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Abstract

Many geomorphic phenomena such as bank failures, landslide dams, riffle-pool

sequences and knickpoints can be modelled as spatial point processes. However, as

the locations of these phenomena are constrained to lie on or alongside rivers, their

analysis must account for the geometry and topology of river networks. Here, we

introduce a new numeric class in TopoToolbox called Point Pattern on Stream net-

works (PPS), which supports exploratory analysis, statistical modelling, simulation

and visualization of point processes. We present three case studies that aim at infer-

ring processes and factors that control the spatial density of geomorphic phenomena

along river networks: analysis of a synthetic dataset of points on a stream network,

the analysis of knickpoints in river profiles, and modelling spatial locations of beaver

dams based on topographic metrics. The case studies rely on exploratory analysis

and statistical inference using inhomogeneous Poisson point processes. Thereby, sta-

tistical and probabilistic procedures implemented in PPS provide a systematic

approach for treating and quantifying uncertainties. PPS offers a consistent numeric

framework for modelling point processes on river networks with a wide range of

applications in fluvial geomorphology, but also other disciplines such as ecology.
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1 | INTRODUCTION

Many geomorphic phenomena along rivers can be represented as spa-

tial point processes. For example, bank failures (Fonstad &

Marcus, 2003; Liang et al., 2015), landslide dams (Korup, 2006;

Tacconi Stefanelli et al., 2015; Fan et al., 2020), riffle-pool sequences

(Golly et al., 2019), wood jams (Wohl, 2013; Scott et al., 2019), and

knickpoints (Berlin & Anderson, 2007; Phillips & Lutz, 2008; Gailleton

et al., 2019; Schwanghart & Scherler, 2020) are phenomena that occur

at specific locations along rivers and that – at particular spatial scales

of analysis – can be represented as point features. Many questions

about these processes are inherently linked to their spatial arrange-

ment. For example: Do these phenomena occur randomly in space, or

are there mechanisms that cause these phenomena to cluster spa-

tially? Are there interactions between these phenomena that generate

some characteristic spacing between them or do additional factors

exist that promote their spatial density? A spatial point process is a

stochastic mechanism that generates patterns of points in space. The

analysis of point patterns – a major subject within the field of spatial

statistics – is concerned with understanding and modelling the sto-

chastic and deterministic mechanisms that generate the patterns

(Baddeley et al, 2015). While point pattern analysis has pervaded

many geoscientific disciplines, there are relatively few applications in

geomorphology (Trenhaile, 1971; Oeppen & Ongley, 1975; Tarboton

et al., 1989; Bishop, 2007b, 2007a; Kraft et al., 2011; Clark

et al., 2018; Lombardo et al., 2018, 2019; Sochan et al., 2019;

Kandakji et al., 2020).

The aim of this study is to explore the opportunities that the anal-

ysis of spatial point patterns offers in geomorphology. In particular,

we are interested in point patterns that occur along river networks.

The network-led spatial configuration makes this kind of analysis chal-

lenging. Statistical techniques designed for point patterns in two-
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dimensional (2D) space are usually based on the Euclidean distance

between points which can be very different from distances along net-

works (Okabe et al., 2009; Ang et al., 2012; Rakshit et al., 2017;

Moradi et al., 2018; Baddeley et al., 2020). While methodological

developments in geostatistics have established a mature set of tools

to tackle interpolation along stream networks (Ganio et al., 2005;

Cressie et al., 2006; Skoien et al., 2006; Ver Hoef et al., 2006), point

pattern analysis on networks is a relatively young and active field of

research (Okabe & Sugihara, 2012; Baddeley et al., 2015).

Here, we present an extension to the MATLAB-based terrain

analysis software TopoToolbox (Schwanghart & Kuhn, 2010;

Schwanghart & Scherler, 2014) called PPS (Point Pattern on Stream

networks), which implements the statistical principles and techniques

of point pattern analysis on linear networks. PPS complements other

tools for point pattern analysis. The R-package spatstat (together with

its recent extension spatstat.Knet [Rakshit et al., 2019]) is among the

most comprehensive software packages that also handles point pat-

terns on networks (Baddeley et al., 2015) and has strongly influenced

the design of PPS. In addition, SANET (Okabe et al., 2006, 2018) is a

toolbox for ESRI ArcGIS for analysing events that occur on networks

or alongside networks. Incorporating PPS in TopoToolbox offers

seamless workflows including data import, analysis, modelling and

visualization in the MATLAB programming environment. The ease of

working in one computational programming environment and the

availability of computational tools for working with river network data

was a major motivation to develop PPS alongside TopoToolbox.

In the following text, we provide a brief introduction to spatial

point processes, their application in geomorphological research and

their modelling on linear networks. We then outline how PPS is

implemented in TopoToolbox and demonstrate a number of tools.

Subsequently, we present an analysis of synthetic point patterns and

two applications in which point pattern analysis serves as an approach

to investigating and modelling the occurrence of geomorphic forms

and processes along river networks.

2 | SPATIAL POINT PROCESSES

Point pattern analysis is a branch in spatial statistics that studies the

spatial arrangement of points. A point pattern consists of a set of loca-

tions of events or features that are the realization of a stochastic pro-

cess in a bounded study region. In other words, these locations are

the outcome of a mechanism which point pattern analysis seeks to

explore, describe and explain (Gatrell et al., 1996). Such analysis, how-

ever, will only rarely, if ever, fully characterize this mechanism. Rather,

it aims to reveal some of its properties. It has proven useful to classify

these properties into first- and second-order effects or variations

(Gatrell et al., 1996). First-order variations arise from spatial trends or

other covariates that control the spatial density of points. For exam-

ple, the spatial density of bank collapses along a river is a function of

the type of rocks or sediments, but may additionally be controlled by

spatial trends in water level fluctuations, river gradient and planform

geometry (Fonstad & Marcus, 2003; Liang et al., 2015). Bank collapses

can also impact the occurrence of other events of bank failures. Once

a bank has failed, river flow patterns may change and thus make adja-

cent banks susceptible to failure due to debuttressing. Close to an

existing bank failure we might thus expect even more bank failures. In

this case, we hypothesize a second-order effect due to direct physical

interactions that cause bank collapses to be more frequent close to

other failures. Another example for a second-order variation is the

effect of seed dispersal on the spatial density of plants, but we may

also think of processes that inhibit small distances between adjacent

points such as the competition for nutrients, light and water.

Point pattern analysis commonly aims to identify first- and

second-order effects as departures from complete spatial randomness

(CSR). CSR means that the expected number of events is independent

from any spatial trend or covariate, and that event locations are spa-

tially independent from each other. The probability of having a point

in a certain location is not affected by the absence or presence of

other points. The point process that generates such an arrangement is

the homogeneous Poisson point process. However, comparing spatial

point patterns against this null-model rarely is an end in itself. Rather,

it provides the starting point from where point processes of first-

and/or second-order variations can be explored (Gatrell et al., 1996).

The inhomogeneous Poisson point process, for example, considers

nonstationary processes and the effects of spatial trends and

covariates on point densities while assuming absence of point interac-

tions. Log-Gaussian Cox processes extend this assumption to

unobserved variables represented by a realization of an underlying

stationary process with spatial autocorrelation (Diggle et al., 2013).

Dependence between points is often called interaction, which encom-

passes numerous ways how events can influence other events, caus-

ing them to be apart or to agglomerate (Baddeley et al., 2015). The

class of Neyman–Scott models conceptualizes point clusters as ran-

domly dispersed realizations around a (unobserved) set of parent

points. Gibbs models, in turn, explicitly incorporate interactions in

their formulation and are flexible models for both attracting and repel-

ling points (Baddeley et al., 2015). Hawkes processes (Hawkes, 1971)

are self-exciting processes, that is the occurrence of an event can trig-

ger a sequence of future events. This class of point processes has

been widely used to model spatio-temporal seismicity patterns

(mainshocks and aftershocks) (Ogata, 1998; Molkenthin et al., 2020).

Point pattern analysis aspires to infer point process models from

one (or sometimes several) realization of points. Evidence for any of

the models can be evaluated based on the statistical significance

of model terms, and where applicable incorporating prior knowledge

in a Bayesian framework (Korup, 2020). Although inferring mecha-

nisms from point patterns by this approach might appear straightfor-

ward at first glance, model fitting in point pattern analysis is often

challenging (Brandolini & Carrer, 2020).

3 | POINT PATTERN ANALYSIS IN
GEOMORPHOLOGY

A central theme in geomorphology is the spatial assemblage of land-

forms. Once the spatial scale of analysis permits to conceptualize

these landforms as points, point pattern analysis lends itself as

method of choice to learn something about the mechanisms that pro-

duce the landforms (Bishop, 2007a).

Early studies using point pattern analysis in geomorphology per-

tain to the analysis of drumlins (Smalley & Unwin, 1968;

Trenhaile, 1971). For example, Trenhaile (1971) took summits of

drumlins mapped in several drumlin fields of southern Ontario to test
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whether their distribution is random, clustered or regular. Comparing

drumlin counts in different quadrat sizes with a Poisson model for ran-

dom patterns and a Dacey model for more regular patterns suggested

that drumlin distribution is more regular than random. Trenhaile (1975)

assigned the regularity to critical stress levels in the ice and the distri-

bution of boulder-content of the drumlin material. Similar analyses

have been conducted to understand the formation of simple and com-

pound barchan dunes on Mars (Bishop, 2007b). Based on ordered

neighbour analysis, the study found that dunes exhibit a pattern of

uniformity across various spatial scales which Bishop (2007b) inter-

preted as advanced stage of dune formation towards a steady-state

equilibrium.

Point pattern analysis has also been used to analyze sinkholes

(Vincent, 1987; Rowlingson & Diggle, 1993; Galve et al., 2011), cliff

erosion (Rohmer & Dewez, 2015), and landslides (Lombardo

et al., 2018, 2019) and thus has direct application in hazard and risk

assessment of geomorphic processes. For example, Galve et al. (2011)

analysed sinkholes in the Ebro valley where > 50 sinkholes km�2 yr�1

in an evaporite karst were related to irrigation practices. The perfor-

mance of the model increased by accounting for clustering which the

authors interpreted to reflect a self-reinforcing process between sink-

holes and the subsurface in the near vicinity. Landslide susceptibility

analysis aims to quantify the spatial probability of landslide occur-

rence on the basis of local terrain conditions. Statistical techniques

include weights-of-evidence (Bonham-Carter & Agterberg, 1989;

Meyer et al., 2014), logistic regression (Heckmann et al., 2014) or

other classification techniques of machine-learning (Korup &

Stolle, 2014). These approaches are usually based on raster data

(e.g., elevation) and evaluate the presence or absence of landslides on

a per pixel basis, which in fact represents a particular point pattern

analysis. For example, the pixel-based logistic regression is approxi-

mately equivalent to a homogeneous or inhomogeneous Poisson

point process (Baddeley et al., 2010). Studies that use a point process

based modelling framework are now increasingly used for susceptibil-

ity analysis, and suggest that accounting for latent spatial effects in

the form of Cox processes can strongly increase overall prediction

performance of these models (Lombardo et al., 2018, 2019).

4 | POINT PROCESSES ON NETWORKS

Commonly, spatial point processes are analysed in two or three spatial

dimensions and time. Frequently, however, the events occur on or

alongside networks. Car accidents, for example, are events on a road

network whereas supermarkets are locations alongside the road net-

work. Whether on or alongside, the coordinates of these points are

constrained by a spatial network (network-constrained events or, in

short, network events [Okabe & Sugihara, 2012]). Paths between

points follow the network’s edges and thus distances rarely follow

direct Euclidean distances. Instead, standard practice is to measure

distances in networks by the length of the shortest path, least-cost or

resistance distances (Rakshit et al., 2017). To this end, many existing

methods in point pattern analysis rely on the Euclidean distance which

may be inappropriate or fallacious if applied to network events

(Okabe & Sugihara, 2012; Rakshit et al., 2017; Baddeley et al., 2020)

(Figure 1). In addition, much of the methodology developed in two or

three spatial dimensions cannot be extended to point processes on

networks because network structure differs around different

neighbourhoods which creates fundamental problems because sta-

tionary processes cannot be defined. This problem is evident when

networks have cycles but less relevant if the network is an acyclic

graph such as a river network (Baddeley et al., 2017, 2020).

Geomorphological research often pertains to the analysis of net-

works (Heckmann et al., 2015), in particular river networks. Concomi-

tantly, numerous events exist that are bound to lie on or alongside

river networks. For example, riffle-pool and step-pool sequences are

phenomena that exhibit regular distances (Tarboton et al., 1989;

Knighton, 1998; Golly et al., 2019), which should be measured along

the river rather than the Euclidean distance. Landslide dams, bank col-

lapses, and beaver dams are other spatially random phenomena which

can be observed on or alongside rivers and which are possibly con-

trolled by covariates that vary along the river network. Any point pat-

tern recorded along a river network should be associated with

distance metrics that account for mechanisms of dispersal which are

often linked to network geometry and topology. It may seem straight-

forward that distances in river networks ought to be calculated in

metric units from the outlet or channelheads, but we may also weight

these distances by stream flow (Ver Hoef et al., 2006) or elevation

(Foltête et al., 2008), or use metrics such as χ-transformed distance

(Harkins et al., 2007; Perron & Royden, 2013) which are increasingly

used in the analysis of river profiles and network topology. The choice

of distance metric depends on the application and should be guided

by additional information (Rakshit et al., 2017). Hence, not all

network-constrained points must be analysed using network-derived

distances. In an analysis of the spatial patterns of river junctions, for

example, Oeppen and Ongley (1975) relied on the planar Euclidean

distance.

5 | SOFTWARE IMPLEMENTATION OF
POINT PATTERN ANALYSIS ON STREAM
NETWORKS

Few software exist that support the analysis of points that are con-

strained to lie on or along linear networks. SANET is a Toolbox for

ArcGIS but also interfaces to the R statistical computing software

(Okabe et al., 2006, 2018). Its main strength lies within the explorative

analysis of network events based on numerous tools (e.g., hotspot

analysis via clustering, K function, nearest-neighbour distance

methods). The R package spatstat (Baddeley et al., 2015) has its main

focus on point pattern analysis in 2D or higher dimensions, but

includes numerous tools for the analysis of network events, too.

Thereby, spatstat – one of the most comprehensive R packages on

the CRAN server – implements state-of-the-art techniques of statisti-

cal exploration, parametric model fitting, and simulation that can be

applied to linear networks.

Although software for the analysis of point pattern analysis exist,

we developed our software PPS on top of TopoToolbox, a MATLAB

software for topographic analysis (Schwanghart & Scherler, 2014).

TopoToolbox pursues an object-oriented programming approach that

simplifies programming tasks which involve gridded digital elevation

models (DEMs) and topographic derivatives (Figure 2). A DEM is

stored as an object of the class GRIDobj which includes the matrix of

elevation values and information on extent, resolution, and coordinate
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reference system. Flow directions are derived from DEMs and are

stored as an instance of the class FLOWobj. Using topological sorting

of the flow network (Hergarten & Neugebauer, 2001; Braun &

Willett, 2013), this computational object enables the derivation of

drainage basins or computations such as flow accumulation

(Schwanghart & Scherler, 2014). Moreover, FLOWobj is the basis for

the delineation of stream networks which are stored as an object of

the class STREAMobj. Any computation with stream networks adopts

highly efficient algorithms from graph theory (Heckmann et al., 2015).

PPS takes advantage of the algorithms that are readily available in

TopoToolbox and extends their capabilities to numerous new applica-

tions that enable the analysis of point patterns on stream networks

(Figure 2).

6 | NUMERIC IMPLEMENTATION AND
METHODS OF PPS

Computational representations of networks can rely on either vector

or raster representations (Okabe & Sugihara, 2012). Being built on the

STREAMobj class, PPS uses a hybrid approach. An object of class

STREAMobj is derived from a DEM. Thus, the nodes of the PPS

stream network refer to cell centres of the DEM. The topology of the

network is determined by edges that link the cell centres in cardinal

and diagonal directions (8-connectivity). Each node in the network

can have attribute values which we refer to as a node-attribute list.

An instance of PPS is created by combining a stream network with a

point dataset represented by a set of coordinates. If the points are not

located on the stream network, they are snapped to the nearest nodes

of the stream network either measured by the Euclidean distance or

along flow directions on hillslopes, and their distance to the stream

can be an attributed of the points. Formally, PPS thus adopts a fine-

pixel approximation of a point pattern (Baddeley et al., 2015).

A PPS object is created using an instance of STREAMobj and a

set of coordinates of points, line features (e.g., fault traces) that inter-

sect the stream network, or a model that randomly generates points

(Figure 2). Supported models are the binomial and the homogeneous

Poisson point process that randomly distribute points on the network

given a specified total number of points and intensity (average num-

ber of points per unit length), respectively. For example, the pattern in

Figure 1(b) was generated by a Poisson process with an intensity of

5 � 10�4 m�1. Once initiated, an object of PPS can access numerous

functions (or methods) which are summarized in Table 1. The func-

tions are broadly categorized into tools for explorative analysis, infer-

ence and simulation, and visualization. In addition, there are a number

of conversion tools and other utilities such as interpolation tools.

Explorative analysis of point patterns often begins with kernel

density estimates to highlight spatially varying densities of points.

While kernel density estimates are straightforward in one-dimensional

(1D), 2D or higher dimensions, they are not directly applicable to net-

works. Conventional 2D kernel density estimators applied to points

on river networks may easily overestimate densities along adjacent

rivers albeit the rivers may be disconnected (Rakshit et al., 2019).

Applying 1D kernel density estimators to networks, however, is also

fallacious because it fails to conserve mass where networks branch

(Okabe & Sugihara, 2012; McSwiggan et al., 2017). The function

(a)

(b)

F I GU R E 1 Spatial point processes clearly
lack a completely random pattern (a) if we ignore
that their locations are constrained by a network.
If we take this constraint into account (b), it is
more difficult to decide if the observed point

pattern is completely random or not
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density adopts the approach of McSwiggan et al. (2017) who imple-

ment Gaussian kernel density estimation on networks using an

approach that perceives Gaussian kernels as heat kernels and the vari-

able densities along the network as Brownian diffusion (McSwiggan

et al., 2017).

Clustering is a technique that groups similar objects to classes. In

spatial point pattern analysis this technique is used to detect spatial

clusters of points, and to merge them eventually to a set of new

points. The function cluster uses hierarchical clustering based on the

shortest-path distances of all points (Okabe & Sugihara, 2012). The

resulting spatial clusters can subsequently be merged using the func-

tion aggregate, which computes cluster centres by finding the network

node that minimizes the sum of squared shortest distances from each

point in the cluster.

An important question in the analysis of point patterns is whether

the intensity of points depends on spatial covariates. Parametric

models describing this dependence have a long tradition in point pat-

tern analysis. These models require that the dependence structure of

the model is known. Yet, often we do not know the form of the

model, or the form is too complicated to be fitted by a parametric

model. Thus, nonparametric estimation provides an important explor-

atory approach, since it determines the model structure from the data.

While nonparametric models do not completely lack parameters, they

model the relationship between variables with fewer assumptions,

and are thus particularly suitable for explorative analysis (Baddeley

et al., 2012). We implemented this nonparametric technique in PPS

with the function rhohat which also calculates confidence intervals

using bootstrapping.

Nonparametric analysis of covariate dependence makes no

assumptions about the shape of the functional relationship

between point density and an explanatory variable. However, if the

type of relationship is known or hypothesized, then parametric

techniques are a more powerful way to analyse the data (Baddeley

et al., 2015). The most common model in point pattern analysis is

the inhomogeneous Poisson point process model with an intensity

which is a loglinear function of the covariates (Baddeley

et al., 2015)

λ uð Þ¼ eB uð ÞþθTZ uð Þ ð1Þ

where λ is the intensity of points at locations u, B is a known baseline

intensity, and θ is a vector of p parameters for a vector-valued func-

tion Z(u)= [Z1(u)…Zp(u)]. Estimation of the parameters in Equation 1 is

detailed in McSwiggan (2019) and based on numerical methods as no

explicit closed-form solution is available for the maximum likelihood

estimator. Such numerical methods need to rely on discretization

using a quadrature scheme. The network representation of PPS

derived from DEM pixels provides such a quadrature scheme so that

it is straightforward to apply standard techniques such as logistic

regression or Poisson regression to estimate the parameters. The

function fitloglinear uses fitglm which is part of the MATLAB Statistics

and Machine Learning Toolbox and fits generalized linear least

squares problems. PPS also features a Bayesian approach to analyse

loglinear models. The function bayesloglinear interfaces with the

BayesReg Toolbox (Makalic & Schmidt, 2011, 2016) which provides

highly efficient and numerically stable implementations of penalized

regression techniques.

PPS features tools to study second-order effects in point pro-

cesses. For example, the function Kfun calculates the empirical

K-function on a linear network according to the methods of Okabe

and Sugihara (2012) and Ang et al. (2012). The empirical K-function

measures the cumulative average number of point pairs ij lying within

F I GU R E 2 Numerical classes in TopoToolbox and the new PPS class [Color figure can be viewed at wileyonlinelibrary.com]
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a distance r of a typical data point, and standardized by dividing by

the intensity λ= n/jLj where n is the number of points and jLj is the

total length of the network (Baddeley et al., 2015).

bK rð Þ¼ Lj j
n n�1ð Þ

Xn
i¼1

Xn
j¼1

j≠ i

1 dij ≤ r
� � ð2Þ

For 2D data, calculation of the K-function is straightforward. Yet, if

points are constrained to lie on a network, the approach requires that

distances are measured as the shortest path distance d along the net-

work (Okabe & Sugihara, 2012). Compared to Okabe’s method, the

method by Ang et al. (2012) additionally accounts for network geome-

try (and thus for edge effects) by weighting point pairs so that the the-

oretical K-function for a homogeneous Poisson process is Kpois(r)= r

(Ang et al., 2012). Besides its use as exploratory tool to study second-

order effects in point processes, the K-function is used to fit paramet-

ric models that include clustering or point interactions (e.g., Cox,

Neyman–Scott, Gibbs, or Hawkes models). These models and inferen-

tial techniques are currently not supported by PPS.

7 | CASE STUDIES

Applying the techniques and tools outlined in the previous section,

we present three case studies in which the analysis of point patterns

is used to extract information about (geomorphological) processes

that take place on or alongside rivers. The first case study is based on

a simulated river network derived from the numerical landscape evo-

lution model TTLEM (TopoToolbox Landscape Evolution Model)

(Campforts et al., 2017). Using simulated homogeneous and inhomo-

geneous Poisson point processes we showcase several PPS functions.

In the second case study, we demonstrate how explorative analysis of

knickpoints in river profiles of the Big Tujunga catchment in California

can help reveal two phases of landscape rejuvenation. In the third

case study, we investigate the spatial distribution of beaver dams in

the Tualatin basin, Oregon, and model their geomorphometric con-

straints. For brevity, some of the data and methods of the case studies

are summarized in Table 2. All data are open and freely available, and

scripts and data can be obtained from Schwanghart (2021).

8 | SYNTHETIC DATA ON A SIMULATED
STREAM NETWORK

The stream network in Figure 3 depicts the fluvial response to block

uplift as modelled by the stream power incision model (SPIM). In the

following, we simulate two different point patterns and study their

properties using the techniques outlined in the previous section. The

first realization derives from a homogeneous Poisson point process

with a point density of 10�5 m�1 (Figure 4a). As expected, quadrat

counting and χ2 testing as implemented in the function quadratcount

result in a very high p-value (p = 0.75) that underscores that the

observed pattern is very likely under the CSR hypothesis. A nonpara-

metric dependence estimate using elevation as covariate (Figure 4b)

suggests that there is no influence of this variable on point density. The

steep rise of densities at high elevations is not significant as shown by

the bootstrap confidence intervals and likely related to few points at

high elevations covered by only a minor portion of the stream network.

The empirical network K-function also remains within the acceptance

T AB L E 1 Overview on Point Pattern on Stream networks (PPS)
functions

Function Description

Creating an instance of PPS

PPS Constructor function that creates an instance of

class PPS from a stream network

(STREAMobj) and a set of points.

Alternatively, the function can generate

randomly distributed points on stream

networks or calculate intersections with a

network of lines.

Explorative analysis

Cluster Hierarchical spatial clustering of points

Density Kernel density estimator on stream networks

Ecdf Empirical cumulative density function

Intensity Intensity (points per unit distance)

Gfun G-function (cumulative nearest neighbour

distance statistics)

Histogram Histogram of point pattern on stream network

Kfun K-function on a linear network

Rhohat Nonparametric estimation of covariate

dependence

Inference and simulation

Fitloglinear Fitting a loglinear intensity model

Bayesloglinear Bayesian analysis of a loglinear intensity model

Quadratcount Quadrat counting

Random Simulation of points using a loglinear intensity

model

Simulate Simulation of points using random thinning

Ploteffects Plot effect of a single predictor variable in a

model

Roc Receiver-operating characteristics curve

Other utilities

As Utility to convert PPS object to other formats

Pointdistances Pairwise distances between points in PPS

Voronoi Voronoi tessalation of the river network based

on points in PPS

Hasduplicates Determine if PPS has duplicate points

Removeduplicates Remove duplicate points in PPS

Convhull Calculate convex hull of points

Aggregate Merge labelled points to a new object of PPS

Idw Inverse distance weighted interpolation on

stream networks

Shapewrite Export PPS as shapefile

Visualization

Plot Plot stream network with points

Plotc Plot coloured stream network with points

Ploteffects Plot effect of covariate in a loglinear model

Plotdz Plot longitudinal profile with points

Plotpoints Plot points only

Wmplot Plot stream network with points in a webmap
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intervals around the bootstrapped simulation intervals of the theoretical

K-function (Figure 4c) which suggests that there are no second-order

effects. To this end, these results are as expected given that the points

were generated by a homogeneous Poisson point process.

In contrast, the second realization shown in Figure 4(d) is simu-

lated based on an inhomogeneous point process, where the intensity

λ is a function of elevation z.

λ zð Þ¼ e�0:0005 z2þ0:1z�14 ð3Þ

The parameters were chosen so that point density reaches a maxi-

mum at the average elevation of the stream network whereas only a

few points are found at low and high elevations. Such a pattern may

reflect a scenario in which an aquatic plant or fish species inhibits only

parts of the river network in response to a climatic gradient (da Costa

et al., 2018). Quadrat counting and χ2 testing returns a p-value of

4.8 � 10�4 which strongly supports the notion that the points were

not generated under the CSR hypothesis, and nonparametric

estimation of dependence reveals the quadratic relation of point den-

sity to elevation (Figure 4e).

At this stage, we know that the point pattern was derived from a

first-order effect of elevation. Yet, in reality we are rarely able to

unambiguously distinguish this effect from one that arises from a

second-order effect which produces clustering. In fact, analysing the

point pattern with the K-function suggests that the points significantly

deviate from the independence assumption of the Poisson process

(Figure 4f). A solution to this problem is to model the point pattern

using an inhomogeneous point process first, and then to test whether

points simulated from this model would exhibit similar K-functions as

the original data. Here we adopt this pragmatic approach and gener-

ate envelopes of the K-function based on simulations from the inho-

mogeneous Poisson model.

The results of this approach are shown in Figure 5. Plotting the

effect of elevation in the model fitted to the point pattern reveals the -

hump-shaped intensity function of points along elevations of the river

network (Figure 5a). Using this fitted model when generating simula-

tion envelopes of the K-function shows that the point pattern is con-

sistent with the inhomogeneous Poisson point process with no

support of additional clustering that may derive from dependence

between the points (Figure 5b).

9 | KNICKPOINTS IN THE BIG
TUJUNGA BASIN

Rivers in the Big Tujunga catchment in the San Gabriel Mountains fea-

ture numerous knickpoints along their longitudinal profiles. These

knickpoints are unrelated to lithological boundaries and they are

found in relatively narrow elevation bands (Wobus et al., 2006), which

suggests that they formed at the range front due to acceleration in

slip rate of the Sierra Madre Fault Zone, and the concomitant adjust-

ment of the stream network to the higher uplift rate (DiBiase

et al., 2015). The aim of this example is to illustrate how an explor-

ative analysis of knickpoint patterns helps in assessing a model of

landscape response times to changes in tectonic uplift.

The most widely used model of fluvial incision and knickpoint

migration is the SPIM (Lague, 2014), which states that the rate at

which elevations z along a river change over time t is a function of

uplift U, erosional efficiency K, upslope area A and local river gradient

T AB L E 2 Data used in the case studies

Case study Simulated
Knickpoints in the Big Tujunga
catchment Beaver dams in the Tualatin basin

Location Artificial landscape simulated with

TTLEM (Campforts et al., 2017)a
California, USA, 34.2�N, 118.2�W Oregon, USA, 45.4�N, 122.8�W

Catchment area Several catchments up to 2825 km2 293 km2 1803 km2

DEM (spatial

resolution)

100 m SRTM-1 (30 m) NED (10 m)

Point pattern Simulated 52 knickpoints detected by

knickpointfinder

510 beaver dams from Smith (2019)

Additional data — Vector data with faults from (USGS and

NMBMMR, 2019)

Stream network vector data from

Nagel et al. (2017)

aParameter values used: Block uplift with 2 mm yr�1, simulation time: 400,000 years, stream-power incision model: K = 10�4, m = 0.5, n = 1. For a

complete list of parameters see Schwanghart (2021).

F I GU R E 3 Simulated landscape and river network used for
generating synthetic point patterns on a network [Color figure can be
viewed at wileyonlinelibrary.com]
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∂z xð Þ
∂t

¼U x,tð Þ�K x,tð ÞA x,tð Þm dz
dx

����
����n ð4Þ

where x is the distance from the river outlet along the flow network,

and the exponents m and n are empirical constants. Assuming that U

and K do not vary in time and space, and that drainage configurations

remain unchanged, the steady state channel slope is calculated with

dz
dx

����
����¼ U

K

� �1
n

A xð Þ�m
n ð5Þ

a relation between channel slope and area that predicts an upward

concave river profile (Hack, 1957). Based on Equation 4, Harkins

et al. (2007) and Perron and Royden (2013) introduced a coordinate

transformation which linearizes the power-law relation. The lineariza-

tion takes the integral of the left and right term in Equation 5 so that

elevation becomes a linear function

z xð Þ¼ z xbð Þþ U
KAm

0

� �1
n

χ ð6Þ

where

(a) (b) (c)

(d) (e) (f)

F I GU R E 4 Synthetic random point patterns simulated on river network in Figure 3. (a) Homogeneous Poisson point pattern.
(b) Nonparametric dependence estimation of the pattern in (a) on the covariate elevation. Blue lines indicate covariate values of points, the black
line shows the density estimate, and the green shaded area denotes the bootstrapped 95% confidence intervals of the density estimate. (c) Red
line denotes the empirical K function of the points in (a) and dashed line and grey envelope are simulation mean and envelope based on
19 simulations of a homogeneous Poisson point process. (d) Inhomogeneous point pattern with a pronounced peak in densities at the average
elevation of the river network. (e) Same as (b) but derived from the inhomogeneous Poisson point pattern in (d). (f) Same as (c), but derived from
the point pattern in (d) [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I GU R E 5 (a) Loglinear quadratic model of point density on the network shown in Figure 4(d). (b) Empirical K-function of points on the network
and envelope of K-functions calculated from the inhomogeneous Poisson process model in (a) [Color figure can be viewed at wileyonlinelibrary.com]
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χ¼
ðx
xb

A0

A xð Þ
� �m

n

dx ð7Þ

with A0 (which we set to 106 m2) being a reference area and xb being

the location of the base level (Perron & Royden, 2013). The linear

form of the SPIM (with n = 1) predicts that perturbations to river ele-

vations, for example by base level change, migrate upstream as a func-

tion of upstream area (Berlin & Anderson, 2007). The

χ-transformation normalizes for upstream area so that any base level

change at xb in the past, should result in knickpoints that cluster at a

specific value of χ, irrespective of whether the perturbation has trav-

elled upstream the trunk river, or any of its tributaries (Perron &

Royden, 2013; Schwanghart & Scherler, 2020). Thus, χ serves as a

metric for distances travelled by perturbations upstream in the river

network (Fox et al., 2014).

In order to test the knickpoint celerity model (Equation 4) in the

Big Tujunga catchment, we derived a stream network with a minimum

supporting upslope area of 0.9 km2. Locations of knickpoints were

identified with the function knickpointfinder, an automated method of

knickpoint identification based on iterative fitting of strictly concave

stream profiles that is implemented in TopoToolbox and described in

Stolle et al. (2019). Applying a tolerance of 20 m – which is about the

maximum elevation error recorded along streams of the SRTM-1

(Schwanghart & Scherler, 2017) – yields 52 knickpoints (Figure 6a).

Knickpoint height – the elevation difference between the fitted pro-

file and a knickpoint, and a measure taken here for the prominence of

each knickpoint – ranges between 22 and 216 m.

The majority of knickpoints are located in the lower part of the

catchment (Figure 6a), which is also reflected by the nonparametric

estimate (function rhohat) which shows how knickpoint locations

depend on the distance to the range-bounding fault (Figure 6b,

dashed grey line). Weighting knickpoints by their squared heights

(black line) the occurrence of few but prominent knickpoints in the

upper part of the basin is accentuated. We calculated χ with an m/n

ratio of 0.4 which has previously been used by Perron and

Royden (2013) for the same catchment. Figure 6(c) is similar to

Figure 6(b), but depicts density estimates as a function of χ. Again, a

non-weighted density estimation highlights the knickpoints in the

vicinity to the catchment outlet, whereas weighting them reveals two

pronounced peaks at χ values around 2000 and 5000 m. However,

uncertainty intervals (based on bootstrapping) of the density esti-

mates of the second peak are high and reflect the scarcity of

knickpoints in the upper part of the catchment.

Mapping the patterns of knickpoint density obtained from the

weighted nonparametric dependence model in Figure 6(c) back to

spatial coordinates (Figure 7) reveals the expected spatial locations of

F I GU R E 6 Knickpoint patterns in the Big Tujunga catchment. (a) Hillshade map of the catchment and faults (grey lines), knickpoints and
χ-values of the river network. The size of the knickpoint symbols linearly scales with knickpoint heights, which range between 22 and 216 m.
(b) Distribution of knickpoints along river profiles (blue lines). Grey dashed line shows the nonparametric dependence of knickpoint locations
(with grey envelopes indicating bootstrapped 95% confidence intervals) as a function of distance from the range-bounding fault. The black line
shows the dependence estimate weighted by the knickpoint height. The bandwidth for both estimates is 3000 m. (c) Same as (b), but with the

covariate being χ and bandwidth being 400 m [Color figure can be viewed at wileyonlinelibrary.com]
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knickpoints. Clearly, as the model was obtained from actual knickpoint

locations, both must be consistent to a certain degree. Notwithstand-

ing, actual and expected knickpoint patterns show notable differences

in many locations that require explanation. These differences are par-

ticularly obvious for the older wave of knickpoints that mark the tran-

sition to the Chilao Flats and that are expected to be present high up

in other tributaries to the Big Tujunga as well. However, most head-

water channels are devoid of knickpoints. There are several explana-

tions for a lack of consistency between expected and actual

knickpoint patterns. First, variations in bedrock erodibility manifest

themselves in a series of waterfalls in the oversteppened knickzone

straddling the Chilao Flats. These waterfalls have been previously

found to have slowed down knickpoint retreat by at least an order of

magnitude (DiBiase et al., 2015). Other tributaries may lack such resis-

tant layers and thus knickpoints may have already reached channel

heads and disappeared. Second, headwater channels may be domi-

nated by debris-flow processes (Stock & Dietrich, 2003; Hergarten

et al., 2016) which may result in faster incision and possibly smearing

of knickpoints in the channels. Third, inconsistencies between

expected and observed knickpoint patterns may arise from drainage

reorganization. Our analysis weighted the most prominent

knickpoints, yet these knickpoints may be those that have been par-

ticularly affected by divide migration. The margins of the Chilao Flats

show highly asymmetric divides (Scherler & Schwanghart, 2020)

(Figure 7) which suggest possibly past and ongoing drainage reorgani-

zation. Such reorganization may significantly alter drainage areas and

discharge, and thus affect knickpoint celerities which in return could

result in more scattered knickpoint locations (Schwanghart &

Scherler, 2020).

10 | BEAVER DAMS IN THE TUALATIN
BASIN, OREGON

Beavers are ecosystem engineers that build dams across and along-

side rivers (Brazier et al., 2020; Larsen et al., 2020). These wood

accumulations increase the storage of water, sediment, organic matter

and nutrients on floodplains, and thus have several ecological benefits

(Wohl, 2013; Bouwes et al., 2016; Macfarlane et al., 2017). As beaver

dams impound water upstream, they also raise the possibility of bea-

ver dam outburst floods. Although such outburst floods are rare, there

were cases where such events greatly exceeded discharges of meteo-

rological floods (O’Connor et al., 2013). Given both ecological benefits

and outburst hazard, potential beaver dam locations should thus be

known for managing river restoration and flood risk.

In this case study, our analysis focuses on topographic controls

on the occurrence of beaver dams that can be derived solely from

catchment-scale digital elevation data. Several properties determine

the degree to which beavers colonize and sustain a population

(Gurnell, 1998), and we hypothesize that beaver habitats are primarily

a function of stream flow and stream gradient. Beavers require suffi-

cient stream flow as a reliable water source. Yet, rivers should neither

be too wide nor too deep to inhibit building and persistence of dams

(Gurnell, 1998; Collen & Gibson, 2000; Macfarlane et al., 2017). At

the same time, river gradient should be relatively low to impound suf-

ficiently large areas. Therefore, steep and rocky rivers are generally

less favoured by beavers as dams in such streams are susceptible to

damage during high-magnitude discharges and have low impounding

efficiency (Gurnell, 1998).

To test the above hypothesis, we studied the distribution of bea-

ver dams in the Tualatin basin, Oregon (Table 2, Figure 8a). In our

analysis, we used upstream area as proxy for stream flow, which we

derived from the DEM using flow accumulation. Anthropogenic fea-

tures such as bridges and culverts accounted for some artefacts when

we computed the stream network from the original DEM. Thus, we

used hydrographic data from Nagel et al. (2017), preprocessed the

DEM using stream burning (Reuter et al., 2009), and then extracted

the stream network based on an area threshold of 0.1 km2. Com-

monly, stream gradients derived from DEMs fluctuate strongly as they

are highly sensitive to errors in the elevation data (Wobus

et al., 2006). We therefore smoothed the profiles using constrained

regularized smoothing (Schwanghart & Scherler, 2017) with a

F I GU R E 7 Actual and
expected spatial patterns of
knickpoints in the Big Tujunga
basin. The two dashed lines are
manually drawn to highlight the
two generations of upstream
migrating knickpoints and their
expected locations. The grey lines
depict the drainage divide
network (Scherler &
Schwanghart, 2020), with blue
sections showing asymmetric
divides and the inferred
movement is indicated by the
blue arrows [Color figure can be
viewed at wileyonlinelibrary.com]
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smoothing factor of K = 10. The smoothed elevations are subse-

quently used to calculate the local stream gradient. Our approach of

smoothing the profiles created local gradients that mimic those

obtained from a moving window approach with a kernel size of

�200 m.

Beaver dam locations were obtained from the data set (version

2.0) released by Smith (2019). The data was compiled by the US

Geological Survey (USGS) and comprises information on 510 beaver

dams. Some dam locations are very close to each other and likely

correspond to the same beaver populations. Thus, we merged dam

locations using the function cluster (Table 1). This function implements

hierarchical clustering based on the matrix of shortest-path network

distances of all points using an average linkage method. We chose a

cutoff of 160 m and obtained 217 unique locations, which we used

for the subsequent analysis.

The pattern of beaver dams (Figure 8a) suggests that their inten-

sity is spatially inhomogeneous. This hypothesis can be tested using

techniques such as quadrat counting (function quadratcount). Quadrat

counting subdivides the network into roughly equal sized subnet-

works and then counts the number of locations within each sub-

network. Under the assumption of CSR, the distribution of points in

each subnetwork should follow a Poisson distribution with homoge-

neous intensity, a hypothesis that we investigate with a χ2-test (note

that χ2 has nothing in common with the χ-transformation in the previ-

ous case study). The χ2-test underscores (p < 0.0001) the visual

impression that spatial locations of beaver dams in the Tualatin Basin

are not completely random.

To test whether drainage area and stream gradient can be used

to explain spatial variations in beaver-dam density, we fit a loglinear

model with stream gradient and the decadic logarithm of upslope

area as independent variables. The loglinear model has an intercept

and a first-degree polynomial for gradient and second-degree poly-

nomial for upslope area. Moreover, we add an interaction term

(product of both predictors) to investigate whether the interrelation-

ship of stream gradient and upslope area determines spatial beaver-

dam densities.

We fit the model using stepwise regression which removes

parameters or terms that fail to improve the model fit measured by

the Akaike-Information Criterion (AIC). From our model, stepwise

regression removed the interaction term so that the final model is

λ̂ uð Þ¼ eβ0þβ1g uð Þþβ2a uð Þþβ3a
2 uð Þ ð8Þ

F I GU R E 8 Modelling the locations of beaver dams in the Tualatin basin, Oregon, USA. (a) Hillshade map of the basin, stream network, and
the locations of beaver dams (black dots). (b) Modelled intensities of beaver dams using an inhomogeneous Poisson point pattern. (c, d) Fitted
responses to a single predictor: (c) stream gradient and (d) drainage area. (e) Empirical K function for actual beaver dam locations (solid red line)
compared to simulation envelopes (shaded area) and average (dashed line) of K functions obtained from 19 random point patterns derived from

the inhomogeneous Poisson model [Color figure can be viewed at wileyonlinelibrary.com]
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where λ̂ is the estimated density of beaver dams (Figure 8b), β0 is an

offset, and β1�3 are the parameters for stream gradient g and the

decadic logarithm of upslope area a and its quadratic form, respec-

tively. Overall, the model is highly significant compared to a model

with a pure offset (p=7.28�10�82) and the area under the ROC

(receiver-operating characteristic) curve, a measure of aggregated

classification performance, is 0.85 (0.83–0.86 simulation confidence

intervals). The values for the parameters, their uncertainties and indi-

vidual p-values are listed in Table 3 and the fitted responses to the

single variables are shown in Figure 8(c, d).

Although the model provides a reasonable fit to the data, it may

neglect other potential factors. Previous studies found that stream

depth, sandbar width, and anabranching (secondary rivers, sloughs) as

well as access to forage are important controls on the spatial distribu-

tion of beaver dams (e.g. Scrafford et al., 2018). The available data and

the representation of the flow network by D8 flow directions do not

permit us to represent these factors. In addition, beaver dams entail

hydrologic (creating wetlands), hydraulic (slow down runoff), geomor-

phic (sediment trapping), and ecological feedbacks (subirrigation of

downstream valley bottoms that promotes establishment and expan-

sion of riparian vegetation); all of which tend to increase stream com-

plexity and channel-floodplain connectivity (Macfarlane et al., 2017).

These feedbacks may lead to spatial clustering, as beaver-engineered

river reaches may increase local beaver populations. Our model does

not capture such clustering effects. However, to test whether the data

exhibits such spatial clustering after accounting for the first-order

effects of stream gradient and discharge, we calculated the

K-function. The empirical K-function of the actual distribution of

beaver dams and those that were simulated by the inhomogeneous

Poisson process model (Figure 8e) show that the actual distribution of

beaver dams exhibits a much stronger clustering compared to the

simulated points. Whether this clustering may evolve from individual

beaver populations or positive feedbacks exerted by beavers on their

habitats remains shrouded. However, modelling such interactions may

improve with more advanced point pattern models, whose treatment

is beyond the scope of this study and which are currently not

implemented in PPS.

11 | DISCUSSION

The three case studies showcase the new TopoToolbox object class

PPS, which supports the analysis of point patterns on stream net-

works. The studies have in common that different geomorphic phe-

nomena can be conceptualized as point processes that occur on or

alongside stream networks. Knickpoints in bedrock rivers, for exam-

ple, migrate upstream along the river network, but with no apparent

link between adjacent rivers. This strict constraint could be relaxed

when analysing beaver populations because beavers may roam freely

between adjacent rivers when expanding into new territory. Our anal-

ysis did not take the potential movement of beavers between streams

into account, which may particularly affect second-order effects of

beaver dams. To this end, investigating such effects would require a

broader definition of distance metrics on networks (Baddeley

et al., 2017, 2020; Rakshit et al., 2017) and on stream networks in par-

ticular that combine distances along and aside stream networks.

Our case study on the spatial distribution of knickpoints relied on

weighting knickpoints by their height. Yet, we did not include such

attributes in the analysis of beaver dams, although these bio-

geomorphic features commonly have highly variable sizes (Turowski

et al., 2013), which could be used to weight observations in the

models. Yet, such attribute data was not available in this study. In gen-

eral, there are techniques that extend point pattern analysis to the

analysis of marked point patterns, a suite of methods to explore and

model point patterns with attribute data. Yet, these techniques are

currently not implemented in PPS.

PPS relies on the geographic representation of geomorphic

objects or features as points, and streams as lines or network of lines.

It follows that the studied phenomena must be conceptualized as

points, although they may often have volumes associated with them

and they may have vaguely defined limits or be overlapping

(Goodchild, 2011; Smith, 2011; Evans, 2012). As common in geo-

graphic information system (GIS) analysis, such a representation

embodies spatial scale to some degree. For point pattern analysis, it is

crucial to remember that spacing between points may be observed if

points actually represent areal non-overlapping features. Moreover,

the fine-pixel approximation used in PPS means that points are con-

strained to lie on nodes of the stream network, which are derived

from the underlying DEM. The representation of network events is

thus tightly linked to the spatial resolution of the DEM. This also

entails that the density of points should not be too high, as it may

cause points to share the same locations, a situation usually not fore-

seen in point pattern analysis. Assuming CSR (the homogeneous

Poisson process model), the choice of an appropriate spatial resolution

for a given intensity may rely on the constraint that the probability for

having two or more coincident points should be low. Finding this

probability relies on the solution to the birthday paradox which pro-

vides the probability that in n randomly chosen network nodes there

are two or more duplicate nodes. Figure 9 shows the probabilities that

a network with a total length of 2500 km (which is approximately the

length of the streams in the network shown in Figure 3) contains

duplicate points for a given intensity and spatial resolution. If we

accept a probability of 10% for two or more points sharing the same

node, point intensities of up to 2.9 � 10�4, 9.2 � 10�5 and

2.9 � 10�5 m�1 can be modelled at spatial resolutions of 1, 10,

and 100 m, respectively, using PPS. High point intensities require high

spatial resolutions to be adequately represented by the fine pixel

approximation used by PPS. Note, however, that even if coincident

points exist, these do not invalidate methods to unravel first-order

effects from point processes.

An additional note of caution concerns the transferability of

models. The distance between two vertices is a lower bound of the

true distance, if we assume that all line vertices are located on

the central line of the river (Goodchild, 2011). In TopoToolbox and

T AB L E 3 Estimated parameters of a loglinear model of beaver-
dam locations in the Tualatin basin, Oregon, USA

Estimate Standard error t-Statistics p-Value

β 0 �51.99 4.62 �11.26 2.18E-29

β 1 �31.60 4.99 �6.33 2.48E-10

β 2 12.97 1.36 9.55 1.35E-21

β 3 �0.91 0.10 �9.20 3.68E-20
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thus also PPS, the geometry of stream networks is determined by the

Moore neighbourhood (8-connectivity) of the D8 flow direction algo-

rithm. This means that cell centres are rarely on the centreline of the

actual stream and that river lengths can be both overestimated and

underestimated. Underestimation typically occurs for low resolution

grids, while overestimation occurs for high-resolution DEMs and rela-

tively straight rivers. Relative errors in river length have been esti-

mated to range from 5 to 7% for distances calculated on raster data

structures, and up to > 30% for very coarse resolution DEMs (da Paz

et al., 2008). In point pattern analysis, these errors will affect esti-

mates of point intensity and interpoint distances. Hence, models

developed with a particular DEM, cannot be easily transferred to

other DEMs without analysing how these DEMs affect distance calcu-

lations. To this end, this is a problem that pixel-based logistic regres-

sion models commonly face (Baddeley et al., 2010).

Only a few functions in PPS account for the directedness of

stream networks. For example, the function pointdistances enables to

calculate nearest neighbour distances in upstream and downstream

directions. Most functions, however, treat the network as undirected

and thus neglect that many processes on stream networks have a nat-

ural direction. Sediment and nutrient transport, for example, will fol-

low the downstream flow of water, while mobile knickpoints

commonly migrate upstream. Although techniques of geostatistical

interpolation exist that account for the directional dependence of dis-

persal in river networks (Garreta et al., 2010), in point pattern analysis,

these approaches are rare and a relatively new field of research

(Rasmussen & Christensen, 2019).

We envision numerous other potential applications of PPS.

Beyond the case studies shown, potential applications include the

analysis of sediment tracers, the locations of outsized boulders, wood

jams, or landslide dams. In addition, PPS may be applied in ecology for

modelling of aquatic species based on sightings, for example. Finally,

once point pattern models have been trained, they can be adopted in

simulation tools such as the TTLEM (Campforts et al., 2017) to study

the stochastic forcing of landslides on riverscapes in long-term land-

scape development.

12 | CONCLUSIONS

PPS is a new numeric class in TopoToolbox for the analysis of point

patterns on stream networks. In two case studies, we analysed

geomorphic phenomena whose locations are constrained to river net-

works. Combining explorative analysis of the locations of knickpoints

with χ-analysis in the Big Tujunga catchment, PPS allowed us to iden-

tify two distinct generations of knickpoints. In our analysis of beaver

dams, we have shown that the inhomogeneous Poisson process

models implemented in PPS helps to infer different geomorphological

factors on beaver habitats.

PPS focuses on exploratory data analysis and fitting of inhomoge-

neous Poisson point processes, which both allow studying covariates

that control the spatial density of points. In addition, PPS features

numerous tools for simulation and visualization. Incorporation into

TopoToolbox enables ease of access to these new functionalities from

within one computational environment. Besides the presented case

studies, we anticipate other applications of PPS for studying pro-

cesses in fluvial geomorphology and landscape evolution, but also the

distribution of aquatic and riparian species or other phenomena that

are constrained to occur on or alongside rivers.
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