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Sediment archives in the terrestrial and marine realm are regularly analyzed to infer
changes in climate, tectonic, or anthropogenic boundary conditions of the past.
However, contradictory observations have been made regarding whether short period
events are faithfully preserved in stratigraphic archives; for instance, in marine sediments
offshore large river systems. On the one hand, short period events are hypothesized to
be non-detectable in the signature of terrestrially derived sediments due to buffering
during sediment transport along large river systems. On the other hand, several
studies have detected signals of short period events in marine records offshore large
river systems. We propose that this apparent discrepancy is related to the lack of a
differentiation between different types of signals and the lack of distinction between river
response times and signal propagation times. In this review, we (1) expand the definition
of the term ‘signal’ and group signals in sub-categories related to hydraulic grain size
characteristics, (2) clarify the different types of ‘times’ and suggest a precise and
consistent terminology for future use, and (3) compile and discuss factors influencing
the times of signal transfer along sediment routing systems and how those times
vary with hydraulic grain size characteristics. Unraveling different types of signals and
distinctive time periods related to signal propagation addresses the discrepancies
mentioned above and allows a more comprehensive exploration of event preservation in
stratigraphy – a prerequisite for reliable environmental reconstructions from terrestrially
derived sedimentary records.

Keywords: signal propagation, landscape transience, source-to-sink, stratigraphy, response time

INTRODUCTION

Sediment archives are regularly analyzed to reconstruct climatic and tectonic conditions of
the past. Most terrestrial sediments are initially produced on hillslopes in mountain regions
and are subsequently transported by fluvial systems to subsiding continental lowlands or to
the coastal ocean, and further across the shelf and continental slope to deep marine basins
(Figure 1; e.g., Schumm, 1977; Meade, 1982; Einsele et al., 1996; Hinderer and Einsele, 2001;
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Castelltort and Van Den Driessche, 2003). The transport
pathways of sediments from a zone of production (source)
through a transfer zone to an area of final deposition (sink)
are generally described as sediment routing systems (SRSs)
(e.g., Allen, 2008a, 2017). To reconstruct past conditions
from deposited sediments, it is assumed that changes in
climatic, tectonic, or anthropogenic boundary conditions
generate so-called ‘environmental signals’ within the sediment.
Environmental signals (signals hereafter) typically refer to
measurable changes in the amount of produced, transported,
and deposited sediments that can be related to changes in
environmental boundary conditions (Romans et al., 2016
and references therein). Changes in environmental boundary
conditions are temporary or sustained adjustments in tectonic
uplift or subsidence rates, in climatic parameters, or in
anthropogenic land use. However, experimental, numerical,
and field studies have shown that not all signals generated
in the erosion zone are faithfully transmitted to the sink, but
can be delayed, buffered, modified, or even destroyed during
transport along SRSs (Jerolmack and Paola, 2010; Simpson and
Castelltort, 2012; Armitage et al., 2013; Blöthe and Korup, 2013;
Godard et al., 2013; Forzoni et al., 2014; Braun et al., 2015;
Romans et al., 2016; Straub et al., 2020). It was suggested that
signals in the form of sediment flux pulses are only faithfully
transmitted to the sink if the period of change in boundary
conditions exceeds the response time of the river (Paola et al.,
1992; Castelltort and Van Den Driessche, 2003; Li Q. et al., 2018).
The river response time is the required time to achieve a new
equilibrium river profile after a change in boundary conditions.
Hence, for reliable reconstructions of past boundary conditions
from sediment deposits it is essential to investigate the linkages
between processes and times of signal transfer with processes
and timescales of river adjustment.

Paola et al. (1992) suggested that the longitudinal profile
adjustment in alluvial rivers after a change in boundary
conditions can be approximated as a diffusive-like process and
the according response time, Teq [s], of a 1D river profile can be
estimated as:

Teq = L2/K (1),

where L [m] is the length of the transfer system and K [m2 s−1]
its coefficient of diffusivity. Hence, response times greatly depend
on the size of the river basin. Allen (2008b) considered landscapes
with response times, Teq, greater than the periodicity of changes
in boundary conditions as ‘buffered,’ while landscapes with
response times shorter than the period of changes in boundary
conditions as ‘reactive.’ Following this approach, faithful signal
transmission should be limited to reactive landscapes, such
that short period climate cycles should not be transmitted
through large rivers systems (Paola et al., 1992; Castelltort and
Van Den Driessche, 2003; Allen, 2008b; Li Q. et al., 2018;
Straub et al., 2020).

A lack of signal transmission of short period climate cycles
in large river systems was presented by Métivier and Gaudemer
(1999). Following Eq. (1), the authors obtained river response
times on the order of 105 to 106 year for some of Asia’s
largest rivers. They found no major differences between the

present-day sediment discharge and the Quaternary-averaged
sediment discharge reconstructed from mass accumulation in the
corresponding sedimentary basins. Hence, sediment discharge at
the river’s outlet was constant, despite known climate oscillations
throughout the Quaternary on the order of 104 year (e.g., 20
and 40 kyr Milankovitch cycles). Métivier and Gaudemer (1999)
interpreted those river systems as buffered.

However, other studies indicate that several large river systems
show signal propagation occurring at an order-of-magnitude
shorter timescale than their according response times. For
example, Castelltort and Van Den Driessche (2003) calculated the
river response times of 93 of the largest rivers worldwide using
Eq. (1). The calculated response time of the Mississippi River is
between 124 and 248 kyr (Castelltort and Van Den Driessche,
2003). Yet, multi-modal mixtures of detrital zircons within the
Mississippi submarine fan are changing over 10 kyr (Figure 1;
Mason et al., 2017; Fildani et al., 2018). Those provenance
changes were interpreted by these authors to represent signals
originating in the catchment, which were efficiently transferred
to and preserved in the Mississippi delta and deep-sea fan.
Therefore, signal transfer through the Mississippi SRS was rapid
and an order-of-magnitude shorter than the theoretical response
time (Mason et al., 2017; Fildani et al., 2018). Similar observations
were made by Blum (2007), who also reported that signal
transfer and incorporation in stratigraphy in large river systems
was substantially faster than the according calculated response
times. Blum (2007) explained this discrepancy by different types
of perturbations. He proposed that signals related to changes
in discharge (floods) can be transferred faster through SRSs
compared to changes in upstream sediment supply. Similarly, the
Ganges River features a Teq of ∼99 kyr (Castelltort and Van Den
Driessche, 2003). However, system-wide changes in sediment
flux and aggradation and incision cycles as contemporaneous
responses to multi-millennial climate changes were observed in
fluvial and deltaic archives along the Ganges SRS at time scales
well below 99 kyr (Figure 1, Goodbred, 2003). Within smaller
SRSs along the western active margin of the Americas, offshore
turbidite systems recorded late Pleistocene to Holocene climatic
changes even with theoretical river response times of ∼100 kyr
(Figure 1, Covault et al., 2010; Bernhardt et al., 2017).

In summary, short period climate changes seem to be recorded
in marine stratigraphy offshore small and large river systems,
although the calculated river response times of large river systems
exceed the period of the climate changes. We propose, however,
that this discrepancy is only apparent, as different concepts are
compared. While each approach has its legitimacy, we believe that
inconsistencies are caused by two issues:

(1) The lack of a differentiation between different types of
‘signals’ and according differences in signal propagation.

(2) The river response time is different from the time it takes for
a measurable change in a sedimentary parameter to arrive
in the sink.

Terrestrial and marine sedimentary archives are the result
of a broad range of geomorphic processes along SRSs. Reliable
environmental reconstructions from those archives therefore
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FIGURE 1 | Schematic sketch of a continental-scale sediment routing system (SRS) from the upland source to the deep-marine sink. SRSs are typically subdivided
in a zone of erosion, sediment transfer, and sediment deposition. On a continental scale, SRSs comprise five landscape segments including hillslopes, fluvial system,
shelf, continental slope, and deep marine basins. Sampling sites of sediment archives discussed in the text are indicated with magenta colored symbols. The studies
referred to here are not exhaustive; please see the text for additional references. Black frame marks the erosion zone as discussed in Figure 3.

require interdisciplinary knowledge exchange, which relies on
a common and precise terminology. To overcome any current
deficiencies, we will (1) expand the definition of the term ‘signal’
and group signals in sub-categories related to hydraulic grain size
characteristics (see section “Definition of Signal and Hydraulic
Grain Size Fractions”), (2) clarify the different types of ‘times’
and propose a precise and consistent terminology for future use
(see section “Times Related to Landscape Response and Signal
Propagation”), and (3) compile and discuss factors influencing
the quantification of signal transfer related times along SRSs and
how those times vary with hydraulic grain size characteristics (see
section “Quantification of Signal Transfer Times”).

DEFINITION OF SIGNAL AND
HYDRAULIC GRAIN SIZE FRACTIONS

Environmental signals are typically defined as changes in the
amount of produced, transported, and deposited sediment (Qs
[m3 s−1 or kg s−1]) in response to a change in boundary
conditions (Romans et al., 2016 and references therein).
Therefore, many analog-material and numerical modeling
studies investigating the effects of changing boundary conditions

on signal propagation focus on changes in Qs (e.g., Allen
and Densmore, 2000; van den Berg van Saparoea and Postma,
2008; Simpson and Castelltort, 2012; Armitage et al., 2013;
Coulthard and Van De Wiel, 2013; Li Q. et al., 2018; Moussirou
and Bonnet, 2018; Tofelde et al., 2019). However, changes in
boundary conditions do not only affect the amount of transported
sediment, but can also alter the sediment grain size distribution
(Armitage et al., 2011; Parsons et al., 2012; D’Arcy et al., 2016,
2017; Schlunegger and Castelltort, 2016; Roda-Boluda et al., 2018;
Bataille et al., 2019), or its geochemical composition, and detrital
geochronological signature (Sharman et al., 2019; Lenard et al.,
2020). Therefore, we expand the definition of an environmental
signal: We define an environmental signal as a measurable
change in any sedimentary parameter of interest through time
that can be linked to an environmental change. The change in
the parameter can either be temporary or sustained.

This definition is in accordance with the broad range of
sedimentary parameters that are regularly measured in terrestrial
and marine sediment archives (yellow boxes in Figure 2). To
summarize some commonly measured sedimentary parameters,
we group them based on the sediment characteristics they
are related to. We sub-divide sediment characteristics by (1)
sediment amount (Qs), (2) size distribution, density and shape of
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FIGURE 2 | Subdivision of signals based on sediment characteristics. Information on boundary conditions can either be stored in the amount of sediment (or
anthropogenic particles) transported per time, the grain size and shape distribution of that sediment and its changes through time, or within the changing sediment
composition (blue boxes). Examples of parameters measured for environmental reconstructions (yellow boxes) can relate to any of those sediment characteristics.
Individual fractions of a sediment package can differ in their primary transport mode (brown boxes) and, hence, in times required to transport the sediment to the
sink. Therefore, we suggest to subdivide signals based on hydraulic grain size fraction. A hydraulic grain size fraction is defined by the size range of spherical quartz
grains, but includes other grains that are transported jointly due to similar hydraulic behavior. The presented list of regularly measured sedimentary parameters
(yellow boxes) is not exhaustive. TC, total carbon; TOC, total organic carbon; TIC, total inorganic carbon; POC, particulate organic carbon; DOC, dissolved organic
carbon; TCN, terrestrial cosmogenic nuclides; HMA, heavy mineral analysis; A&ZFT, apatite and zircon fission track; CIA, chemical index of alteration.

grains within a sediment package, and (3) sediment composition
(blue boxes in Figure 2). Parameters investigating the change
in Qs through time include, for example, accumulation rates in
one to three spatial dimensions (Covault and Graham, 2010;
Guillocheau et al., 2012; Hinderer, 2012; Jobe et al., 2015; Guerit
et al., 2016; Schlunegger and Castelltort, 2016; Hülscher et al.,
2019; Baby et al., 2020), the frequency and thickness of flow
events (Mulder et al., 2001; Ducassou et al., 2008; Romans et al.,
2009; Bernhardt et al., 2017), or varve thickness, particularly in
lake sediment (Zolitschka et al., 2015) (Figure 2).

The second group of parameters focuses on differences in the
characteristics of grains, such as grain size distributions (Duller
et al., 2010, 2019; Whittaker et al., 2010, 2011; Foreman et al.,
2012; Parsons et al., 2012; Dietze et al., 2014; Foreman, 2014;
D’Arcy et al., 2017; Roda-Boluda et al., 2018), median or other
characteristic grain sizes (D50, D84, sortable silt: McCave and
Hall, 2006; Schlunegger and Norton, 2015; Chen et al., 2018;
McCave and Andrews, 2019; Watkins et al., 2020), the location of
the gravel-sand transition in alluvial fans and river systems (Allen
et al., 2015; Dubille and Lavé, 2015; Blom et al., 2017; Dingle et al.,
2017, 2020; Armitage et al., 2018a), sorting and related textural

characteristics (e.g., in glacio-marine sediments: Anderson et al.,
1980; D’Orsay and Van De Poll, 1985; Pudsey, 1992; Helland
et al., 1997; Passchier et al., 2019), or grain shape (Stanley and
De Deckker, 2002; Kalińska and Nartišs, 2014).

The third group of parameters focuses on the sediment
composition. Here, we broadly consider organic and inorganic
sediment composition (lithological, mineralogical, elemental,
and isotopic composition) and include the geochronological and
thermochronological signature of detrital minerals. While some
compositional parameters can be measured on an entire sediment
(bulk) package, many are bound to a specific grain size fraction
(Figure 2). For example, magnetic susceptibility (Stoner et al.,
1995; Da Silva et al., 2013) or XRF scanning (Weltje and Tjallingii,
2008; Kujau et al., 2010; Ramisch et al., 2018) of sediment cores
measures the fraction of magnetic minerals and the elemental
composition of bulk sediment, respectively. In contrast, high and
low temperature detrital geo-/thermochronology is commonly
analyzed on sand-sized heavy minerals, such as zircon or apatite
(Weislogel et al., 2006; Heberer et al., 2011; O’Sullivan et al.,
2018; Sharman et al., 2018). Paleo-denudation rates inferred from
in situ cosmogenic nuclides in detrital sediments are mostly
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FIGURE 3 | Conceptual response of the fluvial system to an increase in upstream water discharge, Qw, relative to upstream sediment supply, Qs,in (left panel) or an
increase in uplift rate of the entire region relative to a fixed base level (right panel). (A) A step increase in either water discharge (A1) or uplift rate (A2) occurs between
the two points in time t0 and t1. (B) In response, the longitudinal river profiles adjust by incision along the entire profile (B1) or by elevating the river bed combined
with an upstream migrating knickpoint (B2). (C) The change in river bed elevation through time is displayed in detail for three locations along each profile L1 to L3.
(D) In addition to the topographic response of the landscape (B,C), signals are generated; for example, in the form of changes in sediment discharge at the basin
outlet, Qs,out. An increase in upstream Qw results in a temporary increase in Qs,out (D1). In contrast, an increase in regional uplift rate results in a sustained increase
in Qs,out (D2). This conceptual figure represents a summary of experimental and numerical works (see text for references).

measured in sand- and silt-sized quartz grains (Schaller et al.,
2004; Val et al., 2016; Lenard et al., 2020), although comparisons
of the same cosmogenic nuclide in different grain size fractions
at the same location have revealed great variability between
grain size fractions (Puchol et al., 2014; Carretier et al., 2015,
2019; Schildgen et al., 2016; Tofelde et al., 2018; van Dongen
et al., 2019). Finally, fluvially transported organic compounds,
for example leaf waxes from terrestrial plants, are regularly
analyzed for their hydrogen (δD) and carbon (δ13C) isotope
composition (Galy and Eglinton, 2011; Garcin et al., 2012; Sachse
et al., 2012; Schefuß et al., 2016; Diefendorf and Freimuth,
2017). Oftentimes, the organic fraction is extracted from a
certain sedimentary sub-fraction only, like the suspended load
(e.g., Galy et al., 2008; Ponton et al., 2014), bedload (e.g., Galy
et al., 2008; Galy and Eglinton, 2011), or from flood deposits
(Hoffmann et al., 2016). To investigate past biodiversity, recent
efforts advanced the analyses of ancient DNA preserved in
sediments (Dommain et al., 2020), which may be transported
together with silt and clay. For a detailed discussion on sediment
generation and composition we refer to the recent review by
Caracciolo (2020).

In summary, sedimentary parameters, and hence signals,
are measured on different sediment fractions. Consequently,
when investigating signal transfer and modification, we suggest
to group sediments in ‘hydraulic grain size fractions’ that are
transported jointly (Figure 2). We define a hydraulic grain size
fraction as a size range of spherical quartz grains (e.g., sand,
silt, etc.) and their hydraulic equivalents (blue boxes in middle
column, Figure 2). For example, a sand-sized platy mica grain
might be transported in the silt-sized hydraulic grain size fraction
due to lower settling velocity compared to quartz (Dietrich, 1982).
Sand-sized heavy minerals, such as zircons and apatite, may be
transported along with the hydraulic grain size fraction of small
gravel due to the high density of zircons and apatites (4.65 and
3.2 g cm−3, respectively) compared to quartz (2.65 g cm−3).
Similarly, particulate organic matter may be transported within
the clay-sized hydraulic grain size fraction (Galy et al., 2008;
Galy and Eglinton, 2011; Ponton et al., 2014). The dominant
sediment transport mode (bedload, suspended load, wash load,
dissolved load) varies with hydraulic grain size fraction (brown
bars, Figure 2). We acknowledge that the assumption of all grains
within a hydraulic grain size fraction being transported jointly
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is a simplification. Grains with similar characteristics can, for
example, be transported as suspended load or bedload (details in
section “Quantification of Signal Transfer Times”). However, we
base our sub-division on grain size and not on sediment transport
mode, as ancient sediments can be assigned a hydraulic grain size
fraction, but not a transport mode, and because many parameters
are measured on a certain grain size fraction.

The dominant transport mode of a distinct hydraulic grain
size fraction exerts a major control on sediment transport times
along SRSs. Sediment transport times, in turn, have direct
implications for signal propagation and modification within SRSs
(Chabaux et al., 2012; Carretier et al., 2019, 2020; Watkins et al.,
2020). Therefore, we propose to investigate signal propagation
not for bulk sediments, but for hydraulic grain size fractions
individually. In order to do so, we discuss the impact of
several boundary parameters on sediment transport times and
whether or not the impact of those parameters varies with
hydraulic grain size fraction (see section “Quantification of
Signal Transfer Times”). But first, in order to overcome any
discrepancies related to inconsistent terminology, we distinguish
relevant times of landscape response from times related to signal
propagation (see section “Times Related to Landscape Response
and Signal Propagation”).

TIMES RELATED TO LANDSCAPE
RESPONSE AND SIGNAL PROPAGATION

Landscapes respond to changes in boundary conditions by
adjusting their topography. These adjustments are most
pronounced in mountainous areas – the erosion zone
(Figure 1) – and can trigger severe changes in surface erosion
processes and within the hydrological regime. Also, during
landscape adjustment, signals are generated and transported
along SRSs to an area of final deposition. Naturally, different
times are of interest when studying landscape adjustment and
landscape shaping processes, compared to studies that aim
to reconstruct past environmental conditions from signals
preserved in sediment archives. From a landscape evolution
perspective, the recovery time of a landscape after a change
in boundary conditions is of major interest, while from a
reconstruction perspective, the primary interest is the timescale
of signal generation and signal transport to the sink (or the time
lag between a change in boundary conditions and signal arrival
in the archive). In this section, we first discuss timescales of
landscape response with a focus on river profiles, and second
timescales related to signal propagation.

Landscape Response Time
A landscape can either be in steady state or in transient state,
depending on whether the landscape is adjusted to the prevailing
boundary conditions or not (e.g., Mackin, 1948; Howard, 1982;
Allen, 2008b). Hence, a change in boundary conditions triggers
the adjustment of individual segments within a landscape. In the
terrestrial realm the adjustment of river profiles exerts a major
control on the state of the entire landscape, as rivers set the lower
boundary for hillslopes (e.g., Hurst et al., 2012; Golly et al., 2017).

Observations from several decades ago have already revealed that
river longitudinal profiles are dynamic features that constantly
adjust to changing boundary conditions at various temporal
and spatial scales (Huntington, 1907; Fisk, 1944; Mackin, 1948;
Lane, 1955; Hack, 1957; Bull, 1991). As such, the evolution of
longitudinal river profiles has been extensively studied in the field
(e.g., Hack, 1957; Merritts et al., 1994; Törnqvist, 1998; Whittaker
et al., 2008), in analog-material experiments (e.g., Lewis, 1944;
Begin et al., 1981; Gardner, 1983; van den Berg van Saparoea and
Postma, 2008; Rohais et al., 2012; Grimaud et al., 2016; Baynes
et al., 2018; Tofelde et al., 2019; Savi et al., 2020), and also by
using numerical models (e.g., Davy and Lague, 2009; Simpson
and Castelltort, 2012; Armitage et al., 2013, 2018b; Goren et al.,
2014; Nie et al., 2018; Wickert and Schildgen, 2019). Following
those previous studies, Figure 3 summarizes conceptually the
general response of a river following a step increase in upstream
water discharge (Qw) relative to upstream sediment supply (Qs,in)
(Figure 3A1) or an increase in tectonic uplift of the entire
region relative to a fixed base level (Figure 3A2). However, we
would like to emphasize that rivers are generally subdivided
into detachment-limited and transport-limited endmembers. In
detachment-limited rivers erosion is limited by the capacity
of channels to incise into their bed. In contrast, in transport-
limited rivers erosion is limited by the capacity of channels
to transport their sediment load. The rate of adjustment and
transient geometry will differ between detachment-limited and
transport-limited rivers (e.g., Davy and Lague, 2009). As such,
the evolution shown in Figure 3 is only a simplified summary
of several previous studies, some of which are listed above. The
evolution is shown for four distinct moments in time, t [s], before
(t0) and after (t1–t3) the change in boundary conditions. An
increase in upstream Qw triggers river incision along the entire
profile (Figure 3B1; e.g., Simpson and Castelltort, 2012; Tofelde
et al., 2019). Incision is most pronounced at the upstream end,
resulting in a net reduction in channel gradient. In contrast, an
increase in uplift rate of the entire region relative to a fixed base
level causes elevated river profiles and an upstream migrating
knickpoint, eventually resulting in a steeper channel gradient
(Figure 3B2; e.g., Kirby and Whipple, 2012). A knickpoint is
a point along a river profile that separates an upstream and
downstream reach of different steepness.

Topographic steady state is defined by no net changes in
elevation, z [m], through time, t [s] (Hack, 1960; Montgomery,
2001; Willett and Brandon, 2002). Following this concept, the
response time of a landscape describes the period of landscape
adjustment (landscape transience) after a change in boundary
condition (e.g., Howard, 1982; Whipple, 2001; Allen, 2008b;
Straub et al., 2020). Depending on how response times are
calculated (discussed below), it either describes the time to
reach full steady state conditions (e.g., δz/δt = 0) or the
time until the parameter of interest (i.e., z) has reached a
fraction of its initial value. Sometimes, instead of response
time, the term adjustment time (Schmid et al., 2018) is used.
However, as different parts of the landscape respond to the
same change in boundary conditions at different timescales
(e.g., Hurst et al., 2012; Tejedor et al., 2017; Turowski,
2020), Allen (2008b) cautioned against considering response
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FIGURE 4 | Conceptual diagram of landscape response times and proposed ‘times’ applicable to signals generated within and transported to different segments of
SRSs. Changes in boundary conditions (vertical red line) cause a topographic response in the landscape (A) and the generation of signals (B,C). Exemplary, the
proposed times are described on the two endmembers of signal shapes – temporary (B) or sustained (C) changes in the parameter of interest (e.g., Allen and
Densmore, 2000; Bonnet and Crave, 2003; Armitage et al., 2011). The shape of the topographic response and signal curves is based on a range of previous studies
(see text for details). We distinguish between distinct moments in time (letters) and periods of times (numbers) for both topographic and sediment parameter
changes. For detailed explanations on the different types of time see main text.

times too generally. Consequently, there have been a range of
approaches of how to calculate response times for different parts
within a landscape.

For signal propagation along SRSs, the response time of the
river profile (river response time) is of particular importance.
Following Allen (1974), Bull (1991) subdivided the river response
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in two components – the reaction time, which is the time lag
between the onset of change in boundary conditions and the
first topographic adjustment, and the relaxation time, which is
the time period between the first topographic adjustment and
the achievement of new steady state. In landscape evolution
models, in numerical landscape evolution models the change in
river elevation through space and time is most often described
either by the advective stream power equation for detachment-
limited rivers (e.g., Howard, 1994; Whipple and Tucker, 1999)
or by a diffusion equation for transport-limited rivers (e.g., Paola
et al., 1992; Wickert and Schildgen, 2019). The choice of equation
to model the evolution of river elevation determines how
river response times are calculated. Based on the stream-power
law related equation for detachment limited rivers, Whipple
and Tucker (1999) and Whipple (2001) derived equations for
calculating the river response time based on the time required for
the knickpoint to travel through the landscape length (equivalent
to Bull’s (1991) relaxation time; Figure 3B2). The same approach
can be used when channels are described as a continuum between
transport- and detachment-limited behaviors (Davy and Lague,
2009; Carretier et al., 2016; Yuan et al., 2019). For transport-
limited rivers, the river response time for a 1D fluvial system
was suggested to scale with channel length and the diffusion
coefficient and can be calculated following Eq. (1) (Howard, 1982;
Paola et al., 1992; Allen et al., 2013). Paola et al. (1992) termed
this the intrinsic equilibrium time. It is important to note that the
response time of a diffusion equation presumes a point change,
and a subsequent dispersion of this change through the system.
Alternatively, Howard (1982) and Simpson and Castelltort (2012)
suggested that the time to reach the new steady state elevation
profile in transport-limited channels can be estimated on the
basis of mass balance for the volume of sediment that needs to be
deposited or removed along the channel. Densmore et al. (2007b)
and Allen (2008b) named all those theory-based (diffusion or
advection) river response times, which describe the time of the
river longitudinal profile to attain new steady state, analytical
response times.

However, a response time can also be calculated when looking
at the evolution of a certain landscape parameter only through
time, that is for a single point in space or an average value
of a certain area (e.g., local or catchment mean elevation,
channel width, sediment discharge). A single parameter normally
approaches new steady conditions after a change in boundary
conditions asymptotically, which can be approximated by an
exponential equation (e.g., Kooi and Beaumont, 1996; Davy and
Crave, 2000; Lague et al., 2003; Wickert and Schildgen, 2019). For
example, while the evolution of the entire river profile through
time (Figure 3B) was described either by a wave or diffusion
equation, the change in elevation at a single point along this
river (L1–L3 in Figure 3C) through time behaves exponentially.
From an exponential curve, e-folding response times can be
calculated (Howard, 1982; Allen and Densmore, 2000; Densmore
et al., 2007a; Allen, 2008b; Wickert and Schildgen, 2019). For
an exponential decay curve as in Figure 3C1, one e-folding
time is equivalent to the time when the parameter of interest
has decreased to 37% (≈1/e) of its initial value, or when 63%
of the initial value is lost. After three e-folding times, 5% of

the initial value remains (95% are lost). In case of exponential
growth (Figure 3C2), one e-folding time is equivalent to the
time when the parameter of interest has increased by a factor
of e (∼2.718). Hence, landscape evolution studies have also
calculated response times by fitting an exponential curve to
a measured time series of a certain landscape parameter, for
example sediment discharge at the basin outlet (Densmore et al.,
2007a; Armitage et al., 2013; Wickert and Schildgen, 2019), mean
catchment erosion rate and mean fan deposition rate (Allen
and Densmore, 2000), or provenance changes in discharged
sediment (Sharman et al., 2019). Densmore et al. (2007b) and
Allen (2008b) named the response times measured by fitting an
exponential curve to a parameter time-series the relaxation time
(note that this relaxation time is different from the relaxation
time defined by Bull (1991) and Allen (1974) as described above).
However, it should be emphasized that an exponential curve
asymptotically approaches a new steady state, but never reaches
steady state. As analytical response times and e-folding times
differ in a fundamental assumption – the first assuming the
achievement of steady state and the latter not – the two concepts
are incompatible.

Signal Related Times
In addition to landscape or river response times, specific signal-
related times can be defined. Here, we propose times and
terminology applicable to all types of signals as defined above.
To illustrate this, we first discuss two endmember signal patterns
(Figure 3D), and then define specific signal-related times for
those patterns (Figure 4). The parameter of interest used as
an example is the sediment discharge amount at the basin
outlet, Qs,out .

Landscape adjustment after a change in boundary conditions
triggers signal generation. Numerical and experimental studies
have shown that a step increase in upstream Qw (while keeping
Qs,in constant) causes a temporary peak in Qs,out due to river
incision, i.e., erosion of underlying rock or remobilization of
sediment (Figure 3D1; e.g., Allen and Densmore, 2000; van den
Berg van Saparoea and Postma, 2008; Armitage et al., 2011, 2013,
2018b; Tofelde et al., 2019; Zhang et al., 2020). An equivalent
example in nature would be enhanced sediment discharge after
a flood event. Cook et al. (2018) monitored suspended sediment
discharge in the Bothe Koshi (Nepal) before, during, and after
a glacial lake outburst flood. The outburst flood caused a
sudden increase in sediment discharge that return to initial
values over the course of ca. 2 weeks (Figure 3D1). On longer
timescales glacial melt at the end of glacial phases can enhance
water discharge relative to upstream sediment supply. This fast
increase in discharge can trigger river incision, in particular at
the upstream end (Figure 3B1). Poisson and Avouac (2004)
reconstructed river longitudinal profiles preserved in terraces
throughout the Holocene in the Tien Shan. They observed a
continuous decrease in channel gradient due to greater incision
at the upstream end compared to further downstream. In
contrast, experimental and numerical work has shown that a step
increase in tectonic uplift rate will cause an upstream migrating
knickpoint and generate a delayed, but sustained, increase in
Qs,out (Figure 3D2; e.g., Bonnet and Crave, 2003; Armitage et al.,
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2011; Wickert and Schildgen, 2019; Zhang et al., 2020). For
example, the Mendocino Triple Junction in northern California
(United States) is characterized by a latitudinal gradient in uplift
rates (Merritts and Bull, 1989). The locus of highest uplift rates is
migrating though time and the transient adjustment of individual
catchments to changing uplift rates is today detectable in the
longitudinal river profiles (Snyder et al., 2000; Clubb et al., 2020),
as well as in cosmogenic nuclide derived catchment average
denudation rates (Moon et al., 2018).

Times Related to Signal Generation
Based on those two simplified endmembers of signal shapes (a
temporary or a sustained change in the parameter of interest;
Figure 3D) summarized from previous studies (e.g., Allen
and Densmore, 2000; Bonnet and Crave, 2003; van den Berg
van Saparoea and Postma, 2008; Armitage et al., 2011, 2013;
Simpson and Castelltort, 2012; Tofelde et al., 2019; Wickert and
Schildgen, 2019), we propose a general terminology of signal
related times that can be applied to any kind of environmental
signal (Figure 4). We differentiate between distinct moments in
time (vertical lines and letters) and periods of time (horizontal
arrows and numbers). After a change in boundary conditions (A),
the landscape responds by adjusting its topography until steady
state conditions are achieved again (B; Figure 4A). The required
time is referred to as landscape response time (1; see section
“Landscape Response Time”). Adjustments of the landscape
generate signals, i.e., measurable changes in certain sediment
parameters (Figures 4B,C). In the context of signal generation,
we present and discuss the following two signal related time
periods: the signal onset time (2) and the signal duration time (3).

We define the signal onset time (2) as the time period
between the onset of a change in boundary conditions (A) and
the onset of change in a sediment parameter (C). The signal
onset time is equivalent to the sediment flux lag time by Li Q.
et al. (2018), who investigated numerically how long expected
increases or decreases in Qs lag behind periodic step changes
in uplift rates. They found that signal onset times increase the
farther the landscape was from steady state prior to the change
in boundary conditions (Li Q. et al., 2018), which is particularly
important for cyclic climate fluctuations (e.g., Milankovitch-
driven climate changes). In addition to prior landscape state,
signal onset times depend on the parameter of interest. For
example, an increase in uplift rates and tectonic activity might
affect the grain size distribution in fluvial sediments relatively
fast, while it takes longer until this change becomes detectable
in samples for detrital thermochronology (e.g., Whittaker et al.,
2010; Roda-Boluda et al., 2018).

Once a signal is generated, it persists until the parameter
attains a stable value again (D). Hence, we define the signal
duration time (3) as the time period characterized by a
measurable change in a sediment parameter (δ Parameter/δ
t 6= 0). Our definition is equivalent to the signal response time
of Sharman et al. (2019) that describes the time until a sediment
parameter attains a steady value within a certain percentage
again. The signal duration time, as we define it, lasts at least as
long as the transient landscape response phase, and potentially
beyond. Consequently, during signal duration times fluvial

sediments carry mixed information from parts of the landscape
adjusted to prior and new conditions. A measured parameter
represents current conditions within the landscape only once
this parameter is fully adjusted to new steady conditions (end
of signal duration, D). For example, the 10Be concentration in
fluvially transported sediments are regularly applied as a proxy
to estimate catchment averaged denudation rates (Balco and
Stone, 2005; Charreau et al., 2011; Mandal et al., 2015; Puchol
et al., 2017; Mariotti et al., 2019). A theoretical step change in
a catchment averaged denudation rate causes an exponential
adjustment in detrital 10Be concentrations. Hence, during the
period of 10Be adjustment, the denudation rate calculated from
10Be in detrital sediments differs from true denudation rates
(Willenbring et al., 2013; Garcin et al., 2017; Mudd, 2017;
Mason and Romans, 2018). Thus, if boundary conditions change
at a period shorter than parameter-specific signal onset (2)
and signal duration times (3), the measured parameter never
represents current landscape conditions. However, it does not
mean that no signals are generated, nor that no information
can be extracted from sedimentary signals. Signals, as we define
them, are particularly generated during landscape transience,
and hence can be used to identify times of environmental
changes. Quantitative reconstructions of true current landscape
conditions, however, are limited to times when the measured
parameters are constant throughout the time period of interest or
with additional knowledge on signal mixing within a landscape.

Times Related to Signal Transfer
Signals are typically generated in mountainous areas where
sediment is produced (erosion zone). To be preserved in
sedimentary archives, the signal-carrying sediments need to be
transported along SRSs to their deposition zone, which requires
time. In the context of signal transfer, we present and discuss
the following two time periods: the signal transfer time (4) and
the total signal lag time (5). When reconstructing past conditions
from sedimentary archives, the arrival time of the first measurable
change of a parameter in the deposition zone (E) (which can
be continental or marine) is important. We define the signal
transfer time (4) as the time between the onset of signal
generation in the source (C) and the signal arrival time in
the sink (E). Signal transfer times are expected to vary with the
parameter of interest (due to grain size dependent differences
in transport mode) and from archive to archive (due to
differences in catchment size and hydraulic conditions; detailed
discussion in section “Quantification of Signal Transfer Times”).
Consequently, a single local change in boundary conditions can
result in different times of a first detectable parameter change in
the sink, as well as in differences in signal duration (e.g., Ramisch
et al., 2018).

Moreover, we define the total signal lag time (5) as the total
time between the change in boundary conditions (A) and the
signal arrival in the sink (E). The total signal lag time is the
sum of the signal onset time (2) and the signal transfer time (4).
Oftentimes, studies refer to the total signal lag time simply as the
lag time (Goodbred and Kuehl, 2000; Goodbred, 2003; Covault
et al., 2010; Duller et al., 2019). For example, the Paleocene-
Eocene boundary is characterized by a global warming event with
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an abrupt onset referred to as the Paleocene/Eocene Thermal
Maximum (PETM), defined by an abrupt negative excursion in
soil carbon isotopes, δ13C (McInerney and Wing, 2011). Studies
from the central US (Foreman et al., 2012; Foreman, 2014)
and the Spanish Pyrenees (Schmitz and Pujalte, 2003, 2007;
Chen et al., 2018) have related extensive sheets of coarser fluvial
sediments during the PETM to increased seasonal precipitation,
despite overall drier climate conditions. Manners et al. (2013)
and Duller et al. (2019) attempted to quantify the total signal
lag time between the onset of the PETM and the onset of the
change in depositional style both in the terrestrial and marine
realm. Based on bulk organic carbon profiles, they suggested a
total signal lag time of ∼16 kyr in both proximal non-marine
and distal deep-marine sites separated by ∼300 km distance.
However, the authors acknowledge that this is an upper estimate
and a substantially shorter total signal lag time cannot be excluded
(Pujalte and Schmitz, 2014).

We want to emphasize that reconstructions of past conditions
from signals in sedimentary archives face further challenges in
addition to the quantification of signal related times. Additional
complications include (1) the modification or destruction of
signals during transport along SRSs (modification indicated
by transparent vs. solid yellow curves in Figure 4; Jerolmack
and Paola, 2010; van de Wiel and Coulthard, 2010; Romans
et al., 2016; Allen, 2017; Scheingross et al., 2020), (2) non-
continuous sedimentation resulting in incomplete stratigraphic
records (Sadler, 1981; Tipper, 1983; Anders et al., 1987; Strauss
and Sadler, 1989; Ager, 1993; Kemp, 2012; Miall, 2015; Trampush
and Hajek, 2017), (3) substantial modification of stratigraphy
and signals after deposition, e.g., by bioturbation (e.g., Wetzel,
1984; Courtene-Jones et al., 2017) or chemical alteration (e.g.,
Lynn and Bonatti, 1965; Bouchez et al., 2010), (4) second order
responses or internal feedback mechanisms within a SRS (e.g.,
Schumm, 1973; Steffen et al., 2010; Ramisch et al., 2018), or
(5) event cascades or compound events. In an event cascade
one event triggers further subsequent events, like a wildfire
leading to reduced vegetation cover and eventually higher
erosion rates (e.g., Moody and Martin, 2001; Kemter et al.,
2021). Compound events describe a response related to the
simultaneous occurrence of several forcings or drivers (e.g.,
Leonard et al., 2014; Zscheischler et al., 2018). Discussing all
those challenges is beyond the scope of this work. But as we
are particularly discussing times related to signal propagation,
we point to the recent review by Straub et al. (2020), who
propose the compensation timescale (Tc) to quantify timescales
of geomorphic stochasticity in stratigraphy and to address the
challenge of non-continuous sedimentation (Sheets et al., 2002;
Wang et al., 2011; Straub et al., 2020). Here, for the purpose of
discussing challenges related to the quantification of the different
proposed times, we assume that signals have not been completely
obscured during transport, and are preserved and measurable in
the stratigraphic record.

In summary, signals are initiated during transient landscape
response and can be transported through the SRS and arrive in
the sink (E) even before the characteristic river response time
has passed (B), such that the total signal lag time (5) can be
shorter than the river response time (1) (Figure 4, Shen et al.,

2012; Straub et al., 2020). These signals indicate changes in
boundary conditions and are not representative of steady state
conditions. It is the generation of a sediment parameter change,
its transport and the archiving during this transient state that are
poorly understood, but hold high potential for rapid imprint of
environmental changes in the stratigraphic record.

QUANTIFICATION OF SIGNAL
TRANSFER TIMES

For paleo-reconstructions from sedimentary archives the total
signal lag time – the time between the change in boundary
condition and the arrival of the signal in the sink – is of
particular importance. In sedimentary archives we can only
measure signal arrival times. Hence, we need to estimate
signal onset times and signal transfer times in order to
relate the signal to a specific environmental change. In this
section, we focus particularly on the quantification of signal
transfer times. In order to calculate signal transfer times, we
need to quantify sediment transport times of the hydraulic
grain size fraction(s) the signal is bound to. In Section
“Sediment Transport Times,” we discuss which parameters
impact sediment transport times, how sediment transport times
vary with hydraulic grain size fractions, and how sediment
transport times can be quantified. In Section “Signal Arrival
Times,” we then discuss theoretical consequences of grain size
dependent sediment transport times regarding signal arrival times
and the stratigraphic record. In addition, we briefly address
the dependency of a parameter of interest on complete or
partial sediment transfer, and the according implications on
signal arrival times.

Sediment Transport Times
Signal transfer time describes the required time for a signal
to travel to the deposition zone. As such, the signal transfer
time greatly depends on the duration of sediment transport,
the sediment transport time. Assuming a simple case in which
a grain travels permanently in suspension at the same speed
as water, and assuming an average travel speed of water
of ∼1 m s−1 (e.g., Schulze et al., 2005), the grain could
travel ca. 90 km per day. Hence, if transported without any
deposition, a single grain in suspension could theoretically reach
the ocean in a 1000 km long river in less than 2 weeks.
However, in reality even grains transported in suspension
do not travel at the same speed as water, and transport is
frequently interrupted by phases of deposition (e.g., Parsons et al.,
2015). Also, signals are rarely measured on a single grain, but
rather at an amalgamation of grains. Individual grains, in turn,
follow different trajectories, where grain transport is interrupted
by phases of no transport of variable duration. Because we
cannot measure sediment transport times for each individual
grain (also see section “Quantification of Sediment Transport
Times”), sediment transport times of a certain sediment fraction
are better represented by a probability distribution instead
of a single value.
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FIGURE 5 | Schematic summary of factors influencing sediment transport
times in channelized systems. (A) Sediment transport times depend on the
fraction of time a grain is in motion versus immobile within the active channel,
and the probability of storage outside the active channel. Both, the time in
motion and probability of storage, depend on a range of factors, which
themselves range between endmembers as indicated in italics. Accordingly,
the sediment transport times range from short (dark colors) to long (white
colors). Factors that vary greatly with hydraulic grain size fraction are marked
in blue, factors that vary less between grain sizes are shown in gray. Green
and blue font indicates the locations where these factors apply in the fluvial
and marine realm, respectively. (B) Schematic summary of channel evolution
terms.

We think that sediment transport times are governed by
two main factors summarized in Figure 5: (1) the fraction
of time a grain is mobile vs. immobile within the active
channel and (2) the fraction of time a grain is transiently
stored outside the active channel. Short sediment transport
times (dark colors in Figure 5) are the result of high grain
mobility and short transient storage, whereas dominantly
immobile grains and long storage result in long sediment
transport times (light colors in Figure 5). Both, the fraction
of time in motion and storage outside the active channel,
depend on a range of parameters, some of which vary with
hydraulic grain size fractions (blue), while others are less
dependent on hydraulic grain size fractions (gray). Because
individual grains follow different trajectories, we discuss how
the different parameters impact the probability of storage
of a single grain.

Times of Sediment in Motion vs. Static
In the simple case of a spatially fixed, single-thread river channel
with no overbank flow (no storage outside the active channel),
the transport time of a certain grain is only determined by the
fraction of time the grain is mobile versus sitting immobile
on the river bed. Sediment particles sitting on the bed can
get entrained and bedload transport persists, when the ratio
of shear stress exerted by the water column on the river bed
and resisting forces of the particle itself exceeds a certain
threshold, the so-called critical Shields stress or τ

∗

c (Figure
5A; Shields, 1936; Wiberg and Smith, 1987). The shear stress
exerted by the moving water column on the river bed (= bed
shear stress) increases with water depth and channel gradient
(e.g., Tucker and Slingerland, 1997), and thus, varies with
discharge conditions. Not only the total amount of discharge
plays a role, but also the distribution of discharge through
time, e.g., its seasonality or the frequency and magnitude of
flooding events (Haynes and Pender, 2007; Gugliotta et al.,
2016). In contrast, resisting forces of the grain increase with
grain size and grain density. τ

∗

c has been shown to vary
little among many rivers (∼0.03 to 0.06) and is therefore
often considered as constant for a given site (e.g., Meyer-
Peter and Müller, 1948; Buffington and Montgomery, 1997;
Wilcock and Crowe, 2003).

However, several recent studies indicate that τ
∗

c cannot simply
be regarded as a constant, especially not for steeper rivers
(slope > 5%), but varies with channel slope (Lamb et al., 2008;
Recking et al., 2009; Scheingross et al., 2013; Prancevic and
Lamb, 2015), previous flow conditions (Turowski et al., 2011;
Masteller et al., 2019), or sand content (Wilcock and Crowe,
2003; Curran and Wilcock, 2005; Lamb et al., 2008; Houssais
and Lajeunesse, 2012), thus complicating the relationship
between grain characteristics and according sediment transport
times. In addition, initiation of grain motion gets even more
complicated in poorly sorted sediments due to the hiding-
exposure effect, as well as mixed grain shapes and densities
(Parker et al., 1982; Wilcock and Crowe, 2003; Pfeiffer and
Finnegan, 2018). The hiding-exposure effect describes that small
grains can be protected from the initiation of motion when
they hide in pockets between larger grains, thereby increasing
τ
∗

c . In contrast, coarse grains surrounded by fine grains can
protrude further from the bed into the water column than
the fine grains and are exposed to increased drag, thereby
decreasing τ

∗

c . Motion initiation on clay-sized particles may
in addition be hindered by cohesion effects (e.g., Hjulstrom,
1955), as τ

∗

c of cohesive sediment mixtures exceed τ
∗

c of
size-equivalent cohesionless sediments by a factor up to 50
(Kothyari and Jain, 2008).

In summary, small grains with low densities (cf. small
hydraulic grain size fraction) are generally more frequently
mobile under constant flow conditions than coarse and
dense grains, as they require a lower bed shear stress to
initiate motion. Consequently, their sediment transport times
are shorter. However, factors like heterogenous grain size
distributions (hiding-exposure effect, sand-content), channel
geometry, previous flow-conditions, or cohesion effects can add
complexity to this rule-of-thumb.
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In channelized systems in the marine realm, grains will also
be entrained when τ

∗

c is exceeded (Figure 5A). However, while
on land the bed shear stress acting on bed sediments is mainly
exerted by the overlying water column, the bed shear stress in
marine canyons and channels largely depends on the character of
sediment gravity flows (such as turbidity currents) within these
sediment conduits (Piper, 1970; Cossu and Wells, 2012; Talling,
2014). Turbidity currents have the ability to erode sediments
from the seafloor, if they are moving fast enough so that their
bed shear stress exceeds the critical value, τ

∗

c , of the sediment
on the seafloor. Seafloor erosion causes an increase in flow
density, which leads to acceleration and eventually even more
erosion; a process known as self-acceleration (e.g., Heerema
et al., 2020). Laboratory experiments and direct monitoring
have shown that turbidity currents are highly density stratified
and their basal layer is characterized by the highest sediment
concentrations (Cossu and Wells, 2012 and references therein;
Paull et al., 2018). The probability of initiation of grain motion
will be highest, where turbidity currents occur at high frequency,
carry large sediment volumes and coarse grain sizes. A setting
of high confinement (synonyms: channelization or topographic
roughness), such as deep submarine canyons and channels,
facilitates initiation of grain motion.

Probability of Transient Storage
In addition to times of no sediment transport within a confined
channel due to flow conditions not exceeding the initiation of
sediment motion on the river bed or sea floor, sediment transport
times can be increased due to sediment storage along the SRS
outside of the active channel. The concept of SRS connectivity
describes sediment transfer from all potential sources to all sinks
through different geomorphic segments of the SRS and can
be used to describe the continuity of mass transfer in a SRS
(Hinderer, 2012; Fryirs, 2013; Bracken et al., 2015; see Najafi
et al., 2021 for a recent review). A high degree of connectivity
(Figure 5A) allows fast sediment transfer, while a low degree of
connectivity results in sediment storage within different segments
of the SRS (hillslope, fluvial system, shelf, continental slope, deep-
marine basins). A first attempt to quantify the storage potential
of a SRS has been proposed by Walling (1983), who defined the
sediment delivery ratio as the ratio of sediment discharge at a
certain point along the river relative to the amount of produced
sediment upstream within a certain time. The sediment delivery
ratio has been applied as a measure of connectivity, with high
delivery ratios indicating low storage potential and vice versa
(e.g., Walling, 1983; Hooke, 2003; Heckmann and Vericat, 2018).
However, there has been further debate on whether the sediment
delivery ratio is a useful measure for connectivity (for more details
see e.g., Parsons et al., 2006; De Vente et al., 2007; Fryirs, 2013),
resulting in the ongoing lack of agreement on how connectivity
can be properly quantified (Hoffmann, 2015; Najafi et al., 2021).

On land, sediment can be stored on hillslopes due to reduced
hillslope-channel connectivity (Figure 5; DiBiase and Lamb,
2013; Hoffmann, 2015; Harries et al., 2021) and within the river
system. Overbank flow, as well as lateral and vertical movement of
the active channel can result in long-term sediment incorporation
in floodplains (Nakamura and Kikuchi, 1996; Wittmann et al.,

2011, 2020; Bradley and Tucker, 2013; Coulthard and Van De
Wiel, 2013), alluvial fans (Jolivet et al., 2014; D’Arcy et al., 2015,
2017; Guerit et al., 2016; Mason and Romans, 2018; Carretier
et al., 2020), fluvial terraces (Blöthe and Korup, 2013; Limaye
and Lamb, 2016; Schildgen et al., 2016; Malatesta et al., 2017,
2018; Tofelde et al., 2017; Quick et al., 2019), or entire valley fills
(Hilley and Strecker, 2005). As storage along the fluvial system
on continental scale SRSs is of major importance, we discuss
storage outside the active river channel in form of (1) floodplain
deposition due to overbank flow, (2) burial in the channel bed due
to sediment deposition during periods of channel aggradation,
and (3) deposition due to lateral channel movements (e.g., point
bar accretion) (Figures 5A,B).

First, during floods causing overbank flow, sediments can
be washed onto the floodplain, where they can remain
for long times before remobilization (Figure 1; Wittmann
et al., 2011, 2020). The likelihood of being deposited on the
floodplain due to overbank flow, in turn, varies with the
mode of transport. Fine particles, including sand, silt, and
clay, more often travel in suspension in the water column
(Shields, 1936) and are more likely to be deposited on the
floodplain during overbank flow conditions. In contrast, coarse
particles, such as gravel, are usually transported as bedload
(Shields, 1936) and therefore remain within the channel bed
even during overbank flow conditions. Consequently, gravel
has a lower probability of being washed onto floodplains
(Malmon et al., 2003).

Second, storage probability is increased if rivers are in a
phase of aggradation and, hence, bury sediments in their beds
(Figure 5B). Transport-limited rivers respond with sediment
deposition along the channel to steepen their gradient, for
example, following an increase in the upstream sediment-to-
water discharge ratio (e.g., van den Berg van Saparoea and
Postma, 2008; Armitage et al., 2013; Tofelde et al., 2019).
Alternatively, base level rise (e.g., Blum and Törnqvist, 2000;
Blum et al., 2013) or permanent subsidence of a terrestrial basin
(e.g., Allen and Densmore, 2000; Whittaker et al., 2010) can
lead to sediment deposition along the channel. In the absence of
lateral channel movement, those buried sediments will only be
remobilized if changes in boundary conditions trigger a switch
from channel aggradation to channel incision, for example, by
base level lowering or by a decrease in the upstream sediment-
to-water discharge ratio (Allen and Densmore, 2000; van den
Berg van Saparoea and Postma, 2008; Armitage et al., 2013;
Tofelde et al., 2019).

Third, sediment gets stored due to lateral channel movement
(Figure 5B). Sediments of all grain size fractions can be deposited
when the active channel steps sideways either through avulsion
(Slingerland and Smith, 2004; Jerolmack and Mohrig, 2007) or by
gradual sideways migration and associated accretion of barforms
(Einstein, 1926; Hickin and Nanson, 1984; Bufe et al., 2019).
However, it should be noted that lateral channel mobility can also
remobilize previously deposited sediments through erosion (e.g.,
Blum et al., 2013). Therefore, lateral channel mobility increases
the storage probability of sediments in motion within the active
channel, but decreases the storage probability of previously
deposited sediment.

Frontiers in Earth Science | www.frontiersin.org 12 April 2021 | Volume 9 | Article 628315

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-628315 April 21, 2021 Time: 16:32 # 13

Tofelde et al. Times of Signal Propagation

In the ocean, sediment can be stored proximal in deltas
(e.g., Jonell et al., 2017) and on the shelf (Ogston et al., 2000;
Wheatcroft and Sommerfield, 2005; Miller and Kuehl, 2010),
and more distal in submarine canyons (Brocheray et al., 2014;
Maier et al., 2019), in intraslope basins (Bernhardt et al., 2017),
in submarine channels (Jobe et al., 2015) and their levees
(Dennielou et al., 2006; Jorry et al., 2011; Toucanne et al.,
2012; Bonneau et al., 2014; Hülscher et al., 2019), within lobes
in submarine fans (Prélat and Hodgson, 2013; Spychala et al.,
2017; Hessler and Fildani, 2019), within basin-plain turbidites
(Romans et al., 2009; Clare et al., 2015), and within hemipelagic
sedimentation (Pelejero et al., 1999). Whereas a high degree
of connectivity between any segment of SRSs reduces sediment
transport times (cf. sediment delivery ratio), the connectivity at
the land-ocean transition is of particular importance. In highly
connected SRSs, grains can travel unhindered from land to the
ocean and are discharged directly into the submarine canyon
and onto the marine basin floor (Romans et al., 2009; Covault
and Graham, 2010; Bernhardt et al., 2017; Blum et al., 2018).
Continental shelves have traditionally been seen as transient
sedimentary sinks, however, several studies have recognized that
shelves can act as fast conveyors of sediment from land to the
deep ocean, if canyon heads are incised across continental shelves
and tap into coast-parallel sediment transport (the ocean littoral
cell) or are connected to a river mouth (Figure 1; Walsh and
Nittrouer, 2003; Covault and Graham, 2010; Bernhardt et al.,
2015), if terrigenous sediment supply is high enough to cause
delta migration to the shelf edge (Burgess and Hovius, 1998;
Carvajal and Steel, 2006), or if coast-parallel bottom currents
sweep sediment off the shelf edge or into submarine canyons
(Bernhardt et al., 2016). Hence, sediment transport to submarine
fans is most efficient when connectivity is high, which in many
(but not all) systems is enhanced during sea level lowstand,
because river mouths extend to the shelf edge and discharge
directly into slope canyons (Sweet and Blum, 2016; Blum et al.,
2018). However, several recent studies have shown that even
in times of high connectivity sediment transport processes at
the shelf edge are a critical factor determining the amount and
rate of sediment delivered to the continental slope and deep-
sea basins (Dixon et al., 2012; Hodgson et al., 2018; Cosgrove
et al., 2020). Moreover, many sediment density flows die out
in the upper reaches of the marine SRS (Heerema et al., 2020),
leading to intermediate storage of sediments along canyons and
in channel-levee systems. Such sediments may reach the final
sediment archive only after remobilization by stronger flows.

In the distal part of a marine SRSs, sediment can be
buried in submarine channels by processes similar to terrestrial
channels (Figure 5). Although the dynamics and frequencies
of lateral (avulsion and lateral migration) and vertical (incision
vs. aggradation) submarine channel movements differ from
terrestrial rivers (e.g., Jobe et al., 2020), the general effect
of lateral and vertical submarine channel movement on
sediment transport times should be analogous to terrestrial
river dynamics explained above. Different to terrestrial rivers
are sediment deposition processes related to turbidity currents
within submarine channels. Turbidity currents form large clouds
of suspended sediment that can be several 10s of meters

(Azpiroz-Zabala et al., 2017) to several 100s meter in height
(Völker et al., 2008). Superelevation induces the diluted (fine-
grained) upper sediment cloud of the turbidity current to
spill over and deposit sediment onto the levees (overspill/flow
stripping), while eroding, bypassing, and/or depositing within the
channel itself (Normark et al., 1980; Piper and Normark, 1983;
Fildani et al., 2006; Straub and Mohrig, 2008).

In summary, the storage and remobilization of sediments
on their way to the depositional segment is a major source of
complexity to unravel climatic, tectonic, or anthropogenic events
within sedimentary archives. This is why accurate methods to
quantify the transport time of the sediments from sources to
sinks are deeply needed. Therefore, we briefly review current
approaches to quantify sediment transport before discussing
challenges related to signal arrival times.

Quantification of Sediment Transport Times
Quantification of sediment transport times requires the
determination of the velocity of a grain at various scales:
from motion within an active channel to motion at the scale of
the whole SRS. In this section, we focus on methods developed to
measure the total transport time of sediment.

Short-lived radionuclides (e.g., 234Th, 7Be, 210Pb, 137Cs) can be
used to quantify timing of fine-grained sediment dispersal along
SRSs over short timescales (100–102 year) (Zapata and Nguyen,
2009; Du et al., 2012). Malmon et al. (2005) showed that the fine-
grained fraction can pass through a fluvial valley of 5 km length
within hours. Similarly, fine-grained fluvial flood sediments of the
Eel River were dispersed widely over the shelf and continental
slope to about 500 m water depth in 1 month (Sommerfield
and Nittrouer, 1999). Direct tracing of gravel transport using
integrated transponder tags is only applicable to the gravel grain
size fraction and on short timescales (Lamarre et al., 2005).
Applying this method, among others Bradley and Tucker (2012)
recorded mean and maximum travel distances of ∼100 m and
∼700 m, respectively, over 3.5 year.

At longer timescales (>103 year), periods of storage and
remobilization are frequently documented. This intermittent
transport considerably increases the total transport time. On
small grains (<63 microns), uranium-isotope series can be used
to determine a ‘comminution age,’ which refers to the time
elapsed between the generation of the silt-sized sediment grain
by comminution of bedrock and its deposition (DePaolo et al.,
2006). The sediment transport time refers to the time difference
between the comminution age and its depositional age (Chabaux
et al., 2006; DePaolo et al., 2006; Li et al., 2016). Following
this approach, Suresh et al. (2014) demonstrated that the small
grains of the large and tectonically stable Murrumbidgee River
catchment (Australia) are stored for ∼200 kyr on hillslopes
before they can reach the river network and be evacuated from
the catchment area. Using the same method, Li et al. (2016)
quantified the transport time of the sediments deposited in the
Okinawa Trough (East China Sea), which is mainly fed by the
Yangtze River and by sediments coming from Taiwan. They
documented transport times on the order of 100 to 200 kyr.
Moreover, DePaolo et al. (2006) measured sediment transport
times to a deep-marine site with depositional ages < 1 Myr. They
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FIGURE 6 | Hypothetical behavior of signal arrival times in the deposition area if signal transfer times vary with hydraulic grain size fractions. Time of signal arrival of
two signals bound to different hydraulic grain size fractions in (A) representation of parameter expression versus time and (B) schematic expression in the
stratigraphic record. This is one expression of many possible scenarios and is not meant to imply a general prediction (see text for discussion).

observed transport times ranging between 10 kyr up to 400–
600 kyr with uncertainties of ±40 to ±100 kyr. The duration
of sediment storage outside the active river channel can also
be measured from the ratio of cosmogenic meteoritic 10Be
over 9Be within sediments (Wittmann et al., 2015). Repasch
et al. (2020) tested this method along the Rio Bermejo (Andean
foreland basin, northern Argentina) and observed that the
suspended load travels ∼1200 km from sources to sink in
8.4± 2.2 kyr.

The concentration of several cosmogenic nuclides can also
be used to determine periods of burial and remobilization. For
example, Fülöp et al. (2020) showed successions of burial and
remobilization in the modern sediments of the Murray-Darling
basin (Australia) that led to a total transport time of more
than 1 Myr. Similarly, Dosseto et al. (2006) showed that the
suspended load issued from the Andes and traveling through the
Amazon basin is temporarily stored within the foreland basin
for ∼5 kyr. For the coarse-grained fraction, Sinclair et al. (2019)
documented recycling of pebbles deposited 5 Myr ago based on
detrital cosmogenic 21Ne concentrations. This is in line with the
numerical work from Carretier et al. (2020), which showed that
even in a steady state landscape, some pebbles can be stored for
a period of time substantially longer than the average population
of sediments due to the river dynamics and landscape geometry.
In their specific numerical setup, most of the grains leave the
piedmont after 400 year, but∼5% are still there after 1 Myr.

Finally, Clift et al. (2008) used the Nd composition on a limited
set of samples from the Indus SRS, to suggest that the clay-sized
fraction travels as suspended load rapidly through the system
after an increase in monsoon strength with no resolvable lag time,
while the bedload fraction takes 7–14 kyr to reach the sink (Clift
and Giosan, 2014). At longer-time scale, Auchter et al. (2020)
used the strontium isotope signal in marine carbonate particles to
show that remobilization can occur within a depositional basin at
million-year timescale.

Rather than measuring the time during which the sediment
has been stored, Carretier and Regard (2011) demonstrated that
the concentration in terrestrial cosmogenic nuclides of boulders
can be used to determine the rate of transport of a grain,
when abrasion is limited. Building on this approach, Carretier
et al. (2019) provide field evidence that sediment can be stored
for a substantial amount of time (tens of thousands of years)

on their way to the sedimentary basins simply by the way
rivers transport sediments. A new tool for quantifying sediment
transport times is being developed using subaqueous bleaching
rates of optically stimulated luminescence (OSL) in quartz and
feldspar. Observations indicate that grains progressively bleach
during transport, making the degree of bleaching a potential tool
for measuring sediment transport times (e.g., Gray et al., 2017;
Mey et al., 2020).

Signal Arrival Times
The signal arrival time in the deposition zone marks the end of
the signal transfer time and total signal lag time (Figure 4). First,
we examine the consequences of grain-size related differences
in sediment transport times with respect to signal arrival times
in stratigraphy. Then, we briefly discuss an additional challenge
related to the detection of signal onset in the stratigraphic record:
how much of the signal-containing sediment fraction needs to
arrive in the sink in order for the signal to be detectable (we define
this as parameter sensitivity).

Hydraulic Grain Size Dependent Signal Arrival Times
As previously discussed, sediment transport times, and thus signal
transfer times, vary with hydraulic grain size fractions (Figure 5).
Consider a simple hypothetical scenario where hydraulic grain
size fraction is directly related to signal transfer time such
that fine-grained sediment transmits catchment signals quickly,
whereas signals associated with coarse-grained sediment are
comparably slower (Carretier et al., 2020; Watkins et al., 2020).
The theoretical consequence is that the onset of the signal
of interest in fine-grained parameters would be at a lower
stratigraphic position (earlier signal arrival time) compared to
parameters associated with coarse-grained sediment for the same
change in boundary conditions (Figure 6). Thus, what might
appear as a prolonged environmental change in the stratigraphic
record could actually be the manifestation of different grain size-
dependent signal transfer times. However, this simple scenario
does not consider the additional effects related to probability of
transient storage. For example, in SRSs that are characterized
by significant transient storage of fine-grained sediment (e.g., in
floodplains), the arrival of the signal as a function of hydraulic
grain size fraction would be more complex as a consequence
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of segment connectivity, channel mobility, and other aspects
depicted in Figure 5.

An analysis of the composition of the fine-grained sediment
fraction (Nd and Sr isotopes of mud to fine sand) in the Indus
submarine canyon by Li Y. et al. (2018) showed that modern
submarine canyon sediment reflects the isotopic composition of
the river sediment (Figure 1). However, the U-Pb signature of
detrital zircons in the coarse silt to fine sand fraction does not
mirror the river sediment composition (Li et al., 2019). Hence,
in such a system, a potential signal may be transferred rapidly
within the geochemical composition of the fine-grained fraction,
but may be stuck in the terrestrial intermediate storage when the
geochemical signal in the silt to sand-sized heavy mineral fraction
is considered. Therefore, different sediment transport times of
mud and zircons may result in an offset of signal arrival times
in the stratigraphic record (Figure 6B). Studies characterizing
parameters such as sediment geochemistry as a function of grain
size (e.g., Jonell et al., 2018) suggest that bulk geochemical
composition as a source-area indicator could be misleading.

Parameter Sensitivity
In order to quantify signal transfer times, it is not enough
to quantify sediment transport times (see section “Sediment
Transport Times”), one also needs to detect the onset of the
signal in the sink. Signal transfer times in general increase
during times of low connectivity between the segments of
SRSs due to enhanced sediment transport times (Figure 5, see
section “Probability of Transient Storage”). However, even during
phases of low connectivity and enhanced sediment storage, a
certain fraction of the sediment is still bypassed to the sink
(e.g., Blum et al., 2013). For certain parameters of interest
(Figure 2) this fraction might be sufficient to transmit the
signal to the sink. Those parameters can be considered as
independent or less dependent on the sediment delivery ratio
(see section “Probability of Transient Storage”; Walling, 1983;
Hooke, 2003; Heckmann and Vericat, 2018). If a parameter
of interest is newly introduced to a SRS, its first stratigraphic
occurrence does not require that its entire hydraulic grain
size fraction is delivered to the sink. For example, plastic
production only begun a few decades ago, but plastic particles
are already widely distributed throughout the terrestrial and
marine realm, including abyssal plains, submarine canyons, and
deep-sea contourite drifts (e.g., Kane and Clare, 2019; Kane
et al., 2020). As such, the first occurrence of plastic in a
stratigraphic section has been used to characterize the onset of
anthropogenic impact on our planet (Zalasiewicz et al., 2016;
Matsuguma et al., 2017). Here, the signal is characterized by
the first occurrence of the parameter in the record and does
not require that the entire plastic fraction is transported to
the sink. Another example is a drastic shift in the isotopic
zinc signature detected in a sediment core from a hydroelectric
reservoir in SW France, which could be related to the start-up of
an industrial mine (Sivry et al., 2008). Zinc isotopes released in
tailings were highly fractionated compared to naturally eroding
zinc isotopes, such that even small contributions of industrial
zinc caused a clearly detectable shift in the sedimentary record
(Sivry et al., 2008).

In contrast, other parameters are more dependent on a high
sediment delivery ratio. This is particularly true for all parameters
investigating absolute changes in Qs, for example sediment
accumulation rates or varve thickness (e.g., Covault and Graham,
2010; Hinderer, 2012; Zolitschka et al., 2015; Hülscher et al.,
2019). Also, grain size distribution studies require that a larger
fraction of the produced sediment gets transported to the sink
(e.g., Whittaker et al., 2011; Foreman et al., 2012; Parsons et al.,
2012; D’Arcy et al., 2017; Duller et al., 2019). We name this
dependency of a sediment parameter on the complete or partial
transfer of the total sediment mass parameter sensitivity. Low
parameter sensitivities, or parameters that are greatly independent
of complete sediment transfer, will thus have an earlier signal
arrival time and, hence, a shorter signal transfer time.

SUMMARY AND FUTURE
PERSPECTIVES

Environmental Signals
We have expanded the definition of environmental signals
from changes in Qs to changes in any sedimentary parameter
of interest (e.g., Qs, grain size distribution, geochemical or
isotopic composition, and many more) related to a change
in boundary conditions. Those signals are generated during
transient landscape adjustment, and hence, are indicative of
changes in boundary conditions. In order to preserve those
signals, the signal-containing sediment needs to be transported
along SRSs to a long-term sink (Figure 1). Oftentimes, the
parameter of interest is bound to a certain grain size fraction only.
As sediment transport times are highly variable with grain size,
shape, and density, we suggest investigating signal propagation
by grouping signals in hydraulic grain size fractions that are
transported jointly (Figure 2). A hydraulic grain size fraction
is defined by a size range of spherical quartz grains (e.g.,
sand or silt) and their hydraulic equivalents. However, further
investigation is required, in particular regarding the transport
behavior and hydraulic grain size fraction assignment of non-
quartz sediment and non-mineral material (e.g., organic or
anthropogenic material like pollutants or microplastic). Ideally,
each sediment sample can be assigned to a hydraulic grain
size fraction with a certain probability based on a combination
of quantifiable characteristics, e.g., material density, weight,
degree of sphericity, and others. However, the assignment to a
hydraulic grain size fraction will be challenged, as some of these
characterizes may evolve during transport or after deposition.
For example, grain sizes get reduced during transport due to
abrasion and attrition, such that a single grain can move into a
smaller hydraulic grain size fraction during transport. To date, a
number of studies have quantified the rate of grain size reduction
during transport (Sternberg, 1875; Kuenen, 1956; Bradley, 1970;
Attal and Lavé, 2006, 2009; Dingle et al., 2017), but we still lack
detailed knowledge about the role of grain mineralogy, shape, or
sediment sorting on the rate of size reduction. Also, assigning
a hydraulic grain size fraction to sediments in ancient strata
requires that the signal-containing transported sediment can be
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distinguished from locally produced sediments (e.g., terrestrial
derived clastics versus marine carbonates). As such, more
comprehensive datasets on grain size, shape, and composition,
and their evolution through space (e.g., Cosgrove et al., 2019)
are deeply needed. Novel methods or approaches for automatic
grain characterization (e.g., Domokos et al., 2010; Ludmány and
Domokos, 2018) might improve the comparison among datasets.

Times of Signal Generation and Transfer
In order to reliably reconstruct past environmental conditions
from parameter measurements (signals) in sedimentary archives,
the time difference between the change in environmental
boundary conditions and the signal arrival time in the archive —
the total signal lag time — is essential (Figure 4). The total
signal lag time is the sum of the signal onset time (time between
change in boundary conditions and onset of signal generation)
and signal transfer time (time to transport the sediment carrying
signal from the source to the sink). It is important to note that
the total signal lag time is different from the landscape response
time, which describes the duration of topographic landscape
adjustment. Consequently, signals created due to short period
climate changes can still be detectable in terrestrial and marine
archives, even when transported in large river systems.

The signal onset time varies greatly with the parameter
of interest and needs to be investigated for each parameter
individually. Signal transfer times greatly depend on sediment
transport times of the according hydraulic grain size fraction.
Sediment transport times will increase when grains are immobile
within the active river channel or during long-term storage
outside the active channel (Figure 5). Both grain mobility and
storage probability differ among hydraulic grain size fractions.
To date, our knowledge on grain mobility especially beyond
decadal time scales is still limited. Future research on how the
amplitude and frequency of river discharge or sediment gravity
flows impact grain mobility and transport distances will advance
our understanding on sediment transport times. Sediment storage
probability outside the active channel is a function of discharge
conditions (frequency of overbank flows), and vertical and lateral
channel mobility (Figure 5B). Further work investigating how
prevailing tectonic and climatic boundary conditions are linked
to rates of channel mobility will improve our understanding of
sediment storage probability. In addition, novel tools and further
development of methods to quantify sediment storage times or
the degree of connectivity will help to better constrain sediment
transport times.

In order to quantify the influence of individual factors on
sediment transport times, tools to measure sediment transport
times are key. Although methods to quantify sediment transport
times have evolved, the precise measurement of the time
sediment requires to move from the source to the sink is
still a key challenge. Currently applied methods (see section
“Quantification of Sediment Transport Times”) are oftentimes
limited to a certain grain size, mineralogy, or timescale.
Developing methods that can, for example, be applied to the
whole range of grain sizes will allow a direct comparison of grain
size related transport times and hence, uncover differences in
signal transfer times. Integrating multiple methods that target

a distinct hydraulic grain size fraction will reduce uncertainties
of sediment transfer times estimations. If these times are to be
quantified and used to interpret system-scale behavior, methods
that incorporate and propagate uncertainty that originates from
the chronometric tool (e.g., error bars on determined ages)
must be developed.

One theoretical consequence of grain-size dependent sediment
transfer times is that signal arrival times of parameters bound
to different hydraulic grain size fractions might differ. If so,
those signals might not be embedded in the same stratigraphic
layer (Figure 6), despite being generated by the same change
in boundary conditions. To date, studies investigating how a
single event can be ‘smeared’ or how multiple events can lead
to signal ‘spiking’ in the stratigraphic record due to hydraulic
grain size fraction dependent differences in signal arrival times
are rare. Further work is required, for example by comparing
grain size-dependent compositional signatures among multiple
SRS segments of a common age. Additional challenges arise
regarding the determination of the signal arrival time in the
sink. We consider the sensitivity of individual parameters
regarding complete or partial sediment transfer or the degree of
connectivity as one of the challenges for future research. Here,
we primarily focused on signal propagation on centennial to
millennial timescales. However, applying the proposed concepts
(e.g., assignment of material to hydraulic grain size fractions)
to anthropogenic material dispersed on decadal or even annual
timescales is an area worthy of future investigation.

Approach to Holistic Reconstructions of
Landscape Response
To overcome current discrepancies regarding signal propagation
from source to sink, we proposed a more differentiated
classification of signals based on hydraulic grain size fraction
and a distinction between landscape and signal-related types of
times. We recommend combining sediment parameters from
different hydraulic grain size fractions to holistically reconstruct
landscape response to changes in boundary conditions. For each
parameter of interest, the goal should be to answer the following
four questions:

(1) Which hydraulic grain size fraction is the parameter of
interest bound to?

(2) What is the signal onset time of the parameter of interest?
(3) What is the signal transfer time (depending on hydraulic

grain size fraction, catchment geometries, and tectonic and
climatic boundary conditions) of the parameter of interest?

(4) What is the signal arrival time of the parameter of interest in
the sink? How sensitive is the signal arrival time to complete
sediment transfer (parameter sensitivity) and to technical or
methodological choices?

The differentiated classification of signals and signal-related
times helps to explain how short frequency climate events can
be detected in sedimentary archives offshore large river systems.
Also, when comparing several parameters within one SRS or
the same parameter in different SRSs, we expect that a single
event can cause signals with different signal arrival times in
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the sink and preservation in different stratigraphic layers. By
comparing those signal-related times among various parameters
of interest or under diverse changes in boundary conditions,
we will systematically approach a holistic understanding of
the source-to-sink propagation of environmental signals during
landscape transience and of the linkage between the sedimentary
record and events or changes in catchments on land.
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Tofelde et al. Times of Signal Propagation

GLOSSARY

Adjustment time Equivalent to landscape response time.

Analytical response time Theory-based (diffusion or advection) river response times, which describe the time of the river longitudinal profile to attain new steady state
(after Densmore et al., 2007b; Allen, 2008b).

e-folding response time Timescale related to an exponential function: One e-folding time is equivalent to the time when the parameter of interest has decreased to
37% (≈1/e) or increased by the factor of e relative to its initial value.

Environmental signal Change in any sedimentary parameter of interest through time that can be linked to a change in boundary condition.

Hydraulic grain size fraction A size range of spherical quartz grains and material that is transported jointly, i.e., the hydraulic equivalents.

Intrinsic equilibrium time The river response time for a 1D fluvial system described by a diffusion equation (after Paola et al., 1992).

Landscape response time Duration of topographic landscape adjustment after a change in boundary conditions.

Parameter sensitivity Portion of the sediment fraction a signal is bound to that needs to arrive in the sink in order to detect a signal.

Reaction time Time lag between the onset of change in boundary conditions and the first topographic adjustment (after Bull, 1991).

Relaxation time Time period between the first topographic adjustment and the achievement of new steady state (after Bull, 1991). Response times
measured by fitting an exponential curve to a parameter time-series (after Densmore et al., 2007b; Allen, 2008b).

River response time Duration of river longitudinal profile adjustment after a change in boundary conditions.

Sediment transport time Duration of sediment transport along SRSs.

Signal arrival time Moment of first detectable parameter change in the sink.

Signal duration time Time of a measurable change in parameter of interest in the source region.

Signal onset time Time until a measurable change in parameter of interest in the source region is generated.

Signal transfer time Time required for the signal to travel to the deposition zone.

Total signal lag time Time between change in boundary conditions and onset of measurable change in parameter of interest in the deposition zone.
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