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Strain-induced dispersive Landau levels: Application in twisted honeycomb magnets
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Elastic strain is known to spatially modulate the wave-function overlap of the atoms on the lattice and can
drastically alter the properties of the quasiparticles. For example, strain in Dirac matter can be interpreted as an
elastic gauge field inducing Landau levels. We here propose a general method resolving the dispersion of the
strain-induced Landau levels in two-dimensional Dirac materials, regardless of the particular space dependence
of the applied strain. We illustrate such a method with the twist-induced magnon Landau levels in honeycomb
quantum magnet nanoribbons. For ferromagnetic nanoribbons, dispersive Dirac-Landau levels are induced in the
center of the magnon bands, while for antiferromagnetic nanoribbons, the twist results in dispersive equidistant
Landau levels at the top of the magnon bands.
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I. INTRODUCTION

Strain engineering is a powerful tool in tuning properties of
quantum matter, such as spin transport [1,2], thermal conduc-
tivity [3,4], and quantum anomaly [5]. In particular, twisting
one layer of bilayer graphene with respect to the other by
certain “magic” angles [6] results in spatial modulation of
interlayer electron tunneling and produces flat “Moiré bands,”
responsible for correlated insulators [7] and unconventional
superconductors [8]. Properly tuned strain can close or open
band gaps in topological quantum matter and induce phase
transitions between distinct topological phases [9–14].

Perhaps the most investigated and best understood strain
effects are those associated with the Dirac matter, where strain
is famously equivalent to an elastic gauge field [15–33]. A
circular bend in Dirac/Weyl semimetals and superconduc-
tors induces a uniform pseudomagnetic field giving rise to
Landau quantization [24–26]. A uniform elastic gauge field
can also occur in twisted three-dimensional Dirac nanowires
[20,28,29,32]. Though first theoretically proposed [15] and
experimentally implemented [16] in graphene, the elastic
gauge field in graphene and other two-dimensional Dirac ma-
terials resulting from experimentally available simple strain
such as bending [34–36] or twisting [37] is not uniform,
causing difficulty in acquiring the band structure of the strain-
induced Landau levels (LLs).

In this paper we propose a general method in the frame-
work of band theory to obtain the dispersion of LLs induced
by a strain of arbitrary space dependence in two-dimensional
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Dirac materials. We demonstrate that the effect of such a strain
is to produce a spatially inhomogeneous elastic gauge field
relocating the Dirac cones. Based on this observation, we
construct a correspondence between the crystal momentum
and the strain-induced elastic gauge field to derive the LL
dispersion. We illustrate our method by analyzing the magnon
bands of honeycomb quantum magnet nanoribbons under an
experimentally available twist lattice deformation and find the
dispersions of the strain-induced Dirac-Landau levels (DLLs)
and equidistant Landau levels (eLLs) in ferromagnetic (FM)
and antiferromagnetic (AF) nanoribbons, respectively.

The remainder of this paper is structured as follows. Our
general method of finding the LL dispersion is explained in
Sec. II and applied to the magnon LLs in FM and AF honey-
comb nanoribbons in Secs. III and IV. Section V concludes
the paper with a brief discussion. Appendix A studies the
LL dispersion arising from the Aharonov-Casher effect and
compares the result to the case of strains. In Appendix B
we quantitatively investigate the effect of an exponentially
decaying nearest-neighbor Heisenberg interaction, relaxing
the simplifying assumption of a quadratic decay in Secs. III
and IV. Finally, Appendix C details the recipe to find the AF
magnon spectrum.

II. GENERAL METHOD

We first introduce our general method by considering a
two-dimensional Dirac material in an elastic gauge field Bη =
∇ × Aη varying slowly on the lattice scale, where the index η

labels the Dirac points. The vector potential Aη is incorporated
into the quasiparticle Dirac Hamiltonian through the minimal
substitution

hη =
∑
j=x,y

v
η
j

(
h̄q j − eAj

η

)
s j, (1)

where sx,y are Pauli matrices and vη
x,y are the velocity parame-

ters. For a unitarily diagonalizable hη, the effect of a spatially
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uniform Aη is simply relocating the ηth Dirac point from
q = 0 to q = e

h̄ Aη. When Aη depends on spatial coordinates,
the translational symmetry in one or both directions is broken,
complicating the spectrum of hη. For simplicity we assume an
out-of-plane gauge field Bη = Bη(y)ẑ, deriving from the vec-
tor potential Aη = Aη(y)x̂, which preserves the translational
symmetry in the x direction. For typical strain patterns in the
experiment, the gauge field Bη is nonuniform; as we show
below, this gives rise to dispersive DLLs in the energy bands
when transformed to the reciprocal space.

Consider the gauge field at position y0, which displaces the
Dirac point projected on the x axis by qx = e

h̄ Aη(y0) and thus
is responsible for the band structure at qx. Rewriting Eq. (1)
in the y basis,

hη(y) = h̄vη
x sx

[
qx − e

h̄
Aη(y)

]
− ih̄vη

y sy d

dy
, (2)

we observe that generally the expression inside the square
brackets changes sign across y = y0. This implies the presence
of a zero energy solution at y = y0. In fact, expanding Eq. (2)
in the vicinity of y0,

hη(y) ≈ h̄vη
x sx

[
− e

h̄

dAη

dy

∣∣∣∣
y0

(y − y0)

]
− ih̄vη

y sy d

dy
, (3)

one immediately recognizes a minimally coupled Dirac prob-
lem. Its solutions are the familiar DLLs,

Eη
n (qx ) = sgn(n)

√
2

∣∣∣∣neh̄v
η
x v

η
y

(
dAη

dy

)
y0

∣∣∣∣. (4)

In particular, the zeroth DLL reduces to the zero mode of
Eq. (2) and traces the movement of the displaced Dirac point
when y0 is varied in the y direction.

Equation (4) is the key result of this work, resolving the
DLLs arising from an elastic gauge field of arbitrary space
dependence. It also applies if the elastic gauge field is replaced
by an ordinary electromagnetic field. The momentum depen-
dence is incorporated by y0 = A−1

η ( h̄qx

e ), where A−1
η is the

inverse function of the vector potential Aη. In general, A−1
η is

multivalued, giving rise to a degeneracy of the strain-induced
LLs.

We have retained only the term linear in y − y0 in the
expansion leading to Eq. (3), neglecting the nonuniformity of
the gauge field such that Eq. (4) depends only on the local field
strength at y0. Such an adiabatic approximation is expected to
work when the gauge field varies slow enough spatially to be
approximated as a constant where the wave functions have
support. To be more concrete, we extract the characteristic
length scale of the (first few) DLL wave functions from the
linearized Hamiltonian:

�(y0) =
√∣∣∣∣ v

η
y h̄

v
η
x eBη(y0)

∣∣∣∣. (5)

For the adiabatic approximation to be valid, we should have
the condition

�(y0)

∣∣∣∣dBη

dy

∣∣∣∣
y0

� |Bη(y0)|. (6)

We should also mention that if Aη develops a large value
somewhere in the system, such that the strain-induced dis-
placement of the Dirac points at that place is comparable to
the dimensions of the Brillouin zone (BZ), the effective Dirac
theory in Eq. (4) becomes insufficient. This is because the ve-
locity parameters vη

x,y can also be modified by the strain giving
rise to Aη [38,39]. In such a case, a full lattice model, which
treats the strain effects in elastic gauge fields and velocity
parameters on equal footing, is needed as the starting point
to derive a continuum theory [40].

III. HONEYCOMB FERROMAGNETS

In the remainder of this paper we illustrate our general
method with twisted honeycomb quantum magnets character-
ized by the spin-S Heisenberg Hamiltonian,

H =
∑

r

3∑
i=1

JiSA(r) · SB(r + αi ), (7)

where r denotes the position of an A lattice site,
and (α1,α2,α3) = (

√
3

2 ax̂ + 1
2 aŷ,−

√
3

2 ax̂ + 1
2 aŷ,−aŷ) are

nearest-neighbor vectors with a being the lattice constant. We
assume isotropic nearest-neighbor interaction Ji = J in the
absence of strain such that the honeycomb magnet exhibits
FM (AF) order when J < 0 (J > 0) at sufficiently low tem-
peratures. We concentrate on the FM case in this section, and
discuss the AF case in Sec. IV.

An elastic strain relocates the lattice sites, resulting in the
spatial modulation of wave-function overlap [41] and thus
the deviation of the nearest-neighbor interactions from their
strain-free value Ji = J . As a common practice, we assume
that the nearest-neighbor interactions are exponentially decay-
ing functions of distance,

Ji = J exp

(
− β

δi − αi

αi

)
, (8)

where δi is the distance to the ith nearest neighbor, and β ∼ 1
is the Grüneisen parameter; the strain changes Ji through δi

alone, and effects of the orientation of anisotropic orbitals are
neglected [31,42].

Our model is defined on an L × W nanoribbon twisted by
an angle �, as illustrated in Fig. 1(a). The twist deformation
relocates the lattice site originally located at position r =
(x, y, 0) to r + u(r) = (x, y cos λx, y sin λx), where λ = �/L
measures the rotational angle of a nanoribbon unit cell per
unit length along the x direction. The resultant bond length is
then

δi =
√

α2
i + λ2α2

i,x(y2 + yαi,y ), (9)

giving exponentially decaying interactions

J1 = J2 = J exp
[
1 −

√
1 + 3

4λ2
(
y2 + a

2 y
)]

, J3 = J. (10)

For the sake of simplicity, sometimes we shall further assume
a narrow nanoribbon with a sufficiently small twist, which
reduces the nearest-neighbor interactions to

J1 = J2 = J − 3
8λ2

(
y2 + a

2 y
)
J, J3 = J. (11)
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FIG. 1. (a) A twisted honeycomb magnet nanoribbon (blue) is
obtained by applying torsional strain to a strain-free nanoribbon
(light blue) of length L and width W to rotate the right (left) edge
around the x axis by a small angle �/2 (−�/2). (b) The dispersion of
the honeycomb ferromagnet (red) and antiferromagnet (blue) along
the path connecting the high-symmetry points of the BZ (Inset) (c) A
zigzag nanoribbon with 2N A and B sublattice sites in a unit cell
marked by two orange dashed lines. The width of the unit cell is
δx = √

3a.

In the presence of FM order (J < 0), the Heisen-
berg Hamiltonian [Eq. (7)] can be second-quantized by
the Holstein-Primakoff transformation [43] S+

A (r) = (2S −
a†

r ar)1/2ar and Sz
A(r) = S − a†

r ar [S+
B (r) = (2S − b†

rbr)1/2br

and Sz
B(r) = S − b†

rbr], where ar (br) is the magnon anni-
hilation operator associated with the A (B) sublattice. The
resultant magnon tight-binding Hamiltonian to the bilinear
order reads

HFM =
∑

r,i

JiS
(
a†

r br+αi + arb
†
r+αi

− a†
r ar − b†

rbr
)
, (12)

where the FM ground-state energy EFM
G = ∑

r,i JiS2 has
been subtracted from the Heisenberg Hamiltonian. For
isotropic and spatially uniform Ji = J , the Fourier transform
(ar, br)T = N−1/2

uc
∑

k eik·r(ak, bk)T , where Nuc is the number
of unit cells, maps Eq. (12) to

Hk =
∑

i

JiS[cos(k · αi )σ
x − sin(k · αi )σ

y − σ 0], (13)

where Pauli matrices σ x,y and the identity matrix σ 0 are de-
fined in the sublattice basis (ak, bk)T . The dispersion of this
Bloch Hamiltonian reads

εk = 3|JS| ±
∣∣∣∣∣JS

∑
i

eik·αi

∣∣∣∣∣, (14)

which exhibits two Dirac cones [Fig. 1(b)] at the BZ corners
kη

W = (η 4π

3
√

3a
, 0) with η = ±1. For a nanoribbon with a pair

of zigzag edges along the x direction [Fig. 1(c)], the band εk

becomes a cluster of bands [Fig. 2(a)].
We introduce a fictitious lattice deformation that alters the

nearest-neighbor interactions according to

J1 = J2 = J + δJ, J3 = J, (15)

kxδx

kxδx kxδx

kxδx

LL0

LL1
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(a) (b)

(c) (d)
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|J
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ω
/|J
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FIG. 2. Spectral properties of a zigzag FM nanoribbon with
2N = 80 A and B sublattice sites. (a) The spectrum of an untwisted
nanoribbon exhibiting two Dirac cones connected by flat edge states.
(b) The spectrum of a twisted nanoribbon with λa = 0.032. (c) The
bulk spectral function of (b) with dispersive DLLs in the vicinity of K
valley labeled. The crosses mark the positions of DLLs at the selected
momentum kxδx = 1.382. (d) The edge spectral function of (b) with
the white curves representing the envelopes of the Dirac cones.

where the variation δJ is spatially uniform. In the presence of
such a deformation, an effective Dirac theory can be obtained
by linearizing the Bloch Hamiltonian [Eq. (13)] in the vicinity
of BZ corners:

hq = h̄vη
x

(
qx + η

2δJ

3aJ

)
σ x + h̄vη

y qyσ
y − (3JS + 2δJS)σ 0,

(16)

where the magnon velocity is (vη
x , vη

y ) = 3JSa
2h̄ (−η, 1). We

note that δJ has two effects. On the one hand, it shifts the two
Dirac cones uniformly in the energy dimension by an amount
of −2δJS. This effect is rather trivial and can be greatly
suppressed by a Zeeman field BZ = −2δJS/gμB, where gμB

is the magnon magnetic moment. Therefore we will neglect
this effect in the following. On the other hand, δJ displaces the
two Dirac cones oppositely in the momentum dimension by
η 2δJ

3aJ . Although an electric field can also relocate the magnon
Dirac cones through the Aharonov-Casher (AC) effect [44]
(see Appendix A), the two Dirac cones are always translated
identically, implying that the valley-sensitive displacement
should be interpreted as an axial elastic vector potential

�A = η
2h̄

3ea

δJ

J
x̂, (17)

which cannot be compensated by electric fields.
We have obtained �A using a uniform δJ . However, we

are interested in a twist deformation [Fig. 1(a)], where δJ
and the resulting �A depend on the y coordinate. According
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FIG. 3. Dispersive DLLs in a twisted FM nanoribbon. (a) Nu-
merically calculated magnon bands (black) for a nanoribbon with
2N = 1200 A and B sublattice sites and λa = 0.0008. The theoreti-
cally predicted DLLs (red) from Eq. (19) are overlaid. The dashed
blue curves mark the position of the maximally displaced Dirac
cone, which is qw

x δx = 0.225 on the right of valley K . (b) DLLs as
a function of twist at a fixed momentum that is q0

xδx = 0.139 on the
right of the K point. The theoretically predicted DLLs (red) from
Eq. (19) well fit the numerics (black dots) of the first few DLLs.

to the general method we have developed, this nonuniform
�A should induce dispersive DLLs. To substantiate our claim,

we numerically simulate the tight-binding Hamiltonian of a
twisted zigzag nanoribbon with exponentially decaying inter-
actions [Eq. (10)]. Indeed, dispersive DLLs are induced on
right (left) of valley K (K ′) [Fig. 2(b)], reflecting the valley
sensitivity of �A . These DLLs are doubly degenerate due to
the contributions from the upper (y > 0) and lower (y < 0)
sections of the nanoribbon. To better resolve these DLLs, we
calculate the spectral function

A(ω, kx ) = − 1

π

∑
y

lim
δ→0


[ω + iδ − Hkx ]
−1
yy , (18)

in the bulk and on the edges of the nanoribbon. The bulk
origin of these DLLs is confirmed by the bulk spectral func-
tion, defined to include the contribution of the central 50%
lattice sites. Extracting the energies εLLn of the first few DLLs
marked by the crosses in Fig. 2(c), we find the sequence
εLLn − εLL0 exhibits the expected

√
n dependence on the LL

index n. We note that the dispersive DLLs only reside in the
vicinity of Dirac cones. This observation is best demonstrated
by the fact that the first three DLLs (n = 0,±1,±2) associ-
ated with each valley are not connected through the bulk but
by the edge states, as illustrated by the edge spectral function
[Fig. 2(d)].

We now analyze the twist-induced DLLs in a more quan-
titative way. Here we assume a sufficiently small twist under
which Eq. (11) is applicable; a more generic derivation regard-
ing large twists is given in Appendix B. Following our general
method, we write the axial vector potential as a function
of coordinate, Ax(y) = −(ηh̄/4ea)λ2y2. The resulting twist-
induced DLLs read

εLLn (qx ) = −3JS − 3
2 JS

√
λa 4

√
4aqxsgn(n)

√
|n|. (19)

Numerical simulation confirms that Eq. (19) well captures the
dispersion of the DLLs [Fig. 3(a)]. For a fixed momentum
slightly away from the Dirac point K , we also test the

√
λ

dependence of the first few DLLs. These results are summa-

rized in Fig. 3(b). Far away from the valley K , the numerically
obtained bands begin to deviate from the prediction of
Eq. (19), as the wave functions move to the edge of the
nanoribbon and evolve from bulk DLLs into edge states. The
width of the zeroth DLL corresponds to the maximal displace-
ment of the Dirac cone

qw
x =

[
− e

h̄
Ax(y)

]
max

= λ2W 2

16a
, (20)

as y traverses the width of the nanoribbon −W
2 � y � W

2 ;
higher-order DLLs have smaller widths because of the larger
spatial extent of their wave functions. Therefore Eq. (19)
fits the numerics best between the Dirac cone at K and the
maximally displaced Dirac cone.

Finally, let us verify that the DLLs in Eq. (19) satisfy the
adiabatic condition Eq. (6). Noting that the first DLL should
be outside of the projected Dirac cones, we have

− 3
2 JS

√
λa(4qxa)

1
4 � − 3

2 JSqxa; (21)

on the other hand, Eq. (6) yields

qxa = 1
4λ2y2

0 � 1
4 (2λa)

2
3 . (22)

It is straightforward to check that Eqs. (21) and (22) agree
up to an O(1) constant. Therefore, for a weakly twisted FM
nanoribbon, the assumption of a slowly varying gauge field is
self-consistent as long as the DLLs fall outside of the Dirac
cones.

IV. HONEYCOMB ANTIFERROMAGNETS

In the presence of AF order (J > 0), the Heisenberg
Hamiltonian [Eq. (7)] can be second-quantized by the
bipartite Holstein-Primakoff transformation S+

A (r) = (2S −
a†

r ar)1/2ar and Sz
A = S − a†

r ar [S+
B (r) = b†

r (2S − b†
rbr)1/2 and

Sz
B = b†

rbr − S]. The resulting magnon tight-binding Hamilto-
nian at the noninteracting level is

HAF =
∑

r,i

JiS(arbr+αi + a†
r b†

r+αi
+ a†

r ar + b†
rbr), (23)

where the Néel state energy EN = −∑
r,i JiS2 has been

subtracted from the Heisenberg Hamiltonian. For isotropic
and spatially uniform Ji = J , the Fourier transform maps
Eq. (23) to

Hk =
∑

i

JS[cos(k · αi )τ
x − sin(k · αi )τ

y + τ 0], (24)

which is identical to Eq. (13), except that Pauli matrices τ x,y

and the identity matrix τ 0 are defined in the particle-hole
basis (ak, b†

−k)T . Therefore the AF honeycomb magnet can be
regarded as a generalized Dirac material whose Hamiltonian
is diagonalized by a paraunitary Bogoliubov transformation
in order to maintain the bosonic statistics of the basis (see
Appendix C). Explicitly, the dispersion of the AF Bloch
Hamiltonian is

εk =
√

(3JS)2 − (εk − 3|JS|)2 = JS

√
9 −

∣∣∣∑
i
eik·αi

∣∣∣2
,

(25)
where εk is the dispersion of the FM Bloch Hamiltonian given
by Eq. (14). Equation (25) exhibits two quadratic peaks at BZ
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FIG. 4. Spectral properties of a zigzag AF nanoribbon with
2N = 80 A and B sublattice sites. (a) The spectrum of an untwisted
nanoribbon exhibiting two quadratic peaks connected by flat edge
states. (b) The spectrum of a twisted nanoribbon with λa = 0.028.
(c) The bulk spectral function of (b) with dispersive eLLs in the vicin-
ity of quadratic peak K labeled. The crosses mark the positions of
eLLs at the selected momentum kxδx = 1.382. (d) The edge spectral
function of (b) with white curves representing the envelopes of the
quadratic peaks.

corners K/K ′ [Fig. 1(b)] and becomes a set of bands for a
zigzag nanoribbon [Fig. 4(a)].

We now consider the effect of the fictitious lattice de-
formation Eq. (15). Based on the close relation between
the dispersion relations of FM and AF honeycomb magnets
[Eq. (25)], we can directly write down the magnon disper-
sion for an AF honeycomb magnet in the vicinity of the BZ
corners as

εq = (3JS + 2δJS) − 3JS

8
a2

[(
qx + η

2δJ

3aJ

)2

+ q2
y

]
, (26)

where the constant δJ can still be interpreted as resulting from
an axial elastic vector potential as in ferromagnets [Eq. (17)].
Therefore, a y-dependent δJ emerging from the twist should
induce LLs in AF honeycomb magnets, similar to the δJ in
FM honeycomb magnets.

To support our argument, we numerically calculate the
band structure of a zigzag AF nanoribbon with exponen-
tially decaying interactions [Eq. (10)]. We find dispersive
eLLs on the right (left) of quadratic peak K (K ′) [Fig. 4(b)].
These eLLs are fourfold degenerate except for the zeroth eLL,
which is doubly degenerate. For the energies εLLn of the first
few eLLs marked by the crosses in Fig. 4(c), the sequence
εLLn − εLL0 indeed shows the expected linear dependence on
the LL index n. This is consistent with the quadratic disper-
sion [Eq. (26)] at the BZ corners. The bulk spectral function
[Fig. 4(c)] confirms the bulk origin of the eLLs with the best
resolution for the first three eLLs (n = 0,±1,±2) of each
quadratic peak, which are connected by edge states rather than

-2.2 -2.0 -1.8 -1.6

2.998

2.999

3.000

0 0.8 1.6 2.4

2.998

2.999

3.000

kxδx

×10

ε(
k

x
)/

J
S

ε L
L

(q
0 x
)/

J
S

λa

(a) (b)
n=0

n=±1

n=±2

n=±3

n=±4

FIG. 5. Dispersive eLLs in a twisted AF nanoribbon. (a) Numer-
ically calculated band structure (black) for a nanoribbon with 2N =
1200 A and B sublattice sites and λa = 0.0008. The theoretically
predicted eLLs (red) from Eq. (27) are overlaid. The dashed blue
curves mark the position of the maximally displaced quadratic peak,
which is qw

x δx = 0.225 on the right of quadratic peak K . (b) eLLs
as a function of twist at fixed momentum, which is q0

xδx = 0.139 on
the right of the K point. The theoretically predicted eLLs (red) from
Eq. (27) well fit the numerics (black dots) of the first few eLLs.

through the bulk as illustrated by the edge spectral function
[Fig. 4(d)].

For a sufficiently small twist, the dispersion of the induced
eLLs can be immediately written down by making use of
Eq. (19) as

εLLn (qx ) = 3JS − 3
8 JSλa

√
4aqx|n|, (27)

which is numerically verified by direct diagonalization of the
tight-binding Hamiltonian of a zigzag AF nanoribbon with
quadratically decaying interactions [Eq. (11)]. Indeed, we
find Eq. (27) well captures the eLL dispersion between the
quadratic peak at K and the maximally displaced quadratic
peak [Fig. 5(a)], whose displacement is again specified by
Eq. (20). We also examine the linear λ dependence of the first
few eLLs at a fixed momentum slightly away from K . These
results are summarized in Fig. 5(b). We comment in passing
that, as a result of the intimate relation Eq. (25) between FM
and AF dispersions, the adiabatic condition Eq. (6) is again
satisfied for the eLLs in Eq. (27).

V. CONCLUSIONS

We have proposed a general method resolving the disper-
sion of Landau levels induced by strain of arbitrary space
dependence in two-dimensional Dirac materials. The effec-
tiveness of the method is verified by successfully acquiring the
strain-induced magnon Landau levels in both ferromagnetic
and antiferromagnetic twisted honeycomb magnet nanorib-
bons. Our proposal may be experimentally carried out with
honeycomb ferromagnets CrX3 (X=F, Cl, Br, I) [45,46] and
antiferromagnet MnPS3 [47]. The required Zeeman field can-
celing the twist-induced onsite energy may be provided by
a fine-tuned array of magnetic force microscope tips [48],
and the magnon Landau levels can be imaged by neutron
scattering [49].

Although the method we proposed is only illustrated with
honeycomb ferromagnets and antiferromagnets, it should be
generally applicable to other two-dimensional Dirac materi-
als, such as those containing photons [18], phonons [50,51],
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and Majorana particles [52,53], where the strain-induced Lan-
dau levels occur. In particular, in graphene [38,54], kagome
metals [33], and d-wave superconductors [27,30], the strain-
induced Landau levels are known to be dispersive, making
these materials an ideal venue to examine the validity of
our theory. In a recent work by the present authors [40],
the method reported here is further developed to account for
the band structure of a twisted graphene nanoribbon in the
presence of very strong strain.
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APPENDIX A: MAGNON LANDAU LEVELS DUE TO THE
AHARONOV-CASHER EFFECT

In Secs. III and IV, we have shown that a twist lattice
deformation spatially modulates the nearest-neighbor spin in-
teraction, thus resulting in magnon LLs in the vicinity of the
BZ corners. In this section we will study the magnon LLs
resulting from the AC effect, paying close attention to its
difference from the twist lattice deformation.

We consider an isotropic Heisenberg model in the presence
of an external electric field E,

H =
∑

r,i

J[eiφAC S−
A (r)S+

B (r + αi ) + H.c.]

+
∑

r,i

JSz
A(r)Sz

B(r + αi ), (A1)

where φAC = 1
h̄c2

∫ r+αi

r (μs × E ) · dl is the AC phase, in which
μs = −gμBẑ is the magnetic moment of the spin transported
from the A site at r to the neighboring B site at r + αi. By
applying Holstein-Primakoff transformation and the Fourier
transform, it is easy to find that the effect of the AC phase
is to displace the magnon bands according to the Peierls
substitution k → k + 1

h̄c2 (μs × E ) for both ferromagnets and
antiferromagnets. Therefore a spatially varying electric field
E satisfying ∇ × (μs × E ) �= 0 can lead to LLs at the BZ
corners. However, it is crucially important to notice that there
are two major differences between the AC effect and the twist:
(i) The AC phase shifts Dirac cones (quadratic peaks) of ferro-
magnets (antiferromagnets) at K and K ′ in the same direction,
while the twist always displaces two different Dirac cones
(quadratic peaks) oppositely. (ii) The AC phase not only shifts
the magnon Dirac cones (quadratic peaks) at the BZ corners,
but also relocates magnon bands of ferromagnets (antiferro-
magnets) at other momenta through k → k + 1

h̄c2 (μs × E ).
In contrast, a twist only impacts the magnon Dirac cones
(quadratic peaks), while the magnon bands far away from the
BZ corners are not significantly affected. To illustrate these
differences, we perform numerical simulations for zigzag
nanoribbons of both honeycomb ferromagnets and antiferro-
magnets. The nonuniform electric field is chosen such that

1
ec2 (μs × E ) = − h̄

4eaλ2
effy

2x̂, which allows us to parametrize
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FIG. 6. Magnon band structure for nanoribbons with 2N = 1200
A and B sites in the unit cell in the presence of an external electric
field E, which is chosen to satisfy 1

ec2 (μs × E ) = − h̄
4ea λ2

effy
2x̂ with

λeffa = 0.0008. (a)–(c) Magnon LLs of ferromagnetic nanoribbons
resulting from the AC effect on the right of high-symmetry points K ,
K ′, and �, respectively. The theoretically proposed LLs [Eq. (A2) for
(a,b) and Eq. (A3) for (c)] are sketched as red curves and overlaid to
the corresponding panels. (d)–(f) Magnon LLs of antiferromagnetic
nanoribbons resulting from the AC effect in the vicinity of high-
symmetry points K , K ′, and �, respectively. The green curves and the
orange curves are from distinct pseudospin sectors, i.e., Hk and H ∗

−k
in the magnon BdG Hamiltonian [Eq. (C13)]. The theoretically pro-
posed LLs [Eq. (A4) for (d,e) and Eq. (A5) for (f)] are sketched as red
curves and overlaid to the corresponding panels. For all panels, the
dashed blue curves represent the maximally displaced cones/peaks
on the right of each high-symmetry point by qw

x δx = 0.225, which is
same as those used for Figs. 3(a) and 5(a).

the electric field by an “effective twist” λeff. Without loss of
generality, we choose λeff > 0.

For ferromagnetic nanoribbons (J < 0), we find that the
dispersive DLLs due to the AC effect appear on the right of
valley K [Fig. 6(a)] and valley K ′ [Fig. 6(b)]. The dispersion
of these LLs can be immediately written down by referring to
Eq. (19):

ε
K/K ′
LLn

(qx ) = −3JS + sgn(n)

√∣∣∣∣2n
e

h̄
Beffh̄v

η
x h̄v

η
y

∣∣∣∣
= −3JS − 3

2
JS

√
λeffa

4
√

4aqxsgn(n)
√

|n|, (A2)

where (vη
x , vη

y ) = 3JSa
2h̄ (−η, 1) is the magnon velocity associ-

ated with each valley, with index η = +1(−1) representing
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valley K (K ′) and the effective gauge field Beff = 1
ec2 ∇ ×

(μs × E ) = h̄
2eaλ2

effyẑ. On the other hand, the twist-induced
LLs reside on the right (left) of valley K (K ′), reflecting the
fundamental difference between the AC effect and the twist.
Moreover, on the right of the � point, the AC effect results
in dispersive eLLs. This is because magnon dispersion in the
vicinity of the � point is quadratic ε�

q = −3JS ± 3JS[1 −
1
4 a2(q2

x + q2
y )], giving rise to the dispersion

ε�
LLn

(qx ) = −3JS ± [
3JS + h̄ωc

(
n + 1

2

)]
= −3JS ± 3JS ∓ 3

4 JSλeffa
√

4qxa
(
n + 1

2

)
, (A3)

where ωc = | 3JSa2

2h̄2c2 ∇ × (μs × E )| is the magnon cyclotron fre-
quency. Such eLLs are absent in twisted FM nanoribbons
because the twist-induced gauge field only couples to the
magnon Dirac cones and has little effect on the magnon bands
far away from the BZ corners.

For antiferromagnetic nanoribbons (J > 0), we find disper-
sive eLLs on the right of quadratic peaks K and K ′ [green
curves in Fig. 6(d) and 6(e)]. By referring to Eq. (27), we find
these LLs are characterized by

ε
K/K ′
LLn

(qx ) =
√

(3JS)2 −
∣∣∣∣2n

eBeff

h̄
h̄v

η
x h̄v

η
y

∣∣∣∣
= 3JS − 3

8
JSλeffa

√
4aqx|n|. (A4)

The AC effect also produces on the right of the � point
additional modified DLLs [green curves in Fig. 6(f)],

ε�
LLn

(qx ) =
√

(3JS)2 − [
3JS − h̄ωc

(
n + 1

2

)]2

= 3√
2

JS
√

λeffa
4
√

4qxa
√

n + 1
2 , (A5)

because the magnon bands exhibit linear dispersion ε�
q =

3√
2
JSa[q2

x + q2
y ]1/2 in the vicinity of the � point. It is worth

noting that there are additional LLs on the left of high-
symmetry points K , K ′, and �, as illustrated by the orange
curves in Figs. 6(d)–6(f). The symmetric distribution of these
LLs arises from the inherent symmetry of the magnon Bloch
Hamiltonian Hk(E ) = H ∗

−k(−E ), which can be justified by
noting that the Bloch phase factor (AC phase factor) in Hk(E )
is invariant under the consecutive complex conjugation and
inversion k → −k (E → −E). In the presence of this symme-
try, the magnon BdG Hamiltonian on the bipartite honeycomb
lattice [Eq. (C13)] decouples into two sectors Hk(E ) and
H ∗

−k(E ) = Hk(−E ), which produce LLs on the right and left
of high-symmetry points, respectively.

APPENDIX B: DERIVATION OF LANDAU-LEVEL
DISPERSION FOR LARGE TWISTS

The LL dispersions, Eqs. (19) and (27), are obtained under
the assumption that the twist is sufficiently small such that
Eq. (11) is a good estimate for the nearest-neighbor interac-
tions Ji. However, when the twist is large, it is more reasonable
to assume exponentially decaying interactions as in Eq. (10).
In this section we will derive the dispersion of magnon LLs for

a generic twist for both honeycomb ferromagnets (Appendix
B 1) and antiferromagnets (Appendix B 2).

1. Honeycomb ferromagnets

Starting from the fictitious lattice deformation Eq. (15), we
linearize the FM Bloch Hamiltonian Eq. (13) in the vicinity of
the BZ corners as

h̃q = h̄ṽη
x

[
qx + η

2δJ

3a(J + δJ )

]
σ x + h̄ṽη

y qyσ
y

− (3JS + 2δJS)σ 0, (B1)

where (ṽη
x , ṽη

y ) = 3JSa
2h̄ (−η J+δJ

J , 3J+δJ
3J ) is the new magnon ve-

locity. When δJ � J , this reduces to the magnon velocity in
Eq. (16). The emergent vector potential resulting from δJ can
be directly read off Eq. (B1) as Ã x = η 2h̄

3ae
δJ

J+δJ .
We have derived the magnon velocity and the emergent

vector potential by assuming a constant δJ . In fact, we are
interested in the twist lattice deformation, where δJ = δJ (y)
is space dependent [Eq. (10)], giving rise to the modified
magnon velocity

ṽη
x = −η

3JSa

2h̄
exp

[
1 −

√
1 + 3

4λ2
(
y2 + a

2 y
)]

, (B2)

ṽη
y = JSa

2h̄

{
2 + exp

[
1 −

√
1 + 3

4λ2
(
y2 + a

2 y
)]}

, (B3)

and the twist-induced vector potential

Ã x = η
2h̄

3ae

{
1 − exp

[√
1 + 3

4λ2
(
y2 + a

2 y
) − 1

]}
, (B4)

whose curl gives the twist-induced elastic gauge field

B̃z = η
h̄

2ae
λ2y

exp
[√

1 + 3
4λ2

(
y2 + a

2 y
) − 1

]
√

1 + 3
4λ2

(
y2 + a

2 y
) . (B5)

As we have discussed in the main text, as long as δJ (y) does
not vary rapidly on the lattice scale, the effective Dirac theory
Eq. (B1) should be a good approximation, and the spatially
varying twist-induced gauge field B̃z should lead to magnon
DLLs in the vicinity of magnon Dirac cones.

We now derive the dispersion of the twist-induced magnon
LLs. In the framework of band theory, the effect of the twist-
induced vector potential is to shift the magnon Dirac cones at
K and K ′. For a specific momentum that is qx on the right of
the Dirac point K , the Dirac cone is relocated to this momen-
tum by Ã x = − h̄

e qx. Therefore a relation can be constructed
between the momentum qx and the spatial coordinate y as

qx = − 2

3a

{
1 − exp

[√
1 + 3

4λ2
(
y2 + a

2 y
) − 1

]}
. (B6)

For transparency, we introduce the parameter

ζqx = 1 + ln

(
1 + 3

2
aqx

)
=

√
1 + 3

4
λ2

(
y2 + a

2
y

)
, (B7)
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FIG. 7. Dispersive DLLs in a twisted FM nanoribbon. (a) Nu-
merically calculated band structure (black) for a nanoribbon with
2N = 1200 A and B sites and λa = 0.0008. The theoretically pre-
dicted LLs (red) from Eq. (B11) are overlaid. The dashed blue curves
mark the position of the maximally displaced Dirac cone, which is
q̃w

x δx = 0.226 on the right of valley K . (b) DLLs as functions of
twist at a fixed momentum that is q̃0

xδx = 0.115 on the right of the
K point. The theoretically predicted LLs (red) from Eq. (B11) well
fit the numerics (black dots) of the first few LLs.

so that Eqs. (B2), (B3), and (B5) may be rewritten as

ṽη
x = −η

3JSa

2h̄
e1−ζqx , (B8)

ṽη
y = JSa

2h̄
(2 + e1−ζqx ), (B9)

B̃z = η
h̄

2a2e
λa

√
4

3

ζ 2
qx

− 1

ζ 2
qx

eζqx −1. (B10)

Therefore the twist-induced DLLs are characterized by

ε̃LLn (qx ) = −3JS + sgn(n)

√
2n

eB̃z

h̄
h̄ṽ

η
x h̄ṽ

η
y

= −3JS −
4
√

3√
2

JS
√

λa 4

√
ζ 2

qx
− 1

√
2 + e1−ζqx

ζqx

× sgn(n)
√

n, (B11)

which is reduced to Eq. (19) for a sufficiently small twist
λ → 0.

To verify our theory, we perform numerical simulations of
a zigzag nanoribbon of a honeycomb ferromagnet with the
twist effect incorporated into the lattice Hamiltonian through
Eq. (10). For small twists, we find that Eq. (B11) indeed
well fits the numerically calculated magnon bands [Fig. 7(a)]
between the Dirac cone at the K point and the maximally
displaced Dirac cone [dashed blue curves, Fig. 7(a)], which is
q̃w

x = − 2
3a {1 − exp[(1 + 3

16λ2W 2)1/2 − 1]} [see Eq. (B6)] on
the right of the K point. We also check the

√
λa dependence of

the first few DLLs. These results are summarized in Fig. 7(b).
For large twists, we find that Eq. (B11) still well matches

the numerically calculated LLs in the vicinity of the Dirac
point K but begins to deviate from the numerics for large
qx with the largest deviation ∼8% occurring at the � point
(qxδx = 2π

3 ) as illustrated in Fig. 8(a). We attribute this devi-
ation to the magnon velocity renormalization in the effective
Dirac theory [Eq. (B1)] away from the Dirac points. Neverthe-
less, we examine the numerically calculated magnon bands
connecting the two Dirac cones and find they exhibit

√
n

dependence, thus still being DLLs. Our finding is also

FIG. 8. Dispersive DLLs in a FM nanoribbon with 2N = 1200
A and B sites in the unit cell, exponentially decaying interactions,
and a large twist λa = 0.0023. (a) Band structure (left panel, black)
and DOS (right panel). The DOS is calculated with a small Gaus-
sian broadening δε/|J|S = 5 × 10−4. The theoretically predicted
LLs (red) from Eq. (B11) are overlaid. (b) DLL wave functions
at the � point, with the LL index shown in the middle of each
panel. Red (blue) curves correspond to the A (B) sublattice; solid
and dotted curves denote different, degenerate states localized at
different positions in the unit cell; and each LL is doubly degenerate.
(c) Edge-state wave functions at the � point. Note that the horizontal
scale is different from that in (b).

supported by the calculations of density of states (DOS)
[Fig. 8(a), right panel] and the wave functions of the first
few LLs at the � point [Fig. 8(b)]. For completeness, we
also present the wave functions of the zigzag edge states as
illustrated in Fig. 8(c).

2. Honeycomb antiferromagnets

We now consider the Bloch Hamiltonian of antiferromag-
nets [Eq. (24)] defined in the basis (ak, b†

−k )T , with a fictitious
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FIG. 9. Dispersive eLLs in a twisted AF nanoribbon. (a) Numer-
ically calculated band structure (black) for a nanoribbon with 2N =
1200 A and B sites and λa = 0.0008. The theoretically predicted LLs
(red) from Eq. (B14) are overlaid. The dashed blue curves mark
the position of the maximally displaced quadratic peak, which is
q̃w

x δx = 0.226 on the right of quadratic peak K . (b) eLLs as functions
of twist at a fixed momentum that is q̃0

xδx = 0.115 on the right of the
K point. The theoretically predicted LLs (red) from Eq. (B14) well
fit the numerics (black dots) of the first few LLs.

lattice deformation Eq. (15) producing a constant variation δJ
for J1 and J2. By applying a Bogoliubov transformation, we
can obtain the magnon dispersion in the vicinity of the BZ
corners,

ε̃q = − 1

6JS

[
h̄ṽη

x

(
qx + η

2

3a

δJ

J + δJ

)]2

− 1

6JS

(
h̄ṽη

y qy
)2 + 3JS + 2δJS. (B12)

We can extract from Eq. (B12) the twist-induced potential
˜Ax = η 2h̄

3ea
δJ

J+δJ , which is exactly the same as that of a fer-
romagnetic nanoribbon. Therefore, applying the technique
detailed in Appendix B 1, we can immediately write down the
twist-induced elastic gauge field

B̃z = η
h̄

2a2e
λa

√
4

3

ζ 2
qx

− 1

ζ 2
qx

eζqx −1 (B13)

and the resulting eLLs

ε̃LLn (qx ) =
√

(3JS)2 −
∣∣∣∣2n

e

h̄
B̃z h̄ṽ

η
x h̄ṽ

η
y

∣∣∣∣
= 3JS −

√
3

12
JSλa(2 + e1−ζqx )

√
ζ 2

qx
− 1

ζ 2
qx

|n|, (B14)

which is reduced to Eq. (27) for a sufficiently small twist
λ → 0.

To test our theory, we perform numerical simulations of a
zigzag nanoribbon of a honeycomb antiferromagnet with the
twist effect incorporated into the lattice Hamiltonian through
Eq. (10). For small twists, we find that Eq. (B14) indeed well
captures the momentum dependence of the LLs between the
quadratic peak at the BZ corner K and the maximally dis-
placed quadratic peak [dashed blue curves, Fig. 9(a)], which
is q̃w

x = − 2
3a {1 − exp[(1 + 3

16λ2W 2)1/2 − 1]} on the right of
the K point. The twist dependence is also checked and sum-
marized in Fig. 9(b).

When the twist is large, Eq. (B14) can still capture the mo-
mentum dependence in the vicinity of K but loses its accuracy

FIG. 10. Dispersive eLLs in an AF nanoribbon with 2N = 1200
A and B sites in the unit cell, exponentially decaying interactions,
and a large twist λa = 0.0023. (a) Band structure (left panel, black)
and DOS (right panel). The DOS is calculated with a small Gaussian
broadening δε/|J|S = 10−5. The theoretically predicted LLs (red)
from Eq. (B14) are overlaid. (b) LL wave functions at the � point,
with the LL index shown in the middle of each panel. Red (blue)
curves correspond to the A (B) sublattice; solid and dotted curves
denote different, degenerate states localized at different positions in
the unit cell; the n = 0 LL is doubly degenerate, while other LLs
are fourfold degenerate. (c) Edge-state wave functions at the � point.
Note that the horizontal scale is different from that in (b).

if too far away from K [Fig. 10(a)]. Again, this is because pa-
rameters in the effective theory [Eq. (B12)] are renormalized
away from the BZ corners. However, by checking the energies
of magnon bands in the vicinity of the � point, we find these
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bands are still eLLs exhibiting n dependence. Specifically, we
numerically calculate at the � point the DOS [right panel,
Fig. 10(a)] and the bulk wave functions [Fig. 10(b)], both of
which show features expected from Landau quantization. The
wave functions of the zigzag edge states are also presented in
Fig. 10(c).

APPENDIX C: SPECTRUM OF HONEYCOMB
ANTIFERROMAGNETS

In Sec. IV, we have derived the magnon Bloch Hamiltonian
for honeycomb antiferromagnets [Eq. (24)] defined on a basis
containing both magnon creation and annihilation operators,
i.e., a magnon particle-hole basis. This implies that the disper-
sion of the Bloch Hamiltonian cannot be obtained by unitary
diagonalization, which generally violates the bosonic statis-
tics of the basis. In this Appendix we will derive the magnon
band structure for both the infinite model (Appendix C 1) and
the nanoribbon model (Appendix C 2).

1. Infinite model

We start from the tight-binding Hamiltonian of an
antiferromagnet on the honeycomb lattice [Eq. (23)]
and apply Fourier transform of the basis (ar, br)T =
N−1/2

uc
∑

k eik·r(ak, bk)T , where Nuc denotes the number of unit
cells. We then obtain

HAF =
∑

k

(γ ∗
k akb−k + γka†

kb†
−k + γ0a†

kak + γ0b†
kbk), (C1)

where we have used the notations γk = ∑
i JiSeik·αi and γ0 =∑

i JiS for transparency. To resolve the energy eigenvalues
of HAF, we apply Bogoliubov transformation of the basis
through(

ak

b†
−k

)
=

(
cosh θk eiφk sinh θk

e−iφk sinh θk cosh θk

)(
αk

β
†
−k

)
, (C2)

where we set eiφk = γk/|γk|. It is easy to check that αk and
βk have bosonic statistics, thus being magnon annihilation
operators. We rewrite HAF in terms of αk and βk as

HAF =
∑

k

(
H 0

k + H αα
k α

†
kαk + H ββ

k β
†
−kβ−k

+ H αβ

k α
†
kβ

†
−k + H βα

k β−kαk
)
, (C3)

where

H 0
k = −γ0 + γ0 cosh 2θk + |γk| sinh 2θk,

H αα
k = H ββ

k = γ0 cosh 2θk + |γk| sinh 2θk,

H αβ

k = H βα

k

† = eiφk [γ0 sinh 2θk + |γk| cosh 2θk]. (C4)

We choose the parameter θk satisfying

sinh 2θk = −|γk|√
γ 2

0 − |γk|2
,

cosh 2θk = γ0√
γ 2

0 − |γk|2
, (C5)

so that the off-diagonal terms vanish, H αβ

k = H βα

k

† =
0. The magnon dispersion is then given by εk = H αα

k =
H ββ

k =
√

γ 2
0 − |γk|2 , which is doubly degenerate. Explicitly,

we have

εk =
√(∑

i
JiS

)2
−

∣∣∣∑
i
JiSeik·αi

∣∣∣2
. (C6)

For an isotropic model with Ji=1,2,3 = J , this dispersion is
reduced to Eq. (25). For the fictitious lattice deformation
Eq. (15), we expand Eq. (C6) in the vicinity of the BZ corners
kη

W = (η 4π

3
√

3a
, 0) and obtain Eq. (26). Besides diagonaliz-

ing the magnon Hamiltonian, the Bogoliubov transformation
Eq. (C2) also produces an extra term H 0

k arising from reorga-
nizing the magnon Hamiltonians [Eqs. (C1) and (C3)] in the
particle-hole bases (ak, b†

−k )T and (αk, β
†
−k)T , respectively.

The effect of H 0
k is to alter the Néel state energy by

δEN =
∑

k

H 0
k = −

∑
k

γ0 +
∑

k

εk

= −
∑

k

γ0 +
∑

k

√
γ 2

0 − |γk|2 < 0,

(C7)

which leads to a lower ground-state energy EAF
G = EN + δEN ,

reflecting the renormalization of the Néel state due to quan-
tum fluctuations. It is also worth noting that the ground state
|G〉 is the vacuum state for the transformed magnons such
that 〈G| α†

kαk |G〉 = 〈G| β†
kβk |G〉 = 0, while 〈G| a†

kak |G〉 and
〈G| b†

kbk |G〉 are generally not vanishing.

2. Nanoribbon model

In Appendix C 1 we have explained that a proper choice
of Bogoliubov transformation [Eq. (C2)] can cancel the off-
diagonal terms in HAF. This procedure, however, becomes
analytically unfeasible for nanoribbons, where there are a
large number of degrees of freedom associated with the tight-
binding Hamiltonian Eq. (23). In this section we will propose
a practical way to obtain the magnon bands for antiferromag-
netic nanoribbons.

For a nanoribbon with M A(B) sublattice sites, the magnon
Hamiltonian can be generally written as

HAF =
∑

k

�
†
kHk�k, (C8)

where �k = (ak,1, . . . , ak,M, b†
−k,1, . . . , b†

−k,M )T is the ba-
sis in which the Bloch Hamiltonian Hk is defined, and a
constant term due to reordering magnon operators which
lowers the Néel state energy has been neglected. We ap-
ply a Bogoliubov transformation �k = Pk�k, where �k =
(αk,1, . . . , αk,M, β

†
−k,1, . . . , β

†
−k,M )T is the transformed basis,

in which αk,i=1,...,M and βk,i=1,...,M are new magnon annihi-
lation operators with bosonic statistics. The transformation
matrix Pk is 2M × 2M in the form

Pk =
(

Uk Vk

Vk Uk

)
, (C9)

in which some restrictions have to be imposed on Uk and Vk

matrices in order to preserve the bosonic statistics of the basis.
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Explicitly, we need to have

[ak,i, a†
k, j] = [UkU †

k − VkV †
k ]i j = δi j,

[ak,i, b−k, j] = [UkV †
k − VkU †

k ]i j = 0, (C10)

which suggests that Pk is a paraunitary matrix satisfy-
ing P−1

k = τ zP†
k τ z, where τ z is the Pauli matrix speci-

fying magnon particles and holes. If the transformation
Pk diagonalizes the magnon Hamiltonian, i.e., P†

k HkPk =
diag(�α

k ,�
β

−k) with the positive-definite diagonal matrix
�

μ

k = diag(εμ

k,1, . . . , ε
μ

k,M ) where μ = α, β, we then have

P−1
k (τ zHk)Pk = diag

(
�α

k ,−�
β

−k

)
. (C11)

Consequently, the magnon dispersion of Hk can be ob-
tained by diagonalizing the non-Hermitian matrix τ zHk

for M positive eigenvalues εα
k,1, . . . , ε

α
k,M , which are inher-

ently the magnon energies at k, and M negative eigenvalues
−ε

β

−k,1, . . . ,−ε
β

−k,M , whose particle-hole partners are the ac-
tual magnon energies at k.

Alternatively, the magnon Hamiltonian Eq. (C8) can be
rewritten as

HAF = 1

2

∑
k

(
�

†
k �̃−k

)
H BdG

k

(
�k

�̃
†
−k

)
, (C12)

where (�k, �̃
†
−k )T is the magnon Nambu basis with

�̃
†
−k = (a†

−k,1, . . . , a†
−k,M, bk,1, . . . , bk,M )T and the magnon

Bogoliubov–de Gennes (BdG) Hamiltonian reads

H BdG
k =

(
Hk

H ∗
−k

)
. (C13)

We make use of Eq. (C11) and obtain

Q−1
k �zH BdG

k Qk = diag
(
�α

k ,−�
β

−k,−�α
−k,�

β

k

)
, (C14)

where Qk = diag(Pk, P∗
−k ) is the Bogoliubov transformation

matrix for H BdG
k and �z = diag(τ z,−τ z ) is the Pauli ma-

trix defined in Nambu space. It is easy to see that the
positive eigenvalues of H BdG

k directly give the magnon
dispersion of the Bloch Hamiltonian Hk, while the nega-
tive eigenvalues result from trivial redundancy, thus being
unphysical.
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