology

�i (F , j) := {s ∈ G(Q�) | dim Hi (X ,F ⊗ Ls) > j}

which one can show to beZariski closed inG(Q�). Our second application is a structure
theorem for those loci, see Theorem 6.2.

Theorem 1.3 For an arithmetic sheaf F ∈ Db
c (X , Q�) we have

�i (F , j) =
⋃

r∈I

srHr (Q�),

where I is finite, sr ∈ G(Q�) are torsion points and Hr are formal Lie subgroups of
G.

Remark 1.4 As far as we are aware of, Theorem 1.3 is the first result on jumping loci
of �-adic cohomology in positive characteristic.

For ch(F) = 0 and F of geometric origin in the sense of [2, p. 163], Theorem 1.3
is shown in [14, Thm. 0.1], [28, Thm. 4.2], [25, Thm. 2.2], [17, Sec. 11], [3, Thm. 1.1]
using complex analytic techniques. Arithmetic methods for understanding jumping
loci in characteristic zero are developed in [22, Thm. 1.1] for coherent cohomology
and [11, Thm. 1.5] for �-adic sheaves.

We expect Theorem 1.3 to hold for non-arithmetic F ∈ Db
c (X , Q�) without the

conclusion on the sr being torsion points. This holds for ch(F) = 0.

1.3 Generic vanishing

The study of generic vanishing was initiated by Green–Lazarsfeld for the cohomology
of line bundles [13, Thm. 1]. As a third application we prove a generic vanishing result
for étale rank one Q�-local systems. For this we formulate a new abstract approach to
generic vanishing based on the Hard Lefschetz isomorphism and the study of jumping
loci, see Sect. 6.2. For simplicity of exposition in the introduction, we confine the
presentation to the most important special case of abelian varieties.



58 Page 4 of 25 H. Esnault, M. Kerz

Let X be an abelian variety of dimension d over the algebraically closed field F
of characteristic different from �. Let π be the �-adic completion of the abelian étale
fundamental group πab

1 (X) and let the notation be as in Sect. 1.2.

Theorem 1.5 Assume that F ∈ Db
c (X , Q�) is arithmetic and perverse. Then

codimG(Q�)
(�i (F , 0)) ≥ |2i |

for all i ∈ Z.

This is Corollary 6.10.

Remark 1.6 For ch(F) = 0 Theorem 1.5 is equivalent to [25, Thm. 4.1] and [1,
Thm. 1.3], who do not need the arithmeticity assumption, see also [17, Thm. 1.1]. For
ch(F) > 0, the inequality

codim(�i (F , 0)) > 0 for i 
= 0

is shown in [30, Intro].

Our proof of Theorem 1.5 relies on a study of a Galois tower

· · · → Xn+1 → Xn → · · · → X0 = X

which is “isotropic”with respect to theWeil pairing associated to a polarization η. Here
Gal(Xn/X) = (Z�/�

n
Z�)

r , r ≤ d. This tower gives rise to a “tautological” rank one
étaleR-local systemLR on X . Here the noetherian Jacobson ringR = Z��π�⊗Z�

Q�

is defined in terms of the completed group ring Z��π�, see Sect. 3.1.
The idea for the proof of Theorem 1.5 is to use on the one hand an isomorphism

property of the Lefschetz operator on finitely generated R-modules

∪ηi : H−i (X ,F ⊗ LR) → Hi (X ,F ⊗ LR).

On the other hand the choice of the tower leads to a vanishing result for the Lefschetz
operator ∪ηi for i ≥ 1 + d − r , see Proposition 4.6 and Lemma 6.14.

1.4 Main Theorem

The three theorems presented in this introduction all rely on the Main Theorem which
does not refer to any variety X . It describes a Zariski closed locus of the space of
Q�-points of a multiplicative formal Lie group under the condition that the locus is
invariant under a specific type of linear automorphism.

We use the notation introduced in 1.2, i.e. let π be a finitely generated free Z�-
module with corresponding character group G(Q�) = Homcont(π, Q

×
� ). As before we

endow G(Q�) with a Zariski topology via the canonical bijection

Spm(R)
∼−→ G(Q�) J �→

(
π → (R/J )× = Q

×
�

)
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whereR = Z��π�⊗Z�
Q� receives the tautological character π → R×, see Sect. 3.1.

The following is Theorem 3.4.

Theorem 1.7 (MainTheorem)Letσ be a Z�-linear automorphism ofπ such thatσ acts
semi-simply on π ⊗Z�

Q� and such that for a given complex embedding ι : Q� ↪→ C,
its eigenvalues αi verify |ι(αi )| = |ι(α j )| 
= 1 for all i, j . Let S ⊂ G(Q�) be a Zariski
closed subset. Then, if σ(S) = S we have

S =
⋃

r∈I

srHr (Q�),

where I is finite, sr ∈ G(Q�) are torsion points and Hr are formal Lie subgroups of
G.

We briefly describe how we apply the Main Theorem.
The idea of our proof of Theorem 1.1 comes from [7]. We use a deformation space

of rank one Q�-local systems on X isomorphic to G(Q�) as above. Inside of this
deformation space we define the bad locus to be the set of rank one local systems
L for which Theorem 1.1 fails to hold. The bad locus is constructible in G(Q�) and
we let S be its Zariski closure. Then S is stabilized by a suitable Frobenius action
σ satisfying the conditions of the Main Theorem. So it implies that S is a union of
torsion translated Lie subgroups. Consequently, the torsion rank one local systems are
dense in S. In view of Deligne’s Hard Lefschetz theorem the bad locus cannot contain
a torsion local system, so it is empty.

For Theorem 1.3 we use that the jumping loci, which are closed subsets of G(Q�),
satisfy the assumption of theMain Theoremwith respect to a suitable Frobenius action
σ . The proof of Theorem 1.5 combines Theorem 1.1 and Theorem 6.2 as sketched at
the end of Sect. 1.3.

We now describe the idea of the proof of the Theorem 1.7. We can assume that S
is irreducible. The conclusion in particular implies that the torsion points are Zariski
dense in S (see Lemma 3.1). So we first construct one torsion point on S. To this aim,
we replace S by the closed subset �n S of the group G(Q�) for some n  0 so as make
sure that it cuts non-trivially a small �-adic neighborhood of 1 ∈ G(Q�) on which the
�-adic logarithm map is an isomorphism. This enables one to transfer the problem to
a closed �-adic polydisc in the Lie algebra of G, i.e. to a Tate algebra on which σ acts
linearly.

Proposition 2.1 and 2.5, proven using �-adic analysis, show that in our logarithmic
coordinate chart S contains the origin andmoreover is conical. This implies that �S ⊂ S
by a density argument. We can then apply a theorem of de Jong [5, Prop. 1.2(1)] to
finish the proof. Alternatively, what was our initial proof, one can use the Weierstrass
preparation theorem to find another torsion point on S contained in its regular locus,
in case 1 ∈ S was singular. Then one shows using simple �-adic analysis that if S
contains a torsion point in its regular locus such that S is conical around this point
then S is linear. This is similar to the approach in [11, Section 4]. As de Jong’s argument
shortens our initial argument, we do not give the details of it in this note.



58 Page 6 of 25 H. Esnault, M. Kerz

2 Tate algebras

Let E be a finite extension of Q� with residue field k and uniformizer λ ∈ OE . We
always fix an embedding E ↪→ Q� into an algebraic closure ofQ�.We let |−| : E → R

be the �-adic absolute value normalized by |�| = 1/�. Let A = E〈T1, . . . , Tb〉 be the
Tate algebra, see [12, Sec. 3.1]. Let |− | be the Gauss norm on A, i.e. |g| = supn|g(n)|
where g(n) is the coefficient of T n, n ∈ N

b in the expansion of g. We denote by M
the maximal ideal (T1, . . . , Tb) ⊂ A.

Let σ ∈ Matb(OE ) be the diagonal matrix σ = diag(α1, . . . , αb). Then σ induces
an endomorphism of A as an E-algebra by the rule Tj �→ ∑b

i=1 σi j Ti , which we also
denote by σ .

Proposition 2.1 Assume that αn 
= 1 for all n ∈ N
b\{0}. Let I ⊂ A be an ideal with

σ(I ) ⊂ I which is not contained in the maximal ideal M. Then I = A.

Proof As I does not lie in M , there is a g◦ ∈ I with g◦(0) = 1, which we fix for
the rest of the proof. The basic idea of the proof is simple: successively apply linear
expressions in σ to g◦ in order to kill the coefficients of degree > 0 without changing
the constant coefficient 1. The problem is to make such a sequence of elements of I
converge.

As any ideal in A is closed [12, Thm. 3.2.1], so is the subset

Ĩ = {g ∈ I | g(0) = 1, |g(n)| ≤ |g(n)◦ |}

of A.

Lemma 2.2 Ĩ is compact.

Proof As a Banach space, A is isomorphic to c0, the set of sequences g = (g(n))n∈Nb

in E with |g(n)| → 0 as |n| → ∞. It is endowed with the supremum norm |g| =
supn|g(n)|. One has an injective map

ϕ :
∏

n∈Nb,g(n)◦ 
=0

OE → J ⊂ c0, (u(n)) �→ (u(n)g(n)◦ ),

defining J as its image. As Ĩ = J ∩ I ∩ {(g(n))n, g(0) = 1}, I is closed and the
map c0 → E, (g(n)) �→ g(0) is continuous, we just have to prove that J is compact.
The map ϕ is continuous for the product topology on the left and the restriction of the
topology of A to J on the right. Indeed, for ρ > 0, the inverse image

ϕ−1({|g| < ρ})
=

∏

n∈Nb,0<|g(n)◦ |<ρ

OE ×
∏

n∈Nb,|g(n)◦ |≥ρ

{u(n), |u(n)| < |g(n)◦ |−1ρ}

is open as the index set {n ∈ N
b, |g(n)◦ | ≥ ρ} on the right is finite.

AsOE is compact, so is
∏

n∈Nb,g(n)◦ 
=0
OE by Tychonoff’s theorem. So its image J

by the continuous map ϕ is compact as well. This finishes the proof. ��



Étale cohomology of rank one. . . Page 7 of 25 58

For i ≥ −1, set

Ni = {n ∈ N
b\{0} | |1 − αn| ≥ |λi |}.

This is an ascending chain of subsets of N
b\{0} such that

Ni+1\Ni = {n ∈ N
b\{0} | |1 − αn| = |λi+1|}.

Because αi ∈ O and αn 
= 1 for all n ∈ N
b\{0}, one has

N−1 = ∅, ∪i Ni = N
b\{0}.

We define closed subsets

Ĩi = {g ∈ Ĩ | g(n) = 0 for all n ∈ Ni } ⊂ I .

In particular, Ĩ−1 = Ĩ contains g◦, so it is non-empty. The Ĩi form a descending chain
of subsets of Ĩ .

Claim 2.3 For all i ≥ 0 the set Ĩi is non-empty.

Proof It suffices to show that if Ĩi is non-empty, so is Ĩi+1. In the following we fix
i ≥ −1. We set M = Ni+1\Ni ⊂ Ni+1, which we assume to be non-empty else the
problem is solved. We choose a linear order m1 ≺ m2 ≺ . . . of M = {m1, m2, . . .}.
For card(M) ≥ j ≥ 1 we define a closed subset

Ĩ j
i = {g ∈ Ĩi | g(m) = 0 for m ≺ m j , m ∈ M} ⊂ Ĩ .

Set Ĩ j
i = Ĩi+1 for j > card(M). This is a decreasing sequence of subsets of Ĩi such

that

∩ j≥1 Ĩ j
i = Ĩi+1.

Thuswe reduce the problem to showing that if Ĩ j
i 
= ∅ for some j ≥ 1, then Ĩ j+1

i 
= ∅

for by Lemma 2.2 we then conclude Ĩi+1 
= ∅.

We define a map m : I → I by

m(g) = σ(g) − αm g

1 − αm

for m ∈ N
b\{0}. Then we obviously have m(g)(m) = 0, m(g)(0) = 1. In order to

conclude the proof of the Claim 2.3, it remains to prove Claim 2.4. Indeed, we then
get m j ( Ĩ j

i ) ⊂ Ĩ j+1
i . ��

Claim 2.4 |m(g)(n)| ≤ |g(n)| for g ∈ Ĩi , n ∈ N
b and m ∈ M.
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Proof As m(g)(n) = g(n) = 0 for n ∈ Ni we assume that n /∈ Ni . This implies
|1 − αn| ≤ |1 − αm |. We have

m(g)(n) = αn − αm

1 − αm
g(n).

So

|m(g)(n)| =
∣∣∣∣
αn − αm

1 − αm

∣∣∣∣ |g(n)|

≤ max(|1 − αn|, |1 − αm |)
|1 − αm | |g(n)| ≤ |g(n)|.

This finishes the proof. ��
Lemma 2.2 and Claim 2.3 imply that ∩i Ĩi is non-empty, say it contains h. Then

h(n) = 0 for all n ∈ N
b\{0}, so h ∈ I is a constant and hence 1 ∈ I . This finishes the

proof of Proposition 2.1. ��
In the next proposition we combine Proposition 2.1 with a “weight” argument in

order to deduce that I is homogeneous under suitable assumptions. We fix a complex
embedding ι : Q� ↪→ C.

Proposition 2.5 Let σ ∈ GLb(OE ) be the diagonal matrix σ = diag(α1, . . . , αb). We
assume that |ι(αi )| = |ι(α j )| 
= 1 for all 1 ≤ i, j ≤ b. Let I ⊂ A be a radical ideal
with σ(I ) = I . Then I is homogeneous.

Proof To start with we observe that as a consequence of our assumption on the eigen-
values αi we obtain the implication

αn = 1 ⇒ n1 + · · · + nb = 0 (1)

for n ∈ Z
b.

As I is the intersection of finitely many minimal prime ideals containing it and as
σ permutes these prime ideals, we can assume without loss of generality that I itself
is a prime ideal. The assumptions on the eigenvalues αi in Proposition 2.1 are satisfied
by (1), so we see that I ⊂ M = (T1, . . . , Tb).

One has to check that the homogeneous components of an element g ∈ I are in I .
Denote by Â and Î the completion at the maximal ideal M = (T1, . . . , Tb). As the
map A/I → Â/ Î is injective, it suffices to show that the homogeneous components
of g are in Î . This is equivalent to saying that the homogeneous components of g are
in the ideal I + Mn/Mn ⊂ A/Mn for all n > 0, i.e. that I + Mn/Mn is graded by
degree.

Let D ↪→ GLb,E be the smallest linear algebraic subgroup (over E) containing
σm for all m ∈ Z. We can determine the diagonalizable group D a follows. Let
T ↪→ GLb,E be the standard maximal torus. Then D is the intersection of the kernels
of all characters χn : T → Gm with χn(α) = 1. Here n ∈ Z

b and χn(α) = αn . By (1)
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we see that those χn are trivial on the diagonal torus Gm , so D contains the diagonal
Gm .

But D acts on A/Mn for any n > 0 and this action preserves I + Mn/Mn . The
weight decomposition with respect to the action of the diagonal Gm ⊂ T implies that
I + Mn/Mn is graded by degree. ��

3 Multiplicative formal groups

In this section we prove our main theorem on multiplicative formal Lie groups, The-
orem 3.4.

3.1 Basics

We recall some basic results on multiplicative formal groups and we define a Zariski
topology on its group of Q�-points.

Let E be a finite extension of Q� and fix an embedding E ↪→ Q�. For an abelian
pro-finite group π we let

R = OE�π� = lim
�

OE [�] = lim
m,�

(OE/(λm))[�]

where� runs through the system of finite quotients of π and (λ) ⊂ OE is the maximal
ideal. The quotient (OE/(λm))[�] is finite and is endowed with the discrete topology.
Then OE�π� is endowed with the limit topology.

On OE�π� we consider the usual completed Hopf algebra structure over OE , for
example the multiplication is given by

OE�π� ⊗̂OEOE�π� → OE�π� [e1] ⊗ [e2] �→ [e1 + e2].

For another pro-finite group π ′ the continuous Hopf algebra homomorphisms
OE�π� → OE�π ′� are in bijection with the continuous homomorphisms π → π ′.
One can show this by reducing to π and π ′ finite and then applying Cartier duality [32,
Exp. VIIB, 2.2.2 Prop.]. We denote the prime ideal generated by 1− [e] for all e ∈ π

by M , i.e. M is the kernel of the counit OE�π� → OE , [e] �→ 1 for e ∈ π .
In the following we assume that π is a finitely generated free Z�-module of rank

b. In this situation one says that the associated formal group G = Spf(OE�π�) is a
multiplicative b-dimensional formal Lie group over OE . A closed formal subgroup
H ↪→ G is called a formal Lie subgroup if it corresponds to a quotient morphism of
OE -algebrasOE�π� → OE�π/π ′�, where π/π ′ is a torsion free quotient Z�-module
of π .

Once we choose a Z�-basis e1, . . . , eb of π we obtain an isomorphism

OE�π� ∼= OE�X1, . . . , Xb�
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defined by

[ei ] �→ 1 + Xi

and the comultiplication becomes

OE�X1, . . . , Xb� → OE�Y1, . . . , Yb, Y ′
1, . . . , Y ′

b�

Xi �→ Yi + Y ′
i + Yi Y

′
i .

We identify G(Q�) = HomOE (OE�π�, Q�) with the group of continuous homo-

morphisms Homcont(π, Q
×
� ). Recall that by [15, Prop.A.2.2.3], G(Q�) can also be

identified with the maximal spectrum Spm(R) of R = R ⊗OE Q�. Furthermore, R
is a noetherian Jacobson ring of dimension b (loc.cit.).

As a maximal spectrum, G(Q�) is endowed with a Zariski topology, which is the
topology on G(Q�) we use in the sequel.

Lemma 3.1 The subset of torsion points of G(Q�) is dense.

Proof We have to show that if g ∈ R vanishes on all torsion points then g = 0.
Without loss of generality g ∈ OE�π�. Let [�n] : OE�π� → OE�π� be the morphism
induced by �n-multiplication on π . Let Jn be the ideal generated by [�n](M). For all
n > 0 the ring

OE�π�/Jn = OE [π/�nπ ] (2)

is flat over OE and its tensor product with E is reduced. As the finite group
Spm(OE [π/�nπ ] ⊗OE Q�) identifies with the �n-torsion points of G(Q�), we see
that the image of g in the rings (2) vanishes for all n > 0. As the limit over n of the
rings (2) is OE�π� by definition, we get g = 0. ��

3.2 Exponential map

We recall some well-known facts on the �-adic exponential map, see [4, Ch. 12]. We
consider the �-adic absolute value | − | on Q� with |�| = 1/�. For ρ ∈ (0, 1) ∩ |Q×

� |
we have extensions of rings

OE�X1, . . . , Xb� ⊗OE E ⊂ E〈X1, . . . , Xb〉ρ

where the Tate ring on the right is the completion of the polynomial ring with respect
to the ρ-Gauss norm. Recall that the ρ-Gauss norm of g = ∑

n g(n)Xn is defined by
|g| = supn |g(n)|ρn .

Under the additional assumption ρ < �−1/(�−1), we have an exponential isomor-
phism

E〈X1, . . . , Xb〉ρ ∼−→ E〈T1, . . . , Tb〉ρ, Xi �→ exp(Ti ) − 1.
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Let B(ρ) ⊂ Q
b
� be the polydisc consisting of points with maximum norm ≤ ρ,

where ρ ∈ |Q×
� |. As B(ρ) can be identified with the maximal spectrum of

Q�〈T1, . . . , Tb〉ρ = colimE E〈T1, . . . , Tb〉ρ,

we can endow it with a Zariski topology.
Independently of the choice of coordinates one can identify B(ρ)withHomZ�

(π⊗Z�

βZ�, Z�), where β ∈ Q� is such that |β| = 1/ρ. So more generally for any finitely
generated Z�-submodule π ′ ⊂ π ⊗Z�

Q� containing π , there exists a closed polydisc
Bπ ′ ⊂ B(1).

Similarly, we let G(Q�)(ρ) be the subgroup of G(Q�) which consists of the con-
tinuous homomorphisms χ : π → Q

×
� with |χ(e) − 1| ≤ ρ for all e ∈ π . We then

obtain an injective group homomorphism

expρ : B(ρ) → G(Q�) for ρ < �−1/(�−1)

which is continuous with respect to the Zariski topology and the image of which is
G(Q�)(ρ).

Lemma 3.2 Let S ⊂ G(Q�) be an irreducible closed subset and ρ ∈ (0, 1) ∩ |Q×
� | be

such that the subset S ∩ G(Q�)(ρ) is non-empty. Then S ∩ G(Q�)(ρ) is dense in S.

Proof After replacing E by a finite extension we can assume that S is given by an
integral quotient ring A of OE�π� which is flat over OE . The map A → A ⊗OE �π�

Q�〈X1, . . . , Xb〉ρ is injective since it is flat and non-zero. The codomain of this map
is a reduced Jacobson ring [11, Prop. 2.2] and its maximal ideals correspond to S ∩
G(Q�)(ρ). As the closure of S ∩ G(Q�)(ρ) corresponds to the intersection of these
maximal ideals inside A, which is the zero ideal, we deduce Lemma 3.2. ��

3.3 Main Theorem

This subsection contains the technically central result of our note. Let E be a finite
extension of Q� together with a fixed embedding E ↪→ Q� and let G = Spf(OE�π�)
be a multiplicative b-dimensional formal Lie group over OE . Let σ : π → π be an
automorphism such that the Q�-linear map σ : π ⊗Z�

Q� → π ⊗Z�
Q� is semi-simple

with eigenvalues α1, . . . , αb ∈ Q�. We also denote by σ : G → G the corresponding
automorphism of formal groups. Recall that we fix a complex embedding ι : Q� ↪→ C.

We define quasi-linearity following de Jong [5, Def. 1.1].

Definition 3.3 A closed subset S ⊂ G(Q�) is called quasi-linear if it can be written in
the form

S =
⋃

r∈I

srHr (Q�),

where I is finite, the elements sr ∈ G(Q�) are torsion and the Hr are formal Lie
subgroups of G.
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Theorem 3.4 Assume that for all i, j ∈ {1, . . . , b} we have |ι(αi )| = |ι(α j )| 
= 1. Let
S ⊂ G(Q�) be a Zariski closed subset with σ(S) = S. Then S is quasi-linear.

Proof We can assume that S is non-empty and irreducible. We fix ρ ∈ (0, �−1/(�−1))∩
|Q×

� |. There existZ�-linear independent eigenvectors e′
1, . . . , e′

b ∈ π ⊗Z�
Z� of σ such

that π is contained in π ′ = Z�e′
1 + · · · + Z�e′

b. We also fix an integer w > 0 with
�wπ ′ ⊂ π ⊗Z�

Z�.
There exists n > 0 such that [�n](S)∩G(ρ/�w) is non-empty. As [�n] : OE�π� →

OE�π� is a finite, faithfully flat ring homomorphism, we deduce that [�n](S) is closed
in G(Q�). So exp−1

ρ ([�n](S)) ∩ Bπ ′ is closed and non-empty in the polydisc Bπ ′ .
The choice of e′

1, . . . , e′
b above allows us to identify Bπ ′ with the maximal spectrum

of the Tate algebra Q�〈T ′
1, . . . , T ′

b〉. So after replacing E by a finite extension the
Zariski closed subset exp−1

ρ ([�n](S)) ∩ Bπ ′ of Bπ ′ corresponds to a radical ideal
I ⊂ E〈T ′

1, . . . , T ′
b〉.

We can apply Proposition 2.5 in order to see that I is homogeneous. Consequently,
exp−1

ρ ([�n](S)) ∩ Bπ ′ and therefore also its subset exp−1
ρ/�w ([�n](S)) is stabilized by

the homothety �, which is equivalent to the fact that [�n](S) ∩ G(ρ/�w) is stabilized
by [�]. As [�m](S)∩G(ρ/�w) is Zariski dense in [�m](S) for all m ≥ n by Lemma 3.2,
we deduce that [�] also stabilizes [�n](S). By a result of de Jong [5, Prop. 1.2(1)] this
implies the theorem. ��

4 Generalized Fourier–Mellin transform

In this section we consider a generalization of �-adic cohomology which for tori is
calledMellin transform in [15, Prop. 3.1.3] andwhich for complex abelian varieties is a
completion of the Fourier–Mellin transform in [1, Section 1]. The use of this “Fourier–
Mellin transform” is limited by the fact that we do not know any sort of inversion
formula at the moment. The only really new result in this section is Proposition 4.6
which provides a simple direct approach to generic vanishing.

4.1 Definition and basic properties

Let X be a separated, connected scheme of finite type over the algebraically closed
field F . All cohomology groups we consider will be with respect to the étale topology.
In the sequel, a tensor product involving a derived object (module or sheaf) means a
derived tensor product.

Let E be a finite extension of Q� with a fixed embedding E ↪→ Q�. Let R be a
complete noetherian local OE -algebra with finite residue field and maximal ideal m.
Then R = R ⊗OE Q� is a noetherian Jacobson ring by [15, Prop.A.2.2.3].

Let F be in Db
c (X ,OE ) and let ρ : π1(X) → R× be a continuous character. We

define m-adic étale cohomology as

R�(X ,F ⊗OE LR) := R lim
n

R�(X ,F ⊗OE LR/mn ),
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whereLR/mn is the étale local system on X associated to the finite character π1(X)
ρ−→

R× → (R/mn)×. We denote the cohomology of this complex by Hi (X ,F ⊗OE LR).
The corresponding cohomology with compact support is defined in the usual way. Let
ωX ∈ Db

c (X ,OE ) be the dualizing complex f !(OE ), where f : X → Spec (F) is the
canonical map.

We collect some properties of this m-adic cohomology, which follow from [9].

Proposition 4.1 (1) [Finiteness] The complex R�(X ,F ⊗OE LR) has bounded,
coherent cohomology groups, i.e. it is in Db

coh(R).
(2) [Base change] For any quotient ring R′ of R we have a base change isomorphism

R�(X ,F ⊗OE LR) ⊗R R′ �−→ R�(X ,F ⊗OE LR′) ∈ Db
coh(R′).

(3) [Limit property] We have an isomorphism of R-modules

Hi (X ,F ⊗OE LR)
�−→ lim

n
Hi (X ,F ⊗OE LR/mn ).

(4) [Duality] There is a canonical isomorphism

RHomR(R�c(X ,F ⊗OE LR), R) � R�(X ,F∨ ⊗OE L∨
R)

in Db
coh(R), where F∨ = RHom(F , ωX ) and where L∨

R is the local system
associated to the dual character ρ−1.

Part (1), (2) and (4) follow from [9, Thm. 6.3, Thm. 7.2], part (3) follows from the
fact that lim1

n Hi (X , R/mn) vanishes for all i ∈ Z as these R-modules are artinian.
Note that Ekedahl assumes that R has finite global dimension, which is sufficient for
our application. It is however not difficult to show the general case.

Note that for F ∈ Db
c (X , Q�) we get a corresponding complex

R�(X ,F ⊗ LR) in Db
coh(R),

associated to the character π1(X)
ρ−→ R× → R×.

One way in which this étale m-adic cohomology is useful is the following isomor-
phism criterion for a cup-product. Let F and K be in Db

c (X , Q�) and assume that R
is an integral domain in which � does not vanish.

Lemma 4.2 For ξ ∈ H j (X ,K) and i ∈ Z the following are equivalent:

(1) The cup-product

Hi (X ,F ⊗ LR)
∪ξ−→ Hi+ j (X ,F ⊗ K ⊗ LR)

is an isomorphism (resp. not an isomorphism) after tensoring with Frac(R).

(2) Hi (X ,F ⊗ Ls)
∪ξ−→ Hi+ j (X ,F ⊗ K ⊗ Ls) is an isomorphism (resp. not an

isomorphism) for all s ∈ U, where U ⊂ Spm(R) is a dense open subset.
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Here Ls for s ∈ Spm(R) is the local system on X corresponding to the character
π1(X) → R× → k(s)×, which is given by reduction modulo the maximal ideal
associated to s. Note that the residue field k(s) is equal to Q�, see Sect. 3.1.

Proof It suffices to prove (1) ⇒ (2). By Proposition 4.1(1) there exists a dense open
subset U ⊂ Spm(R) such that the following R-modules are flat over U :

H∗(X ,F ⊗ LR), H∗(X ,F ⊗ K ⊗ LR) and

coker(H∗(X ,F ⊗ LR)
∪ξ−→ H∗(X ,F ⊗ K ⊗ LR)).

Note that then also the kernel of ∪ξ is flat over U . Then the conclusion follows from
Proposition 4.1(2) and the Tor-spectral sequence. ��

Combining Lemma 4.2 with [31, Prop. 0.9.2.3] we obtain:

Corollary 4.3 The set of s ∈ Spm(R) with the property that

Hi (X ,F ⊗ Ls)
∪ξ−→ Hi+ j (X ,F ⊗ K ⊗ Ls)

is an isomorphism (resp. not an isomorphism) is constructible.

Nowwe consider a special ring R. Let π be a torsion free �-adic quotient of πab
1 (X)

and let R be the completed group ring

R = OE�π� = lim
n

OE [π/�nπ ]

as in Sect. 3. We let ρ : π1(X) → R× be the canonical character e �→ [e]. Set
R = R ⊗OE Q�.

Definition 4.4 The integral Fourier-Mellin transform of F ∈ Db
c (X ,OE ) is defined

as

FMπ (X ,F) = R�(X ,F ⊗OE LR) ∈ Db
coh(R).

Up to isogeny we get an induced Fourier-Mellin transform

FMπ (X ,F) ∈ Db
coh(R)

for F ∈ Db
c (X , Q�). The corresponding cohomology modules are denoted by

FMi
π (X ,F) resp. FMi

π (X ,F).

In case the group π is clear from the context we omit it in the notation.

Remark 4.5 For R = OE�π� and for an R-module (sheaf) M we denote by M′ the
same abelian group (sheaf) with the R-module structure twisted by the automorphism
[−1] : R

∼−→ R, [−1]([e]) = [−e] for e ∈ π . Then the dual R-module sheaf L∨
R is

isomorphic to L′
R .
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4.2 A vanishing result

Again we fix a finitely generated free Z�-module quotient π of πab
1 (X) and we set

R = OE�π�. We have an induced tower of Galois coverings of X

· · · → Xn+1 → Xn → · · · → X0 = X

with Gal(Xn/X) = π/�nπ . We denote this tower by X∞ and we use the notation

H j (X∞,K) = colimn H j (Xn,K)

for K ∈ Db
c (X ,OE ).

The following vanishing proposition is our key new technical result which allows
us to obtain a short proof of the generic vanishing theorem. The analog for complex
analytic varieties could be used to give an alternative direct proof of [1, Thm. 1.3],
[25, Cor. 7.5], [17, Thm. 1.1].

Proposition 4.6 Let F and K be in Db
c (X ,OE ). If ξ ∈ H j (X ,K) becomes divisible

in H j (X∞,K), then the cup-product map

FMi (X ,F)
∪ξ−→ FMi+ j (X ,F ⊗OE K)

vanishes for all i ∈ Z.

Proof Recall that R = OE�π� and that this ring is identified with OE�X1, . . . , Xb�
by sending [ei ] to 1 + Xi , see Sect. 3.1. The key observation is that we have an
isomorphism of pro-rings

{R/mn}n � {OE/�mOE [π/�nπ ]}m,n . (3)

One easily sees the two isomorphisms of pro-rings

{R/mn}n � {R/(�m R + Xn
1 R + · · · + Xn

b R)}m,n (4)

and
{OE/�m[π/�nπ ]}m,n = {R/(�m R + ((X1 + 1)�

n − 1)R + · · · )}m,n . (5)

So to prove the isomorphism of pro-rings (3) we have to show that for fixed m > 0
the right sides of (4) and of (5) are isomorphic as pro-systems in n. As the ring on the
right side of (5) is artinian, Xi is nilpotent in it, which shows one direction.

Conversely, it suffices to show that (Xi + 1)�
r − 1 vanishes in the ring on the right

side of (4) for r  0 depending on m and n. We verify this by observing that in
the ring R/�m for any n ≥ m > 0 we have X�n−m+1

i |(Xi + 1)�
n − 1. In order to

verify this divisibility one has to show that all coefficients of the integral polynomial
(Xi +1)�

n −1 = ∑�n

r=1

(
�n

r

)
Xr

i are divisible by �m in degrees< �n−m+1. This follows

from ord�

((
�n

r

)) = n − ord�(r) for r > 0.
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From Proposition 4.1(3) and from the isomorphism (3) we deduce that

FMi (X ,F) = limm,n Hi (X ,F ⊗OE LOE /�m [π/�nπ ]).

We have

Hi (X ,F ⊗OE LOE /�m [π/�nπ ]) ∼= Hi (Xn, p∗
n(F) ⊗OE OE/�m) (6)

and similarly for FMi+ j (X ,F ⊗OE K), where pn : Xn → X is the canonical finite
étale map. For the isomorphism (6) one uses that pn ∗ OE/�m ∼= LOE /�m [π/�nπ ] and
the projection formula. Here OE/�m is the constant sheaf on Xn .

Our assumption on ξ says that if n is large enough, depending on m, then ξ is
�m-divisible in H j (Xn,K). In this situation the cup-product

Hi (Xn, p∗
n(F) ⊗OE OE/�m)

∪ξ−→ Hi+ j (Xn, p∗
n(F) ⊗OE K ⊗OE OE/�m) (7)

vanishes. So taking the limit over m and n in (7) and using the projection formula we
finish the proof of Proposition 4.6. ��

5 Hard Lefschetz theorem

5.1 Formulation of the theorems

Let X be a separated scheme of finite type over an algebraically closed field F of
characteristic different from �.

Definition 5.1 A complexF ∈ Db
c (X , Q�) is called arithmetic, if there exists a finitely

generated field F0 ⊂ F such that

(1) X descends to a separated scheme of finite type X0/F0;
(2) F lies in the full subcategory

Db
c (X0 ⊗F0 F0, Q�) ↪→ Db

c (X , Q�),

where F0 ⊂ F0 is the algebraic closure of F0 in F ;
(3) For each element σ ∈ Gal(F0/F0), one has

σ(F) � F ∈ Db
c (X0 ⊗F0 F0, Q�).

In particular if F = Fp then F is arithmetic if and only if it is stabilized by a
non-trivial power of the Frobenius.

Remark 5.2 The notion of arithmeticity in Definition 5.1 is the same as the one in
in [11, Defn. 1.4], replacing C by F . In [2, p. 163] semi-simple F ∈ Db

c (X , Q�) of
geometric origin are defined (over F = C, but this is irrelevant for the discussion)
and one easily checks that these F are arithmetic.
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In fact wherever we impose the arithmeticity condition in this note a slightly weaker
condition would be sufficient, which is however quite technical to formulate precisely.
Recall that the condition labeled (P) in [2, Lem. 6.2.6] says that after a spreading of
X , a suitable specialization ofF toFs̄ is fixed by a Frobenius, where s̄ is a sufficiently
generic Fp-point. The specialization depends on the choice of a strictly henselian
discrete valuation ring V with V ⊂ F such that the closed point of Spec (V ) is s̄. In
our use of the arithmeticity condition, all we shall need is precisely this invariance of
F under one generic Frobenius action.

The Lefschetz isomorphism is shown for mixed semi-simple perverse sheaves
defined over a finite field in [2, Thm. 5.4.10] and for semi-simple perverse sheaves of
geometric origin over the complex numbers in [2, Thm. 6.2.10]. Combining this with
the Langlands correspondence for function fields [18] one can show Theorem 5.3 by
first specializing to an algebraic closure of a finite field F similarly to [7, Rmk. 1.7]
and then using the method of the proof of [7, 1.8]. In the next two theorems, X is a
smooth projective variety over an algebraic closed field F of characteristic different
from �, and η ∈ H2(X , Z�) is the first Chern class of an ample line bundle.

Theorem 5.3 (Hard Lefschetz) Let F ∈ Db
c (X , Q�) be an arithmetic semi-simple

perverse sheaf. Then for any i ∈ N, the cup-product map

∪ηi : H−i (X ,F)
∼−→ Hi (X ,F)

is an isomorphism.

The aim of this section is to prove Theorem 5.4 for which weights are not available.

Theorem 5.4 (Hard Lefschetz) Let L be an étale rank one Q�-local system on X. Let
F ∈ Db

c (X , Q�) be an arithmetic semi-simple perverse sheaf. Then for any i ∈ N, the
cup-product map

∪ηi : H−i (X ,F ⊗ L)
∼−→ Hi (X ,F ⊗ L)

is an isomorphism. ��
Remark 5.5 One conjectures the Hard Lefschetz isomorphism to hold for any semi-
simple perverse Q�-sheaf on a projective scheme X over an algebraically closed field
F of characteristic different from �, see [7].

5.2 Proof of Hard Lefschetz

WenowproveTheorem5.4.We follow the general strategy ofDrinfeld in [7, Lem. 2.5].
Wefirstmake the reduction to the case F = Fp. To this aimwe quote [2, Lem. 6.1.9]

which unfortunately is only written for the passage from the field of complex numbers
to positive characteristic, so we quote in addition [7, Rmk. 1.7] where it is observed
that the spreading and specialization also work in positive characteristic with only
minor changes.
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From now on, we assume that F = Fp. Then X descends to a variety over a finite
subfield F0 ⊂ F . With the notation of Sect. 3 we let π be the �-adic completion of the
abelian étale fundamental group π1(X)ab modulo torsion.

We first show that if the Hard Lefschetz theorem is true for all L which factor
through π , then it is true in general. Indeed, write χ : π(X)ab → O×

E for the character
corresponding to L where π1(X)ab is the maximal abelian quotient. We can decom-
poste π1(X)ab into a product π × π ′, where π ′ is itself a product of a finite �-group
and a pro-finite prime to � group. As χ(π ′) is finite this leads to a decomposition
L = L′ ⊗ M such that L′ is a torsion rank one Q�-local system and such that the
character ofM factors through π . The sheaf F ⊗L′ is still semi-simple perverse and
arithmetic, so by our assumption, Hard Lefschetz holds for (F ⊗L′) ⊗M = F ⊗L.

We now prove Hard Lefschetz under the assumption that the character of L factors
through π . We consider the multiplicative formal Lie group G = Spf(Z��π�). So
G(Q�) parametrizes the Q�-local systems whose character factors through π . We
define S◦ ⊂ G(Q�) to correspond to those Q�-local systems L such that Theorem 5.4
fails. By Corollary 4.3, S◦ is constructible. We define S ⊂ G(Q�) to be the Zariski
closure of S◦.

The geometric Frobenius σ ∈ Gal(F/F0) induces an automorphism σ : G → G
of the formal Lie group. As F is assumed to be arithmetic, we can replace F0 by a
finite extension and assume that σ fixes F up to quasi-isomorphism. Thus we obtain
a (non-canonical) isomorphism

σ : H∗(X ,F ⊗ L)
∼−→ H∗(X ,F ⊗ σ(L))

compatible with the cup-product with ηi . So σ(S◦) = S◦ and σ(S) = S.
The Frobenius σ acts Z�-linearly and semi-simply on π ⊗Z�

Q�, use [29, Thm. 2]
and note that the Albanese map X → Alb(X) induces an isomorphism with the
Tate module π ∼= T�(Alb(X)) [26, Ann. II]. Furthermore, the Frobenius σ acts with
weight −1 on π , see [6, Thm. 1]. Therefore Theorem 3.4 is applicable and says that
S is quasi-linear.

By Lemma 3.1, the torsion points are dense in S. If S◦ were non-empty it would
contain a torsion point corresponding to an arithmetic rank one Q�-local system L.
But thenF⊗Lwould be perverse, semi-simple, arithmetic and Hard Lefschetz would
fail for it. This contradicts Theorem 5.3. So S◦ is empty. This finishes the proof.

6 Jumping loci and generic vanishing

In this section we discuss further applications of our main Theorem 3.4.

6.1 Flat locus of the Fourier-Mellin transform and the cohomological jumping
locus

Let X be a separated, connected scheme of finite type over the algebraically closed
field F of characteristic different from �. Let E be a finite extension of Q� with a
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fixed embedding E ↪→ Q�. Let π be a finitely generated free Z�-module which is a
quotient of πab

1 (X). Set

R = OE�π�, R = R ⊗OE Q�

and let G = Spf(OE�π�) be the associated multiplicative formal Lie group. For
F ∈ Db

c (X , Q�) and i, j ∈ Z consider the subset

�i
π (F , j) := {L ∈ G(Q�) | dim Hi (X ,F ⊗ L) > j}.

of G(Q�), where we omit the index π if it is clear from the context. It is Zariski closed
as one easily sees from combining Proposition 4.1 and [31, Thm. 7.6.9].

As π ⊗Z�
Q� is dual to a subgroup of H1(X , Q�), it has a canonical weight filtration

([16, Sec. 2]). The weight zero part of H1(X , Q�) is equal to the kernel H1(X , Q�) →
H1(X reg, Q�), where X reg is the regular locus of the reduced scheme Xred.

Example 6.1 (1) For X proper, integral and geometrically unibranch the group
H1(X , Q�) is pure of weight one.

(2) For X ⊂ Y an open subscheme of a smooth variety Y over F with H1(Y , Q�) = 0
the cohomology group H1(X , Q�) is pure of weight two. Indeed,

H1(X , Q�) → H2
Y\X (Y , Q�) = Q�(−1)⊕b

is injective and the group on the right side is pure of weight two, where b is the
number of irreducible components of Y\X which are of codimension one. This
holds for example for X = G

d
m ⊂ Y = P

d
F .

Theorem 6.2 Assume that π is pure of weight different from zero. Let F ∈ Db
c (X , Q�)

be arithmetic.

(1) Then �i (F , j) is quasi-linear for all i, j ∈ Z.
(2) The non-flat locus S ⊂ Spm(R) = G(Q�) of the R-module FMi (X ,F) is quasi-

linear.

Remark 6.3 Conjecturally, the theorem remains true if we only assume that π is mixed
of non-zero weights instead of pure. Indeed, for ch(F) = 0, this is true by [11,
Thm. 1.5] and the general case would follow along the same lines from a “mixed
version” of [5].

If F ∈ Db
c (X , Q�) is not assumed to be arithmetic we can still conjecture the

theorem to hold without the part that the translation is by torsion points sr ∈ G(Q�)

in the Definition 3.3 of quasi-linearity.

Remark 6.4 Results related to Theorem 6.2 for ch(F) = 0 have been extensively
studied using complex analytic techniques, see [14], [28, Thm. 3.1,Cor. 6.4], [23,
Thm. 3.1], [17, Sec. 11] and [3, Thm. 1.1]. For the torus X = G

d
m part (1) of Theo-

rem 6.2 proves part of a conjecture of Loeser [19, Intro. p.9] under our arithmeticity
assumption.
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Proof of Theorem 6.2 For simplicity of notationwe stick to part (1), as part (2) is proved
almost verbatim the sameway. By the same technique as in the proof ofHard Lefschetz
in Sect. 5, we can assume that F is the algebraic closure of a finite field F0 and that
the scheme X descends to a scheme X0 of finite type over F0. By the arithmeticity
condition on F , after replacing F0 by a finite extension, for any σ ∈ Gal(F/F0) we
haveF � σ(F) ∈ Db

c (X , Q�). Without loss of generality we can assume that π is the
�-adic completion of πab

1 (X) modulo torsion. Then Gal(F/F0) acts on π . It follows
that �i (F , j) is stabilized by any σ ∈ Gal(F/F0) for i, j ∈ Z. We claim that we
can apply Theorem 3.4 with σ ∈ Gal(F/F0) the Frobenius, to see that �i (F , j) is
quasi-linear. For this we have to see that the Frobenius σ acts semi-simply on π ⊗Q�.

We may assume that X has dimension ≥ 1. Choose a regular closed subscheme
Y ↪→ X of dimension one such that the composition π1(Y ) → π1(X) → π is
surjective, for example by using [8, App. C]. By [26, Ann. II] the Albanese map
π1(Y ) → T�(Alb(Y )) identifies T�(Alb(Y )) with the �-adic completion of π1(Y )

modulo the torsion subgroup. So π ⊗Z�
Q� is isomorphic to a quotient of the torus

part or of the abelian part of the Tate module V�(Alb(Y )). By Tate [29, Thm. 2] the
Frobenius action on the Tate module of an abelian variety is semi-simple. The Frobe-
nius action on the Tate module of the torus is a scalar multiplication after replacing
F0 by a finite extension. This finishes the proof. ��

6.2 Generic vanishing

This section is motivated by [1, Thm. 1.1]. Except for the proof of Theorem 6.8,
what we say is only an �-adic translation of loc.cit. The classical question on a lower
bound for the codimension of the jumping loci �i (F , 0) has been initiated by Green-
Lazarsfeld for line bundles [14].

We consider a smooth projective variety X over the algebraically closed field F of
characteristic different from �. As beforeπ is a freeZ�-module quotient ofπab

1 (X). Our
criterion on generic vanishing depends on properties of the tower of Galois coverings

· · · → Xn+1 → Xn → · · · → X0 = X

with Galois groups Gal(Xn/X) = π/�nπ . We then write X∞ for this tower and
Hi (X∞, Z�) for colimn Hi (Xn, Z�). Let η ∈ H2(X , Z�) be a polarization, i.e. the
first Chern class of an ample line bundle, where we omit Tate twists for simplicity of
notation. We consider a situation in which η becomes divisible in H2(X∞, Z�). Note
that a class z ∈ Hi (X , Z�) becomes divisible in Hi (X∞, Z�) if

∀m, ∃n such that p∗
n(z) ∈ �m Hi (Xn, Z�) ⊂ Hi (Xn, Z�),

where pn : Xn → X is the covering map.
We describe now two kinds of Examples 6.5 and 6.6.

Example 6.5 Let X be an abelian variety of dimension d with polarization η. Let V
be a maximal isotropic subspace of the Tate module T�(X) ⊗Z�

Q� with respect to
the Weil pairing associated to η, so dimQ�

(V ) = d. Note that T�(X) can be identified
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with the �-adic completion of πab
1 (X). We set π = T�(X)/T�(X) ∩ V which is a free

Z�-module of rank d. Then η becomes divisible in H2(X∞, Z�) by [21, Thm. 23.3].

Example 6.6 Let X = X (1) × · · · × X (d) be a product of smooth proper curves with
polarizations η(1), . . . , η(d) and let X ( j)∞ → X ( j) be towers with Galois group Z�. We
consider the tower Xn = X (1)

n × · · · × X (d)
n and the polarization η = η(1) + · · · + η(d)

of X . Then η becomes divisible in H2(X∞, Z�).

Remark 6.7 The tower in Example 6.6 is used in [2, Prop.4.5.1] to prove via [2,
Cor.4.5.5] the purity theorem for the intermediate perverse extension in [2, Cor. 5.3.3].

Theorem 6.8 Let X be a smooth projective variety over the algebraically closed field
F. Assume that F ∈ pD≤0

c (X , Q�) is arithmetic and that the pullback to H2(X∞, Z�)

of a polarization η ∈ H2(X , Z�) becomes divisible. Then

codimSpm(R)(�
i (F , 0)) ≥ i

for all i ≥ 0.

The proof of Theorem 6.8 is given at the end of this section. It uses Proposition 4.6,
Theorems 5.4 and 6.2.

Corollary 6.9 For F ∈ pD≥0
c (X , Q�) the Fourier-Mellin transform satisfies FMi (X ,

F) = 0 for i < 0.

Proof Using Proposition 4.1(4) on duality together with Remark 4.5, we see that

FM(X ,F)′ � RHomR(FM(X ,F∨),R).

We prove by descending induction on i that

codim
(
supp(FMi (X ,F∨))

) ≥ i . (8)

In fact, Corollary 6.9 follows from (8) and the above duality by support estimates for
dual complexes [1, Lem. 2.8].

For i > dim(X) we have FMi (X ,F∨) = 0 for cohomological dimension reasons
that, i.e. supp(FMi (X ,F∨)) is empty. This starts the induction. Nowwe fix i > 0 and
we assume that (8) is known in degrees bigger than i . From Proposition 4.1(2) and
the Tor-spectral sequence we deduce that for s /∈ supp(FM j (X ,F∨)) for all j > i ,
i.e. for s outside of a closed subset of codimension ≥ i + 1, we have

FMi (X ,F∨) ⊗R k(s) ∼= Hi (X ,F∨ ⊗ Ls).

The right hand side vanishes for s outside of a closed subset of codimension ≥ i by
Theorem 6.8. This shows (8). ��
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Corollary 6.10 Assume that X is an abelian variety and that π = T�(X). Let F ∈
pD≤0

c (X , Q�) be arithmetic. Then

codimSpm(R)(�
i (F , 0)) ≥ 2i

for all i ≥ 0.

Proof By Theorem 6.2 we know that up to a translation by a torsion character,
which we can assume to be trivial in the following, each irreducible component
S of �i

π (F , 0) corresponds to a free Z�-module quotient π/π ′ of π . In particular,
codim(S) = rank(π ′). Let πhalf be a quotient of π = T�(X) by an isotropic subgroup
V ∩ π as in Example 6.5, where V is chosen such that 2 rank(π ′ ∩ V ) ≥ rank(π ′).
Clearly, rank(πhalf) = dim(X). We have an exact sequence

0 → V ∩ π ′ → π ′ → im(π ′ → πhalf) → 0.

So

rank(π ′)/2 ≥ rank
(
im(π ′ → πhalf)

)
≥ codim(�i

πhalf (F , 0)) ≥ i .

Here the right inequality follows fromTheorem6.8 applied to the setup of Example 6.5
where X∞/X has automorphism group πhalf . ��

Remark 6.11 One can expect the theorem and its corollaries to hold for non-arithmetic
F . In fact, for ch(F) = 0 this can be shownby essentially the same technique using that
Hard Lefschetz is known in general [27, Lem.2.6] (and more generally [20, Cor.1.1])
and using [28, Thm. 3.1 (c)] instead of Theorem 3.4.

Remark 6.12 For ch(F) = 0 Corollary 6.10 is equivalent to [25, Thm. 4.1] and [1,
Thm. 1.3], who do not need the arithmeticity assumption, compare Remark 6.11, see
also [17]. For ch(F) > 0, the inequality codim(�i (F , 0)) > 0 for i > 0 is shown in
[30, Intro].

Remark 6.13 In case of Example 6.6, the theorem and its corollaries can be easily
deduced from [10, Thm. 1.1], even for non-arithmetic F . In fact in this situation we
deduce from loc. cit. that Corollary 6.9 even holds integrally, i.e. forF ∈ pD≥0

c (X , F�)

we have Hi (X ,F ⊗F�
LF��π�) = 0 for i < 0. Bhatt–Schnell–Scholze ask [1,

Rmk. 2.11] whether the analog of the latter integral result is true in the situation
of Example 6.5.

In the proof of Theorem 6.8 the following lemma is crucial.

Lemma 6.14 Let π ′ is a closed subgroup of π with π/π ′ torsion free. Let X ′∞ → X
be the Galois tower of π/π ′ and r = rank(π ′) + 1. Then ηr becomes divisible in
H2r (X ′∞, Z�).



Étale cohomology of rank one. . . Page 23 of 25 58

Proof The lemma is equivalent to saying that for all m > 0, the image of ηr in
H2r (X ′∞, Z/�m) vanishes. The Hochschild-Serre spectral sequence of the covering
X∞ → X ′∞ yields a spectral sequence

E pq
2 = H p(π ′, Hq(X∞, Z/�m)) ⇒ H p+q(X ′∞, Z/�m),

with associated filtration F∗H p+q(X ′∞), which is compatible with cup-product. As
η vanishes in

E02
2 ⊂ H2(X∞, Z/�m),

the image of η in H2(X ′∞, Z/�m) lies in F1H2(X ′∞, Z/�m). So the image of ηr lies
in Fr H2r (X ′∞, Z/�m). As cd�(π

′) = r − 1, E pq
2 = 0 for p > r − 1. Thus

Fr H2r (X ′∞, Z/�m) = 0.

This finishes the proof. ��
Proof of Theorem 6.8 If F1 → F2 → F3 → F1[1] is an exact triangle in Db

c (X , Q�)

such that Theorem 6.8 holds for F = F1 and for F = F3 then it also holds for F2.
By [2, Thm. 4.3.1] we can therefore assume that F is a simple perverse sheaf.

Assume that the theorem fails in some degree i > 0. Let S be an irreducible
component of�i (F , 0) of codimension< i in Spm(R) = G(Q�). By Theorem 6.2(1)
we see that S is the translation by a torsion point s of a closed subset of the form
Spm(R′), where R′ = Z��π/π ′� ⊗Z�

Q�. Replacing F by F ⊗ Ls we can assume
without loss of generality that s = 1, i.e. S = Spm(R′).

In terms of the Fourier-Mellin transform we see that

FMi
π/π ′(X ,F) ⊗R′ Frac(R′) 
= 0, (9)

because for a generic point s ∈ Spm(R′) we have

FMi
π/π ′(X ,F) ⊗R′ k(s) ∼= Hi (X ,F ⊗ Ls)

by Proposition 4.1 and because the cohomology group on the right does not vanish.
By Theorem 5.4 and Lemma 4.2 we see that the Lefschetz map

FM−i
π/π ′(X ,F)

∪ηi

−−→ FMi
π/π ′(X ,F) (10)

becomes an isomorphism when tensored with Frac(R′), so the map (10) is non-
vanishing according to (9). But by Proposition 4.6 and Lemma 6.14 we see that the
map (10) vanishes, since rank(π ′) = codim(S) < i . This is a contradiction and
finishes the proof. ��



58 Page 24 of 25 H. Esnault, M. Kerz

Acknowledgements Part of this work has been initiated while the first author was at MSRI, then at IHES.
We thank the two institutions for excellent working conditions. We thank Johan de Jong for kindly com-
municating to us his article [5], which allowed us to abbreviate our original argument. We thank the referee
for the friendly, sharp and very helpful report. We deeply acknowledge the influence of [7] and of [1] on
our method.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bhatt, B., Schnell, C., Scholze, P.: Vanishing theorems for perverse sheaves on abelian varieties,
revisited. Selecta Math. 24(1), 63–84 (2018)

2. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analysis and topology on singular spaces,
I (Luminy, 1981). Astérisque 100, 5–171 (1982)

3. Budur, N., Wang, B.: Cohomology jump loci of quasi-projective varieties. Ann. Sci. École Norm. Sup.
48(1), 227–236 (2005)

4. Cassels, J.: Local Fields, LondonMathematical Society Student Texts 3 (1986), Cambridge University
Press, xiv + 360 pp

5. de Jong, J.: A result on formal linearity. J. Algeb. 225, 936–942 (2000)
6. Deligne, P.: La conjecture de Weil II. Publ. math. I.H.É.S. 42, 137–252 (1980)
7. Drinfeld, V.: On a conjecture of Kashiwara. Math. Res. Lett. 8(5–6), 713–728 (2001)
8. Drinfeld, V.: On a conjecture of Deligne. Mosc. Math. J. 12(3), 515–542 (2012). 668
9. Ekedahl, T.: On the adic formalism, The Grothendieck Festschrift, Vol. II, 197–218, Progr. Math. 87,

Birkhäuser Boston, Boston, MA, (1990)
10. Esnault, H.: Cohomological dimension in pro-p-towers. Int. Math. Res. Not. 2021(8), 5757–5765

(2021)
11. Esnault, H., Kerz, M.: Arithmetic subspaces of moduli spaces of rank one local systems. Cambridge

J. Math. 8(3), 453–478 (2020)
12. Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications, Progress in Mathematics

218, 296 (2004). Birkhäuser Verlag
13. Green, M., Lazarsfeld, R.: Deformation theory, generic vanishing theorems, and some conjectures of

Enriques, Catanese and Beauville. Invent. math. 90, 389–407 (1987)
14. Green, M., Lazarsfeld, R.: Higher obstructions to deforming cohomology groups of line bundles. J.

Am. Math. Soc. 4(1), 87–103 (1991)
15. Gabber, O., Loeser, F.: Faisceaux pervers �-adiques sur un tore. Duke. Math. J. 83(3), 1–106 (1996)
16. Jannsen, U.: Weights in arithmetic geometry. Jpn. J. Math. 5(1), 73–102 (2010)
17. Krämer, T., Weissauer, R.: Vanishing theorems for constructible sheaves on abelian varieties. J. Alg.

Geom. 24(3), 531–568 (2015)
18. Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands. Invent. math. 147(1), 1–241

(2002)
19. Loeser, F.: Faisceaux pervers, transformation de Mellin et déterminants, Mémoires de la Soc. Math.

de France 66, 105 (1996)
20. Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor

D-modules, Part 2. Memoirs Am. Math. Soc. 185, 564 (2007)
21. Mumford, D.: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics. Vol

5, p 242 (1970)

http://creativecommons.org/licenses/by/4.0/


Étale cohomology of rank one. . . Page 25 of 25 58

22. Pink, R., Rössler, D.: A conjecture of Beauville and Catanese revisited. Math. Ann. 330(2), 293–308
(2004)

23. Sabbah, C.: Lieu des pôles d’un système holonome d’équations aux différences finies. Bull. Soc. Math.
France 120(3), 371–396 (1992)

24. Sabbah, C.: Polarizable twistor D-modules. Astérisque 300, vi+ 208 (2005)
25. Schnell, C.: Holonomic D-modules on abelian varieties. Publ. Math. I.H.É.S. 121(1), 1–55 (2015)
26. Serre, J.-P.: Morphismes universels et variété d’Albanese, Séminaire Claude Chevalley 4, 1–22 (1958-

1959). exp. 10
27. Simpson, C.: Higgs bundles and local systems. Publ. math. I.H.É.S. 75, 5–95 (1992)
28. Simpson, C.: Subspaces of moduli spaces of rank one local systems. Annales de l’É. N. S. 4ème série

26(3), 361–401 (1993)
29. Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. math. 2, 134–144 (1966)
30. Weissauer, R.: Vanishing theorems for constructible sheaves on abelian varieties over finite fields.

Math. Ann. 365(1–2), 559–578 (2016)
31. Grothendieck, A., Dieudonné, J.: Éléments de Géométrie Algébrique, III, Étude cohomologique des

faisceaux cohérents, Publ. Math. I.H.É.S. 11 (1961) and 17 (1963)
32. Grothendieck, A., Demazure, M.: Séminaire de Géométrie Algébrique du Bois Marie - 1962–64 -

Schémas en groupes, Lecture Notes in Mathematics 151, 152 and 153 (1970)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Étale cohomology of rank one ell-adic local systems in positive characteristic
	Abstract
	1 Introduction
	1.1 Hard Lefschetz
	1.2 Jumping loci
	1.3 Generic vanishing
	1.4 Main Theorem

	2 Tate algebras
	3 Multiplicative formal groups
	3.1 Basics
	3.2 Exponential map
	3.3 Main Theorem

	4 Generalized Fourier–Mellin transform
	4.1 Definition and basic properties
	4.2 A vanishing result

	5 Hard Lefschetz theorem
	5.1 Formulation of the theorems
	5.2 Proof of Hard Lefschetz

	6 Jumping loci and generic vanishing
	6.1 Flat locus of the Fourier-Mellin transform and the cohomological jumping locus
	6.2 Generic vanishing

	Acknowledgements
	References




