PHYSICAL REVIEW RESEARCH 3, 023093 (2021)

Strong-coupling diagnostics for multimode open systems
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Engineered quantum systems play a central role in quantum information processing. Typically, these systems
are strongly coupled to their environments, which presents challenges and opportunities to harness control-
lable quantum effects in such systems. One of the outstanding challenges is to characterize the quantum
correlations that develop in such out-of-equilibrium quantum systems. Here we present a method that utilizes
low-dimensional projections of eigenvectors to distinguish different types of correlations in an N-mode open
system. The proposed method presents a nontrivial extension of eigenvalue-based analysis employed for such
systems; specifically, it not only diagnoses crossovers between weak and strong coupling regimes (also known
as “exceptional points”) but also can identify the physical systems of interest spanning the correlated subspaces
in different regions of the multimode strong-coupling regime. As a demonstration of this feature, we apply our
method to study hybridization physics in a three-mode optomechanical system and determine the parameter
regime for efficient sideband cooling of the system in the presence of reservoir correlations.
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I. INTRODUCTION

Strongly coupled open systems form the operational frame-
work in diverse fields, ranging from quantum information
processing and precision measurements to quantum chem-
istry. One of the main challenges in modeling such systems is
the appearance of strongly hybridized dressed states beyond a
critical coupling strength, which necessitates describing dissi-
pative dynamics in a nonlocal basis. A powerful framework
for analyzing this transition from weak to strong coupling
in open systems is provided by exceptional points (or EPs).
EPs are branch point singularities in the parameter space,
where two (or more) eigenvalues and eigenstates of the system
coalesce. This makes them distinct from degeneracy points
in Hamiltonian systems, which support identical eigenval-
ues while corresponding eigenvectors remain orthogonal. The
physics of EPs continues to be exploited in a variety of
applications involving non-Hermitian physics, such as non-
reciprocal devices [1-3], amplifiers [4,5], quantum sensors
[6-8], and single-mode lasers [9-11], to name a few.

Though EPs represent points where both eigenvalues and
eigenvectors collapse to a single value, the analysis and design
of open systems utilizing EPs predominantly makes use of
eigenvalues of the dynamical matrix [12]. This is rooted in
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the fact that the nontrivial topological properties associated
with the emergence of such degeneracies, such as nonadia-
batic mode switching [13] and chiral state transfer [14], can
be entirely described by tracking the eigenvalues alone in
the complex parameter space [15]. In this paper, our focus
is quite different: Rather than study the properties of the
dressed states, we aim to study the strong-coupling physics
from the point of view of physical subsystems. To this end, we
present a method that shows how eigenvectors can provide a
comprehensive description of strong-coupling effects in open
systems. The basic idea relies on exploiting the mode correla-
tions as reflected by the eigenvector projections in relevant
subspaces of an N-dimensional mode space. Our proposed
method goes beyond the usual identification of EPs that de-
lineate weak- and strong-coupling regimes and provides more
nuanced information about different types of correlations in a
multimode open system under strong coupling. Most impor-
tantly, it provides a means to identify the physical modes that
hybridize to form the dressed eigenstates (also referred to as
“supermodes”), a feature not accessible with eigenvalue-based
analysis or EPs alone. We emphasize the physical significance
of such subsystem identification in strong-coupling mani-
folds, using the example of cooling of a mechanical oscillator
to its quantum ground state using engineered dissipation. The
proposed criterion enables characterization of the operational
cooling regime, where the system oscillator remains weakly
coupled to strongly correlated reservoir modes.

The paper is organized as follows: We begin with a de-
scription of an N-mode open system with nearest neighbor
interactions in Sec. III and use N =3 and N =4 cases
as examples to illustrate the inadequacy of conventional
eigenvalue-based analysis when extended to more than two
modes. We then introduce the eigenvector projection-based
method in Sec. IIT and show how it can be used to generate the
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FIG. 1. Schematic of an N-mode open system with nearest
neighbor interactions. Curved arrows depict the bilinear interactions
gij» while local decay rates of the modes are depicted with ;.

detailed coupling map of a multimode open system, resolving
the shortcomings of the usual method restricted to identifica-
tion of EPs. In Sec. IV, we examine quantum ground-state
cooling in a three-mode optomechanical system to show how
the proposed method can be applied to a physical problem of
interest. We conclude with a summary of main results and of-
fer perspectives for potential extensions of our study in Sec. V.
Additional calculation details are included in Appendices A
and B.

II. EXCEPTIONAL POINTS IN A MULTI-MODE SYSTEM

A generic N-mode open system with nearest neighbor hop-
ping interactions, as depicted in Fig. 1, can be described by a
Hamiltonian of the form

N A
HM — Z (718]-’/( + gjk(l — Sj,k)>aj<ak, (1)
j=lLk=1
(J k)

written in the interaction frame defined with respect to
the Hamiltonian ) i a)?a;a i, With Aj = w; — a)? being the
detunings associated with each mode. The phase of the cou-
plings is determined by arg(g;c), with g = g;; ensuring
Hermiticity of the interaction Hamiltonian. The open dynam-
ics of this system can be derived from Heisenberg-Langevin
equations for the mode annihilation operators, a;, as

V™
dt

where VNV = [ay, ay, ..., ay]T, V'™ = [ @i, ..., al]T de-
note the internal mode and input noise operators respectively,
and K™ = diag(«i, ..., kj, ..., ky) is a diagonal matrix with
its nonzero elements representing the decay rates associated
with each individual modes. The dynamical matrix M™), also
referred to as the “mode matrix”, for the system with nearest
neighbor couplings considered here is an N x N tridiagonal
complex-symmetric matrix of the form

= MNYy® 4 /K(N)Vin(N)’ 2)

Ay —ign 0 0

o~ | Tigar Ax —ig: 0
M =1 0 —ign  As o )
where A j = —iA; —k;/2. Note that here we have assumed

open boundary conditions; closed-loop topologies with peri-
odic boundary conditions have been studied in the past and
while they can support qualitatively new physics, the shape

of coupling map is not germane to the question of diagnosing
strong coupling that we focus on in the following sections.
Conventionally, weak and strong coupling regimes are
identified by finding the exceptional points (EPs) supported
by M™). For instance, for the well-known case of two modes
coupled with a hopping-type interaction, an EP2 is real-
ized for gglgz = |k; — k2|/4. In the weak coupling regime,

with g < gglgz, the eigenvalues are purely real, while in the

strong-coupling regime, with g > gg[),z, the eigenvalues be-
come complex; the imaginary part corresponds to the detuning
of the mode from resonance due to hybridization that lifts the
degeneracy, manifesting as a “splitting” of the mode spectrum.
In general, this transition between real and complex solutions
(or EP2) for an N-mode system can be obtained by setting
the discriminant of the characteristic polynomial of the mode
matrix, pppv = det(Al — M), to zero,

disc(ppn) = Mgp(he — Ag) =0, 4)

where A, g denote a pair of eigenvalues [16]. Since ppw) is a
polynomial of degree N in A, the strong coupling regime needs
to be studied in a hyperplane spanned by N — 1 coupling
parameters g;; for fixed values of decay rates ;. As concrete
examples, we now consider N = 3 and N = 4 systems de-
picted in Fig. 2(a) in detail and describe the generic features
of EPs in systems with bilinear interactions.

A. N =3 case

Time-averaged dynamics of a three-mode open system
with nearest neighbor couplings can be described by a 3 x 3
mode matrix of the form

/2 —ig? 0
M® = | —igl -2 —igd |. 5)
0 —igd) —k3/2

where gp = g(13), g3 = g(;), with g(jS) € R.oVj. Here, with-
out loss of generality, we have considered resonant driving,
leading to zero detunings, i.e., A; = 0, V. Figure 2(b) shows
a plot of EP2s for this system as a function of the interaction
strengths, obtained from Eq. (4) for fixed values of decay
rates «;. Analogous to the two-mode setup, we note that
the EP2s demarcate the weak- and strong-coupling regimes;
specifically, the intercepts on the x and the y axes corre-
spondto y_ = |k| — kp|/4 and k_ = |k — k3|/4 respectively,
which are the EP2 thresholds for decoupled {a;, a,} and
{a,, a3} subsystems in the absence of other couplings. We
emphasize that within the region bounded by the EP2 curves,
the system is in the weak-coupling regime with purely real
eigenvalues, whereas outside this region all three eigenvalues
can be complex and the system is in the strong-coupling
regime.

A noteworthy feature for systems with N > 2 is the ap-
pearance of higher order exceptional points. For instance,
as shown in Fig. 2(b), a three-way exceptional point (EP3)
is realized at the coincidence of two EP2 curves, where
all three eigenvalues and eigenvectors become identical.
The coordinates of EP3 in the coupling phase diagram are
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FIG. 2. (a) Illustration of three-mode (N = 3) and four—mode (N = 4) systems with nearest-neighbor hopping interactions. The hopping

interactions are depicted with double-headed arrows g

j € [1, N — 1], and local decay rates are represented as wavy arrows «;, j € [1, N].

[(b), (c)] Coupling phase diagrams for N = 3 and N = 4 systems obtained using eigenvalues of the respective mode matrix. The decay rates

used in the calculation are x| /x; = 0.01 and «3/k, = 20 for N = 3 case and «1/k; = 0.01, «3/k; = 5, and k4 /Ky =

10 for N = 4 case. In

each plot, the solid curves denote the locus of EP2s in the parameter space, calculated using Eq. (4), and are labeled with the eigenvalues that
coalesce at the respective EP. The hatched (white) region correspond to the weak-coupling (strong-coupling) regime. The insets near the axis
pictorially depict the relevant pair of modes that hybridize when the coupling strength is increased beyond the corresponding EP2 threshold.

given by

(3) (3
(& &ps+ 83 |gps)

. 4Q2y_ + k) [4Q2k_ +y-)? ©)

AV 27 k) TN 27 k) )
Note that the preceding analysis does not reveal exact nature
of coupling between the modes or identify which modes are
strongly coupled in the white region of Fig. 2(b); we can only
ascertain that there exists at least one pair of modes that is
strongly coupled for (g(13) >y_)n (8(23 > k_). For explicit

expressions for eigenvalues in a three-mode system, we refer
the reader to Appendix A.

B. N = 4 case

We consider a four-mode system described by a mode
matrix of the form

k12 —igl? 0 0

M©® — —1g(14) —K2/2 —lg(24) 0 )
0 —lg(24) —K3/2 —lg(14) '
0 0 g —ky/2

As before, we consider resonant driving, with g1, = g34 =
g(l4), g3 = g(24), where g(j4) € R.yVj. Besides allowing us
to restrict our analysis to a 2D phase diagram, this pattern
of alternating couplings is of relevance to interesting phys-
ical models, such as the Su-Schrieffer-Heeger (SSH) model
[17,18] describing hopping of spinless fermions on a 1D lat-
tice [19].

Proceeding as in the case of three modes, we obtain the
EP2s of the four-mode system as a function of coherent
couplings g’ ; for fixed decay rates «; (see Appendix A for de-
tails). As shown in Fig. 2(c), we now obtain three EP2 curves
with three intercepts on the axes. The intercepts on the x
axis correspond to g(f) = |ky — Kk1]/4 and g(14) = |k4 — Kk3|/4,

setting the strong-coupling thresholds for decoupled {a;, a,}
and {as, a4} subsystems respectively. Similarly, the y intercept
corresponds to g24) = |k3 — k2| /4, the strong-coupling thresh-
old for decoupled {a;, a3} subsystem. However, as in the case
for three modes, in regions sufficiently distant from the axes,
the identity of the modes that are strongly coupled remains
ambiguous.

III. STRONG-COUPLING ANALYSIS BASED
ON EIGENVECTORS

As is evident from the discussion in the previous section,
while EPs provide a clear separation of weak- and strong-
coupling regimes, they fail to identify the physical modes that
span the strongly coupled subspace in a multimode (N > 2)
system past EPN [white region of Figs. 2(b) and 2(c)]. In this
section, we introduce a method based on 2D planar projec-
tions of eigenvectors which provides a universal way to detect
N-way hybridization, complete with an identification of the
strongly coupled subspace, in a multimode open system.

We begin with a simple two-mode example to illustrate
the behavior of eigenvectors in weak- and strong-coupling
regimes. To this end, we consider the amplitudes of (normal-
ized) left eigenvectors V¢,

VI = [V anl, [(VE, a2, ®)

where a; = [1;] denotes a basis vector with unity as the
jth physical mode and zero for every other entry, and (u, v)
represents the vector inner product. The vector |V¢| can be
thought of as a “participation ratio vector” since each en-
try denotes the participation ratio of physical mode a; in
the eigenmode. For g =0, [V!| =a; =[1,0] and |V?| =
a; = [0, 1]; hence (|[V'], [V?|) = 0 since a; and a, are or-
thogonal basis vectors. Throughout the weak-coupling regime
|g(2)| < IgEP2 0 VY, |V2|) < 1. On the other hand, in
the strong-coupling regime, |g®| > g2 ], (V] [V3]) =1,
implying that |V!| and |V?| are parallel. While the above
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example shows how the distinct nature of eigenvectors, with-
out any knowledge of the eigenvalues, can provide a sufficient
means for distinguishing the different regimes of coupling,
one should be wary of naively extending the two-mode intu-
ition to a multimode system. For instance, one potential pitfall
is to assume identical participation ratios posthybridization
into supermodes as a criterion for mode indistinguishability
in the strong-coupling regime. While for a two-mode sys-
tem, the participation ratios indeed become identical at EP2,
ie., |Va1{2|g=gg;2 = |Valz’2|g=g(§,l2 = l/ﬁ, for N > 2 systems
IVa"/‘_| # 1/+/N at (or beyond) EPN in general. For instance,
at EP3 for N = 3 [Fig. 2(b)], for each of the three eigen-
vectors |V123| =[0.42,0.71,0.57]. In other words, N-way
strong coupling does not guarantee equal participation of the
modes in a generic N-mode system. We now introduce the full
procedure based exclusively on eigenvectors, which reliably
diagnoses strong coupling in a general N-mode system with
bilinear interactions. Note that the modes under considera-
tion may or may not share direct physical coupling, so the
proposed method is impartial toward inclusion of interactions
between non-nearest neighbor sites in the system.

(1) Consider the multiset of left eigenvectors of the mode
matrix, S = {V¥ | VEM®W) = yepey,

(2) Define the 2-norm of each eigenvector V%, projected
onto a 2D subspace spanned by {a;, a;}, as

Loy =0V apP + 1V, a9

(3) Partition S into m-equivalence classes [V *],,, each con-
sisting of a set of eigenvectors with equal 2-norms for all ¥ C,
projections, i.e.,

[V, ={VF e S|VF ~ Ve, (10)
if /.Z‘("j!k) = ,C’(Sj,k),\?’(j, k) € [1, N]. The size of each equiva-
lence class defines the coupling depth, D,, = |[V*].] < N,
for each D,-dimensional strongly coupled subspace of the
N-mode system.

4) If |[[V*]u| = 1 V m, this implies that all modes are
weakly coupled.

(5) Two modes a; and g; are strongly coupled, if and
only if

L > L8 YV & [V, (1)
Using the above inequality, construct a set &,
En ={Gohosj < k| LGpy > L YV 1V}, (12)

whose size defines the connectivity of the subsystem, E,, =
|Em|. Connectivity represents the number of pairs of physical
modes (J, k) that are hybridized; i.e., each pair of modes in &,,
indexes a 2D subspace in the N-dimensional (physical) mode
space.

(6) The connectivity E,, is distinct from the depth D,, and,
in general, E,, > D,, — 1. If all pairs in &,, form a fully con-
nected closed set, then E,, = ?»C, and the subspace supports
an EPD,,.

Note that this implies that for D,, = N, Egs. (10) and
(11) recover the condition of an EPN, i.e., coalescence of all
eigenvectors of the system signifying the manifestation of
N-way strong coupling in an N-mode system.

S | LGs Lis Lia Los Low Loa | [VOm
v il B = ®H = =®

) m=1

v B = B = B |, .
vV Il B = m = =R
v* = n | = 1 B

max ([l ® | = m B E,=3

ay

as

az
ay
3D strongly-coupled
subspace

FIG. 3. (Top panel) Configuration of eigenvectors corresponding
to a realization of EP3 in N =4 system. The size of the squares
denote the magnitude of planar projections with red denoting those
for strongly coupled modes and black denoting those for the weakly
coupled mode. (Bottom panel) Geometric visualization of EP3 in
N = 4 system. Solid rays represent the eigenvectors while faint rays
represent their corresponding projections. For clarity of presentation,
only the projections in {a;, a,} and {as, a,} planes are shown. The
resultant EP3 creates a strongly coupled 3D subspace spanned by
{ai, ay, as}, represented as a gray hyperplane.

The criterion prescribed in Eq. (11), which is the key result
of this paper, lends itself to a helpful geometric visualization
depicted in Fig. 3: Strongly coupled subspaces manifest as
hyperplanes, making small angles with the equivalent eigen-
vectors and thus making the corresponding projections larger,
while weakly coupled subspaces make large angles, leading
to small projections.

We now apply this procedure to the three-mode and
four-mode systems examined in Sec. II. Figure 4(a) de-
picts the regions where Eq. (11) holds true for each pair
of modes in N =3 open system. For instance, in region
I (red), D =2,FE =1 with two identical eigenvectors such
that L, 5, = L3, 5, > L}, 5 while L, 5y = L2, 5 < L, 5, and
ﬁ(lm) = 5%1,3) < E?LS)’ identifying this region as regime of
pairwise strong coupling for modes {a;, a,}. Similarly, in
region II (blue), D =2, EF = 1 with £(11’2) = ‘C%I,Z) < £?1,2)’
£(12’3) = 5%2,3) > £(32’3), 5%1,3) = 5(21’3) < 5?1,3)’ identifying
pairwise strong coupling between modes {a,, a3} in this
region. Furthermore, boundaries of regions I and II de-
lineate weak and strong coupling regimes identified using
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FIG. 4. Pairwise strong coupling regions calculated using Eq. (11) for (a) N = 3 and (b) N = 4 modes, depicted as function of respective
coupling strengths. The decay rates used in each case were the same as those reported in Fig. 2. The hatched region in each plot depicts the
weak-coupling region where the inequality is not satisfied for any pair of modes. The boundaries of the regions predicted by Eq. (11) coincide
with the EP2 curves obtained from eigenvalues, which are reproduced here in dashed black for easy reference (cf. Fig. 2). Along with each
coupling map, corresponding edge graphs show mode connectivity in each region and at EPs inferred from eigenvector-based projection, with
connections between strongly coupled (weakly coupled) modes represented with solid (dashed) edges. Connected solid edges, resulting from
the same equivalence class, are shown with filled circles. Disconnected solid edges denote the presence of distinct equivalence classes of
dressed states, shown with empty circles for adjacent edges, for example, point S and region IV in panel (b).

eigenvector-based analysis, which on comparison with
Fig. 2(b) are in quantitative agreement with the EP2 curves
obtained from eigenvalue-based analysis. More interestingly,
the proposed method identifies a region III (purple) where
regions I and II overlap, i.e., D = 2, E = 2, implying simul-
taneous pairwise strong coupling for two pairs of modes,
{a;,a»} and {ay, a3}. Note that this does not imply that
all three modes are strongly coupled in region III, because
{a1, as} remain weakly coupled since L{, ;) = LF, 5, < L, 3
remains true in all the colored regions In fact, the only
point in parameter space (g(13), g2 > that supports three-way
strong coupling is point C; here E = EU o= E(J x) Where
(J, k) € [1, 3]. It is worth noting that this exactly corresponds
to the EP3 shown in Fig. 2(b).

The coupling phase diagram shown for N = 4 in Fig. 4(b)
is expectedly more involved. In total, there are six pairs for
which we check Eq. (11), and find in

regionl: D =2, E =1, since
1 2 34
Loy =Ly > Loy
region II: D =2, F =1, since
Lipsy = Lhs > Lk,
region III: D =2, E =2, since
34
(N Lo =Lhw > L

(j, k) e &
=1{(1,2),(2,3)}

Here, for brevity, we report only the pairs of modes that satisfy
Eq. (11) for strong-coupling in the respective regions. In each
region, for pairs (j, k) &€ &,

ﬂ E(x o= E(/ K < E(x 5%
kg &

Note that in all the regions only two-way strong coupling,
i.e., D = 2, is realized. Though more than one pair of modes
are strongly coupled in regions III and IV, three- or four-way
strong coupling is not realized in these regions since {a;, as}
and {a,, a4} are diagnosed as weakly coupled, violating the
condition of full connectivity necessary for realizing higher
coupling depth D. The transition from § to region IV is
particularly noteworthy, even though it entails no change in
the coupling depth. Both these regions support two distinct
equivalence classes of eigenvectors, each consisting of a pair
of identical vectors, i.e., D; = D, = 2. However, while at S
these support two decoupled 2D subspaces with E} = E; = 1
since

1 2 3,4
Loy =Laa > Ly

1.2
and £(3 H= £(3 4 > £(3’4),

in region IV, even a very weak coupling g, couples these 2D
subspaces, leading to £, = E, = 2, since

1 _ 3,4
N Liw =Ll > L

(. k) € &
& ={(1,2).(2,3)}

and m

.k e&
={1.4.3G.4}

1,2
Léin = Liw > L

Thus, each equivalence class of vectors contributes a pair of
adjacent edges that combine to realize four-mode hybridized
states, as indicated by the respective edge diagram in Fig. 4(b).
This is an open-system analogue of the superexchange in-
teraction describing electron transfer in strongly correlated
systems, where two strongly correlated electronic states can
hybridize through a weakly correlated state [20]. This instance
shows how information about connectivity between physical
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modes of a multimode system can reveal physics beyond that
provided by coupling depth.
At point R in Fig. 4(b), D = 3, E = 3 with

1 2 _ 3 4
m ﬁ(.i,k) - ﬁ(.i,k) - E(j,k) = E(j,k)’
G ke&
€ =1{(1,2),(2,3),(1,3)}

while 5(1}?,;)3 < L, for (j.k) = (1,4), (2,4), (3, 4). This di-
agnoses three-way strong coupling in {a;, a,, a3} subsystem
which, as in the case of N =3, coincides with EP3 for
this system predicted by eigenvalues [cf. Fig. 2(c)]. Further,
the boundaries of different regions identified using eigen-
vector projections correspond exactly to the EP2 curves of
Fig. 2(c) with the weak-coupling regime corresponding to
the region where Eq. (11) is violated for every pair of
modes. Thus, in addition to correctly predicting coordinates
of EPs in parameter space, eigenvectors also provide in-
formation about which modes of system hybridize at each
EPN.

We emphasize that the preceding analysis makes exclusive
use of eigenvectors, without invoking eigenvalues of the mode
matrix. The proposed inequality in Eq. (11) relies on 2D pro-
jections of N-dimensional eigenvectors, which indicates that
an analysis of pairwise-coupled subspaces is sufficient to di-
agnose arbitrary coupling depth in open systems with bilinear
interactions. Further, eigenvector-based analysis supersedes
the information obtained from usual EP physics unraveled by
eigenvalues, by providing means to identify physical modes
defining the strongly coupled subsystems in a multimode
system.

IV. APPLICATION: DISSIPATION-ENGINEERED
COOLING

In this section, we elucidate the physical implications of
the eigenvector-based strong-coupling diagnostic by applying
it to the problem of quantum ground-state cooling. Cooling
quantum systems is a mainstay in many quantum information
platforms where a mode (or qubit) needs to be prepared in
its ground state (or “reset”). For instance, in conventional
optomechanical platforms, a hot mechanical oscillator (a;) is
parametrically coupled to a cold optical resonator (a;) that
acts as an engineered reservoir. On modulating the coupling
at the difference frequency of the two modes, the mechanical
mode is cooled by shuttling excitations to a quickly decaying
optical mode. The resultant phonon population in the steady
state for the resolved sideband regime is [21]

1+ k1 /x2(1 +Cy) " C
(I 4Ky /i2)(1 4+ Cy) (1 + K1 /k2)(1 +Cr)
A (i1 /i + 1/Cp) + n,, (13)

@ _
1 =Nm

where k), denote the decay rates associated with the
mechanical and optical modes, n, and n, denote their re-
spective thermal populations in the absence of coupling, and
the coupling strength g; is parametrized in terms of co-
operativity C; = 4g3/k1k2. From the simplified expression
obtained in the limit of large cooperativity C; > 1 and the
typical decay hierarchy «;/k; < 1, we can identify two
distinct regimes of operation: (i) cooperativity-dominated

m g1 < K2 g1 > Ko
A Lo
Ec‘ — Two-mode
1 Il' | — Three-mode
-
>
5F nmk1/Ke
. : o
1F i -7
b &
05F nm(2k1/K3) N
02f :
0.1f E
1 M 1 1 : - g
0.01 005 0.1 05 1 510 50 ko

FIG. 5. Phonon population vs coupling strength for the two-
mode (g, = 0) and three-mode (g>/x, = 10, C, = 20) systems with
n, = 300, ny = n, = 0.1, calculated for the same decay rates as
used in Fig. 2(b). The red (gray) region represents the decay-
dominated regime for the two-mode (three-mode) system, calculated
using expression for phonon population in Eq. (13) [(16)]. The
horizontal dashed lines correspond to the minimum achievable popu-
lation, while the vertical dashed lines correspond to critical g; values,
indicating the onset of strong coupling and the decay-dominated
regimes. For each system, the population is shown with dash-dotted
curves in the regime where the mechanical mode is hybridized with
optics. The onset of this region for the two-mode system (ggp;) is es-
timated using the eigenvalues [cf. Fig. 2(b)], while for the three-mode
system (gsc) it is estimated using the eigenvector projection-based
method introduced in Sec. III [cf. Fig. 4].

regime, or k1 /kp<<1/Cy, and (ii) decay-dominated regime, or
k1/k2>3>1/Cy. As is evident from the red curve in Fig. 5, the
mechanical mode experiences active cooling as long as the
system is the cooperativity-dominated regime. For coupling
strengths gy/k, > 1, the population becomes independent
of g; and saturates to the steady-state value determined
by bare decay rates n(li)nin = ny,(k1/K2). This crossover into
dissipation-dominated regime is intimately related to the onset
of strong coupling and hybridization of the mechanical and
optical modes at g; = ggp», Which eventually manifests as
saturation of phonon population [22].

The threshold for this crossover into strong coupling can
be modified by coupling the mechanical mode to a more
complex bath. The minimal system to implement this is the
three-mode system considered in Sec. II, where a second
optical mode a3 is introduced as an additional auxiliary reser-
voir with no direct coupling to the mechanics a;. The goal
is to delimit the regime where the target system (a;) re-
mains weakly coupled with the system of engineered reservoir
modes (a,, as), in order to extend the cooperativity-dominated
regime for cooling. Based on the coupling phase diagram of
Fig. 4(a), this may be achieved if we choose to operate in re-
gion II where {a;, a,} and {a,, a3} subsystems remain weakly
coupled, while optical baths a; and a, hybridize to form
supermodes.

To demonstrate this, we follow the same procedure as for
the two-mode case and calculate the phonon population as a
function of coupling of the mechanics to the system of optical
cavities g;. To gain some intuition of the modified strong
coupling threshold, we first treat the auxiliary optical mode
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as as quasistatic, k3 > max{k, K2}, and use its steady-state
solution,

2 . in
as = K—(—lgzaz + iay), (14)
3

to solve for dynamics of the reduced two-mode system
{ai, ay}. In this limit, the mechanical mode can be viewed as
being coupled to a single optical mode a, with a modified
decay rate k5" = k(1 4+ C3), and a concomitant input noise
aizn’eff = al —i/Cral, where C; = 4g3/(k2k3) denotes the
cooperativity for the optical subsystem. Following standard
procedure, we find the phonon population for this effective
two-mode system as

(1+C2) + k1 /k5"(1 + C1 + Cp)
(1 +K1/K2eff)(l +Ci+C)
Ci/(1+Cy)
(14 &1 /6511 +Cy + Ca)
CiC/(1+C)
(L4 &1 /kST) (1 +Cr + Co)

(2)eff _
n; = Ny

+ n,

+nq s)

where n,,, n,, and n, denote the intrinsic populations of
the mechanical mode and optical modes in the absence of
couplings. In the limit of C; — oo, n®" = n,, (ic; /™),
analogous to the conventional two-mode system. This simple
analysis indicates that in the presence of an additional decay
channel presented by the auxiliary mode a3, strong-coupling
threshold may be realized at a higher value corresponding to
the high effective decay rate presented by the bath modes.
However, an adiabatic elimination of a3 strictly holds true
for C; < 1. In order to obtain phonon population for strong
coupling between optical modes—which is the regime of
interest for operating in region II of Fig. 4(a)—we perform
the calculation for the full three-mode system including the
dynamics of the auxiliary optical mode. For full details of
this calculation, we refer the reader to Appendix B; here
we present the simplified expression for phonon population,
obtained in the limit of large cooperativities (C;» > 1) and
for the decay hierarchy k3 > k» > ki,

C k2 C C

3) 2 ! 1

n ~ N + —=— )+ n| ————

1 ( K32 Cz) <C1 + (K32//<1K2)C2>

Ci+C

+nu( (k3 /K1K2)Ca >
Ci + (k3 /k162)Ca

Following a similar line of logic as for the two-mode case, we
can distinguish the cooperativity-dominated regime (C,/C; >
Kk1/k3) from the decay-dominated regime (C,/Cy < k1/k3) of
operation by analyzing the coefficient of the n,, term. Inter-
estingly, the crossover between these two regimes is realized
when the two couplings are balanced, i.e., g = g». As shown
by the result of the full calculation (black curve in Fig. 5),
this is also the point where the lowest phonon population is
achieved with the floor, nﬁ)mn = 2n,k1 /K3, determined solely
by the decay rates. This indicates that while the quantum
correlations of reservoir modes enhance cooling, eventually
strong-coupling effects lead to a resurgence observed for large
values of g;.

(16)

Note that unlike the two-mode case where the real and
imaginary parts of eigenvalues exhibit a bifurcation as the
system crosses EP2, the eigenvalues of M® show no char-
acteristic signature as this crossover is approached [see
Fig. 2(b)]. However, we can evaluate a threshold value for g1,
given a value of g,, using the metric proposed in Eq. (11),
below which mechanical mode remains weakly coupled. This
value of g; = gsc corresponds to the intersection of the line
g>/k> = 10 with the boundary of regions II and Il in Fig. 4(a).
Notably, as shown in Fig. 5, the predicted value of ggc is con-
sistent with the fact that hybridization of the modes acts as a
precursor for population saturation, and beyond this point the
cooling is progressively impeded with increase in coupling.
Thus, eigenvector-based analysis is able to detect the transi-
tion from weak to strong coupling in dissipation-engineered
systems, which cannot be discerned by analyzing eigenvalues.

V. CONCLUSIONS

In conclusion, we have introduced a method to diagnose
strong coupling in a multimode open system with bilinear
interactions. The proposed method is based entirely on eigen-
vectors of the matrix describing the coupling and local decay
rates of the modes. In addition to delineating the regions of
weak and strong coupling, it allows a means to identify the
physical subsystems that undergo hybridization in different
regions of the coupling landscape and shows how different
connectivity configurations can be present while maintaining
a fixed coupling depth. This indicates that detailed informa-
tion about both connectivity and coupling depth is essential
for a full characterization of dressed states in strongly coupled
systems. We present sideband cooling in a multimode optome-
chanical system as an example to show how this method can
reveal the crossover of the target oscillator from cooperativity-
dominated dynamics to decay-dominated dynamics in the
presence of a strongly hybridized optical reservoir. Thus, us-
ing eigenvectors to characterize open system dynamics, which
cannot be detected by EPs, can present opportunities for dis-
sipation engineering where, by construction or design, only a
subsystem is accessible for control and measurement.

Remarkably, the proposed method shows how tiling only
pairwise hybridized modes can detect exceptional points of
arbitrary order (at least for bilinear interactions). This is strik-
ingly reminiscent of dimensional reduction methods used for
feature analysis of multidimensional data and bodes well for
the ongoing program of using low-weight measurements to
deduce the structure of complex entangled states. The current
work thus just scratches the surface in adapting sophisti-
cated data analysis tools to resolve challenging problems in
many-body open systems. For instance, leveraging connec-
tions to statistical techniques such as projection pursuit, the
eigenvector-based method presented here may be general-
ized to different coupling topologies, PT-symmetric systems
[23,24], systems with gain [25], and even nonlinear cou-
plings. Finally, our results present an interesting counterpoint
to recent proofs of eigenvector-eigenvalue identity proven for
Hermitian matrices [26] and suggest that information parity
between eigenvalues and eigenvectors may not hold for open-
system physics described by complex symmetric matrices,
even in principle.
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APPENDIX A: EIGENVALUE ANALYSIS FOR THREE-
AND FOUR-MODE SYSTEMS

1. N = 3 case

We first write the characteristic polynomial p(A) of M®),
as p(A) = ard + BAr% + yA + 8, where

a=1, (Ala)
K1+ Ky + K3
B = T’ (Alb)
y = g(13>2 _I_g(23>2 i K1k +K1:3 +K2K3’ (Alc)
3)2 3R
5 — 4g" K3 +4g5 K +K1K2K3. (Ald)

8

Using Cardano’s method, we can first write p(x) into the de-
pressed cubic form p/(z) by substituting A =t — /3w, such
that

Pt) =1 +3et — 26, (A2)
with
3ay — B2
€1 = Toq? (A3a)
9apy —27a%8 — 283
= A3b
@ 5403 (A3b)

Solving for the roots of the cubic equation, p/(t) = 0, and
using Egs. (A3) give the eigenvalues e\’ of M as

e =m0 +ns +n-, (Ada)
653) =19 +ei27‘[/3n+ +ei47‘[/3n_’ (A4b)
853) =19 +ei47t/3n+ +€i2n/37’]_, (A4C)

1/3
where 7y = —B8/(3a), ne = (62 £ /€5 +€) . In this rep-

resentation, the location of exceptional points can be found as
(27]

EP2 : disc(M®) =0 <= € +¢ =0, (A5)

EP3:¢; =0and e; = 0. (A6)

2. N = 4 case

For the four-mode case, we similarly write the characteris-
tic polynomial of M® as p(1) = ar* 4+ bA> + cA?> + di + e,

where
a=1, (A7a)
b= K1+K2;K3+K4, (ATb)
¢ = 267 4 o2
K1Ky + K1Kk3 + Kok3 4+ K1Kq4 + KoKy + K3K4
1 ,
(A7c)

1
d= 5(48(14)20(1 + ey + ks + k) + 4857 (et + k)

K 1K2K3 + K1K2K4 + K1K3K4 + Kok3K4), (A7d)

1
e= 3(14)4 + 28(14)2(161/62 + K3K4)
1
+ —K1K4 (4g(24)2 + K2k3). (A7e)

16

Using Ferrari’s method, we rewrite p(A) in depressed quartic
form P’ by substituting . =y — b/(4a) such that

P'y)=y"+ fiy’ + oy + f (A8)
where
f 8ac — 3b* (A9a)
=, a
! 8a?
b® — 4abc + 8a%d
fr= : , (A9b)
8a
—3b* + 16ab*c — 64a*bd + 256a°¢
= Z . (A90)
256a

Solving for y and subsequently A gives the eigenvalues of M
as

4 fl f2
€§)=G1—G3+\/—G%—3+E, (AlOa)
) , N 12
=G —Gy3— |-G — — + —/—, A10b
e, 1 3 \/ 375 +4G3 ( )
4 fl f2
eg)_Gl+G3+\/_G§_E_E’ (A10c)
@) , h o f
=G +G— |-GE—2 — 2 (Alod
€y 1 +G3 \/ 3 ) 4G5 ( )
where
b
Gi =, (Alla)
1/3
81+,/82—483
Gy = flz , (A11b)
Gy = LG, + & Allc)
3—283+3(2+G2) (Allc
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FIG. 6. Black curves denote locus of EP2 points obtained using
disc(M@®) = 0, while the blue curve is a parametric plot of the
second condition in Eq. (A14) calculated for the decay rates used
in Fig. 2(c). The intersection of the black and blue curves gives the
location of EP3 for the four-mode system.

with

2¢3 — 9bed + 27b%e + 27ad? — T2ace

g1 = ~ . (Al2a)
c? — 3bd + 12ae

=, (A12b)
3b% — 8ac

= Al12
8 22 (Al2c)

In this representation, the location for exceptional points fol-
lows similarly as in the N = 3 case:

EP2 : disc(M*) =0 <= g} —4g =0. (Al3)
However, for EP3 in the four-mode system,
& =4g and f3=—f1/12. (A14)

We note that for the decay rates used in the main text, exactly
one EP3 is realized for the N = 4 system as depicted in Fig. 6.

APPENDIX B: CALCULATIONS FOR THREE-MODE
COOLING

Using the Hamiltonian in Eq. (1) for N = 3, we can write
the equations of motion for a three-mode optomechanical
system as

d&1 K1 in

— = —ig10h — —a K1ai, B1
7 818 — 5 1+ JK1a) (B1)
day A A K2 Ai

7 = s gl — o + JKody, (B2)

da K .

25 = gty — 2 + Al (B3)
dt 2

This system of coupled differential equations can be solved as
a system of algebraic equations in Fourier domain to obtain
the solution for the mechanical mode operator a;[w],

. (B+x'xs") }
[w] = k { —— T'[w]
e gxi' @ +n'nt) ate
.o
—l81X3 }Ain
+ [w]
Kz{g%x31+xl @+66n*"
—8182 Am
+ VK3 [w],
{g1x3 + 0 (S + 0 x 1)} ¢

with the susceptibilities xi’l = —iw+«;/2,i € {1, 2, 3}. This
enables calculation of the symmetrized spectral density for the
mechanical mode,

1 oo
Shalel =3 / do (@[} o] + & [w]a][w']).

oo

from which effective population of the mechanical mode then

follows as
1 do -
3
(n(l )+ 5) = / Esalal [w].

The resultant expression of ﬁf) obtained following this proce-

dure is
3) o1 o) 03
= Nm= 0S a3 B4
n > +n > +n > (B4)
where
IC2 I(3 K3
G1=|:—12+ 1 1 (1+C1)}(1+Cl+(32)
I(H KoK K1 K3K) K1

K1 2 K12
+H = )A+C) = [ — )CA +Co), (B5a)
K KikL
2
o = <ﬁ>cl + (K >61 (61 vo+ 2 ) (B5b)
K| K3 K|
K1 KIZ
03 = (— + )Clcz, (B5c¢)
K| KiKkL

2
S =140 +cz)[§(1 +C)+ %cl (1 + ’“"3)
Il >

2 kL

(k1 + KL)]s (B5d)

K”KJ_

with K| = kok3 /(Ko + K3), K1 = Kk» + k3.
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