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Zusammenfassung 
Rhythmen, diese regelmäßigen Abfolgen von Ereignissen über die Zeit, sind sehr wichtig für alle 

möglichen Aspekte von akustischer Kommunikation. Wir versuchen, ihre Bedeutung für 

Kommunikation in Bezug auf ihre Wahrnehmung und Produktion sowohl bei Menschen als auch bei 

anderen Tieren zu verstehen. Ich untersuchte diese Rhythmen in akustischen Signalen von Tieren und 

konzentrierte mich insbesondere auf die Evaluierung und Entwicklung von Methoden zur 

vergleichbaren und reproduzierbaren Analyse von rhythmischen Strukturen. Ich untersuchte die 

Rhythmusproduktion bei Fledermäusen, Vögeln und Walen und studierte die Rhythmuswahrnehmung 

bei verschiedenen Fledermausarten. Untersucht wurden vor allem isochrone Muster, das sind sehr 

einfache, Metronom-ähnliche Strukturen. Insgesamt wurden 17 Datensätze von 14 verschiedenen Arten 

mit 940 Lautsequenzen analysiert und exakte isochrone Beat Frequenzen (in Hertz, so wie in Beats pro 

Sekunde) berechnet, die die Lautsequenzen gut beschreiben. Ein weiterer wichtiger Parameter in diesem 

Zusammenhang sind Gütewerte, die angeben, wie gut eine berechnete Schwebung eine einzelne 

Sequenz beschreibt.  

In einer ersten Studie wurden die isochronen Beat Frequenzen für drei verschiedene Sequenztypen der 

Großen Sackflügelfledermaus Saccopteryx bilineata analysiert. Ein Sequenztyp ist durch eindeutige 

Lautcharakteristika oder einen eindeutigen Verhaltenskontext definiert. Die Analysen erfolgten mit 

einem Generate-and-Test-Ansatz. Alle drei Sequenztypen haben einen gemeinsamen Rhythmus von ca. 

6 bis 24 Hz, der mit den Flügelschlagfrequenzen (ca. 12 Hz) dieser Art in Verbindung gebracht werden 

kann. Dabei wurden zwei der drei untersuchten Sequenztypen geäußert während die Fledermäuse gar 

nicht flogen. Anschließend erstellte ich eine Anleitung, wie man die zeitliche Struktur – oder den 

Rhythmus – der akustischen Signale eines beliebigen Tieres mit Methoden analysiert, die für eine breite 

Palette von Signalen anwendbar sind und deren Ergebnisse leicht vergleichbar und interpretierbar sind. 

Diese Anleitung wird das Verständnis der Rhythmik in akustischen Signalen von Tieren verbessern und 

vor allem den Vergleich zwischen verschiedenen Arten erleichtern. Die Methoden, die einbezogen 

wurden, reichen von einfachen Verteilungs- und visuellen Analysen bis hin zu höherer Mathematik wie 

der Fourier-Analyse. Alle Analysen basieren auf Inter-Onset-Intervallen, also den Zeitintervallen 
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zwischen dem Beginn eines Lautelements und dem nächsten Lautelement in einer bestimmten Sequenz. 

Für diese Anleitung wurden verschiedene bereits etablierte, sowie von mir neu entwickelte Methoden 

an drei Datensätzen getestet: Isolationsrufe der beiden Fledermausarten S. bilineata und Carollia 

perspicillata sowie Echoortungs-Sequenzen eines weiblichen Pottwals (Physeter macrocephalus). Ein 

wesentliches Ergebnis dieser Arbeit war darüber hinaus die Entwicklung eines universellen Gütewerts, 

der angibt, wie gut eine Beat Frequenz in Hertz eine beliebige Elementsequenz beschreibt. Er ist für 

verschiedene Methoden anwendbar und leicht vergleichbar. Er wurde an allen oben genannten 

Datensätzen sowie an komplexen Fluggesängen der Feldlerche Alauda arvensis getestet. Die 

Fluggesänge dienten auch dazu, die Verwendung der Fourier-Analyse für die Rhythmusanalyse 

komplexerer Signale anzupassen, sowie die Verwendung sogenannter Recurrenceplots zur 

Identifikation von Substrukturen in einer komplexen Lautfolge anhand ihrer zeitlichen Struktur zu 

veranschaulichen.  

Darüber hinaus wurde das sogenannte „Auditory Brainstem Response“-Verfahren – eine etablierte 

Methode, die akustisch evozierte Feldpotentiale im auditorischen Hirnstamm misst – angepasst, um die 

Rhythmuswahrnehmung bei kleinen Säugetieren zu untersuchen. Seine allgemeine Anwendbarkeit 

konnte in dieser Arbeit bestätigt werden. Am Beispiel von 12 in Mittelamerika heimischen 

Fledermausarten wurden Unterschiede in der Wahrnehmungsstärke in Abhängigkeit von der Stimulus-

Präsentationsrate für künstliche und natürliche Reize bei untrainierten Tieren aus freier Wildbahn und 

in Gefangenschaft gefunden. Niedrigere Stimulus Präsentationsraten, d.h. langsamere isochrone 

Rhythmen, lösten durchweg höhere Reaktionen aus als schnellere Stimulus Präsentationsrate. Die 

Wahrnehmungsrhythmen konnten teilweise mit den Produktionsrhythmen von Echoortungssequenzen 

der 12 untersuchten Arten abgeglichen werden, die ebenfalls isochrone Rhythmen aufwiesen.  

Diese Arbeit kann zu einem besseren Verständnis von Rhythmen in akustischen Signalen von Tieren 

beitragen und bei der Suche nach adaptiven Funktionen und der Evolution von Rhythmus in der 

akustischen Kommunikation sowohl beim Menschen als auch bei anderen Tieren helfen. Sie kann 

darüber hinaus dazu beitragen, die Forschung zur Evolution der Sprache sowie der Musik zu fördern. 

Zudem trägt sie zum allgemeinen Wissen über die verschiedenen Aspekte und ihre Bedeutung der 

akustischen Kommunikation bei Tieren bei.  
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Summary 
Rhythms, these systematic patterns of events in time, are very important for all kinds of aspects of 

communication. We are trying to understand their importance for communication with regards to their 

perception and production in both humans and other animals. My thesis investigated these rhythms in 

animals’ acoustic signals and especially focused on the evaluation and development of method for the 

comparable and reproducible analysis of rhythmic structures. I investigated the rhythm production in 

bats, birds and whales and studied rhythm perception in various bat species. Under study were mostly 

isochronous patterns, which are very simple, metronome-like structures. A total of 17 datasets from 14 

different species including 940 sound sequences were analysed and exact isochronous beat frequencies 

(in Hertz as in beats per second) calculated, that describe the sound sequences well. Isochronous beat 

frequencies were analysed for three different sequence types (i.e., uttered in different distinct contexts) 

of the greater sac-winged bat Saccopteryx bilineata, where analysed with a generate-and-test approach. 

They share a common rhythm of around 6 to 24 Hz, that can be linked to the wingbeat (around 12 Hz) 

frequencies of that species, even though two of the three analysed sequence types were uttered while 

bats were not flying. I then establish a workflow on how to analyse the temporal structure – namely the 

rhythm – of any animals’ acoustic signal with methods that are applicable for a wide range of signals 

and results that are easily comparable and interpretable. This workflow will enhance the understanding 

of rhythmicality in animals’ acoustic signals as well as facilitate cross-species comparison. Methods that 

were included ranged from simple distributional and visual analysis to higher mathematics such as 

Fourier analysis. All analyses rely on Inter-Onset-Intervals, the duration between the beginning of one 

sound element and the next sound element in a given sequence. For the workflow different already 

established and newly developed methods were tested on three datasets: isolation calls of the two bat 

species S. bilineata and Carollia perspicillata and echolocation call sequences of a female sperm whale 

(Physeter macrocephalus). Furthermore, an auditory brainstem response procedure – a well-established 

method, measuring evoked field potentials in the auditory brainstem – was adjusted to measure rhythm 

perception in small mammals. Its general applicability could be confirmed in this thesis. Using 12 

species of Central American bats as an example, we found differences in perception strength depending 

on the stimulus presentation rate for artificial and natural stimuli in untrained wild and captive bats. 
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Lower stimulus presentation rates, i.e., slower isochronous rhythms, consistently elicited higher 

reactions than faster stimulus presentation rates. Perception rhythms could in parts be matched to the 

production rhythms of echolocation call sequences of the 12 tested species, that also showed isochronous 

rhythms. A key finding of this work was the development of a universal goodness-of-fit value, indicating 

how well a beat frequency in Hertz describes any element sequence, it can be applied for various 

methods and is easily comparable. It was tested on all datasets mentioned above, as well as on complex 

flight songs of the skylark Alauda arvensis. The flight songs also served to adjust the use of Fourier 

analysis for the rhythm analysis of more complex signals, as well as to illustrate the use of so-called 

recurrence plots for the identification of substructures in a complex sound sequence using their temporal 

structure.  

This work can contribute to a better understanding of rhythms in animals’ acoustic signals and help in 

the quest to uncover adaptive functions and the evolution of rhythmicality in acoustic communication 

in humans and other animals alike, furthering research on the evolution of language as well as music, 

and the general knowledge about the different aspects and their importance of acoustic communication 

in animals.  
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General Introduction 
Boom Boom Chack. Boom Boom Chack. Boom Boom Chack. The power of rhythm is apparent already 

in these few words, as many people likely do not only read them in the intended rhythm but also 

recognize the song, they are so iconic for: ‘We will rock you’ by Queen. While this is a very prominent 

example of a well-executed musical rhythm, rhythms are very important for all kinds of aspects of 

communication. We are trying to understand their importance for communication with regards to their 

perception and production in both humans and other animals. My thesis adds to that by focusing on 

acoustic rhythm production and perception in mammals and birds, and by discussing the advantages and 

disadvantages of different existing methods, while also introducing new approaches.  

Acoustic communication 

Communication is a major driver of life on this planet, it is a key component of human culture. But what 

is it exactly and through which modalities does it work? Communication is the sharing of information 

between two or more subjects. For this sharing of information to work, both sender and receiver need to 

be able to understand the information and intent. This can be ensured by using a signal repertoire 

mutually understood by all subjects taking part in the communication (Bradbury & Vehrencamp, 2011). 

These signals can be conveyed through different modalities, and while we also know various examples 

for olfactory (Eisenberg & Kleiman, 1972) or gestural communication (Call & Tomasello, 2020), my 

thesis focuses on acoustic communication.  

Acoustic communication works over long distances, without light, in air and water, and without the 

necessity that sender and receiver see each other (Bradbury & Vehrencamp, 2011). Nevertheless, 

acoustic signals often contain the necessary information to recognize an individual (Charrier et al., 2009; 

Knörnschild et al., 2013; Knörnschild & von Helversen, 2008; Mathevon et al., 2010). The perks of 

acoustic communication signals are the risk of being overheard, masking effects that can hinder signal 

transmission, and physical processes that will degrade an acoustic signal in both the frequency and the 

temporal domain, as well as its amplitude over larger distances (Forrest, 1994; Ryan & Sullivan, 1989; 

Wiley & Richards, 1978).  
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Information that is transmitted via acoustic signals can range from mate-attraction signals, over 

courtship or territorial defence signals, contact calls, alarm calls and threat signals, to group cohesion 

signals, or parent-offspring interactions (Bradbury & Vehrencamp, 2011). Acoustic communication can 

differ between species with regards to production mechanisms and specific function. The anatomy of 

the vocal apparatus, body size and environment differ, resulting in different sounds with regards to pitch, 

timbre, entropy, duration or the temporal structure between sound elements to name but a few important 

parameters of acoustic signals (Bradbury & Vehrencamp, 2011). Acoustic communication in animals is 

most studied in mammals, birds, frogs, and insects.  

A complete communication attempt can be divided into smaller units. One unit that many analyses work 

with is one element of sound within a sequence of sounds (Figure 1A & 1B). One element is clearly 

visible for example in a spectrogram or oscillogram (two ways to visualize sound) and framed by silence. 

‘Element’ is used here as the term for this clearly distinguishable small sound unit (Figure 1B). 

Depending on the context or study species, “element” could describe a syllable, call, pulse, click, sound 

or else (syllable: i.e.,(Behr et al., 2006; E. Briefer et al., 2008; Hultsch & Todt, 1989); call: i.e.,(Charrier 

et al., 2009; Ratcliffe et al., 2013); pulse: (Bøttcher et al., 2018; Moss et al., 2006); click: i.e.,(Ladegaard 

et al., 2015a; Le Bot et al., 2013), sound: (Bolgan et al., 2018)). Different elements can have very 

different spectral and temporal properties and can be grouped into different element types according to 

these properties within one species. Several elements in succession are called an element sequence 

(Figure 1A) and sequences again can differ in a recognizable pattern, making it possible to distinguish 

different sequence types (also i.e., vocalization types (Knörnschild et al., 2006), motifs (Hyland Bruno 

& Tchernichovski, 2017; Norton & Scharff, 2016) or phrases (E. Briefer et al., 2008)). The structure 

and complexity of sequences can differ enormously between species. Sequences can be very simple, 

being comprised of only one element type and only a few elements being uttered in direct succession 

(i.e., isolation calls of the bat Carollia perspicillata (Knörnschild et al., 2013)), over one element type 

being uttered in very long sequences (i.e., echolocation call sequences of toothed whales (Bøttcher et 

al., 2018)) to very complexly structured sequences with a huge number of element types being combined 

in an elaborate syntax in very long sequences. One individual skylark or nightingale for example can 
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produce up to ~800 different element types and combine them in such a complex syntax (nightingales: 

i.e., (Hultsch & Todt, 1981), skylarks: .i.e., (Briefer, Osiejuk, et al., 2010)).  

How to analyse these elements and sequences, their structure both temporally and syntactically depends 

very much on the question. Generally, questions could be aimed at understanding the biology of animals, 

their ecology, and how they are shaping and using their environment but could also be asked to shed 

light on vocal communication in humans or understand the underpinnings and evolution of human 

language or music better.  

Language, believed to be a trait unique to humans, defines human nature. Uncovering its origins is 

intriguing. But as neither spoken nor signed language fossilize it is very difficult to investigate the 

evolution of language in humans directly (Fitch, 2010; Hauser et al., 2002). So, scientists – biolinguists 

to be precise – successfully use animal models to investigate certain aspects of human language. They 

are asking questions on common features of the acquisition of the vocal repertoire during ontogeny, 

which are for example indeed shared in huge parts for humans and bat pups (Fernandez, 2020; 

Knörnschild et al., 2006). Closely connected are questions on learning, to be more precise on vocal 

learning, which not many animal clades are capable of (Martins & Boeckx, 2020). Next to humans, we 

know of this ability from birds (songbirds: (Hultsch & Todt, 1989; Tchernichovski et al., 2001; Thorpe, 

1958; Wilbrecht & Nottebohm, 2003), parrots: (Pepperberg, 2010) and hummingbirds: (Araya-Salas & 

Wright, 2013; Gaunt et al., 1994)), and some clades within mammals, namely: cetaceans (Janik, 2014), 

pinnipeds (Hiss, 1983; Janik, 2014; Reichmuth & Casey, 2014; Stansbury & Janik, 2019), bats 

(Knörnschild, 2014; Vernes & Wilkinson, 2019) and elephants (Poole et al., 2005).  

Especially bird song is often compared to human music. And while the evolution of music is as difficult 

to retrace as the evolution of language (i.e., does not fossilize either (Honing et al., 2015), some aspects 

of musicality can again be very well investigated in different animal models. Musicality could be 

explained as the biological underpinnings of music. It comprises a couple of spontaneously occurring 

biological traits, constrained by the biology and cognition of a species (Ravignani et al., 2018; Wallin, 

1991). Important musicality traits are for example pitch, sonic qualities called timbre, or rhythm (Honing 

et al., 2015). Focusing a little more on rhythm, we find that it probably has multiple evolutionary 
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backgrounds (Kotz et al., 2018). A widely accepted definition of rhythm is that it is a ’systematic 

patterning of sound in terms of timing accent and grouping’ (Patel, 2008). In the context of animal’s 

acoustic signal sequences, the rhythm could also generally be described as the temporal structure of 

these sequences. These temporal structures can be very stereotyped in a particular species and the same 

rhythmic patterning might be present in different tempi or beats, which would be referred to as meter in 

musicology.  

The research on temporal structures of animals’ acoustic signal sequences as well as research on their 

perception is interesting for both fields: biomusicology and biolinguistics. They are especially 

interesting and relevant because flawed temporal perception in humans is for example linked to 

stuttering (Wieland et al., 2015) while an intact auditory system is tuned to certain musical features such 

as pitch and rhythm already in infants in the same way it is in adults (Stefanics et al., 2009; Winkler et 

al., 2009). Studies in animals show that it is possible to induce impairments in vocal production on the 

temporal level. Mimicking genetic errors in model species that are responsible for heavy speech and 

motor impairments in affected humans can degrade vocalizations on the temporal scale (Norton et al., 

2019). These and other observations suggest that the correct production and perception of temporal 

structures is an essential component of acoustic communication throughout the animal kingdom 

including humans.  

Next to trying to understand the implications of impaired temporal sound production and perception, 

there are other reasons while it is interesting to study and understand the rhythms of animals’ acoustic 

communication. Analysing the temporal structure of animals’ acoustic signal is interesting with regards 

to questions about species discrimination, physiological correlates like couplings to movements or 

respiration, mating preferences, or arousal coding (Burchardt et al., 2019; David et al., 2003; Manser, 

2001; McRae, 2020; Norton & Scharff, 2016). Other questions include questions on entangling 

underlying processes in duetting or the development of temporal structures during ontogeny (Pika et al., 

2018; Sasahara et al., 2015; Yoshida & Okanoya, 2005). The temporal structure of choruses, duetting, 

or antiphonies and how they are maintained is yet enigmatic in most regards, and these group behaviours 

are argued to be a key element in understanding the adaptive functions of rhythm (Ravignani et al., 

2014).  
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To be able to answer such questions clear methodologies are necessary, enabling many different 

researchers to a) analyse the temporal structures of their acoustic data in a meaningful and comparable 

way and b) study how their species of interest perceive tempos and rhythms. The following two sections 

will give more details about examples of rhythm production in animals, explain the key methods used 

in this thesis and some other commonly used approaches to analyse temporal structures. The same will 

be done for examples of rhythm perception, explanations again focusing on approaches used in this 

thesis.  

Rhythm Production 

Having established the importance of rhythm in animal communication, we will have a look at methods 

to assess these, show examples and report what is known about biological correlates and the relevance 

of specific rhythms.  

Keeping the definition in mind that rhythm is the ‘systematic patterning of sound in terms of timing, 

accent and grouping’ (Patel, 2008), what options does that open for the analysis of rhythms? 

Firstly, we can describe the timing of sounds in general and in various ways, many of which are detailed 

in the following paragraphs. Secondly, it opens options to investigate the temporal structure on different 

levels: for example, in pulsatile sounds, we can investigate the rhythm within an element (Figure 1C), 

then we can analyse the rhythm between elements (Figure 1B) and finally between sequences, thereby 

considering different possible groupings of elements within one sequence, or the grouping of sequences 

in a bigger excerpt of communication. A third path with interesting implications could be which part 

within an element is accentuated when, and how elements in a sequence or sequences in a 

communication attempt are accentuated. So far different methods exist to tackle some of these options, 

but not for all.  

Temporal parameters have long been investigated, even the term “rhythm analysis” in the context of 

acoustic communication in animals was coined already by 1974 (Ishay et al., 1974). Nevertheless, 

especially the comparison of results of rhythm analysis or generally comparison of results of the analysis 

of temporal structures in animals’ acoustic signals is often difficult as many methods exist to analyse 

temporal structures, but seldomly the same parameters are reported. The only parameters that are widely 
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being used and reported are call rates1 or averaged inter-onset-intervals2 (IOI, Figure 1D) (Bøttcher et 

al., 2018; Le Bot et al., 2013; Manser, 2001; Moss et al., 2006; Ravignani, 2018; Schneider & Mercado, 

2018b; Sun & Narins, 2005). These themselves are problematic though, because a complex phenomenon 

is tried to be described with a single number, which works well in many cases, but not in all and without 

other numbers or the original data being reported and published, it is almost impossible to later 

determine whether it was fair to describe a temporal structure with just one number. This is especially 

the case in studies where temporal parameters are but a by-product of other analyses and are not the 

focus of a study themselves. A directly related issue concerns the reporting of variability parameters in 

the context of call rates or other measures. Here we have the problem that as a variability indicator most 

often the standard deviation is given. The standard deviation is dependent on the mean, and therefore 

not easily comparable between studies. A second parameter describing the variability that is sometimes 

given is the variance, which is both dependent on the mean and the number of observations, which 

makes it even less suitable to be compared.  

  

 
1 number of produced elements per minute 
2 duration between the start of one element and the start of the next element, mostly reported as the average IOI of 
a dataset/ sequence type. 
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Figure 1: Analysis Levels for Rhythm Analysis 

Basis for this figure is a territorial song of a male Saccopteryx bilineata individuum (Behr et al., 

2006), that is shown in different amplification to explain some terminology and to demonstrate 

possible levels of analysis. (A) Oscillogram and spectrogram (FFT length: 1024, Hamming 

window, overlap 50%) of a territorial song sequence. (B) Amplification of the same territorial 

song, zooming in on three elements (FFT length: 2024, Hamming window, overlap: 75%). A 

rhythm could be analysed for elements in a sequence. (C) Detailed view of a single element from 

the territorial song to give an example for pulsed element parts (FFT length: 2024, Hamming 

window, overlap: 83.5%). Rhythms could also be analysed within such pulsed elements (i.e., 

(Bolgan et al., 2020; Picciulin et al., 2020). (D) The oscillogram of the territorial song was used to 

determine element onsets (blue bars), which are used to calculate Inter-Onset-Intervals (IOI, red 

arrows), i.e. the duration between the start of one element and the subsequent element.  
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Only in recent years more and more emphasis was put on finding clear and comparable parameters and 

methodologies to analyse the rhythm of animals’ acoustic signals. This in term facilitates the use of 

rhythm analysis to distinguish between individuals or species and to use the results for cross-species 

comparison. The cross-species approach is highly valued in the field of rhythm analysis. Once there is 

enough knowledge about rhythm production in animals, (for example about specific rhythms being 

produced) and this information is available for a high number of species this can give rise to even more 

questions and open more fields of investigation. One example is to specifically explore the evolution of 

certain rhythmic patterns or properties, as it was recently done in woodpeckers (Garcia et al., 2020). 

Once clear methodologies are established which produce easily comparable results the ontogeny of 

rhythmicity in individuals or species could be investigated (Sasahara et al., 2015), or different correlates 

for the found rhythmic patterns could be proposed.  

Rhythm Analysis 

Important questions that rhythm analysis methods need to be able to answer include a) what the temporal 

structure of an element sequence is, including the question of which exact rhythms could describe a 

sequence best b) whether rhythmic patterns are similar or different between sequence types or 

individuals and c) how well an animal can produce or keep a certain rhythm.  

The latest and most comprehensive overview paper on rhythm analysis methodologies was written by 

Ravignani and Norton (2017) and included methods to assess the temporal structure of sound sequences 

on different levels. A key question in the analysis of temporal structures always is whether a sequence 

can be described by an isochronous rhythm or whether it needs to be described by a heterochronous 

rhythm which has strong implications on the applicability of most methods used to date. An isochronous 

rhythm is a very simple, metronome-like rhythm, characterized by similar intervals between element 

onsets. Isochronous sequences can therefore be described by a single frequency in Hertz as in beats per 

second. A heterochronous sequence cannot be described by a single frequency. The focus of this thesis 

lies on analysis methods to quantify beats in isochronous sequences. Here we must make the important 

distinction between two scenarios. We can imagine a sequence where the signal itself is isochronous, 

like for example whale echolocation sequences (“signal isochrony” hereafter). On the other hand, we 
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could have sequences that are well described by an underlying isochronous beat, but there are “silent 

beats” of the theoretical underlying beat that are not accompanied by an element in the element sequence. 

The perception of isochrony is induced even though it is not there. This so-called “beat induction” is 

argued to be a fundamental musical trait in humans (Honing, 2012; Honing & Ploeger, 2012) and an 

important notion to keep in mind when analysing animals’ acoustic signals (“induced isochrony” 

hereafter, (Ravignani, in press)). Examples for induced isochrony were found in male zebra finches’ 

song or isolation calls of the greater sac-winged bat (Burchardt et al., 2019; Norton & Scharff, 2016). 

The methods to analyse the two different situations are the same, but some methods will fit better with 

sequences showing signal isochrony, others will describe sequences with induced isochrony better. The 

distinction is also important for interpreting results correctly.  

One method to assess whether we can assume isochrony or not is the visualisation of the data in 

histograms. By plotting the distribution of so-called Inter-Onset-Intervals we can determine the general 

temporal structure of an element sequence. A unimodal distribution of IOIs translates to a small 

variability between IOIs, the steeper the distribution the more similar the IOIs in a distribution are. The 

more similar the intervals, the better are they described by an isochronous rhythm (Ravignani & Norton, 

2017). Histograms are the perfect first analysis step, as they are a very good compromise between 

simplicity, effectiveness and most importantly applicability for data (Ioannidis, 2003). Another 

parameter to assess isochrony is the normalized pairwise variability index (nPVI). It was originally 

invented to assess temporal variability in human language (Grabe & Low, 2002a; Lin & Wang, 2007; 

Toussaint, 2012, 2013). It is a measure of variability between IOIs in a sequence. A small nPVI indicates 

little variation and a nPVI of 0 would mean that all IOIs are the same. In a sequence with induced 

isochrony, the nPVI might be quite high depending on the number of silent beats (or breaks). They 

would lie between 0 and ~50 as for theoretical clapping rhythms depending on the number of breaks, 

i.e., silent beats (Cameron et al., 2019; Duffy & Pearce, 2018). A high nPVI value is therefore not 

necessarily indicative of a random patterning, but signal isochrony can be excluded for higher values. 

Once isochrony is determined, it can be interesting to calculate exact beat frequencies that describe a 

single element sequence best. For example, an element sequence with one sound element roughly every 

20 milliseconds could be well described by a frequency of 50 Hz (as 1/ 0.02 s = 50 Hz). Three different 
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methods exist to determine such exact beat frequencies: Fourier analysis (FFT), a generate-and-test 

approach (GAT) and IOI calculations. What was so far unclear was what kind of biological data could 

best be analysed with each of the three methods.  

Fourier analysis is a widely used technique to decompose any continuous signal into its sinus 

components. It dates back to Joseph Fourier’s studies on heat transfer in which he showed that these 

studies could be simplified by representing certain functions as the sum of a number of trigonometric 

functions (Fourier, 1822). Fourier analysis has been intensively used in ornithology and acoustics 

research to visualise sound since the late 1950’s via so-called spectrograms, which were only developed 

in the 1940’s by researchers at the Bell Telephone Laboratories (Marler & Slabbekoorn, 2004; Potter et 

al., 1947). In a spectrogram the frequency components of a sound are visualized across time. In the 

1980’s Fourier analysis was then firstly used, to not only assess the spectral parameters but also the 

temporal parameters of sounds (Dabbs, 1983). The methodology that is used nowadays to assess the 

rhythm of animals’ acoustic signals with Fourier analysis is derived from a study on the development of 

zebra finch song (Saar & Mitra, 2008). For that approach the temporal information of a signal sequence 

has to be transformed into a binary sequence. To that end any event of interest, for example the start of 

elements, or the start of sequences are labelled as ‘1’ while everything else is labelled as ‘0’. The 

sampling rate has to be considered. If two elements are separated by 1 second and we are measuring 

with a sampling rate of 1000, that would mean we have a thousand samples per second, so a ‘1’ for the 

element onset would be followed by 999 zeros, to be followed by the second element onset encoded as 

‘1’ after 1 second. Afterwards a fast Fourier transformation (FFT), a discrete version of the Fourier 

analysis, which is much less time-consuming to be calculated, is calculated over the binary sequence 

(Saar & Mitra, 2008). As a Fourier analysis can decompose a signal into the sinus components of up to 

half of the sampling rate, in our example, we would find frequencies of up to 500 Hz describing the 

sequence. We end up with a power spectrogram, where the frequency with the highest peak would be 

the frequency describing an acoustic signal sequence best. Transferring this to the normal usage to 

analyse pitch components, this frequency would correspond to the loudest frequency. There was so far 

no goodness-of-fit value for this type of analysis.  
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A more intuitive way of finding a concrete beat frequency to describe an isochronous element sequence 

was developed in a GAT approach (Norton & Scharff, 2016). An element sequence consisting of only 

the temporal information of the sequence (start points, duration and endpoints of elements) is overlaid 

with beat frequencies in a certain frequency window with a certain frequency resolution (i.e., 10 to 100 

Hz with a resolution auf 0.1 Hz). For every beat frequency the deviation from an element to the next 

closes beat is calculated and the root-mean-square deviation of all the deviations in a sequence is 

calculated and normalized for the frequency being tested. The resulting value, the frequency normalized 

root-mean-square deviation, short FRMSD, acts as the estimator for the best-fitting beat frequency (i.e., 

the frequency resulting in the smallest FRMSD) and simultaneously serves as a goodness-of-fit value, 

describing how good the fit is (Norton & Scharff, 2016; Ravignani & Norton, 2017).  

A third method used in this thesis that was not described before3 to calculates exact beat frequencies is 

merely a different form of reporting call rates or IOIs. For this form of IOI analysis (called IOI approach 

in the following), the inverse of the average IOI of a sequence is taken. As Hertz is 1/second, this gives 

us a frequency and therefore a value easily comparable to the two methods described above. A frequency 

as calculated with the IOI approach of 20 Hz would for example correspond to an average IOI duration 

of 50 ms (1/ 0.05s = 20 1/s). It is the fastest of the three methods and the only one not requiring any type 

of analysis code, but merely a calculator or even just mental arithmetic. As the method was not used 

before, there also was no suitable goodness-of-fit value so far.  

These three methods are searching for isochronous beats, assuming an underlying isochronous 

patterning. It could therefore be argued that they are describing periodicity and different tempi rather 

than different rhythms. To consider this issue, the term “beat” is used to describe the different 

isochronous patterns throughout my thesis.  

Apart from methods focusing on isochrony and describing exact beats, other scattered methods exist to 

analyse more complex rhythms. These methods mostly only extend to some specific question for 

example how to assess the similarity between two temporal structures, no matter how complex. This 

 
3 Briefly described here for a better overview of the methods used throughout this thesis, the method is established 
in Chapter II. 
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similarity could be analysed with cross-correlation methods, which can be described as a similarity 

measure of two sequences as a function of the displacement of one sequence relative to the other or even 

more generally as the similarity between two observations, where the similarity is described as a function 

of the time lag between the two observations (Hamilton, 1994a, 1994b). The approach was proposed for 

the use in rhythm analysis in animal communication by Ravignani and Norton (2017) but to the best of 

my knowledge has not yet been used in the described way to assess temporal pattern similarity between 

different sequences of animals’ acoustic signals. Cross-correlation of temporal parameters was 

successfully being used in musicology studies (Percival & Tzanetakis, 2014) or time series analysis of 

human behaviour (Boker et al., 2002), though. Furthermore, cross-correlation has extensively been used 

in the form of spectrographic cross-correlation, where similarity between sequences or elements is 

assessed in the spectral rather than the temporal domain (i.e.,(Cortopassi & Bradbury, 2000; Khanna et 

al., 1997; Terry et al., 2001; Zsebők et al., 2021)). Complementary to cross-correlation approaches, auto-

correlation is being used to assess the regularity within a single sequence, without defining a concrete 

beat or assuming an underlying isochronous pattern (Heinsohn et al., 2017a; Le Bot et al., 2013; 

Ravignani & Norton, 2017). Another option to analyse multiple parameters of a complex temporal 

pattern is the so-called multifractal analysis (Roeske et al., 2018). It can detect similarities on various 

levels and across different scales, through searching for self-similarity of a signal. Therefore, it could be 

said it detects predictability (as indicated through self-similarity) on different levels and consequently 

also unpredictable (unsimilar) states of a continuous signal. The method is a very powerful tool in the 

analysis of complex acoustic signals (Roeske et al., 2018).  

Examples of Rhythm Analysis in Action 

The following paragraphs are giving an overview about studies on rhythm analysis, dividing examples 

by the mechanism of sound production. Examples will be given for the sound production in tetrapod’s 

(including amphibia and amniotes) as well as different examples in fish and insects and the use of objects 

(i.e., tools) for sound production in some birds and mammals. The focus lies on the analysis of 

isochronous patterns.  
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The sound production in tetrapods happens internally and is usually achieved by the vibration of soft 

tissue. This vibration is elicited by air flow and the final sound subsequently modulated through filtration 

and modulation in the vocal tract (Bradbury & Vehrencamp, 2011; Fitch, 2000). The following examples 

showcase rhythm in sounds produced in that way.  

The song of zebra finch males has been intensively studied with regards to questions on vocal learning 

(i.e., (Slater et al., 1988; Tchernichovski et al., 2001)), the neural foundations of song (i.e., (Bolhuis et 

al., 2010; Scharff & Nottebohm, 1991; Simpson & Vicario, 1990)) or female preferences (i.e., (Riebel, 

2009)). In a recent study the rhythm of male zebra finch’s undirected and directed song was investigated. 

Individual males had a distinct isochronous rhythm which fitted element onsets better than expected by 

chance. Individual males produced distinct rhythms that ranged from 10 to 60 Hz, with no apparent 

differences between undirected and directed song. The rhythms were analysed with the custom-made 

GAT approach and the goodness-of-fit tested with the FRMSD parameter as well as with a modelling 

approach, to compare the goodness-of-fit between song sequences in the correct order and the goodness-

of-fit of the best fitting rhythm in randomly combined sequence of song elements. The clear result was 

that the calculated rhythms fitted significantly better to actual song sequences than to the randomly 

combined song sequences (Norton & Scharff, 2016).  

A different approach was used to quantify the development of rhythm in juvenile zebra finch song. First, 

a point process was calculated: the song sequence was transformed into a binary sequence, where 

element onsets were encoded as ‘1’ and everything else as ‘0’. A fast Fourier transformation was 

calculated on this binary sequence, resulting in a “rhythm spectrogram”. It was found that the 

fundamental frequency in this “rhythm spectrogram” corresponds to the motif duration, a motif being a 

repeated combination of a few different element types in the zebra finches’ song. It is suggested that this 

method can be used to track the transition in song development from juvenile rhythms to adult rhythms, 

corresponding to changes in the motif composition and the crystallization of element types (Saar & 

Mitra, 2008).  

In a purely descriptive study, the Inter-Onset-Intervals of a spontaneously vocalizing female harbour 

seal pup were reported. The clear aim of this study was to be able to balance the ecological relevance of 
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stimuli with experimental control in a follow-up playback experiment with the same female. The stimuli 

for the playback experiment, more precisely the rhythms of the stimuli, could therefore be individually 

adapted (Ravignani, 2018). This study gives a strong example for the relevance of knowledge about 

temporal structures of animal’s acoustic sequences even when the temporal structure is not itself being 

studied.  

A very well-known example using call rates is the study on the alarm calls of the social meerkat Suricata 

suricatta. In that species different call rates in an alarm call context encode urgency. Alarm calls with a 

low urgency to all predator types, aerial or terrestrial, are produced with relatively long IOIs. For alarm 

calls in response to terrestrial predators, the call rate then for example increased with urgency (Manser, 

2001). 

The change of call rates is not only indicative of urgency but can also be found in anurans as a response 

to anthropogenic noise. In response to airplane flyby noise and low-frequency motorcycle sound 

playbacks different pond-edge frog species in central Thailand changed their call rates. While three of 

the present species significantly decreased their call rates, one species significantly increased their 

calling rate (Sun & Narins, 2005). This study is giving a good example for the potential of rhythm 

analysis to track behavioural changes. Changes can occur in the temporal domain of acoustic signals, 

not only in response to anthropogenic influences, but might also happen in response to other species or 

naturally occurring changes in the environment.  

Sound production mechanisms are very diverse in fish (Fine & Parmentier, 2015; Ladich, 2014) and in 

many cases the temporal structure within a sound element carries meaning, showcasing another example 

of the importance of the analysis of temporal structures in animal’s acoustic signals on various levels. 

Many vocal fish species produce highly stereotyped, pulsatile sounds, generated by rhythmic 

contractions of muscles, acting under a rhythmically active vocal motor network (Bass & McKibben, 

2003). As such, the temporal structure within fish sound elements (for another example see Figure 1C) 

can be indicative of neurophysiological processes (Fine & Parmentier, 2015; Sprague, 2000). The 

measurement and the analysis of temporal features within single fish sound elements are routinely 

included in fish bioacoustics studies and are mostly reporting rates. These rates were found to be able 
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to code for species identity (Parmentier et al., 2009) as well as for specific behavioural patterns or 

motivational states (Bolgan et al., 2020; Hawkins & Amorim, 2000; Picciulin et al., 2020). Furthermore, 

within-sound temporal features can be influenced by environmental conditions such as water 

temperature, as this can impact the performance of the morpho-physiological processes underlying 

sound production (Kever et al., 2015; Ladich, 2018). They can also be affected by anthropogenic 

disturbances (Picciulin et al., 2012) same as reported above for anurans (Sun & Narins, 2005). 

Yet another sound production mechanism, found in many insect species, is stridulation. Here, sounds 

are produced by rubbing two movable parts of the cuticle or other bony body parts against each other. 

The rhythm of the produced sounds can for example be indicative of the communicating species: the 

qualitative assessment of rhythms in Gryllus specimen led to the discovery of two cryptic species of 

Gryllus assimilis, following the concept proposed for cryptic species in 1964 (Walker, 1964). Way 

earlier, already in 1932, a key for species identification for Orthopteras was written, only using sound 

features as identifying characteristics including the rhythmic (or arhythmic) structure of sounds (Fulton, 

1932). In element sequences produced through stridulation again the temperature has an important effect 

on the exact rhythms found. In a study on Gryllus bimaculates the repetition rates of different element 

types increased linearly with increasing temperatures between 15 and 24°C (higher temperatures had no 

effect). The phenomenon is linked to phonotaxis in females of the respective species. Females responded 

best to synthetic songs matching the rhythmic properties of the male’s calling at the temperature the 

female was tested in (15, 24, or 30 °C). This suggests an interdependence between the physiological 

mechanisms underlying pattern generation and pattern recognition in crickets (Doherty, 1985).  

To further illustrate in how many examples and on how many levels the temporal structure of sounds 

plays an important role, we can look at the rhythm of sounds produced by tools or external objects. A 

group of chimpanzees (Pan troglodytes) in Fongoli, Senegal, was recorded when cracking baobab fruit. 

Fruits are cracked by repeatedly slapping them on a hard surface like the ground or a tree branch. Four 

females and ten males that were recorded showed significant differences in the slapping intervals. 

Individual differences are hypothesized to facilitate the recognition of unseen companions 

(Merguerditchian et al., 2018).  
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A second animal species using tree parts to drum is the palm cockatoo Probosciger aterrimus. It is 

reported that the drumming shares key fragments of human instrumental music. The reported fragments 

are: manufacturing a tool for sound production, performing the drumming in a consistent context, 

individual styles as well as the regular production of beats and the repetition of components. Used for 

the analysis of the rhythmic patterns are shape parameters of the IOI distribution and autocorrelation 

(Heinsohn et al., 2017a). This study highlights the potential of rhythm analysis for biomusicology related 

questions.  

An already mentioned example of yet another “drumming” example is the analysis of pecking patterns 

in various woodpecker species. Here the rhythmic patterns were described with 22 parameters including 

10 parameters describing the temporal structure for example the “species-specific median drum pulse 

rate”, the “minimum time interval between 2 pulses” and the “maximum time interval between 2 pulses” 

or the “Interval nPVI”. The parameters were used to define drumming types and eventually to 

reconstruct the evolution of drumming signals in woodpeckers (Garcia et al., 2020).  

One important aspect that has almost always been neglected up to this point is the question of how well 

an animal keeps a beat. Certain variability parameters (such as low standard deviation and variance) are 

used to argue for a very consistent and therefore rhythmic sound production, but the quantitative 

evidence (for example shown through goodness-of-fit values and their comparison between patterns) 

for that is frankly just missing. The only study introduced here that specifically asked and answered this 

question was the study by Norton & Scharff on isochronous song production in male zebra finches 

(Norton & Scharff, 2016). One reason for this lack of information on the goodness-of-fit is a lack of 

methods to specifically analyse it for different methods. For two of the three methods to extract exact 

beat frequencies, we do not have reasonable suggestions on how to determine the goodness-of-fit, that 

is for Fourier analysis and the IOI approach. Only for the GAT approach, the method-specific value 

FRMSD was introduced (Norton & Scharff, 2016) so far. I attempt to close these gaps in this thesis.  

All examples showcased here describe individual rhythms, as these are also under study in this thesis. 

Nevertheless, it is to be mentioned that the individual level, though interesting and fundamental for the 

general understanding of the temporal structures of animals’ acoustic signals, is not the only level being 
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analysed. Rhythms play a fundamental role in turn-taking situations, such as in chorus or duetting 

situations (Pika et al., 2018; Yoshida & Okanoya, 2005) as well. It is argued that especially individual 

rhythms produced in such group behaviour settings need to be understood better. Group behaviour 

settings focusing on mammals and birds that were under investigation so far include, for example, turn-

taking and duetting in great apes and monkeys (Pougnault et al., 2020; Takahashi et al., 2013), sperm 

whales (Schulz et al., 2008), vampire bats (Carter et al., 2008) or birds (Dahlin & Benedict, 2014; 

Gochfeld, 1978; Hultsch & Todt, 1982; Thorpe, 1975). As it is argued, that in these contexts individual 

rhythms are shaped by group dynamics, they are argued to being key to understand the adaptive 

functions of rhythms (Ravignani et al., 2014). 

The question of possible adaptive functions and why signals are produced in a rhymical fashion is 

discussed in many of the mentioned studies. Next to being shaped by group behaviour settings, another 

hypothesis exists on how and why rhythmic production of signals is frequently found. For example, 

different motor correlates could be assumed to shape rhythms, i.e., depending on different sound 

production mechanisms. A known correlate between a specialized form of sound production and motor 

patterns is found in bats. The production of echolocation calls is coupled to wingbeat and the respiratory 

cycle in many bat species (Kalko, 1994; Schnitzler, 1971; Suthers et al., 1972; Wong & Waters, 2001). 

During flight, the respiratory cycle follows the wingbeat, as each wing stroke passively ventilates the 

lungs. To not break this energy-efficient coupling, echolocation call production is also matched to this 

pattern. Inspiration corresponds to the upward wing stroke, while the expiration phase correlates to the 

downward stroke of the wing (Freiherr von Saalfeld, 1939). Echolocation calls are then produced around 

the reversal point between ex- and inspiration. As production rhythms of echolocation calls need to be 

very flexible this coupling between wingbeat and echolocation call production nevertheless only holds 

true for situations where the sensory needs allow it. The pattern is for example broken for the feeding 

buzz or in environments with a lot of clutter, in both of which situations echolocation call rates can 

increase dramatically (Moss et al., 2006; Moss & Surlykke, 2001; Ratcliffe et al., 2013). A coupling 

between wingbeat and sound production was also found in the tongue-clicking pteropodid bat Rousettus 

aegyptiacus, indicating that strong coupling of wing beat, respiration, and sonar emission is widespread 

in bats regardless of the specific sound production mechanism. The question remains what rhythms 
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would be found in situations where bats are perched and coupling between wingbeat and sound 

production would not be expected.  

Another important aspect to consider to be able to answer the “why” is the perception of the acoustic 

signals, which is also relevant in turn-taking situations and is furthermore connected to the fact, that 

rhythmic signals might be easier perceived (i.e., (Jones et al., 1981; Norton & Scharff, 2016). This point 

will be detailed in the next section on ‘Rhythm perception’.  

Rhythm Perception 

The reasons to produce rhythms of a certain beat could be connected to neural or motor correlates, as 

discussed above. An important question that remains for most examples is whether these production 

rhythms have an ecological meaning, whether they carry meaning themselves and how they are 

perceived. Some of the studies presenting different production rhythms already included a biological 

reasoning, a connection to the perception of signals (Doherty, 1985), or were meant as preparatory work 

to set up behavioural experiments in a more informed way (Ravignani, 2018). But what else do we know 

about the perception of rhythms and how could we further analyse it?  

One of the hypotheses why signals are produced in a rhythmic fashion to begin with is that rhythmic 

signals are easier to perceive and that rhythmic signals facilitate signal perception. The concept of 

‘rhythmic attention’ (sensu (Jones et al., 1981)) is important to mention in that context. This ‘rhythmic 

attention’ should help receivers to decode periodic signals not only easier but also faster (Rohenkohl et 

al., 2012). A rhythmic signal is better predictable than an arhythmic signal produced in a random 

temporal succession. To further facilitate this effect, it is to be noted that the attention of receivers cycles 

in an oscillatory way, but only when a rhythm is present (i.e., (Barnes & Jones, 2000; Large & Jones, 

1999)). That way, most ‘attentional energy’ can be provided, when a stimulus is expected. As the 

cognitive capacities of any species are limited, (Shapiro et al., 1997), the optimized allocation of 

attentional energy is not only beneficial but necessary. Concrete examples for that can be found in 

humans. When asked to assess the differences in the pitch of two focal tones, separated by regularly 

timed tones, individuals could assess the difference better when the second focal tone followed the same 

regular timing as the separating tones in between. The assessment of differences was worse when the 
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second focal tone was temporally slightly displaced from the regular timing (Jones et al., 2002). A 

similar phenomenon could be found for visual stimuli in macaques. There neuronal oscillations in the 

primary visual cortex entrain to a visual stimuli stream when the stream is rhythmic, a mechanism 

resulting in decreased reaction time and an increase in the response gain for events that are task-relevant 

(Lakatos et al., 2008). 

Getting back to concrete examples of the assessment of rhythm perception in the acoustic 

communication in animals on a behavioural level: the first instance of biologically relevant rhythm 

perception in a non-human mammal was found in the northern elephant seal. Males of that species can 

discriminate the sounds of familiar and unfamiliar male opponents. A study found that this 

discrimination ability is driven strongly by the temporal structure combined with the timbre of the 

sounds (Mathevon et al., 2017).  

The question remains whether this discrimination ability with regards to temporal structures can be 

generalized to other contexts in northern elephant seals, or whether the perception of differences is 

limited to the species-specific context. The overall question is whether this or other examples where 

production rhythms play a role imply an overall sensitivity for rhythmic patterns or not (ten Cate et al., 

2016). Another example where changed rhythms could alter the behavioural response, was the “cooing” 

of doves but it was unclear whether this ability could be generalized (Slabbekoorn & ten Cate, 1999). 

Especially in birds, various experiments were run to test the general ability to discriminate between 

temporal patterns and how well discrimination could be generalized. Even though zebra finches for 

example can distinguish between isochronous and irregular stimuli, the ability for generalization 

between different tempos of isochronous patterns is not given. It is suggested that zebra finches 

distinguish the isochronous and irregular stimuli using local temporal features rather than the regularity 

of the stimulus in contrast to the irregularity in the other stimuli as the discriminator, which in turn would 

enable them to generalize between tempos (van der Aa et al., 2015). Such a generalization was found in 

the European Starling (Sturnus vulgaris) though. Individuals learned to discriminate between regular 

and irregular temporal sequences, and the discrimination was maintained for different modifications of 

the temporal structure, like changing either the tone duration or the IOI duration while keeping the other 

parameter constant. Overall, this suggested the discrimination of rhythmic versus arhythmic patterns in 
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the European Starling is based on a qualitative pattern attribute, namely the rhythmicity, rather than 

being based only on local temporal features (Hulse et al., 1984a, 1984b; Humpal & Cynx, 1984). The 

same ability was found in jackdaws (Corvus monedula), which also showed evidence for using the 

relative temporal structure to discriminate between sound sequences (Reinert, 1965). 

The clear need to test more species with various patterns to reveal underlying mechanisms and patterns 

of how birds perceive temporal structures was expressed together with the suggestion that current 

evidence could hint at an underlying graded scale for the sensitivity of regularity (ten Cate & Spierings, 

2019). This graded scale (limited to birds) would then encompass pigeons on one end, which only 

showed very little abilities to discriminate between temporal patterns (Hagmann & Cook, 2010), and 

parrot species, that are even able to use a perceived rhythm to induce movements synchronized to a 

given beat4, on the other end (Patel et al., 2009a, 2009b; Schachner et al., 2009). 

Moving from behavioural studies to rhythm perception and signal detection thresholds on a neuronal 

level, the focus shifts to studying the processes underlying acoustic perception, auditory processing, or 

the involvement of specific brain areas in these processes. Ultimately many of these studies also 

investigate how acoustic information is encoded and decoded (e.g., (García-Rosales, Beetz, et al., 2018; 

Land et al., 2016; Linnenschmidt & Wiegrebe, 2019; Portfors & Wenstrup, 1999; Wetekam et al., 2020).  

A very common method in the field of analysing signal detection thresholds are auditory brainstem 

response experiments (ABRs). They are a powerful method to measure hearing thresholds and define 

audiograms and were developed in the 1970s by Jewett and Williston. In an ABR the neuronal activity 

in the brainstem part of the auditory pathway in response to an acoustic stimulus is measured as field 

potentials (Jewett & Williston, 1971). ABRs are intensively used in animal models as well as humans, 

to assess hearing statuses, determine sensitivity thresholds, or recognize mental disorders (Hecox & 

Galambos, 1974; Juselius Baghdassarian et al., 2018; Källstrand et al., 2014; Land et al., 2016; Obrist 

& Wenstrup, 1998; Szymanski et al., 1999). The auditory pathway includes five brainstem nuclei: the 

cochlear nucleus, the superior olivary complex, the nucleus of the lateral lemniscus, the inferior 

 
4 Entrainment: like the human capacity to dance in tune to a specific rhythm. More generally: the ability to 
synchronize movements to an external rhythmic stimulus.  
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colliculus, and the medial geniculate (Claesdotter-Hybbinette et al., 2016; Purves et al., 2012). While in 

a classical ABR experiment the sensitivity in response to differently pitched stimuli is measured, 

different reasons hint at the fact that ABRs can be adjusted to measure sensitivity with regards to beat 

or tempo perception as well. For example, one of the auditory nuclei, the Inferior Colliculus (IC) shows 

a very high temporal precision in electrophysiological recordings of Seba’s short-tailed bat Carollia 

perspicillata (Phyllostomidae) (Macias et al., 2016), which leads to the assumption that temporal 

perception is in part already happening in the auditory brainstem. Furthermore, specialized neurons in 

the IC of the mustached bat, Pteronotus parnellii (Mormoopidae), facilitate response strength by echo 

delay-tuning (Portfors & Wenstrup, 1999). Moreover, it is known that and how the IC contributes to an 

ABR signal in a small mammal (Land et al., 2016). ABR procedures where stimulus presentation rates, 

and therefore the temporal structure of the stimuli, were changed instead of the pitch frequency of 

stimuli, were intensively used to study adaptation processes in the auditory brainstem of various animals, 

such as cats, gerbils, mice, chicken, humans, and echolocating bottle-nosed and common dolphins before 

(Burkard et al., 1994; Burkard & Sims, 2002; Burkard et al., 1997; Burkard et al., 2017; Burkard et al., 

1996a; Burkard et al., 1996b; Burkard & Voigt, 1989; Ridgway et al., 1981). This could be an interesting 

way to study beat perception as well. 

By adjusting an ABR procedure to measure beat perception, the advantages of the ABR method 

compared to behavioural tests could be utilized. In an ABR experiment, it is possible to directly measure 

the spontaneous reaction to a specific easily interchangeable stimulus of an animal on an individual 

level, while most parameters can be controlled for. It is a minimally invasive technique and there is no 

need for unnecessary stress due to long periods of isolation and training for the animals. On the other 

hand, behavioural experiments are likely to produce more sensitive results (Heffner et al., 2008). In 

contrast to the ABR approach, which of course neglects the importance of attention for stimulus 

perception as animals are anesthetized for the procedure, to exclude to measure brainstem activity 

caused by movement, sight, smell, or other unwanted processes, behavioural tests do include the 

attention of an individual and can indicate whether a stimulus or the discrimination between different 

stimuli is relevant for the animal. An ideal scenario could use preliminary ABR experiments to be able 

to set up a subsequent behavioural test in a more informed way, to minimize the number of animals 
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needed or the time spent training an animal, because certain stimuli could already be excluded in the 

behavioural setup due to the results of the ABR experiments.  

Study animals 

Different study species, with very different sound sequence characteristics, were used in this thesis. The 

study species included bats, cetaceans, and songbirds. The biggest amount of data used were various bat 

vocalizations from a total of 12 species from six families. Furthermore, echolocation sequences from 

long deep dives of one female sperm whale Physeter macrocephalus were analysed as well as the flight 

song of 14 different individuals of male skylarks. Species and the corresponding sequence types that 

were analysed are shown in Table 1.  

Different sequences served different purposes: while for some sequences it was the genuine interest to 

describe their temporal structure, other sequences served the purpose to establish and test new 

methodological approaches, because of certain properties of the sequences or the sequence type already 

being intensively studied, so that results could be easily linked to interpretations.  

Bats 

All 12 bat species for which element sequences were analysed in this thesis occur in Central America, 

and all element sequences analysed were recorded there. For 10 of 12 species only echolocation call 

sequences were analysed that were uttered in a search flight context, the type of echolocation that is 

most often coupled to wingbeat frequencies (Kalko, 1994; Moss et al., 2006; Ratcliffe et al., 2011; 

Schnitzler, 1971). The species differ in their life history spanning from nectarivorous bats, over 

frugivorous bats to insectivorous bats, and the blood-eating vampire bat Desmodus rotundus, resulting 

in very different echolocation behaviours, showcasing at least some of the variety found in the 

echolocation behaviour of the second-largest mammal order. As the temporal information of received 

echolocation echoes is important for the bats to navigate, they are an interesting candidate taxon to ask 

questions about both rhythm production and perception. ABRs are known to work very well in bats 

(Burkard & Moss, 1994; Lattenkamp et al., 2021; Linnenschmidt & Wiegrebe, 2019; Obrist & 

Wenstrup, 1998; Wetekam et al., 2020). 
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The two species Saccopteryx bilineata and Carollia perspicillata, for which we analysed more than one 

sequence type, are introduced in more detail below. Carollia perspicillata also had a prominent role in 

the rhythm ABR experiments that were carried out.  

Saccopteryx bilineata 

The greater sac-winged bat Saccopteryx bilineata has a rich vocal repertoire (Behr & Helversen, 2004) 

and is capable of vocal production learning (Knörnschild et al., 2010), which makes it an interesting 

species to investigate in terms of rhythm production, as rhythms can be compared between individuals 

and the various sequence types as well as in learned and innate contexts. The distinct sequence types are 

uttered in different contexts. Used were three sequence types: next to the already mentioned search flight 

echolocation, we also analysed territorial song and isolation calls. All three types are multi-element 

sequences (i.e., consists of at least three elements in a row) with clear element onsets. Both 

characteristics are prerequisites to be able to analyse their temporal structure. Isolation calls are 

produced by pups to solicit maternal care and by adult males to appease dominant conspecifics, the calls 

are innate (Fernandez & Knörnschild, 2017; Knörnschild, Nagy, et al., 2012; Knörnschild & von 

Helversen, 2008). An isolation call sequence is built with different element types and can be up to 2 

seconds long (Knörnschild, Nagy, et al., 2012; Knörnschild & von Helversen, 2008). Adult males 

produce territorial songs to attract mating partners and repeal rivals (Behr & Helversen, 2004; 

Knörnschild et al., 2017). Territorial songs are learned during ontogeny by imitation of conspecific’s 

song (Knörnschild et al., 2010). As well as the isolation calls, echolocation calls are produced by males 

and females. They are used for orientation, navigation, and insect prey capture (Jung, Kalko, & 

Helversen, 2007) but also serve a function facilitating social communication among group members 

(Knörnschild, Jung, et al., 2012). These three sequence types were chosen to get insights into the 

periodicity of innate signals (echolocation) as well as signals directly produced after birth but being 

changed during ontogeny through vocal production learning (isolation calls (Knörnschild, Jung, et 

al.,2012)) and learned sound signals (territorial song), while also being able to investigate potential age 

differences in periodicity.  
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Carollia perspicillata 

Seba’s short-tailed bat Carollia perspicillata also produces different sequence types for communication. 

Analysed for this thesis were the short isolation call sequences, which in contrast to isolation calls of S. 

bilineata consist of only one element type. They are also used to elicit maternal care and carry an 

individual signature strong enough for mothers to recognize their pup (Knörnschild et al., 2013). 

Carollia perspicillata is also a model organism often used in electrophysiological studies, and ABRs 

are known to work well in this species. (Hechavarría et al., 2013; Macias et al., 2016; Wetekam et al., 

2020) 

Sperm Whale Physeter macrocephalus 

The echolocation call sequences of the sperm whale Physeter macrocephalus are very long and 

stereotyped in both the spectral and the temporal dimension. They have been analysed intensively in 

many studies and were therefore used to test methods on sequences where we knew quite well what we 

expected the results to be. The analysed data came from one single individual: the female sperm whale 

Sophocles, recorded by the Dominican sperm whale project on 24. April 2014 (for details on study site 

and recordings see (Bøttcher et al., 2018; Tønnesen et al., 2018).  

Skylark, Alauda arvensis 

The third animal group sounds were analysed from were songbirds. After aerial mammals, vocalizing 

in movement and stationery, and aquatic animals, producing sound also during movements, we decided 

to use bird song also produced in movement: the flight song of male skylarks (Alauda arvensis). Skylark 

song is very complex: one individual can incorporate more than 300 different syllables in its song which 

can be combined in various ways, giving rise to a lot of variation also with regards to the temporal 

structure (Aubin, 1982; E. Briefer et al., 2008; Elodie Briefer et al., 2008). That way these songs were 

optimal to test and adjust methods after the initial development with sequences we knew what to expect 

(i.e., sperm whale echolocation sequences). Furthermore, we could test how the methods would cope 

with more complex temporal structures.  
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Table 1: Studied Species and Analysed Sequence Types 

Animal 

Group 

Family Species Sequence types Sequences 

(individuals 

if known) 

Bats 
Emballonuridae 

Rhynchonycteris 

naso 
Echolocation call sequences 8 (4) 

Emballonuridae 
Saccopteryx 

bilineata 

Echolocation call sequences 

Territorial songs 

Isolation Calls 

33 (33) 

142 (14) 

500 (25) 

Emballonuridae 
Saccopteryx 

leptura 
Echolocation call sequences 15 (12) 

Molossidae 
Molossus 

molossus 
Echolocation call sequences 15 (15) 

Mormoopidae Pteronotus 

parnellii 
Echolocation call sequences 15 (4) 

Phyllostomidae 
Carollia 

perspicillata 

Echolocation call sequences 

Isolation calls 

10 (4) 

47 (5) 

Phyllostomidae 
Desmodus 

rotundus 
Echolocation call sequences 13 (7) 

Phyllostomidae Glossophaga 

soricina 
Echolocation call sequences 8 (3) 

Phyllostomidae 
Lonchorhina 

aurita 
Echolocation call sequences 17 (9) 

Phyllostomidae Phyllostomus 

hastatus 
Echolocation call sequences 14 (4) 

Thyropteridae 
Thyroptera 

tricolour 
Echolocation call sequences 19 (6) 

Vespertilionidae Myotis nigricans Echolocation call sequences 10 (7) 

Birds 
Alaudidae Alauda arvensis Flight song 14 (14) 

Toothed 

Whales Physeteridae 
Physeter 

macrocephalus 
Echolocation call sequences 60 (1) 
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Thesis Aim and Outline 

There are some major gaps in the currently established methodological framework for rhythm analysis 

of animals’ acoustic signals. Especially how good certain descriptors are in describing a temporal pattern 

could not be answered for Fourier analysis or simple rate and frequency calculations using the IOI 

approach. Comparison or reasonable quantitative assessment about which method might depict a 

temporal pattern best in any given situation was all but impossible. Furthermore, a clear methodology 

with exemplary biological data to illustrate possible results and how to interpret them was missing. An 

aspect that is unanswered for many studies is whether and in what way different beats are perceived and 

how this reflects biological relevance for the animals. 

Reproducibility, interpretation biases, p-hacking (the distortion or manipulation of results through data 

mining), and apophenia (the tendency to see a pattern in random data) are key issues in all research 

fields. Defining clear methodologies with open access to code and data is one way of tackling those 

issues (Munafó et al., 2017) and, therefore, and overarching aim of this thesis. The concrete topics to be 

addressed in this thesis all aim to further the field of rhythm analysis of animals’ acoustic signals with 

regards to different aspects: 1) the description of temporal structures of animals’ acoustic signal 

sequences, 2) the extension of clear workflows and the establishment of interpretation examples for 

biological data, 3) the development of parameters to clearly and comparably assess the goodness-of-fit 

of a given beat frequency (in Hz) for a specific element sequence and 4) the assessment of the perception 

of different isochronous beats.  

The thesis begins with a first study on isochronous rhythms in the bat Saccopteryx bilineata (Chapter 

I, Publication A: Burchardt et al, 2019). The main aim here was to describe the temporal patterns of 

three sequence types (territorial songs, isolation calls, and echolocation call sequences) of this species. 

With these three sequence types, we tested rhythmicity in learned (territorial songs), sequences being 

produced from birth but being changed through ontogeny (isolation calls) and innate sequence types 

(echolocation call sequences) as well as in pups and adults. Sequences were analysed with the GAT 

approach and the best fitting isochronous beats were reported. All sequence types shared common 
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isochronous beats of around 6 to 24 Hz, which correlate to the wingbeat frequencies of that species. 

Acoustic signals were uttered in those beats independent of whether a bat was flying or perched.  

After this initial study, it became apparent that a clear workflow taking biological data into account was 

missing. We set out to establish one using the GAT approach used in Chapter I as well as Fourier analysis 

and the for the first time applied IOI approach (Chapter II, Publication B: Burchardt and 

Knörnschild, 2020). Furthermore, additional parameters were developed to assess the goodness-of-fit 

of beats for the Fourier analysis and IOI analyses. All methods were calculated for three different 

datasets: isolation calls of the bat Carollia perspicillata, isolation calls of the bat Saccopteryx bilineata, 

and echolocation call sequences of the toothed whale Physeter macrocephalus, all of which showed an 

isochronous structure of their vocalizations with different consistency. Depending for example on the 

duration of sequences certain methods prove to be better suited than others, to analyse specific best 

fitting beats. A clear workflow is provided, stating which analysis path is suited best for which kind of 

data.  

In Chapter III (Publication C, Burchardt et al, submitted) the perception of rhythms is in focus. The 

main question was whether different isochronous beats are differently well perceived by different bat 

species. One hypothesis was that it might be possible to find a correlation between production rhythms 

and perception rhythms. The ABR approach was adjusted to measure rhythm perception, by varying 

stimulus presentation rates instead of stimulus pitch. The procedure was tested on a total of 98 

individuals of 12 Central American bat species in the wild and in captivity with artificial and natural 

stimuli. Different beats indeed elicited differently strong reactions in the auditory brainstem, with slow 

rhythms (i.e., 6 Hz) consequently eliciting higher reactions than faster rhythms (i.e., 100 Hz). The 

perception could in parts be correlated to production rhythms. The results of this study are in any case 

important for future considerations on how to set up ABR experiments in terms of which stimulus type 

and presentation rates to use.  

Open questions remain on actual comparability and on the applicability of aforementioned methods for 

complex acoustic signals, and how rhythm analysis could further be improved. Chapter IV 

(Publication D, Burchardt, Briefer & Knörnschild, in prep.) deals with these questions and presents 
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a universal goodness-of-fit value (ugof) and expansions of the Fourier analysis. The ugof value allows 

to assess the fit of any beat in Hertz to any element sequence and a method is described to calculate a 

corresponding p-value. For the first time the fit of single elements in a sequence can be analysed, which 

is an important addition in terms of research on accentuation and grouping and can be interesting in 

other research fields like heart-beat analysis as well. The addition to established Fourier analysis was 

the idea to report more than one beat to describe a complex sequence and possibilities for the 

interpretation of these beats are given. Moreover, a third idea is presented to find grouping in the 

temporal structure through recurrence plots, which plot a sequence of IOIs as their differences, building 

a raster showing the differences between every IOI with every nth IOI as colour-coded squares. which 

provide a visual representation of the sequence’s temporal structure, by depicting a sequence as colour-

coded squares, each square representing the comparison between an IOI pairing in the sequence. Ideas 

are tested on datasets from Chapters I-III and a new dataset of complex flight song of the skylark Alauda 

arvensis.  

  



General Introduction 

31 

 

References 

Araya-Salas, M., & Wright, T. (2013). Open-ended song learning in a hummingbird. Biol Lett, 9(5), 
20130625. https://doi.org/10.1098/rsbl.2013.0625  

Aubin, T. (1982). Habituation au chant territorial chez l'alouette des champs (Alauda arvensis L.). 
Biology of Behaviour, 7, 353-362.  

Barnes, R., & Jones, M. R. (2000). Expectancy, Attention and Time. Cognitive Psychology(41), 254-
311. https://doi.org/10.1006/cogp.2000.0738  

Bass, A. H., & McKibben, J. R. (2003). Neural mechanisms and behaviours for acoustic communication 
in teleost fish. Progress in Neurobiology, 69(1), 1-26. https://doi.org/10.1016/S0301-
0082(03)00004-2  

Behr, O., & Helversen, O. (2004). Bat serenades - complex courtship songs of the sac-winged bat 
(Saccopteryx bilineata). Behavioural Ecology and Sociobiology(56), 106-115. 10.1007/s00265-
004-0768-7  

Behr, O., Helversen, O., Heckel, G., Nagy, M., Voigt, C. C., & Mayer, F. (2006). Territorial songs 
indicate male quality in the sac-winged bat Saccopteryx bilineata (Chiroptera, Emballonuridae). 
Behavioural Ecology(17), 810-817. https://doi.org/10.1093/beheco/arl013  

Boker, S. M., Xu, M., Rotondo, J. L., & King, K. (2002, Sep). Windowed cross-correlation and peak 
picking for the analysis of variability in the association between behavioural time series. 
Psychological Methods, 7(3), 338-355. https://doi.org/10.1037/1082-989x.7.3.338  

Bolgan, M., Amorim, M. C. P., Fonseca, P. J., Di Iorio, L., & Parmentier, E. (2018, Jul 12). Acoustic 
Complexity of vocal fish communities: a field and controlled validation. Scientific Reports, 8(1), 
10559. https://doi.org/10.1038/s41598-018-28771-6  

Bolgan, M., Crucianelli, A., Mylonas, C. C., Henry, S., Falguière, J. C., & Parmentier, E. (2020). Calling 
activity and calls' temporal features inform about fish reproductive condition and spawning in 
three cultured Sciaenidae species. Aquaculture, 524, 735243. 
https://doi.org/10.1016/j.aquaculture.2020.735243  

Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: converging mechanisms in birdsong 
and human speech. Nature Reviews Neuroscience, 11(11), 747-759. 
https://doi.org/10.1038/nrn2931  

Bøttcher, A., Gero, S., Beedholm, K., Whitehead, H., & Madsen, P. T. (2018). Variability of the inter-
pulse interval in sperm whale clicks with implications for size estimation and individual 
identification. The Journal of the Acoustical Society of America, 144(1), 365-374. 
https://doi.org/10.1121/1.5047657  

Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). Sinauer 
Associates Oxford University Press.  

Briefer, E., Aubin, T., Lehongre, K., & Rybak, F. (2008). How to identify dear enemies: the group 
signature in the complex song of the skylark Alauda arvensis. Journal of Experimental Biology, 

211, 317-326. https://doi.org/10.1242/jeb.013359  
Briefer, E., Osiejuk, T. S., Rybak, F., & Aubin, T. (2010). Are bird song complexity and song sharing 

shaped by habitat structure? An information theory and statistical approach. Journal of 

Theoretical Biology, 262(1), 151-164. https://doi.org/10.1016/j.jtbi.2009.09.020  
Briefer, E., Rybak, F., & Aubin, T. (2008). When to be a dear enemy: flexible acoustic relationships of 

neighbouring skylarks, Alauda arvensis. Animal Behaviour, 76, 1319-1325. 
https://doi.org/10.1016/j.anbehav.2008.06.017  

Burchardt, L. S., Norton, P., Behr, O., Scharff, C., & Knörnschild, M. (2019). General isochronous 
rhythm in echolocation calls and social vocalizations of the bat Saccopteryx bilineata. Royal 

Society Open Science, 6. http://doi.org/10.1098/rsos.181076  
Burkard, R., Jones, S., & Jones, T. (1994). Conventional and cross-correlation brain-stem auditory 

evoked responses in the white leghorn chick: rate manipulations. The Journal of the Acoustical 

Society of America, 95(4), 2136-2144. https://doi.org/10.1121/1.408675  
Burkard, R., & Moss, C. F. (1994). The brain-stem auditory-evoked response in the big brown bat 

(Eptesicus fuscus) to clicks and frequency-modulated sweeps. The Journal of the Acoustical 

Society of America, 96(2).  

https://doi.org/10.1098/rsbl.2013.0625
https://doi.org/10.1006/cogp.2000.0738
https://doi.org/10.1016/S0301-0082(03)00004-2
https://doi.org/10.1016/S0301-0082(03)00004-2
https://doi.org/10.1093/beheco/arl013
https://doi.org/10.1016/j.aquaculture.2020.735243
https://doi.org/10.1038/nrn2931
https://doi.org/10.1121/1.5047657
https://doi.org/10.1242/jeb.013359
https://doi.org/10.1016/j.jtbi.2009.09.020
https://doi.org/10.1016/j.anbehav.2008.06.017
http://doi.org/10.1098/rsos.181076
https://doi.org/10.1121/1.408675


General Introduction 

32 

 

Burkard, R., & Sims, D. (2002). The Human Auditory Brainstem Response to High Click Rates. 
American journal of audiology, 10(2), 53-61. https://doi.org/10.1044/1059-0889(2001/008)  

Burkard, R., Trautwein, P., & Salvi, R. (1997). The effects of click level, click rate, and level of 
background masking noise on the inferior colliculus potential (ICP) in the normal and 
carboplatin-treated chinchilla. The Journal of the Acoustical Society of America, 102(6), 3620-
3627. 10.1121/1.420149  

Burkard, R. F., Finneran, J. J., & Mulsow, J. (2017). The effects of click rate on the auditory brainstem 
response of bottlenose dolphins. The Journal of the Acoustical Society of America, 141(5), 3396. 
https://doi.org/10.1121/1.4983447  

Burkard, R. F., McGee, J., & Walsh, E. J. (1996a). Effects of stimulus rate on the feline brain-stem 
auditory evoked response during development. I. Peak latencies. The Journal of the Acoustical 

Society of America, 100(2), 978-990. https://doi.org/10.1121/1.416209   
Burkard, R. F., McGee, J., & Walsh, E. J. (1996b). Effects of stimulus rate on the feline brain-stem 

auditory evoked response during development. II. Peak amplitudes. The Journal of the 

Acoustical Society of America, 100(2), 991-1002. https://doi.org/10.1121/1.416210  
Burkard, R. F., & Voigt, H. F. (1989). Stimulus dependecies of the gerbil brain-stem auditory-evoked 

response (BAER). I: Effects of click level, rate, and polarity. The Journal of the Acoustical 

Society of America, 85(6), 2514-2525.  
Call, J., & Tomasello, M. (2020). The Gestural Communication of Apes and Monkeys (1st ed.). 

Psychology Press.  
Cameron, D. J., Zioga, I., Lindsen, J. P., Pearce, M. T., Wiggins, G. A., Potter, K., & Bhattacharya, J. 

(2019, Aug). Neural entrainment is associated with subjective groove and complexity for 
performed but not mechanical musical rhythms. Exp Brain Res, 237(8), 1981-1991. 
10.1007/s00221-019-05557-4  

Carter, G. G., Skowronski, M. D., Faure, P. A., & Fenton, B. (2008, 2008/10/01/). Antiphonal calling 
allows individual discrimination in white-winged vampire bats. Animal Behaviour, 76(4), 1343-
1355. https://doi.org/10.1016/j.anbehav.2008.04.023  

Charrier, I., Pitcher, B. J., & Harcourt, R. G. (2009). Vocal recognition of mothers by Australian sea 
lion pups: individual signature and environmental constraints. Animal Behaviour, 78(5), 1127-
1134. https://doi.org/10.1016/j.anbehav.2009.07.032  

Claesdotter-Hybbinette, E., Matti Cervin, M., & Akerlun, S. (2016). Gender specific differences in 
auditory brain stem response in young patients with ADHD. Neuropsychiatry, 06(01). 
https://doi.org/10.4172/Neuropsychiatry.1000114  

Cortopassi, K. A., & Bradbury, J. W. (2000). The Comparison of harmonically rich Sounds using 
pectrographic Cross-correlation and Principal Coordinates Analysis. Bioacoustics, 11(2), 89-
127. https://doi.org/10.1080/09524622.2000.9753454  

Dabbs, J. M. (1983, August 23-27). Fourier analysis of the rhythm of conversation Annual Meeting of 
the American Psychological Association, Washington DC. ERIC Document Reproduction 
Service No. ED 222 959. https://eric.ed.gov/?id=ED222959 

Dahlin, C. R., & Benedict, L. (2014, 2014/01/01). Angry Birds Need Not Apply: A Perspective on the 
Flexible form and Multifunctionality of Avian Vocal Duets [https://doi.org/10.1111/eth.12182]. 
Ethology, 120(1), 1-10. https://doi.org/10.1111/eth.12182  

David, J. A. d. O., Zefa, E., & Fontanetti, C. S. (2003). Cryptic species of Gryllus in the light of 
bioacoustic (Orthoptera: Gryllidae). Neotropical Entomology, 32, 75-80. 
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-
566X2003000100010&nrm=iso  

Doherty, J. A. (1985). Temperature Coupling and 'Trade-Off' Phenomena in the acoustic 
Communication System of the Cricket, Gryllus Bimaculates De Geer (Gryllidae). The Journal 

of Experimental Biology, 114, 17-35.  
Duffy, S., & Pearce, M. (2018). What makes rhythms hard to perform? An investigation using Steve 

Reich’s Clapping Music. PLoS One, 13(10), e0205847. 10.1371/journal.pone.0205847  
Eisenberg, J. F., & Kleiman, D. G. (1972). Olfactory Communication in Mammals. Annual Review of 

Ecology and Systematics, 3(1), 1-32. https://doi.org/10.1146/annurev.es.03.110172.000245  
Fernandez, A. A. (2020). Vocal ontogenetic processes in bat pups, From babbling behaviour to the 

interplay of social and vocal complexity [Doctoral thesis, Freie Universität Berlin].  
 

https://doi.org/10.1044/1059-0889(2001/008
https://doi.org/10.1121/1.4983447
https://doi.org/10.1121/1.416209
https://doi.org/10.1121/1.416210
https://doi.org/10.1016/j.anbehav.2008.04.023
https://doi.org/10.1016/j.anbehav.2009.07.032
https://doi.org/10.4172/Neuropsychiatry.1000114
https://doi.org/10.1080/09524622.2000.9753454
https://eric.ed.gov/?id=ED222959
https://doi.org/10.1111/eth.12182
https://doi.org/10.1111/eth.12182
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-566X2003000100010&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-566X2003000100010&nrm=iso
https://doi.org/10.1146/annurev.es.03.110172.000245


General Introduction 

33 

 

Fernandez, A. A., & Knörnschild, M. (2017). Isolation Calls of the Bat Saccopteryx bilineata Encode 
Multiple Messages. Animal Behaviour and Cognition, 4(2), 169-186. 
https://doi.org/10.12966/abc.04.05.2017  

Fine, M. L., & Parmentier, É. (2015). Mechanisms of Fish Sound Production. In Sound communication 

in fishes (pp. 77-126). Springer.  
Fitch, W. T. (2000, Jul). The evolution of speech: a comparative review. Trends in Cognitive Sciences, 

4(7), 258-267. https://doi.org/10.1016/s1364-6613(00)01494-7  
Fitch, W. T. (2010). The Evolution of Language. Cambridge University Press.  
Forrest, T. G. (1994). From Sender to Receiver: Propagation and Environmental Effects on Acoustic 

Signals. American Zoologist, 34(6), 644-654. https://doi.org/10.1093/icb/34.6.644  
Fourier, J.-B. J. (1822). Théorie analytique de la chaleur. F. Didot.  
Freiherr von Saalfeld, E. (1939). Untersuchungen der Fledermaus-Atmung. Zeitschrift für vergleichende 

Physiologie(26(2)), 242-252. https://doi.org/10.1007/BF00593038  
Fulton, B. B. (1932). North Carolina's singing Orthoptera. Journal of the Elisha Mitchell Scientific 

Society, 47, 55-69. http://entnemdept.ufl.edu/Walker/buzz/i00lf32.pdf  
García-Rosales, F., Beetz, M. J., Cabral-Calderin, Y., Kössl, M., & Hechavarria, J. C. (2018). Neuronal 

coding of multiscale temporal features in communication sequences within the bat auditory 
cortex. Communications Biology, 1(1), 200. https://doi.org/10.1038/s42003-018-0205-5  

Garcia, M., Theunissen, F., Sebe, F., Clavel, J., Ravignani, A., Marin-Cudraz, T., Fuchs, J., & Mathevon, 
N. (2020). Evolution of communication signals and information during species radiation. 
Nature Communications, 11(1), 4970. https://doi.org/10.1038/s41467-020-18772-3  

Gaunt, S. L. L., Baptista, L. F., Sanchez, J. E., & Hernandez, D. (1994). Song learning as evidenced 
from song sharing in two hummingbird species (Colibri coruscans and C. thalassinus). The Auk, 

111(1), 87-103. https://doi.org/10.2307/4088508  
Gochfeld, M. (1978, 1978/01/12). Intraspecific Social Stimulation and Temporal Displacement of Songs 

of the Lesser Skylark, Alauda gulgula. Zeitschrift für Tierpsychologie, 48(4), 337-344. 
https://doi.org/10.1111/j.1439-0310.1978.tb00264.x  

Grabe, E., & Low, E. (2002). Durational variability in speech and the rhythm class hypothesis. Papers 

in Laboratory Phonology, 7, 515-546.  
Hagmann, C. E., & Cook, R. G. (2010). Testing meter, rhythm, and tempo discriminations in pigeons. 

Behavioural Processes, 85(2), 99-110. https://doi.org/10.1016/j.beproc.2010.06.015  
Hamilton, J. D. (1994a). Difference Equations. In Time Series Analysis (pp. 1-24). Princeton University 

Press. https://doi.org/ https://doi.org/10.1515/9780691218632-002  
Hamilton, J. D. (1994b). Lag Operators. In Time Series Analysis (pp. 25-42). Princeton University Press. 

https://doi.org/https://doi.org/10.1515/9780691218632-007  
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The Faculty of Language: What Is It, Who Has It, 

and How Did It Evolve? Science, 298(5598), 1569. 
https://doi.org/10.1126/science.298.5598.1569  

Hawkins, A., & Amorim, M. C. (2000). Spawning Sounds of the Male Haddock, Melanogrammus 

aeglefinus. Environmental Biology of Fishes, 59, 29-41. 
https://doi.org/10.1023/A:1007615517287  

Hechavarría, J. C., Macías, S., Vater, M., Voss, C., Mora, E. C., & Kössl, M. (2013). Blurry topography 
for precise target-distance computations in the auditory cortex of echolocating bats. Nature 

Communications, 4, 2587. http://dx.doi.org/10.1038/ncomms3587  
Hecox, K., & Galambos, R. (1974). Brain Stem Auditory Evoked Responses in Human Infants and 

Adults. Archives of Otolaryngology, 99(1), 30-33. 
https://doi.org/10.1001/archotol.1974.00780030034006  

Heffner, H. E., Koay, G., & Heffner, R. S. (2008). Comparison of behavioural and auditory brainstem 
response measures of threshold shift in rats exposed to loud sound. The Journal of the Acoustical 

Society of America, 124(2), 1093-1104. https://doi.org/10.1121/1.2949518  
Heinsohn, R., Zdenek, C. N., Cunningham, R. B., Endler, J. A., & Langmore, N. E. (2017). Tool-assisted 

rhythmic drumming in palm cockatoos shares key elements of human instrumental music. 
Science Advances, 3(6), e1602399. https://doi.org/10.1126/sciadv.1602399  

Hiss, A. (1983, January 3). Hoover. The New Yorker. 
https://www.newyorker.com/magazine/1983/01/03/hoover 

https://doi.org/10.12966/abc.04.05.2017
https://doi.org/10.1016/s1364-6613(00)01494-7
https://doi.org/10.1093/icb/34.6.644
https://doi.org/10.1007/BF00593038
http://entnemdept.ufl.edu/Walker/buzz/i00lf32.pdf
https://doi.org/10.1038/s42003-018-0205-5
https://doi.org/10.1038/s41467-020-18772-3
https://doi.org/10.2307/4088508
https://doi.org/10.1111/j.1439-0310.1978.tb00264.x
https://doi.org/10.1016/j.beproc.2010.06.015
https://doi.org/
https://doi.org/10.1515/9780691218632-002
https://doi.org/https:/doi.org/10.1515/9780691218632-007
https://doi.org/10.1126/science.298.5598.1569
https://doi.org/10.1023/A:1007615517287
http://dx.doi.org/10.1038/ncomms3587
https://doi.org/10.1001/archotol.1974.00780030034006
https://doi.org/10.1121/1.2949518
https://doi.org/10.1126/sciadv.1602399
https://www.newyorker.com/magazine/1983/01/03/hoover


General Introduction 

34 

 

Honing, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the 

New York Academy of Sciences, 1252, 85-91. https://doi.org/10.1111/j.1749-
6632.2011.06402.x  

Honing, H., & Ploeger, A. (2012). Cognition and the evolution of music: pitfalls and prospects. Topics 

in Cognitiv Sciences, 4(4), 513-524. https://doi.org/10.1111/j.1756-8765.2012.01210.x  
Honing, H., ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: cognition, biology and 

evolution of musicality. Philosophical Transactions of the Royal Society B, 370(1664).  
Hulse, S. H., Humpal, J., & Cynx, J. (1984a). Discrimination and Generalization of Rhythmic and 

Arrhythmic Sound Patterns by European Starlings (Sturnus vulgaris). Music Perception, 1(4).  
Hulse, S. H., Humpal, J., & Cynx, J. (1984b). Processing of Rhythmic Sound Structures by Birds. Annals 

of the New York Acadmey of Science, 423(1), 407-419.  
Hultsch, H., & Todt, D. (1981). Repertoire sharing and song-post distance in nightingales (Luscinia 

megarhynchos B.). Behavioural Ecology and Sociobiology, 8(3), 183-188. 
https://doi.org/10.1007/BF00299828  

Hultsch, H., & Todt, D. (1982). Temporal performance roles during vocal interactions in nightingales 
(Luscinia megarhynchos B.). Behavioural Ecology and Sociobiology, 11(4), 253-260. 
10.1007/BF00299302  

Hultsch, H., & Todt, D. (1989). Context Memorization in the Song-Learning of Birds. 
Naturwissenschaften, 76, 584-586. https://doi.org/10.1007/bf00462873      

Humpal, J., & Cynx, J. A. (1984). Discrimination of Temporal Components of Acoustic Patterns by 
Birds [https://doi.org/10.1111/j.1749-6632.1984.tb23466.x]. Annals of the New York Academy 

of Sciences, 423(1), 600-602. https://doi.org/10.1111/j.1749-6632.1984.tb23466.x  
Hyland Bruno, J., & Tchernichovski, O. (2017). Regularities in zebra finch song beyond the repeated 

motif. Behavioural Processes. https://doi.org/10.1016/j.beproc.2017.11.001  
Ioannidis, Y. (2003). The History of Histograms (abridged). In J.-C. Freytag, P. Lockemann, S. 

Abiteboul, M. Carey, P. Selinger, & A. Heuer (Eds.), Proceedings 2003 VLDB Conference (pp. 
19-30). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-012722442-8/50011-2  

Ishay, J., Motro, A., Gitter, S., & Brown, M. B. (1974). Rhythms in Acoustical Communication by the 
Oriental Hornet, Vespa orientalis Animal Behaviour, 22, 741-744. 
https://doi.org/10.1016/s0003-3472(74)80026-6      

Janik, V. M. (2014). Cetacean vocal learning and communication. Current Opinion in Neurobiology, 

28, 60-65. https://doi.org/10.1016/j.conb.2014.06.010  
Jewett, D. L., & Williston, J. S. (1971). Auditory-evoked far fields averaged from the scalp of humans. 

Brain, 94(4), 681-696. https://doi.org/10.1093/brain/94.4.681  
Jones, M. R., Kidd, G., & Wetzel, R. (1981). Evicence for rhythmic attention. Journal of Experimental 

Psychology: Human Perception and Performance, 7(5), 1059-1073.  
Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven 

attending in dynamic arrays. Psychological Science(13), 313-319. https://doi.org/10.1111/1467-
9280.00458  

Jung, K., Kalko, E. K. V., & Helversen, O. (2007). Echolocation calls in Central American emballonurid 
bats: signal design and call frequency alternation. Journal of Zoology, 272, 125-137.  

Juselius Baghdassarian, E., Nilsson Markhed, M., Lindström, E., Nilsson, B. M., & Lewander, T. (2018). 
Auditory brainstem response (ABR) profiling tests as diagnostic support for schizophrenia and 
adult attention-deficit hyperactivity disorder (ADHD). Acta Neuropsychiatrica, 30(3), 137-147. 
https://doi.org/10.1017/neu.2017.24  

Kalko, E. K. V. (1994). Coupling of sound emission and wingbeat in naturally foraging european 
pipistrelle bats (Microchiroptera: Vespertilionidae). Folia Zoologica, 43(4), 363-376.  

Källstrand, J., Lewander, T., Baghdassarian, E., & Nielzén, S. (2014). A new method for analysing 
auditory brain-stem response waveforms using a moving-minimum subtraction procedure of 
digitized analog recordings. Neuropsychiatric Disease and Treatment, 10, 1011-1016. 
https://doi.org/10.2147/NDT.S59178  

Kever, L., Boyle, K. S., & Parmentier, E. (2015). Effects of seawater temperature on sound 
characteristics in Ophidion rochei (Ophidiidae). Journal of Fish Biology, 87(2), 502-509. 
https://doi.org/10.1111/jfb.12730  

https://doi.org/10.1111/j.1749-6632.2011.06402.x
https://doi.org/10.1111/j.1749-6632.2011.06402.x
https://doi.org/10.1111/j.1756-8765.2012.01210.x
https://doi.org/10.1007/BF00299828
https://doi.org/10.1007/bf00462873
https://doi.org/10.1111/j.1749-6632.1984.tb23466.x
https://doi.org/10.1111/j.1749-6632.1984.tb23466.x
https://doi.org/10.1016/j.beproc.2017.11.001
https://doi.org/https:/doi.org/10.1016/B978-012722442-8/50011-2
https://doi.org/10.1016/s0003-3472(74)80026-6
https://doi.org/10.1016/j.conb.2014.06.010
https://doi.org/10.1093/brain/94.4.681
https://doi.org/10.1111/1467-9280.00458
https://doi.org/10.1111/1467-9280.00458
https://doi.org/10.1017/neu.2017.24
https://doi.org/10.2147/NDT.S59178
https://doi.org/10.1111/jfb.12730


General Introduction 

35 

 

Khanna, H., Gaunt, S. L. L., & McCallum, D. A. (1997). Digital Spectrographic Cross-Correlation: 
Tests of Sensitivity. Bioacoustics, 7(3), 209-234. 
https://doi.org/10.1080/09524622.1997.9753332  

Knörnschild, M. (2014). Vocal production learning in bats. Current Opinion in Neurobiology, 28, 80-
85. https://doi.org/10.1016/j.conb.2014.06.014  

Knörnschild, M., Behr, O., & von Helversen, O. (2006). Babbling behaviour in the sac-winged bat 
(Saccopteryx bilineata). Naturwissenschaften, 93, 451-454.  

Knörnschild, M., Bluml, S., Steidl, P., Eckenweber, M., & Nagy, M. (2017). Bat songs as acoustic 
beacons - male territorial songs attract dispersing females. Scientific Reports, 7(1), 13918. 
https://doi.org/10.1038/s41598-017-14434-5  

Knörnschild, M., Feifel, M., & Kalko, E. K. V. (2013). Mother-offspring recognition in the bat Carollia 

perspicillata. Animal Behaviour, 86, 941-948. https://doi.org/10.1016/j.anbehav.2013.08.011  
Knörnschild, M., Jung, K., Nagy, M., Metz, M., & Kalko, E. K. V. (2012). Bat echolocation calls 

facilitate social communication. Proceedings of the Royal Society B, 279, 4827-4835. 
https://doi.org/10.1098/rspb.2012.1995  

Knörnschild, M., Nagy, M., Metz, M., Mayer, F., & von Helversen, O. (2010). Complex vocal imitation 
during ontogeny in a bat. Biology Letters, 6(2), 156-159.  

Knörnschild, M., Nagy, M., Metz, M., Mayer, F., & von Helversen, O. (2012). Learned vocal group 
signatures in the polygynous bat Saccopteryx bilineata. Animal Behaviour, 84, 761-769. 
http://dx.doi.org/10.1016/j.anbehav.2012.06.029  

Knörnschild, M., & von Helversen, O. (2008). Non-mutual vocal mother-pup recognition in the sac-
winged bat, Saccopteryx bilineata. Animal Behaviour, 76(3), 1001-1009. 
https://doi.org/10.1016/j.anbehav.2008.05.018  

Kotz, S. A., Ravignani, A., & Fitch, W. T. (2018). The Evolution of Rhythm Processing. Trends in 

Cognitive Sciences, 22(10), 896-910. https://doi.org/10.1016/j.tics.2018.08.002  
Ladegaard, M., Jensen, F. H., de Freitas, M., Ferreira da Silva, V. M., & Madsen, P. T. (2015, Oct). 

Amazon river dolphins (Inia geoffrensis) use a high-frequency short-range biosonar. Journal of 

Experimental Biolology, 218(19), 3091-3101. https://doi.org/10.1242/jeb.120501  
Ladich, F. (2014). Fish bioacoustics. Current Opinion in Neurobiology, 28, 121-127. 

https://doi.org/10.1016/j.conb.2014.06.013  
Ladich, F. (2018). Acoustic communication in fishes: Temperature plays a role. Fish and Fisheries, 

19(4), 598-612. https://doi.org/10.1111/faf.12277  
Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal 

oscillations as a mechanism of attentional selection. Science, 320, 110-113. 
https://doi.org/10.1126/science.1154735  

Land, R., Burghard, A., & Kral, A. (2016). The contribution of inferior colliculus activity to the auditory 
brainstem response (ABR) in mice. Hearing Research, 341, 109-118. 
https://doi.org/10.1016/j.heares.2016.08.008  

Large, E. W., & Jones, M. R. (1999). The dynamics of attenting: how people track time varving events. 
Psychological Review(106), 119-159.  

Lattenkamp, E. Z., Nagy, M., Drexl, M., Vernes, S. C., Wiegrebe, L., & Knornschild, M. (2021). 
Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls 
and social calls. Proceedings of the Royal Society B, 288, 20202600. 
https://doi.org/10.1098/rspb.2020.2600  

Le Bot, O., Bonnel, J., Mars, J. I., & Gervaise, C. (2013). Odontocete click train deinterleaving using a 
single hydrophone and rhythm analysis. The Journal of the Acoustical Society of America, 

133(5), 3312-3312. https://doi.org/10.1121/1.4805506  
Lin, H., & Wang, Q. (2007). Mandarin rhythm: An acoustic study. Journal of Chinese Language and 

Computing, 17(3), 127-140.  
Linnenschmidt, M., & Wiegrebe, L. (2019). Ontogeny of auditory brainstem responses in the bat, 

Phyllostomus discolour. Hearing Research, 373, 85-95. 
https://doi.org/10.1016/j.heares.2018.12.010  

Macias, S., Hechavarria, J. C., & Kossl, M. (2016). Temporal encoding precision of bat auditory neurons 
tuned to target distance deteriorates on the way to the cortex. Journal of Comparative 

Physiology A, 202(3), 195-202. https://doi.org/10.1007/s00359-016-1067-2  

https://doi.org/10.1080/09524622.1997.9753332
https://doi.org/10.1016/j.conb.2014.06.014
https://doi.org/10.1038/s41598-017-14434-5
https://doi.org/10.1016/j.anbehav.2013.08.011
https://doi.org/10.1098/rspb.2012.1995
http://dx.doi.org/10.1016/j.anbehav.2012.06.029
https://doi.org/10.1016/j.anbehav.2008.05.018
https://doi.org/10.1016/j.tics.2018.08.002
https://doi.org/10.1016/j.conb.2014.06.013
https://doi.org/10.1111/faf.12277
https://doi.org/10.1126/science.1154735
https://doi.org/10.1016/j.heares.2016.08.008
https://doi.org/10.1098/rspb.2020.2600
https://doi.org/10.1121/1.4805506
https://doi.org/10.1016/j.heares.2018.12.010
https://doi.org/10.1007/s00359-016-1067-2


General Introduction 

36 

 

Manser, M. B. (2001). The acoustic structure of suricates' alarm calls varies with predator type and the 
level of response urgency. Proceedings of the Royal Society B, 268, 2315-2324. 
https://doi.org/10.1098/rspb.2001.1773  

Marler, P., & Slabbekoorn, H. (2004). Nature's Music The Science of Birdsong. Elsevier Academic 
Press. https://doi.org/10.1016/B978-0-12-473070-0.X5000-2  

Martins, P. T., & Boeckx, C. (2020). Vocal learning: Beyond the continuum. PLoS Biol, 18(3), 
e3000672. https://doi.org/10.1371/journal.pbio.3000672  

Mathevon, N., Casey, C., Reichmuth, C., & Charrier, I. (2017). Northern Elephant Seals Memorize the 
Rhythm and Timbre of Their Rivals Voices. Current Biology, 27(15), 2352-2356.e2352. 
https://doi.org/10.1016/j.cub.2017.06.035  

Mathevon, N., Koralek, A., Weldele, M., Glickman, S., E., & Theunissen, F. (2010). What the hyena's 
laugh tells: Sex, age, dominance and individual signature in the giggling call of Crocuta crocuta. 
BMC Ecology, 10(9). https://doi.org/10.1186/1472-6785-10-9  

McRae, T. R. (2020). A review of squirrel alarm-calling behaviour: What we know and what we do not 
know about how predator attributes affect alarm calls. Animal Behaviour and Cognition, 7(2), 
168-191. https://doi.org/10.26451/abc.07.02.11.2020  

Merguerditchian, A., Vuillemin, A., & Pruetz, J. D. (2018). Identifying the ape beat in the wild: rhythmic 

indvidual signatures from sounds of manual fruit cracking in Fongoli Chimpanzees The 
Evolution of Language. Proceedings of the 12th International Conference on the Evolution of 
Language (Evolang12),  

Moss, C. F., Bohn, K., Gilkenson, H., & Surlykke, A. (2006). Active listening for spatial orientation in 
a complex auditory scene. PLOS Biology, 4(4), e79. 
https://doi.org/10.1371/journal.pbio.0040079  

Moss, C. F., & Surlykke, A. (2001). Auditory scene analysis by echolocation in bats. The Journal of the 

Acoustical Society of America, 110(4), 2207-2226. https://doi.org/10.1121/1.1398051  
Munafó, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie du Sert, N., 

Simonsohn, U., Wagenmakers, E.-J., Ware, J. J., & Ioannidis, J. P. A. (2017). A manifesto for 
reproducible science. nature human behaviour, 1. https://doi.org/10.1038/s41562-016-0021  

Norton, P., Barschke, P., Scharff, C., & Mendoza, E. (2019). Differential Song Deficits after Lentivirus-
Mediated Knockdown of FoxP1, FoxP2, or FoxP4 in Area X of Juvenile Zebra Finches. The 

Journal of Neuroscience, 39(49), 9782-9796. https://doi.org/10.1523/jneurosci.1250-19.2019  
Norton, P., & Scharff, C. (2016). "Bird Song Metronomics": Isochronous Organization of Zebra Finch 

Song Rhythm. Frontiers in Neuroscience, 10(309). https://doi.org/10.3389/fnins.2016.00309  
Obrist, M. K., & Wenstrup, J. J. (1998). Hearing and hunting in red bats (Lasiurus borealis, 

Vespertilionidae): audiogram and ear properties. Journal of Experimental Biology, 201, 143-
154.  

Parmentier, E., Lecchini, D., Frederich, B., Brie, C., & Mann, D. (2009). Sound production in four 
damselfish (Dascyllus) species: phyletic relationships? Biological Journal of the Linnean 

Society, 97(4), 928-940. https://doi.org/10.1111/j.1095-8312.2009.01260.x  
Patel, A. D. (2008). Music, Language and the Brain. NY: Oxford University Press.  
Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009a,). Experimental Evidence for 

Synchronization to a Musical Beat in a Nonhuman Animal. Current Biology, 19(10), 827-830. 
https://doi.org/10.1016/j.cub.2009.03.038  

Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009b). Studying Synchronization to a Musical 
Beat in Nonhuman Animals. Annals of the New York Academy of Sciences, 1169(1), 459-469. 
https://doi.org/10.1111/j.1749-6632.2009.04581.x  

Pepperberg, I. M. (2010). Vocal learning in Grey parrots: A brief review of perception, production, and 
cross-species comparisons. Brain and Language, 115(1), 81-91. 
https://doi.org/10.1016/j.bandl.2009.11.002  

Percival, G., & Tzanetakis, G. (2014). Streamlined Tempo Estimation Based on Autocorrelation and 
Cross-correlation With Pulses. IEEE/ACM Transactions on Audio, Speech, and Language 

Processing, 22(12), 1765-1776. https://doi.org/10.1109/TASLP.2014.2348916  
Picciulin, M., Fiorin, R., Facca, C., & Malavasi, S. (2020). Sound features and vocal rhythms as a proxy 

for locating the spawning ground of Sciaena umbra in the wild. Aquatic Conservation: Marine 

and Freshwater Ecosystems, 30(7), 1299-1312. https://doi.org/10.1002/aqc.3340  

https://doi.org/10.1098/rspb.2001.1773
https://doi.org/10.1371/journal.pbio.3000672
https://doi.org/10.1016/j.cub.2017.06.035
https://doi.org/10.1186/1472-6785-10-9
https://doi.org/10.26451/abc.07.02.11.2020
https://doi.org/10.1371/journal.pbio.0040079
https://doi.org/10.1121/1.1398051
https://doi.org/10.1523/jneurosci.1250-19.2019
https://doi.org/10.3389/fnins.2016.00309
https://doi.org/10.1111/j.1095-8312.2009.01260.x
https://doi.org/10.1016/j.cub.2009.03.038
https://doi.org/10.1111/j.1749-6632.2009.04581.x
https://doi.org/10.1016/j.bandl.2009.11.002
https://doi.org/10.1002/aqc.3340


General Introduction 

37 

 

Picciulin, M., Sebastianutto, L., Codarin, A., Calcagno, G., & Ferrero, E. A. (2012). Brown meagre 
vocalization rate increases during repetitive boat noise exposures: a possible case of vocal 
compensation. The Journal of the Acoustical Society of America, 132(5), 3118-3124. 
https://doi.org/10.1121/1.4756928  

Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: bridging the gap between 
human and animal communication. Proceedings of the Royal Society B, 285, 20180598. 
https://doi.org/10.1098/rspb.2018.0598  

Poole, J. H., Tyack, P. L., Stoeger-Horwath, A. S., & Watwood, S. (2005). Elephants are capable of 
vocal learning. Nature, 434, 455-456. https://doi.org/10.1038/434455a  

Portfors, C. V., & Wenstrup, J. J. (1999). Delay-Tuned Neurons in the Inferior Colliculus of the 
Mustached Bat: Implications for Analyses of Target Distance. Journal of Neurophysiology, 

82(3), 1326-1338.  
Potter, R. K., Kopp, G. A., & Kopp, H. C. G. (1947). Visible Speech D. Van Nostrand Company. 

https://books.google.de/books?id=qSAByAEACAAJ  
Pougnault, L., Levréro, F., Mulot, B., & Lemasson, A. (2020). Breaking conversational rules matters to 

captive gorillas: A playback experiment. Scientific Reports, 10(1), 6947. 
https://doi.org/10.1038/s41598-020-63923-7  

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., & White, L. E. (2012). 
Neuroscience (5th Edition ed.). Sinauer Associates Inc.  

Ratcliffe, J. M., Elemans, C. P., Jakobsen, L., & Surlykke, A. (2013). How the bat got its buzz. Biology 

Letters, 9(2). https://doi.org/10.1098/rsbl.2012.1031  
Ratcliffe, J. M., Jakobsen, L., Kalko, E. K. V., & Surlykke, A. (2011). Frequency alternation and an 

offbeat rhythm indicate foraging behaviour in the echolocating bat, Saccopteryx bilineata. 
Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-011-0630-0  

Ravignani, A. (2018). Spontaneous rhythms in a harbor seal pup calls. BMC research notes, 11(1). 
https://doi.org/10.1186/s13104-017-3107-6  

Ravignani, A. (in press). Isochrony, vocal learning and the acquisition of rhythm and melody. 
Behavioural and Brain Science, in press.  

Ravignani, A., Bowling, D. L., & Fitch, W. T. (2014). Chorusing, synchrony, and the evolutionary 
functions of rhythm. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01118  

Ravignani, A., & Norton, P. (2017). Measuring ryhtmic complexity: A primer to quantify and compare 
temporal structure in speec, movement and animal vocalizations. Journal of Language 

Evolution. https://doi.org/10.1093/jole/lzx002  
Ravignani, A., Thompson, B., & Filippi, P. (2018). The Evolution of Musicality: What Can Be Learned 

from Language Evolution Research? Frontiers in Neuroscience, 12(20). 
https://doi.org/10.3389/fnins.2018.00020  

Reichmuth, C., & Casey, C. (2014, 2014/10/01/). Vocal learning in seals, sea lions, and walruses. 
Current Opinion in Neurobiology, 28, 66-71. https://doi.org/10.1016/j.conb.2014.06.011  

Reinert, J. (1965). Takt- und Rhythmusunterscheidung bei Dohlen. Zeitschrift für Tierpsychologie, 

22(6). https://doi.org/10.1111/j.1439-0310.1965.tb01683.x  
Ridgway, S. H., Bullock, T. H., Carder, D. A., Seeley, R. L., Woods, D., & Galambos, R. (1981). 

Auditory brainstem response in dolphins. Proceedings of the National Academy of Science, 

78(3). https://doi.org/10.1073/pnas.78.3.1943      
Riebel, K. (2009). Chapter 6 Song and Female Mate Choice in Zebra Finches: A Review. In Advances 

in the Study of Behaviour (Vol. 40, pp. 197-238). Academic Press. 
https://doi.org/https://doi.org/10.1016/S0065-3454(09)40006-8  

Roeske, T., Kelty-Stephen, D., & Wallot, S. (2018). Multifractal analysis reveals music-like dynamic 
structure in songbird rhythms. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-22933-
2  

Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal expectation improves the 
quality of sensory information. The Journal of Neuroscience, 32, 8424-8428. 
https://doi.org/10.1523/JNEUROSCI.0804-12.2012  

Ryan, M. J., & Sullivan, B. K. (1989). Transmission effects on Temporal Structure in the Advertisement 
Calls of Two Toads, Bufo woodhousii and Bufo valliceps. Ethology, 80, 182-189. 
https://doi.org/10.1111/j.1439-0310.1989.tb00738.x  

https://doi.org/10.1121/1.4756928
https://doi.org/10.1098/rspb.2018.0598
https://doi.org/10.1038/434455a
https://books.google.de/books?id=qSAByAEACAAJ
https://doi.org/10.1038/s41598-020-63923-7
https://doi.org/10.1098/rsbl.2012.1031
https://doi.org/10.1007/s00359-011-0630-0
https://doi.org/10.1186/s13104-017-3107-6
https://doi.org/10.3389/fpsyg.2014.01118
https://doi.org/10.1093/jole/lzx002
https://doi.org/10.3389/fnins.2018.00020
https://doi.org/10.1016/j.conb.2014.06.011
https://doi.org/10.1111/j.1439-0310.1965.tb01683.x
https://doi.org/10.1073/pnas.78.3.1943
https://doi.org/https:/doi.org/10.1016/S0065-3454(09)40006-8
https://doi.org/10.1523/JNEUROSCI.0804-12.2012
https://doi.org/10.1111/j.1439-0310.1989.tb00738.x


General Introduction 

38 

 

Saar, S., & Mitra, P. P. (2008). A technique for characterizing the development of rhythms in bird song. 
PLoS One, 3(1), e1461. https://doi.org/10.1371/journal.pone.0001461  

Sasahara, K., Tchernichovski, O., Takahasi, M., Suzuki, K., & Okanoya, K. (2015). A rhythm landscape 
approach to the developmental dynamics of birdsong. Journal of the Royal Society Interface, 

12(112). https://doi.org/10.1098/rsif.2015.0802  
Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous Motor 

Entrainment to Music in Multiple Vocal Mimicking Species. Current Biology, 19(10), 831-836. 
https://doi.org/10.1016/j.cub.2009.03.061  

Scharff, C., & Nottebohm, F. (1991). A comparative study of the behavioural deficits following lesions 
of various parts of the zebra finch song system: implications for vocal learning. The Journal of 

Neuroscience, 11(9), 2896. https://doi.org/10.1523/JNEUROSCI.11-09-02896.1991  
Schneider, J. N., & Mercado, E. (2018). Characterizing the rhythm and tempo of sound production by 

singing whales AU - Schneider, Jennifer N. Bioacoustics, 1-18. 
https://doi.org/10.1080/09524622.2018.1428827  

Schnitzler, H. U. (1971). Fledermäuse im Windkanal. Zeitschrift für vergleichende Physiologie, 73, 209-
221.  

Schulz, T. M., Whitehead, H., Gero, S., & Rendell, L. (2008). Overlapping and matching of codas in 
vocal interactions between sperm whales: insights into communication function. Animal 

Behaviour, 76(6), 1977-1988. https://doi.org/10.1016/j.anbehav.2008.07.032  
Shapiro, K. L., Arnell, K. M., & Raymond, J. E. (1997). The attentional blink. Trends in Cognitive 

Science, 1, 291-295.  
Simpson, H. B., & Vicario, D. S. (1990). Brain Pathways for Learned and Unlearned Vocalizations 

Differ in Zebra Finches. The Journal of Neuroscience, 10(5), 1541-1556.  
Slabbekoorn, H., & ten Cate, C. (1999). Collared Dove Responses to Playback: Slaves to the Rhythm. 

Ethology, 105(5), 377-391. https://doi.org/10.1046/j.1439-0310.1999.00420.x  
Slater, P. J. B., Eales, L. A., & Clayton, N. S. (1988). Song Learning in Zebra Finches (Taeniopygia 

guttata): Progress and Prospects. In J. S. Rosenblatt, C. Beer, M.-C. Busnel, & P. J. B. Slater 
(Eds.), Advances in the Study of Behaviour (Vol. 18, pp. 1-34). Academic Press. 
https://doi.org/https://doi.org/10.1016/S0065-3454(08)60308-3  

Sprague, M. W. (2000). The single sonic muscle twitch model for the sound-production mechanism in 
the weakfish, Cynoscion regalis. The Journal of the Acoustical Society of America, 108(5), 
2430-2437. https://doi.org/10.1121/1.1315296  

Stansbury, A. L., & Janik, V. M. (2019). Formant Modification through Vocal Production Learning in 
Gray Seals. Current Biology, 29(13), 2244-2249.e2244. 
https://doi.org/10.1016/j.cub.2019.05.071  

Stefanics, G., Háden, G. P., Sziller, I., Balázs, L., Beke, A., & Winkler, I. (2009). Newborn infants 
process pitch intervals. Clinical Neurophysiology, 120(2), 304-308. 
https://doi.org/10.1016/j.clinph.2008.11.020  

Sun, J. W. C., & Narins, P. M. (2005). Anthropogenic sounds differentially affect amphibian call rate. 
Biological Conservation, 121(3), 419-427. https://doi.org/10.1016/j.biocon.2004.05.017  

Suthers, R. A., Thomas, S. P., & Suthers, B. J. (1972). Respiration, Wing-beat and Ultrasonic Pulse 
Emission in an Echo-locating Bat. The Journal of Experimental Biology, 56, 37-48.  

Szymanski, M., Bain, D., Kiehl, K., Pennington, S., Wong, S., & Henry, K. R. (1999). Killer whale 
(Orcinus orca) hearing: Auditory brainstem response and behavioural audiograms. The Journal 

of the Acoustical Society of America, 106(2), 1134-1141.  
Takahashi, Daniel Y., Narayanan, Darshana Z., & Ghazanfar, Asif A. (2013). Coupled Oscillator 

Dynamics of Vocal Turn-Taking in Monkeys. Current Biology, 23(21), 2162-2168. 
10.1016/j.cub.2013.09.005  

Tchernichovski, O., Mitra, P. P., Lints, T., & Nottebohm, F. (2001). Dynamics of the vocal imitation 
process: how a zebra finch learns its song. Science, 291, 2564-2569. 
https://doi.org/10.1126/science.1058522  

ten Cate, C., & Spierings, M. (2019). Rules, rhythm and grouping: auditory pattern perception by birds. 
Animal Behaviour, 151, 249-257. https://doi.org/10.1016/j.anbehav.2018.11.010  

ten Cate, C., Spierings, M., Hubert, J., & Honing, H. (2016). Can Birds Perceive Rhythmic Patterns? A 
Review and Experiments on a Songbird and a Parrot Species. Frontiers in Psychology, 7, 730. 
https://doi.org/10.3389/fpsyg.2016.00730  

https://doi.org/10.1371/journal.pone.0001461
https://doi.org/10.1098/rsif.2015.0802
https://doi.org/10.1016/j.cub.2009.03.061
https://doi.org/10.1016/j.anbehav.2008.07.032
https://doi.org/10.1046/j.1439-0310.1999.00420.x
https://doi.org/https:/doi.org/10.1016/S0065-3454(08)60308-3
https://doi.org/10.1121/1.1315296
https://doi.org/10.1016/j.cub.2019.05.071
https://doi.org/10.1016/j.clinph.2008.11.020
https://doi.org/10.1016/j.biocon.2004.05.017
https://doi.org/10.1126/science.1058522
https://doi.org/10.1016/j.anbehav.2018.11.010
https://doi.org/10.3389/fpsyg.2016.00730


General Introduction 

39 

 

Terry, A. M. R., McGregor, P. K., & Peake, T. M. (2001). A Comparison of some Techniques used to 
assess vocal Individuality. Bioacoustics, 11(3), 169-188. 
https://doi.org/10.1080/09524622.2001.9753461  

Thorpe, W. H. (1958). The Learning of Song Patterns by Birds, with especial Relevance to the Song of 
the Chagginch Fringilla coelebs. Ibis, 100, 535-570. https://doi.org/10.1111/j.1474-
919x.1958.tb07960.x      

Thorpe, W. H. (1975). The biological significance of duetting and antiphonal song. Acta Neurobiologiae 

Experimentalis, 35(5-6), 517-528.  
Tønnesen, P., Gero, S., Ladegaard, M., Johnson, M., & Madsen, P. T. (2018). First-year sperm whale 

calves echolocate and perform long, deep dives. Behavioural Ecology and Sociobiology, 72(10), 
165. https://doi.org/10.1007/s00265-018-2570-y  

Toussaint, G. T. (2012, 23.07-28.07). The Pairwise Variability Index as a Tool in Musical Rhythm 
Analysis. In E. Cambouroploulos, C. Tsougras, P. Mavromatis, & K. Pastiadis,  Proceedings of 
the 12th International Conference on Music Perception and Cognition and the 8th Triennial 
Conference of the European Society for the Cognitive Science of Music, Thessaloniki, Greece. 

Toussaint, G. T. (2013). The geometry of musical rhythm: what makes a "good" rhythm good? CRC 
Press.  

van der Aa, J., Honing, H., & ten Cate, C. (2015). The perception of regularity in an isochronous stimulus 
in zebra finches (Taeniopygia guttata) and humans. Behavioural Processes, 115, 37-45. 
https://doi.org/10.1016/j.beproc.2015.02.018  

Vernes, S. C., & Wilkinson, G. S. (2019). Behaviour, biology and evolution of vocal learning in bats. 
Philosophical Transactions B, 375(1789), 20190061. https://doi.org/10.1098/rstb.2019.0061  

Walker, T. J. (1964). Cryptic Species Among Sound-Producing Ensiferan Orthoptera (Gryllidae and 
Tettigoniidae). The Quarterly Review of Biology, 39(4), 345-355. 
https://doi.org/10.1086/404325  

Wallin, N. L. (1991). Biomusicology - Neurophysiological, Neuropsychological, and Evolutionary 

Perspectives on the Origins and Purpose of Music. Pendragon Press.  
Wetekam, J., Reissig, C., Hechavarria, J. C., & Kössl, M. (2020). Auditory brainstem responses in the 

bat Carollia perspicillata: threshold calculation and relation to audiograms based on otoacoustic 
emission measurement. Journal of Comparative Physiology A, 206(1), 95-101. 
https://doi.org/10.1007/s00359-019-01394-6  

Wieland, E. A., McAuley, J. D., Dilley, L. C., & Chang, S. E. (2015). Evidence for a rhythm perception 
deficit in children who stutter. Brain and Language, 144, 26-34. 
https://doi.org/10.1016/j.bandl.2015.03.008  

Wilbrecht, L., & Nottebohm, F. (2003). Vocal learning in birds and humans. Mental Retardation and 

Developmental Disabilities Research Reviews, 9(3), 135-148. 
https://doi.org/10.1002/mrdd.10073  

Wiley, R. H., & Richards, D. G. (1978). Physical Constraints on Acoustic Communication in the 
Atmosphere: Implications for the Evolution of Animal Vocalizations. Behavioural Ecology and 

Sociobiology, 3, 69-94. https://doi.org/10.1007/bf00300047  
Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat 

in music. Proceedings of the National Academy of Sciences, 106(7), 2468. 
https://doi.org/10.1073/pnas.0809035106  

Wong, J. G., & Waters, D. A. (2001). The Synchonisation of signal emission with wingbeat during the 
approach phase in Soprano Pipistrelles (Pipistrellus Pygmaeus). The Journal of Experimental 

Biology(204), 575-583.  
Yoshida, S., & Okanoya, K. (2005). Evolution of Turn-Taking: A Bio-Cognitive Perspective. Cognitive 

Studies: Bulletin of the Japanese Cognitive Science Society, 12(3), 153-165. 
https://doi.org/10.11225/jcss.12.153  

Zsebők, S., Schmera, D., Laczi, M., Nagy, G., Vaskuti, É., Török, J., Zsolt Garamszegi, L., & Ellison, 
A. (2021). A practical approach to measuring the acoustic diversity by community ecology 
methods. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210x.13558  

 

https://doi.org/10.1080/09524622.2001.9753461
https://doi.org/10.1111/j.1474-919x.1958.tb07960.x
https://doi.org/10.1111/j.1474-919x.1958.tb07960.x
https://doi.org/10.1007/s00265-018-2570-y
https://doi.org/10.1016/j.beproc.2015.02.018
https://doi.org/10.1098/rstb.2019.0061
https://doi.org/10.1086/404325
https://doi.org/10.1007/s00359-019-01394-6
https://doi.org/10.1016/j.bandl.2015.03.008
https://doi.org/10.1002/mrdd.10073
https://doi.org/10.1007/bf00300047
https://doi.org/10.1073/pnas.0809035106
https://doi.org/10.11225/jcss.12.153
https://doi.org/10.1111/2041-210x.13558


Chapter I 

40 

 

Chapter I 

 

 

General Isochronous Rhythm in 

Echolocation Calls and Social 

Vocalizations of the Bat Saccopteryx 

bilineata 

 

 

 

Adapted from: Burchardt, L.S.; Norton, P.; Behr, O.; Scharff, C.; Knörnschild, M. (2019) General 

isochronous rhythm in echolocation calls and social vocalizations of the bat Saccopteryx bilineata, 

In: Royal Society Open Science 6: 181076. http://dx.doi.org/10.1098/rsos.181076  

  

http://dx.doi.org/10.1098/rsos.181076


Chapter I 

41 

 

Abstract  

Rhythm is an essential component of human speech and music but very little is known about its 

evolutionary origin and its distribution in animal vocalizations. We found a regular rhythm in three 

multisyllabic vocalization types (echolocation call sequences, male territorial songs, and pup isolation 

calls) of the neotropical bat Saccopteryx bilineata. The intervals between element onsets were used to 

fit the rhythm for each individual. For echolocation call sequences, we expected rhythm frequencies 

around 6-24 Hz, corresponding to the wingbeat in S. bilineata which is strongly coupled to echolocation 

calls during flight. Surprisingly, we found rhythm frequencies between 6 Hz and 24 Hz not only for 

echolocation sequences but also for social vocalizations, e.g. male territorial songs and pup isolation 

calls, which were emitted while bats were stationary. Fourier analysis of element onsets confirmed an 

isochronous rhythm across individuals and vocalization types. We speculate that attentional tuning to 

the rhythms of echolocation calls on the receivers’ side might make the production of equally steady 

rhythmic social vocalizations beneficial. 

 

Introduction 

Music is widespread in all human cultures but its evolutionary origin is poorly understood (Honing et 

al., 2015). The field of biomusicology attempts to answer questions on the origin and purpose of music 

by focusing on the physiological, psychological, behavioural, and evolutionary aspects of music in a 

comparative approach. That approach includes not only human music but musicality as a term for 

different traits that occur spontaneously and are based on and constrained by biology and cognition in 

animal vocalizations (Ravignani et al., 2018; Wallin, 1991). Music contains several key components – 

that can be separately investigated as musicality traits – such as pitch (governing melody and harmony), 

rhythm (defining temporal structure), and sonic qualities named timbre (Honing et al., 2015). Our study 

focuses on rhythm as a musicality trait, likely with multiple evolutionary backgrounds (Kotz et al., 

2018). 

Rhythm can be defined as a “systematic patterning of sound in terms of timing, accent, and 

grouping” (Patel, 2008). Overall, our intuitive understanding of rhythm concerns periodicity, which is 

the expectation of a recurrent event. One special kind of periodic rhythm is an isochronous beat, as 

produced e.g. by a metronome. In an isochronous beat, all beats have the same length and all beat-to-

beat intervals have the same length (Patel, 2008). When it comes to analysing animal vocalizations for 

rhythmicity, two questions need to be answered. (a) How well can an animal produce a certain rhythm 

and (b) are rhythmic patterns similar or different between vocalization types and between individuals? 

Another interesting comparison not regarded in this project would be between species. Furthermore, the 

relevance and biological constraints shaping an existing rhythm need to be discussed. 
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 In a recent study on rhythm in song of zebra finches (Taeniopygia guttata) both questions were 

answered. Individual males had a distinct isochronous rhythm which fitted syllable onsets better than 

expected by chance. Distinct rhythms between individual males ranged from 10 to 60 Hz (Norton & 

Scharff, 2016). Other examples of animals producing rhythmic signals include the Palm Cockatoo 

(Probosciger aterrimus) which uses tools to ‘drum’ a quasi-isochronous beat on branches in a consistent 

context (the rhythm frequencies were not analysed in detail) (Heinsohn et al., 2017b) or chimpanzees 

cracking baobab fruits in a fashion probably eligible to generate individual signatures, which might help 

to recognize unseen companions (Merguerditchian et al., 2018). A subsequent question would be 

whether animals can distinguish between rhythms, isochronous or otherwise. Rats for example are able 

to discriminate between different isochronous rhythms in a habituation-dishabituation experiment 

(Celma-Miralles & Toro, 2018b) while European Starlings are able to discriminate between rhythmic 

and arrhythmic patterns (Hulse et al., 1984a). Moreover, the first instance for a biologically relevant 

rhythm in non-human mammalian vocalizations was found in the Northern Elephant Seal, where males 

can discriminate between familiar and unfamiliar male opponents using the temporal structure of 

vocalizations. Rhythms apparently differ between individuals in a way that facilitates discrimination of 

individuals (Mathevon et al., 2017). Nevertheless, compared to other aspects of vocal communication, 

studies on rhythmicality in animals are still sparse. 

Our study aims to broaden the knowledge of rhythm in animal vocalizations by investigating 

whether isochronous rhythms can be found in different vocalization types of bats. Specifically, we 

investigated how well different vocalizations of bats fit an isochronous beat and whether the patterns 

are similar between individuals or vocalization types.  

We studied the Neotropical greater sac-winged bat Saccopteryx bilineata which has a rich vocal 

repertoire (Behr & Helversen, 2004) and is capable of vocal production learning (Knörnschild et al., 

2010). The species’ vocal repertoire consists of distinct vocalization types that are uttered in different 

behavioural contexts. In this study, we focused on echolocation call sequences, isolation calls, and 

territorial songs, all of which are multisyllabic vocalizations with clear syllable onsets. Isolation calls 

are produced by pups to solicit maternal care and by adult males to appease dominant conspecifics 

(Fernandez & Knörnschild, 2017; Knörnschild, Nagy, et al., 2012; Knörnschild & von Helversen, 2008). 

With a length of up to 2 seconds and a multisyllabic structure, isolation calls of S. bilineata are amongst 

the most acoustically complex bat isolation calls described (Knörnschild, Nagy, et al., 2012; 

Knörnschild & von Helversen, 2008). Territorial songs are produced by adult males to repel rivals and 

attract mating partners (Behr & Helversen, 2004; Knörnschild et al., 2017). They are acquired by 

imitating conspecifics’ song during ontogeny (Eckenweber & Knörnschild, 2013; Knörnschild et al., 

2017; Knörnschild et al., 2010). Echolocation calls are produced by male and female S. bilineata for 

orientation, navigation, and insect prey capture (Jung, Kalko, & von Helversen, 2007); in addition to 

their primary function, echolocation calls facilitate social communication among group members 

(Knörnschild, Jung, et al., 2012a). We chose those three vocalization types to get insight into rhythmicity 
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in both innate vocalizations (isolation calls, echolocation call sequences) and learned ones (territorial 

songs) as well as to investigate potential age differences in rhythmicity (in pup isolation calls).  

The individual rhythms found in zebra finch song were discussed to be potentially advantageous 

for anticipating events, i.e. song syllables. Tuning attention to rhythmic production could reduce 

‘attentional energy’ (sensu: (Bermeitinger & Frings, 2015)) and increase signal perception (Norton & 

Scharff, 2016).Correspondingly, rhythmicity in bat vocalizations might be adaptive for saving metabolic 

energy since flight is energetically costly. In many bat species, echolocation calls are coupled to 

wingbeat and respiratory cycle (e.g. (Kalko, 1994; Schnitzler, 1971; Suthers et al., 1972; Wong & 

Waters, 2001)), which is thought to be energy efficient. Moreover, not only behavioural correlates can 

be found but neuronal correlates: wingbeat and echolocation calls in Roussettus aegyptiacus are tightly 

coupled around theta frequencies (5 – 12 Hz, (Yartsev & Ulanovsky, 2013)), brain wave frequencies 

which are known to play a role in active movement and stimulus intake (Colgin, 2013). Consistently, 

preliminary data on S. bilineata suggests a wingbeat of around 6-12 Hz (pers. communication H.-U. 

Schnitzler). During search flight one or two echolocation calls might be uttered per wingbeat, which 

corresponds to echolocation call intervals of 6 to 24 Hz (wingbeat frequencies of around 6-12 Hz) found 

in other studies on S. bilineata (Bayefsky-Anand, 2006; Jung, Kalko, & von Helversen, 2007; Ratcliffe 

et al., 2011).  

Because of the coupling of wingbeat and echolocation pulses, we predicted periodic, 

isochronous pulses (following (Ravignani et al., 2014)) with frequencies between approximately 6 to 24 

Hz in echolocation call sequences of S. bilineata. We assumed that echolocation call sequences would 

fit a specific isochronous rhythm significantly better than random vocal sequences would. Moreover, 

we expected this rhythm to be similar between individuals due to common physiological constraints. 

Since social vocalizations (pup isolation calls and male territorial songs) are uttered by perched bats in 

the day roost, not coupled to wingbeat, we predicted to find individually different rhythms that might 

support vocal discrimination of different individuals, as previous research suggests. 

 

Methods 

Labelling of vocalization types 

We analysed three different vocalization types of S. bilineata, namely isolation calls, territorial 

songs, and echolocation call sequences (Figure 1). Isolation calls and territorial songs are multi-

component vocalization types containing four different element types each, while echolocation call 

sequences are series of one element type with alternating frequencies.  

For each vocalization, the on- and offset of its elements and the duration of the silent gaps 

between elements was determined for subsequent analyses. For isolation calls and territorial songs, 

element on- and offsets were determined manually based on oscillograms (see (Knörnschild, Nagy, et 

al., 2012) and (Behr et al., 2006) for details). For echolocation call sequences, we used an  
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Figure 2: Rhythm
S 

Fits Well on Three Vocalization Types  

Oscillograms (top rows in A–C) and spectrograms (middle rows) of vocalizations (A): isolation 

call, (B): territorial song, (C): echolocation call sequence) with fitted rhythmS as dotted lines in 

the bottom row. Element durations are indicated by coloured bars, measured from the 

oscillograms. Note that echoes visible in the spectrograms may make the elements appear longer 

than they are in the oscillograms. Different colours indicate different element types (described in 

earlier studies (Knörnschild et al., 2008;Behr et al., 2006). (A) Introductory elements, simple 

variable elements followed by composite elements and simple stereotyped elements in an 

alternating order. (B) Echolocation-like calls (comparable to the introductory elements in (A), 

short tonal elements and buzz elements. (C) Echolocation calls. (*) indicates two elements not 

being labelled due to a low amplitude. 

automatized procedure in Avisoft SASLab Pro (based on amplitude detection threshold; - 20 dB relative 

to the call’s peak frequency) to determine element on- and offsets.  

 We analysed isolation calls from 25 pups (10 males, 13 females, 2 not sexed) belonging to a 

population of wild S. bilineata in Costa Rica (see (Knörnschild, Nagy, et al., 2012) for details on study 

site and sound recordings). Each isolation call contained 5 – 26 elements (14 ± 3.5, mean ± SD) and was 

composed of 2 – 4 different element types (mean: 3 element types). We followed the nomenclature 

introduced in an earlier study (Knörnschild & von Helversen, 2008) and labelled the element types (a-

d) as introductory elements (a), simple variable elements (b), composite elements (c), and simple 

stereotyped elements (d). Data for each pup consisted of 20 isolation calls, recorded at two ontogenetic 
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stages (non-volant and volant; 10 isolation calls each). Only one call per pup and day was selected to 

minimize temporal dependence among vocalizations.  

 We analysed territorial songs of 14 adult males belonging to a population of wild S. bilineata in 

Costa Rica (see (Behr et al., 2006) for details on study site and sound recordings). Data for each male 

consisted of 10 – 11 songs, which were recorded on different days. Each song contained 6 – 46 elements 

(20 ± 8.0 mean ±SD) and was composed of 1 – 5 five different element types (mean: 3 different element 

types). We followed the nomenclature introduced in an earlier study (Behr et al., 2006) and labelled the 

element types (a-e) as short tonal elements (a), buzz elements (b), trills (c), noise bursts (d) and 

echolocation-like calls (e) (Figure 1). 

  Sequences of echolocation calls were recorded from 33 wild Costa Rican S. bilineata (15 males, 

18 females) when they were released after capture, i.e. in a non-foraging context. Calls of known 

individuals were recorded in standardized release situations in relatively open space (e.g. at a forest 

clearing). Recorded calls resembled normal search calls (see (Knörnschild, Jung, et al., 2012a) for details 

on study sites and sound recordings). Echolocation call sequences consisted of 11 – 38 elements (21± 

6.95, mean ± SD) with no further differentiation into different element types. One echolocation call 

sequence per bat was used for further analysis. 

Assessment of best-fitting rhythms 

Simply analysing inter-onset intervals of social vocalizations, as is often done for echolocation call 

sequences (e.g. (Bayefsky-Anand, 2006; Jung, Kalko, & von Helversen, 2007; Ratcliffe et al., 2011)), 

is problematic since this would oversimplify the temporal structure of multisyllabic social vocalizations 

with strongly varying syllable durations. Other approaches to analyse temporal structure of animal 

vocalizations include generate-and-test approaches or Fourier Analysis (Ravignani & Norton, 2017). 

We chose a generate-and-test approach (GAT approach) originally developed for rhythm analysis in 

zebra finch song (Norton & Scharff, 2016). The GAT approach allowed us to find an isochronous rhythm 

(i.e. a pattern with equal time intervals) that best fitted the onsets of elements in a given sequence. We 

named this best fitting rhythm ‘signal-derived rhythm’ or rhythmS (same as pulseS in (Norton & Scharff, 

2016)). The GAT approach was performed by a custom MATLAB program (see (Norton & Scharff, 

2016) section 3.7 for more details). It creates isochronous pulse trains in 0.01 Hz increments in a 

predefined frequency window of 5-100 Hz (i.e. 5-100 pulses per second). The lower range of rhythm 

frequencies was determined by expected values (Bayefsky-Anand, 2006; Jung, Kalko, & von Helversen, 

2007; Ratcliffe et al., 2011) the upper range experimentally by testing different ranges. 100 Hz was 

deemed appropriate because, when testing for up to 200 Hz only very few values for best fitting rhythms 

lay above 100 Hz. Restricting the frequency window was a question of minimizing computing time. For 

each rhythm, temporal deviations of each element to the nearest pulse gave an overall root-mean-square 

deviation (RMSD). Pulses were offset (+ one phase in 1 ms steps, see (Norton & Scharff, 2016)) to 

minimize the RMSD. Since RMSD is negatively correlated with rhythm frequency (i.e. faster rhythms 

generally result in lower RMSD values; see Figure 2, bottom), we normalized the RMSD by multiplying 
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it by the respective rhythm frequency, yielding a measure for deviation relative to the rhythm period; it 

describes the average temporal deviation as a fraction of a full cycle. The resulting frequency-

normalized RMSD (FRMSD) was used to assess the goodness-of-fit for each rhythm: the lowest 

FRMSD indicated the best-fitting rhythm frequency. This way the slowest isochronous rhythm, 

coinciding best with element onsets, was found (Figure 3).  

 

Figure 3: Optimization Process 

Best-fitting rhythms were found by selecting the rhythm with the lowest corresponding FRMSD 

(black cross with corresponding rhythm
S
), the frequency-normalized root-mean-square deviation 

(A); (B) shows the corresponding RMSD values. 

Clustering 

A visual examination of the resulting best-fitting rhythmS indicated an accumulation of certain frequency 

values for each individual and vocalization type. Rhythm frequencies showed a strong right skewness, 

which is why common measures such as mean, or median would have been inaccurate. Therefore, we 

performed a cluster analysis to assess whether specific rhythm frequency clusters existed. We applied 

an agglomerative, hierarchical clustering algorithm which used the group average of frequency distances 

as a dissimilarity measure (dissimilarity threshold was set to 0.05 for all data sets). The frequency data 

were log10-transformed before clustering because an earlier study (Norton & Scharff, 2016) showed 
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that log10-transformation resulted in comparable clusters for different frequencies since these clusters 

had the least frequency-dependent standard deviation.  

Modelling 

To confirm that the rhythm frequencies obtained by the GAT approach are an inherent property of the 

respective vocalization type and cannot be found in arbitrary element sequences, we created artificial 

temporal vocalization patterns based on the previously measured element and gap durations, assessed 

their FRMSD values and compared them to the FRMSD values of the original vocalization types. We 

created two different types of artificial vocalization patterns that were used in different models: In Model 

1 we used artificial vocalization patterns with randomized element and gap duration but intact sequence 

information (i.e. the correct order of consecutive elements). In Model 2, we used artificial vocalization 

patterns where each element and gap were replaced with a random duration, irrespective of element type 

and sequence. Model 2 did not apply to echolocation call sequences because they consisted of only one 

element type repeated in series, thus making the dismissal of sequence information pointless. Element 

and gap durations for both models were drawn randomly out of the pool of original recorded durations 

of the same type from all individuals (elements a–e and gaps following elements a–e respectively). The 

respective pool from which durations were drawn contained only element and gap durations of the 

vocalization type (isolation calls, territorial songs, or echolocation call sequences) to be modelled.  

For each vocalization, we ran both Model 1 and 2 (not for echolocation call sequences, see 

above) 50 times. For every iteration, a new FRMSD value was obtained. We calculated the means of all 

model FRMSD values per individual and compared them to the means of all original FRMSD values 

per individual. 

Fourier Analysis 

Results of the GAT approach were compared to FFT analyses of all sequences (following (Norton & 

Scharff, 2016; Saar & Mitra, 2008)). Timestamps of element onsets were used to form a binary point 

process. We created strings with a time resolution of 5 ms in which only events (i.e. element onsets) 

were represented by ‘1’, everything else in the string was represented by ‘0’. The higher the temporal 

resolution of the input data, the lower the frequency resolution of the FFT output will be. With the 

sequence lengths available to us, a time resolution of 5 ms proved to be the best compromise between 

the two constraints. After calculating a fast Fourier analysis, frequencies of maximum power were 

selected as ‘best fitting rhythms and the pattern compared to GAT-results. A customized Matlab script 

was used for the analysis. 

Statistics 

Data distribution was assessed using a Shapiro-Wilks test for all datasets. Artificial data from both 

randomizations (1 and 2) were compared to original data with repeated measures ANOVA (Tukey’s 

post hoc comparison) for isolation calls and territorial songs. Echolocation call sequences were tested 

against randomization 1 via a Welch-corrected t-test because variances differed significantly. A paired 

t-test was used to compare the results of different ontogeny stages in isolation calls. Statistical 
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differences were considered significant for P<0.05 (*P<0.05, **P<0.01, ***P<0.001). When random 

numbers were needed those were generated using the R-function ‘runif’. 

Software 

For analyses and preparing figures, we used Matlab (Version 2016b & 2015b), R (Version 3.5.1), 

GraphPad Version 5 and Avisoft SASLab Pro Version 5.2.10. Customized Matlab programs written by 

Philipp Norton (PN) and Lara Sophie Burchardt (LSB) were adjusted and used for the rhythm 

optimization (PN), model calculations (PN & LSB), FFT analysis (LSB) and cluster visualization (PN). 

Results 

Isochronous rhythm 

For each vocalization, we found an isochronous rhythm (rhythmS) that coincided best with the onsets of 

elements (supplementary audio files A1-3). A rhythmS between 6 – 20 Hz dominated across individuals 

as well as across vocalization types: 49.4% of isolation calls (247 out of 500 calls), 41% of territorial 

songs (59 out of 143 songs) and 57% of echolocation call sequences (19 out of 33 sequences) had a best 

fitting rhythm of 6-20 Hz (Figure 4).  

Figure 4: GAT Analysis 

Regular rhythms in S. bilineata vocalizations. The relative majority of calls/songs occurred in 

rhythm frequencies below 20 Hz for all vocalization types. 

Corresponding results were obtained when focusing on individuals instead of vocalization types. 20 out 

of 25 pups produced isolation calls which clustered predominantly in the frequency range of 10-20 Hz; 

the largest clusters contained 25-70% of calls per pup (Figure 5A). 9 out of 14 males produced territorial 

songs which clustered predominantly in the frequency range of 10-20 Hz; the largest clusters contained 

30-60% of songs (Figure 5B). We considered clusters with their mean falling into the range between 
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10-20 Hz and the cluster comprising at least 25% of data (clusters are marked in red in Figure 5A-C). 

Echolocation call sequences clustered predominantly in the 

frequency range of 6-20 Hz, 39% of sequences making up the strongest cluster (between 6 and 10 Hz), 

adding up to 57% between 6 and 20 Hz. Note that echolocation call sequences were pooled over all 

individuals (Figure 5C, see Methods).  

 

Figure 5: Isochronous Beat in Bat Vocalization 

(A) rhythm clusters in isolation calls of S. bilineata pups; (B) rhythm clusters in territorial songs 

of S. bilineata males; (C) rhythm clusters in echolocation call sequences of S. bilineata adults. 

Marked in red are the data belonging to the largest cluster containing at least 25% of songs/calls, 

within the range of 6–20 Hz. Marked in blue are the data belonging to the largest cluster that were 

not considered. The percentage of data in the largest cluster is shown at the bottom of each 

column. The area of circles is scaled to the percentage of calls/songs in the respective clusters. 

Comparison to artificially randomized vocalizations 

To confirm that the observed element onsets in S. bilineata vocalizations aligned to an isochronous 

rhythm well and more closely than expected by chance, we compared the FRMSD values of artificial 

vocalization types to the FRMSD values of the original vocalization types. All artificial vocalization 

types had randomized element and gap durations; sequence information, i.e. the consecutive order of 

elements was either preserved (Model 1) or ignored (Model 2). 

As expected, original vocalizations had significantly lower FRMSD values than artificial model 

1 or model 2 vocalizations (Repeated Measures ANOVA: isolation calls: F=71.17, df= 74, p<0.0001; 

territorial songs: F=30.38, df= 41, p<0.0001; unpaired t-test (with Welch correction): echolocation call 

sequences: t=2.35,df=33, p= 0.0023), indicating that the element onsets of original vocalizations 

matched an isochronous rhythm more closely than expected by chance (Figure 6).  

Fourier analysis 

Results of the fast Fourier analysis of a binary point process string where element onsets were 

represented by ‘1’ resulted in the same if not stronger picture at the level of vocalization types. 55.4% 
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of isolation calls, 47.8% of territorial songs and 66% of echolocation call sequences showed a dominant 

rhythm between 6 and 20 Hz (54% between 6-10Hz) (Supplements, Figure 7). 

Ontogeny effect  

Furthermore, we ran statistical analyses to investigate the effect of ontogeny on rhythmicity for pup 

isolation calls. For each pup, we compared the frequencies of isochronous rhythms of the first and last 

two isolation calls recorded during ontogeny (non-volant phase and volant phase). RhythmS frequencies 

in isolation calls did not change significantly during the pups’ ontogeny (paired t-test: t=1.31, df= 49 

p=0.20, Supplements, Figure 8). 

 

Figure 6: Model Validation 

Mean values for FRMSD, comparing original data to ‘bat-like’ artificial data (Model 1: intact 
sequence information, Model 2: random sequences). Original data showed significantly lower 

deviations (*p , 0.05; **p , 0.01; ***p , 0.001). Depicted are means per individual for isolation calls 
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and territorial song, and best-fitting rhythms of single sequences for echolocation call sequences, 

explaining the higher spread. Red lines indicate the respective mean of a dataset. 

Discussion 

The novel aspect presented in this study is the documentation of isochronous rhythm patterns in different 

vocalization types of the bat S. bilineata. With a generate-and-test approach (GAT) as well as an FFT 

analysis, vocalizations were analysed to find a best fitting rhythm over a wide frequency range of 5-100 

Hz (i.e. pulses per second). Even though the three analysed vocalization types (pup isolation calls, male 

territorial songs, and echolocation call sequences) differed in their acoustic structure and the behavioural 

situation they were produced in, their best-fitting rhythms fell in a quite narrow frequency window. 

Element onsets coincided best with rhythm frequencies between 6-20 Hz, independent of vocalization 

type and vocalizing individual. Analyses showed that rhythm frequencies were most abundant between 

6-10 Hz for echolocation call sequences and between 10-20 Hz for territorial songs and isolation calls. 

The same picture was found with an FFT analysis at the level of vocalization types.  

Therefore, the best fitting rhythms were comparatively similar across vocalization types and 

vocalizing individuals in S. bilineata, with social communication signals showing rhythms twofold of 

echolocation call sequences. Other studies on rhythmicality in animal vocalizations so far did show 

patterns that differed between individual animals (Norton & Scharff, 2016), and temporal structure, 

namely the rhythm, may be used by conspecifics for individual discrimination (Mathevon et al., 2017). 

A biological constraint shaping rhythms to be more alike between individuals is not apparent. Since 

there are not many comparable studies yet our results might prove to be the rule rather than an exception.  

Nevertheless, the pattern of rhythmS in the analysed vocalizations, could be caused by 

physiological constraints and/or mechanisms to save energy. The production of echolocation calls when 

a bat is searching for prey items but has not detected anything yet is correlated with respiration which, 

in turn, is tightly coupled to wing beat. For many bat species, a 1:1 relation has been found (e.g. (Suthers 

et al., 1972)). The soprano pipistrelle (Pipistrellus pygmaeus), for example, produces one or two 

echolocation calls per wingbeat and respiratory cycle (Wong & Waters, 2001). In other pipistrelle bats 

(P. pipistrellus, P. kuhlii, P. nathusii (Kalko, 1994)), greater horseshoe bats (Rhinolophus 

ferrumequinum), little brown bats (Myotis lucifugus), Parnell's mustached bats (Pteronotus parnellii 

rubiginosus) and Seba's short-tailed bats (Carollia perspicillata (Schnitzler, 1971)) wingbeat and 

echolocation calls are also coupled. Coupling was also found in the tongue-clicking Pteropodid bat 

Rousettus aegyptiacus , indicating that a strong coupling of wing beat, respiration and sonar emission is 

widespread in bats regardless of sound production mechanism.  

In S. bilineata, respiratory cycle and wing beat are between 6 and 12 Hz during search flight 

(pers. communication H.-U. Schnitzler). Our results suggest that in the release situation the echolocation 

call sequences were recorded, bats mainly uttered one call per wingbeat, which fits the low sensory 

needs in the relatively open space in which releases took place. In a situation with higher sensory needs, 
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expected rhythm frequencies should be doubled, i.e. lie between 12 and 24 Hz, most of which overlaps 

strongly with the rhythm frequencies found in the social vocalizations. Therefore, we argue that the 

rhythm frequencies most abundant in social vocalizations (10-20 Hz) and in echolocation call sequences 

during search flight (6-10 Hz and, to a lesser degree, 10-20 Hz) can be regarded as comparatively similar.  

During prey capture, however, echolocation call sequences contain not only search flight calls 

but also approach flight calls (when prey has been detected and is approached) and a so-called final buzz 

(immediately before prey capture, very short and broadband echolocation calls with extremely short 

IOIs are produced), which enhances the sensory information available for the foraging bat. Even though 

wing beat, respiratory cycle and sonar emission are tightly coupled during search flights (likely to 

increase energy efficiency), this might not provide sufficient sensory information during prey capture, 

i.e. in a situation where high temporal resolution is needed (per wing beat and respiratory cycle up to 

10-15 pulses can be emitted (Kalko, 1994). A larger ratio between wing beat, respiratory frequency, and 

emitted echolocation calls could result in a weaker rhythmic pattern in our analyses. In the approach 

phase, the number of echolocation calls per wing beat can vary widely, depending on the current sensory 

needs of a foraging bat. Therefore, it seems reasonable to assume that echolocation call sequences during 

prey capture do not follow any clear rhythm but strongly depend on the bats’ current sensory needs. 

This could easily be tested on echolocation call sequences recorded in foraging situations. 

Correspondingly, a previous study on the big brown bat Eptesicus fuscus showed that the strict 1:1 

synchronization of wing beat, respiration, and call emission was not found during complex navigation 

tasks, where freely behaving individuals had to search for prey (tethered mealworms, suspended at about 

1.5 m height) in a flight room, equipped with various obstacles, such as artificial houseplants (Moss et 

al., 2006). During search flights, however, metabolic needs, e.g. being energy efficient, may play a more 

important role (Suthers & Fattu, 1973). To investigate the task/situation dependence of the coupling of 

wing beat, respiration, and call emission it would be worthwhile to analyse rhythmS of echolocation call 

sequences produced in a feeding context in bat species in which a strict 1:1 coupling has been found 

during search flight.  

The determination of rhythmS (method developed by (Norton & Scharff, 2016)) could be a 

valuable addition to currently used methods since it is not dependent on a laboratory setting. Knowledge 

of wing beat, and/or respiratory rates could be combined with analyses of rhythmS of echolocation call 

sequences and social vocalizations recorded from freely behaving, wild bats to gain insights on coupling 

relations in natural situations. Especially for more complex vocalization types with variable element and 

gap durations, the GAT approach and FFT analysis provide a more detailed picture than simply assessing 

IOIs. The latter method ignores the sequential structure of vocalizations and their variable element 

durations, potentially concealing higher order regularity. 

To assess the goodness-of-fit for our analyses of rhythmS, we compared deviations from rhythmS 

of original and artificially created vocalizations that were randomly drawn from a pool of typical element 

and gap durations. Original vocalizations deviated significantly less from rhythmS than did artificial 
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vocalizations (i.e. element onsets of original vocalizations coincided significantly better with an 

isochronous rhythm than artificial vocalizations), indicating that the rhythmS found in S. bilineata 

vocalizations was not an artifact of the typical duration and sequence of this species’ vocalizations. 

One aspect worthy of discussion is the relation between rhythm frequencies of echolocation call 

sequences produced by S. bilineata during search flight (which were coupled to wing beat frequencies) 

and social vocalizations produced by individuals hanging in their day-roost (pup isolation calls and male 

territorial songs). We doubt that rhythm frequencies of isolation calls and territorial songs are caused by 

a coupling of sound emission to respiration since echolocation calls produced by roosting bats can occur 

at any point in the respiratory cycle (Suthers et al., 1972). Taken this into account, it seems reasonable 

to assume that social calls can be emitted at any point in the respiratory cycle as well. Nevertheless, as 

stated before, we argue there is a relation between the dominant frequencies of the three vocalization 

types, and we regard them as being comparatively similar. The similarity of rhythm frequencies could 

suggest a common evolutionary background, which might be the coupling between respiration, wingbeat 

and echolocation call emission. However, increasing evidence suggests that flight preceded echolocation 

(Simmons & Geisler, 1998; Speakman, 2001), which would indicate that vocal communication preceded 

echolocation as well (assuming that bats’ predecessors communicated with social calls, as many small 

mammals do). It is therefore possible that social calls, despite being probably phylogenetically older 

than echolocation, adopted the rhythm frequencies of echolocation calls at some point.  

It is interesting to compare the strength of rhythms between isolation calls and territorial songs 

since isolation calls are produced within minutes after birth (Knörnschild & von Helversen, 2008) while 

territorial songs are learned during ontogeny (Knörnschild et al., 2010). Generally, a higher variability 

in rhythmS may be expected when comparing learned vocalizations to innate vocalizations. In our study, 

rhythm frequencies predominantly clustered between 6-20 Hz, but cluster strength of individuals was 

on average lower in territorial song than in isolation calls (37% in territorial song compared to 44.7% in 

isolation calls; GAT approach). This difference in individual cluster strength resembled the overall 

difference between both vocalization types, since only 41.6% of all territorial songs had rhythm 

frequencies between 6-20 Hz, while 49.8% of isolation calls did. 

Rhythmic properties of echolocation could represent the same neuronal correlates underlying 

production of social vocalizations. In the Egyptian fruit bat (R. aegyptiacus) wingbeat and tongue clicks 

are tightly coupled around 10 Hz (Yartsev & Ulanovsky, 2013), as we found for S. bilineata. These 

rhythm frequencies show a resemblance to the frequency of theta brain waves. Thought to be important 

for movements, spatial memory and active stimulus intake(Colgin, 2013) amongst others, theta waves 

might be a promising neural correlate explaining the production of the detected rhythms. 

It might be advantageous to produce rhythmic vocalizations because ‘rhythmic attention’ (sensu 

(Jones et al., 1981)) helps receivers to decode rhythmic signals easier and faster (Rohenkohl et al., 2012). 

The attention of receivers cycles in an oscillatory way when a rhythm exists (e.g. (Barnes & Jones, 2000; 

Large & Jones, 1999)). Since rhythmic signals are predictable, ‘rhythmic attention’ enables receivers to 
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provide most ‘attentional energy’ at a time point where the next stimulus is to be expected. This is 

advantageous because cognitive capacities are limited (Shapiro et al., 1997) and an optimization of 

attention timing is helpful to not miss relevant stimuli. For example, when humans were asked to assess 

the difference in pitch of two focal tones separated by regularly timed tones, the assessment of pitch 

difference was better when the second focal tone followed the regular timing of the separating tones 

than when was slightly displaced from the regular timing (Jones et al., 2002). Another example from 

macaques shows that neuronal oscillations in the primary visual cortex entrain to a stimuli stream (visual 

stimuli) when the stream is rhythmic, a mechanism resulting in decreased reaction time and an increase 

in the response gain for events that are task relevant (Lakatos et al., 2008a). Bats’ attention as well as 

the auditory system collectively could be tuned to echolocation rhythms, because bats are exposed to 

those rhythms for large parts of their lives(Fenton, 2003). Therefore, it might be advantageous to 

produce vocalizations in the same frequency window to increase detection by receivers. At the moment, 

we do not know whether rhythmic attention plays a role in S. bilineata. Playback experiments violating 

expected rhythmic patterns in social vocalizations or direct assessment of the animals’ rhythm 

perception would be a valuable avenue for future research. A switch from a rhythm determined by 

physiological constraints to a rhythm decoupled from its original production constraints but still with an 

adaptive function (e.g. rhythmic attention) might have been one step during evolution that paved the 

way to develop music as we know it.  

In summary, this study demonstrates an isochronous rhythm in three bat vocalization types in 

which metabolic constraints leading to rhythmic patterns are more (echolocation calls) or less (isolation 

calls, territorial songs) likely. The two methods used in this study (GAT and FFT) enable the analysis 

of best fitting rhythms in a corresponding way. Future studies should profit by complementary use of 

both methods in addition to IOI assessment. To further study the coupling or decoupling of wing beat, 

respiration, and sound emission in animals as well as its biological relevance, it would be highly 

beneficial to compare different species of bats and birds which sing in flight as well as other echolocating 

mammals. Such a comparative approach could provide valuable insights into the origin and relevance 

of rhythmicality in animals (Kotz et al., 2018).  

Ethics 

All experiments and protocols for capturing and handling bats comply with the current laws of Costa 

Rica. Permit numbers are given in the original publications from which the data were drawn (Behr et 

al., 2006; Knörnschild, Jung, et al., 2012a; Knörnschild, Nagy, et al., 2012). 

Data Accessibility  

The dataset supporting this article has been uploaded as part of the electronic supplementary material. 

The code (GAT approach) with detailed explanations was already published in a previous publication 

(Ravignani & Norton, 2017).  
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Supplementary Audio Files 

https://royalsocietypublishing.org/doi/suppl/10.1098/rsos.181076 

Audio File A1: rsos181076supp1.wav Isolation call of S. bilineata pup overlaid with an isochronous 

rhythm of 12.3Hz. The recording is slowed down to 10% of its original speed.  

Audio File A2: rsos181076supp2.wav Territorial song of S. bilineata male overlaid with an isochronous 

rhythm of 15Hz. The recording is slowed down to 10% of its original speed.  

Audio File A3: rsos181076supp3.wav Echolocation call sequence of adult S. bilineata overlaid with an 

isochronous rhythm of 8.8 Hz. The recording is slowed down to 20% of its original speed.  

Validation analysis - Tempo changes 

To assess tempo changes within vocalizations, we calculated linear regressions for the Inter-Onset-

Intervals (IOI) sequences to test whether these were significantly different from zero (using an F-test), 

which would indicate a significant change in tempo.  We conducted this analysis for a random subset of 

each vocalization type (two sequences per individual for isolation calls and territorial songs, all data for 

echolocation call sequences). To corroborate results from the tempo analysis, individual syllable 

deviations of the first, middle and last syllable were compared per vocalization type by means of a 

https://doi.org/10.1126/science.1235338
https://royalsocietypublishing.org/doi/suppl/10.1098/rsos.181076
https://royalsocietypublishing.org/action/downloadSupplement?doi=10.1098%2Frsos.181076&file=rsos181076supp1.wav
https://royalsocietypublishing.org/action/downloadSupplement?doi=10.1098%2Frsos.181076&file=rsos181076supp2.wav
https://royalsocietypublishing.org/action/downloadSupplement?doi=10.1098%2Frsos.181076&file=rsos181076supp3.wav


Chapter I 

58 

 

Friedman test; this was done to test whether deviations changed throughout a syllable sequence. This 

analysis was conducted on a subset of the data, chosen in the same way as for the tempo analysis. 

The majority of isolation calls (74%) had a stable tempo, 22% of calls showed a decrease in tempo and 

4% of calls an increase. On the contrary, the majority of territorial songs (79%) decreased in tempo, 

especially in the last fifth of songs (Supplementary Figure S3). However, inter-onset intervals did not 

increase continuously but rather abruptly, often doubling and quadrupling. These multiples of inter-

onset intervals make it unlikely that the observed change in tempo had a negative effect on rhythmS in 

our study. Furthermore, results were confirmed by the FFT analysis, which is stable against tempo 

changes.  

To corroborate that changes in tempo did not affect rhythmS, we calculated individual element deviations 

to the nearest single pulse. Element deviations did not change throughout vocalizations, since a best 

fitting rhythm was found by an optimization task regarding all elements of a sequence. Nevertheless, 

individual element deviations of vocalizations with tempo changes (territorial songs) did not differ from 

vocalizations without tempo changes (isolation calls) (Kruskal-Wallis, p=0.78, F=2.47, df=6, 

Supplementary Figure S4), suggesting that changes in tempo played a negligible role in our study. 

Another argument for this interpretation is the results from FFT analysis. Since the same pattern was 

found with a method in which tempo changes cannot affect the outcome, it is reasonable to say that 

tempo changes did not influence the results from GAT analysis in a crucial way. 
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Supplementary Figures  

Figure 7: Fourier Analysis 

Regular rhythm
S
 in bat vocalizations. The relative majority of calls/songs occur in rhythm 

frequencies below 20 Hz for all vocalization types. 
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Figure 8: Effect of Ontogenetic Stage on Rhythm in Pup Isolation Calls. 

Early ontogeny did not differ from late ontogeny. Medians, interquartile range (25-75%) and 

whiskers (0-100%) are shown.  

 

  



Chapter I 

61 

 

Figure 9: Tempo Changes in Sequences. 

Three IOI sequences are shown as solid lines; dashed lines show corresponding linear regressions.  

Slopes of regression lines were tested against zero. Significant difference from zero was 

interpreted as tempo change. In red (triangle) an isolation call with no tempo change is shown, in 

grey (circle) an isolation call increasing in tempo and in blue (square) a territorial song decreasing 

in tempo rather abruptly are shown.  
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Figure 10: Syllable Deviation of Individual Syllables. 

Individual deviations from rhythm
S
 of first, middle and last syllable of calls/songs were compared. 

Median and interquartile range are shown. No significant differences were found. 
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Analysis of Complex Animals’ Acoustic 

Signals 

 

 

 

 

 

Adapted from: Burchardt, L.S.; Knörnschild, M. (2020): Comparison of methods for rhythm analysis of 

complex animals’ acoustic signals. In: PLoS Computational Biology 16(4): e1007755.  

https://doi.org/10.1371/journal.pcbi.1007755 

https://doi.org/10.1371/journal.pcbi.1007755


Chapter II 

64 

 

Abstract 

Analysing the rhythm of animals’ acoustic signals is of interest to a growing number of researchers: 

evolutionary biologists want to disentangle how these structures evolved and what patterns can be found, 

and ecologists and conservation biologists aim to discriminate cryptic species on the basis of parameters 

of acoustic signals such as temporal structures. Temporal structures are also relevant for research on 

vocal production learning, a part of which is for the animal to learn a temporal structure. These 

structures, in other words, these rhythms, are the topic of this paper. How can they be investigated in a 

meaningful, comparable and universal way? Several approaches exist. Here we used five methods to 

compare their suitability and interpretability for different questions and datasets and test how they 

support the reproducibility of results and bypass biases. Three very different datasets with regards to 

recording situation, length and context were analysed: two social vocalizations of Neotropical bats 

(multisyllabic, medium long isolation calls of Saccopteryx bilineata, and monosyllabic, very short 

isolation calls of Carollia perspicillata) and click trains of sperm whales, Physeter macrocephalus. 

Techniques to be compared included Fourier analysis with a newly developed goodness-of-fit value, a 

generate-and-test approach where data was overlaid with varying artificial beats, and the analysis of 

inter-onset-intervals and calculations of a normalized Pairwise Variability Index (nPVI). We discuss the 

the advantages and disadvantages of the methods and we also show suggestions on how to best visualize 

rhythm analysis results. Furthermore, we developed a decision tree that will enable researchers to select 

a suitable and comparable method on the basis of their data. 

Author summary  

In the analysis of animal communication more and more interest is shown in rhythm of animal 

communication and what information this might convey. In this paper, we establish a workflow to 

analyse the temporal structure – namely the rhythm – of any particular animals’ acoustic signal with 

methods that are applicable for a wide range of signals and results that are easily comparable and 

interpretable. This workflow will enhance the understanding of rhythmicality in animals’ acoustic 

signals as well as facilitate comparison between species. Methods we conducted ranged from simple 

distributional and visual analysis to higher mathematics such as Fourier analysis. All analyses rely on 
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Inter-Onset-Intervals, the duration between the beginning of one element and the next. We used different 

datasets from two neotropical bat species as well as from the sperm whale. With this selection, we cover 

very short sequences with only few elements up to sequences of around 200 elements, multisyllabic and 

monosyllabic sequences and social communication as well as sounds used for orientation and foraging.  

Introduction 

Rhythms can be found anywhere in the world: our hearts have rhythms, circadian rhythms are all around, 

music across all cultures shares certain components such as rhythm, public transportation (should) 

follow a certain schedule which in fact is nothing but rhythm. We learn more and more about how 

important a certain temporal structure is in human language, in their production as well and probably 

even more so in their perception; stuttering, for example, is most likely connected to a misfunction of 

rhythm perception (Wieland et al., 2015). This raises the question of whether rhythms, or temporal 

structures to use a more precise terminology, play an equally important role in animal communication 

and sound production. Can we learn something about rhythm in animals that will help us understand 

their communication better and also find underpinnings of the abundance of rhythm in human biology 

and culture?  

Rhythm has a very narrow definition in musicality studies that does not necessarily fit the focus of this 

paper. We are describing temporal structures and are searching for periodicity. To prevent confusion 

and since terms might be used in different contexts depending on the research area, we define some key 

terms in a glossary (Table 2). Nevertheless, we still use the term ‘rhythm’ as a concept that will be 

understood by a broad audience, as most people have an intuitive understanding of ‘rhythm’, 

independent of whether this study analyses ‘rhythm’ in the musicological sense of the term. 

The rhythmicality of animals’ acoustic signals has an impact on a vast field of related questions. For 

instance, the evolution of music is investigated in the field of biomusicology, a research area that studies 

musicality in animals – where musicality is used as a term for different traits that occur spontaneously 

and are based on and constrained by biology and cognition in an animals’ acoustic signals, such as 

harmony, timbre or rhythm (Ravignani et al., 2018; Wallin, 1991). Moreover, knowledge about temporal 

structures is necessary to find coupled biological processes, such as the correlation between beat 

frequencies in bat’s acoustic signals (also called vocalizations) with their wingbeat frequencies (i.e. 
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wingbeats per second), independent from whether a bat might actually be flying in a vocalizing context 

or hanging in a roost (Burchardt et al., 2019). Rhythmicality might also influence mate choice and 

individual recognition (Mathevon et al., 2017; Norton & Scharff, 2016). Furthermore, neural correlates 

might play a role so that careful rhythm analysis can give insights into internal clocks or the importance 

of certain brain waves on different behavioural aspects such as the production of acoustic signals(Norton 

& Scharff, 2016; Yartsev & Ulanovsky, 2013). Rhythm analysis can also be used to disentangle cryptic 

species (distinct species that are combined under one species name, because they cannot be distinguished 

morphologically) that produce sounds in different rhythms (David et al., 2003) or is informative in the 

context of vocal production learning, a part of which is for the animal to learn the correct temporal 

structure of a signal (Wirthlin et al., 2019). A growing body of research is addressing questions on 

rhythm in animal vocalizations and animal sounds (in contrast to vocalizations, sounds are produced by 

something other than vocal cords, e.g. sperm whale clicks; both are combined under the term acoustic 

signals). But before we can elaborate on this, it is important to again note different connotations of 

rhythm in this context. Where we speak of rhythms in animals' acoustic signals a musicologist might 

only talk about different beats and tempi. What we mean in this paper with rhythm and the connotation 

of rhythm used in other studies on the subject (Burchardt et al., 2019; Norton & Scharff, 2016; Ravignani 

& Norton, 2017) describes a temporal structure that might have varying complexity but is mostly based 

on an isochronous beat (i.e. sounds produced by a metronome). These isochronous beats might be 

produced in different tempi by different species and individuals. Therefore, one could also say, we 

search for periodicity in animals’ acoustic signals. The definition for periodicity we use here is the 

following: we regard a sequence as periodic, when there is an underlying isochronous pattern describing 

it. An isochronous rhythm is a metronome like rhythm with the same beat and the same gap length’ 

(although beat and gap length are not necessarily similar).  Not every beat of that isochronous sequence 

needs to be corresponding with an element in the sequence that is analysed. A beat here is every element 

of the isochronous pattern. It is also the actual ‘beat frequency’ of the isochronous rhythm. We refrain 

from using the word ‘pulse’, to prevent confusion with the use of the word ‘pulse’ in echolocation 

research.  Keeping these definitions in mind, we are still using the term “rhythm” as a summary of these 

concepts in the text for reasons of readability and understanding. 
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 Exemplary studies on the rhythmic production of acoustic signals come from male zebra finches 

(Taeniopygia guttata) (Norton & Scharff, 2016), the bat Saccopteryx bilineata (Burchardt et al., 2019) 

or the humpback whale (Megaptera novaeangliae) (Schneider & Mercado, 2018a). While male zebra 

finches sing with different rhythms depending on the individual, S. bilineata vocalizations share a 

common temporal structure, likely coupled to wingbeat frequencies (Burchardt et al., 2019; Norton & 

Scharff, 2016). Yet another pattern was found in the song of humpback whales (Megaptera 

novaeangliae), where individuals can produce very stable temporal structures or sound sequences that 

vary rapidly in tempo and rhythm (Schneider & Mercado, 2018a).  

Other forms of rhythm production were found in the palm cockatoo (Probosciger aterrimus). The males 

of this species drum quasi-isochronous patterns, using tools, in a consistent manner (Heinsohn et al., 

2017b). Chimpanzees use individual rhythm signatures - likely in a fashion to help recognize unseen 

companions – when cracking baobab fruits (Merguerditchian et al., 2018).  

Table 2: Glossary with Important Terms and Concepts 
Glossary  

Animals’ acoustic 

signals 

All acoustic signals that animals produce on purpose 

Animal 

communication 

The entirety of sounds and vocalizations animals produce willingly to communicate with each other 

Vocalization A sound produced on purpose; sound origin: vocal cords; a species can have various vocalization 
types 

Social vocalization A vocalization uttered in a social context, e.g. isolation calls 

Isolation call Uttered by pups to solicit maternal/paternal care 

Animal Sounds Willingly produced sounds by animals, with another origin than vocal cords, e.g. whales produce 
their sounds not with vocal cords; the term vocalizations could be misleading in this context 

Musicality different traits that occur spontaneously and are based on and constrained by biology and cognition 
in an animals’ acoustic signals, such as harmony, timbre or rhythm 

Rhythm e.g. an ordered and recurrent alternation of different elements in a sequence of sound and silence in 
speech, music or animals’ communication 

Periodicity underlying reoccurring pattern describing as sequence as periodic, e.g. an isochronous pattern 

Isochrony A stereotyped pattern with same beat and same gap length (gaps and beats do not have to be the 
same length as well, though), a metronome like acoustic pattern/beat 

Heterochrony A pattern with more than one underlying beat  

Beat The unit to describe an isochronous pattern, given in Hertz (beats per second); a beat frequency of 
5 Hz would describe a sequence with an underlying pattern of 5 beats per second, i.e. 5 vocalizations 
per second or a temporal structure where elements are distributed regularly in a way that you could 
fit a maximum of 5 element into one second 

Inter-Onset-Interval In a sequence of acoustic signals, the time span between the start of an element and the next element, 
comprising the element duration and the following gap duration; in other contexts, also called Inter-
Pulse-Interval, Inter-Click-Interval or Inter-Call-Interval 
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Element The smallest subunit of a sequence of acoustic signals, i.e. a distinct syllable, call, click, pulse etc. 
surrounded by silence  

Exact beat 

frequency 

The beat frequency we calculated to describe a specific sequence best (e.g. 5 Hz as in 5 beats per 
second) 

 

Studies on the perception of rhythms or periodicity deal for example with the ability of animals to 

discriminate rhythms, e.g. in rats and European starlings (Celma-Miralles & Toro, 2018a; Hulse et al., 

1984a). Moreover, the first instance for a biologically relevant rhythm in non-human mammalian 

acoustic signals was found in the northern elephant seal, where males can discriminate between familiar 

and unfamiliar male opponents using the temporal structure of vocalizations. Rhythms apparently differ 

between individuals in a way that facilitates the discrimination of individuals (Mathevon et al., 2017). 

With the growing body of studies and its implications for other research questions, it is important to 

present methods in a reproducible way and find methods that are applicable to a vast majority of datasets 

in which temporal structures can be analysed. Reproducibility, interpretation biases, p-hacking (the 

distortion or manipulation of results through data mining) and apophenia (the tendency to see a pattern 

in random data) are key issues in all research fields. Defining clear methodologies with open access to 

code and data is one way of tackling those issues (Munafó et al., 2017). Results must be clearly 

structured and comparable between species and contexts. A number of papers address these issues and 

describe suitable methods by means of artificial data, with a decision tree depending on the respective 

question (Ravignani & Norton, 2017). Nevertheless, a comparison of different methods on different 

original datasets and of the influence of differences in datasets on the decision for a method is missing, 

even though this would help researchers to choose which methods to use for their data depending on the 

question at hand.  

Acoustic recordings can differ enormously in their features. Depending on the recording situation and 

signals to record, one faces very different sampling rates and recording lengths. Moreover, the number 

of elements (i.e. a distinct syllable, call or click in a given sequence, surrounded by silence) in a 

recording differs greatly as well as element durations, noise level or amplitudes. Also, the recording 

situation differs a lot between a zebra finch recorded in a controlled recording box, a whale tagged with 

a recording device in the Pacific Ocean or a bat vocalizing in its roost. Nevertheless, all these acoustic 

signals are suitable and interesting to check for periodicity (or rhythmicality). It is crucial that a 
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comparable method can be applied to all these different recordings. Methods that have been used for 

rhythm analysis include Fourier analysis (Burchardt et al., 2019; Norton & Scharff, 2016; Ravignani & 

Norton, 2017; Saar & Mitra, 2008) or calculation of nPVIs, the normalized Pairwise Variability Index, 

which was originally developed to assess temporal variability in human speech rhythm (Grabe & Low, 

2002b; Lin & Wang, 2007; Ravignani & Norton, 2017; Toussaint, 2012, 2013) . The nPVI is a measure 

of variability between Inter-Onset-Intervals. It will be zero for a perfectly isochronous sequence with 

all Inter-Onset-Intervals being equal. Furthermore different variations of the analysis of Inter-Onset-

Interval –  the duration between two adjacent elements (IOI (Jung, Kalko, & von Helversen, 2007; 

Ratcliffe et al., 2011; Schneider & Mercado, 2018a); also called Inter-Pulse-Interval, IPI (Širović et al., 

2017) or Inter-Click-Interval, ICI (Ladegaard et al., 2017; Ladegaard et al., 2015b; Sorensen et al., 

2018)) - and a so called generate-and-test or GAT approach (Burchardt et al., 2019; Norton & Scharff, 

2016; Ravignani & Norton, 2017) were used in rhythm analysis so far. All these methods search for 

isochronous patterns, therefore, again, we are rather searching for periodicity and isochronous beats 

underlying a sequence. 

This paper aims to help research decide on a method for the analysis of the temporal structure of their 

biological data. Five methods were used on three different datasets to assess 1) what kind of rhythm an 

acoustic signal might have (e.g. isochronous vs. heterochronous) and 2) which exact beat frequencies 

describe a given sequence best. Rhythm analysis can be done on different levels (Fig 1). Depending on 

the question at hand and the detail of the analysis, different methods can be used. At first, one has to 

establish whether a given acoustic signal sequence is rhythmic (periodic) at all. The general hypothesis 

is that a signal is periodic. This can be assessed by a detailed analysis of Inter-Onset-Intervals (IOIs) 

and by visual assessment of the data. The next step is to decide whether a signal shows an isochronous 

– that is a metronome-like – rhythm or a heterochronous rhythm. This again can be inferred from IOI 

analysis and nPVI calculations. If an isochronous rhythm is to be detected and one wants to know the 

exact beat frequencies of a signal, a Generate-and-test approach (GAT) (Burchardt et al., 2019; Norton 

& Scharff, 2016; Ravignani & Norton, 2017) or a fast Fourier transformations (FFT (Burchardt et al., 

2019; Norton & Scharff, 2016; Ravignani & Norton, 2017; Saar & Mitra, 2008)) can be used; which 

one to use depends on the data. We developed a goodness-of-fit value for exact beat frequencies 
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calculated with FFT and by IOI analyis, as these were missing so far. This makes it now possible to not 

only infer exact beat frequencies but how good a beat frequency actually fits a dataset and how good a  

‘beat producer’ an animal is. To find an underlying pattern within or between individuals a cluster 

analysis can be run. If a heterochronous beat is to be expected, recurrence plots are a good way to  

Figure 11: Which Methods to Use Depending on the Level of Analysis. 

A first evaluation of whether a signal is periodic or aperiodic relies on IOI and visual assessment 

of the data. Whether an acoustic signal sequence might be isochronous or heterochronous can be 

inferred from IOIs and nPVI calculations. To find exact beat frequencies a GAT approach, FFTs 

or again an assessment of IOIs can be used, and the detection of simple or complex heterochronous 

patterns is guided visually by recurrence plots. Exact beat frequencies are only interpretable if 

accompanied by a goodness-of-fit value. The figure was adjusted after (Ravignani et al., 2014). 

visualize the data, to find underlying structures and to be able to decide how to proceed in the analysis. 

Visualizing underlying or sub-structures can also be relevant in the context of nested signals, where a 

small part of a sequence might have a very different tempo than the rest. In that case it might be 

worthwhile to rerun parts of the analysis on that specific part. We also introduce recurrence plots on 

isochronous data in this paper. All of the above-mentioned methods were used on three datasets to 

compare results and to show the advantages and disadvantages of the different methods as well as their 

interpretation.  
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Methods 

Labelling of elements and datasets 

We chose three different datasets for the analysis with very different properties: 1) monosyllabic (i.e. 

only one element type in a sequence), short isolation calls of the neotropical bat Carollia perspicillata   

(Figure 12A), 2) multisyllabic, medium long isolation calls of the neotropical bat Saccopteryx bilineata 

(Figure 12B) – both social vocalizations – and 3) monosyllabic, very long echolocation click trains of 

the sperm whale Physeter macrocephalus used for orientation and foraging (Figure 12C).  

Figure 12: Visual Representation of the Different Sequences.  

Different colours indicate different element types. (A) An exemplary sequence of C. perspicillata 

isolation calls. (B) An exemplary sequence of S. bilineata isolation calls. (C) An exemplary 

sequence of P. macrocephalus echolocation clicks as used for orientation and foraging. Click trains 

can be up to 200 elements long. 

With this, we cover a broad range of possible acoustic signal sequence structures and can infer the 

applicability of the methods for a broad range of acoustic signals.  

The basis for all analyses were element onsets. An element is a distinct syllable, call or click in a given 

sequence that is surrounded by silence. It is necessary that elements and their onsets are clearly 

recognizable. For each acoustic signal sequence, the on- and offset of its elements were determined for 

subsequent analyses. For multisyllabic isolation calls of S. bilineata, we manually determined element 
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on- and offsets based on oscillograms (see (Knörnschild, Nagy, et al., 2012) for details). For sperm 

whale echolocation click sequences and isolation call bouts of C. perspicillata, we used an automatized 

procedure in Avisoft SASLab Pro (based on amplitude detection threshold; - 20 dB relative to the 

element’s peak frequency for bats; adjusted manually to not include buzzes for sperm whales) to 

determine element on- and offsets.  

We analysed multisyllabic isolation calls from 5 pups of S. bilineata  (see (Knörnschild, Nagy, et al., 

2012) for details on study site and sound recordings). Each isolation call contained 5 – 26 elements, i.e. 

syllables (14 ± 3.5, mean ± SD) and was composed of 2 – 4 different element types (mean: 3 element 

types), but this distinction was not relevant for further analyses. Furthermore, isolation call bouts of 5 

C. perspicillata pups were analysed (see (Knörnschild et al., 2013) for details on study site and sound 

recordings). Each bout contained 3-11 elements (mean: 3 elements) and was composed of a single 

element type. We assessed a total of 47 bouts (Pup 1: 11 bouts, Pup 2: 8 bouts, Pup 3 and 5: 9 bouts, 

Pup 4: 10 bouts). Furthermore, we analysed 60 sequences of echolocation clicks from a single deep dive 

of the female sperm whale Sophocles, recorded by the Dominican sperm whale project on 24. April 

2014 (for details on study site and recordings see (Bøttcher et al., 2018; Tønnesen et al., 2018)). We 

extracted trains manually with the software CoolEdit 2000. Single trains were distinguished visually by 

a clear silent gap of at least 3 seconds (in most cases at least 5 seconds). The elements were afterwards 

labelled with the software Avisoft SASLab Pro; only the search phase was labelled and feeding buzzes 

– if at all present – ignored. Feeding buzzes can occur at the very end of a click train when an animal is 

hunting; they are characterized by a higher repetition rate and less energy (Teloni et al., 2008). Trains 

contained 13 to 248 elements, i.e. clicks (115 ± 48, mean ± SD).  

Rhythm analyses 

The different methods used are IOI analyses, including the calculations of coefficients of variation and 

three methods using the IOIs as input, namely nPVI calculations, Fourier analyses, and a generate-and-

test approach. IOIs can be used to visualize the data in histograms or recurrence plots. When one wants 

to find the exact beat frequencies which best describe an acoustic signal sequence Fourier analysis, IOI 

analysis, and the GAT approach can be used. To assess how good any of those exact beats describe a 

given sequence, goodness-of-fit values are crucial. Different values serve as a proxy for the goodness-
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of-fit of the best fitting beat in the three different methods and play an important part in the 

interpretability and comparability of results between species and studies.  

IOI. The Inter-Onset-Intervals (IOI) were assessed, and the mean IOI of each sequence converted into 

the corresponding exact beat frequency by dividing it by 1 [as Hertz is 1/second]. The coefficient of 

variation was calculated as an indicator of variability. It is estimated as the ratio of the standard deviation 

to the mean of the sample ((Everitt & Skrondal, 1998), equation 1). The formula for an unbiased 

estimator ((R. Sokal & Rohlf, 2011), equation 2) was used.  𝐶𝑉̂ = 𝑠𝑥̅                                                   (1)  
𝐶𝑉∗̂ = ( 1 +  14𝑛) 𝐶𝑉̂                          (2) 

𝐶𝑉̂ = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛                                   𝐶𝑉 ∗̂ = 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛       𝑠 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛                       𝑥 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛                                             𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

nPVI. Two adjacent IOIs were compared: their difference was calculated and divided by their average; 

the nPVI gives the average of all these ratios in a sequence multiplied by 100. The obtained values have 

little explanatory power, beyond being able to assess whether a sequence is isochronous or not (Grabe 

& Low, 2002; Ravignani & Norton, 2017; Toussaint, 2012, 2013) . We calculated nPVI for all sequences 

of a dataset separately (named ‘sequence’ in results) and for all IOIs of a dataset combined (named 

‘overall’ in the results).  

 

𝑛𝑃𝑉𝐼 = ∑ | 𝐼𝑂𝐼𝑘 − 𝐼𝑂𝐼𝑘+1𝐼𝑂𝐼𝑘 + 𝐼𝑂𝐼𝑘+12 | ∗  100𝑚 − 1𝑚−1
𝑘=1                             (3) 

𝑛𝑃𝑉𝐼 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥                                                  𝑘 = 𝑖𝑛𝑑𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟     𝑚 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠                                                               𝐼𝑂𝐼 = 𝐼𝑛𝑡𝑒𝑟 − 𝑂𝑛𝑠𝑒𝑡 − 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙                             
Recurrence Plots. In a recurrence plot higher-order patterns within an acoustic signal sequence can be 

visualized. It plots the sequence of IOIs as their differences, building a raster showing the differences 

between every IOI with every n-th IOI. The differences are marked by colour code (for code see 

(Ravignani & Norton, 2017)). Both axes represent the IOI indices in their sequential order.  
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Fourier analysis. Timestamps of element onsets were used to form a binary point process. Sequences 

with a time resolution of 5 ms were created, in which only events (i.e., element onsets) were represented 

by ‘1’, everything else in the sequence was represented by ‘0’. Each sequence started and ended with an 

event, represented as a ‘1’. A fast Fourier transformation was calculated (FFT). After that, frequencies 

of maximum power were selected as ‘best fitting beat’ (Burchardt et al., 2019; Saar & Mitra, 2008), 

which are the exact beat frequencies we subsequently described a sequence with.  

A normalized goodness-of-fit value based on the zero-bin component (DC Offset) of the FFT signal was 

established. In a normal oscillating signal, the zero-bin-component – the amplitude of the signal at 0 Hz 

– is zero. In a binary sequence, the zero-bin component is not 0 but, instead, same as the mean of the 

signal in the time domain (adjusted after (Cooley & Tukey, 1965); equations 4 & 5); therefore it is 

dependent on the total number of elements and the number of samples. It thus functions as an internal 

reference (Figure 13).  

Figure 13: Visual Explanation of the Internal Reference. 

The mean of the binary sequence that serves as input for the Fourier analysis determines the 

amplitude of the zero-bin-component (DC-term). This amplitude will always be the highest in this 

kind of analysis serving as an internal reference for the second highest peak that determines the 

best fitting exact beat frequency. 

 

𝑋(𝑓) = 1𝑁 ∑ 𝑥(𝑛)𝑒−𝑗2𝜋 𝑓𝑁𝑛                   (4)𝑁−1
𝑛=0  
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𝑋(0) = 1𝑁 ∑ 𝑥(𝑛)                                     (5)𝑁−1
𝑛=0  

𝑋(𝑓) = 𝑆𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑜𝑚𝑎𝑖𝑛      𝑁 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒     𝑗 = 𝑗 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛          𝑒 = 𝐸𝑢𝑙𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑛 = 𝑖𝑛𝑑𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟              𝑥(𝑛) = 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑑𝑜𝑚𝑎𝑖𝑛                      𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦   
The nGOF value is calculated by dividing the amplitude P of the best fitting beat frequency (Pbest) by 

the amplitude P of the zero-bin-component (P0) multiplied with the sampling length (L) (equation 6).  

 

𝑛𝐺𝑂𝐹 =  |𝑃𝑏𝑒𝑠𝑡|𝐿 ∗ |𝑃0|                          (6) 

𝑛𝐺𝑂𝐹 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝐹𝑖𝑡 𝑣𝑎𝑙𝑢𝑒             𝑃𝑏𝑒𝑠𝑡 = ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒    𝐿 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ              𝑃0 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑎𝑡 0 𝐻𝑧, 𝑧𝑒𝑟𝑜 − 𝑏𝑖𝑛 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

GAT. In the generate-and-test approach (developed by (Norton & Scharff, 2016)) the original sequence 

of element onsets gets tested against computed perfectly isochronous onset sequences of a predefined 

frequency window (i.e. 5-100 Hz as in beats per second). Sequences were computed in a frequency 

window from 2 – 100 Hz in 0.01 Hz increments. For each beat frequency, the root-mean-square 

deviation (RMSD) of all elements in a sequence from their nearest single beat was calculated. The 

parameter was then normalized for frequency (by dividing it by the frequency), resulting in the 

frequency normalized root-mean-square deviation – FRMSD.  

Artificial data. To further the understanding of the analysis principles we ran all methods on three 

artificial datasets: 1) perfectly isochronous sequences with IOIs of 0.1, 0.3 or 0.5 seconds; 2) Ten 

sequences á 100 elements randomly drawn from a uniform distribution between 0 and 1 and 3) three sub 

datasets, that were drawn from a Gaussian distribution with means of 1, 0.2 or 0.1 seconds with standard 

deviations of 0.5, 0.1 and 0.05 respectively. Again, each data set consisted of 10 sequences with 100 

elements in each sequence. Negative numbers were permitted and the drawing of a negative number re-

run until a positive number was drawn. This was done manually (dataset 1) and in Matlab with the ‘rand’ 

(dataset 2) and ‘normrand’ function (dataset 3).  
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Cluster Analysis 

An agglomerative, hierarchical clustering algorithm that used the group average of frequency distances 

as the basis for finding clusters was applied. Dissimilarities were given by Euclidean distances; the 

dissimilarity threshold to find clusters was set to 0.05 for all data sets. Cluster analyses were performed 

for all three methods yielding exact beat frequencies in Matlab. 

Software and Code 

We used Matlab (Version 2017b & 2016b) and R (Version 3.5.3) for the analyses. CoolEdit 2000 

(Syntrillium, Phoenix, USA) was used to extract single echolocation click trains from the dive of a sperm 

whale. Furthermore, we used Avisoft SASLab Pro Version 5.2.10 (Berlin, Germany) to visualize 

recordings and to determine element onsets automatically (for isolation call bouts of C. perspicillata 

and click trains of P. macrocephalus) and manually (for multisyllabic isolation calls of S. bilineata). 

The code for the GAT approach was published elsewhere (see (Ravignani & Norton, 2017)) and the 

code to run the FFT as well as exemplary data is provided here: https://github.com/LSBurchardt/FFT-

Method.  

Results and Methods discussion 

IOIs and nPVIs 

We show key data for all datasets in Table 3: the mean of the IOIs in seconds, the standard deviation of 

IOIs, as well as the coefficient of variation over all IOIs of a dataset (CV overall) and the average 

coefficient of variation between sequences (CV sequences) of a dataset. In contrast to the commonly 

used parameters variance and standard deviation, the coefficient of variation is neither sample size nor 

mean dependent. Therefore, it yields comparable results independent of the dataset. To ensure 

comparability we used the formula for an unbiased estimator ((R. Sokal & Rohlf, 2011), equation 2) 

since especially for smaller sample sizes the normal coefficient of variation (equation 1) tends to 

underestimate the variation. 

Furthermore, we give information on the range of IOIs in seconds and the number of IOIs comprising 

the datasets. The range of calculated nPVIs as well as their mean is given together with the information 

https://github.com/LSBurchardt/FFT-Method
https://github.com/LSBurchardt/FFT-Method
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on the number of sequences underlying the nPVI analysis and subsequent analysis of exact beat 

frequencies per sequence via GAT, Fourier analysis and IOI calculation. 

Table 3: Summary of IOI Results 

A visual inspection of IOIs is the first step in determining the temporal structure of any given dataset. 

A unimodal distribution of IOIs is a strong indicator for isochrony because all IOIs spread around the 

one most prominent duration category. The steeper the distribution, the more consistent an isochronous 

pattern should be. We find unimodal distributions for all three datasets (Figure 14, first column).  

The smaller the CV (sequences), the less variation we find in IOIs of a dataset, indicating a more 

consistent structure and possibly isochrony. Smaller nPVIs suggest a similar interpretation. A small 

nPVI value does not only show a consistent structure but an isochronous structure. When interpreting 

nPVI values we must consider that even though a very small nPVI indicates isochrony, a middle (20-

40) or even high (60-100) nPVI does not necessarily disagree with isochrony and definitely not with 

rhythmicity. In a computer simulated element sequence with a stress pattern, namely a pattern with an 

isochronous occurrence of stressed elements, an nPVI value of 94.54 was calculated (see (Ravignani & 

Norton, 2017)). An indicator of variation between sequences and possibly between individuals is the 

difference between the CV (sequences) and CV (overall). The CV (sequences) should always be smaller 

than the CV (overall), the bigger the difference between the two, the higher the variation between 

sequences and possibly individuals (see Supporting Information for examples on artificial data).  

 Mean IOI 

[sec] 

SD 

(σ) 

Coefficient 

of 

Variation 

(overall) 

Coefficient of 

Variation (mean of 

sequences) 

Range[sec] n 

IOIs 

nPVI n 

sequences 

C. perspicillata 0.043 0.013 0.31 0.23 0.01 – 0.1 195 2.3 to 110.7 

mean 35.9 

47 

S. bilineata 0.078 0.022 0.29 0.19 0.028 – 0.28 646 6.4 to 99.4 

mean 22.8 

50 

P. macrocephalus 0.46 0.1 0.22 0.14 0.03 – 3.1 6913 0.4 to 13.6 

mean 5.2 

60 
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Looking at the results for our datasets, we can infer isochrony for all three datasets, with P. 

macrocephalus showing the strongest patterning and likely a very strict isochrony and only a few 

variations between sequences. S. bilineata and C. perspicillata show values that hint at an underlying 

isochronous structure with small (S. bilineata) and medium (C. perspicillata) differences between 

sequences and individuals.  

Exact beat frequencies 

After the overall analysis of the pattern, it is interesting to analyse exact beat frequencies, which would 

describe individual sequences best. Depending on the results of the overall patterns (isochrony or not, 

high variability vs. low variability), different methods are appropriate to analyse these exact beat 

frequencies. For example, if results indicate a higher probability of differences between sequences and 

individuals, an IOI analysis would oversimplify results and we do not consider it fitting. In that case  
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Figure 14: Analysis of the Datasets per Method. 

The first column shows the distribution of IOIs for all datasets. The second to fourth column 

depict exact beat frequency distributions for the three datasets (1. C. perspicillata, 2. S. bilineata, 

3. P. macrocephalus) and different methods. 

GAT analysis is useful. Nevertheless, if the overall pattern suggests a very strong rhythm, the 

computationally more intensive analysis of the GAT approach can be spared, because it would most 

probably not add substantially to the results of the IOI analysis or Fourier analysis. Fourier analysis is a 

very strong tool to analyse rhythm, but also needs some consideration, for example when deciding which 

time resolution to choose for the binary sequence. The rather coarse time resolution of 5 ms used in our 

analysis was chosen for different reasons. A time resolution of 5 ms results in a sampling rate of 200 

Hz. Since in an Fourier analysis, signals up to half of the sampling rate can be deconstructed, a sampling 

rate of 200 Hz will result in frequencies between 0 and 100 Hz being analysed. In other studies, 100 Hz 

as the upper boundary for the investigation proved suitable for bird song as well as the much faster 

echolocation pulses of neotropical bats (Burchardt et al., 2019; Norton & Scharff, 2016); therefore, we 

also used this frequency window for the analysis here. Another very important point to be kept in mind: 

the chosen time resolution directly influences the frequency resolution of the Fourier signal; the higher 

the time resolution, the lower the frequency resolution will be and vice versa (equation 7). This problem 

diminishes with long sampling length but especially in short signals of under and around 1 second, it is 

a considerable issue. Our chosen time resolution gives suitable frequency resolutions even with short 

sampling length. 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                     (7) 

Keeping advantages and disadvantages in mind, one should always run more than one analysis method 

to get a better picture of the data at hand. Our results for the exact beat frequencies are presented in 

Table 4. For each method for calculating exact beat frequencies (GAT, FFT, IOI) the range of detected 

beat frequencies is given for the three datasets. The results cluster around certain values.  We divided 

the frequency window we looked at (0-100 Hz) in 10 Hz categories; one category will encompass most 

of the found sequences (i.e., the category 20 – 30 Hz). This most prominent category is given alongside 

the percentage of sequences showing beat frequencies in that category. In addition, the results are 
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visualized in Figure 14, with the different methods in columns and the datasets as rows. The most 

prominent categories are clearly visible in the histograms for all methods and datasets.  

Table 4: Overview of Exact Beat Frequencies Found for Three Datasets with Three Methods. 
 GAT FFT IOI 

 

Min[Hz] Max[Hz] 

Prominent 

category 

[Hz] and 

% 

Min[Hz] Max[Hz] 

Prominent 

category 

[Hz] and 

% 

Min[Hz] Max[Hz] 

Prominent 

category 

[Hz] and 

% 

C. perspicillata 17.9 100 20-30 

39.1% 

11.8 83.3 20-30 

39.1% 

12.4 30.6 20-30 

82.6% 

S. bilineata 8 100 10-20 

54% 

11.4 86.6 10-20 

70% 

8.1 17.1 10-20 

88% 

P. macrocephalus 2 40.9 0-10 

83% 

1.7 93.7 0-10 

93.3% 

1.9 2.4 0-10 

100% 

Goodness-of-Fit 

Finding such strong categories as we can see in the histograms (Figure 14) hints at an underlying 

isochronous pattern, and we can be sure that the exact beat frequencies we found describe the sequences 

well. It is very unlikely that we find random exact beat frequencies by chance that show such a pattern 

of up to 100 % of beats found falling into the same bin category. But what if such an overall pattern is 

uniformly distributed? How can we be sure that we did not find random beats and how can we compare 

species and contexts with regards to how well a single beat describes a sequence? For that, we used and 

developed different goodness-of-fit values which quantify how well a beat describes a sequence.  

There are different ways to assess the goodness-of-fit of a beat. By and large, it represents how close 

the original sequence of elements is described by one certain beat. Since we are searching for the best 

fitting beat, it describes how well this beat describes the sequence. The goodness-of-fit values for the 

different methods are correlated to different measures like the number of elements and length of the 

sequence, and sometimes to a certain extent to beat frequencies; they fall on very different scales and 

therefore need careful consideration (see Supporting Information for examples on artificial data).  
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For the GAT approach, the FRMSD (Frequency-normalized Root Mean Square Deviation) depicts the 

goodness-of-fit. It is positively correlated to the number of elements in a sequence in a non-linear way, 

but superior to the RMSD which is in addition highly frequency dependent. Using the FRMSD results 

in finding the slowest beat, coinciding best with element onsets (Burchardt et al., 2019; Norton & 

Scharff, 2016; Ravignani & Norton, 2017). It describes the average temporal deviation as a fraction of 

a full cycle and therefore has no unit (Burchardt et al., 2019; Norton & Scharff, 2016). For the most part, 

FRMSD values for C. perspicillata pups overlap with FRMSD values in S. bilineata pups. Nevertheless, 

the minimum value we find in S. bilineata is much higher, while the highest value is lower than in C. 

perspicillata pups. Goodness-of-fit values for the GAT approach show a much broader range for C. 

perspicillata. Element numbers in S. bilineata pups are 2- to 9-fold higher, therefore values for S. 

bilineata are considered to show a better fit than the ones for C. perspicillata. Due to the FRMSDs 

positive correlation to element numbers, it is not surprising that we find higher values in the very long 

sequences of P. macrocephalus. Exact values for all three species are shown in Table 5.  

Table 5: Comparison of Goodness-of-Fit Values for All Datasets and Methods. 

 GAT FFT IOI 

Dataset/Method FRMSD GOF nGOF CV (overall) CV (sequence) 

C. perspicillata 0.007-0.214 0.57- 0.98 0.012-0.064 0.31 0.23 

S. bilineata 0.059-0.183 0.5 – 0.92 5.5e-4 – 0.014 0.29 0.19 

P. macrocephalus 0.07-0.26 0.23- 0.87 1.2e-5 – 0.0032 0.22 0.14 

For the Fourier analysis the basis for the goodness-of-fit is the amplitude of the Fourier signal. The 

amplitude P of the Fourier signal, which is used to determine the best fitting beat, is also indicative of 

how good the beat actually fits: the higher the amplitude, the better the fit. Nevertheless, the amplitude 

is strongly correlated to sample length and number of events in the sequence. Therefore, amplitudes 

could so far only be compared within one dataset and with good knowledge about the correlations. The 

nGOF on the other hand shows a much smaller correlation with sample length and number of events 

(Supporting Information) and is therefore more appropriate to use as a goodness-of-fit value. The nGOF 

was validated by correlating it to the already established goodness-of-fit value of the Generate-and-test 

approach, the FRMSD value (Supporting Information). The nGOF values range from 8e-6 to 1.3e-3 
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with a median of 2.5e-5 for P. macrocephalus. The measure only set into relation with the internal 

references – but not normalized for the length of the signal – lie between 0.22 and 0.67 (GOF) which 

can be thought of as the percentage this one particular beat frequency has on describing the original 

sequence. This value is easier to interpret, but – again – the signal length has a strong impact, which 

gets clear when comparing the values of the very long sperm whale click trains with the way shorter 

values for isolation call bouts of C. perspicillata, that show much higher and therefore actually “better” 

values. All other results, on the other hand, have to lead to the interpretation, that the sperm whale 

echolocation click trains are a lot more regular and therefore closer to a “perfect” beat than the bat 

isolation calls. This also shows in the nGOF values for the FFT of C. perspicillata pups. They show 

values that are more than a thousand-fold larger than in the sperm whale data.  

The goodness-of-fit values for FFT analysis of S. bilineata isolation calls fall in between sperm whales 

and C. perspicillata pups, being 10-fold smaller than the values from C. perspicillata and 100-fold larger 

than P. macrocephalus. Again, exact values are shown in Table 5.  

In IOI analysis the sample size independent measure of the coefficient of variation (CV) can be used as 

an indicator of the goodness-of-fit; the smaller the CV, the less spread there is in the IOIs, which means 

they are more similar to each other, thus corresponding to a more regular beat. Since the IOI analysis 

bears little sequence information it is just indicative of the overall regularity. All measures are shown in 

Table 5. The differences between CV (overall) and CV (sequence) moreover give insight into the 

likelihood of finding individual differences. While in the CV (overall) all IOIs of an acoustic signal 

sequence are regarded, in CV (sequence) only one sequence is regarded and the average for all analysed 

sequences calculated. Therefore, we might have individually very isochronous sequences leading to 

small values for CV (sequence) but very different sequences, leading to a high value for CV (overall). 

Therefore, the bigger the difference between CV (overall) and CV (sequence), the higher the likelihood 

of finding differences between individuals. The difference between the two is the smallest for P. 

macrocephalus and highest for C. perspicillata. This leads to the interpretation that it is most likely to 

find individual differences in exact beat frequency patterns in C. perspicillata and we do not expect 

them in P. macrocephalus.  
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Cluster Analysis 

Visual inspection of the detected exact beat frequencies per individual confirms what the overall pattern 

and CV calculations already indicated. We find a pattern within individuals, where beat frequencies 

cluster around certain values. Depending on the method and the dataset, these clusters are differently 

strong and fall around different values.  

The cluster analysis is a good way of depicting “preferences” of the different individuals for certain 

beats. In S. bilineata pups, clusters do not differ much between individuals and show cluster strengths 

of between 30 and 70 % for the GAT approach; clustering the results of the FFT analysis leads to clusters 

containing 40% to 60 % of sequences per individual. In IOI analysis, clusters contain between 60% and 

100% of sequences. All strongest clusters fall between 10 and 20 Hz (also see (Burchardt et al., 2019)). 

The picture for C. perspicillata pups looks slightly different though. We find the strongest clusters 

containing a third up to 100 % of sequences of an individual falling into one cluster with IOI analysis. 

The difference is that not all clusters lie in the same beat category. We find most of the strongest clusters 

between 20 Hz and 30 Hz for GAT and FFT analysis as well as between 40 Hz and 50 Hz. Other clusters 

fall in different categories. For IOI analysis, on the other hand, all clusters fall at least partially between 

20 Hz and 30 Hz (Figure 15 and Supporting Information).  

 

Figure 15: Individual Beat Clusters in C. perspicillata Pups Confirm the Results of Other 

Methods.  

Exact beat frequencies as analysed with the three different methods are shown with clusters in the 

data. One individual is depicted per column, all exact beat frequencies found are shown as dots. 

Depicted in red are the sequences falling into the largest cluster of sequences sharing a similar 
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beat. Percentages at the bottom indicate the percentage of sequences per individual in the largest 

cluster. (A) Exact beat frequencies and individual clusters as obtained by the GAT approach. (B) 

Exact beat frequencies and individual clusters as obtained by the FFT method. (C) Exact beat 

frequencies and individual clusters as obtained by IOI analysis.  

Since we analysed echolocation click trains of a single individual for P. macrocephalus such a cluster 

analysis is not useful here. But the very strong patterning and previous research (Whitehead, 2003) let 

us assume that there are no significant individual differences.  

Recurrence Plots 

In the following section, we describe two exemplary recurrence plots, one showing a multisyllabic 

isolation call of S. bilineata and the other one showing an echolocation sequence of P. macrocephalus. 

Recurrence plots offer a visual representation of the temporal pattern of a sequence. The more uniform 

the sequence, the more white and light grey colours can be seen in the plot: white stands for no to very 

little differences between two adjacent IOIs and the darker a comparison, the bigger the difference.  The 

very strict isochronous pattern of the sperm whale echolocation sequences is depicted in an almost white 

plot (Figure 16A). In contrast, we can even see the structure of the multisyllabic isolation call of S. 

bilineata pups in the corresponding recurrence plot (Figure 16B), where very similar IOIs are followed 

by slight pairwise changes of IOIs at the end of the sequence, which corresponds to changes between 

two element types. These plots could be a very valuable addition in the analysis of more complex 

temporal structures in acoustic signals because higher order structures – for example, different parts of 

temporal structure within one acoustic signal sequence – can be visualized and used to determine how 

to proceed. For very short sequences such as for C. perspicillata isolation calls, plotting a recurrence 

plot most often does not offer additional valuable insights. They are to be interpreted carefully, 

especially when sequences to be compared via a recurrence plot vary widely in IOI length. The same 

absolute difference between IOIs might be irrelevant for one but important for another species. The 

same colour might not stand for the same absolute difference in two plots.   
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Figure 16: Recurrence Plots of Two Sequences. 

No difference is indicated by white; the darker the colour, the bigger the difference. Note that 

absolute differences are depicted and colours represent different differences in both plots, as 

shown in the legend. (A) Echolocation click train of P. macrocephalus: a very isochronous pattern 

is visible by only white and light grey colours. (B) The multisyllabic structure of an isolation call 

of S. bilineata is visible in the differences in IOIs: a subsequence of very similar IOIs is followed 

by an alternating sequence of two more element types.  

Decision Tree 

Incorporating the different methods into a workflow that includes both the data structure as well as 

results of early analysis steps leads to a decision tree, describing which methods to use in what case 

(Figure 17).  
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Discussion 

This study presents a comprehensive overview of the analysis of periodicity and rhythmicality in animal 

acoustic signals by comparing different methods for three different original datasets and introduces two 

new goodness-of-fit values for rhythm analysis methods. How to decide on the  

fitting methods depending on the data is depicted in Figure 17. 
 

 

Periodicity can be inferred for all three datasets from the results of the IOI analysis and visual assessment 

of the sequences: multisyllabic isolation calls of S. bilineata, isolation call bouts of C. perspicillata and 

echolocation click trains of P. macrocephalus. This information might be useful to answer a broad range 

of questions, but independent of the question at hand are the methods. Those methods enable us to 

actually infer or exclude periodicity for a given sequence. These methods are the topic of this paper.  

The methods (nPVI calculations, CV, IOI analyses, GAT, Fourier analyses) were adjusted by using three 

very different kinds of vocalization and sounds for them to be applicable to a broad range of acoustic 

signals. We used long and short signals in terms of overall duration and element duration, multisyllabic 

and monosyllabic sequences, and echolocation sequences for navigation as well as social calls. 

Furthermore, this ensures comparable results and fast and relatively easy implementation of the different 

analyses, which was the main aim of this study. Nevertheless there might be extreme examples of 

acoustic signals where the method (i.e. Fourier analysis’ time resolution or the frequency window in the 

GAT approach) could need adjustments; these could include the very slow and long rumbles of elephants 

(Garstang, 2004; Stoeger et al., 2012) or the extremely fast and short echolocation signals of some bats 

such as Kerivoula pellucida, a small Verspertilionidae bat from Southeast Asia with element lengths of 

~1.9 ms and IOIs of around 5 ms (Schmieder et al., 2010) or the even shorter but a little slower calls of 

Micronycteris microtis with an element length of 0.2 ms and IOIs of 14 to 30 ms (Geipel et al., 2013). 

For the very short elements of some bat species, the sampling rates for creating the binary sequence, 

serving as input for Fourier analysis, would need to be much higher for two reasons: first, with a time 

resolution of 5 ms and element lengths of 2 ms or even 0.2 ms, the accuracy of labelling becomes too 

coarse. Second, the range of frequencies a sequence is described with in a Fourier analysis is dependent 

on the sampling rate; with the used sampling rate, frequencies of up to 100 Hz can be decomposed but 
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this is not enough for faster signals (decomposition into frequencies up to half the sampling rate). 

Changing the sampling rate would on the other hand have implications on the frequency resolution. 

Duration of samples would need to be at least ~1 second for sampling frequencies up to 1000 Hz; if 

sequences are shorter, Fourier analysis is not suitable (equation 7).  On the other end of extremes, very 

slow signal sequences should not generate these kinds of problems. The frequency range to test for exact 

beat frequencies with the GAT approach would need careful consideration in this case though, because 

2 Hz, which was the lower boundary in this case, might not be slow enough.  

Looking at the different possible analysis paths we describe in the flowchart (Figure 17), we used data 

fitting into three different paths, leading to two different end categories. All three datasets show a 

unimodal distribution when looking at the IOI distribution. Results of nPVI and CV calculations differ. 

While echolocation click sequences of the sperm whale show low nPVI values and a small difference 

between CV (sequence) and CV (overall), both bat vocalizations do not fall into that category because 

nPVI values are higher. Nevertheless, since the difference between CV (overall) and CV (sequence) are 

also small in S. bilineata, we proceed in the flowchart to the interpretation that, comparable to the sperm 

whale trains, isolation calls of S. bilineata are isochronous with probably no or only small individual 

differences. For C. perspicillata isolation calls, however, we conclude that even though isochronous, 

the probability for individual differences is increased, and therefore we proceed on a different path in 

the analysis. 

Sequences of S. bilineata and P. macrocephalus are adequate in length (i.e mostly more than 1 second), 

therefore the frequency resolution in Fourier analysis is no problem and IOI analysis and Fourier 

analysis are most suitable for exact beat analysis. C. perspicillata sequences are shorter than 1 second 

and show a constant tempo, which would make the GAT approach the most suitable one. To give 

possible acoustic signal types for other paths, depending on the data might be from left to right in Figure 

17: short call sequences of rodents, for example ultrasonic pulses of Typhlomus chapensis (Volodin et 

al., 2018); for sequences with a higher probability for individual differences that are above 1 second in 

duration and show a constant tempo one could think of male zebra finch song (Norton & Scharff, 2016) 

or the vocalization sequences of pinnipeds such as the Northern elephant seal (Mathevon et al., 2017). 

For a sequence with a changing tempo, one might think of a territorial song of some bat species that 



Chapter II 

89 

 

escalate and increase the tempo in the end (Behr et al., 2006; Knörnschild et al., 2017; Voigt et al., 

2008). Sequences, where none of the methods would be applicable, could, for example, be short, 

accelerating pecking patterns of woodpeckers (Miles et al., 2018).  

The analysis of echolocation click trains of P. macrocephalus shows some interesting discrepancies 

between methods. Beat frequencies as known from the literature – often termed click rates or repetition 

rates in the respective literature – lie around 0.7 – 4 Hz (Douglas et al., 2005; Madsen et al., 2002). 

Using the IOI analysis, we get results fitting perfectly into that frame, which makes sense, as the same 

methodology is used. The other analyses also show way faster beat frequencies, even though not very 

prominently. The important message is that Fourier analysis and the GAT approach reproduce the 

overall pattern that most echolocation trains show beats as previously described in the literature. 

Nevertheless, it also shows the possibility of the oversimplification of IOI analysis; this needs more 

analyses, but it might be possible that especially in more variable contexts than whale echolocation, IOI 

analysis is missing a lot of information, e.g., small differences that might be pronounced between 

individuals for discrimination purposes. It was already suggested that echolocation click beats of sperm 

whales may include this information (André & Kamminga, 2000).   

There are a few general take home messages regarding methods to analyse the rhythm. Starting with the 

data, since all analyses rely on IOIs, elements need to be clearly separable, and recordings need to have 

a good signal-to-noise ratio. Furthermore, the duration of a single sequence (i.e., duration between the 

first and the last element) should not be too short and a sequence should contain at the very least 3 

elements for all methods to be applicable. In general, as many methods as possible should be applied to 

get a full picture of the data. Different methods have different flaws; by using various methods and 

comparing the results, artefacts or inconsistencies are easier to detect. Methods to calculate exact beat 

frequencies do have very different major flaws: Fourier analysis is not well applicable for very short 

sequences, because of the trade-of between time resolution in the original signal and frequency 

resolution in the Fourier signal (equation 7). The GAT approach has issues with sequences changing in 

tempo since the optimization task is carried out for all elements within a sequence, such that one outlier 

can influence the results strongly. IOI analysis tends to oversimplify structures since it depends only on 

the mean of IOIs in a sequence, which is not depicting the variation in a sequence at all (Figure 15).   
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To enable reproducible rhythm analysis, one needs to provide at least the original IOI sequences of the 

data or even the raw acoustic signals with labels. Information on the generation of the binary sequence 

for the Fourier analysis is essential; this mainly refers to the time resolution used. If cluster analyses are 

run to detect individual patterns, reporting the used distance measures, as well as clustering algorithm 

and distance threshold, are necessary to make results comparable between studies. 

Considering all these things, rhythm analysis can be used to tackle many questions. Not only can we 

further investigate couplings of biological processes such as motor rhythms (Moss et al., 2006; Suthers 

& Fattu, 1973), but it can be used to find possible guiding neural processes (Norton & Scharff, 2016; 

Yartsev & Ulanovsky, 2013) and can give valuable information for studies on the perception of temporal 

structures (García-Rosales, Martin, et al., 2018). Especially in echolocating animals such as whales and 

bats, rhythm analysis yields a good background for studies on rhythm perception. Furthermore, rhythm 

analysis might prove to be a valuable tool for the analysis of vocal production learning, as was already 

suggested for example for the vocal learning in zebra finches, where very stereotyped elements are 

learned, with a difference only in the temporal structure (Hyland Bruno & Tchernichovski, 2017). In 

other species, one aspect of vocal production learning is for the animal to learn the temporal structure 

of an acoustic signal. Without knowing the beats produced by animal tutors and tutees, this is difficult 

to achieve (Wirthlin et al., 2019).  

Looking at a broad range of animal acoustic signals and uncovering broader patterns between animal 

taxa can, in the end, inform us about the origins and importance of periodicity and rhythmicity. 
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Supplementary Information  

This document includes supporting information on artificial data and the validation and explanation of 

the goodness-of-fit value nGOF. 

Validation normalized Goodness-of-Fit value, Fourier analysis 

To validate the use of the normalized goodness-of-fit value (nGOF) in Fourier analysis, we correlate it 

with the sample length, to show that the nGOF shows the smallest correlation coefficient as compared 

to the goodness-of-fit value that was not normalized (GOF) or the amplitude in the frequency spectrum. 

These correlations only show when including all analysed data, ranging from very short to very long 

sequences. To ensure comparability between exactly these very different sequences, it is important to 

use the value least correlated to the sample length.  

Furthermore, we validated the nGOF by comparing and correlating it to the already published goodness-

of-fit value for the Generate-and-Test approach, i.e., the frequency-normalized root-mean-square-

deviation (FRMSD). The two values strongly correlate, which ensures us it is appropriate to use it as a 

goodness-of-fit value. All correlation coefficients were calculated in R (version 3.5.3) with the function 

‘cor’, which by default is calculating a Pearson correlation. We show the results in Table 6.  

Table 6: Correlation of Goodness-of-Fit and Related Values 

 

 

 

 

 

Artificial data 

To make it easier to set results into perspective, we analysed three artificial data sets, using the same 

workflow as for the original biological data.  

Results were calculated for perfect isochronous sequences with Inter-Onset-Intervals (IOIs) of 0.1, 0.3 

and 0.5 seconds. In a second dataset numbers were drawn randomly from a uniform distribution ranging 

 nGOF GOF P 
sample 
length FRMSD 

# 
elements 

nGOF            

GOF 0.73          

P 0.94 0.83        

sample length -0.48 -0.78 -0.66      

FRMSD -0.77 -0.84 -0.86 0.71    

# elements -0.51 -0.79 -0.69 0.99 0.73  
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from 0 to 1. A third dataset consisted of numbers randomly drawn from a Gaussian distribution with 

three different parameter combinations. 100 elements per sequence, 10 sequences each were drawn for 

the following parameter combinations: 1) mean: 0.1 seconds, standard deviation: 0.05 seconds; 2) mean: 

0.2 seconds, standard deviation: 0.1 seconds and 3) mean: 1 second, standard deviation: 0.5 seconds. 

That way, we expected results to be around 10 Hz, 5 Hz and 1 Hz respectively for Inter-Onset-Interval 

analysis since this simply depends on the mean. The coefficient of variation (Cv) should be very similar 

between the three groups, since the relation between mean and standard deviation was chosen to be the 

same in all three cases. That way, the difference between the mean coefficient of variation for all 

sequences and the coefficient of variation overall over different subsets of the data illustrates the relation 

between the difference between the two and the possibility of different underlying beats very nicely. 

Different beats, analysed separately, can have the same Cv mean for all sequences, since the variation is 

similar in all the sequences (as the modelled relation between mean and standard deviation is similar). 

As we calculate the results over the different subsets combined, the variation increases, because Inter-

Onset-Intervals from the different modelled distributions form the basis for the calculation and therefore 

the variation increases. If we transfer that to our original data sets this means that the higher the 

difference between the two values, the higher the probability that different sub distributions underlie the 

different sequences. That indicates differences between sequences and/or individuals. All results are 

shown in Table 7, where the first given value represents the expected value, whereas the second value 

is the calculated value. They fit very nicely in all cases. 

Table 7: IOI Analysis of Artificial Data, Expected Values and Calculated Results 

Dataset Mean[sec] Std [sec] Cv mean of 

sequences 

Cv overall Beat [Hz] 

1 Hz 1/1.05 0.5/0.48 0.45/0.45 0.45/0.46 1 / 0.96  

      

5 Hz 0.2/0.21 0.1/0.1 0.45/0.46 0.45/0.46 5 / 4.78 

10 Hz 0.1/0.11 0.05/0.05 0.45/0.46 0.45/0.46 10 / 9.57 
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1 Hz + 5 Hz 0.6 /0.63 0.5 / 0.54 0.45/0.46 -- / 0.86 1.7 / 1.6 

1 Hz + 10 Hz 0.55/0.57 0.5 / 0.58 0.45/46 -- / 1.01 1.8 / 1.74 

5 Hz + 10 Hz 0.15/0.16 0.1 / 0.1 0.45/46 -- / 0.58 6.7 / 6.4 

1 Hz + 5 Hz + 10 Hz 0.44 /0.45 0.5 / 0.5 0.45/46 -- / 1.18 2.3/ 2.21 

 

Rhythm analysis results of artificial data 

Here we show the resulting exact beats for the three different methods Inter-Onset-Interval analysis, 

Fourier analysis and the Generate-and-test approach. We show the detailed numbers for the Fourier 

analysis, to give insight into what the newly established goodness-of-fit values looks like for different 

datasets (Table 8-10). Furthermore, we show results for all methods in a histogram depiction for the 

datasets drawn from normally distributed numbers (Figure 18). Furthermore, we show the results of the 

cluster analysis on dataset 3, drawn from three Gaussian distributions (Figure 19). We can see very clear 

clusters for the IOI analysis, as these are based on the modelled means, but for the other two methods 

we do not see clear clusters at all. This is especially interesting as in our original datasets we see in parts 

similar coefficients of variation, the resulting clusters are still much stronger (20-30% in one cluster in 

artificial data versus 33-82% in biological data for the GAT approach for example). Also, the expected 

beat frequencies, based on the modelled distributions would be 1 Hz for sub-dataset 1, 5 Hz for sub-

dataset 2 and 10 Hz for sub-dataset 3. This is not at all supported by the results, which again shows that 

Inter-Onset-Interval analysis oversimplifies results considerably.  

Table 8: Results of Fourier Analysis for Perfectly Isochronous Sequences of Different IOIs 

Modelled IOI Amplitude 

P 

Resulting beat [Hz] Sample length GOF nGOF 

0.1 sec 0.0503 9.995 1981 0.9958 5.0268e-04 

0.3 sec 0.0168 3.333 5941 0.9995 1.6824e-04 

0.5 sec 0.0101 1.9998 9901 0.9998 1.0098e-04 
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Table 9: Results of Fourier Analysis for Sequences Drawn from a Uniform Distribution Between 

0 & 1  

Sequence # Amplitude 

P 

Resulting beat [Hz] Sample length GOF nGOF 

1 0.0031 54.49 10398 0.3180 3.0578e-05 

2 0.0031 91.67 10045 0.3105 3.0912e-05 

3 0.0032 82.06 9318 0.2937 3.1516e-05 

4 0.0032 24.62 9961 0.3200 3.2129e-05 

5 0.0029 46.45 9555 0.2753 3.8814e-05 

6 0.0029 88.89 9774 0.2856 3.9225e-05 

7 0.0031 32.91 9906 0.3119 3.1488e-05 

8 0.0030 47.43 10196 0.3098 3.0384e-05 

9 0.0031 81.36 8987 0.2793 3.1074e-05 

10 0.0038 15.96 8483 0.3244 3.8238e-05 
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Table 10: Results of Fourier Analysis for Sequences Drawn from Three Different Gaussian 

Distributions  
Sequence # Amplitude P Resulting beat [Hz] Sample length GOF nGOF 

mean_1_seq01 0.0014718 3.40623546 21490 0.31948573 1.4867E-05 

mean_1_seq02 0.00136936 26.9280919 20707 0.28355351 1.3694E-05 

mean_1_seq03 0.00129352 37.3855158 22383 0.28952889 1.2935E-05 

mean_1_seq04 0.00144668 60.5123294 20885 0.30213879 1.4467E-05 

mean_1_seq05 0.00158602 20.1604867 19067 0.30240621 1.586E-05 

mean_1_seq06 0.00150281 19.8842456 20388 0.30639232 1.5028E-05 

mean_1_seq07 0.00147356 4.13854704 20152 0.29695108 1.4736E-05 

mean_1_seq08 0.00145706 21.9145803 20370 0.29680217 1.4571E-05 

mean_1_seq09 0.00153698 74.6243407 20098 0.30890217 1.537E-05 

Mean_1_seq10 0.00142628 71.777362 21380 0.3049378 1.4263E-05 

mean_0.2_seq01 0.00649635 17.0134073 4326 0.28103226 6.4964E-05 

mean_0.2_seq02 0.00602181 97.4408498 4142 0.24942354 6.0218E-05 

mean_0.2_seq03 0.00656363 34.7476552 4478 0.29391954 6.5636E-05 

mean_0.2_seq04 0.00678646 7.03685974 4178 0.28353816 6.7865E-05 

mean_0.2_seq05 0.00783899 47.5616151 3814 0.29897908 7.839E-05 

mean_0.2_seq06 0.00711769 14.9092692 4078 0.29025924 7.1177E-05 

mean_0.2_seq07 0.00716861 42.2227735 4031 0.28896665 7.1686E-05 

mean_0.2_seq08 0.00641353 74.3067485 4075 0.26135143 6.4135E-05 

mean_0.2_seq09 0.00704148 6.41631435 4021 0.28313806 7.0415E-05 

mean_0.2_seq10 0.00668986 35.9214219 4276 0.28605838 6.6899E-05 

mean_0.1_seq01 0.01192391 19.4085028 2164 0.25803339 0.00011924 

mean_0.1_seq02 0.01399666 72.4903475 2072 0.29001089 0.00013997 

mean_0.1_seq03 0.01315409 69.4953104 2239 0.29452001 0.00013154 

mean_0.1_seq04 0.01288567 14.0737195 2089 0.26918168 0.00012886 

mean_0.1_seq05 0.01582618 35.8678553 1907 0.30485385 0.00015986 

mean_0.1_seq06 0.01279744 29.8039216 2040 0.26106775 0.00012797 

mean_0.1_seq07 0.01363039 41.3690476 2016 0.27478874 0.0001363 

mean_0.1_seq08 0.01276541 21.5897939 2038 0.260159 0.00012765 

mean_0.1_seq09 0.01502785 55.2238806 2010 0.30205979 0.00015028 

mean_0.1_seq10 0.01458886 91.8186068 2139 0.31205579 0.00014589 
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Abstract 

The production of rhythmic signals by animals has received increasing scientific attention in recent years 

but knowledge about the perception of different temporal patterns is still scarce. We developed a method 

to quantify rhythm perception in small mammals. In an auditory brainstem response (ABR) experiment 

the direct response of the auditory nuclei to an auditory stimulus was measured. By varying the presented 

stimulus rates, we adjusted the classical ABR paradigm to measure rhythm perception. We recorded 

ABRs from 78 wild living individuals of 12 bat species from tropical America in response to pure-tone 

stimuli (in 17 rates ranging from 6 to 100 Hz) and from 20 individuals of captive bred Carollia 

perspicillata presented with natural stimuli (i.e., isolation calls of C. perspicillata at rates of 6, 25, and 

44 Hz). A general decline of response strength towards higher stimulus presentation rates could be found 

for all species tested with pure tones. No clear differences were found between the three presentation 

rates for natural stimuli tested in C. perspicillata. Natural stimuli on average elicited higher reactions 

than artificial stimuli. Furthermore, the measured response strengths for different perception rhythms 

were compared to vocal production rhythms of the respective species’ echolocation calls and a limited 

overlap between production and perception rhythms was found. 

We confirmed the applicability of the adjusted ABR procedure to measure rhythm perception in small 

mammals. Using bats from tropical America as an example, we found differences in perception strength 

dependent on the stimulus presentation rate for artificial and natural stimuli in untrained wild and captive 

bats. Our results are important for future considerations of stimulus choice in ABR experiments, as they 

suggest preferring natural stimuli and slower stimulus presentation rates.  

 

Introduction  

Audiometry, the research of acoustic perception, focuses on studying the processes of acoustic 

perception, auditory processing, the involvement of specific brain areas in these processes, and 

ultimately investigates acoustic information encoding (e.g., (García-Rosales, Beetz, et al., 2018; Land 

et al., 2016; Linnenschmidt & Wiegrebe, 2019; Portfors & Wenstrup, 1999; Wetekam et al., 2020)). 

One non-invasive way to study a part of auditory perception are auditory brainstem response (ABR) 
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measurements that were developed in the 1970s by Jewett and Williston. An ABR visualizes and 

measures the neuronal activity in the brainstem part of the auditory pathway as field potentials (Jewett 

& Williston, 1971). The auditory pathway includes five brainstem nuclei: the cochlear nucleus, the 

superior olivary complex, the nucleus of the lateral lemniscus, the inferior colliculus and the medial 

geniculate (Claesdotter-Hybbinette et al., 2016; Purves et al., 2012). ABRs are a widely used standard 

technique to assess hearing in humans and other animals (Hecox & Galambos, 1974; Juselius 

Baghdassarian et al., 2018; Land et al., 2016; Obrist & Wenstrup, 1998; Szymanski et al., 1999).  

In this study, we repurposed the classical model of ABRs to investigate the perception of isochronous 

rhythms (i.e., metronome like rhythms with the same interval between all elements) in different tempi, 

using the integrated response strength measured in the ABRs as a proxy for how well a stimulus is 

perceived in the anaesthetized animal. Animals can produce sounds in a variety of different temporal 

structures. A growing body of research is looking into temporal patterns in animals’ acoustic signals 

focusing on mammals and birds including courtship signals, offspring-parent interactions, contact calls, 

echolocation signals of bats and whales and other types of social communication (Burchardt & 

Knörnschild, 2020; Burchardt et al., 2019; Heinsohn et al., 2017a; Mathevon et al., 2017; 

Merguerditchian et al., 2018; Norton & Scharff, 2016; Ravignani, in press; Ravignani et al., 2019; 

Ravignani & Norton, 2017). As important as knowledge about production rhythms is the question of 

how animals can perceive these rhythms. For instance, we know that male northern elephant seals use 

the temporal structure (amongst others) to discriminate between male opponents and must therefore be 

able to perceive differences in beat frequencies (i.e., a concrete rhythm of a sequence described in Hertz 

as in beats per second) (Mathevon et al., 2017). In woodpeckers, different species use different pecking 

patterns ranging from steady short pecking bouts to bouts increasing or decreasing in tempo. The 

woodpeckers can discriminate between general patterns to differentiate between con- and 

heterospecifics (Garcia et al., 2020).  

To date, it is unclear whether different tempi are perceived equally well or why this would be reasonable 

to assume. Bats are an interesting candidate taxon to answer this question. In various bat species, the 

production of echolocation calls is coupled to wing beat frequencies in situations where the sensory 

needs allow it, that is during search flights (Kalko, 1994; Moss et al., 2006; Schnitzler, 1971; Suthers et 
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al., 1972; Wong & Waters, 2001). On the other hand, production rhythms of echolocation calls need to 

be very flexible, and depending on the sensory needs can increase substantially compared to search 

flight rhythms for example in environments with a lot of clutter or in the feeding buzz immediately 

before insect capture (Moss et al., 2006; Moss & Surlykke, 2001; Ratcliffe et al., 2013). In a previous 

study on the greater sac-winged bat Saccopteryx bilineata (Emballonuridae), we found that acoustic 

signal rhythms match wing beat frequencies also while bats are perched, for example in isolation calls 

uttered by pups and territorial song uttered by males. Independent of context (search flight echolocation 

or social communication), age, and individual, this species uses rhythms of around 6 to 20 Hz 

(corresponding to Inter-Onset-Intervals of ~166 – 50 ms (Burchardt et al., 2019)). Even taking the 

variability of echolocation call rhythms in cluttered environments or a feeding situation into account, 

bats of the species S. bilineata are exposed to this range of acoustic beats or rhythms throughout their 

entire lifetime in various situations. We therefore hypothesize that their sensory apparatus is specifically 

tuned to these rhythms. In species where different social communications and echolocation calls are 

uttered in very different rhythms, such sensory tuning is less likely, and we would expect their rhythm 

perception to be similar over a range of different rhythms. We further hypothesize that we can show 

such differences in rhythm perception with the adjusted ABR paradigm. This hypothesis is strengthened 

by previous findings showing that not only pitch perception but also tempo perception is taking place in 

bat auditory nuclei (Portfors & Wenstrup, 1999). In the moustached bat, Pteronotus parnellii 

(Mormoopidae), neurons in the inferior colliculus, one of the auditory nuclei in the brainstem, facilitate 

response strength by echo delay-tuning (Portfors & Wenstrup, 1999). Furthermore, the inferior 

colliculus also shows a high temporal precision in electrophysiological recordings of Seba’s short-tailed 

bat Carollia perspicillata (Phyllostomidae), a common model organism (Macias et al., 2016). The 

summed electrical potentials generated by these auditory nuclei can be captured with ABR 

measurements, which work very well in bats (Burkard & Moss, 1994; Lattenkamp et al., 2021; 

Linnenschmidt & Wiegrebe, 2019; Obrist & Wenstrup, 1998; Wetekam et al., 2020). 

In this study, we investigated the hypothesis of specialized rhythm perception in bats with an adjusted 

ABR procedure. While in a classical ABR experiment different frequencies are presented at a number 

of different sound levels, we here focused on presenting a single frequency at varying presentation rates, 
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as was done in a similar way in other species to study adaptation processes in the auditory pathway 

(Burkard et al., 1994; Burkard et al., 1997; Burkard et al., 2017; Burkard et al., 1996a; Burkard et al., 

1996b; Burkard & Voigt, 1989; Ridgway et al., 1981). We conducted these rhythm ABR experiments 

in 12 wild tropical American bat species, from six different families using artificial stimuli, i.e., pure 

tones at the species’ echolocation call peak frequency at 17 different presentation rates (between 6 and 

100 Hz). Furthermore, in one of the species, C. perspicillata, we conducted a second rhythm ABR 

experiment with captive bred individuals to investigate whether this procedure can also be applied using 

natural stimuli (i.e., isolation calls uttered by pups to solicit maternal care (Knörnschild et al., 2013)). 

Two different durations of natural stimuli were used: 1) exceptionally short isolation calls matching the 

duration of the artificial stimuli and 2) isolation calls of average duration, which were 4-fold longer. 

This approach allowed us to test if natural stimuli that retained their behavioural relevance elicit similar 

reactions as artificial stimuli. These natural stimuli were presented at three different rates (i.e., 6, 25, 

and 44 Hz). Overall, we established, for the first time in bats, an adjusted ABR procedure allowing the 

direct and non-invasive measurement of rhythm perception using the integrated response strength as a 

proxy for perception.  

Methods 

Animals and experimental approval 

Wild caught animals 

ABRs were measured from a total of 78 bats from 12 different species (6 families, Supplementary Table 

1). All animals were adult and wild caught around Gamboa, Panama, in March 2019. The research was 

conducted in accordance with the Panamanian government (MiAmbiente permit 117SE/A-5-19) and the 

regulations of the Smithsonian Tropical Research Institute (STRI ACUC protocol 1182019-0302-2022). 

Animals from captive breeding 

ABRs were measured for a total of 20 adult, captive bred bats of the species C. perspicillata. We 

measured 10 males and 10 females. Females were neither pregnant nor lactating. All measurements were 

conducted under the permission of the responsible administrations of Schleswig-Holstein, Germany 

(permit number G10-1/19). 
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Anesthetics application 

Experiment 1: Wild caught bats were anesthetized with a combination drug of Medetomidine, 

Midazolam, and Fentanyl at least 10 minutes before the experiment. The details of the anaesthesia 

application and dosage, and animal welfare details are published elsewhere (Lattenkamp et al., 2021).  

Experiment 2: Bats in captive breeding were anesthetized with a combination drug of Ketamin and 

Xylazin (7.5 mg/kg Ketamin-hydrochlorid and 16.5 mg/kg Xylazinhydrochlorid). Captive animals 

weighed between 16 and 24 g, and injection volumina lay between 0.02 and 0.03 ml, lasting for 1 ½ to 

2 hours depending on the individual. The drug was injected subcutaneously between the shoulder blades 

(needle: Sterican® brown 0.45 x 12 mm, B. Braun, Melsungen AG, Melsungen, Germany). During 

anaesthesia, eye cream (Bepanthen®, 5% Dexpanthenol, Bayer AG, Leverkusen, Germany) was applied 

to prevent the eyes from drying out. The experiment lasted approximately one hour. After that bats were 

transferred to a small, padded chamber and given medical oxygen (Compact Mini, 5 L, 200 bar, Air 

Liquide Healthcare, Düsseldorf, Germany) for 10 to 15 minutes. Bats were transferred back to the colony 

and kept in single chambers of a temporary holding cage and hand released as soon as they initiated 

flight, when freely placed on the palm of the experimenter’s hand. Water and fruit juice were given as 

needed, to further facilitate the wake-up process. 

ABR setup 

The ABRs were measured in a small sound-attenuating box (PELI 1450 case, peli products, Torrance, 

CA, USA; inside measurements: 37.1 x 25.8 x 15.2 cm³). Details of the custom-made setup are published 

elsewhere (Lattenkamp et al., 2021). The box was lined with a copper mesh (for the reduction of 

electrical interferences), and then covered with sound-attenuation foam (to reduce acoustic 

reverberation). The bats were positioned with their outer ear opening at a distance of 4 cm and on one 

level with the horizontal centre of the loudspeaker (R2004/602000, ScanSpeak, Videbæk, Denmark). 

The loudspeaker was connected to an amplifier (M032N, Kemo® Electronic, Germany). Both stimulus 

presentation and ABR recording were done by an audio interface (ADI-2 PRO FS, RME, Haimhausen, 

Germany), running at a sampling rate of 384 kHz. The sound system of the setup was calibrated to 120 

dB for Experiment 1 with a 1/8” measuring microphone (B&K4138 without protective grid, Bruel & 

Kjaer, Bremen, Germany) connected to a measuring amplifier (B&K Measuring Amplifier Type 2636, 
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Bruel & Kjaer, Bremen, Germany). The calibration was confirmed for 90 dB with a 1 kHz test tone and 

a calibration microphone mounted on a level meter (TEAC Df-1, Germany) for Experiment 2. 

Stimuli 

Wild caught animals – Experiment 1  

Recordings of ABRs were done in response to pure tone pip stimuli. The tone pips were sinusoids of 

2.5 ms duration (Hanning windowed) with different carrier frequencies according to the species-specific 

echolocation call peak frequency (Table 11). The tone pips were presented 256 times with 17 different 

presentation rates (6-100 Hz) at an amplitude of 90 dB peak-equivalent sound pressure level (peSPL). 

Specifically, the used presentation rates were 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 40, 60, 80, 

and 100 Hz. As we hypothesized perception to be best around often heard rhythms, and with knowledge 

that these rhythms lie between 6 and 20 Hz in bats (Burchardt & Knörnschild, 2020; Burchardt et al., 

2019), we chose a high resolution for that range and up to 30 Hz, to account for variability. As production 

rhythms were analysed up to 100 Hz before, we also analysed perception rhythms up to 100 Hz 

(Burchardt et al., 2019; Norton & Scharff, 2016). The order of the presentation rates was randomized 

for each measurement and individual. Every other presented tone pip was phase-inverted to cancel out 

electrical stimulus artefacts picked up by the ABR electrodes after averaging in the time-domain. Stimuli 

were generated at a sampling rate of 384 kHz and a digital word length of 24 bit. A custom written 

MATLAB script (Matlab, R2018b, MathWorks, Natick, NA, USA) was used to generate the stimuli and 

coordinate their presentation via the above-mentioned audio interface. 

Animals in captive breeding – Experiment 2  

Recordings of auditory brainstem responses were done in response to natural stimuli, namely isolation 

calls of the tested species C. perspicillata (for details on dataset and recording see (Knörnschild et al., 

2013)). The mean duration of isolation calls in the dataset was 7.3 ms and the minimum duration was 

1.7 ms. We selected 10 short isolation calls with a duration of 2 ms from 10 different individuals. 

Furthermore, 10 average long stimuli of around 8 ms durations were selected from the same set of 

recordings and individuals, so that we always had one short and one long isolation call of the same 

individual serving as stimuli in the experiments (Figure 24). In total we presented each individual with 

20 stimuli, i.e., 10 short and 10 long natural isolation calls. The presentation rates were 6, 25, and 44 
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Hz, and were again presented in a randomized order. Presentation rates were chosen so that the known 

production rhythms of isolation calls were presented (~25 Hz (Burchardt & Knörnschild, 2020)). We 

chose to then test one significantly slower and one significantly faster presentation rate. 6 Hz was chosen 

to have the same lower limit as Experiment 1. This results in a difference of 19 Hz between 6 and 25 

Hz, the faster presentation rate therefore needed to be 19 Hz faster than 25 Hz resulting in the third 

presentation rate of 44 Hz. As a total of 20 stimuli were presented to each individual, only three 

presentation rates could be tested in order to keep the total duration of the experiment within the range 

of one hour. Natural stimuli had a sampling rate of 384 kHz, to mimic artificial stimuli. Natural stimuli 

were presented via the same audio-interface and setup that was used in Experiment 1.  

ABR recording 

Two subdermal electrodes (clipped needles, Sterican® brown 0.45 - 12 mm, B. Braun, Melsungen AG, 

Melsungen, Germany) were placed at the caudal midline of the head, close to the brainstem (recording 

electrode) and at the dorsal midline of the head between the ears (reference electrode) 

(following(Lattenkamp et al., 2021; Linnenschmidt & Wiegrebe, 2019). The ground electrode was either 

placed on the base of the left ear of the animal or on the wing or tail membrane. The electrodes were 

connected to a bio amplifier (BMA-200, CWE Inc., USA), which bandpass filtered the brainstem 

responses (between 100 Hz and 3 kHz) and initially amplified the signal by 60 dB. The signal was 

converted to digital by the above-mentioned audio interface. The ABR signals were down sampled by 

a factor of 20 to 19.2 kHz before each of the 256 recordings was saved. ABR signals averaged in the 

time-domain for each combination were displayed to the experimenter for quality monitoring during the 

measurements.  

ABR data analysis  

First, the 256 measurements for each presentation rate and stimulus were averaged, multiplied with a 

calibration dependent scale-factor, and converted to µV. We obtain a timeseries of voltages for each 

individual, stimulus, and stimulus presentation rate. To minimize noise and restrain values to be positive, 

a moving-minimum-subtraction-method (Källstrand et al., 2014) was performed. Then the root-mean 

square (RMS) and standard deviation (STD) value was calculated for a time window of 10 ms after 

stimulus onset for the transformed curve. Afterwards a trapezoidal integration over the first 10 ms after 
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stimulus onset was performed in Matlab (Matlab, R2017b, MathWorks, Natick, NA, USA). The result 

of this integration is an area under the normalized curve in µV. We calculated that area for each 

presentation rate and individual. 

A resampling approach was chosen to confirm the presence of a signal (n = 500; 95% confidence). 500 

sequences were simulated by drawing randomly 192 samples (equivalent to 10 ms, with replacement) 

from the whole averaged and converted original data of the respective individual and stimulus 

presentation rate. The 500 simulated sequences consisted of 256 measurements each, just like the 

original data. Those 256 measurements were averaged, and the moving-minimum procedure applied. 

For each of the 500 simulated sequences, we then calculated the RMS and STD. We calculated the 

percentage of RMS and STD values being lower than the original values. A signal was regarded as being 

present if that percentage was above 95. This was done following the procedure of other studies to 

statistically verify the presence of an ABR signal (Lattenkamp et al., 2021; Linnenschmidt & Wiegrebe, 

2019; Lv et al., 2007; Wetekam et al., 2020).  

For results of Experiment 1 with artificial stimuli, responses were scaled to the measurements of the 

stimulus at 6 Hz presentation rate. To scale the result, we subtracted the integral value of the 6 Hz rate 

from all other presentation rates. For measurements of natural stimuli, this scaling was not necessary. 

Results of 6 Hz, 40 Hz, and 100 Hz from Experiment 1 were compared with a Friedman test and post 

hoc Dunn’s Comparison, while results for different presentation rates and sexes in Experiment 2 were 

tested via a Kruskal-Wallis test followed by a Dunn’s Multiple Comparisons test (Prism 5, GraphPad, 

San Diego, USA).  

Rhythm analysis 

We obtained recordings of echolocation calls in free flight for all 12 bat species tested in Experiment 1 

(see Supplementary Information, Table 12). We determined the production rhythms of their 

echolocation calls using their respective inter-onset-interval (IOI). A beat frequency was calculated by 

taking the inverse average IOI of a sequence. IOI calculations are described in more detail elsewhere 

(Burchardt & Knörnschild, 2020). Detailed information on the datasets (i.e. study location, recording 

situation, devices) can be found in the Supplementary Information (Table 12) or in already published 

literature (S. bilineata: (Knörnschild, Jung, et al., 2012b), Lonchorhina aurita: (Gessinger et al., 2019), 
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Rhynchonycteris naso: (Jung, Kalko, & von Helversen, 2007)). Exemplary results for five of the tested 

families are shown in the main manuscript. Results for all species are shown in the Supplements in Table 

14 and Figures 25-36.  

Results 

We were able to measure rhythm perception with an adjusted ABR procedure with a portable setup, in 

wild and captive untrained and anesthetized animals with artificial and natural stimuli. We obtained 

rhythm ABR results for 12 wild Central American bat species (artificial stimuli), including C. 

perspicillata. Furthermore, ABRs were obtained for captive bred individuals of the species C. 

perspicillata (natural stimuli). The results are organized in three parts: (1) an overview about the 

perception of all 12 species and a detailed illustration of the perception in C. perspicillata (Experiment 

1), (2) a comparison between the different natural stimulus types (Experiment 2) and between the 

relevant natural and artificial stimulus types, and (3) a correlation between production rhythms and 

perception rhythms for five of the analysed species (details on the other species are provided in the 

Supplementary Information).  

Experiment 1 – Artificial Stimuli 

Results were significant for all 12 species, i.e., all measured brain responses differed significantly from 

noise level, as was detected by a resampling approach. 78 wild individuals of 12 Central American bat 

species from six different families were measured and tested with artificial stimuli for 17 different 

stimulus presentation rates.  

 Overview of Rhythm Perception in 12 Bat Species 

All measured species showed a decline in response strength from slow to fast rhythms (Figure 20). We 

depicted the averaged response per species, scaled to the response at 6 Hz. Only few stimulus 

presentation rates resulted in higher responses than at 6 Hz. Only for one species, Rhynchonycteris naso, 

a substantial number of responses (six presentation rates: 10, 12, 20, 30, 40, and 60 Hz) was stronger 

than the response at a presentation rate of 6 Hz (Supplements, Figure 25).  

Nevertheless, all species showed a significant decline when comparing 6 Hz with a presentation rate of 

100 Hz (Figure 20C, p < 0.0001***, Friedman test with Dunn’s Multiple Comparison Test, groups = 3, 

Friedman statistic = 20.67, difference in rank sum = 22). The decline was significant between 40 Hz and 
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100 Hz, but not between 6 Hz and 40 Hz (Figure 20C, 6 Hz vs 40 Hz: difference in rank sum = 8, ns; 

40 Hz via 100 Hz: difference in rank sum = 14, p < 0.05*). The integrated response strength declined 

between 22.8 and 256.5 µV with a median decline of 32.6 µV from 6 Hz to 100 Hz (Supplements, Table 

13). 

 

Figure 20: ABR Response Strength of 12 Central American Bat Species Depicted in µV. 

(A) ABR response strength scaled to the 6 Hz response strength. All 12 species showed a decline 

in response strength from 6 Hz to 100 Hz. (B) Averaged ABR response strength of 12 bat species 

from 6 Hz to 100 Hz scaled to 6 Hz. (C) Comparison between the ABR response strength at 6 Hz 

vs. 100 Hz for all 12 species; the response strength at 6 Hz was significantly higher than at 100 Hz 

(Wilcoxon signed rank test, one-tailed, p = 0.0013**, positive rang sum 78, negative rang sum 0.00)  

Detailed Results for Carollia perspicillata  

We detected individual differences in ABR waveform between different presentation rates, as well as in 

general ABR response strength between individuals. This can be illustrated by the results of C. 

perspicillata (Figure 21). We found a clear difference between presentation rates of 6 Hz and 100 Hz 

with regards to general response strength, but also in the distinctiveness of single peaks. These 

differences are not discussed further, as we only looked at the integrated area under the whole 

transformed curve for subsequent analysis, which we interpret as the general response strength. 

Individuals all showed a general decline of response strength from slow to fast rhythms but decline 

strength as well as individual response peaks differed (Figure 21C). The averaged response showed an 
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almost linear decline (Figure 21D). Detailed results for the remaining 11 species are shown in the 

Supplementary Information (Figures 25- 36).  

 

Figure 21: Detailed Results of C. perspicillata for Experiment 1 Presenting Artificial Stimuli to 

Free Living Bats. 

(A, B) The averaged raw traces for the first 10 ms of the ABR response for the presentation rates 

6 and 100 Hz are displayed. The slopes depict an average as well as minimum and maximum (blue 

area) of all eight measured individuals. (A) Average ABR slope of eight C. perspicillata individuals 

at a 6 Hz stimulus presentation rate. (B) Average ABR slope of eight measured C. perspicillata 

individuals at 100 Hz stimulus presentation, showing a generally lower response and less distinct 

peaks. (C) Single measurements for eight C. perspicillata individuals, all showing a general decline 

in response strength towards faster rhythms of up to 100 Hz. Shown is the moving-minimum 

subtraction (mms) transformed data. (D) The scaled averaged response strength (as calculated as 

trapezoidal integral on mms transformed data) for eight C. perspicillata individuals is depicted. 

Error bars are the minimum and maximum values measured.  

Experiment 2 – Natural Stimuli 

In a second experiment, 20 captive individuals (10 males and 10 females) of the species C. perspicillata 

were tested with natural stimuli, namely isolation calls of the respective species. Two different kinds of 

natural stimuli were presented: 2 ms long isolation calls and 8 ms long isolation calls. We presented 10 

calls of each length to every tested specimen in three presentation rates. Therefore, every individual was 

exposed to 60 combinations. At least 30 of the combinations needed to result in a significant ABR 

response for us to regard the individual in the reported results. Four males and three females did not 

reach that criterion and are therefore not shown in the results. From all other individuals, only significant 

responses were taken into account (average of 95.5% over all remaining 13 individuals). Significant 

responses were averaged for all 10 stimuli per individual and duration.  
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Most intriguingly, significant responses to natural stimuli were consistently higher than to artificial 

stimuli as measured in the same species in Experiment 1 (Figure 22A). For natural stimuli, response 

strength was similar between males and females for both long and short isolation calls (Kruskal-Wallis 

test, p = 0.1189, groups = 12, Kruskal-Wallis statistic = 16.64). We could not make this comparison in 

wild C. perspicillata exposed to artificial stimuli because only males were recorded. 

When comparing results within females via paired testing, there were differences between stimulus 

presentation rates but also between short and long stimuli. We showed significant differences only for 

comparisons with either the same stimulus presentation rate or with the same stimulus duration. 

Females’ responses to short isolation call stimuli at 25 Hz presentation rate differed significantly from 

long isolation calls, with long isolation calls eliciting lower reactions (Friedman test with Dunn’s 

Multiple Comparison Test, p = **, difference in rank sum = 24, Figure 22B). The same was true for 

stimulus presentation rates of 44 Hz, again long isolation calls resulted in lower responses (Friedman 

test with Dunn’s Multiple Comparison Test, p = *, difference in rank sum = 22, Figure 22B). No 

significant differences in the corresponding pairs in males were found, even though long stimuli tended 

to elicit lower reactions than short stimuli (Figure 22B). There were also no differences between stimulus 

presentation rates within one stimulus type for males or females.  
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Figure 22: Detailed Results of C. perspicillata for Experiment 2. 

(A) Comparison between Experiment 1 and 2 for C. perspicillata. Natural stimuli elicited higher 

reactions compared to artificial stimuli. There was a mild decline from 6 Hz to 100 Hz in both 

experiments, confirming the overall results. Males (n = 6) and females (n = 7) did not respond 

differently to different presentation rates and different stimulus types. (B) Difference in response 

strength between short and long natural stimuli. Long stimuli tend to elicit lower reactions, this 

change is only significant for females for stimulus presentation rates of 25 Hz and 44 Hz.  

Comparison between Production and Perception Rhythms  

To test if commonly produced rhythms are perceived better, we compared the most prominent rhythms 

of echolocation call production (during search flight) of five species from five families to their responses 

to artificial stimuli. This comparison is guided through the visual assessment of results in Figure 23. The 

results for the other species are summarized in the Supplementary Material.  

We focused on the five species Saccopteryx bilineata (Emballonuridae, Figure 23A), Molossus molossus 

(Molossidae, Figure 23B), Pteronotus parnellii (Mormoopidae, Figure 23C), Lonchorhina aurita 
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(Phyllostomidae, Figure 23D), and Myotis nigricans (Vespertilionidae, Figure 23E) which highlight the 

diverse relation between rhythm production and perception in five bat families. 

For S. bilineata, we did not observe large differences in ABR signal strength between presentation rates 

of 6 and 40 Hz, even though most echolocation sequences are produced at 8 to 12 Hz during search 

flight (Burchardt et al., 2019). Thus, in this species there is a complete overlap of production rhythms 

and perception rhythms but not a clear correlation between the two (Figure 23A). For M. molossus we 

observed the expected pattern: search flight echolocation sequences were uttered with rhythms 

corresponding well to the rhythms that elicited higher responses in the ABR experiments. Thus, 

production rhythms and perception rhythms seemed to be correlated in this species (Figure 23B). For P. 

parnellii production rhythms of search flight echolocation overlapped well with stimulus presentation 

rates, eliciting the highest reactions in this species as well (Figure 23C). For L. aurita, we also observed 

the expected pattern: search flight echolocation sequences were uttered with rhythms corresponding 

well to the rhythms that elicited the highest responses in the ABR experiments. Thus, production 

rhythms and perception rhythms seemed to be correlated in this species (Figure 23D). For M. nigricans, 

we see the same picture as for M. molossus and L. aurita, production rhythms correlated well with 

presentation rates that elicited high reactions in the ABR procedure (Figure 23E).   
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Figure 23: Correlation Between Rhythm Perception and Production in Five Bat Species. 

Rhythm perception is shown in the line graph as the integrated response strength scaled to the 

response at 6 Hz. Rhythm production is shown as a histogram; rhythms were analysed with IOI 

analysis in search flight echolocation call sequences. (A) In S. bilineata, rhythms that were 

perceived well overlapped with rhythms that were produced often. (B) In M. molossus rhythms 

that were perceived well were produced most often. (C) In P. parnellii rhythms that were perceived 

well overlapped with rhythms that were produced often. (D) In L. aurita, rhythms that were 

perceived well were produced most often. (E) In M. nigricans, rhythms that were perceived well 

were produced most often.  

Discussion 

We analysed the rhythm perception of 12 species of Central American bats with an adjusted workflow 

adapting the principles of ABR recordings to measure differences in rhythm perception in small 

mammals. The method described here was used for the first time in bats and successfully tested on a 

total of 98 individuals. Differences in perception were found on an individual as well as species level. 

This opens a new field of research, as this method can be easily adopted for other small mammals, such 

as rodents, or lagomorphs. Thus, our new method could facilitate future studies on beat perception that 

contribute to the growing field of research on rhythm in animals’ acoustic signals, for instance the role 

of rhythm in vocal production learning (Hyland Bruno & Tchernichovski, 2017; Wirthlin et al., 2019) 

or individual recognition (Mathevon et al., 2017).  

The ABR method has clear advantages over behavioural tests, as it is faster and more standardized than 

for example playback experiments or other behavioural experiments involving the time-consuming 

training of animals (i.e., (Koay et al., 1997; Lattenkamp et al., 2018)). With ABRs it is possible to 

directly measure the spontaneous reaction of an animal on an individual level and control for most 

parameters. Of course, ABRs do not replace behavioural experiments as these are likely to produce more 

sensitive results (Heffner et al., 2008), but they can provide first insights into the hearing capacity of a 

species and save a lot of time and effort, because potential subsequent behavioural experiments can be 

set up in a more informed way. It is a minimally invasive technique to measure summed neuronal 

responses without harming the animal and avoiding unnecessary stress due to long periods of isolation 

and training. 

In this study, we compared ABR strength in response to a wide range of stimulus presentation rates to 

the echolocation call rate of 12 species. We expected to find that the auditory perception process is tuned 
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to rhythms perceived very often, as for example species-specific search flight echolocation call rhythms, 

coupled to wingbeat frequencies(Burchardt et al., 2019; Kalko, 1994; Schnitzler, 1971; Wong & Waters, 

2001). However, despite the enormous variation in production rhythms of echolocation call sequences 

between species we found that all 12 tested species showed the strongest ABR signals in response to 

slow stimulus presentation rates of 6 Hz to 20 Hz. Production rhythms can lie at around 100 Hz and 

higher in Thyroptera tricolour, while they lie at around 6 to 12 Hz in S. bilineata (see Supplements and 

(Burchardt et al., 2019)). Corresponding results, demonstrating the decrease of reaction strength with 

increasing stimulus presentation rates, were found in electrophysiological recordings in the cortex of C. 

perspicillata. These recordings revealed that brain processes involved in the perception of echolocation 

calls (as a very specialized vocalization used for orientation, a system that can only be found in bats and 

toothed whales) appear to be far less specialized than one could expect. Cortical neurons were only able 

to track acoustic stimuli at frequencies (rates) of up to, but not faster than 22 Hz (Martin et al., 2017). 

This might hold true not only for the processing in the cortex, but also in the more primary brainstem, 

thus matching our results.  

Similar electrophysiological recordings in the inferior colliculus (IC) of P. parnellii indicated that the 

IC includes delay-tuned neurons that facilitate response strength through delay. The “best-delay” ranges 

from 0 to 20 ms (Portfors & Wenstrup, 1999). Delaying every stimulus by i.e., 20 ms, resembles a 

stimulus presentation rate of 50 Hz (as 1000/ 20 ms equals 50 Hz). Delaying it by less than 20 ms would 

then fit with even higher stimulus presentation rates. Overall, the described delay-tuning should possibly 

facilitate the response strength for fast presentation rates of 50 Hz and higher. However, this potential 

facilitation is not visible in our results when looking at the overall response strength. Nevertheless, it 

might be worthwhile for future studies to specifically test a possible effect of delay-tuning on the ABR 

peak corresponding to the response of the IC. One explanation for our finding of improved perception 

for slow rhythms could be that these patterns represent temporal sensitivity for social calls rather than 

echolocation call rates. This would be especially interesting to study in contrasting species such as 

Saccopteryx bilineata (i.e., with slow social call and echolocation call rates (Burchardt et al., 2019)) and 

T. tricolour (with very fast echolocation, but slow social call rates (Supplements and (Chaverri & 

Gillam, 2015)). 
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While we can exclude habituation effects shaping the results, because stimuli rates were presented in a 

random order, we cannot exclude the possibility of an adaptation process taking place. The higher 

stimulus energy of faster rhythms could result in neuronal adaptation and in an overall lower reaction 

strength. Previous studies studying adaptation processes in the auditory brainstem by manipulating click 

rates in ABR recordings found a decrease of the peak amplitude towards higher presentation rates in 

cats, gerbils, mice, chicken, humans, and even in echolocating bottle-nosed and common dolphins 

(Burkard et al., 1994; Burkard & Sims, 2002; Burkard et al., 1997; Burkard et al., 2017; Burkard et al., 

1996a; Burkard et al., 1996b; Burkard & Voigt, 1989; Ridgway et al., 1981). Adaptation is assumed to 

lead to an almost linear decline in response strength towards higher presentation rates (Wiegrebe & 

Schmidt, 1996), as it was observed in the bottle-nosed dolphin (Burkard et al., 2017). However, the 

decline we observed in the present study was not very linear in many species. Results look linear 

between presentation rates of 40 Hz and 100 Hz, which is at least in parts due to the coarse resolution 

of measurement points. Between stimulus presentation rates of 6 Hz and 30 Hz – where we measured 

with a higher resolution of presentation rates – much more variability can be seen, and the curves could 

not well be described as linearly declining (Figure 20A). This gets even more apparent when looking at 

individual results (i.e., Figure 21C and Supplements, Figures 37 - 48). Furthermore, even though our 

results show an increase in ABR strength in response to lower stimulus rates, the reaction strength varies 

strongly between the measured species. While for example the decrease in response strength between 6 

Hz and 100 Hz in L. aurita lies at 256.5 µV it only lies at 22.8 µV in P. parnellii (Figure 20C, 

Supplements, Table 13). Adaptation might influence the results, but we cannot determine to which 

extent. 

Aside from a general decline of ABR strength with increasing stimulus rate in all species, we detected 

differences between individuals which might be caused by the differences in hearing capacity between 

the individual animals (i.e., different hearing capacities due to age). This potential sampling bias could 

have affected results especially for species were only few individuals were tested (i.e., L. aurita with 

three tested individuals). Observed differences between individuals might have been caused by slight 

differences in electrode positioning, age of the individuals, or the amount of mastication muscles. The 

more muscles, the farther away the electrodes could be placed from the brainstem, thus leading to a 
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smaller received signal (Linnenschmidt & Wiegrebe, 2019). Furthermore, differences between species 

could be caused by a general difference in anatomy and mastication muscles, due to differences in diet 

and feeding style (Herrel et al., 2008; Santana, 2018; Santana et al., 2010). 

An important aspect that is being disregarded in this setup is attention. As animals were anesthetized for 

the ABR measurements, attention driven reactions were suppressed. How attention would affect the 

perception of different rhythms is unclear and could only be addressed with subsequent behavioural 

tests. The results of this study can help to set up such behavioural tests in a more informed way.  

The results of this study are of further importance for general stimulus selection and presentation in 

ABR experiments. Stimulus presentation rate has been broadly neglected in the optimization of ABR 

recordings. Our findings demonstrate that stimulus presentation rate plays a critical role in ABR 

experiments and needs to be considered during experimental design. Furthermore, it is important to 

consider the characteristics of the presented stimuli. ABR strength in response to natural stimuli was 

heightened in comparison to artificial stimuli. Due to the associated stimulus complexity, natural stimuli 

are rarely used in ABR experiments. However, the use of natural stimuli is gaining more importance in 

recent years (Lahti & Foster, 2015; Talebi & Baker, 2012). Our findings show increased reaction 

strength to natural stimuli and are in line with electrophysiological recordings in C. perspicillata 

showing that the temporal tuning in higher brain areas such as the cortex works better with natural 

stimulus sequences (Beetz et al., 2016). In this study, we decided to focus on tone pips of the species-

specific peak-frequency and selected natural stimuli. These two stimulus types were used to ensure that 

the bats would be able to perceive them well. For future studies in bats, but also in other species, it 

would be interesting to further study rhythm perception of clicks (broad band noise stimuli) (Burkard et 

al., 1994; Burkard & Sims, 2002; Burkard et al., 1997; Burkard et al., 2017; Burkard et al., 1996a; 

Burkard et al., 1996b; Burkard & Voigt, 1989) or tone pips with important frequencies from social calls 

as well as more natural stimuli.  

Taken together, we can confirm the general applicability of the adjusted ABR procedure to measure 

rhythm perception in small mammals. Using Central American bats as an example, we found differences 
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in perception strength dependent on the stimulus presentation rate for artificial and natural stimuli in 

untrained wild and captive bats.  
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1. Animals in the Wild 

Table 11: ABR Experiment 1: Overview of Animals, Sample Size and Measurement Parameters  

Family Species N 

(female/ 

male) 

Peak 

frequency 

[kHz] 

Level 

[dB 

peSPL] 

Presentation 

Rate 

Repetitions 

Emballonuridae Rhynchonycteris naso 6 

(2/4) 

100 90 6-100 256 

Emballonuridae Saccopteryx bilineata 9 

(4/5) 

46 90 6-100 256 

Emballonuridae Saccopteryx leptura 4 

(2/2) 

53*(1x) 
/55(3x) 

90 6-100 256 

Molossidae Molossus molossus 6 

(4/2) 

39 90 6-100 256 

Mormoopidae Pteronotus parnellii 7 

(1/6) 

60 90 6-100 256 

Phyllostomidae Carollia perspicillata 8 

(0/8) 

90 90 6-100 256 

Phyllostomidae Desmodus rotundus 6 

(3/3) 

78 90 6-100 256 

Phyllostomidae Glossophaga soricina 6 

(3/3) 

113 90 6-100 256 

Phyllostomidae Lonchorhina aurita 3 

(2/1) 

47 90 6-100 256 

Phyllostomidae Phyllostomus hastatus 6 

(1/5) 

57 90 6-100 256 

Thyropteridae Thyroptera tricolour 9 

(5/4) 

100 90 6-100 256 

Vespertilionidae Myotis nigricans 8 

(0/8) 

55 90 6-100 256 

* Tone pip frequencies were verbally communicated for every individual, this was a case of 

miscommunication; as both frequencies fall into the best hearing range of Saccopteryx leptura, we 

decided to keep the result.  
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Table 12: Echolocation Recordings: Overview of Recording Situation for All Species 

Species Environment Location Year Sampling 

rate, 

depth 

Device Sequences 

(individuals 

if known) 

Recorded 

From 

Rhynchonycteris 

naso  

Free flying in 
foraging 
habitat 

Costa 
Rica 

Panama 

2001-
2002 

 

480kHz, 

16-bit 

USG Benedict v. 
Laar; AKG 
microphone 

8 

(4) 

KJ (Jung, 

Kalko, & 

Helversen, 

2007) 

Saccopteryx 

bilineata 

Free flying 
after being 

released 

Costa 
Rica 

2010 500 kHz, 

16-bit 

Petterson 
D1000X 

30 

(30) 

MK 

Saccopteryx 

leptura 

Free flying in 
foraging 
habitat 

Peru 

Panama 

2012 

2016 

250 kHz, 

16-bit 
depth 

Avisoft USG 
116Hm, CM-16 

microphone 

15 

(12) 

MK 

Molossus 

molossus 

Free flying in 
foraging 
habitat 

Peru 

Panama 

2012 

2016 

250 kHz, 

16-bit 
depth 

Avisoft USG 
116Hm, CM-16 

microphone 

15 

(15) 

MK 

Pteronotus 

parnellii 

Free flying in 
foraging 
habitat 

Panama 2018 500 kHz Avisoft USG 
116Hm, CM-16 

microphone 

15 

(4) 

GG 

Carollia 

perspicillata 

Flight room 

(3.7m * 
2.5m) 

Panama 2015 300 kHz Avisoft USG 
416H, CM-16 
microphone 

10 

(4) 

GG 

Desmodus 

rotundus 

Flight room 

(3.7m * 
2.5m) 

Panama 2015 300 kHz Avisoft USG 
416H, CM-16 
microphone 

13 

(7) 

GG 

Glossophaga 

soricina 

Flight room 

(3.7m * 
2.5m) 

Panama 2015 300 kHz Avisoft USG 
416H, CM-16 
microphone 

8 

(3) 

GG 

Lonchorhina 

aurita 

Flight room 

(5.0m*5.0m) 

Panama 

 

 

2019 300 kHz 

 

 

Avisoft USG 
416H, 

CM-16 
microphone 

17 

(9) 

GG 

Phyllostomus 

hastatus 

Flight room 

(3.7m * 
2.5m) 

Panama 2015 300 kHz Avisoft USG 
416H, CM-16 
microphone 

14 

(4) 

GG 

Thyroptera 

tricolour 

Flight room 

(1.4m * 1.0m 
* 0.8 m) 

Panama 2010 

 

666.6 
kHz, 16-

bit; 

Avisoft USG 
116Hm, CM-16 

microphone 

19 

(6) 

IG 
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Myotis nigricans Free flying in 
foraging 
habitat 

Peru 

Panama 

2012 

2019 

250 kHz, 

16-bit 
depth 

Avisoft USG 
116Hm, CM-16 

microphone 

10 

(7) 

MK 

GG: Gloria Gessinger, IG: Inga Geipel; KJ: Kirsten Jung; MK: Mirjam Knörnschild 

2. Natural Stimuli 

Figure 24: Short and Long Natural Stimuli. 

(A) Oscillograms of an exemplary 2 ms long natural stimulus followed by an exemplary 8 ms long 

natural stimulus as used in Experiment 2. (B) Corresponding spectrograms of the natural stimului 

in (A): an exemplary 2 ms long natural stimulus followed by an exemplary 8 ms long natural 

stimulus as used in Experiment 2.  
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3. Detailed results of Experiment 1 

Table 13: MMS Integrated Response Strength for 6, 40 and 100 Hz for All Species. 

Species 6 Hz [µV] 40 Hz [µV] 100 Hz [µV] 
Rhynchonycteris naso 93.37 112.94 63.05 
Saccopteryx bilineata 236.26 237.22 208.50 
Saccopteryx leptura 278.91 277.60 247.96 
Molossus molossus 175.37 144.70 120.28 
Pteronotus parnellii 72.31 69.04 49.43 
Carollia perspicillata 159.80 137.28 123.24 
Desmodus rotundus 164.70 157.64 139.70 
Glossophaga soricina 179.37 154.57 145.17 
Lonchorhina aurita 668.10 574.45 429.61 
Phyllostomus hastatus 95.41 82.92 71.28 
Thyroptera tricolour 159.96 113.79 93.09 
Myotis nigricans 256.60 187.16 135.50 
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4. Detailed results of rhythm analysis  

Table 14: Echolocation Recordings, Rhythm Analysis. 

Average IOI duration and corresponding IOI beats for all species in analysed search flight call 

sequences 

Species 

Mean IOI [ms] ± 

SD 

Coefficient of variation 

(calculated per sequence, 

averaged for all sequences) 

IOI beat 

frequency 

range [Hz] 

Rhynchonycteris naso 49.15 ± 11.3 0.17 15.1 – 24.2 

Saccopteryx bilineata 119.1 ± 51.0 0.29 3.7 – 13 

Saccopteryx leptura 55.8 ± 25.3 0.35 13.4 – 32.4 

Molossus molossus 121.5 ± 43.3 0.26 5.2 – 12.5 

Pteronotus parnellii 55.2 ± 29.8 0.40 10.4 – 27 

Carollia perspicillata 62.5 ± 88.2 0.79 9.8 – 43.2 

Desmodus rotundus 83.0 ± 68.0 0.63 7.4 – 30.5 

Glossophaga soricina 31.6 ± 18.0 0.56 21.9 – 38.9 

Lonchorhina aurita 85.7 ± 86 0.51 4.8 – 19.0 

Phyllostomus hastatus 61.7 ± 45.7 0.54 10.4 – 22.5 

Thyroptera tricolour 9.3 ± 4.9 0.16 86 – 144.4 

Myotis nigricans 82.5 ± 25.5 0.26 10.2 – 18.2 
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5. Raw ABR Slopes of all analysed species – Experiment 1 

 Figure Explanation: 

Figure 25-36: Raw ABR Slopes of All Analysed Species – Experiment 1. 

(A) ABR trace at a stimulus presentation rate of 6 Hz, shown is the mean of all individuals of that 

species (white line) and the minimum and maximum of all individuals (blue area). 

(B) ABR trace at a stimulus presentation rate of 100 Hz, shown is the mean of all individuals of 

that species (white line) and the minimum and maximum of all individuals (blue area). 
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a. Figure 25: Rhynchonycteris naso  

 

 

 

b. Figure 26: Saccopteryx bilineata 

 

 

 

c. Figure 27: Saccopteryx leptura 
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d. Figure 28: Molossus molossus  

 

 

e. Figure 29: Pteronotus parnellii 

 

 

f. Figure 30: Carollia perspicillata  
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g. Figure 31: Desmodus rotundus 

 

 

 

h. Figure 32: Glossophaga soricina 

 

 

 

i. Figure 33: Lonchorhina aurita 
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j. Figure 34: Phyllostomus hastatus 

 

 

 

k. Figure 35: Thyroptera tricolour 

 

 

 

l. Figure 36: Myotis nigricans 
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6. Detailed Results of all analysed species – Experiment 1 

Figure Explanation: 

Figure 37-48: Detailed Results of All Analysed Species – Experiment 1 

(A) Integrated ABR response in µV per stimulus presentation rate. Every line represents one individual. Differences between individuals are visible in all 

species but are more pronounced in some. The general trend of a decrease in response strength between 6 Hz and 100 Hz is true for most individuals. 

(B) The averaged integrated ABR response per species for all tested stimulus presentation rates. Shown is the average (black point) as well as the maximum 

and minimum as a blue line.  

(C) The corresponding production rhythms of echolocation calls of the respective species. Shown is the distribution of production rhythms in Hz as 

calculated with the IOI approach.  
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a. Figure 37: Rhynchonycteris naso  
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b. Figure 38: Saccopteryx bilineata 
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c. Figure 39: Saccopteryx leptura 
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d. Figure 40: Molossus molossus 
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e. Figure 41: Pteronotus parnellii 
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f.  Figure 42: Carollia perspicillata 
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g.  Figure 43: Desmodus rotundus 
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h. Figure 44: Glossophaga soricina 
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i. Figure 45: Lonchorhina aurita 
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j. Figure 46: Phyllostomus hastatus 
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k. Figure 47: Thyroptera tricolour 

 

 



Chapter III 

149 

 

l. Figure 48: Myotis nigricans 
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 Discussion 

Rhynchonycteris naso 

The very inconclusive results of R. naso could well be connected to an inappropriate decision regarding 

the frequency artificial stimuli were presented in, respectively the chosen sound pressure level. We chose 

a center frequency of 100 kHz (Jung, Kalko, & Helversen, 2007), which was presented at 90 dB SPL. 

Audiograms of that species show that this sound pressure might be too low for some individuals of R. 

naso to be able to perceive the stimuli at all, as the hearing threshold at a frequency of 100 kHz lies 

around 86 dB SPL on average. These are extrapolated values as pitch perception was measured for 87 

kHz and 120 kHz (Lattenkamp et al., 2021). This could, of course, have a strong influence on the results, 

even though all measurements were significantly different from noise.  

Thyroptera tricolour 

A similar scenario could be assumed for T. tricolour. With peak frequencies of 140 kHz, this species 

calls at a higher pitch than the other studied species. The loudspeaker in our setup could only play 

frequencies of up to 120 kHz, which is why T. tricolour was presented with artificial stimuli at 100 kHz 

instead of their peak echolocation frequency of 140 kHz. In contrast to the other species T. tricolour was 

therefore not presented with stimuli in their best hearing range, and even though they should be able to 

hear the presented stimuli (Lattenkamp et al., 2021) we cannot exclude that this influenced the results.  
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Abstract 

The temporal structure of animals’ acoustic signals can inform about the context, urgency, species, 

individual identity, or even geographical origin. We present three independent ideas to further expand 

the applicability of rhythm analysis. A description of a rhythm or beat is only as good as the knowledge 

about its’ goodness-of-fit, meaning how well the rhythms describe a sequence. Existing goodness-of-fit 

values are not comparable between methods of rhythm analysis and not easily comparable between 

datasets. Furthermore, they are strongly correlated to certain parameters of the described sequence, e.g., 

the number of elements in the sequence. Here, we introduce a new, universal goodness-of-fit value, 

comparable across methods and datasets, which illustrates how well a certain beat frequency in Hz 

describes the temporal structure of a sequence of elements. This is the first goodness-of-fit value capable 

of giving the information per element, instead of only per sequence. This value can be used for the 

following methods: a generate-and-test approach, Fourier analysis, and the simple calculation of call 

rates or analysis of Inter-Onset-Intervals. We then describe two additional approaches to adapt already 

existing methods for analysing the rhythm of acoustic sequences of animals. The new additions, a 

slightly modified way to use the already established Fourier analysis and concrete examples on how to 

use the visualization with so-called recurrence plots, enable the analysis of more variable data, while 

also giving more details then previously. As most communication signals are quite variable and the 

structures/levels that are important for their perception are often not known, it is crucial to have methods 

that can analyse all possible structures and levels.  

Introduction 

In recent years, the temporal structure or rhythm of animal’s acoustic signals has received increasing 

attention. Much emphasis lays on the development of methods to assess and quantify underlying 

temporal patterns (Burchardt & Knörnschild, 2020; Burchardt et al., 2019; Norton & Scharff, 2016; 

Ravignani & Norton, 2017; Saar & Mitra, 2008). The rhythm of an isochronous element sequence is 

termed a ‘beat frequency’ and is given in Hz. So far, three methods have been proposed for extracting 

exact beat frequencies in order to describe an isochronous element sequence; 1) Fourier analysis, which 

decomposes a signal into its sinus components (Burchardt & Knörnschild, 2020; Saar & Mitra, 2008), 
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2) Generate-And-Test approach (GAT), where a series of acoustic signals are overlaid with an artificial 

beat to test which artificial beat frequencies resembles the series best (Norton & Scharff, 2016; 

Ravignani & Norton, 2017), and 3) Inter-Onset-Intervals (IOI), which allows the calculation of beat 

frequencies by averaging IOIs and transforming this rate into a frequency (Burchardt & Knörnschild, 

2020).  

Until now, studies on temporal structure or rhythm of animal’s acoustic signals have often focused on 

quite simple sequences with an underlying isochronous structure (e.g., only one element type, visually 

uniform temporal structures, or short sequences (Burchardt & Knörnschild, 2020; Ravignani, 2018)). 

Such a structure resembles a metronome sound, with constant beat and gap lengths. The above-

mentioned methods, GAT and Fourier analysis, together with the commonly used calculation of rates or 

frequency-transformed rates (in Hz as in beats per second) describe these isochronous sequences well. 

However, for sequences containing various element types, sub-units and a strong variability between 

element duration and/or gap durations, such as skylark song (Briefer, Osiejuk, et al., 2010), nightingale 

song (Hultsch & Todt, 1981), or whale song (Payne & McVay, 1971), the interpretation of results of 

exact beat frequency calculations as described above becomes more difficult. Arising problems include 

that all methods will always give a “best-fitting” beat frequency. In case an isochronous beat is not 

suitable to describe the sequence, this beat frequency can therefore be very misleading. Also, 

interpretation for most analyses to determine isochrony are very clear for small values (i.e., nPVI or 

Coefficient of variation analysis, where low values are explicitly indicating low variability (Burchardt 

& Knörnschild, 2020; Ravignani & Norton, 2017)) but higher values are not as easily interpreted, as 

they could indicate a different rhythmic pattern than isochrony or indeed a random succession of 

elements. Analyses of the rhythm on such vocalizations require the refinement of established methods 

or the development of new ones, in order to allow a description of sequences in a meaningful and 

comparable way between species. Current problems related to existing methods are two-fold. The first 

issue, which is independent of the complexity of the structure, is the limitations with which so-called 

goodness-of-fit values quantifying how well a certain beat frequency describes an element sequence can 

be compared between species as well as between methods. These values exist for all three above-

mentioned methods to extract exact, best-fitting beats (Burchardt & Knörnschild, 2020), but they inflict 
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three problems; a) they show complex correlations to, among other parameters, the number of elements 

in a sequence, b) values differ depending on the method used, which precludes any comparison between 

studies using different methods, and c) only one value can be obtained for the whole sequence that is 

being analysed, without any information at the element level. The second issue that becomes important 

regarding the analysis of more complex sequences is that, so far, existing methods provide only one 

best-fitting beat frequency when, in fact, the sequence might be best described by more than one beat 

frequency. Directly related, it might be interesting to look for sub-patterns and analyse different parts of 

a sequence separately, to be able to depict rhythm changes within a complex sequence. The next 

challenge thus becomes to know where or what these sub-patterns might be. 

In this study, we propose three new ideas on how to extend the existing analyses options, as well as how 

to bypass certain limitations. First, we introduce a new universal goodness-of-fit value. Second, we 

suggest that reporting the ten most prominent beat frequencies in a sequence instead of only the best-

fitting beat frequency in Fourier analysis, which implies the assumption that one beat frequency is 

enough, is essential to describe a complex temporal structure. Third, we encourage the use of recurrence 

plots to identify the sub-structures and sub-units that could be of interest for further analysis. 

Introducing improvements to the existing methods 

We performed a rhythm analysis on a dataset of flight songs of the skylark, Alauda arvensis (for details 

on recordings see (Briefer et al., 2008; Briefer, Rybak, et al., 2010)). The song produced by males of 

this species during the breeding season while in flight is very complex: each individual can combine 

more than 300 different syllables in its song, giving rise to a lot of variation (Aubin, 1982; Briefer et al., 

2008; Briefer et al., 2008). The use of existing methods on such song, namely reporting only the one 

best-fitting beat frequency per sequence as calculated in Fourier analysis and the resulting goodness-of-

fit values, proved to be insufficient for describing the rhythmic structure of this system. We therefore 

developed a goodness-of-fit value and revaluated how to best report results of the Fourier analysis, in 

order to further facilitate comparability between methods and species, for example, through enabling 

the description of both simple and more complex patterns with the same methods, but also by making 

the various existing methods themselves more comparable. We introduce a newly established universal 
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goodness-of-fit value, and we discuss additions to existing methods (Fourier analysis and recurrence 

plots), with the overall purpose to further advance rhythm analysis, its applicability, and comparability.  

Our universal goodness-of-fit value is tested both on the skylark dataset and five already published 

datasets, where beat frequencies [in Hz] were calculated (Burchardt & Knörnschild, 2020; Burchardt et 

al., 2019); acoustic signals of the tropical American bat Saccopteryx bilineata: 500 isolation calls 

(Knörnschild, Nagy, et al., 2012), 142 territorial songs (Behr et al., 2006) and 33 echolocation call 

sequences (Knörnschild, Jung, et al., 2012); as well as 49 isolation calls of the tropical American bat 

Carollia perspicillata (Knörnschild et al., 2013) and 60 echolocation sequences of Physeter 

macrocephalus (Bøttcher et al., 2018; Tønnesen et al., 2018). For the revaluation of Fourier analysis 

results and recurrence plots, we focus on the dataset of skylark flight songs. 

Universal Goodness-of-Fit Value 

We propose a new, universal goodness-of-fit value that can be applied to any possible description of a 

temporal structure relying on frequencies; we term it ugof for “universal goodness-of-fit value”. It is a 

value that is calculated for every element in a sequence and can then be summarized for a whole 

sequence or any other desired grouping (e.g., individuum, group, sequence type, etc.). A theoretical beat 

describes a sequence well when there are only small deviations between the original elements and the 

theoretically beats of the best-fitting beat frequency.  

One element always lies between two theoretical beats. Therefore, the maximum deviation possible 

equals to half of the theoretical beat length since one will always search for the deviation to the next 

closest beat (Figure 49A). We can therefore describe a particular deviation as the ratio between the 

actual deviation to the next theoretical beat and the maximum deviation for the calculated best-fitting 

beat (Equation 1). 

𝑢𝑔𝑜𝑓 = |∆|∆𝒎𝒂𝒙 

𝑢𝑔𝑜𝑓: 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓𝑓𝑖𝑡 𝑣𝑎𝑙𝑢𝑒          |∆|: 𝑎𝑏𝑠𝑜𝑙𝑢𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑏𝑒𝑎𝑡 ∆𝑚𝑎𝑥: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (ℎ𝑎𝑙𝑓 𝑎 𝑏𝑒𝑎𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 
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Both parameters, the maximum possible deviation to the next beat (Δmax) and the actual deviation (|Δ|), 

need to change in the same way depending on the corresponding frequency, for the method to be 

universally applicable. to be useful. This is depicted in Figure 49B, showing the theoretical maximum 

possible deviations (Δmax) for beats of beat frequencies of up to 100 Hz (in black) and the actual 

deviations (|Δ|) we measured for a total of 804 sequences and of two beat frequencies each (one as 

calculated with Fourier analysis, the second as calculated with the IOI approach), resulting in 1608 

datapoints (in colour). The actual deviations are indeed much lower than the maximum possible 

deviations. By dividing the actual deviation (|Δ|) by the maximum possible deviation (Δmax) as shown in 

the equation, we get the ugof as a ratio and can be easily transformed into a percentage (by multiplying 

with 100) if required. The smaller ugof is, the closer the original elements of a sequence are to the 

theoretical beats. The resulting value (ugof) is independent of the number of elements in the sequence, 

the sampling length, or the number of silent beats in a sequence (Figure 49A). It is also independent of 

the best-fitting beat frequency it is describing (Figure 49C).  

We calculated the ugof of six datasets, it was calculated for two beat frequencies per sequence: the best-

fitting beat frequency as calculated with Fourier analysis and the best-fitting beat frequency as calculated 

with the IOI approach (Figure 49C and D, as calculated with Fourier analysis and IOI analysis in 

previous studies) (Burchardt & Knörnschild, 2020; Burchardt et al., 2019). To be able to evaluate and 

interpret a single ugof we modelled the distribution of ugofs for a dataset. To this aim, we calculated 

ugof from 0.1 Hz to 100 Hz in 0.1 Hz increments for all element sequences in the dataset. To illustrate 

what we mean by this, let’s assume we have a sequence A. For this sequence A, for which we know 

when each element in the sequence starts, we calculate ugof for 1000 beat frequencies (0.1 Hz to 100 

Hz in 0.1 Hz increments), by calculating the actual deviations (|Δ|) as well as the maximum possible 

deviations (Δmax) for each frequency. Figure 49E shows the results of these calculations for a dataset of 

49 isolation calls of the bat Carollia perspicillata. Shown are therefore 1000 ugof values for 49 

sequences, giving us a distribution of 49000 values. We used the mean and standard deviation of this 

gaussian distribution to evaluate any single best-fitting beat frequency as calculated with the IOI 

approach. Then we can calculate z-scores for every ugof by subtracting the mean of the distribution of 

ugof values for the given dataset (i.e., isolation calls of C. perspicillata) from the ugof in question (i.e., 
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the ugof as calculated for the best-fitting beat frequency with the IOI approach) and dividing the 

difference by the standard deviation of the distribution. A calculated z-score can than easily be matched 

to the corresponding p-value using z-score tables (i.e., (Fisher & Yates, 1964; Rohatgi & Saleh, 2015)). 

This allows us to investigate if a calculated beat frequency fits significantly better with the element 

sequence than what could be expected depending on the calculated distribution of ugof for a specific 

dataset. We only considered negative z-scores as possibly significant, as a negative z score indicates that 

the corresponding value is below the distributions mean (Figure 49E). A positive z-score would on the 

other hand indicate, that the corresponding ugof is above the distribution mean, and could also be 

significant, but would then fit significantly worse than expected by chance.  

This approach of using z-scores, and therefore the possibility to calculate p-values for different 

production rhythms, is mainly useful for comparability reasons, in order to assess which animal or 

individual can better keep a stable (theoretical) beat. We do not want to propose that a sequence would 

only be well described by an isochronous beat that results in a significant ugof. To illustrate the methods, 

we calculated z-scores for beat frequencies in the dataset at hand based on the IOI approach, as these 

resulted in on average smaller ugof compared to beat frequencies calculated with Fourier analysis 

(Figure 49D). The values were calculated for beat frequencies with a resolution of one decimal point 

(i.e., 12.1 Hz or 28.8 Hz). This analysis revealed that ugof can change rapidly within small increments. 

We thus suggest that it is reasonable to have a look at ugof within 1 or 2 Hz of the detected best-fitting 

beat frequency to be aware of the possible sensitivity of the method. We obtained ugof in a range of ± 1 

Hz around the best-fitting beat frequency based on the IOI approach, calculated the minimum and 

maximum ugof in that range, and transformed them into z-scores. The resulting z-scores for the best-

fitting beat frequencies are shown as well as the z-scores for the minimum and maximum ugof within ± 

1 Hz of the best-fitting beat frequency (Figure 49F). We found that the best-fitting beat frequency, 

especially when significant, was also the one with the best (i.e., lowest) z-score/ best ugof value within 

± 1 Hz (indicated by the vertical lines in Fig. 49F: for significant results, the lines are almost exclusively 

above the datapoint showing the z-score for the corresponding best-fitting beat frequency). This might 

illustrate differences in beat production abilities between individuals, as some individuals might produce 

sounds in a more consistent/rhythmic way than others, which, in turn, could constitute a fitness indicator. 
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In addition, differences between significant and not significant production rhythms could be related to 

different situations, i.e., different arousal/motivation or urgency levels.  

 

 

Figure 49: The ugof Value. 

(A) Theoretical element series (solid black elements) with an overlaid beat (dashed lines) of a 

certain beat frequency in Hertz. The maximum possible deviation for any element is half the beat 

duration (Δmax). It is set in relation to the absolute deviation of an element to its closest beat (Δ). 
Other important concepts visualized are: Inter-Onset-Intervals and silent beats. (B) The 

theoretical maximum deviation per beat (in black) and actual deviations (as mean per sequence) 

measured from six datasets and for two calculated beat frequencies each. Both deviations change 

in the same way depending on the corresponding frequency and actual deviations are much 

smaller than maximum possible deviations. (C) ugof calculated for best-fitting beat frequencies 
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based on Fourier analysis and IOI analysis for six datasets. No correlation can be seen between 

ugof and beat frequency. (D) Tabular comparison of mean ugof per dataset for both beat 

calculation methods. Fourier analysis yields better results (lower ugof) only for the complex 

skylark song. (E) Distribution of ugof calculated for beat frequencies from 0.1 to 100 in 0.1 Hz 

increments for all sequences of C. perspicillata isolation calls, to be able to calculate z-scores. (F) 

Z-scores as calculated based on the modelled ugof for beat frequencies of 49 isolation calls of C. 
perspicillata using IOI analysis. Significant values are in yellow, and non-significant values in 

orange. The minimum and maximum ugof of beat frequencies ± 1 Hz around the best-fitting beat 

frequency are shown as vertical lines. The differences between significant and not significant beat 

frequencies could correlate to different individuals, and potentially be connected to the relevance 

of beat production as a fitness indicator.  Abbreviations: IOI: beat frequencies calculated 

with IOI analysis, FFT: beat frequencies calculated with a fast Fourier transformation (Fourier 

Analysis), FS: flight song, IC: Isolation calls, EC: echolocation calls, TS: territorial songs. 

 

Additions to existing methods of rhythm analysis 

Ten highest Peaks of Fourier Analysis 

Especially in more complex signals, such as bird song comprised of various motifs or phrases (Aubin, 

1982; Hultsch & Todt, 1981; Kroodsma, 2005), it seems inappropriate to assume that one beat frequency 

could be enough to describe a sequence. The IOI approach seems particularly unsuitable here, as it 

simplifies the structure (Burchardt & Knörnschild, 2020). The Fourier analysis, on the other hand, gives 

a very detailed picture of all beat frequencies that make up the sequence. It decomposes any signal into 

its sinus components, which are nothing else but frequencies. A sequence of an animal’s acoustic signals 

is transformed into a binary sequence, where an element onset is encoded as ‘1’ and everything else 

encoded as ‘0’. A fast Fourier transformation is then conducted on this binary sequence (Ravignani & 

Norton, 2017; Saar & Mitra, 2008). In a recent publication, we settled to describe a sequence by the beat 

frequency that contributed the most to the description of a sequence, i.e., the one beat frequency that 

gave the highest amplitude in the Fourier analysis’s frequency domain, and only reported this most 

prominent frequency (Burchardt & Knörnschild, 2020). We now propose as an alternative, to report the 

ten most prominent frequencies. This would allow the detection of frequency “clusters” (red circles in 

Figure 50A). None of the frequencies in a cluster might have the highest peak. However, when combined 

(summed up), they surely describe a series better than a single, slightly higher peak. Therefore, it could 

also be an option to report a summary, average, or range of a particular cluster to describe a particular 

sequence. This gives a much more detailed result, which can be used as basis for decisions about how 

to proceed or what to report. We suggest looking at the ten highest peaks, as it is a reasonably high 
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number to find possible clusters, without reporting beat frequencies that have only very small 

explanatory values for the sequence. Nevertheless, for certain sequences, it may be most informative to 

report only the five highest peaks or the twenty highest peaks. 

Recurrence Plots  

The recurrence plot, originally used in chaos theory (Eckmann et al., 1987; Marwan, 2008), is an easy 

way to visualize the overall temporal structure of a sequence and to find sub-units (Ravignani & Norton, 

2017). It depicts the distance between any IOI pair in the sequence that is to be analysed. Every possible 

IOI pair is compared, the Euclidean distance is measured and plotted (Burchardt & Knörnschild, 2020; 

Ravignani & Norton, 2017). Differences are colour-coded in the plots; the darker a comparison, the 

more different are the two compared IOIs. Subunits with very different temporal structures can be easily 

spotted in such a plot, namely as a “break” in the pattern (Figure 50D). When analysing new acoustic 

signals, where knowledge about functional units such as motifs is scarce, such temporal breaks could 

easily show where a new motif or phrase starts. Furthermore, different sub-units might have different 

beat frequencies that convey meaning but that cannot be resolved with an overall best-fitting beat 

frequency. As we show in Figure 50B, identified sub-units can then be analysed to extract their specific 

best-fitting beat frequency, in order to see whether they fit the overall temporal structure or not.  

Results of an exemplary analysis of skylark flight song 

To illustrate the proposed additions, we analysed an excerpt from the complex flight song of a skylark. 

The specific sequence has a duration of 51.3 seconds and contains 362 elements (for details on recording 

see (Briefer et al., 2008; Briefer, Rybak, et al., 2010). We calculated the best-fitting beat frequency of 

the whole sequence and of five exemplary sub-units (there are more in the entire sequence), which we 

identified via recurrence plots (Figure 50C-F). As can be seen in Figure 50A, there is a strong cluster of 

beat frequencies with high descriptive value for this sequence. To calculate the universal goodness-of-

fit, we used not only the single best-fitting beat frequency (indicated as “Best” in 50B), but also the beat 

frequency of the cluster mean (indicated as “Cluster” in 50B). The recurrence plot zoom 1.1 visualizes 

the subsequent switching between two element types followed by a series of very similar IOIs, which 

correspond to a single element type. In the recurrence plot zoom 1.2, on the other hand, we see more 
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variability, looking at both the recurrence plot and the spectrogram in 50E; there we can see various 

element types, then a “break” (black line) in the recurrence plot indicating a high difference between the 

two adjacent IOIs, followed again by a very stereotyped sub-unit (zoom 1.2.2). The calculated ugofs 

showed some interesting input. 1) The ugof for the best-fitting beat frequency of the whole sequence 

was indeed higher than the one for the cluster-beat frequency, but 2) the cluster-beat frequency described 

some of the sub-units well, sometimes even better than the best-fitting beat frequency calculated for the 

sub-units themselves. This was true especially for the four small sub-units (zoom 1.1.1 & 1.1.2 and 

zoom 1.2.1 & 1.2.2). Only one out of four sequences here showed a better (i.e., smaller) ugof for the 

best-fitting beat frequency (zoom 1.2.2) compared to the ugof calculated with the cluster beat frequency. 

However, here, both the cluster-beat frequency and the best-fitting beat frequency were very similar 

and, due to a lower frequency resolution in the Fourier analysis, the better fitting cluster-beat frequency 

could mathematically not be found (see (Burchardt & Knörnschild, 2020) for an explanation on 

frequency resolution in Fourier analysis).  

Using the interpretation established in section 2.1, these ugofs range from fitting extremely well 

(zoom_1-2-2, “Best” or zoom_1-1-2, “Cluster”) to fitting poorly (zoom_1-2-1, “Best” or zoom_1-2-2, 

“Cluster”). For the poor fits, the issue of a low frequency resolution needs to be kept in mind though, 

further proving that beat frequencies calculated by Fourier analysis with a low frequency resolution need 

to be handled and interpreted with care (Burchardt & Knörnschild, 2020).  
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Figure 50: Exemplary Results of Rhythm Analysis of an Excerpt from Complex Flight Song of A. 

arvensis. 

(A) Amplitude Plot of Fourier analysis. Beat frequency is depicted on the x-axis and the amplitude 

of the ten highest peaks – as calculated by a Fast Fourier Transformation – on the y-axis. The 

highest peak is always the zero-bin-component at 0 Hz; it is the average of the signal in the time 

domain, where elements were encoded in a binary sequence. One very strong cluster can be 

identified; a summary of this cluster might depict the temporal structure better than the detected 

single highest peak. (B) The table reports relevant parameters of the rhythm analysis for the five 

units depicted in the figure. (C) Recurrence plots of the complete example sequence: all IOI 

pairings in the sequence are compared to each other, forming a symmetric comparison of every 

IOI to every other IOI in the sequence. The Euclidean distance between any IOI pairing is colour 

coded. More different pairs of IOIs are characterized by longer distances and darker colours. (D) 

Zoom into a section of 100 elements (11.2 seconds) of the song sequence. A very consistent series 

of IOIs can be observed at the beginning, followed by some slight changes, and in the end again, a 

very consistent pattern. (E) Spectrogram of the zoom 1.2 section, which can further be divided 

into a variable pattern (zoom 1.2.1) and a very consistent pattern (zoom 1.2.2). (F) Spectrogram 

of the zoom 1.1 section, which can further be divided into two consistent patterns (zoom 1.1.1 and 

1.1.2).  

 

Discussion 

Analysing the temporal structure of animals’ acoustic signal is relevant for addressing many research 

questions, such as species discrimination, physiological correlates like couplings to wingbeat or 

respiration, mating preferences or arousal coding (Burchardt et al., 2019; David et al., 2003; Manser, 

2001; McRae, 2020; Norton & Scharff, 2016). Other questions include duetting or the development of 

temporal structures during ontogeny (Pika et al., 2018; Sasahara et al., 2015; Yoshida & Okanoya, 
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2005). Many analyses conducted by bioacousticians include temporal parameters. We already indicated 

in an earlier paper (Burchardt & Knörnschild, 2020) that information, such as small scale inter-

individual differences, might be lost by focussing only on the commonly used ‘element rates’, mostly 

called ‘syllable rates’ (Douglas et al., 2005; Manser, 2001; McRae, 2020). Using element rates or 

calculating beat frequencies per sequence by transforming the element rate into a frequency, could be 

described as a “spyglass” approach, mostly useful for studying highly temporally consistent 

communication signals (i.e., echolocation of bats or whales). It is useful when investigating a species’ 

rhythm or other analyses that only require this level of detail. For more complex communication signals, 

or in cases when fine scale intra-individual differences or fine scale differences between contexts might 

play a role, the “magnifying glass” approach of the Fourier analysis should be used. Our newly 

established ugof clearly supports this claim, as our analyses revealed better results (indicated by lower 

ugofs) when using the Fourier analysis compared to the IOI approach only for the very complex skylark 

flight song.  

Our suggested additions to already established methods, make these aims, of not losing relevant and 

interesting information during the analysis of temporal parameters, easier to reach. These new methods 

allow a comparison of rhythmicality both between studies and species, which was not easy beforehand. 

Analysing recurrence plots to make an educated decision on which sub-patterns to analyse can also be 

of interest when facing completely new acoustic signals. Clear temporal breaks, as can be seen in the 

recurrence plots shown above (Figure 50E), could easily indicate where a new motif or phrase starts. 

Distinguishing contexts or analysing syntax could be backed up by such analyses of the underlying 

temporal structure. An example for this could be research on dialects. Microgeographic differences 

between male skylarks’ flight song is mostly based on differences in the syllable and phrase repertoire 

composition (Briefer et al., 2008). Such phrases could show a clearly distinguishable temporal 

patterning, shared phrases could then be automatically detected using this knowledge.  

Our newly established universal goodness-of-fit value enables every researcher, whether reading such a 

study or conducting it, to grasp the rhythmicity of an individual, a single sequence, or a species, by 

looking at one number alone, which is accompanied by a p-value. A number between 0 and 1, with 

smaller numbers indicating a better fit, is easy to interpret. No understanding of correlations within the 
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data is needed. Furthermore, which of the methods used to describe a sequence (i.e., Fourier analysis or 

IOI approach) captures most of the underlying temporal structure, or whether a sub-unit has a beat 

frequency different from the beat frequency of the whole sequence, can be easily determined. It is to be 

noted, that a value of 1 is not expected, as this would mean that all elements of the sequence lie exactly 

between two beats, which would indicate that they all perfectly fit the theoretical beat, but phase 

displaced. Furthermore, it is the first proposed goodness-of-fit value that is calculated per element and 

not per sequence, therefore enabling bioacousticians to answer even more interesting questions about 

sub-level structures. Such questions could be about which elements “drive” a beat frequency or break 

it, which could then shed light on the accentuation of elements.  

On another note, these methods are not only useful when analysing acoustic signals. They can be used 

on the temporal structure of anything, may it be a certain behaviour or physiological processes such as 

wingbeat, heartbeat, or respiration. All processes of interest can easily be transformed in a way to enable 

the analysis; for example, instead of interpreting the result in Hz, which is one beat per second, we could 

interpret it as beats/occurrences per hour, day, or more abstract processes such as a reproductive cycle. 

We can subsequently calculate our GAT, IOI or Fourier analysis on that particular time scale and 

retransform the results back to the original time scale. Rhythm analysis methods that have been 

developed for acoustic analysis could thus allow an even wider range of researchers in answering 

questions such as sleep cycle analysis, circadian rhythms, or various other research areas, possibly even 

in economics or engineering where temporal structures of processes are of utmost importance as well.   
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General Discussion 
Rhythms can be found anywhere in the world: our hearts have rhythms, circadian rhythms are all around, 

music across all cultures shares certain components such as rhythm, and the rhythms of acoustic 

communication get more and more attention. The rhythms of animals’ acoustic communication and the 

issue of how to analyse them were under study in my thesis. I looked at rhythm production and 

perception in mammals and birds. A major part of this work was devoted to the evaluation of existing 

methods and their combination into a clear workflow. Another key finding of my thesis was the 

development of a universal goodness-of-fit value (ugof) that can evaluate how well a beat frequency (in 

Hertz as in beats per second) describes any element sequence. I also investigated how bats perceive 

different isochronous rhythms by adjusting an ABR procedure. Apart from that I reported evidence for 

a common isochronous rhythm in three vocalization types of the greater sac-winged bat Saccopteryx 

bilineata.  

In the following, I will briefly summarise the findings presented in the previous chapters before 

summarising and discussing the methods used in this work. I will discuss the limitations of the presented 

work and provide an outlook for future research, including possible applications of methods in the 

context of the literature and current discussions in the field. 

Summary of Findings 

Isochrony: a common Pattern with Need for careful Distinctions 

17 datasets from 14 different species and a total of 940 sequences were analysed in my thesis and in 

most cases, a reasonably well-fitting isochronous beat frequency was found to describe the sequence. 

Underlying isochronous patterns can often be found in animal communication, which might not be 

surprising as it is argued to be a very simple rhythmic pattern that could simply result from a motoric 

behaviour entraining to a neural oscillator (Ravignani, in press).  

In Chapter I, I found that three sequence types of the greater sac-winged bat Saccopteryx bilineata share 

a common rhythm of around 6 to 24 Hz, that can be linked to the wingbeat (around 12 Hz) frequencies 

of that particular species, even though two of the three sequence types were uttered while bats were 

perching (Burchardt et al., 2019). The isochronous beats were analysed with the GAT approach and 
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validated by comparison with random data. In Chapter II two more sequence types from two more 

species were analysed and showed an isochronous rhythmic pattern: isolation call sequences of Seba’s 

short-tailed bat Carollia perspicillata and echolocation call sequences of the sperm whale Physeter 

macrocephalus are also well described by isochronous beats (Burchardt & Knörnschild, 2020). The 

same was true for echolocation call sequences of 10 additional bat species analysed for Chapter III (see 

Table 1 for species). Even the very complex flight song of male skylarks (Alauda arvensis) could be 

described with isochronous beat frequencies. Recommendations on which methods to use for the 

analysis of such complex signals were presented in Chapter IV.  

Some key issues need to be addressed when discussing the isochrony of animals’ acoustic signals, 

though. A very important distinction we must make is the one between signal isochrony and induced 

isochrony (Honing, 2012; Honing & Ploeger, 2012; Ravignani, in press). Signal isochrony might be 

what most people think of when they talk about an element sequence having an isochronous rhythm: a 

signal that itself is isochronous. Opposed to that, we also have induced isochrony, where a sequence is 

well described by an underlying isochronous beat, but not every beat is accompanied by an element, and 

isochrony is only induced when perceived. Sequences showing signal isochrony can well be analysed 

with the simple IOI approach, while this approach might prove insufficient for sequences with induced 

isochrony. We found signal isochrony for echolocation call sequences of bats and the sperm whale and 

isolation calls of C. perspicillata (i.e., (Burchardt & Knörnschild, 2020) and Chapter III). Isolation calls 

and territorial song of S. bilineata were described well with the IOI approach, assuming signal isochrony, 

but were also well described by beat frequencies calculated with the GAT approach or Fourier analysis, 

that indicated signal isochrony in some and induced isochrony in other sequences (Burchardt et al., 

2019). Generally, while signal isochrony is characterized by a low variability between IOIs, for induced 

isochrony the variability can be much higher. Thus, simple distributional parameters such as the nPVI 

for example would yield results that could easily be interpreted as indicating a random patterning in the 

case of induced isochrony (Burchardt & Knörnschild, 2020; Cameron et al., 2019; Duffy & Pearce, 

2018). The distinction between signal isochrony and induced isochrony that has not yet been made 

consequently would add strongly to the clarity of results and help to illustrate the differences between 

rhythmic patterns in different sequences or species. Principally, it is very important, that the variability 
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of sequences gets reported reliably and comparably. Many studies report variability parameters only 

sparsely or in the form of parameters that yield problems themselves (i.e., standard deviation and 

variance, critically discussed in Chapter II). A clear recommendation would be to report not only 

standardized variability parameters such as the coefficient of variation, which has been introduced for 

this kind of data in Chapter II, but also the raw data, i.e., the IOI sequences, or even the start and end 

duration of labelled elements of interest. Meeting these recommendations will enable broad cross-

species comparison as if need be, data could just be re-analysed. 

Beat Perception in Bats: too fast to follow? 

The more we know about the production of rhythmic patterns, the more important it gets to have a clear 

understanding of how these patterns are perceived and whether they carry meaning for the animals as in 

the northern Elephant Seal (Mathevon et al., 2017)) or are merely production correlates or depending 

on other physiological or external processes such as in some cricket species (Doherty, 1985). 

In Chapter III, we investigated the perception of isochronous beats in 12 bat species in the wild and 

captivity for natural and artificial stimuli and stimulus presentation rates of 6 to 100 Hz. The first key 

finding was that slower presentation rates (i.e., 6 Hz) on average elicit higher reactions than faster 

presentation rates (i.e., 100 Hz). This was true for all analysed species. The second key finding was that 

natural stimuli that elicited a significant response, consequently elicited higher responses than artificial 

stimuli tested with the same setup in the same species (C. perspicillata). We tried to correlate the 

response strength for different stimulus presentation rates to production rhythms of search flight 

echolocation calls of the respective species. In many species, the production rhythms of these calls 

correlated well with the stimulus presentation rates, which elicited higher reactions (i.e., in Lonchorhina 

aurita, Saccopteryx bilineata, or Myotis nigricans, see Chapter III). It is to be noted that echolocation 

calls need to be produced very flexibly in terms of their timing, as production frequencies can rapidly 

increase in situations with a lot of clutter or for feeding attempts right before prey capture (Moss & 

Surlykke, 2001; Ratcliffe et al., 2013). At first sight, our results suggest that production rhythms in such 

situations are almost too fast to follow for the auditory apparatus, which is in line with 

electrophysiological studies in the auditory cortex of C. perspicillata, where cortical neurons could track 

frequencies of only up to 22 Hz (Martin et al., 2017). On the other hand, our experiments disregard an 
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important process: attention. The results of this study need to be backed up with behavioural experiments 

to include the effect of attention on the perception of faster beats that elicit lower reactions in the auditory 

brainstem in our setup. Production rhythms of social communication calls match the stimulus 

presentation rates eliciting higher reactions (i.e., lower presentation rates) as well for S. bilineata and C. 

perspicillata; thus, it might be interesting to disentangle whether temporal perception processes in bats 

are driven by social communication or echolocation.  

Another process to be considered when interpreting the results is neuronal adaptation. The faster the 

stimulus presentation rates, the higher is the overall stimulus energy, and thus the possibility for neuronal 

adaptation. This is especially likely to affect the results, as a quite similar setup was used to study exactly 

these adaptation processes in the auditory brainstem of cats, gerbils, mice, chicken, humans, and 

echolocating bottle-nosed and common dolphins before (Burkard et al., 1994; Burkard & Sims, 2002; 

Burkard et al., 1997; Burkard et al., 2017; Burkard et al., 1996a; Burkard et al., 1996b; Burkard & Voigt, 

1989; Ridgway et al., 1981). It is unclear how big the effect of adaptation is in our results, as there are 

some prominent differences between methodology and analysis: a) in former studies stimuli were 

presented more often (500 times vs. 256 times) and thus longer, which would increase effects of 

adaptation, and b) former studies analysed data not by calculating the overall response strength but 

analysed peak latency and peak amplitudes of single peaks. Some result characteristics differ as well 

between our study and the above-mentioned studies. For example, neuronal adaptation is supposed to 

lead to an almost linear decline of response strength towards higher stimulus presentation rates 

(Wiegrebe & Schmidt, 1996), as it was also observed in the bottle-nosed dolphin (Burkard et al., 2017). 

We could not always observe such a linear decline especially not on the level of single individuals. 

Nevertheless, adaptation is an important process to consider when studying beat perception through 

ABRs, and the experimental setup should be adjusted in follow-up studies to account for that. The 

ultimate solution would be to account for the energy differences between i.e., 6 Hz presentation rates 

and 100 Hz presentation rates, by adjusting the sound pressure accordingly. As the aim of this study was 

to investigate whether we would find differences in the general response strength for different stimulus 

presentation rates, the analysis approach of calculating the integrals under the whole curve was chosen, 

but the peak frequency and peak latency as commonly used parameters analysed in ABR experiments 
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(Brittan-Powell et al., 2002; Burkard et al., 2017) could also be calculated in future studies. In follow 

up experiments, it would furthermore be interesting to not only test more stimulus types, for example, 

more natural stimuli, and natural stimuli in more species, but also to re-run experiments using broadband 

clicks as stimuli instead of artificial stimuli of the peak frequency of the respective species’ echolocation 

calls. Another interesting option, especially when studying bats, would be to apply so-called “maximum-

length-sequences” (Burkard et al., 1994). Here, pseudorandom stimulus sequences with changing 

intervals between stimuli (i.e., between 0.5 and 6 ms in one sequence) are presented. This might mimic 

situations better in which echolocation calls are produced with flexible inter-onset-intervals and 

therefore give insights into another component of the temporal perception of stimuli in a species, where 

tempo perception is so important.  

By and large, the results of these experiments are of general importance for the implementation of ABR 

experiments, as most studies running ABR experiments are using artificial stimuli (i.e., (Brittan-Powell 

et al., 2002; Burkard et al., 2017; Land et al., 2016; Lattenkamp et al., 2021; Linnenschmidt & Wiegrebe, 

2019; Wetekam et al., 2020), while our study suggests the use of natural stimuli. The same was 

suggested by electrophysiological studies in the auditory cortex of C. perspicillata, where natural stimuli 

also elicited higher reactions compared to artificial stimuli, indicating a higher relevance for the animals 

(Beetz et al., 2016). Furthermore, our results need to be considered when choosing stimulus presentation 

rates as many studies use quite high presentation rates of 40 to 50 Hz (i.e., (Brittan-Powell et al., 2002; 

Lattenkamp et al., 2021; Linnenschmidt & Wiegrebe, 2019; Wetekam et al., 2020), whereas our results 

suggest to use very low stimulus presentation rates between 6 and 10 Hz.  

Summary of Methods: existing and newly established. 

Various methods were used during my work to analyse and evaluate temporal structures of animals’ 

acoustic signals on different levels. All methods that were used are summarised in Table 15.  

While I used already established methods to answer a biological question in Chapter I (GAT approach: 

(Norton & Scharff, 2016)) and Fourier analysis: (Saar & Mitra, 2008)), Chapter II was aiming at 

developing a clear workflow and at filling gaps in the current methodological framework. Missing was 

a goodness-of-fit value for the Fourier analysis. Furthermore, the commonly used call rates or IOIs 
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(Manser, 2001; Moss et al., 2006; Ravignani, 2018) were reported in a different unit than the results of 

the Fourier analysis and the GAT approach, which is why I introduced the IOI approach. It transforms 

averaged IOIs of a sequence into a frequency in Hertz. A goodness-of-fit value was then also needed for 

this IOI approach and I introduced the use of the coefficient of variation for that purpose. Chapter II 

aimed also at giving exemplary results for many of the discussed methods for biological data, as so far 

only artificial data had been used, to illustrate possible results of the different methods (Ravignani & 

Norton, 2017). The key result of this work was a workflow with clear instructions on how to analyse 

what kind of data, to be able to evaluate the temporal structure of a given sequence reasonably. It got 

apparent that depending on the data at hand and assuming isochrony, all three methods to extract exact 

beat frequencies (IOI approach, GAT approach, and Fourier analysis) prove valuable for different data 

and/or different questions. The more consistent a pattern is, the better suited is the IOI approach to 

describe a sequence. It is also valuable to describe very short sequences. The IOI approach proves 

furthermore useful for overview questions and could be described as a “spyglass” approach. If more 

details are required and small differences potentially needed to be disentangled, the IOI approach could 

oversimplify results. Especially for questions regarding inter-individual differences the GAT approach 

and Fourier analysis are more suitable, as they can detect smaller differences. Furthermore, these two 

can find induced isochrony (i.e., (Burchardt et al., 2019; Norton & Scharff, 2016)), while the IOI 

approach, due to its nature of using an average, is prone to almost always suggest signal isochrony. The 

GAT approach has a disadvantage, though, that is separating it from the Fourier analysis: it is sensitive 

to tempo changes. While at first this sounds like an advantage, it is not. As the result of the GAT 

approach is a beat frequency that on average fits best to all element onsets, this is problematic in a 

situation, where e.g., the ten first elements are perfectly isochronous while the last four elements increase 

in tempo rapidly. The method now still finds the one beat, with the least frequency normalized root-

mean-square deviation (FRMSD) considering all elements (Norton & Scharff, 2016). This might result 

in a situation where a beat frequency is presented as “best-fitting” that is matching neither the perfectly 

isochronous 10 first elements, nor the faster elements in the end (Burchardt & Knörnschild, 2020). 

Fourier analysis is stable for such situations, and to be preferred for sequences with tempo changes. It 

can also be described as the opposite to the IOI approach as such that it can detect small differences and 
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could therefore be described as a “magnifying glass” approach in contrast to the “spyglass” approach. 

Even though goodness-of-fit values were established for Fourier analysis and the IOI approach, the three 

values indicating goodness-of-fit for the three methods to extract exact beat frequencies were still 

difficult to compare between each other for the same sequence and thus even more difficult to compare 

between species or studies. To circumvent these issues, I set out to develop a goodness-of-fit value that 

would be applicable for any of the described methods, therefore yielding comparable results (Chapter 

IV). The value I developed and termed “ugof” for “universal goodness-of-fit value” has even more 

advantages than being easily comparable: it can without difficulty be calculated for a whole range of 

sequences and beat frequencies, enabling us to see the true distribution of the ugof in a specific dataset. 

Using the population mean and standard deviation, z-scores can be calculated for exact beat frequencies 

that can, in turn, be matched to their corresponding p-values (Fisher & Yates, 1964; Rohatgi & Saleh, 

2015), enabling us for the first time to put a p-value on an isochronous beat frequency describing an 

element sequence. Another important novelty for this specific value is the fact, that in contrast to 

previously described goodness-of-fit values, it can be calculated for single elements in a sequence. While 

the FRMSD, nGOF and GOF as well as the coefficient of variation (see Table 15 for explanation) are 

calculated for a whole sequence, the ugof is calculated per element and can then be reported as required 

per sequence, per individual, per species or any other level of analysis that is interesting. All this opens 

a whole new field of possible investigations that will be further discussed in the Outlook section.  
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Table 15: Overview of Rhythm Analysis Methods Used in this Thesis. 

Method Type and Aim  Chapter Usage & Development 

Histograms of IOIs Visualisation; assess isochrony I, II Used 

Coefficient of 
Variation 

Variability parameter/ 
goodness-of-fit value;  

assess isochrony, assess 
goodness-of-fit of IOI 
approach 

II, III, IV Developed in Chapter II for this 
purpose 

nPVI Variability parameter; assess 
isochrony 

II Used 

IOI approach Exact beats, spyglass approach II, III, IV Developed in Chapter II 

GAT approach Exact beats I, II Used 

Fourier Analysis Exact beats; magnifying glass 
approach 

I, II, IV used, additions proposed in 
Chapter IV 

Recurrence Plots Visualisation; find 
substructures 

II, IV Used, intensely discussed in 
Chapter IV 

FRMSD Goodness-of-fit value; assess 
goodness-of-fit of GAT 
approach 

I, II Used 

GOF/nGOF Goodness-of-fit value; assess 
goodness-of-fit of Fourier 
analysis 

II Developed in Chapter II 

Ugof Goodness-of-fit value; assess 
goodness-of-fit for any of the 
three methods 

IV Developed in Chapter IV 

Conclusion and Outlook 

The established methods and obtained results open the field to investigate many new questions or hold 

the potential to improve yet other analysis approaches. I will discuss open questions and possible future 

applications in the last paragraph of this thesis.  

Overall, analysing the temporal structure of animals’ acoustic signals can be relevant for addressing 

many research questions, such as questions on species discrimination, physiological correlates like 

couplings to wingbeat or respiration, mating preferences, or arousal coding (Burchardt et al., 2019; 

David et al., 2003; Manser, 2001; McRae, 2020; Norton & Scharff, 2016). Other questions include 

duetting or the development of temporal structures during ontogeny (Pika et al., 2018; Sasahara et al., 
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2015; Yoshida & Okanoya, 2005). It can also inform about vocal production learning processes 

(Wirthlin et al., 2019) and aims at helping to understand the evolution of both music and language in 

humans (Honing, 2012; Ravignani et al., 2014). In that capacity, it could also enable us to better 

understand various speech and vocalization impairments as well as perception deficits, connected to 

rhythmic structures of signals in humans and other animals (Norton et al., 2019; Wieland et al., 2015). 

Moreover, rhythm analysis should in the future be used more intensively, to set up behavioural 

experiments including any form of acoustics in a more informed way, therefore ensuring that for 

example in playback experiments the study animal is presented with relevant stimuli in terms of the 

temporal structure (as it was done in (Ravignani, 2018)).  

Furthermore, the aim of rhythm analysis remains to uncover possible functions and reasons for the 

rhythmic production of sounds. For that further investigation into the perception of stimuli might prove 

valuable. Another line of investigation could try to link the production of rhythms to motor-correlates 

or neuronal correlates. A good example of this are the results from the Egyptian fruit bat (Rousettus 

aegyptiacus). Here wingbeat and tongue clicks are tightly coupled around 10 Hz (Yartsev & Ulanovsky, 

2013), as we also found for S. bilineata between wingbeat and laryngeal sound production of three 

sequence types. These beat frequencies show a resemblance to the frequency of theta brain waves. 

Thought to be important for spatial memory, movements, and active stimulus intake (Colgin, 2013) 

amongst others, theta waves might be a promising neural correlate explaining the production of the 

detected rhythms in S. bilineata and R. aegyptiacus.  

Rhythm analysis also has great potential in furthering research on social interactions. Temporal 

plasticity can be argued to play an important role in animal communication. Dynamics that would be 

interesting here include chorus situations resulting in synchrony or antiphony5, where signallers adjust 

their signal emission either to synchronise with other individuals (Greenfield, 1994; Greenfield & Schul, 

2008; Nityananda & Balakrishnan, 2006), interrupt other signallers, or specifically avoid to overlap with 

them (i.e., (Gochfeld, 1978; Greenfield, 1994; Hultsch & Todt, 1982; Martínez-Rivera & Gerhardt, 

2008; Naguib, 1999; Tárano & Carballo, 2016)). We also know from singing mice that the motor cortex 

 
5 Describing a phase relation between elements of 180° 
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influences the pace of the singing behaviour on a moment-by-moment basis, depending on the song of 

another present and singing individual, thus shaping the rhythm of the communication attempt (Okobi 

et al., 2019). A different example of social interactions shaping the temporal structure of animals’ 

acoustic signals was found in two frog species in Australia, where beat frequencies of calls in a chorus 

increase significantly for both frog species when a competitor species is present and calling as well 

(Filer et al., accepted).  

Currently, more and more ideas are being suggested on how to study the interactions between neural 

underpinnings, rhythm production, and rhythm perception and how to investigate rhythms as the 

multimodal feature they are (Anichini et al., 2020; Pouw et al., 2021), which I can only support. Again, 

the description of clear methodologies, interpretation examples, and parameters supporting comparison 

will help in that regard, as all of that enables non-experts to use different methods or interpret published 

results, and thus foster interdisciplinary studies.  

Especially the ugof value holds great potential for future applications, interdisciplinary studies, cross-

species comparison, and the further improvement of already existing methods. It would for example be 

interesting to analyse the ugof throughout ontogeny for various settings. It would be interesting to see 

whether we can find changes in the goodness-of-fit of rhythms during ontogeny in general, and more 

specific to compare between for example learned and innate vocalizations, or between vocal learning 

species and non-vocal learners. This could shed light on the importance of rhythms during the learning 

process and could prove/disprove the hypothesis that rhythm and melody serve as guiding mechanisms 

for each other during the ontogeny of sound production: as producing sounds on an isochronous grid, 

making them predictable, would leave cognitive capacity to focus on the spectral domains of a call-

template an individual is trying to learn (through a tutor or rehearsing on auditory feedback (Ravignani, 

in press)). Even though we did not find significant differences in the exact beats in isolation calls of S. 

bilineata during ontogeny (Burchardt et al., 2019), it might well be that the goodness-of-fit value does 

change during that time. This might be even more interesting to analyse in the conspicuous babbling 

behaviour of S. bilineata pups (Fernandez, 2020; Knörnschild et al., 2006). It could be analysed whether 

the ugof differs for specific element types uttered by pups compared to the same element types uttered 

by adults.  
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Getting back to the definition for rhythm used in the introduction, that rhythm is as ‘systematic 

patterning of sound in terms of timing, accent, and grouping’ (Patel, 2008), methods used and discussed 

in my thesis were mostly focusing on describing the timing of such systematic patterns (Chapter I to 

III). The introduced ugof on the other hand has the potential to analyse the other two aspects of this 

definition as well. Both grouping and accentuation could be investigated employing the ugof, through a 

detailed analysis of single elements and their ugof. To illustrate that with an example, we might consider 

the isolation calls of S. bilineata analysed in Chapter I. One could try to analyse the ugof of different 

element types in these calls. We might find that a certain element type always shows lower ugof, 

compared to another element type, leading to the possible interpretation that this particular element type 

is stressed. The same could be done for whole sequence types, i.e., for different social communication 

sequence types, but also different situations in terms of for example arousal or urgency.  

Directly connected to that (arousal and urgency) rhythm analysis in combination with ugof calculations 

could also benefit emotions research, relying amongst others on the measurement of heart rates. Heart 

rates are an often used parameter in emotions research (i.e., (Forkman et al., 2007)) and especially the 

heart rate variability that is tested in some studies (i.e.,(Briefer et al., 2015)) could benefit from using 

the ugof to assess this variability in more detail.  

Another possible application that was discussed in Chapter IV is the use of the ugof to back up analyses 

to distinguishing contexts or to analyse syntax. One concrete example here could be research on 

dialects6, that can be found for example in different bird and bat species (Boughman & Wilkinson, 1998; 

Boughmann, 1998; Briefer et al., 2008; Davidson & Wilkinson, 2002; Nelson, 2000; Nelson & Poesel, 

2007; Prat et al., 2017). Microgeographic differences between male skylarks’ flight songs or male S. 

bilineatas’ territorial songs for example are in parts based on differences in the element type (syllable) 

and sequence type (phrase) repertoire of a certain population (Briefer et al., 2008; Davidson & 

Wilkinson, 2002). Such sequence types could show a distinguishable temporal patterning, shared 

 
6 Local vocal variation within an animal species (i.e., Henry, L., Barbu, S., Lemasson, A., & Hausberger, M. 
(2015). Dialects in Animals: Evidence, Development and Potential Functions. Animal Behavior and Cognition, 

2(2), 132-155. https://doi.org/10.12966/abc.05.03.2015 ) 
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sequence types could then be automatically detected using the knowledge about temporal structures and 

ugof.  

As mentioned above, the long-term aim should be to combine approaches on different levels, such as 

behavioural characteristics and neural underpinnings to investigate rhythm as a single piece in the large 

puzzle of communication. To achieve that, we need a clear terminology that includes terms used in 

ecology and evolutionary research, terms used in electrophysiological studies and bioacoustics to terms 

used in musicology and linguistics. That is why we included a glossary in Chapter II, explaining different 

terms that different fields might use in slightly different meanings. Another recent study added to that: 

they compared terms from different fields and combined them in an overall terminology framework 

(Pouw et al., 2021). Furthermore, we need well-documented data and codes accessible for future studies. 

All of this will in turn foster cross-species comparison as well as cross-modality analyses and 

comparisons, which are both argued to be of utmost importance (Pouw et al., 2021; Ravignani et al., 

2014) but have received little to no attention so far. Different species, species groups, or levels of 

rhythmicality (i.e., behavioural or neural) are currently most often investigated as separate entities but 

need to be investigated in a connected way (Pouw et al., 2021). Only then will we be able to truly 

disentangle the adaptive functions as well as the evolution of rhythmicality in acoustic communication.  

My thesis showed examples of rhythmic structures of animals’ acoustic signals. Isochronous patterns 

were found in bats, birds, and whales. Multiple methods to analyse rhythms were tested and evaluated 

as well as new methods developed. Clear recommendations were given on how to perform rhythm 

analysis for different datasets and questions and finally, open questions were raised and future 

applications for newly established methods proposed. All of which in the end will hopefully contribute 

to a better understanding of rhythms in animals’ acoustic signals and help in the quest to uncover 

adaptive functions and the evolution of rhythmicality in acoustic communication in humans and other 

animals alike, furthering research on the evolution of language as well as music, and the general 

knowledge about the different aspects and their importance of acoustic communication in animals.  
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