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Abstract

Research on small particles containing up to a few tens of atoms is largely driven
by their novel properties that are significantly affected by quantum effects, particularly
in the interplay between structural and electronic degrees of freedom. Such clusters,
thus, carry the potential of major technological advances for applications exploiting
their already exemplified unique optical, magnetic, and chemical properties. Atomically
resolved structural information is a key prerequisite towards employing these envisioned
functionalities, considering that the latter will be tailored to the atomic scale. In this
respect not only the ground state isomer will be of importance, but potentially all
energetically low-lying metastable isomers.

A materials modeling targeting the identification of such relevant cluster isomers in-
volves the global and local exploration of the corresponding vast configuration space,
represented by the high-dimensional potential-energy surface (PES). The exponential
growth of the number of local PES minima, i.e. metastable isomers, with increasing
cluster size quickly limits approaches focusing only on structural motifs provided by
chemical intuition.

In this thesis the problem is addressed with a first-principles Monte Carlo approach.
The essential features herein are a quantitative quantum mechanical energetics from
density-functional theory, together with a basin-hopping type sampling for the global
exploration of the energy surface. This approach is applied to Co+

n Arm clusters, for which
far-infrared vibrational spectroscopy data were provided by the group of Prof. Gerard
Meijer at the Molecular Physics Department of the FHI. For the isomers obtained by the
implemented first-principles sampling scheme, we calculated the infrared spectra, that
are in turn compared to the experimental data. Apart from the thus gained structure
information, we particularly elaborated on the role of the involved Ar probe atoms and
its implication for the indirect structure determination using the vibrational fingerprints.

To suggest possible strategies for optimizing the numerically intense ab initio based
sampling, the involved technical settings are analyzed in detail, using small silicon and
copper clusters as illustrative benchmark systems. In order to assess and critically
discuss the limitations and bottlenecks of the scheme, a central aspect of this part of
the work was to establish a framework to quantitatively measure the sampling efficiency.
The detailed insights obtained are then used to devise a robust self-adapting scheme for
future applications in particular to systems involving intermediate size clusters.



“So einfach wie möglich. Aber nicht einfacher.”

Albert Einstein



Contents

1. Introduction 13

I. Theoretical Background 17

2. Describing the Configurational Space of Atomic Clusters 18
2.1. The Born-Oppenheimer Surface . . . . . . . . . . . . . . . . . . . . . . . 18
2.2. Fundamentals of Group Theory . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1. Symmetry Elements and Operations . . . . . . . . . . . . . . . . 20
2.2.2. Symmetry Point Groups . . . . . . . . . . . . . . . . . . . . . . . 20

2.3. Features of the Energy Surface . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1. Stationary Points and Normal Modes . . . . . . . . . . . . . . . . 22
2.3.2. Global Topology of the Energy Surface . . . . . . . . . . . . . . . 26

2.4. Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1. Translational Degrees of Freedom . . . . . . . . . . . . . . . . . . 28
2.4.2. Molecular Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3. Molecular Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Exploring the Configurational Space 30
3.1. Local Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1. Steepest Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2. Conjugate Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method . . . . . 32

3.2. Global Optimization Schemes . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1. Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2. Basin-Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3. Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4. Further Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Density-Functional Theory 38
4.1. The Electronic Wave Function . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1. The Electron and Pair Density . . . . . . . . . . . . . . . . . . . . 38
4.2. Approximative Methods to solve the Many-Body Problem . . . . . . . . 39
4.3. The Thomas-Fermi Model . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4. The Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . 40

5



Contents

4.5. The Kohn-Sham Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6. Present-Day Exchange-Correlation Functionals . . . . . . . . . . . . . . . 44
4.7. Spin-Density-Functional Theory . . . . . . . . . . . . . . . . . . . . . . . 45

II. The Density-Functional Theory Implementation FHI-aims 47

5. Solving the Kohn-Sham Equations with Numerical Atom-Centered Basis
Sets 48
5.1. The Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1. Achieving Self-Consistency . . . . . . . . . . . . . . . . . . . . . . 50
5.2. Numerical Atom-Centered Basis Functions . . . . . . . . . . . . . . . . . 52

5.2.1. The Definition of the Basis Functions . . . . . . . . . . . . . . . . 52
5.2.2. The Generation of Basis Functions . . . . . . . . . . . . . . . . . 53

5.3. Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4. The Hartree-Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6. Energy Derivatives in FHI-aims 58
6.1. The Calculation of Analytical Atomic Forces . . . . . . . . . . . . . . . . 58

6.1.1. The Individual Derivative Terms . . . . . . . . . . . . . . . . . . 60
6.1.2. The Atomic Forces in the Case of LSD . . . . . . . . . . . . . . . 62
6.1.3. The GGA-Correction Term . . . . . . . . . . . . . . . . . . . . . 63
6.1.4. The Atomic Forces in Connection with Smearing Methods . . . . 64
6.1.5. Grid Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2. Consistency of the Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3. The Second Energy Derivative . . . . . . . . . . . . . . . . . . . . . . . . 66

III. Nature of Ar Bonding to Small Co+
n

Clusters and its Effect on
the Structure Determination by Far-Infrared Absorption Spec-

troscopy 69

7. The Vibrational Fingerprint of Small Co+
n Clusters and their Ar Complexes 70

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2. Far-Infrared Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . 71

7.2.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2.2. Observation of Highly Coordinated Co+

n Arm Complexes . . . . . . 72
7.2.3. Interpretation of FIR-MPD Spectra . . . . . . . . . . . . . . . . . 73

7.3. Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3.1. Structural Relaxation and Calculation of the IR-Spectra . . . . . 74
7.3.2. The Counterpoise Correction to the Basis Set Superposition Error 75
7.3.3. Zero-Point Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4. Selection of Structural Motifs by Spin-Extended Basin-Hopping . . . . . 77

6



Contents

7.5. Thermodynamic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.6. The Influence of the Exchange-Correlation Functional . . . . . . . . . . . 78
7.7. Low-lying Isomers and Vibrational Spectra of their Ar Complexes . . . . 80

7.7.1. Co+
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.7.2. Co+
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.7.3. Co+
6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.7.4. Co+
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.7.5. Co+
8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8. The Nature of the Ar-Co+
n Bonding 92

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2. Electrostatic Model of the Ar-Co+

n Bonding . . . . . . . . . . . . . . . . . 92
8.2.1. Multipole Decomposition via Hirshfeld Analysis . . . . . . . . . . 92
8.2.2. Ar Binding Energy in the Electrostatic Model . . . . . . . . . . . 93
8.2.3. Electrostatic Driving Forces . . . . . . . . . . . . . . . . . . . . . 95

8.3. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 99

IV. Assessing the Efficiency of First-Principles Basin-Hopping Sam-

pling 101

9. Method Optimization Based upon Quantitative Efficiency Criteria 102
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.2. Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2.1. Density-Functional Theory . . . . . . . . . . . . . . . . . . . . . . 103
9.2.2. Basin-Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.2.3. Measuring Sampling Efficiency . . . . . . . . . . . . . . . . . . . . 106

9.3. Performance Analysis For Small Cluster Sizes . . . . . . . . . . . . . . . 108
9.3.1. Existence of Dominant Isomers . . . . . . . . . . . . . . . . . . . 109
9.3.2. Approximate Hopping Matrix . . . . . . . . . . . . . . . . . . . . 112
9.3.3. CPU Reduction by Using Optimum Sampling Parameters . . . . 114

9.4. Adaptive Move Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.5. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.Summary and Outlook 124

V. Appendix 126

A. Basis Sets used in FHI-aims 127

7



Contents

B. Convergence Tests for the Co+
n Ar Complexes 130

B.1. Integration Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2. Basis Set Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.3. Cutoff Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.4. Hartree Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.5. Force Convergence Criterium and Finite Displacement for the Numerical

Hessian and Dipole Gradient . . . . . . . . . . . . . . . . . . . . . . . . . 140

C. Convergence Tests for Si and Cu clusters 141
C.1. Integration Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.2. Basis Set Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.3. Cutoff Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
C.4. Hartree Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.5. Force Convergence Criterium and Finite Displacement for the Numerical

Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

D. High Order Finite Difference Schemes 147

E. Computed Structures and IR Spectra of Co+
n Arm Complexes 149

Publications 178

Kurzfassung 179

Curriculum vitae 181

Acknowledgements 182

8



List of Figures

2.1. Illustration of the symmetry elements . . . . . . . . . . . . . . . . . . . . 20
2.2. Illustration of the most common symmetry point groups . . . . . . . . . 21
2.3. Model surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4. Permutation-inversions of a pentagonal bipyramid . . . . . . . . . . . . . 25
2.5. Schematical picture of a multi-funnel PES . . . . . . . . . . . . . . . . . 27

3.1. Steepest descent vs. conjugate gradient. . . . . . . . . . . . . . . . . . . 32
3.2. The principle of the basin-hopping method . . . . . . . . . . . . . . . . . 35
3.3. Mating procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1. Accuracy test of the analytical forces . . . . . . . . . . . . . . . . . . . . 65
6.2. Local relaxations for Si7, Si10 and Cu7 . . . . . . . . . . . . . . . . . . . 66
6.3. Convergence of the vibrational frequency w.r.t. the integration grid . . . 67
6.4. Convergence of the vibrational frequency w.r.t. the step width ∆ . . . . 67

7.1. Scheme of the experimental set-up used for FIR-MPD . . . . . . . . . . . 72
7.2. Distribution of cationic cobalt clusters and their Ar complexes . . . . . . 73
7.3. The principle of spin-extended basin-hopping . . . . . . . . . . . . . . . . 77
7.4. Free energies differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5. Comparison of computed vibrational spectra using PW-LDA and GGA-

PBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.6. Experimental and computed IR spectra of Co4Ar+

M . . . . . . . . . . . . 84
7.7. Experimental and computed IR spectra of Co5Ar+

M . . . . . . . . . . . . 85
7.8. Experimental and computed IR spectra of Co6Ar+

M . . . . . . . . . . . . 86
7.9. Experimental and computed IR spectra of Co7Ar+

M . . . . . . . . . . . . 89
7.10. Experimental and computed IR spectra of Co8Ar+

M . . . . . . . . . . . . 90

8.1. Electron density difference of Co+
4 -Ar . . . . . . . . . . . . . . . . . . . . 93

8.2. Electron density difference of Co+
4 . . . . . . . . . . . . . . . . . . . . . . 94

8.3. Electrostatic model of the Ar-Co+
n

bonding . . . . . . . . . . . . . . . . . 95
8.4. Binding sites of Co+

7 Ar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.5. Correlation between Ar binding energy and direct dipole moment . . . . 97
8.6. Ar binding energy at Co+

n vs cluster size . . . . . . . . . . . . . . . . . . 98
8.7. Attractive Hartree-type Ar-Co+

n interaction energy computed in the elec-
trostatic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.1. Adjusting the difference tolerance . . . . . . . . . . . . . . . . . . . . . . 106

9



List of Figures

9.2. successful, unsuccessful and high-energy trial moves . . . . . . . . . . . . 107
9.3. Isomer histograms of Si7, Si10 and Cu7 . . . . . . . . . . . . . . . . . . . 109
9.4. Histogram evolution of Si7 . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.5. Si7-isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.6. Si10-isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.7. Cu7-isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.8. Performance analysis for Si7 and Cu7 . . . . . . . . . . . . . . . . . . . . 116
9.9. Diagonal elements of the hopping matrix . . . . . . . . . . . . . . . . . . 117
9.10. Performance analysis for Si10 . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.11. The convergence of γsucc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.12. Self-adapting move distance . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1. PW-LDA binding curves for basis set generation . . . . . . . . . . . . . . 129

B.1. Co+
n Ar-complexes used for the convergence tests . . . . . . . . . . . . . . 131

B.2. IR spectra vs. integration grid. . . . . . . . . . . . . . . . . . . . . . . . 131
B.3. IR spectra vs. basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.4. IR spectra vs. cutoff radius. . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.5. IR spectra vs. lmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.6. IR spectra vs. force convergence criterium and finite displacement. . . . . 140

C.1. Pentagonal bipyramid motif of Si7 and Cu7 . . . . . . . . . . . . . . . . . 141

E.1. Co+
4 IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . . 150

E.2. Co+
4 Ar IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . 151

E.3. Co+
4 Arm IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . 152

E.4. Co+
4 Ar IR spectra with PW-LDA . . . . . . . . . . . . . . . . . . . . . . 153

E.5. Co+
5 IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . . 154

E.6. Co+
5 Ar IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.7. Co+
5 Ar5 IR spectrum with PBE . . . . . . . . . . . . . . . . . . . . . . . 156

E.8. Co+
5 Ar IR spectra with PW-LDA . . . . . . . . . . . . . . . . . . . . . . 157

E.9. Co+
6 IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . . 158

E.10.Co+
6 Ar IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . 159

E.11.Co+
6 Ar IR spectra with PW-LDA . . . . . . . . . . . . . . . . . . . . . . 160

E.12.Co+
7 IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . . 161

E.13.Co+
7 IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . . 162

E.14.Co+
7 Ar IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . 163

E.15.Co+
7 Ar IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . 164

E.16.Co+
7 Ar IR spectra with PW-LDA . . . . . . . . . . . . . . . . . . . . . . 165

E.17.Co+
8 IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . . 166

E.18.Co+
8 IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . . 167

E.19.Co+
8 Ar IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . 168

E.20.Co+
8 Ar IR spectra with PBE . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.21.Co+
8 Ar IR spectra with PW-LDA . . . . . . . . . . . . . . . . . . . . . . 170

10



List of Tables

7.1. Corrections due to the intermolecular BSSE . . . . . . . . . . . . . . . . 76
7.2. Corrections due to zero-point energy . . . . . . . . . . . . . . . . . . . . 76

8.1. Binding energies in the electrostatic model . . . . . . . . . . . . . . . . . 96

9.1. The number of different versions for the dominant isomers. . . . . . . . . 113
9.2. Performance comparison of normal and uniform move distribution . . . . 119

A.1. Radial basis functions used in FHI-aims . . . . . . . . . . . . . . . . . . . 127

B.1. Convergence test of the integration grid for Co+
4 Ar . . . . . . . . . . . . 132

B.2. Convergence test of the integration grid for Co+
6 Ar . . . . . . . . . . . . 132

B.3. Convergence of the bond distances for Co+
4 Ar . . . . . . . . . . . . . . . 133

B.4. Convergence of the bond distances for Co+
6 Ar . . . . . . . . . . . . . . . 133

B.5. Convergence test of the basis sets for Co+
4 Ar . . . . . . . . . . . . . . . . 134

B.6. Convergence test of the basis sets for Co+
6 Ar . . . . . . . . . . . . . . . . 135

B.7. Convergence of the bond distances for Co+
4 Ar w.r.t. basis . . . . . . . . . 135

B.8. Convergence of the bond distances for Co+
6 Ar w.r.t. basis . . . . . . . . . 135

B.9. Convergence test of the cutoff radius rcut for Co+
4 Ar . . . . . . . . . . . . 136

B.10.Convergence test of the cutoff radius rcut for Co+
6 Ar . . . . . . . . . . . . 136

B.11.Convergence of the bond distances for Co+
4 Ar w.r.t. rcut . . . . . . . . . 137

B.12.Convergence of the bond distances for Co+
6 Ar w.r.t. rcut . . . . . . . . . 137

B.13.Convergence test of the Hartree potential for Co+
4 Ar . . . . . . . . . . . . 138

B.14.Convergence test of the Hartree potential for Co+
6 Ar . . . . . . . . . . . . 139

B.15.Convergence of the bond distances for Co+
4 Ar w.r.t. lmax . . . . . . . . . 139

B.16.Convergence of the bond distances for Co+
6 Ar w.r.t. lmax . . . . . . . . . 139

C.1. Convergence test of the integration grid for the four dominant Si7 isomers 142
C.2. Convergence test of the integration grid for the three dominant Cu7 isomers142
C.3. Convergence test of the basis set for the four dominant Si7 isomers . . . . 143
C.4. Convergence test of the basis set for the four dominant Cu7 isomers . . . 143
C.5. Convergence test of rcut for the four dominant Si7 isomers . . . . . . . . . 144
C.6. Convergence test of rcut for the three dominant Cu7 isomers . . . . . . . 144
C.7. Convergence test of lmax for the four dominant Si7 isomers . . . . . . . . 145
C.8. Convergence test of lmax for the three dominant Cu7 isomers . . . . . . . 145
C.9. Vibrational frequencies for Si7 and Cu7 w.r.t. Fmax and ∆ . . . . . . . . 146

D.1. Coefficients for the first numerical derivative . . . . . . . . . . . . . . . . 147

11



List of Tables

D.2. Coefficients for the second numerical derivative . . . . . . . . . . . . . . 148

12



1. Introduction

Clusters are aggregates of atoms and thus somewhere intermediate in size between indi-
vidual atoms and bulk matter. One major characteristics that separates them from the
bulk is the dramatic change in the electronic structure when the system size is reduced to
few atoms, thus replacing the quasi-continuous density of states by a discrete energy level
spectrum. Due to the intricate relationship between structural and electronic degrees of
freedom, optical, magnetic and chemical properties do therefore not vary smoothly with
size and shape of the cluster but are highly governed by quantum (size) effects. The
study of these effects constitutes one field of cluster physics, since they open the door
to novel applications, such as small electronic devices. A second important property
of clusters is the large fraction of atoms being on the surface. Due to this favourable
surface to volume ratio, metal clusters are for instance ideal candidates for applications
in catalysis. Atomically resolved structural information is thereby a key prerequisite
towards employing these envisioned functionalities, considering that the latter will be
tailored to the atomic scale.

Experimentally, structural information can for instance be obtained by photoelectron
spectroscopy, which exploits the fact that different isomers exhibit different electronic
structures. The measured density of states can therefore serve as a characteristic fin-
gerprint for the underlying atomic structure. In the case of reactivity experiments, the
number of adsorbed atoms on a cluster is measured, which is obviously correlated with
the number of adsorption sites and therefore with the cluster shape. Another probe of
cluster structure is provided by mobility experiments in which clusters are accelerated by
an electric field and then traverse a chamber containing an inert gas. The travelling time
is hereby affected by the collisions of the clusters with the inert gas and thus correlates
with the collision cross section, being sensitive to the atomic structure. Another possi-
bility that is particularly sensitive to the internal cluster structure is the measurement of
vibrational frequencies. A corresponding technique that has recently been successfully
employed to determine the structure of cationic and neutral metal clusters is far-infrared
(vibrational) resonance enhanced multiple photon dissociation (FIR-MPD) spectroscopy
[1, 2, 3, 4, 5]. Common to all these experimental methods is that atomic information
is not directly measured, but only quantities that are coupled to the geometric config-
uration. At this point, theory comes into play and provides the required tool to assign
the experimental data to an underlying geometry. As starting point for any such the-
oretical study, structural motifs are therefore required, which in the easiest approach
are merely guessed, guided by chemical intuition. While for small systems, containing
only few atoms such an approach might seem sufficient at first glance, it is in practice
even then likely that one misses isomers. This holds in particular for systems exhibiting
strong Jahn-Teller distortions, with a concomitant number of different isomers all corre-
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1. Introduction

sponding to the same basic structural motif. What is thus required is a more systematic
scheme which then involves the global and local exploration of the huge configurational
space, represented by the potential-energy surface (PES) [6]. A central and challenging
property of the PES is thereby the suspected exponential increase of the number of local
minima with system size. This drastic growth has led to the famous Levinthal’s paradox
according to which a protein would never reach its native state within the lifetime of
the universe if it would have to go through all local PES minima completely randomly
[7, 8].

Correspondingly, approaches addressing the determination of cluster structures face
a twofold challenge, the first being the calculation of the PES itself. To have predictive
power and in view of the intricate quantum-size effects ruling clusters in the targeted
size range, a quantum-mechanical treatment of the PES is obviously required. Accu-
rate quantum-mechanical methods become unfortunately prohibitively expensive due to
their unfavourable scaling behaviour. The second order perturbation theory by Møller
and Plesset (MP2) [9], for instance, scales as O(N5) with the system size, thus quickly
becoming prohibitively expensive in connection with the exponentially increasing num-
ber of PES minima. As an alternative, density-functional theory scales formally as
O(N3) and can be implemented to reach O(N) for larger systems. It thus represents a
suitable compromise between accuracy and computational demand and is the technique
employed in the present work. The second major theoretical problem is the system-
atic and efficient exploration of the thus defined PES. A classical optimization method
for this purpose is simulated annealing, in which successive trial moves, corresponding
to random distortions of the cluster geometry are performed. Accepting or rejecting
such moves via a Boltzmann-factor, the system is then driven towards the ground state
structure. An additional key ingredient of many unbiased sampling schemes is a local
structural relaxation, ensuing the trial move, which thereby reduces the PES sampling
to the local minima and thus facilitates the optimization tremendously. In combination
with simulated annealing, this scheme has first been proposed as Monte-Carlo mini-
mization or basin-hopping by D. Wales and L. Scheraga [10]. A primary target for
which basin-hopping is employed is to identify the global PES minimum, i.e. the most
stable geometric structure in the focus of atomic clusters. However, in experiment,
thermodynamic or kinetic reasons might lead to a population of metastable isomers or
superpositions of it, thus making energetically higher-lying isomers subject to funda-
mental interest as well. By suitably adjusting the temperature controlled acceptance
scheme in the simulated annealing, basin-hopping can be tuned to achieve this goal,
thus identifying isomers within a thermodynamically reasonable energy range above the
ground state. In the present work, a corresponding basin-hopping scheme has been cou-
pled to the DFT implementation FHI-aims [11] currently developed a the FHI Theory
Department, with the goal to perform a conformational sampling of cluster structures
based on an accurate ab initio PES.

Aiming at interpreting the FIR-MPD data of Co+
n Ar complexes measured in the group

of Prof. Gerard Meijer at the Molecular Physics Department of the FHI, we first ap-
plied the developed tool to obtain candidate structures for the ensuing electronic struc-
ture studies. In an FIR-MPD experiment, the vibrational spectrum is measured by
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1. Introduction

far-infrared absorption spectroscopy using argon as probe atoms. Irradiated by a free-
electron laser, the Co+

n Ar complex is heated up when the laser frequency is in resonance
with a vibrational eigenmode. Multiple photons can then be absorbed, which in turn
leads to the dissociation of the argon atom from the metal cluster. Recording the re-
sulting abundance changes of the rare-gas complexes as a function of the IR frequency
yields the desired spectra that can finally be compared to computed IR absorption
spectra for the different isomer structures obtained in the preceding sampling. Tacitly
assuming that the influence of the probe atom on the vibrational fingerprint can be ne-
glected, this enables the structure determination of the bare cobalt clusters and provides
valuable feedback on the accuracy of the energetic ordering provided by the employed
approximate DFT exchange-correlation functional. Contrary to previous studies on V+

n

(n = 3 − 23) [1, 2], Nb+
n (n = 5 − 9) [3, 4] and Ta+

n (n = 6 − 20) [5], however, a strong
influence of the measured spectra on the number of adsorbed argon atoms has this time
been observed, which motivated us to explicitly elaborate on the role of the probe atom
and its implications for the structure determination. This then also involved exhaustive
sampling runs, with argon ligands explicitly taken into account.

Despite the fact that due to continuing methodological improvements and vast increase
of computational power ab initio basin-hopping runs have nowadays become possible,
one still has to recognize that due to the exponential growth of the number of PES
minima with system size, this method quickly reaches its limit. Unfortunately, many
studies in the literature merely provide the size of the largest system studied as some
kind of performance indicator of the employed sampling scheme, or at best record as
benchmark the mean first encounter of the global minimum, i.e. the number of local
relaxations until the ground state has been identified for the first time. What is more or
less completely missing is an exact measure of efficiency that is coupled to the sampling
goal used in a practical application, namely not only to find the ground state but also
to identify higher-lying isomers. Motivated by the application in the first part of this
work, the aim of the second part is therefore to establish a framework to quantitatively
analyze the efficiency of a sampling run. Apart from identifying inefficient settings and
suggesting possible optimization strategies, one has to note in this respect that already
exactly pinning down the efficiency of an ab initio basin-hopping run is a task of its own.
On the one hand one needs to define a reasonable measurable quantity which correlates
with the sampling success. On the other hand, hundreds of basin-hopping runs are re-
quired to get statistically meaningful averages. This can quickly become unfeasible with
straightforward DFT, whereas use of simple model-potentials is uncertain to provide
answers for the practical materials-science applications. To circumvent this problem,
we therefore developed the concept of a hopping matrix, which records the transition
probabilities between individual isomers and thus enables the extraction of statistically
meaningful quantities at tremendously reduced computational demand. Once the con-
nectivity of the low-lying isomers is therewith represented, the hopping matrix provides
the additional possibility to analyze different kind of efficiency indicators without having
to run further first-principles basin-hopping runs and thus allows to further disentangle
and understand the sampling process.

After introducing the different methodologies and concepts to describe and explore
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the configurational space of atomic clusters in Part I, the employed DFT implementation
FHI-aims is presented in Part II. Special emphasis is hereby given on the analytical atomic
forces, which are required for an efficient local structural relaxation, and the implementa-
tion of which constituted a major, preparatory part of this thesis. Part III then describes
the comparison between the experimental and computed Co+

n Ar IR-spectra based upon
geometries obtained by first-principles basin-hopping. Using small silicon and copper
clusters as illustrative benchmarks, Part IV finally addresses the performance of the
applied basin-hopping algorithm by disentangling and critically discussing the different
technical settings, and then presenting a self-adapting scheme based upon the obtained
insights.
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2. Describing the Configurational
Space of Atomic Clusters

2.1. The Born-Oppenheimer Surface

The starting point to get the energetics of an atomic cluster containing Nel electrons and
N nuclei is the Schrödinger equation which in time-independent non-relativistic cases
can be written as

ĤΨ({xi}, {Rα}) = EΨ({xi}, {Rα}) , (2.1)

where {xi} ≡ {x1, . . . ,xNel
} ≡ {(r1, σ1), . . . , (rN , σNel

)} is a short hand notation for all
spatial and spin coordinates of the Nel electrons and {Rα} ≡ {R1, . . . ,RN} denotes the
spatial coordinates of all nuclei. The Hamiltonian contains the following terms

Ĥ = Te + TN + VNe + Vee + VNN , (2.2)

with the individual contributions being the kinetic energy of the electrons Te and of the
nuclei TN, the electrostatic interaction between the electrons Vee, between the nuclei VNN

and between the electrons and nuclei VNe. Using atomic units, i.e. h̄ = me = e = 4πǫ0 =
1, the terms have the following form:

Te =
Nel∑

i=1

p2
i

2
= −1

2

Nel∑

i=1

∇2
i , (2.3)

TN =
N∑

α=1

p2
α

2Mα

= −1

2

N∑

α=1

1

Mα

∇2
α , (2.4)

VNe({ri}, {Rα}) = −
Nel∑

i=1

N∑

α=1

Zα

|ri − Rα|
, (2.5)

Vee({ri}) =
Nel∑

i=1

Nel∑

j>i

1

|ri − rj |
, (2.6)

VNN({Rα}) =
N∑

α=1

N∑

β>α

ZαZβ

|Rα −Rβ|
. (2.7)

In principle, the solution of Eq. (2.1) accurately describes the energetics of a system.
However, containing 3N + 3Nel degrees of freedom, it is computationally unfeasible to
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2. Describing the Configurational Space of Atomic Clusters

tackle Eq. (2.1) exactly and hence, approximations have to be applied. The first impor-
tant one is the Born-Oppenheimer Approximation [12] which states that electronic and
nuclear motions can be separated using the following ansatz for the total wavefunction:

Ψ({xi}, {Rα}) = Ψe({xi}, {Rα})ΨN({Rα}) , (2.8)

with the electronic part being a solution of the electronic Hamiltonian:

Ĥe = Te + VNe + Vee , (2.9)

ĤeΨe({xi}, {Rα}) = Ee({Rα})Ψe({xi}, {Rα}) . (2.10)

The justification is that due to the huge ratio of the masses, electrons can instantaneously
catch up with the movements of the nuclei. In the extreme case of a hydrogen atom,
for instance, M/me ≈ 1800. In other words, the ions are fixed from the electronic point
of view or just move very slowly. Consequently, the nuclear positions appear only as
parameters in the electronic wavefunction and the effect of the kinetic energy operator
of the nuclei on the electronic part of the wavefunction can be neglected.

TN Ψe({xi}, {Rα})ΨN({Rα}) ≈ Ψe({xi}, {Rα})TN ΨN({Rα}) . (2.11)

Using this approximation, the ansatz (2.8) leads to the following equation for the nuclear
part of the wave function:

(TN + VNN({Rα}) + Ee({Rα}))ΨN = EΨN . (2.12)

So the ions move under the influence of the effective potential

VBO({Rα}) ≡ VNN({Rα}) + Ee({Rα})) , (2.13)

which is called the Born-Oppenheimer surface or more generally the potential energy

surface (PES). The total energy Etot of the system is then the potential energy plus
quantum mechanical corrections due to lattice vibrations.

The initial problem of solving equation (2.1) has thus been reduced to solving the
electronic equation (2.10) in order to obtain Ee({Rα}) which in turn defines the PES
according to Eq. (2.13). Though the number of degrees of freedom has therewith been
reduced from 3Nel + 3N to 3Nel, a huge computational burden still remains and further
approximations are required which will be discussed in chapter 4.

2.2. Fundamentals of Group Theory

Many common molecules, in particular small ones containing few atoms, possess sym-
metry, i.e. undergoing certain symmetry operations, like a rotation around a certain
angle for instance, the molecule superimposes with itself. Using group theory, symmetry
considerations are therefore on the one hand helpful to introduce a nomenclature for
describing a molecular structure. Furthermore, features of the PES that will later on be
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2. Describing the Configurational Space of Atomic Clusters

discussed, can be addressed more quantitatively exploiting the symmetry of the system
taken into account. It is therefore of great importance to understand the fundamentals
of group theory with which the symmetry properties of a molecule are described in a
concise way (see e.g. [13]).

2.2.1. Symmetry Elements and Operations

Figure 2.1.: Illustration of the symmetry el-
ements exemplifying an octahe-
dral structure.

The symmetry of a molecule can best
be described by listing all symmetry el-

ements which allow for symmetry opera-
tions. One example of a symmetry ele-
ment is the n-fold rotation axis Cn. In
such a case, the corresponding symme-
try operation Ck

n is k times a rotation
about an angle of 2π/n around the ro-
tation axis which thus superimposes the
molecule with itself.

Another element is the plane of symme-

try σ, with the corresponding operation
being a reflection of the molecule through
this plane.

A third possible element is the alter-

nating axis of rotation Sn. In that case, a
rotation about an angle of 2π/n is carried
out, being followed by a reflection of the molecule through a plane perpendicular to this
axis. Sk

n corresponds to k times a rotation around the axis, each being followed by a
reflection. A special case of an alternating axis of rotation is Sn/2

n , n being even, which
is equivalent to an inversion of the molecule through its center. Furthermore, if k is
even, then Sk

n is simply equivalent to an ordinary rotation Ck
n. For odd n, all Sk

n with
k ≤ 2n− 1 are different operations, since then Sk>n

n equals Sk−n
n followed by a reflection

through the symmetry plane and thus is a new operation.

2.2.2. Symmetry Point Groups

The set of all possible symmetry operations of a molecule forms a group which is math-
ematically defined by the following properties:

• The product of two members A ◦ B = C also constitutes a member of the group.
In particular, the product is associative, i.e. A ◦ (B ◦ C) = (A ◦ B) ◦ C.

• A special group element is the identity E, which leaves any member unchanged,
i.e. E ◦ A = A ◦ E = A.

• Each member A can be assigned an inverse A−1 so that the product A ◦ A−1 =
A−1 ◦ A = E equals the identity.
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2. Describing the Configurational Space of Atomic Clusters

Figure 2.2.: Illustration of the most common
symmetry point groups.

In the case of symmetry operations, a
product of two operations corresponds to
the consecutive application of these two
operations, like for instance the product
C1

n ◦ C1
n = C2

n corresponds to twice a ro-
tation about an angle of 2π/n. The net
operation C2

n is hence a rotation about an
angle of 2 ·2π/n and therefore also part of
the group. The identity E is a trivial op-
eration that does not change the molecule
at all. Obviously, for each operation one
can find an operation that reverts the ef-
fect of the former one, thus being the cor-
responding inverse element. The inverse
of the rotation C1

n, for instance, is Cn−1
n .

The symmetry of the molecule is re-
flected by the point group of the con-
stituent symmetry operations, with the
number of different operations being an
important quantity which is called the
order of the point group.
The most common point groups describ-
ing the symmetry of molecules are:

• Cn. This simple point group is made up of an n-fold-rotation axis which thus con-
tains the elements {E,C1

n, · · · ,Cn−1
n } = {E, {Ck

n}}. Correspondingly, it possesses
the order n and is called a cyclic group.

• Cnh. Additional to an n-fold-rotation axis, the molecule described by this cyclic
group exhibits a plane of symmetry σh perpendicular to the axis (”horizontal”).
Consequently, the alternating axis appears as well as a symmetry operation, since
σh ◦ Ck

n = Sk
n, with k being odd. For even k, Sk

n is equivalent to Ck
n since the

reflections at the horizontal plane even out (σh ◦ σh = E). The special case of
C1h is commonly denoted as Cs. The group therewith contains the operations
{E, σh, {Ck

n}, {Sk
n}}.

• Cnv. Additional to an n-fold-rotation axis, the molecule contains n vertical planes
perpendicular to the axis. Summarized the operations are {E, {σi

v}, {Ck
n}}.

• Sn. A further cyclic group is obtained by having a pure alternating axis of rotation
which thus leads to the operations {E, {Sk

n}}. This group is only new for even n,
since for n being odd, Sn is equivalent to Cnh.

• Dn. Additional to an n-fold-rotation axis, the molecule described by the dihedral

group features n two-fold rotation axes perpendicular to the principle symmetry
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2. Describing the Configurational Space of Atomic Clusters

axis, which thus allows for the symmetry operations {E, {Ck
n}, {(C1

2)
i}}, with i

being an index running over the different two-fold rotation axes.

• Dnh. Additional to the symmetry operations of the Dn-group, the molecule pos-
sesses a plane of symmetry perpendicular to the principle axis which further intro-
duces the alternating axis of symmetry and n vertical planes of symmetry. Hence,
this dihedral group contains the operations {E, σh, {σi

v}, {Ck
n}, {(C1

2)
i}, {Sk

n}}.

• Dnd. Additional to the symmetry operations of the Dn-group, the system contains
n vertical planes of symmetry bisecting the n two-fold rotation axes, resulting in
the set of operations {E, σh, {σi

d}, {Ck
n}, {(C1

2)
i}, {Sk

n}}.

The remaining point groups contain multiple rotation axes of order greater than two.
The tetrahedral group T, for instance, possesses all rotation axes of a regular tetrahedron,
while the full tetrahedral group Td additionally contains all mirror planes. Similarly, the
full octahedral group Oh comprises all symmetry elements possessed by a regular cube,
and the full icosahedral group Ih those of an icosahedron.

2.3. Features of the Energy Surface

Figure 2.3: Model surface (V = x4−x2 +
y2) exhibiting two local min-
ima (green regions) that are
connected by two steepest-
descent paths crossing a tran-
sition state (yellow line). The
red line exemplifies a further
steepest-descent path leading
to the left local minimum.

2.3.1. Stationary Points and Normal Modes

Within the Born-Oppenheimer approximation, the nuclear dynamics is typically treated
semi-classically, i.e. the energy surface VBO is obtained quantum-mechanically, whereas
the atoms are treated as classical point masses in space. The forces are therefore obtained
as total energy derivatives with respect to the atomic positions

Fα = −dVBO

dRα

, (2.14)

22



2. Describing the Configurational Space of Atomic Clusters

and the atomic motion is given by the solution of the classical Newton equation

MαR̈α = − d

dRα
VBO({Rα}) . (2.15)

Most interesting points on the PES are the stationary points which are configurations
for which all forces vanish and the corresponding energy possesses an extremum. In par-
ticular, local minima exhibit a positive slope of the PES in all directions. Consequently,
any small displacement of the atoms results in a restoring force that brings the atoms
back to their equilibrium positions, the corresponding configuration is stable and called
an isomer of the system in the context of molecules and clusters. In particular, the local
minimum with the lowest total energy is the global minimum. In order to check the
local stability of a stationary point quantitatively, a normal mode analysis can be per-
formed. For that, molecular vibrations around the equilibrium position of the nuclei are
considered. In the harmonic approximation, the PES can be expanded in a Taylor-series
around {Rα,0} and truncated after the second-order term. The first-order term is zero
since the forces vanish at the equilibrium position {Rα,0},

VBO({Rα}) = VBO({Rα,0}) +
∑

β

dVBO

dRβ

∣
∣
∣
∣
∣
{Rα,0}

︸ ︷︷ ︸

=0

qβ +
1

2

∑

βγ

d2VBO

dRβdRγ

∣
∣
∣
∣
∣
{Rα,0}

︸ ︷︷ ︸

≡Hβγ

qβqγ + · · ·

= VBO({Rα,0}) +
1

2

∑

βγ

Hβγqβqγ + · · · , (2.16)

where the displacement vector qα = Rα − Rα,0 is defined as the change of the atomic
positions with respect to their equilibrium configuration. Inserting this into Eq. (2.15)
yields

Mαq̈α = −1

2

∑

βγ

d

dRα,0

(Hβγqβqγ) . (2.17)

Since
dqβ

dRα
= δαβ , the equation of motion further simplifies to

Mαq̈α = −
∑

β

Hαβqβ . (2.18)

A solution to the above equation can be obtained by the following ansatz

qα = Aα cos (ωt+ ǫ) , (2.19)

with the second time derivative

q̈α = −ω2Aα cos (ωt+ ǫ) . (2.20)

Inserting this into Eq. (2.15) gives the following eigenvalue-equation for the 3M ampli-
tudes {Aα}.

23



2. Describing the Configurational Space of Atomic Clusters

Mαω
2Aα =

∑

β

HαβAβ (2.21)

Non-trivial solutions can be obtained by solving the secular equation

det
(

Hαβ − δαβMαω
2
)

!
= 0 . (2.22)

For a system containing M atoms, the Hessian Hαβ possesses 3N rows and columns and
the secular equation yields 3N solutions ωi. Within the harmonic approximation, the
atoms are therefore oscillating around their equilibrium positions with an harmonic mo-
tion having the frequency 2π/ωi and a constant phase ǫi. The normalized eigenvectors

Qα,i = Aα,i/
√
∑

β A2
β,i, the eigenmodes, describe the relative motion of the individual

atoms, where the amplitude is uniquely defined by the boundary conditions, i.e. how
far the individual atoms are initially displaced. Having the same frequency and phase,
all atoms reach their maximum displacements simultaneously. A vibrational mode ex-
hibiting the above described characteristics is called a normal mode of the system.

It can be shown that for a non-linear molecule, only (3N − 6) solutions have non-
vanishing frequencies. The other six solutions correspond to the three translational and
three rotational degrees of freedom of the system. In case of a linear molecule, there
are (3N−5) non-vanishing solutions, since a linear system only possesses two rotational
degrees of freedom.

A local minimum possesses only positive eigenvalues ω2
i . An imaginary frequency ωi

corresponds to a negative slope of the PES in direction of the eigenvector and thus
indicates a local instability, since an infinitesimally small displacement of the atoms
along the eigenvector brings the system out of the equilibrium position. The number
of negative eigenvalues is often referred to as the index of the Hessian. An index of
zero corresponds to a local minimum on the PES which hence represents a stable isomer
of the system under consideration. Stationary points with indices of one or higher are
called saddle points, in particular a saddle point with index one is a transition state. If
two local minima are connected by any path on the PES, then according to the Murrel-
Leidler theorem [14] there is a lower energy path connecting these two minima which
involves a transition state. In other words, if the system undergoes a transition from
one isomer to another, the path that involves the lowest energy barrier to surmount
possesses a saddle point of index one at its energy maximum (see Fig. 2.3).

Steepest-Descent Path and Basin of Attraction

Loosely stated, a steepest-descent path starting from any configuration is defined by sim-
ply following the PES downhill along the forces until a stationary point is reached where
the gradient vanishes. Numerically, one would therefore obtain the steepest-descent path
by successively displacing the atoms by infinitesimal amounts along the force direction.
One important feature is that the resulting path on the PES is uniquely defined and
every point with a non-vanishing gradient in the configurational space lies exactly on one
path [15]. In particular, all points whose steepest-descent paths converge to a certain
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2. Describing the Configurational Space of Atomic Clusters

local minimum form its basin of attraction which thus comprises all configurations of a
molecule that will relax into the corresponding isomer represented by the local minimum
on the PES. Due to the uniqueness of the steepest-descent path, basins of attractions
belonging to different local minima cannot interpenetrate and are a characteristic region
around a local minimum.

At a transition state there are exactly two steepest-descent paths going in opposite
directions along the eigenvector corresponding to the negative curvature and leading to
two local minima. They constitute the minimum-energy path on the PES for a transition
between these two local minima (see Fig. 2.3).

Scaling behaviour of the number of local minima with the system size
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Figure 2.4.: Illustration of two permutation-inversions of a pentagonal bipyramid leading
to the same local minimum. (12345) indicates a permutation that swaps
atom 1 with atom 2, 2 with 3, 3 with 4, 4 with 5, 5 with 1, thus resulting
in a pure rotation (indicated by the blue arrow), which in turn corresponds
to the same local minimum. (67)∗ swaps atom 6 with 7 being followed by
an inversion through the center which can also be superimposed with the
unpermuted one by a pure rotation.

Regarding in particular the question how the configurational space of a system can be
sampled efficiently, it is of fundamental interest to estimate how big the PES is in terms
of the number of different isomers one expects to find. To address this question, one
has to distinguish between two different aspects of this problem. Since the Hamiltonian
of the system is invariant with respect to permutations of the nuclear coordinates of
equivalent species and with respect to inversions of all the coordinates through the
origin of a space-fixed coordinate system, there are many symmetry-equivalent isomers
with the same geometry and energy, but corresponding to different points on the PES.
Assuming the system contains NA atoms of species A, NB atoms of species B, NC atoms
of species C, and so forth, one would expect to have
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2 ×NA! ×NB! ×NC! × · · · (2.23)

symmetry-equivalent isomers, or versions of the structure. However, it can be shown
[6, 16] that in case of a molecule with a point group of order o, there are o permutation-
inversions that can be obtained from the non-permuted isomer by a pure rotation, thus
not being a distinct local minimum of the isomer (see Fig. 2.4). Therefore, there are

Nversions = 2 ×NA! ×NB! ×NC! × · · ·/o (2.24)

different versions of the same isomer that cannot be superimposed by a pure rotation.
In other words, every isomer possesses Nversions different basins of attraction on the
PES. Hence, the lower the symmetry of a structure, the more symmetry-equivalent local
minima it possesses on the PES.

More difficult is the question how many isomers of different energy and geometric
structures exists. According to empirical observations and heuristic estimates [17, 18,
19], the number of isomers grows exponentially with increasing cluster size. The basic
idea of such an estimate is to divide the system into m equivalent subsystems each
containing M atoms. Assuming that the stable configurations of each subsystem can be
considered independent, the number of local minima nmin then behaves like

nmin(mN) = nmin(N)m . (2.25)

A solution of this equation is

nmin(N) ∝ exp(αN) , (2.26)

where α is a system-dependent constant.

2.3.2. Global Topology of the Energy Surface

The overall shape of the energy surface is determined by the energetic ordering of the
local minima and their connectivity through transition states. One feature to describe
the global topology of a PES is for instance the monotonic sequence introduced by Kunz
and Berry [20, 21]. It is defined as a sequence of local minima connected by transition
states for which the energy of the minima monotonically decreases. All monotonic
sequences leading to the same local minimum therewith define a monotonic sequence

basin or funnel. Another common term is superbasin which emphasizes the analogy to a
basin of attraction on the global scale of the PES. In contrast to the latter where every
point of the configurational space with a non-vanishing gradient only belongs to one
basin of attraction, a local minimum can belong to several monotonic sequence basins.

Systems with only one funnel converging to the global minimum are often referred to
as single-funnel systems. They are obviously benign systems for a global optimization
since the overall topology can guide the system towards the global minimum. Contrary
to that, multi-funnel systems contain multiple sequence basins. Once in a wrong funnel,
the system then has to surmount several energy barriers to climb out of it and reach the
global minimum, which makes global optimization in general more difficult [7, 8].
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monotonic sequence

monotonic sequence basin

(“funnel”)

Figure 2.5.: Schematical picture of a multi-funnel potential energy surface with a de-
picted monotonic sequence basin.

2.4. Thermodynamics

At zero temperature, the most stable structure is the isomer with the lowest energy E0

plus the zero point energy (vide infra) given by the vibrations. Increasing the tempera-
ture of the system, entropic effects start to play a role and the free energy F determines
the stability of the system (see e.g.[22]).

F = E0 − kBT lnZ , (2.27)

where Z is the partition function of the system defined as

Z =
∑

i

e
−

Ei
kBT , (2.28)

with i being the index running over all possible states of the system and Ei the corre-
sponding energy of the system. For an atomic cluster system, assuming that rotations
and vibrations can be decoupled, the partition function separates into

Z = ZtransZvibZrot , (2.29)

where Ztrans, Zvib and Zrot are the partition functions due to the translational, vibrational
and rotational degrees of freedom. The free energy then adopts the form

F = E + Ftrans + Fvib + Frot. (2.30)
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2.4.1. Translational Degrees of Freedom

The partition function Ztrans can be calculated in a straightforward manner and has the
form [22]

Ztrans = V

(

MkBT

2πh̄2

)3/2

. (2.31)

V is the volume of the box in which the cluster is placed. Since the only system-
dependent parameter is the total mass M of the system, the translational degrees of
freedom do not influence the energetic ordering of different isomers of the same system
and can thus be neglected when addressing the energetic stability of free molecules.

2.4.2. Molecular Vibrations

The vibrational contribution to the free energy can be approximated using the vibra-
tional frequencies obtained by the harmonic approximation. Using normal modes, the
molecule can be considered as being composed of (3N−6) independent one-dimensional

harmonic oscillators with the energies En,i =
(

n + 1
2

)

h̄ωi, where n is the principal quan-
tum number of the vibrational state. Hence the partition function further separates into
[22]

Zvib =
3N−6∑

i=1

Zvib,i . (2.32)

Each partition function can easily be evaluated analytically,

Zvib,i =
∞∑

n=0

e
−(n+ 1

2)
h̄ωi
kBT = e

−
h̄ωi

2kBT

∞∑

n=0

e
−n

h̄ωi
kBT =

e
−

h̄ωi
2kBT

1 − e− h̄ωi

kBT

, (2.33)

Zvib =
3N−6∏

i=1

e
−

h̄ωi
2kBT

1 − e− h̄ωi

kBT

. (2.34)

The resulting vibrational contribution to the free energy is

Fvib = −kBT lnZvib =
3N−6∑

i=1

(

h̄ωi

2
+ kBT ln

(

1 − e
−

h̄ωi
kBT

))

(2.35)

= EZPE + kBT
3N−6∑

i=1

ln
(

1 − e
−

h̄ωi
kBT

)

. (2.36)

The first term corresponds to the zero-point energy since it contributes to the free energy
already at zero temperature. It originates from the zero-point vibration of the molecules.
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2.4.3. Molecular Rotations

As for the rotational contribution to the free energy, one can assume that the centrifugal
forces acting upon the nuclei are negligible and do not alter the molecular structure
significantly. A good approximation to the rotational partition function based upon
classical mechanis is [22]

Zrot =

√
π

σ

(

2kBT

h̄2

)3/2√

I1I2I3 , (2.37)

where I1, I2, I3 are the principle moments of inertia, e.g the eigenvalues of the moment
of inertia tensor. σ is the order of the rotational subgroup of the system, so the number
of pure rotational symmetry operations.
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3. Exploring the Configurational Space

Determining cluster structures requires to identify the local minima of the PES, which
is a high-dimensional function of the atomic coordinates. Of fundamental interest is
thereby without doubt the global minimum, which constitutes the most stable isomer
at zero temperature. Energetically higher-lying and therewith metastable isomers, how-
ever, might be observed in experiment due to finite temperature or kinetic effects, thus
additionally being in the focus of interest.

Hence, this work faces a twofold challenge. On the one hand, the PES needs to be
evaluated, thus necessitating a method that yields the total energy for a given atomic
configuration. Obtaining this energy within the framework of density-functional theory is
the topic of chapter 4. On the other hand, the local information of a current configuration
thereby gained needs to be exploited to efficiently sample the PES and finally identify
the local minima. The goal of this chapter is to condense and classify most popular
corresponding schemes to explore the huge configurational space.

3.1. Local Optimization Methods

Local optimization methods are deterministic schemes that guide the system to the next
local minimum of the PES from an arbitrary starting point by following the surface
downhill in some way. At each iteration step, local information like the energy, forces or
the Hessian of the corresponding atomic configuration are taken into account to obtain
the next structure until iteratively the forces vanish and the local minimum has been
identified.

3.1.1. Steepest Descent

The simplest method to implement is the steepest descent method [22] that strictly
proceeds downhill to reach the local minimum. In each iteration step, the atoms are
displaced according to the forces acting on them

Rα,i+1 = Rα,i + γiFα({Rα,i}) , (3.1)

with γi being a technical step width parameter to adjust that does not necessarily have
to be constant for the whole local optimization. If the step width is too small, many
iteration steps are required and the convergence to the local minimum is rather slow. If
on the other hand γi is too large, the system might start to oscillate around the local
minimum.
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3.1.2. Conjugate Gradient

The conjugate gradient scheme consists of succesive line minimizations along a search
direction Gα,i [22, 23, 24, 25, 26]

γi = arg min
γ
E (Rα,i + γGα,i({Rα,i})) , (3.2)

where arg minγ E denotes the argument γ which minimizes the energy E. The atomic
coordinates are then correspondingly updated to

Rα,i+1 = Rα,i + γiGα,i . (3.3)

Similar to the steepest descent scheme, one starts along the atomic forces as first search
direction, so Gα,0 = Fα({Rα,0}). Contrary to the former scheme, however, information
from previous searches are accumulated so that new line searches do not destroy the
progress of previous line searches as might be the case for ill-conditioned functions (see
Fig. 3.1). In these cases, the steepest descent scheme follows a criss-cross pattern since
every new line step only takes local information into account. The conjugate gradient
scheme instead does not strictly follow the PES downhill but along a search direction
that is somewhat perpendicular (”conjugate”) to the previous search directions, which
is achieved by adding a fraction of the previous search direction to the atomic forces

Gα,i = Fα,i + βiGα,i−1 . (3.4)

There exist different flavours of the conjugate gradient scheme, differing by the definition
of βi. Some of the names associated with these schemes are Fletcher-Reeves (FR) [24, 25],
Polak-Ribière (PR) [24] and Hestenes-Stiefel (HS) [26]

βFR
i =

∑

α Fα,i · Fα,i
∑

α Fα,i−1 · Fα,i−1

, (3.5)

βPR
i =

∑

α Fα,i · (Fα,i − Fα,i−1)
∑

α Fα,i−1 · Fα,i−1

, (3.6)

βHS
i =

∑

α Fα,i · (Fα,i − Fα,i−1)
∑

α Gα,i−1 · (Fα,i − Fα,i−1)
. (3.7)

The construction of the search directions Gi is based upon the assumption that the
PES is harmonic. If this assumption holds exactly, the conjugate gradient scheme will
converge to the local minimum in 3N iteration steps, thus being a direct minimization
scheme. In particular, all aforementioned different schemes are then equivalent. Conse-
quently, if the system is far away from the harmonic region, the search directions become
unreasonable and it is recommended to start with a few steepest descent steps to bring
the system closer to the local minimum.
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Figure 3.1.: Illustration of the steepest descent scheme (black arrows) for an ill-
conditioned two-dimensional surface compared to conjugate gradient (red
arrows).

3.1.3. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

The BFGS method is a so-called quasi-Newton scheme that takes additional information
in the form of the second derivative of the PES into account [27]. Knowing the Hessian
matrix Hαβ, a new search direction Gβ,i can be obtained by solving the Newton equation

∑

β

HαβGβ,i = Fα({Rα,i}) . (3.8)

The next atomic configuration can then be obtained by performing a line minimization
as in the conjugate gradient scheme (Eq. (3.2)). If the PES were perfectly harmonic
and the Hessian known exactly, the local minimum would be found within one line
search. In practice, however, the calculation of the Hessian matrix in each iteration
step can be prohibitively expensive, so that it is instead successively approximated in
each iteration step, therewith being a quasi-Newton scheme. Since more information of
the PES is taken into account, the BFGS method can be more efficient than steepest
descent or even conjugate gradient, but it works only efficiently if the system is close
to the local minimum, where the harmonic approximation is justified. It is therefore
typically recommended to start with a few steepest descent steps to bring the system
close to the local minimum as in the case of the conjugate gradient scheme.

3.2. Global Optimization Schemes

The above described local optimization methods are deterministic schemes that approach
the next local minimum from a starting point constructively, since the local information
obtained for a given configuration, like the energy and forces, uniquely guides the system
to the next local minimum. In order to find all isomers, particularly the global minimum,
a search algorithm is required that not only scans the local environment but samples
the whole PES. Since local information is not enough to locate the global minimum of
the system, stochastic methods are required that provide some recipe to systematically
sample the huge configurational space. The global optimization of atomic clusters is
assumed to be NP-hard (non-deterministic polynomial-time hard) [28], i.e. no algorithm
is known that guarantees to locate the most stable isomer within polynomial time. This
difficulty is typically ascribed to the exponential growth of the number of local minima
with system size. Assuming the most primitive method that simply runs through all local
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minima, the computational burden therefore quickly becomes unfeasible which connects
to the famous Levinthals paradox according to which a protein would never reach its
native state within the lifetime of universe in view of the tremendous number of different
local minima [7, 8]. Correspondingly, one possible way out is that the global topology
can serve as a guidance for the system to reach the global minimum. As already stated
in the previous chapter, single-funnel systems are benign topologies in this sense.

One key ingredient of any sampling algorithm is the way new structures are generated.
This so-called trial move corresponds to a jump of the system in the configurational
space. A simple method for that is to randomly displace the atomic positions. After
such a jump, a criterium is required which decides whether this new structure is preferred
and the search should continue from there or if it should rather be discarded. Such an
acceptance criterium is typically based upon the total energy, being a natural choice
since it is the quantity to optimize. Of course, there is no need to confine to a single
sequential run. Multiple search sequences can be performed and information can be
exchanged to thus combine structures from different positions on the PES instead of a
purely local search. The number of serial runs and the special scheme to cross them
are examples of the large number of technical parameters that make up for the huge
diversity of different optimization schemes of which the most archetypal ones will be
described in the following.

3.2.1. Simulated Annealing

A classical optimization algorithm applied to many fields is the simulated annealing
scheme that resorts to methods of statistical mechanics and is based upon the Metropolis-
algorithm [29, 30]. Starting from an arbitrary configuration with a total energy E, a new
structure is generated by randomly displacing the atoms, leading to a change of the total
energy ∆E. If the energy has decreased, i.e. ∆E < 0, the new structure is accepted and
used as starting point for the next step. In the opposite case, however, the structure is not
discarded unconditionally, but accepted with a probability of P (∆E) = exp(−∆E/kBT ).
According to Metropolis, this acceptance criterium thus generates a canonical ensemble
of atomic configurations at T . At zero temperature, only isomers that are lower in energy
would be accepted which would be an intuitive choice at first glance since the system is
thereby pushed towards the ground state. However, the system is then likely to get stuck
in the wrong minimum. A finite temperature allows instead for controlled uphill steps
thus enabling the system to get out of local minima. Starting from a high temperature,
the system is then successively cooled down according to an annealing schedule. Coupled
to the temperature are the random displacements of the individual atoms ∆Rα that obey
a Gaussian distribution in the classical simulated annealing scheme [31]:

p(∆Rα) ∝ exp
(

−(∆Rα)2/T
)

(3.9)

With decreasing temperature, the step width is therewith reduced thus freezing the
system in the ground state. The cooling rate needs to be inverse logarithmic in time to
assure convergence
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T ∝ T0

log(1 + t)
. (3.10)

Improvements can be made by adjusting the annealing scheme, as done in the Fast

Simulated Annealing scheme, proposed by Szu et al. [32]. The Gaussian distribution
of random displacements is replaced by a Cauchy distribution that contains longer tails
additional to a Gaussian-like peak, thereby enabling the system to occasionally perform
longer jumps in the configurational space. Instead of an inverse logarithmic cooling rate,
the temperature can then be reduced linearly with time, converging to the ground state
much faster. Both versions are special cases of the Generalized Simulated Annealing

scheme, that introduces more technical parameters to tune the cooling rate [33]. Due to
the reduction of the temperature, no canonical ensemble is generated anymore, so that
unlike in the original Metropolis scheme, no thermodynamic quantities can be derived.
The resulting simulated annealing scheme is a pure global optimization procedure.

3.2.2. Basin-Hopping

Loosely stated, the basin-hopping method is the simulated annealing method applied
to local minima [10, 34, 35]. Additional to the trial move, a local structural relaxation
is performed and the total energy of this local minimum is then assigned to the initial
configuration. The PES is therewith effectively transformed into a set of interpenetrating
staircases that are the basins of attractions introduced in chapter 2 (see Fig. 3.2)

Ẽ{R} = minE{R} , (3.11)

where min indicates a local structural relaxation.
This deformation is an example of the class of hypersurface transformation methods

that aim at modifying the PES to facilitate the global optimization. In many cases,
like e.g. the distance scaling method [36], the surface is smoothed out, thus decreasing
the number of local minima. However, there is in general no guarantee that such a
transformation does not change the global minimum, or even washes out relevant isomers.
On the contrary, the basin-hopping method leaves the local minima unchanged but only
removes the transition state regions, thus facilitating interbasin transitions. Hence,
contrary to the original simulated annealing scheme, moves that lead the system to
high points on the PES are much more likely to be accepted, since the ensuing local
optimization allows the system to relax into the corresponding local minimum which is
much lower in energy. This makes a complicated annealing schedule unnecessary, and
in the classical BH scheme the temperature in the Boltzmann-criterium is simply kept
constant [10], thereby generating a canonical ensemble of the transformed PES.

A classical trial move scheme is to randomly vary the cartesian components of all
atomic coordinates

∆Rα,i = 2 · R0(rand − 0.5) , (3.12)
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Figure 3.2.: The principle of the basin-
hopping method. Depicted is
a model energy surface together
with its transformed landscape.
The green arrow indicates a trial
move performed on a local min-
imum, being followed by a lo-
cal structural relaxation (red ar-
rows).

with R0 being the maximum step width
and rand being a random number be-
tween zero and one.

With the basin-hopping scheme, Wales
et al. identified in 1999 all hith-
erto known global minima of Lennard-
Jones(LJ)-clusters containing up to 110
atoms and additionally new ones. The
LJ38 is a well-known example of a double-
funnel PES [37], that contains an icosahe-
dral funnel with a large free energy, and
an fcc funnel with a comparably smaller
free energy but leading to the global mini-
mum. The unmodified surface yields only
a small overlap in the canonical occupa-
tion probabilities with respect to the tem-
perature, so that the system is likely to
get trapped in the wrong funnel. Trans-
forming the PES like in the basin-hopping scheme, however, results in a broadening of
the overlap region, and enables the system to climb out of the wrong funnel [37, 38] .
Hence, it is not only the alleviated interbasin transition due to the removal of the tran-
sitions state regions, but also the easier transition between different funnels because of
the modified thermodynamics that make up for the success of the basin-hopping scheme.

3.2.3. Genetic Algorithms

  

Figure 3.3.: Mating between two parent
structures generating a child.
After the mating, the new child
is locally relaxed.

The name of this class of algorithms
comes from the mimicked Darwinistic
principle of the survival of the fittest
[39, 40]. Contrary to the basin-hopping
scheme, the starting point is a population

of randomly generated cluster structures
instead of a single initial configuration.
New cluster structures are hereby gener-
ated by choosing two candidate structures
from the population, the parents, which
are then mated to create a child. The
mating has thereby to be appropriately
designed to preserve structural properties
of the parents during the mating proce-
dure. A common choice for that is to cut
the parent structures by a plane that is randomly oriented and cross the resulting halfs
followed by a relaxation to generate a child (see Fig. 3.3). Local structural motifs from
different points on the PES are therewith combined instead of performing a pure local
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search like in the basin-hopping scheme.
A further technical aspect is the question which of the children are supposed to replace

parents in the population. A simple rule of Deaven and Ho [39] is that a child has to
be energetically lower than a parent structure to replace it. To keep the diversity of the
population, a further constraint is that a child structure that is supposed to replace a
parent structure needs additionally to be different enough from all the other members
of the population. Deaven and Ho [39] therefore introduced a second energy criterium.
A potentially new structure in the population needs to have an energy difference of ∆E
to all other isomers in order to be considered different enough, where ∆E is another
tunable parameter. With such an implementation of a genetic algorithm, Deaven and
Ho independently discovered the fcc-structure for LJ38 in 1996 [40], and based upon a
tight-binding scheme, the fullerene structure for C60 could be identified in 1995 [39].
It is worth pointing out that due to the involved local structural relaxation, a genetic
algorithm is simply a different search algorithm applied to the same transformed PES
like in the case of the basin-hopping scheme.

3.2.4. Further Algorithms

Many modifications of the above described basic types of global optimization schemes
have been suggested in the literature, one of them is for instance the minima hopping

algorithm by Stefan Goedecker [41, 42]. As indicated by the name, it can be considered
as basin-hopping with a different type of move. Goedecker suggests using a molecular
dynamics trajectory instead of random moves to generate new structures, thereby ex-
ploiting the Bell-Evans-Polanyi-principle [22, 43, 44]. This principle states that a local
minimum behind a transition state is lower in energy the smaller the barrier to cross.
By starting with a small kinetic energy, the MD-trajectory tends to surmount lower
energy barriers and assuming the validity of the BEP-principle is therefore more likely
to approach the ground state. Another key ingredient of the minima hopping method
is a history feedback method which keeps track of all local minima identified during the
sampling run. If the trajectory leads to an isomer that has already been found, the ki-
netic energy is slightly increased and higher energy barriers can be surmounted, thereby
enabling the system to climb out of a wrong funnel if it has been exhaustively explored.
Of course, there is no reason to constrain this kind of history feedback method to the
application of MD-trajectories, it can also be combined with basin-hopping, which would
simply be replacing MD-runs by random moves. Since detailed balance would then not
be fulfilled, such a modified basin-hopping scheme would no longer generate a canonical
ensemble, which would, however, not constitute a problem since thermodynamic quan-
tities are not of interest in the case of global optimization. Instancing LJ38, MD-steps
were proven to be superior compared to random moves [41]. Averaged over a huge
number of global optimization runs, roughly 34000 local minima using MD-trajectories
were identified until the global minimum was found compared to 75000 in the case of
random moves. However, Wales reports an average number of 2000 moves, including
more efficient angular moves [10, 45] thus making basin-hopping an order of magnitude
faster in this case and illustrating the intricate connection of the sampling scheme and
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employed trial moves to the overall performance.
Another type of history feedback method is the concept of landscape paving [46]. The

basic idea is to artificially increase the energy in regions that have already been explored.
With that, moves that lead into such regions are likely to be rejected thus preventing
the system from useless sampling already known regions of the PES. However, this
modification, being a significant improvement at first glance, also bears some dangers.
Considering the case of two-funnels that are connected by only one transition basin,
the paving of this important basin prevents the system from interfunnel transitions,
thus prohibiting the system to climb out of a potentially wrong funnel. Combined
with basin-hopping, Zhan et al. suggested the basin paving method [47] that makes
use of the histogram of already visited minima to construct an artificial increase of the
PES. Using Lennard-Jones clusters, a statistically significant improvement for the global
optimization could only be shown for very large systems containing around 150 atoms
[47].

3.3. Summary

A concise overview of present sampling methods was given of which the basic ones are
simulated annealing, basin-hopping and genetic algorithms. A few popular modifications
have been presented which can be considered as derivations from basin-hopping with
improvements that were proven to be advantageous for certain cases. However, the
performance of the various schemes and their modifications can strongly depend upon
both the actual system under consideration and upon the huge number of involved
technical parameters, like e.g. the special type of move performed in the random move
scheme. A critical analysis and discussion of the implemented sampling method of the
present work, in particular regarding possible generic optimizations and showing clear
limitations, is therefore part of this PhD project and will be presented in chapter 9.
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4. Density-Functional Theory

This chapter deals with the question how to obtain the energetics of a system with a
given atomic configuration as required to evaluate the PES. In this work, the method
employed is density-functional theory. Before giving a short overview of other popular
methods in order to properly classify DFT, some basic terminology will be introduced.

4.1. The Electronic Wave Function

The central quantity within electronic structure theory is the electronic wave function
Ψ(x1, . . . ,xNel

) which yields the probability to find an electron at position r1 with spin
σ1, an electron at position r2 with spin σ2 and so forth by

|Ψ(x1, . . . ,xNel
)|2 dx1 . . .dxNel

. (4.1)

Being fermions, electrons obey the Pauli principle [48, 49] which states that two electrons
of like spin cannot be at the same point in space. In terms of the wavefunction, this is
reflected by the antisymmetry with respect to the space- and spin-coordinates

Ψ(x1, . . . ,xi, . . . ,xj, . . . ,xNel
) = −Ψ(x1, . . . ,xj , . . . ,xi, . . . ,xNel

) , (4.2)

which thus gives for two equal coordinates xi = xj

Ψ(x1, . . . ,xi, . . . ,xi, . . . ,xNel
) = 0 , (4.3)

and ensures that the probability to find two electrons of like spin at the same spatial
position is zero as prescribed by the Pauli principle.

The Variational Principle [22, 50] states that the expectation value of any trial wave
function E [Ψtrial] = 〈Ĥ |Ψtrial| Ĥ〉 is always an upper bound to the ground-state energy
given by the expectation value of the ground-state wavefunction Ψ0

E0 ≡ E [Ψ0] ≤ E [Ψtrial] . (4.4)

4.1.1. The Electron and Pair Density

The electron density at the position r is defined as the probability to find an electron of
any spin at this point and is given by

ρ(r) = Nel

∑

σ1

ρσ1(r) = Nel

∑

σ1

∫

. . .
∫

dx2 . . .dxNel
|Ψ(x1, . . . ,xNel

)|2 , (4.5)
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and is the sum of the individual spin densities ρσ which describe the probability to find
an electron of a specific spin σ at the position r. The prefactor Nel is the number of
electrons in the system and ensures the right normalization

∫

drρ(r)dr = Nel . (4.6)

In the same manner, the pair density at x1 and x2 is defined as the probability to find
an electron with spin σ1 at the point r1 and an electron with spin σ2 at the point r2

ρ2(x1,x2) = Nel(Nel − 1)
∫

. . .
∫

dx3 . . . dxNel
|Ψ(x1, . . . ,xNel

)|2 , (4.7)

where the antisymmetry of the wavefunction due to the Pauli principle correspondingly
leads to an antisymmetry of the pair-density

ρ2(x1,x2) = −ρ2(x2,x1) . (4.8)

If electrons moved completely independently, the pair density would just be the product
of the spin densities ρ2(x1,x2) = ρ(x1)ρ(x2). The probability to find an electron with
spin σ1 at the point r1 is then independent of the probability distribution of the second
electron. Due to the Coulomb interaction, however, the movements of both electrons
are correlated, so in general ρ2(x1,x2) 6= ρ(x1)ρ(x2).

4.2. Approximative Methods to solve the Many-Body

Problem

One fundamental approach to solve the electronic Schrödinger equation (2.10) numer-
ically is the Hartree-Fock method which approximates the electronic wavefunction by
a single Slater-determinant of single particle wave functions, thus ensuring the anti-
symmetry of the wave function to fulfil the Pauli principle. Additional to the classical
Coulomb-potential V c

ee, this gives rise to a quantum mechanical contribution to the po-
tential called exchange potential VX. The aforementioned Coulomb correlation, however,
is not captured, and the pair density of electrons of unequal spins which are not sub-
ject to the Pauli principle just separates into the individual spin densities. The missing
energy is correspondingly defined as correlation energy EC and is significant to obtain
accurate results though being smaller compared to the exchange and classical Hartree
energy. The corresponding potential is consequently termed correlation potential VC.

Among the approaches to account for the correlation energy, the most popular ones
based on the electronic wave function are second or fourth order perturbation theory
by Møller and Plesset (MP2 or MP4) [9], configuration interaction (CI) [51], multi-
configuration self-consistent field (MCSCF) [52], coupled cluster methods (CC) [53] or
Quantum Monte Carlo (QMC) [54]. Though these methods can be quite accurate, they
are computationally very demanding for larger systems. MP2 for instance, nominally
scales as N5, thus quickly becoming prohibitively expensive with increasing cluster size.
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Density-functional theory (DFT) provides an alternative approach. The electronic
Schrödinger equation and the corresponding wave function are replaced by a formalism
based upon the much simpler electron density ρ.

4.3. The Thomas-Fermi Model

The original idea to use the electron density as the fundamental quantity goes back to
1927, when Thomas and Fermi approximated the distribution of electrons in an atom
[55] and came up with their famous kinetic energy functional which is exact in the limit
of a homogeneous electron gas

TTF(ρ) = CF

∫

drρ5/3(r) dr , CF =
3

10
(3π2)2/3 = 2.871 . (4.9)

Additionally, the attractive electron-nucleus energy and the classical repulsive electron-
electron Coulomb energy can be expressed as functions of ρ(r).

VNe = Z
∫

dr
ρ(r)

r
, (4.10)

V c
ee =

1

2

∫ ∫

dr1dr2
ρ(r1)ρ(r2)

|r1 − r2|
. (4.11)

Neglecting the exchange-correlation energy, a simple formula for the total energy of an
atom is derived exclusively in terms of the electron density

ETF[ρ] = CF

∫

dr ρ5/3(r) + Z
∫

dr
ρ(r)

r
+

1

2

∫ ∫

dr1dr2
ρ(r1)ρ(r2)

|r1 − r2|
. (4.12)

Minimizing Eq. (4.12) with respect to the density under the normalization constraint
Eq. (4.6) then yields the ground-state density ρ0 and the corresponding ground-state
energy E[ρ0]. While simple, the Thomas-Fermi formula is of no practical use due to
the underlying approximations of both a very crude kinetic energy functional and the
complete neglection of the exchange-correlation energy.

4.4. The Hohenberg-Kohn Theorems

The Thomas-Fermi model was the first attempt to express the electronic energy in terms
of the electron density only, thereby reducing the number of degrees of freedom from 3Nel

to 3. Nonetheless, this approximation did not become popular due to its low accuracy.
The concept of the electron density was taken up again in 1964 by Hohenberg and Kohn
[56] who founded the basics of an exact theory, the density-functional theory. It is based
upon two theorems which prove that the electron density can in principle be used alone
to obtain the ground-state energy of any system.

The first theorem states that the external potential Vext of a system is, within an ad-
ditive constant, uniquely defined by the electron density, where the external potential is
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not confined to the Coulomb-potential of the nuclei. Since Vext defines the Hamiltonian,
which then determines the many-body wavefunction from which all observables can be
obtained, it follows that the whole physics of a system, in particular the ground-state en-
ergy, can exclusively be obtained from the electron density. For non-degenerate systems,
the proof is trivial and based upon the variational principle [57]. Consider two different
external potentials Vext and V ′

ext that differ by more than just an additive constant but
give rise to the same ground-state electron density ρ0. The corresponding Hamiltonians
Ĥ and Ĥ ′ then yield two different wavefunctions Ψ and Ψ′. Applying the variational
principle to the unprimed Hamiltonian with Ψ′ as trial wavefunction yields

E0 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉 + 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 , (4.13)

which expands to

E0 < E′
0 + 〈Ψ′|T + Vee + Vext − T − Vee − V ′

ext|Ψ′〉 , (4.14)

so that the expression can be simplified to

E0 < E′
0 +

∫

dr ρ(r)(Vext − V ′
ext) . (4.15)

Now the roles are exchanged, so the variational principle is applied to the primed Hamil-
tonian using Ψ as trial wavefunction, thus yielding

E ′
0 < E0 −

∫

dr ρ(r)(Vext − V ′
ext) . (4.16)

Summing Eq. (4.14) and Eq. (4.15) finally gives the following contradiction

E0 + E ′
0 < E′

0 + E0 ⇐⇒ 0 < 0 . (4.17)

Hence, the basic assumption of two different external potentials giving rise to the same
ground-state density was wrong. The total energy E0 can therefore be expressed solely
in terms of ρ

E0[ρ] =
∫

dr ρ(r)VNe + T [ρ] + Eee[ρ] (4.18)

=
∫

dr ρ(r)VNe + FHK[ρ] . (4.19)

FHK[ρ] is called the universal functional of ρ since it does not depend upon the external
potential. The proof can be generalized to the case of degenerate systems [57].

The second Hohenberg-Kohn theorem is a reformulation of the variational principle,
now being expressed in terms of the density. It states that the energy given by any trial
density ρ̃ is an upper bound to the ground-state energy E0

E0 = E[ρ] ≤ E[ρ̃] . (4.20)

According to the first Hohenberg-Kohn theorem, the trial density ρ̃ is uniquely given
by the external potential Ṽext, which in turn defines the corresponding Hamiltonian Ĥ
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which yields the many-body wavefunction Ψ̃. Applying the variational principle Eq.
(4.4) then gives the desired result

〈

ψ̃
∣
∣
∣ Ĥ

∣
∣
∣ψ̃
〉

=
∫

dr ρ̃(r)Vext(r) + FHK[ρ̃] = E[ρ̃] ≥ E[ρ0] . (4.21)

Additionally, applying the variational principle to the Hohenberg-Kohn functional under
the normalization constraint of the electron density and the assumption of the differen-
tiability of EHK

δ {E[ρ] − µ [ρ(r)dr −Nel]} = 0 , (4.22)

yields the Euler-Lagrange equation

µ =
δE[ρ]

δρ(r)
= Vext(r) +

δFHK[ρ]

δρ(r)
, (4.23)

with µ being the chemical potential.

4.5. The Kohn-Sham Equation

In principle, DFT is an exact theory, which means that if the universal functional FHK

were known, minimizing the energy functional would give the exact ground-state energy.
Unfortunately, FHK is not known, making a direct application of the Hohenberg-Kohn
theorems impossible. In 1965, Kohn and Sham approximated FHK [58], thus paving the
way for tackling practical problems using DFT. Their strategy was to separate everything
that can be expressed exactly and only approximate the missing terms. Introducing a
reference system of non-interacting electrons described by single-particle states ψi(r) the
kinetic energy of that reference system can then be obtained exactly as

TS = −1

2

Nel∑

i

〈φi|∇2|φi〉 , (4.24)

with φi being the Kohn-Sham orbitals. The non-interacting kinetic energy TS is not equal
to the true kinetic energy T , with T = TS + TC. Furthermore, the classical Coulomb
energy J [ρ] can be expressed exactly with respect to the electron density. Therefore,
Kohn and Sham rewrote the universal functional as

FHK[ρ] = TS[ρ] + J [ρ] + EXC[ρ] , (4.25)

where the exchange-correlation energy EXC[ρ] contains everything that is missing: The
quantum-mechanical contributions due to exchange and correlation, and the remaining
part of the kinetic energy not being captured by TS

EXC[ρ] = (T [ρ] − TS[ρ]) + (Eee[ρ] − J [ρ]) , (4.26)

which thus yields the Kohn-Sham functional
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EKS[ρ] = TS[ρ] + J [ρ] + EXC[ρ] + Eext[ρ] . (4.27)

Minimizing Eq. (4.27) with respect to the orbitals φi, using the expression of the electron
density for a non-interacting system ρ(r) =

∑

i fi |φi(r)|2 and under the orthonormality
constraint of the Kohn-Sham orbitals 〈φi|φj〉 = δij , then results in the famous Kohn-
Sham equation for the single-particle Kohn-Sham orbitals

[

−1

2
∇2 + Veff(r)

]

φi = ǫiφi , (4.28)

with {ǫi} being the Kohn-Sham orbital energies which result as Lagrange-multipliers to
ensure the orthonormality of the orbitals. Veff is the effective potential, which contains
the classical Coulomb potential, the exchange-correlation potential and the external
potential Vext(r),

Veff(r) =
∫

dr′
ρ(r)′

|r − r′| + VXC(r) + Vext(r) . (4.29)

The resulting electron density ρ(r) =
∑

i fi |φi(r)|2 is by contruction equal to the true
electron density, where the occupation numbers {fi} are one for occupied states and zero
otherwise. The exchange-correlation potential VXC(r) is defined as functional derivative
of the exchange-correlation energy with respect to the electron density

VXC(r) ≡ δEXC

δρ(r)
. (4.30)

Being an artificial reference system, the Kohn-Sham orbitals are no real single-particle
wave functions but only approximations to them. Their introduction was in particu-
lar only necessary due to the lack of knowledge of the kinetic energy functional with
respect to the electron density. Attempts to keep the density-functional theory purely
density-based have been made by approximating the kinetic energy functional within
the so-called orbital-free density-functional theory (see e.g. [59]). However, common
functionals that go beyond the classical Thomas-Fermi model turned out to be little
successful since the kinetic energy is in the same order of magnitude as the total energy,
and errors in the approximations are therewith significant. Only in simple cases, like
e.g. bulk aluminum, where the electron density resembles the homogeneous electron gas,
quantitative results could be obtained [60]. For systems with localized electron densi-
ties, in particular transition metals that are of interest in the present work, the crude
approximation of common existing kinetic energy functionals yields unsatisfactory re-
sults [61]. Therefore, to obtain quantitative results, classical density-functional theory
based upon the Kohn-Sham equation is used, which is in principle an exact theory.
Hence, if the exact forms of EXC and VXC were known, the Kohn-Sham scheme would
lead to the exact total energy Etot which in turn is the correct eigenvalue of the many-
body Hamiltonian. Nevertheless, the unknown functional for the exchange-correlation
energy EXC and its corresponding potential VXC necessitates approximations to them,
therewith turning DFT into an approximative method in practice. The central goal of
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modern density-functional theory is therefore to find better and better approximations
to these two quantities.

4.6. Present-Day Exchange-Correlation Functionals

The quality of density-functional theory results depends upon the quality of the ap-
proximation of the exchange-correlation energy. Unfortunately, there is no systematic
way to successively improve the results like in wavefunction based methods. Analogous
to the Thomas-Fermi model, the first attempt to find an explicit expression for EXC

was based on the homogeneous electron gas. The basic assumption of the Local-Density

Approximation (LDA) is that non-local effects of the real electron gas can be neglected
and the exchange-correlation energy can be expressed as a sum over space where each
point contributes to the energy with a value given by the homogeneous electron gas of
the same density. In other words, the exchange-correlation energy density per particle
per volume ǫLDA

XC (ρ(r)) in the local-density approximation equals to the true energy den-
sity ǫXC(ρ(r)) of the corresponding homogeneous electron gas. The exchange-correlation
energy is then given by

ELDA
XC [ρ(r)] =

∫

dr ρ(r) ǫXC(ρ(r)) , (4.31)

and the corresponding exchange-correlation potential by

V LDA
XC (r) =

δEXC

δρ(r)
= ǫXC(ρ(r)) + ρ(r)

∂ǫXC(ρ)

∂ρ
. (4.32)

The exchange-correlation energy density ǫXC(ρ(r)) can be separated into two parts, the
exchange part ǫX, resulting from the Pauli principle, and the correlation part ǫC, resulting
from the Coulomb correlation

ǫXC(ρ) = ǫX(ρ) + ǫC(ρ) , (4.33)

where the exchange part ǫX(ρ) can be expressed analytically for the homogeneous elec-
tron gas [55, 62]

ǫX(ρ(r)) = −3

4

(

3ρ(r)

π

) 1
3

. (4.34)

For the correlation part ǫC(ρ), no such analytical result is known. Expressions can be
obtained for the high-density [63, 64] and the low-density [65, 66] limit. The intermediate
range has only been assessed numerically by highly accurate quantum Monte Carlo
calculations, e.g. by Ceperley and Alder [67]. In order to use this discrete set of values,
a parameterization is required, of which the most popular ones are the one by Vosko,
Wilk and Nusair [68] (VWN-LDA) and the one by Perdew and Wang [69] (PW-LDA).
Both schemes give usually very similar results.

Though the local-density approximation is a crude approximation to the true exchange-
correlation energy, is has been widely used until the 1990’s with surprisingly good results.
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This can partly be related to the fact that the magnitude of the exchange-correlation
energy is rather small compared to the total energy so that errors in the approximation
are less significant as in the case of the kinetic energy. Drawbacks are, however, the
typical overestimation of binding energies and the underestimation of bond lengths. In
particular, systems with electron density distributions far away from the homogeneous
electron gas, like the atomic clusters of interest in this work, often yield disappointing
results.

Improvements over LDA can be achieved by taking non-local information of the
density-distribution explicitly into account. A straightforward correction to the local-
density approximation is a formal expansion of EXC in gradients of the density suggested
by Hohenberg and Kohn [56], which yields in general a functional of the form

EDGE
XC [ρ(r)] =

∫

dr
[

ǫ
(0)
XC(ρ) + ǫ

(1)
XC(ρ)∇ρ+ ǫ

(2)
XC(ρ) |∇ρ|2 + . . .

]

. (4.35)

However, truncating this expansion after the first order gives unsatisfying results, some-
times even being worse than LDA. Better approximations can be obtained by introducing
a more generalized expansion. In this Generalized-Gradient Approximation (GGA), the
exchange-correlation functional has the following form

EGGA
XC [ρ(r)] =

∫

drf (ρ(r),∇ρ(r)) dr =
∫

ρǫGGA
XC (ρ(r),∇ρ(r)) , (4.36)

which typically yields better binding energies. Similar to LDA, EGGA
XC can be separated

into an exchange and a correlation part. There are many different flavours of GGA-
functionals that are differing in the functional form of the exchange and correlation
energy which is typically constructed by fulfilling known constraints of the exchange-
correlation potential VXC. One popular GGA-functional was proposed by Perdew, Burke
and Ernzerhof in 1996 (PBE) [70] which is almost exclusively used in the present work.
This functional is based upon the PW91 functional of Perdew and Wang [71] which is an
analytical fit to a numerically determined first-principles GGA, but cast into a simpler
functional form by neglecting energetically irrelevant terms.

4.7. Spin-Density-Functional Theory

Many systems of interest possess an odd number of electrons. While the results ob-
tained by the formalism described so far are quite satisfactory for closed-shell systems,
extensions to open-shell systems are required, in particular for transition metals which
exhibit magnetic properties. In principle, density-functional theory is an exact theory
and the total energy depends exclusively upon the total electron density which also holds
for open-shell systems unless there is an explicit spin-dependence in the Hamiltonian,
e.g. in the case of an external magnetic field. Experience has shown, however, that
approximate functionals gain more flexibility when explicitly depending upon the indi-
vidual spin densities ρσ. In the therewith resulting Unrestricted Kohn-Sham method
[72, 73], two sets of Kohn-Sham orbitals φ↑

i and φ↓
i are introduced, and used to represent

a spin-polarized system
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[

−1

2
∇2 + V σ

eff(r)
]

φiσ = ǫiσφiσ , (4.37)

where the spin-dependency of the effective potential V σ
eff enters through the exchange-

correlation potential

V σ
XC(r) ≡ δEXC

δρσ(r)
. (4.38)

The spin-polarized version of LDA is called local-spin-density approximation (LSDA)
[72] and the corresponding exchange-correlation functional is given by

ELSD
XC [ρ↑(r), ρ↓(r)] =

∫

drρ(r) ǫXC(ρ↑(r), ρ↓(r)) . (4.39)

Similarly, the EGGA
XC in the spin-polarized case looks in general like

EGGA
XC [ρ↑, ρ↓] =

∫

drρ ǫXC(ρ↑, ρ↓,∇ρ↑∇ρ↓,∇ρ↓∇ρ↓,∇ρ↑∇ρ↓) . (4.40)

with the special case of PBE

EPBE
XC [ρ↑, ρ↓] =

∫

drρ ǫXC(ρ↑, ρ↓, |∇ρ|2) . (4.41)
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The Density-Functional Theory
Implementation FHI-aims
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5. Solving the Kohn-Sham Equations
with Numerical Atom-Centered
Basis Sets

Due to the steadily increasing importance of density-functional theory, many different
implementations are nowadays available. Though the underlying theory is always the
same, differences arise from the actual strategy to put DFT into a practical tool. In a
dominant fraction of existing implementations the main principle is always the same in
that the Kohn-Sham orbitals φi are expanded into a set of basis functions ϕj

φi(r) =
∑

j

cijϕj(r) . (5.1)

A priori, the choice of a certain basis set is not prescribed and thus guided by the ac-
tual problem to tackle which leads to the manifold of electronic structure codes around.
Historically, there are two main classes. Plane waves first arose in the context of solid
state physics since they are naturally cast into periodic boundary conditions applied in
solid state calculations. Localized basis functions, on the other hand, are suitable to
treat finite systems like molecules, as the tail region of the eigenstates and the surround-
ing vacuum requires decaying basis sets for an efficient calculation. Common choices
for the latter class of basis functions are analytically defined Gaussians or Slater-like

orbitals. The implementation FHI-aims (”ab initio molecular simulations”) developed
at the Theory Department of the Fritz-Haber-Institute resorts to numerically defined
atom-centered orbitals of the form

ϕi(r) =
ui(r)

r
Ylm(ϑ, φ) , (5.2)

where Ylm(ϑ, φ) are spherical harmonics. The radial part ui(r) is numerically tabulated,
thus being very flexible since any kind of desired shape can be achieved. This paves
the way for generating highly efficient species-dependent basis sets, which are further-
more constructed strictly hierarchical so that the accuracy can be continuously increased
from tight-binding like to the meV level. The concept of atom-centered basis functions
together with a well-defined control of convergence makes FHI-aims a suitable tool for
the aspired atomic cluster calculations. The co-development of the electronic structure
code, in particular the essential atomic forces for the sampling schemes (see chapter 6),
constitutes an important, preparatory part of this PhD project.
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5.1. The Eigenvalue Problem

The heart of FHI-aims is to solve the Kohn-Sham equation

ĥKS |φi〉 = ǫi |φi〉 , (5.3)

with the single-particle Hamiltonian

ĥKS = −1

2
∇2 + Veff([ρ], r) , (5.4)

where for simplicity the non-polarized case is considered here first. The Kohn-Sham
orbitals lead to the electron density ρ(r) =

∑

i fi |φi(r)|2 which then determines the
effective potential Veff [ρ]. Equations (5.3) and (5.4) have therefore to be solved self-
consistently, i.e. the exact same eigenfunctions and electron density used to construct
the correct Hamiltonian must re-emerge as its output. In each iteration step towards
self-consistency, the orbitals are expanded in a set of basis functions ϕj.

φi(r) =
∑

j

cijϕj(r) . (5.5)

Inserting this ansatz into Eq. (5.3) and multiplying the equation with ϕi finally trans-
forms the continuous differential equation into an algebraic generalized eigenvalue prob-
lem

∑

j

hijcjl = ǫl
∑

j

sijcjl . (5.6)

The Hamiltonian and overlap matrix elements hij and sij , respectively, are hereby given
by

hij =
∫

dr
[

ϕi(r)ĥ
KSϕj(r)

]

, (5.7)

sij =
∫

dr [ϕi(r)ϕj(r)] . (5.8)

The complex conjugate notation is not needed for finite systems and therewith omitted
in this thesis.

As described in the previous chapter, the total energy of a system in DFT is given by
the Kohn-Sham-Functional including the repulsive nuclei-nuclei interaction

EKS = TS + JH + EXC + Eext + ENN , (5.9)

minimized over all possible densities according to the second Hohenberg-Kohn theorem.
The discretization of the Hilbert space by the basis functions {ϕj} leads to a mini-
mization with respect to the expansion coefficients {cij}. The Kohn-Sham functional
evaluated at the ground-state energy is therefore variational with respect to the {cij},
i.e.
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∂Etot

∂cij
= 0 (5.10)

The extension to the spin-polarized case is straightforward. Eq. (5.3) needs to be solved
for both spin-channels, thus yielding two different sets of expansion coefficients {ciσ,j}
for the corresponding orbitals {φiσ}. Self-consistency then needs to be achieved for
both spin-densities ρ↑ and ρ↓ due to the explicit dependency of the effective potential
V σ

eff([ρ↑, ρ↓]) on both quantities (see section 4.7).
Eq. (5.3) gives direct access to the Kohn-Sham eigenvalues ǫi. It is therefore conve-

nient to rewrite the energy functional as

EKS =
∑

i

fiǫi −
∫

drρ(r)VXC(r) + EXC [ρ] − 1

2

∫

drρ(r)VH(r) + ENN , (5.11)

which can trivially be extended to the spin-polarized case

EKS =
∑

iσ

fiσǫiσ −
∑

σ

∫

drρσ(r)V σ
XC(r)+EXC

[

ρ↑, ρ↓
]

− 1

2

∫

drρ(r)VH(r)+ENN . (5.12)

In principle, this reformulation is derived by summing up the Kohn-Sham equations, cor-
recting the double-counting of the classical Hartree energy and replacing the exchange-
correlation potential energy

∫

drρ(r)VXC(r) by the exchange-correlation energy EXC to
obtain the correct total energy.

5.1.1. Achieving Self-Consistency

Density mixing

The main problem of an electronic structure calculation is to achieve self-consistency, i.e.
the correct electronic Hamiltonian hij should yield as output the same wave functions,
electronic charge density and potentials that were used to construct it, which means
ρ

(n)
out = ρ

(n)
in . To achieve self-consistency, one therefore starts with an initial trial density

ρ(0) which in FHI-aims is constructed by superimposing the densities of the constituent
atoms. Solving the Kohn-Sham equation then yields orbitals {φi}(0) that lead to an

output electron density ρ
(0)
out which is used to construct the next input density ρ

(1)
in . This

whole procedure is repeated until finally the output density equals the input density and
thus self-consistency is achieved. The construction of the next input density is a crucial
technical detail that significantly determines the performance of the calculation. The
simplest scheme is to linearly mix the output density with the previous input density

ρ
(n)
in = αρ

(n)
out + (1 − α)ρ

(n−1)
out , (5.13)

with α being an adjustable parameter. If chosen too small, convergence is poor since
the electron density approaches the self-consistent density very slowly. Choosing a too
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large value might destabilize the electron density, resulting into an oscillating behaviour
or even no convergence at all.

More sophisticated is the Pulay mixing scheme [74, 75] that is exclusively used in the
present work. In that scheme, the input charge densities are stored for a number of
iteration steps. The key quantity in this mixing scheme is the charge density residual

defined as

R[ρin] = ρout([ρin], r) − ρin(r) = ∆ρ(r) , (5.14)

which describes the change of the electron charge density at every point in space after
a self-consistency iteration. If self-consistency is achieved, the norm of the residual
vanishes

〈R[ρin] |R[ρin]〉 = 0 , (5.15)

where the norm corresponds to a simple integral

〈R[ρ] |R[ρ]〉 =
∫

dr(∆ρ)2(r) . (5.16)

Hence, the density has converged to the self-consistent one at every point in space, since
∆ρ must equal zero everywhere. Achieving self-consistency therefore corresponds to
minimizing the charge density residual.

A new optimal input charge density is obtained in each step as a linear combination
of the input charge densities of all previous steps

ρopt
in =

∑

i

αiρ
(i)
in , (5.17)

where the linear coefficients obviously have to fulfil the following condition to conserve
the norm of the density

∑

i

αi = 1 . (5.18)

The underlying assumption of the Pulay mixing scheme is the linearity of the residual
so that the residual vector of the optimum charge density is given by

R[ρopt
in ] = R

[
∑

i

αiρ
(i)
in

]

=
∑

i

αiR[ρ
(i)
in ] . (5.19)

Minimizing the norm of the residual

〈

R[ρopt
in ]

∣
∣
∣R[ρopt

in ]
〉

, (5.20)

then leads to a system of equations for the coefficients αi which finally yields the optimum
input density. To prevent the electron charge density from being trapped in a subspace
spanned by the previous densities, a fraction of the residual vector is added to finally
obtain the new input density which is then used to construct the next Hamiltonian
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ρ
(n+1)
in = ρopt

in + γR[ρopt
in ] , (5.21)

with γ being an adjustable parameter.
For the spin-polarized case, it is crucial to combine both spin-channels to one single

residual vector

〈

R[ρ↑, ρ↓]
∣
∣
∣R[ρ↑, ρ↓]

〉

=
∑

σ

∫

dr (∆ρσ)2 (r) , (5.22)

which is then used to determine a single set of coefficients αi for both spin-densities ρ↑

and ρ↓, thus ensuring stable convergence.
The number of stored densities and residuals is a key parameter and can significantly

influence the performance. If chosen too small, too little information is taken into
account and the convergence is slow. In case of too many previous densities taken
into account, the individual densities might be too different, so that the assumption of
linearity is not justified and the Pulay matrix becomes singular.

Occupation smearing

In systems with degenerate or quasi-degenerate eigenstates near the Fermi level, the
occupation of the eigenstates might oscillate during the self-consistency iterations since
the eigenstates permanently cross the Fermi level. Additional stability can then be
achieved by occupying the states by a distribution {fiσ} which is slightly broadened
about the Fermi level, thus weakening the effect of a level-crossing since the occupation
then does not change discontinuosly. FHI-aims supports Fermi-smearing [76], Methfessel-
Paxton [77] and Gaussian [78], where the latter is exclusively used in the present work
when necessary. The occupation numbers are then given by

fiσ =
1

2

(

1 − erf
[
ǫiσ − µ

w

])

. (5.23)

Since the PES is therewith effectively distorted, one aims at a value for the smearing
width w as small as possible to not change the physics of the system significantly. Since
clusters typically show Jahn-Teller distortions and therewith a HOMO-LUMO gap, w
can typically be set to zero once the system is close to the local minimum. Small finite
values for w in the range of tenths of eV are only chosen for the atomic configuration
being far away from the local minimum.

5.2. Numerical Atom-Centered Basis Functions

5.2.1. The Definition of the Basis Functions

In FHI-aims the radial part of the basis function given by Eq. (5.2) is obtained by
solving a radial Schrödinger-like equation on a logarithmic grid. A steeply increasing
confinement potential is thereby used to spatially confine the basis functions to a local
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region, thus allowing for an O(N)-like scaling of the integrations for large systems. The
shape of the potential is chosen to ensure a continuous second derivative at the onset of
the potential which then increases gradually to infinity at the cutoff-radius rcut. One clear
advantage over analytically defined basis functions like Gaussians or Slater-like functions
is the greater flexibility since any kind of potential in the Schrödinger-like equation can
be chosen. In FHI-aims the minimal basis of a species is constructed by choosing the
effective Kohn-Sham potential of the corresponding non-polarized, spherically symmetric
free atom. This basis thus facilitates the all-electron calculation since the oscillatory
behaviour of the wavefunctions in the core-region are already well described at this level.
Additionally the minimal basis avoids the atomic basis set superposition error (BSSE)
which can typically be observed for analytical localized basis sets: When calculating the
cohesive energy of an XN -cluster

Ecoh = [Etot(XN) −NEtot(X)] /N , (5.24)

the energy contribution of a constituent atom to the total energy Etot might be vari-
ationally improved by basis functions sitting on adjacent atoms, thus leading to an
overestimating of Ecoh. Using atomic states, however, the total energy is already con-
verged at the level of the minimal basis, and neighbouring basis functions have no effect.
The BSSE might still occur and should be checked in case of intermolecular binding
energies, though.

The minimal basis set is augmented by further classes of basis functions, one of which is
formed by ion-like radial functions that are in particular suitable for describing a chemical
bond as demonstrated by Delley [79]. These are states obtained from calculations of
positive ions, which are supposed to describe the charge transfer of a system in a chemical
bond. Hydrogen-like functions are used in addition, especially as polarisation functions

for angular momenta beyond those present in the free atom itself. These functions are
derived from one-electron atoms with an arbitrary nuclear charge, that does not need
to be an integer. Since radial functions originating from different potentials are not
necessarily orthonormal to one another even on the same atomic site, all on-site radial
functions are orthonormalized explicitly using a simple Gram-Schmidt process [80].

Contrary to Gaussians or Slater-like functions, numerically tabulated basis functions
do not allow for an analytical integration, thus requiring a numerical method that is
described in section (5.3).

5.2.2. The Generation of Basis Functions

The major challenge when dealing with atom-centered basis functions is the systematic
convergence towards a complete basis set limit (cbs) with an as small and thus as efficient
basis set as possible. Contrary to plane waves, for which the cutoff energy can be
successively increased until the desired accuracy in the total energy has been achieved,
there is no such simple parameter for numerical basis functions. All one can be sure of is
the variational principle according to which the total energy improves when a given basis
set is augmented by further basis functions. In order to produce structure-independent,
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transferable basis sets, that can later on be used for production, the strategy pursued by
FHI-aims is therefore to choose the best basis functions out of a huge pool of candidate
radial functions. This contains ion-like functions [79, 81] of different main and angular
quantum numbers and hydrogen-like functions covering a broad range of effective charges
[79]. Starting from the minimal free-atom basis of size Nmin−basis, the entire pool of
candidate functions is sampled, adding each function to the given basis set in turn. The
radial function with angular momentum l that gives the single largest improvement of
a target total energy is added to the original basis set, increasing it to (Nmin−basis +
(2l+1)). This step is then repeated, adding again each candidate function with angular
momentum l̃ to the basis set of size (Nmin−basis +(2l+1)) in turn and then increase it to
size (Nmin−basis +(2l+1)+(2l̃+1)) with the next best function. The whole procedure is
performed until no further significant total energy improvements result. Regarding the
optimization target for a certain chemical element, the corresponding dimer is chosen
which constitutes the simplest possible chemical bond and further a rather demanding
test case for atom-centered orbitals [82], since no basis function overlap from further
centers can accidentally improve the total energy. The improvement resulting from
adding a certain trial basis function to the basis set is then defined as

∆basis =
1

Nd

Nd∑

i

[Ebasis(di) − Ecbs(di)] , (5.25)

where Ebasis(di) denotes the non-self-consistent total energy for the dimer at the bond
distance di. The non-self-consistent reference energy Ecbs(di) for a converged basis set is
obtained independently of the present procedure, by converging a very large and thus
inefficient, but formally systematic basis set of confined atomic excited-state functions.
The dimer distances {di} are spread to sample the self-consistent LDA binding curve.
Experience has shown [11] that non-selfconsistent energies are a sufficient optimization
target and transferable to self-consistent calculations. Furthermore, potential instabili-
ties of the self-consistency-cycle for pathological cases are therewith avoided.

The different basis functions resulting from the basis set generation typically arise in
groups of different angular momenta, spd or spdf , and are thus organized in so-called
tiers which contain a basis function of each angular momentum. The number of the
tier thereby denotes the accuracy of the basis set. The different basis sets used in the
present work are given in detail in Appendix A.

5.3. Numerical Integration

Numerical integrations are performed for several tasks. The dominant part in the com-
putational effort constitutes the calculation of the overlap, Eq. (5.8), and Hamiltonian
matrix, Eq. (5.7), which scale formally as O(N3) with the system size. In FHI-aims , the
numerical integration is based upon a partitioning technique [79, 83] which decomposes
a function to pieces sitting on atoms that are then integrated by an atom-centered nu-
merical grid. The distribution among the atoms is thereby done by an atom-centered
partitioning function pα
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∫

drf(r) =
∑

α

∫

dr pα(r)f(r) . (5.26)

The sum of all partitioning functions equals one which is achieved by the normalization

pα(r) =
gα(r)

∑

β gβ(r)
. (5.27)

gα is hereby strongly peaked close to the originating atom thus integrating the function
preferably on the grid sitting on the next nearest atom. In FHI-aims this is achieved by
an approach similar to the Hirshfeld partitioning scheme [84], which is based upon the
electron density of non-spinpolarized, spherical free atoms ρfree

α as suggested by Delley
[79]

gα(r) =
ρfree

α

r2
. (5.28)

Every single-atom centered integrand is then integrated over Nr radial integration shells
each containing Nang angular integration points,

∫

dr pα(r)f(r) ≈
∑

riα

∆riα pα(riα)f(riα) =
Nr∑

s

Nang
∑

t

∆riα(s, t) pα(riα)f(riα(s, t)) , (5.29)

where the grid weights riα can simply be obtained by the analytically given integration
points. Summarized, any kind of integral in FHI-aims is approximated by a discrete sum
of the form

∫

drf(r) ≈
∑

α

∑

riα

wriα
f(riα) , (5.30)

with the integration weights wriα
given by the product of the partition function and the

weights of the individual atom-centered grid wriα
= pα(r)∆riα.

The radial grid is defined as suggested by Baker [85]

r(s) = router

log
(

1 − [s/ (Nr + 1)]2
)

log
(

1 − [Nr/ (Nr + 1)]2
) , (5.31)

which provides radial shells that are dense in the core region and then becomes succes-
sively coarser with increasing distance of the nucleus. Thus, the fast-varying localized
wave function parts near the nuclei are captured, together with an efficient treatment
of the smoother parts in the interstitial and far-field regions. router gives the outermost
radial shell and is chosen as 7 Å for all species and thus contains the whole basis function
for cut-off radii rcut < 7Å that are used in this work. The number of radial grid points
Nr further scales with the nuclear charge [85] so that heavier elements with steeper core
states are integrated more accurately:

Nr = 16.8 (Z + 2)1/3 . (5.32)
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A uniform accuracy increase can be obtained by placing additional shells at integer
fractions Nr,div of the original grid, e.g. at s = 1

2
, s = 3

2
, ... , s = 2Nr + 1

2
for Nr,div = 2.

As angular grids, the Lebedev grids [86, 87, 88] are chosen in a special version provided
by Delley [89]. The corresponding integration points have octahedral symmetry and are
constructed in such a way as to integrate angular momentum functions up to a certain
order exactly [90, 91].

The number of angular grid points is not chosen fixed for all distances. Close to
the nuclei with a dense radial integration grid and small surfaces of the radial shells
less angular points are required compared to large distances. In FHI-aims the required
number Nang for a given radial integration shell can therefore be determined adaptively
by converging the initial overlap matrix elemets sij and the initial Hamiltonian matrix
elements hij prior to the production run. An upper and lower bound is given by the
parameter Nang,max and Nang,min, respectively.

Formally, the numerical integration scales as O(N3) with the system size, since all pairs
of basis functions (∝ N2) must be integrated across the entire system (∝ N). Due to the
localization of the basis functions, this scaling is reduced to O(N) for large systems since
the number of non-vanishing basis functions at a certain grid point becomes independent
of the system size.

5.4. The Hartree-Potential

The calculation of the electrostatic potential VH constitutes a further challenge. A direct
integration of the Hartree potential in Eq. (4.29) would be prohibitively expensive as
it requires a whole integration for each grid point. In FHI-aims the calculation is there-
fore much simplified by a multipole-decomposition method as described by Delley [79].
First, the superimposition of the non-polarized, spherical free atoms is subtracted from
the electron density, leaving the much smoother difference electron density due to the
chemical bond. The free electron density together with the corresponding potentials are
calculated in the preparation of the production and are therewith known, thus allowing
for a reconstruction of the full electrostatic potential .

∆ρ(r) = ρ(r) −
∑

α

ρfree
α (|r − Rα|) . (5.33)

Using the partitioning scheme presented in the previous section, the electron density is
allocated to the individual atoms, followed by a multipole expansion

∆ρMP
α,lm(r) =

∫

r=|r−Rα|
d2Ωα pα(r) · ∆ρ(r) · Ylm(Ωα) , (5.34)

where Ωα is a short-hand notation for the spherical coordinates (ϑ, ϕ) with respect to
atom α. With the multipole components of the electron density ∆ρMP

α,lm, the corre-
sponding components of the Hartree potential ∆Vα,lm can then efficiently be obtained
by integrating the Poisson equation on a one-dimensional, logarithmic radial grid

∇2(∆Vα,lm) = −4π∆ρMP
α,lm . (5.35)

56



5. Solving the Kohn-Sham Equations with Numerical Atom-Centered Basis Sets

The individual components are then reassembled to finally obtain the Hartree potential
of the difference electron density

∆V MP
H (r) =

lmax∑

α,lm

∆Vα,lm (|r− Rα|)Ylm(Ωα) . (5.36)

The multipole expansion is truncated at a maximum angular momentum lmax, thus
introducing an expansion error. According to Dunlap et al. [92], the first-order expansion
error can be eliminated by modifiying the electrostatic double-counting correction in the
Kohn-Sham-functional, Eq. (5.11), like

−1

2

∫

drρVH[ρMP] −→ −1

2

∫

drρMPVHH[ρMP] , (5.37)

with

ρMP(r) =
∑

α

ρfree
α (|r − Rα|) +

∑

α,lm

∆ρMP
α,lm(|r −Rα|))Ylm(Ωα) , (5.38)

so that quadratic total energy convergence with respect to lmax can be achieved.
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The local structural relaxation is a key ingredient to the success of many global opti-
mization schemes discussed in chapter 3, since it effectively removes the transition state
regions during the exploration of the PES. Efficient structural relaxation thereby re-
quires the knowledge of the atomic forces which are the negative first derivative of the
total energy. The simplest method to obtain energy derivatives is the finite difference
scheme which approximates the gradient by displacing the atomic positions like

dEtot

dRα,x

≈ Etot(Rα,x + ∆Rα,x) − Etot(Rα,x − ∆Rα,x)

2∆Rα,x

. (6.1)

Technical details on higher-order finite difference schemes are given in Appendix D. In
principle, derivatives can thereby be evaluated up to any desired accuracy by choosing
a significantly small displacement step width ∆. However, this requires the calculation
of the total energy of all displaced atomic configurations for each single relaxation step,
thus increasing the overall computational burden by a factor of 6N for the simplest
finite difference scheme. Hence, analytical derivatives that can directly be obtained for a
given atomic configurations are desirable, which significantly decrease the computational
cost of a local structural relaxation. Accurate forces are furthermore a prerequisite for
obtaining reliable vibrational spectra as used in the application described in chapter III.
The implementation and critical examination of the accuracy of the analytical atomic
forces in FHI-aims has therefore been a major part of the present work.

6.1. The Calculation of Analytical Atomic Forces

The forces are defined as the negative gradient of the total energy with respect to the
nuclear coordinates

Fα = −dEtot

dRα
. (6.2)

The total energy in FHI-aims is the minimum of the Kohn-Sham-functional EKS under
the orthonormalization constraint of the Kohn-Sham orbitals

Etot = min
{ciσ,j}



EKS −
∑

iσ,jσ′

fiσǫiσδiσ,jσ′ (〈φiσ | φjσ′〉 − 1)



 (6.3)

= min
{ciσ,j}

(

EKS −
∑

iσ

fiσǫiσ (〈φiσ | φiσ〉 − 1)

)

= Etot [{ciσ,j}, {Rα}] , (6.4)
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where the sum goes over all states φiσ with the eigenvalue ǫiσ. From this, it follows that

Fα = −dEtot

dRα

(6.5)

= −∂Etot

∂Rα

−
∑

iσ,j

∂Etot

∂ciσ,j
︸ ︷︷ ︸

=0

∂ciσ,j

∂Rα

. (6.6)

Since at self-consistency the total energy is variational with respect to {ciσ,j}, the cor-
responding term for the forces vanishes and only the partial derivative remains

Fα = −∂Etot

∂Rα
= −∂E

KS

∂Rα
− ∂

∂Rα

∑

iσ

ǫiσ (〈φiσ| φiσ〉 − 1) , (6.7)

with

EKS = TS + JH + EXC + Eext + ENN , (6.8)

with the kinetic energy

TS = −1

2

∑

iσ

fiσ 〈φiσ| ∇2 |φiσ〉 , (6.9)

the Hartree energy

JH =
1

2

∫ ∫

drdr′
ρ(r)ρ(r′)

|r − r′| , (6.10)

the exchange-correlation energy

EXC =
∫

drρ(r)ǫXC , (6.11)

the electron-nuclei energy

Eext =
∫

drρ(r)VNe(r) , (6.12)

with

VNe(r) =
∑

β

Zβ

|r − Rβ|
, (6.13)

the nuclei-nuclei energy

ENN =
∑

α<β

ZαZβ

|Rα − Rβ|
. (6.14)

It is worth to point out that it is the variational property of the energy functional that
fortunately allows for a direct evaluation of the analytical derivative since the total
derivative therewith reduces to the partial derivative, thus making the partial deriva-
tive of the variational parameters with respect to the nuclear coordinates ∂ciσ,j/∂Rα

dispensable which would not directly be accessible.
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6.1.1. The Individual Derivative Terms

The Kinetic Energy

Just taking the partial derivative in a straightforward way yields

− ∂TS

∂Rα

=
1

2

∂

∂Rα

∑

iσ

fiσ

〈

φiσ

∣
∣
∣∇2

∣
∣
∣ φiσ

〉

(6.15)

=
1

2

∑

iσ

fiσ

(〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
∇2

∣
∣
∣
∣
∣
φiσ

〉

+

〈

φiσ

∣
∣
∣
∣
∣
∇2

∣
∣
∣
∣
∣

∂φiσ

∂Rα

〉)

(6.16)

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
− 1

2
∇2

∣
∣
∣
∣
∣
φiσ

〉

. (6.17)

The nuclear gradient of the orbitals can be obtained by

∂φiσ

∂Rα
=

∑

j(α)

ciσ,j
∂

∂Rα
ϕj (|r −Rα|) , (6.18)

= −
∑

j(α)

ciσ,j∇ϕj (|r − Rα|) . (6.19)

since
∂

∂Rα
ϕj (|r − Rα|) = −∇ϕj (|r −Rα|) , (6.20)

and j(α) indicates a basis function sitting on atom α. The remaining basis functions
do not contribute to the forces on atom α since they do not depend upon Rα. So the
nuclear gradients can be expressed in terms of spatial gradients of the basis functions
which can then easily be evaluated numerically.

The Hartree Energy

Similar to the kinetic energy, the Hartree energy can be derived in a straightforward
way

− ∂JH

∂Rα

= −1

2

∂

∂Rα

∫ ∫

drdr′
ρ(r)ρ(r′)

|r− r′| , (6.21)

= −
∫ ∫

drdr′
∂ρ(r)

∂Rα

ρ(r′)

|r − r′| , (6.22)

= −
∫

dr
∂ρ(r)

∂Rα

VH(r) . (6.23)

Since ρ(r) =
∑

iσ fiσφiσ(r) · φiσ(r), the derivative of the density is given by

∂ρ(r)

∂Rα
= 2

∑

iσ

fiσ
∂φiσ(r)

∂Rα
· φiσ(r) , (6.24)
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which finally yields as derivative of the Hartree energy

− ∂JH

∂Rα

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
VH(r)

∣
∣
∣
∣
∣
φiσ

〉

, (6.25)

which boils down to calculating the nuclear gradients of the orbitals analogous to the
kinetic energy term.

The Multipole-Correction Term

The above derivation of the Hartree energy was based upon the true electronic density.
In FHI-aims, however, the Hartree potential is based upon a multipole expansion of the
density ρMP instead of the true electron density ρ. Additionally, the first-order correction
of the total energy by Dunlap [92] due to the multipole expansion error yields a further
correction term. So the Hartree energy term as it is precisely implemented in FHI-aims

is given by

JH =
∫

drρVH[ρMP] − 1

2

∫

drρMPVH[ρMP] , (6.26)

which then yields by a straightforward derivation the additional correction term

FMP,α = −
∫

dr
(

ρ(r) − ρMP(r)
) ∂VH[ρMP]

∂Rα
, (6.27)

which is in agreement with the expression given by Delley [93]. As one can immediately
see, the multipole-correction term vanishes, if the multipole density would be equal to
the true density. The nuclear gradients of the Hartree potential are then obtained in
complete analogy to the nuclear gradients of the Kohn-Sham orbitals and can be boiled
down to calculating the spatial gradients. Since the multipole expansion of the Hartree
potential is composed of nuclear contributions

VH(r) =
∑

β

Vβ (r − Rβ) , (6.28)

only the components sitting on atom α contribute to its forces

∂VH

∂Rα
=

∂

∂Rα
Vα (r −Rα) = −∇Vα (r −Rα) . (6.29)

The Exchange-Correlation Energy

Assuming here a local-density approximation of the exchange-correlation functional
yields the corresponding force term which is given in the non-polarized case by

−∂EXC

∂Rα
= −

∫

dr
∂ρ(r)

∂Rα

(

ǫXC(ρ(r)) + ρ(r)
∂ǫXC

∂ρ(r)

)

(6.30)

= −2
∑

i

fi

〈

∂φi

∂Rα

∣
∣
∣
∣
∣
VXC(r)

∣
∣
∣
∣
∣
φi

〉

. (6.31)
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In the spin-polarized case the expression is completely analogous

−∂EXC

∂Rα

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
V σ

XC(r)

∣
∣
∣
∣
∣
φiσ

〉

. (6.32)

The Electron-Nuclei Energy

The electrostatic energy between the electrons and nuclei yields another force contribu-
tion

−∂Eext

∂Rα

= −
∫

dr
∂ρ(r)

∂Rα

VNe(r) −
∫

drρ(r)
∂VNe

∂Rα

(6.33)

= −2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
VNe(r)

∣
∣
∣
∣
∣
φiσ

〉

− Zα

∫

drρ(r)
Rα − r

|Rα − r|3
. (6.34)

The Nuclei-Nuclei Energy

The electrostatic forces between the nuclei are trivially given by

−∂ENN

∂Rα
= −Zα

∫

drρ(r)
Rα − r

|Rα − r|3
. (6.35)

The Normalization Constraint

Finally the constraint term in the Lagrange functional needs to be taken into account

∂

∂Rα

∑

iσ

fiσǫiσ (〈φiσ| φiσ〉 − 1) = 2
∑

iσ

fiσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
ǫiσ

∣
∣
∣
∣
∣
φiσ

〉

. (6.36)

6.1.2. The Atomic Forces in the Case of LSD

Summing up the above derivative contributions Eqs. (6.15), (6.15), (6.25), (6.27), (6.32),
(6.33), (6.35) and (6.36) finally results in a total force acting on atom α

Fα = FHF,α + FPulay,α + FMP,α . (6.37)

These so-called Hellman-Feynman forces Fα correspond to the classical forces by em-
bedding each nucleus into the field of the electronic charge density and of all other nuclei
[94, 95]

FHF,α = Zα

∑

β 6=α

Zβ
Rα −Rβ

|Rα − Rβ|3
− Zα

∫

drρ(r)
Rα − r

|Rα − r|3
. (6.38)

The Pulay forces FPulay,α [96] result from the dependency of the basis functions on the
nuclear coordinates and are given by

62



6. Energy Derivatives in FHI-aims

FPulay,α = −2
∑

iσ

〈

∂φiσ

∂Rα

∣
∣
∣
∣
∣
ĥKS − ǫiσ

∣
∣
∣
∣
∣
φiσ

〉

, (6.39)

This term vanishes in case of a complete Hilbert space spanned by the basis functions,
because then the approximated eigenvalues ǫiσ would be the exact eigenvalues of ĥKS

and (ĥKS−ǫiσ) |φiσ〉 would therewith vanish. In practice, however, this is basically never
the case and for reasonable basis set sizes, this term is mandatory. Furthermore, in case
of basis sets which do not depend upon the nuclear coordinates, like e.g. plane waves,
this term would vanish as well because then the nuclear gradients of the Kohn-Sham
orbitals are zero.

6.1.3. The GGA-Correction Term

In the GGA-functional suggested by Perdew, Burke and Ernzerhof, the exchange-
correlation functional possesses the following functional form

EXC =
∫

drρ(r)ǫXC

(

ρ↑, ρ↓, |∇ρ|2
)

. (6.40)

Taking the derivative thus yields an additional term that arises due to the square of the
charge density gradient

∂EXC

∂Rα
=
∂EXC,LSD

∂Rα
+
∫

drρ(r)
∂ǫXC

∂ |∇ρ|2
∂ |∇ρ|2
∂Rα

, (6.41)

so another contribution to the overall forces is given by

FGGA = −
∫

drρ(r)
∂ǫXC

∂ |∇ρ|2
∂ |∇ρ|2
∂Rα

. (6.42)

The calculation of the nuclear gradient of the square of the density gradient can be
further broken down to

∂ |∇ρ|2
∂Rα

= 2 (∇ρ)T ∂∇ρ
∂Rα

, (6.43)

Since ∇ρ(r) = 2
∑

iσ ∇φiσ(r) · φiσ(r), the calculation of the matrix ∂∇ρ(r)/∂Rα yields

∂∇ρ(r)
∂Rα

= 2
∑

iσ




∂∇φiσ(r)

∂Rα

· φiσ(r) + ∇φiσ(r) ·
(

∂φiσ(r)

∂Rα

)T


 , (6.44)

where the second term corresponds to an outer product between two vectors thus giving
a matrix. Analogous to the nuclear gradients of the orbitals that can be expressed
in terms of the spatial gradients of the basis functions, the derivatives of the spatial
gradient of the Kohn-Sham orbitals ∂∇φiσ(r)/∂Rα can be boiled down to the spatial
Hessians of the basis functions ∇2φj.
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6.1.4. The Atomic Forces in Connection with Smearing Methods

If an electronic smearing method is used to accelerate the convergence of the self-
consistency cycle, the Lagrange functional is extended to another constraint to conserve
the number of electrons

Etot = min
{ciσ,j}

(

EKS −
∑

iσ

fiσǫiσ (〈φiσ | φiσ〉 − 1) − µ

(
∑

iσ

fiσ −Nel

))

(6.45)

= Etot [{ciσ,j}, {Rα}, {fiσ}] , (6.46)

with µ being the chemical potential. It can be shown that the total energy is then not
a variational quantity with respect to the partial occupancies [75]. Hence, the total
derivative of the total energy does not reduce to the partial derivative as in the case
without electronic smearing

Fα = −dEtot

dRα
(6.47)

= −∂Etot

∂Rα
−
∑

iσ,j

∂Etot

∂ciσ,j
︸ ︷︷ ︸

=0

∂ciσ,j

∂Rα
−
∑

iσ

∂Etot

∂fiσ
︸ ︷︷ ︸

6=0

∂fiσ

∂Rα
. (6.48)

To obtain a variational quantity, one needs to consider the electronic free energy F

F = E −
∑

iσ

wS(fiσ) , (6.49)

with a corresponding entropy term S. Using Gaussian smearing, the entropy is e.g.
given by

S =
1

2
√
π

exp

(

−
(
ǫiσ−µ

w

)2
)

. (6.50)

It can be shown that the free energy is therewith variational [75]. Since the entropy
correction does not depend upon the variational parameters {ciσ,j}, the corresponding
partial derivatives of the free and total energy are identical. Hence, it follows that

Fα = − ∂F

∂Rα
. (6.51)

As a result, the atomic forces are no longer consistent with the total energy but with the
free energy which therefore needs to be used for a local structural relaxation scheme.

6.1.5. Grid Effects

The integrals to calculate the total energy and therewith the atomic forces are not
calculated exactly, but approximated by a discrete sum according to Eq. (5.30)
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I =
∫

drf (r, {Rα}) (6.52)

≈
∑

α

∑

riα

wriα
(Rα) f (riα, {Rα}) . (6.53)

Since the integration weights depend upon the atomic coordinates, they need to be taken
into account explicitly for an exact derivative of the numerically evaluated total energy

∂I

∂Rα
=
∑

α

∑

ri,α

wri,α

∂f

∂Rα
+
∑

α

∑

ri,α

∂wri,α

∂Rα
f . (6.54)

Hence, each integration term in the forces yields an additional correction term to capture
the grid derivatives. This term can in principle be evaluated as the integration weights
are given by a simple analytical formula. The actual calculation represents, however,
a computational burden. Fortunately, grid effects are known to be negligible for grid
densities used in practice [85] and turn out to play no role for the cases of the present
work as well (see section 6.2).

6.2. Consistency of the Forces

0

1×10
-4

2×10
-4

|F
nu

m
  -

 F
nu

m
 (

∆ m
in
)|

 [e
V

/Å
] 

0

1×10
-4

2×10
-4

0.001 0.01 0.1

∆[Å]

0

1×10
-4

2×10
-4

Cu-Cu (d=2.0 Å)

Si-Si (d=2.0 Å)

Co-Co (d=1.8 Å)

(a) Convergence of the numerical forces w.r.t.
the step width ∆ instancing Cu2, Si2 and Co2

for non-equilibrium bond-distances. Depicted
are the differences in the numerical forces with
respect to the smallest displacement applied
∆min = 10−3 Å .
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Figure 6.1.: Accuracy test of the analytical forces.

We illustrate the accuracy of the analytical atomic forces implemented in FHI-aims by
a comparison with numerical forces obtained by the finite difference scheme for some
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non-equilibrium dimers as test cases. Since the numerical forces can in principle be
evaluated up to any desired accuracy by choosing a sufficiently small step width, it
serves as a reliable reference value for the analytical forces. Caution is advised when
converging the numerical force with respect to ∆, though. Since the integration is done
on a discrete grid, a too small displacement might result in noise, thus yielding an
unreasonable numerical force. Fig. 6.1(a) presents the convergence test for ∆ for some
non-equilibrium dimers of the species treated in the present work using a converged tier2
basis set. The numerical forces are hereby obtained by a finite difference scheme of sixth
order (see Appendix D). The results clearly show that for all test cases, the numerical
force is converged within O(10−5) eV/Å at a step width of ∆= 0.01 Å, thus providing a
sufficiently accurate reference value. With the optimized step width, the convergence of
the analytical force with respect to the integration grid is then investigated. The results
are presented in Fig. 6.1(b). For Cu2 and Co2, the accuracy is within O(10−3) eV/Å and
seems to be independent of the chosen integration grid. Hence in these cases, grid effects
seem to play no role. In the case of Si2, the agreement between analytical and numerical
force is slightly worse and seems to be improved by augmenting the grid, indicating
small grid effects. However, the difference is at most 10−2 eV/Å for even the smallest
integration grid and therewith negligible. Since a typical force convergence criterium
for a local relaxation scheme is 10−2 eV/Å, such an accuracy is sufficient. Figure 6.2
illustrates this at a local relaxation of the ground-state isomers of Si7, Si10 and Cu7. In
all three cases, the change of the atomic configuration was only in the order of 10−3 Å
at that force convergence level and therewith sufficiently converged.

Figure 6.2.: Local relaxations for the ground-state isomers of Si7, Si10 and Cu7 with
BFGS and PBE-DFT. Plottet are the maximum force component Fmax and
maximum displacement ∆Rmax of the atomic geometry vs. the geometry
step.

6.3. The Second Energy Derivative

The vibrational analysis, in particular the calculation of the IR-spectra in chapter III,
necessitates the knowledge of the Hessian matrix, i.e. the second energy derivative
with respect to the atomic positions. The Hessian matrix of the total energy can be
obtained by taking the total derivative of the forces. Contrary to the total energy, the
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atomic forces are not a variational quantity, though. Hence the total derivative does
not reduce to the partial derivative, thus making a direct evaluation of the analytical
Hessian impossible

dEtot

dRαdRβ

= −dFα

dRβ

(6.55)

= −∂Fα

∂Rβ

−
∑

iσ,j

∂Fα

∂ciσ,j
︸ ︷︷ ︸

6=0

∂ciσ,j

∂Rβ

. (6.56)
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Figure 6.3.: Convergence of the vibrational frequency w.r.t. to the integration grid in-
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In the present work the Hessian
is therefore obtained by taking nu-
merical derivatives of the analytical
forces. Since the vibrational anal-
ysis is only a post-processing step
done at the local minimum, the ad-
ditional computational burden due
to the displacements remains small
for the cluster sizes considered in
the present work. Fig. 6.4 shows
the vibrational frequencies for some
dimers at their equilibrium bond
distance with respect to different fi-
nite displacements ∆ using a con-
verged basis set tier2. Like in the
case of numerical forces, the fre-
quencies can clearly be converged
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with respect to ∆ in all cases and grid effects play no role. With a displacement of
∆= 0.01 Å, the convergence with respect to the integration grid was explicitly checked
and summarized in Fig. 6.3. In all cases, even for the silicon dimer with a considerably
higher inaccuracy in the atomic forces, the vibrational frequencies are converged below
1 cm−1 and are therefore more than accurate enough for the requirements of the ensuing
applications. It is worth to point out that the high accuracy of the atomic forces and the
vibrational frequencies shown above of course only indicates a high consistency between
the calculated derivatives and the underlying energy surface. If the latter describes the
system poorly, the forces and vibrational frequencies are equally unphysical.
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