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Abstract

Matrix isolation spectroscopy refers to experimental techniques that consist of trapping

chemical compounds in inert frozen matrices and examining them with spectroscopic

methods. As matrix isolation is commonly used to investigate very reactive species not

stable outside of the matrices, theoretical modeling is often key to understanding the mea-

sured spectra. It is also crucial to comprehend the effect of the environment on the guest

species, which expresses itself in experiment through matrix effects.

The objective of this thesis is implementing a workflow that allows for highly accurate

modeling of small molecules in rare gas environments. The procedure facilitates the ana-

lysis of matrix isolation experiments on a microscopic level by associating observed vi-

brational signals with particular structural environments. Through that, additional insights

provided by theory can be used to further characterize the experimental situation.

The first part of the work consists of assessing the requirements for structural cluster mo-

dels to faithfully describe extended guest-matrix systems. To this end, carbon dioxide in

argon matrices is investigated with density functional theory methods. The comparison

of calculations using periodic boundary conditions with cluster models shows the impor-

tance of including multiple shells of host atoms around the guest. After that, a modeling

procedure is established, which is used to examine the vibrational properties of trifluoride

anions in neon and argon matrices. Based on truncated forms of many-body expanded

potential energy surfaces, optimized guest-host environments are isolated from extended

trifluoride-rare gas clusters. These are used to determine anharmonic vibrational proper-

ties of the entrapped trifluoride. For particular guest-host structures the results produced

by the workflow are in almost quantitative agreement with experimental observations, in-

dicating that these are the environments present in experiment. Beyond that, the analyses

of the models with respect to structure, stability and vibrations reveal the effect of certain

guest-host and host-host interaction types in the trifluoride-matrix systems.
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Kurzzusammenfassung

Matrixisolationsspektroskopie beschreibt experimentelle Techniken, die daraus bestehen,

chemische Verbindungen in inerten festen Matrizen zu isolieren und mit spektrosko-

pischen Methoden zu charakterisieren. Da Matrixisolation typischerweise dazu genutzt

wird, hochreaktive Verbindungen zu untersuchen, welche außerhalb der Matrizen nicht

stabil sind, ist theoretische Modellierung oftmals entscheidend, um die gemessenen Spek-

tren zu verstehen. Außerdem ist sie notwendig, um den Einfluss der Umgebung auf die

Gastspezies, der sich im Experiment durch sogenannte Matrix-Effekte äußert, nachzuvoll-

ziehen.

Das Ziel dieser Arbeit ist es, ein Schema einzuführen, welches das hochgenaue Mo-

dellieren kleiner Moleküle in Edelgas-Matrizen erlaubt. Diese Prozedur ermöglicht die

Analyse von Matrixisolationsexperimenten auf der mikroskopischen Ebene, indem sie

beobachtete Schwingungsübergänge bestimmten strukturellen Umgebungen zuweist. Da-

durch können die zusätzlichen der Theorie zugänglichen Informationen genutzt werden,

um das Experiment gründlicher zu charakterisieren.

Der erste Teil dieser Arbeit befasst sich mit den Anforderung an strukturelle Cluster-

Modelle im Hinblick auf deren Beschreibung eines ausgedehnten Gast-Matrix-Systems.

Dazu wird Kohlenstoffdioxid in Argon-Matrizen mit Methoden der Dichtefunktional-

Theorie untersucht. Der Vergleich von Rechnungen, die periodische Randbedingun-

gen ausnutzen, mit Cluster-Modellen verdeutlicht die Notwendigkeit, mehrere Schalen

der den Gast umgebenden Wirt-Atome zu berücksichtigen. Im Anschluss daran wird

eine Modellierungsprozedur aufgebaut, die dazu genutzt wird, die Schwingungseigen-

schaften eines Trifluorid-Anions in Neon- und Argon-Matrizen zu untersuchen. Basierend

auf Mehrkörperentwicklungen der Potentialhyperflächen werden optimierte Gast-Wirt-

Umgebungen aus größeren Trifluorid-Edelgas-Clustern bestimmt. Mit diesen wird das an-

harmonische Schwingungsverhalten des eingeschlossenen Trifluorids berechnet. Für be-

stimmte Gast-Wirt-Strukturen liefert die Modellierung Ergebnisse in quantitativer Über-

einstimmung mit den experimentellen Beobachtungen. Das deutet darauf hin, dass diese

Umgebungen im Experiment beobachtet werden. Darüber hinaus offenbaren die Ana-

lysen der Modelle im Hinblick auf Struktur, Stabilität und Schwingungen die Wirkung

bestimmter Gast-Wirt- und Wirt-Wirt-Wechselwirkungsmuster in den Trifluorid-Matrix-

Systemen.
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Chapter 1

Introduction

The functionality of a variety of chemical systems is rooted in non-covalent interac-

tions. [1] For instance, in protein folding dynamics the non-covalent interactions within

the peptide chain as well as the solvent drive the formation of the native state of the pro-

tein. [2,3] Likewise, they affect the assembly of supermolecular aggregates in the field of

molecular machines [4] and can influence regio- and enantioselectivity in catalytic reac-

tions. [5–7] Compared to covalent bonds, the non-covalent interactions are more delicate.

Their individual influence reaches farther, but is less strong and directional. [5] Accord-

ingly, when aiming for specific manipulations of large systems through these weak inter-

actions, a firm comprehension of the underlying physical forces on a fundamental level is

crucial. With respect to the latter, rare gases are of a peculiar significance, because their

interactions are predominantly non-covalent and dispersive. As a result weakly bound di-

or trimers involving rare gas atoms are well suited to study the subtleties of interactions

with non-covalent character. [8–10] In extended rare gas environments enclosed chemical

systems are perturbed solely by weak dispersive forces. This can be used to approximate

industrially relevant solute-solvent systems and study corresponding solute reactions in

reduced complexity. [11–13] Moreover, the inert character of the environments can be ex-

ploited to effectively stabilize and subsequently examine even very unstable guest species,

such as weakly interacting molecular aggregates or highly reactive molecules. An experi-

mental procedure based on this notion is matrix isolation.

Introduced in 1954 by George Pimentel, the matrix isolation technique consists of trap-

ping chemical compounds in inert frozen materials at very low temperatures. [14] Embed-
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ded in the matrices, the isolated guest systems are protected from other reactive molecules.

Moreover, due to the low temperatures diffusion and internal decomposition reactions are

mostly avoided. [14–16] Correspondingly, the entrapped compounds are stabilized compared

to other environments, allowing for the synthesis of new highly reactive species, molecu-

lar aggregates as well as reaction intermediates and facilitating an in-depth study of the

molecular properties. Various experimental schemes can be deployed to influence the

guest species and the matrix environment: The degree of interactions among the guest

molecules can be tuned through the ratio of concentrations of the matrix material and the

investigated species, potentially effecting oligomerizations. [17,18] Moreover, the formation

of matrix environments is affected by the deposition conditions. [19] Temperature anneal-

ing is used to investigate the stability of guests and matrix environments and to initiate in-

tramolecular conversions and reactions among neighboring entrapped species. [17,20–26] In

a similar way, photo excitations can be exploited to probe the stability of the investigated

species and evoke conversion, dissociation and recombination reactions. [20–28] Another

helpful procedure is isotopic labeling of the guest, as the resulting isotope effects may help

to identify the entrapped species. [18,29,30] The characterization of the guest molecule is typ-

ically achieved by spectroscopic methods. Vibrational properties are commonly obtained

by infra-red and Raman spectroscopy. Also, UV/vis spectroscopy [31,32] and electron para-

magnetic resonance measurements [33,34] are used to characterize molecules entrapped in

matrices. The present work, however, concerns only vibrational matrix isolation spec-

troscopy.

Regarding the investigation of molecular motion through vibrational spectroscopy, the

presence of a matrix environment and the experimental conditions have several ramifica-

tions. The low temperatures in the matrix isolation experiments result in guest molecules

in their vibrational and electronic ground state. [35] As was mentioned before, molecular

translations are strongly hindered, leaving most guest species strictly isolated after the

formation of the guest-host environment. Likewise, because of the confinement in the

matrix overall rotations of the guest molecules are in many cases quenched. Exceptions

to this are small molecules such as water and methane, but even for them only a small

number of rovibrational transitions are observed due to the low temperatures. [36,37] Aside

from these general effects, the particular interactions between the guest molecule and the

matrix environment may affect intrinsic properties of the guest, for instance the molecular

geometry and vibrational excitation energies. In order to reduce this influence and ascer-

tain weak guest-host interactions, typically used matrix materials are rare gases. [15] Due

to their inertness and the dispersive character of their interactions, the rare gas atoms’ in-
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CHAPTER 1. INTRODUCTION

fluence on guest molecules is rather delicate. Accordingly, the properties of the entrapped

species are in many cases altered only to a small extent compared to the gas phase at very

low concentrations. Because of an increased polarizability of the matrix atoms stronger

guest-host interactions are found in matrices of heavier rare gases. [35] In principle, all of

the aforementioned effects on the guest species should lead to comprehensible spectra

with rather sharp signals, which are appropriate for investigating processes such as iso-

merizations and intramolecular tunneling. [27,38–40]

Yet, actual vibrational spectra of matrix-isolated species are often complicated by the ap-

pearance of matrix effects, caused by the influence of the environment on the guest. [15,41]

Most straightforwardly, the guest-host interactions in a particular matrix environment may

perturb the vibrational excitations of the guest molecule. Typically, this results in small

signal shifts compared to (experimental or calculated) reference data for the free molecule,

which by themselves do not complicate the spectra significantly. [35,41] However, the oc-

currence of multiple trapping sites characterized by different guest-host interaction pat-

terns and therefore matrix shifts may introduce additional spectral signals; these are the

commonly observable site effects. Likewise, the presence of an environment can cause a

signal splitting of degenerate molecular vibrations due to a reduced symmetry of the en-

trapped species compared to the free one. [18,19] Additional complexity in the spectra can

be the result of oligomerizations of the guest species or, for a few small molecules, rovi-

brational transitions. [17,41] It was mentioned before that oligomerizations of the guest and

the occurrence of guest-host environments can be affected by the experimental conditions

during the matrix condensation as well as schemes such as temperature annealing. Cor-

respondingly, these measures may be used to systematically study the behaviour of the

entrapped species through the spectroscopic matrix effects. At first glance the latter may

seem undesirable, as they produce more complex spectroscopic signatures and obscure

the rather clear spectra expected for individual molecules isolated in a particular type of

inert environment at very low temperatures. However, the matrix effects also grant the op-

portunity to gain a more detailed understanding of the matrix environment, the guest-host

interactions and their effect on the entrapped species.

The matrix isolation technique is particularly useful for the investigation of very unstable

and sometimes novel species, for which reference data of the free compounds does not

necessarily exist. Especially in these cases the origin of the experimental observations is

not always obvious from the experiment alone. Thus, it is a natural approach to comple-

ment the information provided by the matrix isolation experiments with a corresponding
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theoretical study. Generally, the key to connecting reality, that is experiment, to the vast

range of information accessible to theoretical methods is the reproduction of the measured

properties. For instance, by finding a model that reliably yields vibrational frequencies

in agreement with the experimentally observed ones, insights on the corresponding struc-

tural and thermodynamical properties become available.

The complexity of a theoretical investigation of matrix isolation experiments is strongly

tied to its objective and the examined species. If the product of the experimental pro-

cedure is unknown, but several likely candidates exist, the initial goal of the modeling

is the identification of the entrapped species. With regards to that, it often suffices to

disregard the matrix environment and investigate the free molecules. [30,41–43] Concern-

ing vibrational matrix isolation spectroscopy, the relevant properties for free molecules

and smaller molecular aggregates may be assessed by a normal mode analysis or a more

involved scheme on the basis of accurate quantum chemical calculations within the Born-

Oppenheimer approximation. For compounds of small to moderate size and relatively

simple electronic structure the complexity as well as the numerical expense of these cal-

culations are manageable. Therefore, these types of quantum chemical schemes are very

suitable companions for the matrix isolation experiments.

In contrast to that, an accurate theoretical investigation of complete guest-matrix systems

and observed matrix effects is typically associated with significantly greater efforts. Dif-

ferent aspects factor into this. A thorough modeling approach of the matrix environment

requires the description of not only a small number, but several shells of host atoms around

the guest species. Only then the models are able to provide matrix environments, where

the guest-host and host-host interactions are regarded in a balanced way. The result of

considering a sizable number of matrix atoms is a drastically increased number of elec-

tronic and nuclear degrees of freedom in the quantum chemical calculations of electronic

structure and nuclear motion1. Naturally, this restricts the range of quantum chemical

methods, which can be employed to describe the full system.

Concerning electronic structure, further important aspects of the theoretical description

of matrix-isolated molecules are the treatment of the guest-host interactions as well as the

guest itself. The former usually correspond to weak dispersive interactions, which are cru-

cial to accurate modeling, but require further attention in electronic structure calculations.

With respect to the latter aspect, molecules, for which matrix isolation can be particularly

important – for instance weakly bound or radical compounds – may demand high-level

1Note that nuclear motion may refer to nuclear properties obtained from either static, that is time-
independent, calculations or dynamic schemes, where the system is propagated through time.
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CHAPTER 1. INTRODUCTION

methods, which are intractable for extended systems as a whole. However, these obstacles

can be reconciled by applying fragmentation-based quantum chemical methods relying on

a decomposition of the compound systems’ electronic energy, such as the method of in-

crements [44,45] and other many-body expansion or embedding schemes. [46–48]

For the description of nuclear motion in extended guest-host systems, several questions

arise. Regarding the guest, the relevance of vibrational anharmonicity, intermode coup-

ling as well as uniform rotations and translations of the molecule in the matrix has to

be assessed. If these aspects are key to obtaining results approaching high accuracy, a

scheme beyond a normal mode analysis is required. This greatly increases the conceptual

and numerical demands. Secondly, the effect of the matrix environment on the motion

of the guest species needs to be considered. This influence may be split in two parts for

a given matrix environment, that is a static and a dynamic contribution. The former de-

scribes the influence of a rigid host environment on the entrapped molecule and should

comprise a large fraction of the matrix atoms’ effect. On the other hand, the dynamic

contribution to the matrix effect comprises the coupling of molecular to environmental

motion. In order to grasp this part the host atoms have to be treated as moving particles.

Moreover, for lighter matrix materials, such as para-H2
[49,50] or helium in helium nano

droplet isolation spectroscopy, [51–53] a quantum treatment of the matrix environment may

be necessary to approach physically sound results. Finally, the nuclear, in particular vi-

brational, properties can be determined from solving time-independent static problems,

but also extracted from trajectories yielded by time-dependent, dynamic simulations.

In view of that, it is clear that the modeling of matrix effects can become quite compli-

cated and is not suited to accompany every matrix isolation experiment. Nevertheless,

it is very valuable to the development of insights on matrix isolation and the effect of

weak guest-host interactions on different types of molecules, as the modeling may unlock

information unavailable from experiment, provided it is accurate enough.

The aim of this work is to establish and apply a modeling procedure for the description

of small molecules in cryogenic rare gas environments. The purpose of the modeling

workflow is to determine vibrational excitation energies of the investigated molecule in

different matrix structures. Through the calculated values the observations from matrix

isolation experiments may be connected with particular guest-host environments. Based

on this assignment, the structural and vibrational properties as well as the relative sta-

bilities of the identified models can be further investigated. This should complement

the experimental data for the investigated systems and supply additional insights on the
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formation of the guest-host environments and the peculiarities of guest-host interactions

involving rare gas atoms. In order to facilitate the assignment of a structural model to

the experimental observations, the latter have to be reproduced to great accuracy. Corre-

spondingly, the modeling procedure will be based upon electronic structure calculations

with high-level quantum chemical correlation methods, extended cluster models of guest-

host structures and vibrational analyses that account for anharmonicity and intermode

coupling in the guest as well as the influence of the rare gas environment. With this foun-

dation, the modeling procedure should be able to provide accurate vibrational excitations

in a reliable and systematically improvable way.

In the next chapter the theoretical foundations of the quantum chemical methods relevant

to this thesis are outlined. Then, in Chapter 3 the insights gained in the course of this

work are summarized and discussed in the general context of theoretical modeling of

matrix isolation experiments. Chapter 4 comprises the publications on which this thesis

is based.
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Chapter 2

Theoretical Basics

This chapter outlines the quantum chemical theory and methodology, on which this thesis

is based. Starting from the time-independent Schrödinger equation, the widely used pro-

cedure of a separated treatment of electronic and nuclear degrees of freedom is motivated.

Ensuingly, various schemes to solve the electronic part of the Schrödinger equation are

described. The chapter is concluded with an account of important aspects of treating the

nuclear Schrödinger equation. Equations are given in atomic units.

Several sections of this chapter follow the outlines given elsewhere. The presentation

of the time-independent Schrödinger equation and Born-Oppenheimer approximation is

similar to the ones in Modern Quantum Chemistry by Szabo and Ostlund [54] and Intro-

duction to Quantum Mechanics: A Time-Dependent Perspective by Tannor. [55] The former

book is also used for the description of Hartree-Fock theory, quantum chemical correla-

tion and Møller-Plesset perturbation theory. To outline the coupled cluster and explicit

correlation approaches Electronic Structure Theory by Helgaker, Jorgensen and Olsen [56]

and reviews by Bartlett et al., [57] Valeev et al. [58] as well as Ten-no and Noga [59] were

considered. A Chemist’s Guide to Density Functional Theory by Koch and Holthausen [60]

and Theoretical Surface Science by Groß [61] served as guides to the illustration of den-

sity functional theory and calculations of periodic systems. The account of the nuclear

Schrödinger equation is based on the Lennard-Jones lecture by Sutcliffe, [62] the Perspec-

tive article by Csárszár et al., [63] the aforementioned book by Tannor [55] and review arti-

cles by Light and collaborators. [64,65] Finally, for the description of the vibrational self-

consistent field method the works of Bowman et al. [66,67] and Rauhut [68] have been used.
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2.1. THE MOLECULAR SCHRÖDINGER EQUATION

2.1 The Molecular Schrödinger Equation

The starting point for this foray into the depths of quantum chemistry is the non-relativistic

time-independent Schrödinger equation of a molecule in field-free space

H Ψ( ~X) = EΨ( ~X) , (2.1)

where H and Ψ are the molecular Hamilton operator and wave function (or state), respec-

tively, and the total energy is given by E. The coordinate vector ~X contains the electronic

and nuclear spatial and spin coordinates. For an unperturbed system the Hamiltonian

comprises operators describing the kinetic energies of electrons and nuclei, Te and Tn, as

well as the Coulomb interactions among these particles, that is Ve-e, Ve-n and Vn-n. The

operators are defined in Equations (2.2) in atomic units with respect to a system of N

nuclei and n electrons. Mα, Zα, ~Rα, ~ri refer to the mass of nucleus α, its charge and

position as well as the position of electron i.

H = Tn + Vn-n + Te + Ve-e + Vn-e , (2.2a)

Tn = −
N∑

α=1

1

2Mα

∆α , (2.2b)

Vn-n =
N∑

α=1

N∑

β>α

ZαZβ

|~Rα − ~Rβ|
, (2.2c)

Te = −1

2

n∑

i=1

∆i , (2.2d)

Ve-e =
n∑

i=1

n∑

j>i

1

|~ri − ~rj|
, (2.2e)

Vn-e = −
N∑

α=1

n∑

i=1

Zα

|~Rα − ~ri|
. (2.2f)

Solving the time-independent Schrödinger equation is very complicated and once the in-

vestigated system contains multiple electrons or nuclei analytically intractable. Then, the

solutions have to be approximated by taking purposeful steps to simplify the problem.

Typically, at the start of solving the time-independent Schrödinger equation is the sepa-

ration into an electronic and a nuclear problem. This approach is physically motivated in

the sense that electrons move significantly faster than nuclei due to their smaller mass. In
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CHAPTER 2. THEORETICAL BASICS

accordance to that, the electrons should adapt to nuclear motion immediately, rendering

the nuclear coordinates parameters in the electronic problem. On the formal level, this is

incorporated into the molecular wave function through

Ψ(~r, ~R) = ξ(~R) Φ(~r; ~R) , (2.3)

meaning that Ψ is considered to be separable into nuclear and electronic wave functions,

ξ(~R) and Φ(~r; ~R). In Equation (2.3) and the remaining section, the dependence on the

electronic and nuclear spin coordinates is neglected for simplicity. Notably, the electronic

part depends on the nuclear coordinates only parametrically. Moreover, an electronic

Schrödinger equation,

Hel Φ(~r; ~R) = (Te + Ve-e + Vn-e + Vn-n) Φ(~r; ~R) = Eel(~R) Φ(~r; ~R) , (2.4)

can be formulated. Herein, the nuclei are considered frozen, resulting in an electronic

Hamiltonian with Tn = 0 and constant Vn-n. This is called the clamped nuclei approxi-

mation. Equation (2.4) yields the electronic energy Eel for a given electronic state Φ

depending on the nuclear configuration ~R. The complete set of electronic energies (in-

cluding the contribution of the Vn-n potential) for all nuclear configurations and a given

electronic state is called a potential energy surface (PES). It represents an average poten-

tial affecting the nuclear motion. Principally, there are different solutions to the electronic

problem, that is various electronic states. In fact, the molecular wave function may be

expressed by means of the complete set of electronic states for any nuclear configuration

according to the expansion

Ψ(~r, ~R) =
∑

k

ξk(~R) Φk(~r; ~R) . (2.5)

To obtain approximations of the full molecular wave functions and total energies the nu-

clei have to be treated as well. After inserting the electronic Schrödinger equation and the

expansion in Equation (2.5) into Equation (2.1),

H Ψ(~r, ~R) = EΨ(~r, ~R) =
∑

k

(
Tn + Eel,k(~R)

)
ξk(~R) Φk(~r; ~R) , (2.6)

projecting Equation (2.6) onto an electronic state Φ∗j and integrating over the electronic

9
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coordinates the nuclear problem is defined as

E ξj(~R) =
∑

k

(Tn + Eel,k) ξk(~R) δjk

−
∑

k

∑

α

1

Mα

(∫
Φ∗j(~r; ~R)~∇α Φk(~r; ~R)d~r

)
~∇αξk(~R)

−
∑

k

∑

α

1

2Mα

(∫
Φ∗j(~r; ~R)∆α Φk(~r; ~R)d~r

)
ξk(~R) .

(2.7)

The last two lines in Equation (2.7) describe the non-adiabatic coupling between elec-

tronic states through nuclear motion. The complete neglect of these coupling elements

corresponds to the Born-Oppenheimer approximation (BOA). [69] It often is a sensible

approach if the electronic states are well separated. Within the Born-Oppenheimer ap-

proximation the nuclear Schrödinger equation is

(
Tn + Eel,k(~R)

)
ξk(~R) = E ξk(~R) . (2.8)

Thus, for a given electronic state with a potential energy surface Eel,k(~R) nuclear wave

functions and properties can be determined independently from other electronic states.

Up to this point effective measures have been described that allow for an approximate

solution of the molecular time-independent Schrödinger equation: Electrons and nuclei

are treated successively. In a first step the electronic Schrödinger equation is solved for

selected nuclear configurations to obtain potential energy surfaces for the investigated

electronic states. Then, these may be used to solve the nuclear Schrödinger equation in

the adiabatic (Born-Oppenheimer) approximation. Even though the molecular problem

is greatly facilitated by this workflow, the electronic and nuclear Schrödinger equations

remain challenging obstacles in their own right.

2.2 The Electronic Schrödinger Equation

This section deals with the treatment of the electronic Schrödinger equation. Starting

with wave function-based procedures, general aspects of the electronic wave function are

described. Then, the variational principle, Hartree-Fock (HF) theory and several quantum

chemical correlation methods are accounted for. To conclude the section, an overview of

10
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the foundations of density functional theory (DFT) for isolated and extended systems is

given.

2.2.1 Electronic Wave Functions

Analogously to the molecular Schrödinger equation, the electronic problem cannot be

solved analytically for many-electron systems. The difficulties arise mainly from the

Coulomb interaction between the electrons (Ve-e in Equation (2.5)). This term couples

the coordinates of different electrons, producing an interacting system and preventing any

kind of analytical solution via a product ansatz for the wave function. Thus, to approach

the electronic Schrödinger equation approximations are necessary. Another important

aspect of the electronic problem is the nature of the particles. As electrons are fermions,

a wave function describing an electronic system has to comply with the antisymmetry (or

Pauli) principle. Accordingly, the electronic wave function has to be antisymmetric with

respect to the exchange of the spin and spatial coordinates of two electrons,

Φ(~x1, . . . , ~xi, . . . , ~xj, . . . , ~xn) = −Φ(~x1, . . . , ~xj, . . . , ~xi, . . . , ~xn) , (2.9)

with Φ as the wave function of an n-electron system and ~xi as the spatial and spin co-

ordinates of electron i, ~xi = (~ri, ωi). Thus, any approximation of the electronic wave

function has to regard the electrons’ spatial coordinates as well as their spin, even though

the electronic Hamiltonian is only a function of the electronic spatial coordinates.

So how can the electronic wave function be approached? A suitable functional form is

identified by considering the electronic problem in reduced complexity by disregarding

the electron-electron interaction. Such a non-interacting system may be described by a

simple product of one-electron wave functions. This is the Hartree product, which, how-

ever, is not applicable, as it is not antisymmetric upon exchange of two sets of electron

coordinates. A different approach for electronic wave functions is the Slater determinant.

For its construction, a set of orthonormal single-electron wave functions is arranged in a

determinant,

Φ(~x1, . . . , ~xn) =
1√
n!

∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ1(~x2) . . . χ1(~xn)

χ2(~x1) χ2(~x2) . . . χ2(~xn)
...

... . . .
...

χn(~x1) χn(~x2) . . . χn(~xn)

∣∣∣∣∣∣∣∣∣∣

. (2.10)

11
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The one-electron functions χi are called spin orbitals and may be written as a product of

a spatial function ϕ(~r) and a spin function g(ω),

χi(~xk) = ϕi(~rk) gi(ωk) , (2.11)

where the spin function may represent α- or β-spin. The Slater determinant is a solution

to the non-interacting system and – unlike the Hartree product – in accord with the anti-

symmetry principle. Therefore, it is a valid approach to representing the electronic wave

function in investigations including the interaction between electrons.

2.2.2 Variational Principle

In the course of solving the electronic Schrödinger equation another important scheme

occurs, namely the variational principle. While this principle is integral to approximating

solutions of the electronic (and also the nuclear) problem, its applicability to eigenvalue

problems is far more general. Regarding quantum chemical theory, the notion at the core

of the variational principle is

〈Φ̃|H |Φ̃〉 ≥ E0 , (2.12)

where H is a Hamiltonian with a non-degenerate ground state of energy E0 and Φ̃ is a

normalized trial wave function (〈Φ̃ | Φ̃〉 = 1). Accordingly, the expectation value of H

with respect to the trial function must be greater than or equal to E0, if E0 is the true

ground state energy. The equality holds only if the trial wave function and the true ground

state wave function are equal. As a consequence, the ground state can be approached

systematically by minimizing the expectation value of the Hamiltonian through variation

of the trial function. Typically, in actual applications the trial wave function is linearly

expanded into a finite (and for simplicity orthonormal) basis {|φi〉}

|Φ̃〉 =
∑

i

ci |φi〉 . (2.13)

In this case, a secular equation can be derived using the method of Lagrange multipliers

under the condition that the trial wave function remains normalized. The states described

by the Hamiltonian are then approximated by the solutions of the eigenvalue problem

H C = E C , (2.14)

12
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where the Hamiltonian matrix consists of the matrix elements Hij = 〈φi|H |φj〉, the di-

agonal matrix E contains the energies of the respective states and the matrix C contains

the corresponding expansion coefficients. Importantly, the properties obtained from vari-

ational methods typically represent bounded approximations to the true solutions. In ac-

cord with that the true values are monotonously approached with increasing quality of the

approximation. The latter is dictated by the size and quality of the basis set. Thus, a linear

variational procedure consists of the selection of an appropriate basis set, the construction

of the Hamiltonian matrix in the selected basis and its subsequent diagonalization.

2.2.3 Hartree-Fock Theory

Equipped with the functional form for the electronic wave functions, that is the Slater

determinant, and the variational principle, the electronic Schrödinger equation can be

approached. In this regard, the foundation of a wave function-based investigation of a

many-electron system is Hartree-Fock theory. Within its framework the electronic ground

state wave function is approximated by a single Slater determinant or configuration state

function1 and the electronic problem is treated with the variational principle. The result is

an iterative procedure where the interaction among electrons is described in a mean-field

way.

The expectation value of the electronic Hamiltonian for n electrons with respect to a trial

Slater determinant containing the spin orbitals {χi} is given by

EHF = 〈Φ̃SD|Hel |Φ̃SD〉

=
n∑

i=1

〈χi| ĥ |χi〉+
1

2

n∑

i,j

(〈χiχj|χiχj〉 − 〈χiχj|χjχi〉) .
(2.15)

In Equation (2.15), the non-interacting Hamiltonian ĥ comprises an electron’s kinetic

energy operator and its interaction with the nuclei,

ĥ = −1

2
∆−

N∑

α=1

Zα

|~r − ~Rα|
, (2.16)

while the two-electron integrals in the double sum govern the electron-electron interac-

1A configuration state function is a linear combination of Slater determinants that is used to account for
spin symmetry.
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tion. A two-electron integral 〈χiχj|χkχl〉 is defined by

〈χiχj|χkχl〉 =

∫
d~x1 d~x2 χ∗i (~x1)χ

∗
j(~x2)

1

r12
χk(~x1)χl(~x2) . (2.17)

Through variation of the electronic energy with respect to the spin orbitals, while demand-

ing that the latter remain orthonormal, the canonical Fock equations are derived:

f̂χi = εiχi . (2.18)

The (unitarily transformed) Lagrange multiplier εi corresponds to the energy of spin or-

bital χi and f̂ is the Fock operator. The latter is an effective one-electron operator de-

scribed by

f̂ = ĥ+
n∑

i=1

(
Ĵi − K̂i

)
, (2.19)

where the action of the Coulomb and exchange operators Ĵi and K̂i on the spin orbitals

can be defined in terms of the integrals

〈χj| Ĵi |χk〉 =

∫
d~x1χ∗j(~x1)

[∫
d~x2 χ∗i (~x2)

1

r12
χi(~x2)

]
χk(~x1)

= 〈χjχi|χkχi〉 , (2.20a)

〈χj| K̂i |χk〉 =

∫
d~x1χ∗j(~x1)

[∫
d~x2 χ∗i (~x2)

1

r12
χk(~x2)

]
χi(~x1)

= 〈χjχi|χiχk〉 . (2.20b)

The operator Ĵi(~x1) represents the Coulomb interaction of electron 1 with a second elec-

tron in spin orbital χi averaged over the coordinates ~x2 of the second electron. In contrast

to that, the exchange operator swaps the occupation for the involved spin orbitals, hinder-

ing the interpretation in terms of a regular Coulomb interaction between electrons. Still,

the exchange interaction of electron 1 with the second electron is averaged over the coor-

dinates of the latter as well. Correspondingly, the electron-electron interaction as a whole

is treated such that an electron is affected by an average potential generated by the re-

maining electrons. The Hartree-Fock scheme is thus a mean-field theory. Notably, all spin

orbitals enter the Fock operator through the Coulomb and exchange operators. Hence, the

solutions to the Fock equation have to be identified iteratively until self-consistency is

reached. A (spin-restricted) formulation of the canonical Fock equations in terms of only

the spatial electronic coordinates and orbitals is possible.

14
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With the HF approach, the electronic ground state wave function may be determined from

solving n one-electron problems in an effective potential for the spin orbitals, instead of

a complete n-electron problem. Although this greatly facilitates the solution of the elec-

tronic Schrödinger equation, a grid-based treatment of the one-electron problem remains

demanding. In order to lower the numerical cost, Roothaan [70] and Hall [71] showed for

spin-restricted HF theory that by introducing a linear expansion of the molecular orbitals

into a finite set of basis functions the Fock equations can be restated as a numerically

favorable matrix equation. To this end, a set of non-orthogonal atomic orbitals {ζj} is

used to expand the spatial part (ϕi) of the molecular spin orbitals χi,

ϕi =
∑

j

cjiζj . (2.21)

This linear combination of atomic orbitals is denoted the LCAO ansatz. After incorporat-

ing the basis set expansion into the Fock equation the Roothaan-Hall-Hartree-Fock matrix

equation is accessible,

Fc = Scε , (2.22)

with the diagonal matrix ε and the coefficient matrix c containing the orbital energies and

expansion coefficients, respectively. The elements of the Fock matrix F and the overlap

matrix S are defined by

Fij = 〈ζi|f̂ |ζj〉 , (2.23a)

Sij = 〈ζi|ζj〉 . (2.23b)

In analogy to the original Hartree-Fock method, the expansion coefficients contribute to

the Fock matrix. Thus, the Roothaan-Hall-Hartree-Fock equation has to be solved self-

consistently as well. Starting from an initial guess of the coefficient matrix, the matrix

equation is solved to obtain an improved set of coefficients. The latter are reinserted

into the equation, which is then solved again. This is iterated until the energies and coeffi-

cients are considered converged. For spin-unrestricted HF theory a corresponding formal-

ism based on the LCAO ansatz can be derived, leading to the Pople-Nesbet equations. [72]

Also, in actual calculations the radial part of atomic orbitals is typically expanded into

a set of atom-centered Gaussian functions. This is done to further reduce the computa-

tional effort, as the Gaussians display properties favorable for numerical calculations, for

instance analytical integrability.
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2.2.4 Quantum Chemical Correlation Methods

Hartree-Fock theory is usually only the first step to a wave function based investigation of

a chemical system. As in the scheme the electron-electron interaction is treated only in a

mean-field way, there is obvious room for improvement in the description of the electronic

structure. To advance, the interdependence of the electrons beyond the mean-field approx-

imation, typically referred to as dynamical electron correlation2, has to be regarded. In

this spirit the quantum chemical correlation energy is defined as the difference between

the exact non-relativistic electronic energy and the Hartree-Fock energy in the limit of a

complete basis set,

Ecorr = Eexact − EHF . (2.24)

Various approaches to grasp dynamical electron correlation have been developed, each

characterized by certain strengths and weaknesses. Among the properties, which de-

termine the quality of a quantum chemical correlation method, accuracy and numerical

expense are paramount. However, there are other, more subtle criteria, such as variational

character and size-consistency, often used to describe correlation methods. Concerning

the latter factors, a variational correlation method is formulated through a variational prin-

ciple, as described in Section 2.2.2. Aside from conceptual simplicity, this ensures that

within the selected basis the calculated correlation energies represent bounded approx-

imations to the exact value. Size-consistency refers to the description of interactions

between chemical fragments. Consider a chemical system with fragments A and B at

large distances. In that case, the interaction between the fragments vanishes. Accord-

ingly, the energy of the compound system should be equal to that of the isolated parts,

that is E(AB) = E(A) + E(B). A size-consistent method is able to correctly describe a

compound system with separated fragments. [54]

Perturbation Theory

Although important, the contribution of the correlation energy to the total electronic en-

ergy is small compared to the Hartree-Fock part. Correspondingly, electron correlation

may be interpreted as a perturbation to the Hartree-Fock system and thus be subjected

2On another note, there is also static correlation, which relates to systems with non-negligible multiref-
erence character. These are characterized by ground state wave functions not well described by a single
Slater determinant or configuration state function. This kind of correlation is not regarded here.
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to Rayleigh-Schrödinger perturbation theory. Herein, the Hamiltonian is divided into an

unperturbed part H0 and a perturbation V, yielding the Schrödinger equation

H |Φi〉 = (H0 + V) |Φi〉 = Ei |Φi〉 . (2.25)

Moreover, the solutions of the unperturbed Hamiltonian, that is energies E(0)
i and wave

functions Φ
(0)
i , are known,

H0 |Φ(0)
i 〉 = E

(0)
i |Φ(0)

i 〉 . (2.26)

Then, the effect of the perturbation on the energies and wave functions of the unperturbed

system is broken down into small contributions. This is achieved by placing an ordering

parameter λ into Equation (2.25) and expanding the energy of the perturbed system Ei

and the perturbed wave function Φi into a power series of λ,

H |Φi〉 = (H0 + λV) |Φi〉 , (2.27a)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . , (2.27b)

|Φi〉 = |Φ(0)
i 〉+ λ |Φ(1)

i 〉+ λ2 |Φ(2)
i 〉+ . . . , (2.27c)

with E(p)
i and Φ

(p)
i (p > 0) being the corrections of p-th order to the unperturbed energy

and wave function. These corrective terms can be accessed by inserting the power series

expansion into the Schrödinger equation including the perturbation (Equation (2.27a)) and

isolating the expressions with matching order of λ. From the latter, the energy corrections

of arbitrary order can be derived by assuming intermediate normalization 〈Φ(0)
i |Φi〉 = 1,

E
(0)
i = 〈Φ(0)

i |H0|Φ(0)
i 〉 , (2.28a)

E
(1)
i = 〈Φ(0)

i |V |Φ(0)
i 〉 , (2.28b)

E
(2)
i = 〈Φ(0)

i |V |Φ(1)
i 〉 , (2.28c)

. . . ,

E
(p)
i = 〈Φ(0)

i |V |Φ(p−1)
i 〉 . (2.28d)

The zeroth- and first-order energies are given by the expectation values of the unperturbed

Hamiltonian and the perturbation with respect to the unperturbed wave function, respec-

tively. Beyond that, the energy correction to the p-th order requires the wave function

correction of (p − 1)-th order. Generally, the latter corrections can be expressed via the

eigenfunctions of the unperturbed problem, as these form a complete basis. The appli-
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cation of this basis set expansion (and several orthogonality relations) allows for the for-

mulation of expressions for the energy corrections involving only the unperturbed wave

functions and energies. For instance, the second-order correction is determined via

E
(2)
i =

∑

g
g 6=i

〈Φ(0)
i |V |Φ(0)

g 〉 〈Φ(0)
g |V |Φ(0)

i 〉
E

(0)
i − E(0)

g

=
∑

g
g 6=i

| 〈Φ(0)
i |V |Φ(0)

g 〉 |2

E
(0)
i − E(0)

g

. (2.29)

When perturbation theory is applied to the problem of electron correlation it is typically

referred to as Møller-Plesset perturbation theory. Within that framework the unperturbed

system is taken to be the sum of the Fock operators for all electrons, while the perturbation

comprises the electron-electron interaction without the Coulomb and exchange operators,

which are included in the Fock operators. The operators are defined by

H0 =
∑

i

f̂(~xi) =
∑

i

[
ĥ(~xi) +

∑

j

(
Ĵj(~xi)− K̂j(~xi)

)]
, (2.30)

and

V =
∑

i,j
i<j

1

rij
−
∑

i,j

(
Ĵj(~xi)− K̂j(~xi)

)
. (2.31)

The required set of eigenstates of the unperturbed Hamiltonian consists of the Slater de-

terminants (or CSFs) generated by the occupied and unoccupied (virtual) spin orbitals

obtained in the Hartree-Fock procedure. The relevant excited Slater determinants are de-

noted Φa
i (or analogously Φab

ij , Φabc
ijk , . . . ), where the indices indicate the replacement of

the (originally occupied) spin orbital χi (lower index) in the Slater determinant by the

(originally unoccupied) spin orbital χa (upper index). If the degree of excitation is un-

specified, the excited determinants will be represented by Φg. The Hartree-Fock ground

state is Φ0.

With this formulation of the problem the zeroth-order energy equals the sum of the orbital

energies - but not the Hartree-Fock energy -, that is

E
(0)
0 = 〈Φ0|H0|Φ0〉 =

∑

i

εi

=
∑

i

[
〈χi| ĥ |χi〉 +

∑

j

(
〈χi χj|χi χj〉 − 〈χi χj |χj χi〉

)]
.

(2.32)
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The first-order energy correction is determined by

E
(1)
0 = 〈Φ0|V|Φ0〉 = −1

2

∑

i,j

(
〈χi χj |χi χj〉 − 〈χi χj |χj χi〉

)
. (2.33)

Accordingly, the sum of E(0)
0 and E(1)

0 is the Hartree-Fock energy (Equation (2.15)) and

the second-order energy correction is the first term to account for electron correlation. The

second-order energies depend on matrix elements 〈Φ0|V|Φg〉 coupling the Hartree-Fock

ground state and the excited determinants. Luckily, in this case the constitution of the

electronic problem allows for the neglect of most excited Slater determinants. To start off,

all determinants with excitation levels of more than two can be neglected. This is because

the perturbation features only two-electron operators. As a result, corresponding matrix

elements between determinants differing by more than two spin orbitals must vanish.

Moreover, if Φg is a singly excited determinant the matrix element will be zero as well,

due to Brillouin’s theorem. (A singly excited determinant corresponds to an off-diagonal

element in the Fock matrix. For the canonical Fock equations, these are zero.) Therefore,

for the matrix elements 〈Φ0|V|Φg〉 the only relevant determinants are doubly excited.

With this the second-order energy correction is readily formulated as

E
(2)
0 =

1

4

∑

a,b,i,j

| 〈χa χb |χi χj〉 − 〈χa χb |χj χi〉 |2
(εi + εj − εa − εb)

, (2.34)

where the indices i and j refer to occupied orbitals and a and b represent virtual ones. The

corrections of higher orders feature products of matrix elements of the 〈Φ0|V|Φg〉 type and

matrix elements coupling excited determinants to each other (〈Φg′|V|Φg〉). Although the

restrictions due to the two-electron operators in the perturbation still apply, this drastically

increases the complexity of the problem.

Møller-Plesset perturbation theory is a commonly applied method in quantum chemistry.

It is size-consistent at any order of corrections. Also, at the level of second-order correc-

tions (MP2) it is comparatively cheap, at worst scaling withN5
b with respect to the number

of basis functions3 Nb. [74] On the other hand, it is not variational and has displayed in-

consistent convergence behaviour with increasing orders of corrections. [74,75] The MP2

energy corrections are typically used as initial guesses for what will referred to as ampli-

tudes in the coupled cluster formalism.

3The formal scaling of the Hartree-Fock method is N4
b with respect to the number of basis functions Nb,

determined by the calculation of the two-electron four-index integrals. [73]
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Coupled Cluster Theory

Aside from treating it as a perturbation to the Hartree-Fock system, electron correlation

may also be grasped by the configuration interaction (CI) ansatz. Herein, the description

of the electronic wave function is improved by considering not only the Hartree-Fock

wave function but also excited Slater determinants that can be generated from the opti-

mized spin orbitals. A matrix representation of the electronic Hamiltonian is set up in

the basis of n-electron Slater determinants and diagonalized to obtain the correlated en-

ergies. Thus, the method is variational. The corresponding electronic wave function in

intermediate normalization4 is given by

|ΦCI〉 = (1 + T) |Φ0〉
= |Φ0〉+

∑

i,a

tai |Φa
i 〉+

∑

i<j
a<b

tabij |Φab
ij 〉+

∑

i<j<k
a<b<c

tabcijk |Φabc
ijk〉+ . . . , (2.35)

where Φ0 represents the Hartree-Fock ground state, T is the cluster operator and Φa
i is

a singly-excited Slater determinant as defined before - the higher excited determinants

Φab···d
ij···l are defined analogously. The amplitudes (tai , t

ab
ij , ...) describe the contribution of

the respective excited determinant to the wave function. The full cluster operator for a

system of n electrons,

T = T1 + T2 + · · ·+ Tn , (2.36)

contains the operators Ti that describe i-tuple excitations, as is illustrated by

T1 |Φ0〉 =
∑

i,a

tai |Φa
i 〉 , (2.37a)

T2 |Φ0〉 =
∑

i>j,a>b

tabij |Φab
ij 〉 . (2.37b)

When all excited determinants up to n-fold excitations are considered, the expansion in

Equation (2.35) is termed full configuration interaction wave function. The correlation

energy obtained from full CI is exact within a given set of spin orbitals and generally

exact in the limit of a complete basis of one-electron functions. Also, the method is size-

consistent. However, a full configuration interaction description is only feasible for very

small systems. The CI approach becomes more applicable, once the CI expansion is trun-

4With this ΦCI is not normalized, but 〈Φ0 |ΦCI〉 = 1 holds. The CI wave function can be renormalized
after determining the expansion coefficients.
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cated to include only low-level excitations. This, however, destroys the size-consistency

of the ansatz. Hence, methods such as CIS and CISD (including only single- and single-

as well as double-excitations, respectively) have a severe drawback.

The coupled cluster scheme offers a different way to approach the full CI wave function.

According to it, the correlated wave function can be described by the following expansion

|ΦCC〉 = eT |Φ0〉 =

(
1 + T +

1

2
T2 + . . .

)
|Φ0〉 , (2.38)

with Φ0 and T as the Hartree-Fock reference wave function and the cluster operator again.

The electronic Schrödinger equation with the coupled cluster wave function is

e−T H eT |Φ0〉 = H̃ |Φ0〉 = ECC |Φ0〉 . (2.39)

As the wave function expansion is not linear, a solution in terms of a variational principle

is not straightforward. Instead of that the amplitudes are determined by projecting the

Schrödinger equation on the respective excited determinant. For instance, in case of the

doubly excited determinants the amplitudes are obtained from

〈Φab
ij |H̃|Φ0〉 = 0 . (2.40)

Once the necessary amplitudes are found, the coupled cluster energy is determined by

projection on the Hartree-Fock reference,

ECC = 〈Φ0| e−THeT |Φ0〉 = 〈Φ0| H̃ |Φ0〉 . (2.41)

As is the case for configuration interaction, the cluster operator in the coupled cluster

framework has to be restricted to low-level excitation operators to remain computation-

ally tractable. However, in constrast to the truncated CI approach, the coupled cluster

method incorporates high-level excitations at any order of truncation. This is due to the

exponential of the cluster operator in Equation (2.38), which – aside from the connected

Tn excitations – introduces disconnected excitations, meaning products of connected ex-

citation operators. For instance, when the cluster operator T contains connected single

and double excitations (T1 and T2) the T2 expression in Equation (2.38) produces dis-

connected double, triple and quadruple excitations via T2
1, T1T2 and T2

2, respectively. As

a consequence of the occurrence of the disconnected excitations, the coupled cluster ap-
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proach is size-consistent at any level of truncation of the cluster operator. Moreover, once

the T1 excitation operator is included in T the coupled cluster method should principally

cover the same excitation ranks as the full CI method. The difference is that the high-level

excitations in the former ansatz are disconnected, whereas they are connected in full CI.

Correspondingly, the independent amplitudes in full CI are replaced by products of am-

plitudes for determinants of lower excitation level in coupled cluster. Thus, the coupled

cluster wave function is less flexible than its full CI counterpart.

With respect to applications, coupled cluster schemes are standard approaches in quantum

chemistry. Including connected single and double excitations in the cluster operator re-

sults in the CCSD method, which in many cases is a decent compromise between accuracy

and numerical cost, scaling with N6
b with the number of basis functions. [73] However, by

regarding connected triple excitations the accuracy of the coupled cluster method is sig-

nificantly improved - to the point where even more challenging systems, e. g. with weak

dispersive interactions, may be described accurately. The coupled cluster method with full

triple excitations, that is CCSDT, scales according to N8
b with the number of basis func-

tions. [73] This prohibitively large scaling is typically avoided with the CCSD(T) method.

Herein, selected contributions of the connected triple excitations to the correlation energy

are obtained from the converged CCSD amplitudes in a non-iterative procedure inspired

by perturbation theory. [76] In CCSD(T) the scaling of the numerical expense is reduced

by one order of magnitude compared to CCSDT, while a significant contribution of the

connected triple excitations is grasped. In accord with that, CCSD(T) calculations are

often used to determine reference values for other quantum chemical procedures.

Explicit Correlation

The correlation methods introduced up to this point are based on different approaches to

incorporate the interdependence of electrons into the wave function. However, all of them

share a somewhat unpleasant trait. To be precise, the convergence of the calculated corre-

lation energy to the limit of a complete one-particle basis set is relatively slow. The origin

of this behaviour lies in the form of the exact electronic wave function at the coalescence

points of two electrons. At such a singular point of the Coulomb potential the true elec-

tronic wave function has a cusp, at which its first derivatives are not continuous. These

sharp features of the exact wave function and the discontinuity in its first derivatives are

not correctly described by conventional basis sets, where the basis functions depend only

22



CHAPTER 2. THEORETICAL BASICS

on the coordinates of single electrons. In order to approximate the correct behaviour in

this region of the electronic interaction, a very large number of conventional basis func-

tions including those with high angular momenta is required.

However, the issue may be approached more efficiently. It was shown by Kato [77] that at

the cusp electronic wave functions are generally well described in terms of interelectron

distances rij = |~ri−~rj|, in particular with respect to their first derivatives. Thus, a natural

remedy for the disadvantageous behaviour is the explicit inclusion of the distance between

two electrons rij into the wave function. This is in fact an old idea that was first exploited

in the 1920s by Slater [78,79] as well as Hylleraas [80] in their respective investigations on

two-electron atoms. In current quantum chemistry various extensions of common correla-

tion methods, such as MP2 or CCSD, have been developed to account for the cusp condi-

tions. The resulting schemes are referred to as explicitly correlated methods. With respect

to numerical calculations, the main obstacle arising from the inclusion of interelectron

distances into the electronic wave function is the increase of many-electron integrals. [58]

This problem may be circumvented by using explicitly correlated Gaussian basis func-

tions, which allow for analytical integral evaluations. [58] Another commonly employed

scheme consists of exploiting resolution-of-identity relations to reduce the multi-electron

integrals to products of one- and two-electron integrals. The corresponding branch of

methods and approximations is denoted by R12/F12, as in CCSD(T)-F12. [58,81,82]

For a given correlation scheme and finite basis set, the application of the explicitly cor-

related method (e. g. MP2-F12) produces correlation energies significantly closer to the

complete basis set limit compared to the regular method (MP2). This improvement may

be crucial for the accurate description of molecular properties and weakly interacting sys-

tems.

2.2.5 Density Functional Theory

A widely used alternative to the wave function-based quantum chemical methods pre-

sented above is density functional theory (DFT), which treats the electronic Schrödinger

equation by means of the electronic density. The approach is based on the ingenious

works of Hohenberg and Kohn. [83] They showed that the true electronic density of a non-

degenerate ground state is linked to a corresponding electron-nuclei interaction potential

Vn-e in a unique way. Therefore, knowledge of the ground state density allows for the

determination of the electronic Hamiltonian as well as the properties associated with it;

23



2.2. THE ELECTRONIC SCHRÖDINGER EQUATION

in particular, the energy of the electronic ground state. Correspondingly, the ground state

energy E0 may be expressed as a functional of the ground state density ρ0

E0[ρ0] = T [ρ0] + Eee[ρ0] + Ene[ρ0] , (2.42)

where T [ρ0], Eee[ρ0] and Ene[ρ0] represent contributions of the kinetic energy of the elec-

trons, the electron-electron interaction and the electron-nuclei interaction as functionals

of the ground state density, respectively. Moreover, Hohenberg and Kohn presented a

variational principle for the ground state energy as the functional of the electronic den-

sity, according to which only the true ground state density minimizes the ground state

energy. At this point the formalism is intractable, as the functional forms of T [ρ0] and

Eee[ρ0] remain unidentified. However, the problem of finding suitable functional forms

may be reduced by introducing orbitals into the formalism, an idea conceived by Kohn

and Sham. [84]

Kohn-Sham Density Functional Theory

In Kohn-Sham density functional theory (KS-DFT) the electronic density is assumed to

be generated by a reference system of non-interacting electrons. Analogously to Equation

(2.10) the wave function of such a system can be expressed as a Slater determinant com-

prising a set of orthonormal Kohn-Sham spin orbitals χKS
i . Correspondingly, the electron

density of the Kohn-Sham system is determined by

ρKS(~r) =
∑

i

∑

ω

|χKS
i (~r, ω)|2 , (2.43)

with the spin variable ω. The total Hamiltonian HKS is given as the sum of one-particle

Hamiltonians ĥKS
i ,

HKS =
∑

i

ĥKS
i =

∑

i

(
−1

2
∆i + V KS(~ri)

)
, (2.44)

with a one-particle potential V KS(~ri). The orbitals are obtained by solving the one-particle

Schrödinger equations

(
−1

2
∆ + V KS(~r)

)
χKS
i = εKS

i χ
KS
i . (2.45)
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where εKS
i is the Kohn-Sham orbital energy. With this the central aspect of KS-DFT can

be approached. That is the question of how to construct the Kohn-Sham system - meaning

V KS(~r) - in such a way that the resulting density (ρKS) reproduces the true ground state

density as faithfully as possible. With respect to that, the first step is to define the kinetic

energy and electron-electron interaction in the Kohn-Sham system, which are

TKS[ρ] = −1

2

∑

i

〈χKS
i |∆ |χKS

i 〉 , (2.46a)

EKS
ee [ρ] =

1

2

∑

i,j

∫∫
d~x1d~x2|χKS

i |2
1

|~r1 − ~r2|
|χKS
j |2 . (2.46b)

These expressions are inserted into Equation (2.42) to redefine the ground state energy as

E0[ρ] = TKS[ρ] + EKS
ee [ρ] + Ene[ρ] +

(
T [ρ]− TKS[ρ]

)
+
(
Eee[ρ]− EKS

ee [ρ]
)

= TKS[ρ] + EKS
ee [ρ] + Ene[ρ] + EXC[ρ] .

(2.47)

EXC[ρ] is the exchange and correlation functional carrying the portions of the kinetic

energy and electron-electron interaction not described by the Kohn-Sham system. Sub-

jecting Equation (2.47) to a minimization of the ground state energy E0 by varying the

KS orbitals (with the orthonormality condition 〈χKS
i |χKS

j 〉 = δij) results in effective one-

particle problems (
−1

2
∆ + Veff(~r)

)
χKS
i = εKS

i χ
KS
i , (2.48)

the Kohn-Sham equations. The effective potential in the KS equations is given by

Veff(~r1) =

∫
ρ(~r2)

|~r1 − ~r2|
d~r2 +

∑

α

Zα

|~r1 − ~Rα|
+
∂EXC

∂ρ
(~r1) , (2.49)

with the first two expressions representing the classical electron-electron and the elec-

tron-nuclei interactions, respectively. The last term is the functional derivative of the

exchange and correlation functional with respect to the density. Notably, the effective

potential in Equation (2.49) and the one-particle potential in Equation (2.45) are the same.

Thus, solving the Kohn-Sham problem in the limit of a complete orbital basis produces the

true ground state density if the exchange and correlation functional used in the procedure

is accurate. With regards to solving the KS equations, it should be noted that solutions

are determined in a self-consistent way as the electron density appears in Equation (2.48).

Moreover, analogous to the Roothaan-Hall ansatz in HF a finite basis set of atom-centered

25



2.2. THE ELECTRONIC SCHRÖDINGER EQUATION

functions is commonly used to expand the orbitals in KS-DFT.

The benefits of considering the Kohn-Sham system become apparent upon reconsidering

Equation (2.47). Instead of approximating the completely unknown functionals T [ρ] and

Eee[ρ], a sizable portion of the ground state energy is recovered by examining a system of

non-interacting electrons in a tractable orbital-based picture. The relatively small residual

contributions of the kinetic energy and electron-electron interaction are collected in the

exchange and correlation functional EXC, whose form remains unknown. Hence, the

problem of functional expressions is shifted to affect only a fraction of the ground state

energy. Correspondingly, the aim in KS-DFT is to set up appropriate approximations to

the exchange and correlation functional.

Local Density Approximation

A central concept for the design of exchange and correlation functionals is the local den-

sity approximation (LDA). Within its framework a system’s electronic structure is mod-

eled by a homogeneous electron gas, that is, an electron density on a uniform positive

background charge distribution. The total exchange-correlation energy is given by

ELDA
XC =

∫
ρ(~r)εXC[ρ(~r)] d~r, (2.50)

where εXC[ρ(~r)] is the per-particle exchange-correlation energy in the uniformly dis-

tributed electron gas. This per-particle energy is taken to be the sum of an exchange

and a correlation part. The exchange contribution to εXC,

εX[ρ(~r)] = −3

4

(
3 ρ

π

) 1
3

, (2.51)

is available from analytic derivation, whereas different expressions for the correlation

term were obtained from interpolation of numerical simulations of the homogeneous

electron gas. [85–87] Typically, the LDA performs decently for systems that can be approxi-

mated by a homogeneous electron gas to a reasonable extent, for instance a variety of

metal solids. However, electron densities of molecules are usually not uniform and thus

the scheme does not produce accurate results in these cases.
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Generalized Gradient Approximation

In order to move away from a uniform electron gas and improve upon the LDA, gradients

of the electronic density may be added to the formalism. The exchange-correlation energy

is then described by

EGGA
XC [ρ] =

∫
f(ρ, ~∇ρ) d~r , (2.52)

with f(ρ, ~∇ρ) containing functionals of the density ρ as well as its gradient ~∇ρ. This

general expression is combined with constraints that produce physically sound behaviour.

In particular, it is ensured that correlation effects caused by the Pauli exclusion principle

and the electrostatic electron-electron interaction are included in a qualitatively correct

way. Exchange-correlation functionals of this type belong to the general gradient approx-

imation (GGA). Often, the GGA functionals are based on the local density approxima-

tion and its separate exchange and correlation contributions, but expanded with elaborate

mathematical expressions to incorporate the aforementioned constraints. With respect

to numerical cost, GGA functionals are comparatively cheap, while often producing re-

sults of reasonable, that is at least qualitative, accuracy. Commonly used examples of

GGA functionals are the Perdew-Burke-Ernzerhof [88] (PBE, exchange and correlation),

the Perdew-Wang [87] (PW91, exchange and correlation) and the Lee-Yang-Parr [89] (LYP,

only correlation) functionals.

Hybrid Functionals

Another attempt at increasing the accuracy and reliability of KS-DFT was the introduc-

tion of hybrid exchange-correlation functionals. The fundamental idea behind this branch

of approximations is to include explicitly calculated contributions of the Hartree-Fock ex-

change interaction into selected GGA functionals. Typically, optimal performance of the

hybrid functionals is obtained if the exchange energy is designed to be a mix of exact HF

exchange and GGA functional exchange. The parameters determining the ratio of con-

tributions by exact and approximate exchange are optimized with respect to performance

in benchmark calculations on a sizable test set of structures and properties. Employing

hybrid instead of GGA functionals leads to significantly longer calculations that may pro-

duce more accurate results. Notably though, the improvement over the GGA scheme is

not guaranteed. B3LYP and PBE0 are widely used hybrid functionals. [90,91]
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Dispersion Correction – DFT-D

The functional approximations presented up to this point are not able to describe non-

covalent dispersive interactions thoroughly. Hence, if a corresponding system - such as

a rare gas atom cluster - is to be treated in the DFT framework, additional modifications

have to be introduced. In fact, a variety of ways to correct existing functionals to ac-

count for dispersion has been designed, for instance the vdW functional family, which

includes dispersion self-consistently. [92,93] A more straightforward approach, however, is

Grimme’s dispersion correction, DFT-D. [94] Here a dispersion contribution is added to the

self-consistently optimized DFT energy,

EDFT-D = EKS-DFT + Edisp . (2.53)

At the DFT-D2 level, the dispersion correction is determined by two-body interactions,

E(2) = −
∑

A,B

∑

n=6,8,10,...

sn
CAB
n

rnAB
fd,n(rAB) . (2.54)

It contains pair interactions of atoms A and B at a distance of rAB via multiple central

potentials r−n and dispersion coefficients CAB
n . The parameter sn denotes a scaling factor.

The damping function fd,n (with zero-damping) is defined as

fd,n(rAB) =
1

1 + 6(rAB/(sr,nRAB))−αn
, (2.55)

where sr,n is another scaling parameter, RAB is a cut-off radius and αn is referred to as

steepness parameter. [95] This basic correction is typically extended by considering non-

additive contributions of three-body interactions. In the DFT-D3 framework these are

added as Axilrod-Teller-Muto interactions,

E(3) =
∑

A,B,C

CABC
9 (3 cos(θA) cos(θB) cos(θC) + 1)

(rABrACrBC)3
fd,3(r̄ABC) , (2.56)

where A, B and C refer to different atoms and the angles θi and bond lengths rjk describe

the triangle spanned by these atoms. [95] The argument of the damping function, r̄ABC,

is the geometrical mean of the three distances rjk. With the DFT-D4 method further

improvements were made by approximating many-body interactions beyond the three-

body level and incorporating atomic charge effects into the calculation of the dispersion
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coefficients. [96] For the most part the parameters in the DFT-D approaches are obtained

from ab initio calculations, only a small number of parameters is set empirically. Also,

the evaluation of the dispersion correction is relatively fast, as the correction is not part of

the self-consistent optimization of the KS orbitals.

DFT for Periodic Systems

Other than for molecules and clusters, KS-DFT is used to investigate truly extended sys-

tems, such as crystal structures or processes at surfaces. This is possible, because these

types of systems may credibly be modeled by concatenations of smaller cells containing

the important features, i. e. by assuming a periodicity in the system. Likewise the period-

icity can be incorporated into the KS-DFT formalism. As a result, the size of the explicitly

treated system is reduced to the unit, from which the periodic structure is constructed.

Formally, a crystal structure is determined by a lattice and a basis. The former is a grid of

points that describes the translational symmetry of the crystal. It is given by

~R = n1~a1 + n2~a2 + n3~a3 , (2.57)

with n1, n2 and n3 as integers and~a1,~a2 and~a3 as the lattice vectors. A smallest subunit of

the lattice, from which the full grid can be constructed by concatenation in every direction,

is denoted a unit cell. The basis defines the atomic positions within a given unit cell. A

particular case of a unit cell is the Wigner-Seitz cell, which contains the symmetry of the

crystal lattice, but engulfs only the space that is closer to a given reference lattice point

than to any other point of ~R. In addition to the lattice in real space another lattice is

relevant when examining periodic systems. This is the reciprocal lattice,

~G = m1
~b1 +m2

~b2 +m3
~b3 , (2.58)

where m1, m2 and m3 are integers. The reciprocal lattice vectors~bi are defined by

~b1 = 2π
~a2 × ~a3

|~a1 · (~a2 × ~a3)|
(2.59a)

~b2 = 2π
~a3 × ~a1

|~a1 · (~a2 × ~a3)|
(2.59b)

~b3 = 2π
~a1 × ~a2

|~a1 · (~a2 × ~a3)|
, (2.59c)
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and fulfil the orthogonality relation

~ai ·~bj = 2πδij (2.60)

with the real space lattice vectors. The analogon of the Wigner-Seitz cell in reciprocal

space is called the first Brillouin zone.

For one-electron Schrödinger equations with potentials that display the same translational

symmetry as the crystal structure,

Veff(~r) = Veff(~r + ~R) , (2.61)

the Bloch theorem is valid. [97] The latter shows that the wave functions solving the one-

electron Schrödinger equations can be formulated as

χj,~k(~r) = ei
~k·~r · uj,~k(~r) , (2.62)

that is as a product of a plane wave (the wave function for a free electron) and a func-

tion uj,~k(~r) with the periodicity of the crystal. The solutions, meaning the one-electron

wave functions as well as the corresponding energies, depend on the crystal momentum
~k, which represents a point in reciprocal space. Furthermore, the different solutions are

denoted by the index j. The energy corresponding to a given one-electron wave function

changes continuously with ~k, forming a continuous band in reciprocal space. For that

reason the index j is referred to as band index. These symmetry considerations are per-

fectly applicable to KS-DFT and its effective one-particle Schrödinger equations. In this

context, the total electronic energy of the examined system is given by

Etot =
∑

occ. j

V

(2π)3

∫

1st BZ
d3~k εj(~k) , (2.63)

where εj(~k) is the energy of band j at crystal momentum ~k and V is the unit cell volume.

The energies εj(~k) are integrated over the first Brillouin zone, which contains all infor-

mation with respect to symmetry of the crystal, and summed up for all occupied bands.

In numerical calculations the integral over the first Brillouin zone is replaced by a sum-

mation over a grid of ~k points. Also, plane-wave instead of atom-centered basis sets are

often used to describe the KS orbitals for periodic systems.
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At this point various schemes to solve the electronic problem have been introduced. As

presented here, their application yields (among other properties) the electronic energy for

a given electronic state and nuclear configuration. If nuclear motion is investigated, the

electronic problem is typically solved for a sizable set of nuclear configurations. The

resulting electronic energies are subsequently used to determine a continuous functional

form representing the potential energy surface for the investigated electronic state. In an

ensuing treatment of the nuclear Schrödinger equation, the continuous potential function

acts as the potential that governs the nuclear motion. Thus, the procedure of potential

fitting is at the intersection of the electronic and nuclear problems. Although it is a chal-

lenging task with various intricacies, it will not be discussed further. Instead, the focus

will be placed on the formulation of the nuclear problem assuming that a suitable repre-

sentation of the investigated potential energy surface is available.

2.3 The Nuclear Schrödinger Equation

In this section several aspects of working with the time-independent nuclear Schrödinger

equation within the Born-Oppenheimer approximation (Equation (2.8)) are described.

The solutions of the nuclear problem are states that represent nuclear motion within the

given potential energy surface, such as molecular translations, rotations or vibrations.

Usually the treatment of the nuclear Schrödinger equation is heavily tailored to the prob-

lem at hand. As a consequence there are numerous schemes, not all of which can be

presented here. Instead, it is attempted to give a concise description of the cornerstones

of obtaining rovibrational states in the context of what is often referred to as variational

schemes. The section starts off with a general outline of variational calculations of mol-

ecular rovibrational states. To this end, the construction of Hamiltonians in a translation-

free, body-fixed reference frame, different coordinate systems and approaches to the nu-

clear wave function are described. This is followed by an account of the normal mode

analysis. Finally, the vibrational self-consistent field (VSCF) method is discussed.

2.3.1 Variational Procedures

Concerning the calculation of rovibrational states variational procedures typically refers

to methods that are direct implementations of the variational principle discussed in Sec-
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tion 2.2.2 and Equations (2.13) and (2.14) in particular. However, as it is, the variational

principle serves only as a general framework. Accordingly, the coordinate system defin-

ing the nuclear Hamiltonian and the basis describing the nuclear wave function have to

be suited to the chemical system and property of interest. The general workflow can be

summarized with three steps:

Firstly, define a nuclear Hamiltonian by choosing an appropriate coordinate system, de-

termining the kinetic energy operator and a potential energy surface.

Secondly, build a matrix representation of the Hamiltonian with respect to a set of suitable

basis functions.

Lastly, obtain the rovibrational states from the Hamiltonian matrix through direct diago-

nalization or another appropriate procedure.

The possibility of a high degree of specification regarding coordinate systems and basis

functions within the variational framework allows for the description of chemical systems

with varying rovibrational behaviour in a very accurate way. On the other hand, it also

results in a lack of universal applicability for many approaches. Aside from that, the

numerical expense of setting up a Hamiltonian matrix for a given set of basis functions

increases exponentially with increasing dimensionality. Thus, the approach is restricted

to smaller molecules – typically tri- or tetraatomic species – or, for larger systems, a

selection of coordinates that are relevant to the investigated process. In the following, a

few aspects of calculating rovibrational states with a variational scheme are detailed.

Rovibrational Hamiltonians

Combining Equations (2.2b) and (2.8) the nuclear Schrödinger equation in Cartesian co-

ordinates for a system of N atoms can be phrased as

(
−

N∑

i=1

1

2Mi

∆i + V

)
ξ(~R) = E ξ(~R) , (2.64)

where Mi and ∆i are the mass of atom i and its Laplacian. The Cartesian coordinates

listed in ~R are defined with respect to a laboratory-fixed reference frame. V is a poten-
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tial energy surface in the Born-Oppenheimer approximation that depends solely on the

internal coordinates of the system and is invariant with respect to uniform translations

and rotations of the molecule. The problem is 3N -dimensional. Of these 3N degrees of

freedom (3N − 6) ((3N − 5) for linear molecules) can be regarded internal, that is as

vibrations. The remaining ones correspond to three uniform translations of the system’s

center-of-mass and three (for linear species two) uniform rotations, both of which do not

affect the internal coordinates.

The first step to calculating bound rovibrational states of a molecule is to remove the

translation of the nuclear center-of-mass from the Hamiltonian. This is necessary, as

the inclusion of the uniform translations would prevent the nuclear wave function from

being square-integrable, thus inhibiting the calculation of a bound spectrum. [62] Among

others, it was shown by Sutcliffe that a linear transformation is sufficient to separate

the translation of the center-of-mass from the Cartesian coordinates. [62] The result is a

Hamiltonian that can be decomposed according to

Hnuc(~R) = HCOM(~RCOM) + HTI(~RTI)

= − 1

2MCOM
∆~RCOM

−
3N−3∑

i=1

1

2MTI,i

∂2

∂R2
TI,i

+ V (~RTI) ,
(2.65)

where ~RCOM and ~RTI represent the center-of-mass and the (3N − 3) translationally in-

variant (TI) Cartesian coordinates, respectively, and HCOM and HTI the corresponding

Z' 

X

Y

Z

X' 

Y'

N

Figure 2.1: Relation between two axes systems.
To rotate the black frame into the blue one, the
rotations Z′(γ)◦N(β)◦Z(α) have to be applied.

Hamiltonians. MTI,i refers to the

mass associated with the ith translation-

ally invariant coordinate. The nuclear

Hamiltonian Hnuc does not contain any

expression that couples ~RCOM and ~RTI.

As a consequence the overall transla-

tions are independent of the rotations

and vibrations, which are thus com-

pletely described by HTI. Typically, the

first step is followed by the introduction

of a body-fixed reference frame, which

is attached to the molecule in a prede-

fined and fixed way. For instance, the
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body-fixed axes system can be defined such that its z axis is always oriented parallely

to a certain bond in the investigated molecule. This is referred to as axis embedding.

The additional coordinate system is used to define the molecular orientation relative to

the original laboratory frame through three Euler angles, as is illustrated in Figure 2.1.

Mathematically, the transition from translationally invariant Cartesians to body-fixed co-

ordinates and orientational angles corresponds to an orthogonal transformation defined

by the three Euler angles. Among the transformed (3N − 3) Cartesian coordinates only

(3N − 6) remain independent. These represent the internal coordinates, invariant with

respect to uniform translations and rigid rotations. The transformation is summarized by

HTI(~RTI)
Û(α,β,γ)−−−−−→ HBF(α, β, γ, ~Rint) , (2.66)

where Û is the orthogonal transformation depending on the Euler angles α, β and γ.

The transformed Hamiltonian HBF is defined by a selected body-fixed (BF) frame. It

is expressed in terms of a set of internal coordinates ~Rint and the Euler angles, which

describe the molecular orientation relative to the original laboratory frame. The explicit

dependence on the Euler angles can be hidden by exploiting their relations to the angular

momentum operators Ĵ and Ĵi (i = x, y, z). Therefore, rovibrational Hamiltonians in a

body-fixed reference frame are typically given with respect to the total angular momentum
~J of the system, that is

HBF(α, β, γ, ~Rint) −→ H ~J
BF(~Rint) . (2.67)

Moreover, the expressions in H ~J
BF can be assigned to describing either vibrational motion

(Hvib) or rotations and the rovibrational coupling (H ~J
rot(vib)), according to

H ~J
BF(~Rint) = Hvib(~Rint) + H ~J

rot(vib)(~Rint)

= Tvib(~Rint) + V (~Rint) + T ~J
rot(vib)(~Rint) .

(2.68)

The vibrational Hamiltonian Hvib contains the internal coordinates but is independent of

the angular momentum. It comprises the vibrational kinetic energy operator Tvib as well

as the potential energy surface V (~Rint), which is invariant with respect to the system’s

orientation in (field-free) space. In agreement with that, H ~J
rot(vib) consists solely of kinetic

energy terms – thus, T ~J
rot(vib). Expectedly, the body-fixed rovibrational Hamiltonian will

reduce to Hvib for a molecule with J = 0.
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At this point, an appropriate coordinate system to represent the internal coordinates has

to be selected. In that regard the strategic objective is to use a set of coordinates that natu-

rally represents the chemical system and the investigated process. For instance, Radau

coordinates and hyperspherical coordinates are particularly suited to describe molecules

of the AB2 (such as H2O) and A3 (e. g. H+
3 , O−3 ) type, respectively, as the coordinates rep-

resent the molecular symmetry well. Likewise, when molecular scattering is investigated

one may benefit from employing Jacobi (scattering) coordinates. The advantage of using

suitable representations of the internal degrees of freedom is rooted in the circumstance

that this typically decreases coupling among the coordinates. Thus, it introduces sepa-

rability into the rovibrational problem, greatly facilitating the solution process. Corre-

sponding to that, the description of the internal coordinates in terms of separate Cartesian

displacements is inefficient. To illustrate the following descriptions of applicable internal

coordinate systems, a listing of definitions and kinetic energy operators for valence, or-

thogonal Jacobi and normal mode coordinates of a bent triatomic molecule (for instance,

H2O) with J = 0 is given in Table 2.1.

Probably, the first type of coordinates that comes to mind for describing the internal de-

grees of freedom are valence coordinates, i. e. bond lengths and angles. With respect to

the potential energy the valence coordinates are fairly decoupled, [98,99] meaning that the

full potential can be expressed rather efficiently in terms of these coordinates. However,

the kinetic energy operator includes mixed derivatives, i. e. terms such as ∂2

∂qi∂qj
(where qi

and qj are two of the valence coordinates). Correspondingly, there is significant coupling

among the coordinates in the kinetic energy as well as a very complicated kinetic energy

operator for problems of larger dimensionality.

A different type of coordinates is referred to as orthogonal coordinates, prominent ex-

amples being Jacobi, Radau and hyperspherical coordinates. [64,100,101] As for the valence

coordinates, suitably chosen orthogonal coordinates are to a relatively small degree cou-

pled in the potential energy. On the other hand, the kinetic energy operators based on

orthogonal coordinates do not feature mixed derivatives or significant coupling. There-

fore, the selection of orthogonal coordinates results in rather compact expressions for the

rovibrational Hamiltonians.

A third approach to representing the internal motion relies on normal modes of the mol-

ecule. These are linear combinations of Cartesian displacements relative to a well-defined

equilibrium position. A description of the normal mode analysis is given in the next sec-

tion. The normal modes are decoupled in the kinetic energy operator and the potential, as

long as the term of highest order in the potential is quadratic or lower. For real potentials,
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Table 2.1: Illustration of valence, orthogonal Jacobi and normal mode coordinates for a triatomic
molecule with a bent equilibrium structure. In the equations mi denotes the mass of atom i. For the
Watson Hamiltonian Iαβ refers to the moment of inertia, εαβγ to the Levi-Civita symbol, [102] lβik to the
Cartesian displacement of atom i along β in mode k and ηαkl to the Coriolis coupling coefficients.

coordinate system vibrational kinetic energy operator [63,103,104]
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which typically contain higher-order terms beyond the quadratic one, normal modes are

useful if a unique and well-pronounced potential minimum and thus equilibrium configu-

ration exists and processes are examined that correspond to only small displacements

from this minimum structure. For large-amplitude motion of the nuclei or the calculation

of high-energy states, the normal modes are strongly coupled in the potential energy and

consequently are not an efficient way to describe the internal coordinates. The normal

mode representation of the internal coordinates is used in the commonly applied Watson

Hamiltonian. [105] Within that approach the body-fixed axes system is embedded into a par-

ticular reference frame, the Eckart frame, which minimizes the coupling between vibra-

tions and rotations close to a predefined reference configuration. [106] Notably, the general

form of the Watson Hamiltonian remains the same irrespective of the dimensionality of

the problem. Thus, its application to arbitrary chemical systems is more straightforward

than for Hamiltonians based on other coordinate systems.

To conclude this part, it should be emphasized again that the general outline given here

served only to introduce a few of the basic but important considerations that factor into

the preparation of the time-independent nuclear Hamiltonian. These are details that to

some degree relate to this thesis. Generally though, the exhaustive field of describing

the time-independent nuclear Schrödinger equation hosts many more schemes and details

about constructing nuclear Hamiltonians efficiently and thoroughly.

Nuclear Wave Functions

In order to exploit the variational principle in actual calculations, a matrix representation

of the rovibrational Hamiltonian has to be set up. For this the nuclear wave function is

expanded into a set of basis functions. Similarly to the Hamiltonian, this basis set should

be suited to the problem. The nuclear wave function ξ(~R) in Equations (2.8) and (2.64)

depends on all 3N nuclear degrees of freedom. First, the separability of the center-of-

mass translation from the nuclear coordinates in the Hamiltonian (Equation (2.65)) allows

for a product decomposition of the wave function,

ξ(~R) = ξCOM(~RCOM) · ξrv(~RTI) . (2.69)

The wave functions ξCOM describing the overall translations are plane waves. For the

calculation of rovibrational states they are irrelevant and thus will be disregarded from
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here on out. Instead the focus is placed on the rovibrational wave functions of the trans-

lationally invariant coordinates ξrv(~RTI). With the introduction of a body-fixed frame

into the Hamiltonian, the rovibrational problem can be parametrized by the internal co-

ordinates as well as three Euler angles and the associated angular momentum operator ~J

(see Equations (2.66) and (2.67)). Consequently, ξrv(~RTI) becomes ξ ~Jrv(α, β, γ, ~Rint). Fur-

thermore, dividing the body-fixed rovibrational Hamiltonian into a vibrational part and a

rotational-rovibrational coupling part (see Equation (2.68)) suggests a product ansatz for

the rovibrational wave function as well. Usually, the latter is expanded according to

ξ
~J
rv(α, β, γ, ~Rint) =

J∑

k=−J
ψk(~Rint) |JMk〉 . (2.70)

Herein, ψk(~Rint) represents the vibrational states of the system that are coupled to the ro-

tational part via a parametric dependence on k, the projection of the total angular momen-

tum J on the body-fixed z axis. The rotational portion of the wave function is described in

a basis of symmetric-top wave functions |JMk〉, where J is the total angular momentum,

while M and k are its projections on the z axis in the laboratory frame (Z in Figure 2.1)

and the body-fixed frame (Z′ in Figure 2.1), respectively. The functions are given by

|JMk〉 =

√
2J + 1

8π2
DJ ∗

Mk(α, β, γ) =

√
2J + 1

8π2
eiMαdJMk(cos β)eikγ , (2.71)

where dJMk(x) is

dJMk(x) =
(−1)u

2M

√
(J +M)!(J −M)!

(J + k)!(J − k)!
(1− x)

u
2 (1 + x)

v
2P

(u,v)
J−M(x) , (2.72)

with the Jacobi polynomials P (b,c)
a (x) and u = M − k and v = M + k. [107] These rotation

functions fulfil several eigenvalue equations involving the angular momentum operator Ĵ .

In particular, they obey (among others)

Ĵ2 |JMk〉 = J(J + 1) |JMk〉 , (2.73a)

Ĵz |JMk〉 = M |JMk〉 , (2.73b)

ĴBF
z |JMk〉 = k |JMk〉 , (2.73c)
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where BF indicates a projection onto the body-fixed axes system. [108] When solving the

rovibrational problems, these relations can obviously be exploited, making the symmetric-

top functions highly appropriate basis functions.

In view of the vibrational part ψk(~Rint) of the nuclear wave function, more basis func-

tions have to be selected. A common approach is the expansion of the vibrational wave

functions into a direct-product basis of one-dimensional basis functions,

ψk(~Rint) =

Bj1∑

j1=1

· · ·
BjNi∑

jNi=1

cj1...jNi

(
Ni∏

l=1

φ
(l)
jl

(Rint,l)

)
, (2.74)

whereNi is the number of internal coordinates and φ(l)
jl

(Rint,l) is one ofBjl one-dimensional

basis functions of a type denoted by (l) representing the internal coordinate Rint,l. The

contribution of a given product of basis functions to the vibrational wave function is de-

scribed by the expansion coefficient cj1...jNi
. Depending on the choice of basis functions

different types of representations for the vibrational Hamiltonian matrix are obtained. If

a basis set can be found such that the matrix elements can be determined analytically, the

matrix representation is called a variational basis representation (VBR). [65] In the VBR,

the errors to the vibrational states are only due to the truncation of the basis set that is

unavoidable in numerical calculations. Unfortunately, a full analytic evaluation of the

Hamiltonian matrix is possible only for selected model potentials. Thus, a VBR is typi-

cally not available for systems described by fully coupled potential energy surfaces. Then,

representations that rely on accurate numerical quadrature methods have to be employed,

such as the finite basis (FBR) or discrete variable representations (DVR) of the internal

coordinates.

The one-dimensional basis functions of a coordinate in the FBR are typically described

by sets of orthonormal functions, for which an expression for the corresponding part of

the kinetic energy operator can be derived analytically. Ideally, these basis functions are

chosen such that accurate quadrature schemes, for example Gauss quadrature, are read-

ily applicable to them. This is because the elements of the potential matrix are usually

unknown in these bases and have to be evaluated by numerical quadrature over the dif-

ferent internal coordinates. In accord with that, common choices for the basis functions

are the solutions of one-dimensional problems like the harmonic oscillator and the Morse

potential or general orthogonal polynomials, such as Hermite polynomials (for radial co-

ordinates) or Legendre polynomials (for angular coordinates), for which accurate (Gauss)

quadrature schemes are known. [64]
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On the other hand, the discrete variable representation is a direct-product, but grid-based

representation of the Hamiltonian. The DVR for a single coordinate is related to the

corresponding FBR based on orthogonal polynomials through a unitary transformation.

This transformation can be obtained from setting up the coordinate matrix in the FBR

and diagonalizing it. To be precise, the transformation that diagonalizes the coordinate

matrix in the FBR is the same transformation that facilitates a transition from the FBR to

the DVR. The eigenvalues of the FBR coordinate matrix are the grid points defining the

DVR. In agreement with that, each of the actual one-dimensional DVR basis functions

is to a high degree localized at one of the grid points while vanishing at the remaining

ones. Moreover, it can be shown that the DVR grid points, that is the eigenvalues of

the FBR coordinate matrix, are the nodes of a Gauss quadrature over the original FBR

functions; the quadrature weights may be found in the eigenvectors. In the DVR, the ma-

trix representations of functions of the regular coordinate operator are approximated to

be diagonal. Matrix elements are calculated by inserting DVR grid points as an argument

into the corresponding function. Consequently, the potential matrix is effectively diagonal

with non-vanishing elements corresponding to the potential at the DVR grid points. To set

up the kinetic energy matrix in the DVR, usually the corresponding FBR matrix is con-

structed and subsequently transformed to the DVR. Also, analytical expressions for the

kinetic energy in the DVR are known for several types of orthogonal polynomials. [109] In

view of the connection to the FBR, typical DVR schemes are the Legendre, Hermite and

Jacobi DVRs, but also the sinc and sine DVRs, each of them being suited to describe par-

ticular types of motion. [109,110] Aside from these, there are various schemes to reduce the

number of basis functions and improve the numerical performance. Often, these consist

of contracting primitive basis functions to obtain optimized ones. This can be achieved

by first solving nuclear problems in reduced dimensions to access the improved basis

functions. In case of contracting basis functions in one dimension this is referred to as

potential optimized DVR. [111]

With respect to the direct-product wave function of Equation (2.74) full DVR represen-

tations are widely used. This is partly due to the clear approach to optimizing the DVR

basis sets (through contraction and truncation) and the straightforward way of calculat-

ing expectation values on the grid. Furthermore, in comparison to the standard FBR

bases, which are not localized in position space, the localized DVR functions are suited

to treat a wider range of nuclear motion, including large amplitude motion, more effi-

ciently. [64] However, depending on the problem also mixed DVR-FBR representations of

(ro)vibrational wave functions are used. [104,112]
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Once a matrix representation of the (ro)vibrational Hamiltonian is constructed, the sys-

tem’s (ro)vibrational states and the energies are approximated by the corresponding eigen-

vectors and eigenvalues, respectively. Thus, an eigenvalue problem has to be solved. If

the Hamiltonian matrices are small enough, usually when triatomic molecules are inves-

tigated, a direct diagonalization may be feasible. However, for larger molecules, direct

diagonalizations are definitely intractable. In these cases, iterative eigensolvers may be

used, which do not require storing the full Hamiltonian matrix in memory. [113–116]

2.3.2 Normal Mode Analysis

Due to its importance for the description of molecular vibrations and its common appli-

cation in quantum chemical investigations, the normal mode analysis is further explained

in this section. The method allows for the estimation of approximate fundamental vibra-

tional transitions of a chemical system at a stationary point on its potential energy surface.

The central idea is to approach the nuclear problem in the harmonic approximation. This

is illustrated by considering a Taylor expansion of the potential energy surface around the

minimum configuration,

V (~R0 + ∆~R) = V (~R0) +
∑

i

(
∂V

∂Ri

)

0

∆Ri

+
1

2

∑

i,j

(
∂2V

∂Ri∂Rj

)

0

∆Ri∆Rj + . . . ,

(2.75)

with the minimum configuration ~R0 and displacement vector ∆~R comprising the Carte-

sian displacements ∆Ri. The index ()0 indicates that displacements with respect to a

stationary point on the PES are considered. For the normal mode analysis the series ex-

pansion is truncated after the second derivatives and V (~R0) is set to zero. Also, the first

derivatives of the potential with respect to the coordinates vanish at a stationary point.

Thus, the potential is reduced to

V (~R0 + ∆~R) =
1

2

∑

i,j

(
∂2V

∂Ri∂Rj

)

0

∆Ri∆Rj . (2.76)
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This is the potential of a system of coupled harmonic oscillators. The problem can be

decoupled by switching to mass-weighted Cartesian coordinates,

qi =
√
mi ·∆Ri , (2.77)

where mi is the mass of the atom displaced by ∆Ri. The resulting potential expression is

V (~q) =
1

2

∑

i,j

(
∂2V

∂qi∂qj

)

0

qiqj =
1

2

∑

i,j

Dijqiqj , (2.78)

with the mass-weighted Hessian matrix D carrying the force constants for displacements

along the mass-weighted Cartesian coordinates. The decoupled normal modes and their

frequencies are obtained from diagonalizing D. The resulting eigenvectors correspond to

the normal modes and the eigenvalues λi are related to the modes’ frequencies ωi by

ωi =
√
λi . (2.79)

The relation

Ei
ni

= ωi

(
ni +

1

2

)
, (2.80)

with ni being a natural number or zero, describes the energies of the decoupled harmonic

oscillators’ states. An approximation of the true vibrational ground state energy at 0 K is

given by the sum of the harmonic oscillator ground state energies, the vibrational zero-

point energy

EVZPE =
1

2

3N−6∑

i=1

ωi . (2.81)

The normal mode analysis is used to validate the outcome of structure relaxations and

approximate the fundamental vibrational properties of the investigated system. However,

it may also be the first step to a more sophisticated treatment of the rovibrational problem,

as was indicated in the preceding section and will be laid out further in the upcoming one.

2.3.3 Vibrational Self-Consistent Field Method

At different points in the description of the nuclear problem, it was emphasized that the

approach to obtaining solutions is usually strongly adapted to the chemical system. How-

ever, among the discussed coordinate systems and Hamiltonians, the Watson Hamiltonian
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based on a normal mode description of the vibrational motion stood out in the sense that its

general shape was not changed by the number of dimensions of the problem. Obviously,

this is a very desirable property concerning the general applicability of corresponding

methods. A further step towards a black-box scheme to describe nuclear motions is given

by the vibrational self-consistent field (VSCF) framework – at least for molecules that are

well-described in the normal mode coordinate system. The VSCF approach is to some

degree related to the variational procedures described before, as it is based on the Watson

Hamiltonian and exploits the variational principle. [66] However, instead of calculating

the fully coupled vibrational states by diagonalizing a Hamiltonian matrix, approxima-

tions of the states are obtained self-consistently. In fact, VSCF is rather comparable to

the Roothaan-Hall-Hartree-Fock (RHHF) method: The vibrational wave functions are ex-

panded into products of single-mode functions (denoted modals, corresponding to orbitals

in HF); the modals are expressed in terms of more tractable basis functions (analogous to

using Gaussian basis functions for the LCAO functions in the RHHF scheme); the vari-

ational principle is used to derive effective one-particle problems such that each modal

moves in an averaged potential generated by the other modals (like an electron feels a

mean-field potential generated by the other electrons in HF theory).

The full Watson Hamiltonian for M vibrational modes is given by

HWatson = −1

2

M∑

i=1

∂2

∂Q2
i

+
1

2

∑

α,β

(Ĵα − π̂α)µαβ(Ĵβ − π̂β)

− 1

8

∑

α

µαα + V (Q1, . . . , QM) ,

(2.82)

where Qi is a normal mode coordinate and α, β ∈ {x, y, z}. [105] The operators Ĵα and π̂α
represent the total and vibrational angular momentum and µαβ is related to the moment

of inertia. Definitions of π̂α and µαβ are given in Table 2.1. The potential V is defined

in terms of the normal modes as well. In the VSCF scheme initially molecules with

vanishing total angular momentum (J = 0) are considered. Thus, the kinetic energy

expression is reduced to the one listed in Table 2.1. The wave function Ψ~n
vib(Q1, . . . , QM)

for a vibrational state denoted by the vector ~n is expanded as

Ψ~n
vib(Q1, . . . , QM) =

M∏

i=1

φ
(ni)
i (Qi) , (2.83)
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with the one-mode wave function (modal) φ(ni)
i (Qi) describing only normal mode i and

the (state) vector ~n = (n1, . . . , nM) containing the quantum numbers ni for the different

modals. Unlike for electrons, a straightforward Hartree product ansatz is sufficient; the

vibrational wave function does not have to be antisymmetrized, because the normal modes

are distinguishable. The VSCF energy for a given vibrational state defined by the state

vector ~n is variationally minimized by optimizing the modals under the constraint that

they remain orthonormal, 〈φ(ni)
i |φ

(nj)
j 〉 = δij . Analogously to Equation (2.18) in HF

theory, this yields a set of single-modal equations for the state ~n,

ĥ~ni (Qi)φ
(ni)
i (Qi) = εiφ

(ni)
i (Qi) . (2.84)

The modal energies are represented by εi and the effective one-mode Hamiltonian ĥ~ni is

described as

ĥ~ni (Qi) =− 1

2

∂2

∂Q2
i

+

〈
M∏

l 6=i
φ
(nl)
l

∣∣∣∣∣V +
1

2

∑

α,β

π̂αµαβπ̂β −
1

8

∑

α

µαα

∣∣∣∣∣
M∏

k 6=i
φ
(nk)
k

〉
.

(2.85)

The second term in Equation (2.85) is an effective potential for the investigated modal that

depends on the remaining modals. Thus, the equations have to be solved self-consistently,

as was the case in the Hartree-Fock method. After the optimal modals are determined the

VSCF wave function of the vibrational state ~n can be assembled. The VSCF energy of

the state ~n is then calculated via

E~n = 〈Ψ~n
vib|H~n

VSCF |Ψ~n
vib〉 = 〈Ψ~n

vib|
M∑

i=1

ĥ~ni |Ψ~n
vib〉 , (2.86)

where the effective one-modal Hamiltonians are parametrized by the optimized set of

modals. In analogy to the Roothaan-Hall scheme for HF theory, the modals in VSCF are

expanded into sets of primitive basis functions. Typically, these are harmonic oscillator

functions or distributed Gaussians. [67,117] The expansions allow for a matrix formulation

of the effective one-modal eigenvalue problems, facilitating its numerical solution. As

VSCF is a mean-field theory, often additional measures are necessary to end up with ac-

curate vibrational states. To this end, several methods have been developed to improve

the VSCF results. These correspond to correlation methods in electronic structure calcu-

lations and follow analogous routes to improve the wave function – prominent examples
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are vibrational configuration interaction (VCI), perturbation theory (VPT2) and coupled

cluster (VCC). [118–120] If properties of rotationally excited species are of interest, prod-

uct combinations of the wave functions from VSCF-based procedures and symmetric-top

eigenstates can be used to approach the full Watson Hamiltonian of Equation (2.82). [118]
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Chapter 3

Summary

This chapter comprises an overview of the results that were obtained in this work and

described in the two publications and the submitted manuscript listed in the next chapter.

The important insights are highlighted and their relevance to quantum chemical investiga-

tions of matrix isolation experiments in general is explained. Overall, the objective of this

work was to model the fundamental vibrational properties of small molecules entrapped

in rare gas matrices in a highly accurate way. This is important, as a precise reproduction

of experimental data with theoretical modeling bridges the gap between a matrix isolation

experiment and the vast range of information available from theory. To this end, a general

workflow had to be developed and applied to relevant test systems in order to validate the

methods and expand the understanding of the investigated matrix effects.

3.1 Carbon Dioxide in Argon - Preparation Phase

Paper A is concerned with adequately describing the interplay of guest-host and host-host

interactions for molecules in extended rare gas structures. In particular, we are interested

in determining the extent of the rare gas environments necessary for cluster models to

behave like periodic arrangements of larger cells. With respect to the general objective

of this thesis, that is establishing a generally applicable procedure to model vibrational

motion of molecules in rare gas matrices, the work published in Paper A is a preparatory

step. The test system we selected for this groundwork study is a single carbon diox-

ide molecule in argon. There are mostly two reasons for this choice. Firstly, the CO2
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molecule has long been known to display a matrix effect in argon. To be precise, in the

corresponding infra-red spectra multiple signals are observed for both, the fundamental

vibrational bending and antisymmetric stretching excitations. [18,37,121–123] For the bend-

ing excitations the signal group comprises a high-energy doublet and a low-energy single

peak separated by 1 cm−1 to 2 cm−1. On the other hand, in the region of the antisymmetric

stretching mode two single peaks with a distance of 6 cm−1 are observed. These findings

are currently interpretated as site effects caused by isolated CO2 molecules in different en-

vironments. This perspective is supported by several experimental matrix isolation studies

with increased dilution of the guest species and very low temperatures. [18,37,123] Obviously,

the observed signal shifts and splittings are of interest for this thesis. The second reason

for selecting the carbon dioxide molecule in argon as a test system is that the molecule’s

electronic ground state should be rather well-described by standard density functional

theory methods. As a consequence CO2 in argon may be considered a rather accessible

benchmark system. Corresponding to that, several theoretical investigations attempted to

model the effect of argon environments on the antisymmetric stretching vibration of CO2.

In particular, there are the DFT studies by Jose et al. [124] and the works of Severson [125]

as well as Wang and Xie, [126] respectively, using diffusion Monte Carlo and path integral

Monte Carlo simulations. These studies were successful at reproducing the peak shifts

relative to free CO2 (and in case of Wang and Xie the occurrence of two signals), de-

spite being based on relatively small CO2-argon clusters of up to only 25 rare gas atoms.

However, with these manageable cluster sizes the question of how the outer shells of Ar

atoms affect the immediate surroundings of the guest and thus indirectly the molecular

properties remained open. Therefore, we were further encouraged to use CO2 in argon

for approaching this issue in a systematic study. The general outline for this consisted of

examining the convergence of structural and vibrational properties of CO2-argon clusters

with an increasing number of rare gas atoms and comparing the results to reference values

calculated for larger matrix models employing periodic boundary conditions.

To this end, we investigate CO2 molecules in three different argon fcc environments in

Paper A. The three types of surroundings correspond to two single-vacancy and one

double-vacancy sites. The reference models for the environments are periodic bulk struc-

tures based on a cubic fcc cell containing 108 argon atoms. This approach has been

employed by Hochlaf and coworkers [127,128] in preceding studies on the effect of unit cell

sizes on the properties of N2 and CO in argon. Regarding the cluster modeling, four struc-

tures containing one to four shells of argon atoms around the carbon dioxide are probed
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for each environment. In all three investigated types of surroundings the inclusion of four

neighboring shells amounts to treating 54 argon atoms. All modeling structures are shown

in Figure 3.1. The structures of each periodic reference cell and cluster are optimized and

the fundamental vibrational excitations of the carbon dioxide are approximated through

normal mode analyses. The electronic structure of the various systems is described within

the framework of dispersion-corrected density functional theory with the GGA functional

PBE and the hybrid PBE0 method.

1S 2S 3S 4S

D3d

D4h

D2h

"bulk" Argon D3d - (111) D4h - (010) D2h - (10-1)

y

x

z

Figure 3.1: CO2-argon structures. Top: Periodic models. Lower rows: Clusters. The
labels D3d, D4h and D2h refer to the local symmetry of the CO2-argon environment and
(111), (010) and (10-1) indicate the respective direction of the molecular axis in the cell.
XS denotes the number of argon atom shells around CO2. Figure taken from Paper A.
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Through analysis of the calculations on the bulk models using periodic boundary condi-

tions several insights are gained. Concerning the optimized structures of the guest-host

environments, change matrix plots show that the carbon dioxide molecule effects sizable

changes mostly in its immediate vicinity. Thus, the guest and its distorted surroundings

can be considered a local impurity in the matrix system. Moreover, additional information

on the cavity structures is obtained. The optimizations of the single-vacancy structures

produce cavities that are elongated along the molecular axis and narrowed equatorial to it

compared to the pure argon structure. For the double-vacancy environment the majority of

direct argon atom neighbors approaches the CO2 molecule during the optimization, indi-

cating that increased interactions with the guest stabilize the rather spacious vacancy site.

Expectedly, the atomic displacements in the first shell are more pronounced and affect the

outer shells more strongly for the single-vacancy environments. The attractive guest-host

interactions show that the double-vacancy structural motif is slightly more stable than

the two single-vacancy structures, which feature more or less equally strong interactions.

Finally, the harmonic vibrational analyses produce normal mode frequencies that, while

shifted relative to the measured signals, are in quantitative agreement with the experimen-

tally observed matrix effects. With regards to the fundamental antisymmetric stretching

excitation, two signals split by roughly 6 cm−1 appear in matrix isolation infra-red spectra

in argon. Our calculations indicate that the high-energy part may be attributed to carbon

dioxide in a single-vacancy site, while the low-energy component is rooted in the double-

vacancy environment. Likewise, for the fundamental bending excitations multiple signals

are observed in matrix isolation experiments. The characteristic pattern consists of a sin-

gle signal accompanied by a slightly blue-shifted doublet. This behaviour is also found in

our study, where the CO2 entrapped in the double-vacancy site displays bending modes

split by 1 cm−1 at slightly blue-shifted energies compared to the single-vacancy situa-

tions. Our assignment of the signals in the antisymmetric stretching and bending regions

to single- and double-vacancy environments matches the ones of Dahoo et al. [18] as well

as Vigasin and collaborators. [123] In view of these results, the periodic bulk models can be

considered a valid reference for describing the matrix effects of carbon dioxide in argon.

After establishing the appropriate reference systems, the CO2-argon cluster models are

examined. The results on the clusters speak for an indirect, but notable influence of the

outer shells on several properties of the guest-host system. Structural features, such as

atomic displacements caused by the guest, are affected most strongly. Especially the con-

stitution of the double-vacancy environment is significantly improved by considering four
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neighboring shells of argon atoms around the carbon dioxide molecule. This is revealed

by the host atom displacements relative to the periodic reference as well as the cavity vol-

ume. Moreover, sizable changes to the guest-host interaction energies are observed upon

including more shells of argon atoms. With respect to frequency shifts and splittings, the

qualitative features of the carbon dioxide normal modes observed in our periodic bulk

models are found in the clusters as well. The effect of the additional argon atoms on the

normal mode frequencies of the entrapped CO2 remains relatively small with deviations

in the range of 3 cm−1 among the cluster structures of a given environment. However, it

is notable that the expected trends regarding frequency shifts relative to the free molecule

are typically reinforced upon including the fourth shell of argon atoms. For instance, for

the carbon dioxide in the single-vacancy sites the blue-shift of the antisymmetric stretch-

ing excitation is consistently strongest for the largest cluster, while in the double-vacancy

environment the corresponding red-shift is most pronounced. This is relatively consistent

over all investigated quantum chemical methods and basis sets and clearly indicates an

indirect influence of the outer shells of rare gas atoms on the vibrational frequencies of

the guest molecule.

The central conclusion from Paper A with respect to the overarching objective of this

thesis is that including a large number of host atoms is paramount to accurately model

the vibrational and structural properties of extended guest-matrix systems through clus-

ters. An analogous insight for the unit cell size in modeling procedures based on periodic

structures was obtained by Hochlaf and collaborators [127,128] in their studies of CO and N2

in argon. The effect of the outer shells of rare gas atoms on the vibrational properties of

the guest molecule is indirect and thus rather small. Nevertheless, it may still amount to a

few cm−1 in the fundamental excitations, which can be a sizable fraction of overall small

effects. Hence, this should not be neglected in an attempt to quantitatively reproduce ex-

perimental findings. More important though is the influence on the structural constitution

of the immediate rare gas surroundings. The outer rare gas atoms provide the framework

for a balanced description of guest-host and host-host interactions and are thus crucial to

appropriately describing the structures of the guest-host systems as a whole. In accord

with that, the cluster approaches selected by Jose et al., Severson as well as Wang and

Xie are probably insufficient for credibly modeling carbon dioxide in extended argon ma-

trices. Aside from providing these insights on structural modeling, our results back up the

site effect hypothesis for carbon dioxide in argon.
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3.2 Trifluoride in Neon - Establishing the Model

Based on the knowledge obtained from the work described in Paper A, the broader aim

of the thesis was approached; that is, designing a systematically improvable workflow to

investigate guest molecule-rare gas matrix systems with ab initio methods in a highly ac-

curate way. The focal points of the scheme are the determination of optimized guest-host

structures and the evaluation of the molecular vibrational properties in the presence of the

rare gas atoms. In Paper B and Paper C the resulting procedure is described and applied

to the trifluoride anion F−3 entrapped in neon and argon, respectively. This compound is

examined for several reasons. Firstly, it exemplifies the role of matrix isolation in the in-

vestigation of highly unstable species, having been detected only through matrix isolation

spectroscopy [129–132] and mass spectrometry. [133] In correspondence to that, theoretical in-

vestigations are crucial for a thorough characterization of the anion. Furthermore, the

trifluoride serves as a strong benchmark system for our procedure. It displays a sizable

matrix effect, i. e. a red-shift of about 15 cm−1 for the fundamental antisymmetric stretch-

ing excitation when going from neon matrices to heavier rare gases. [132] The trifluoride

is bound rather weakly and features significant multireference character, constituting an

intricate electronic structure. [134–136] In accord with that, several studies established that

the key to accurately treating the anion is the application of high-level quantum chemical

correlation methods. [134–146] Additionally, preceding calculations revealed sizable vibra-

tional anharmonicity in the free trifluoride. [131] A modeling workflow able to accurately

describe this complicated system may be readily transferred to other systems. Finally,

to the best of our knowledge there is no previous study dealing with the trifluoride in

extended rare gas environments via quantum chemical methods. A corresponding inves-

tigation will thus produce new insights into the origin of the matrix effect as well as the

structural and vibrational properties of the trifluoride-rare gas systems.

The modeling procedure described in Paper B can be organized in three general steps,

which are taken to assess the properties of compound systems of a small (di- to pen-

taatomic) molecule M and N rare gas (Rg) atoms:

1. determination of an accurate potential energy surface for M-RgN systems

2. structure optimizations of the M-RgN structures

3. vibrational analyses of the optimized M-RgN structures.
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The first fundamental design decision concerns the description of the system’s electronic

structure, that is the potential energy surface, which is used in the ensuing structure opti-

mizations and vibrational analyses. For this, we select a tool frequently applied when de-

scribing larger compound systems with accurate quantum chemical methods: A truncated

many-body expansion (MBE) of the compound system’s potential energy surface (PES).

Accordingly, the latter is estimated as the sum over contributions by selected subsystems

within the complete guest-host structure. In the context of matrix-isolated species, this

has been applied to HRgX compounds (Rg: Ar, Kr, Xe; X: F, Cl, Br, I) by Bihary et

al. [147] and Niimi and collaborators, [148,149] and to Na atoms in various rare gas matrices

by McCaffrey and coworkers, [150] just to name a few. The fragmentation-based approach

offers several advantages over a single calculation of the whole system with an afford-

able quantum chemical method. First, the most relevant contributions to the MBE-PES

can typically be determined more accurately than the complete system. This is particu-

larly important for the appropriate description of the electronic structure and properties of

challenging guest molecules with, for instance, multireference character. Once its com-

ponents are assembled, the MBE-PES can be used to describe corresponding systems

of arbitrary sizes without additional electronic structure calculations. Moreover, the de-

composition facilitates an interpretation of the effect of the rare gas atoms on the guest

molecule through the terms in the MBE. Thus, changes in the molecular properties can

be attributed to two-body M-Rg or three-body M-Rg-Rg interactions, for example. Fi-

nally, the truncated MBE is systematically improvable, as impactful errors to the PES

introduced by the truncation are easily remedied by adding previously neglected terms.

For trifluoride in neon, the MBE-PES is truncated after the two-body terms, containing

contributions by free F−3 and Ne atoms as well as F−3 -Ne and Ne-Ne pair interactions. Dis-

crete representations of the components of the MBE-PES are set up with the CCSD(T)-

F12b method and appropriate basis sets of valence triple-zeta quality. Initial test calcu-

lations on the free trifluoride using this coupled cluster approach revealed T1 diagnostics

beyond 0.02. As expected from the studies of Heard et al., [134] Wright and Lee [135] as

well as Czernek and Živnỳ, [136] this speaks for a significant multireference character of

the anion. However, the good agreement of the calculated vibrational excitation energies

for free F−3 with infra-red spectra of F−3 in neon suggest that CCSD(T)-F12b is able to de-

scribe the region around the global potential minimum in an appropriate way, despite not

fully grasping the multireference character. Importantly, coupled cluster schemes involv-

ing connected triple excitations are also suited to treat non-covalent interactions. [151,152]
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For the internal F−3 potential as well as the F−3 -Ne and the Ne-Ne interaction potentials

about 11000, 47000 and 215 configurations were sampled, respectively. From these data

sets continuous forms of the PES are generated via fitting procedures. For the continuous

expressions of the internal trifluoride potential and the F−3 -Ne interaction we use permu-

tationally invariant polynomials (PIP) as implemented in the monomial symmetrization

approach by Bowman and coworkers. [153] Unlike more physically motivated functional

forms based on, for example, Morse or Lennard-Jones potentials, by default the poly-

nomials do not describe the asymptotic limits of the respective potential contributions

correctly. They are, however, more flexible and consequently able to represent the ab

initio data points more accurately if the fitting data set is large enough. In view of the

required very precise description of F−3 and the F−3 -Ne interaction close to the equilibrium

configuration, we considered the accuracy of the potential in that region more important

than obtaining a globally valid representation. The final continuous representations of the

F−3 and F−3 -Ne potentials are characterized by root mean square deviations well below

10 cm−1 in the relevant regions and accurately reproduce potential scans for selected con-

figurations. For the Ne-Ne interaction the precedingly published Ne-Ne potential function

by Vogel et al. [154] was refitted to our calculated CCSD(T)-F12b data.

The second stage of the modeling workflow consists of identifying guest-host environ-

ments, which credibly represent matrix structures. We attempt to model the latter based

on extended cluster structures, instead of bulk models with periodic boundary conditions.

This choice is mainly motivated by the more straightforward applicability of the cluster

approach to charged molecules. As was worked out in Paper A, the most important factor

when using cluster structures to model extended systems is to make them large enough to

adequately represent the extended environments. Accordingly, the basic model is a cubic

fcc cell of 500 rare gas atoms containing the guest molecule at the center, which is shown

in Figure 3.2. The rare gas atoms are divided into a movable section comprising several

layers of host atoms around the guest (dark blue in Fig. 3.2) and the rare gas atoms beyond

that (grey in Fig. 3.2), which are frozen and represent a crystal framework affecting the

movable core. The guest-host environment is thus portrayed as a local impurity in an oth-

erwise ordered crystal structure. The scheme has been introduced as dynamical cell rigid

walls (DCRW) boundary conditions and used in studies of molecular iodine and HRgX

(X: Cl, I) compounds in rare gas matrices. [147,155] Although not being truly extended in

the sense of periodic, the model is an improvement over simple approaches employing

small clusters for the description of matrix environments.
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Figure 3.2: Trifluoride-neon models. Top: Complete trifluoride-neon clusters. Movable
Ne atoms: blue. Fixed Ne atoms: grey. Before initiating the minima hopping runs, the
movable section is rattled. Lower row: Structural motif identified for neon. MDV refers
to the position of F−3 in a double-vacancy cavity. The upper part is taken from Paper B,
while the bottom image is included in Paper E1.

Optimized guest-host environments are obtained with minima hopping (MH). [156] This

global optimization technique has been shown to be rather efficient at sampling flat po-

tential energy surfaces compared to other schemes, such as the basin hopping algorithm

employed in a study by Hochlaf and coworkers [157] on NO+ ions in argon clusters. MH

optimizations are run for three trifluoride-neon models, containing a differing number of

vacancy sites in the structure. In one model all neon atoms are kept. For the other two,

the formation of a single- and a double-vacancy cavity is facilitated by removing one and

two rare gas atoms from the trifluoride’s surroundings, respectively. Despite the different

constitutions of the models, the guest-host environments in the minima found by the MH

runs can be assigned to the same structural motif (Nhex in Paper B, Ne-MDV in Figure

3.2). Accordingly, the trifluoride is situated in a double-vacancy site and oriented normal

to hexagonal planes in the structure. This is the same double-vacancy environment as the

one described in Paper A for CO2 in argon. In the F−3 -Ne models with less than two

vacancy sites, one or more neon atoms are displaced into interstitial space to form the

double-vacancy cavity. In these cases, the immediate rare gas environment is more disor-

dered. The trifluoride seems to dominate the cavity formation, emphasizing the weakness
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of the Ne-Ne pair potential, which is characterized by a well-depth of about 30 cm−1.

Similarly to CO2 in argon the structural changes in the neon environment caused by the

trifluoride seem to be rather localized, once again pointing towards the interpretation of

the guest molecule as a local impurity in the matrix framework. The trifluoride structure

is not drastically affected by the presence of the neon atoms, experiencing a small bond

and angle compression.

In the final step of our procedure we evaluate the vibrational properties of the entrapped

molecule based on the guest-host environments optimized in the second step. To princi-

pally allow for results of almost quantitative accuracy, we deemed it important to account

for the molecular vibrational anharmonicity and intermode coupling as well as the effect

of the rare gas atoms on the molecular motion. To this end, we determine the vibrational

states of the molecule with a variational procedure as descibed in Section 2.3 of Chapter 2,

that is by solving a vibrational (nuclear) Schrödinger equation. Obviously, not all degrees

of freedom can be included in such a scheme. Therefore we consider the rare gas atoms

frozen in the vibrational analyses. As a consequence, the effect of the environment on the

molecular vibrations enters the procedure only statically through the potential. Moreover,

the degrees of freedom of the guest species are separated into two groups. The ones es-

sential to the investigated properties are included explicitly in the nuclear Hamiltonian,

while the rest is treated adiabatically, i. e. they are implicitly included through an effective

potential. In the latter the implicitly treated coordinates are optimized for a given config-

uration of the explicitly regarded degrees of freedom. As an example, for our triatomic

test species we consider the three internal coordinates explicitly in the Hamiltonian, but

optimize the molecular orientation in the environment and the motion of the molecular

center-of-mass for each configuration of the internal degrees of freedom. Through that

a part of the coupling between the explicitly and the implicitly treated coordinates is re-

covered.

To obtain the fundamental vibrational states of the trifluoride, we solve the Schrödinger

equation defined by a three-dimensional Hamiltonian in orthogonal Jacobi coordinates

with an effective potential for a number of optimized trifluoride-neon environments. The

presence of the host typically effects a slight compression of the fundamental vibrational

states. Moreover, certain environments seem to produce stronger intermode coupling

compared to the free molecule. This is indicated by the occurrence of non-vanishing

densities in the nodal regions and slightly tilted densities in the lowest antisymmetric

stretching and bending states. The fundamental stretching excitations are blue-shifted in
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a consistent way compared to the gas phase reference; the symmetric stretching mode

by around 6 cm−1, the antisymmetric stretching mode by roughly 3 cm−1. For the latter

mode, the calculations typically yield excitation energies within 524 cm−1 and 526 cm−1,

which match the experimentally observed one, [132] 525 cm−1. Concerning the bending

vibrations, the lowest observed excitation in our calculations displays a transition energy

that is twice as large as expected for the fundamental one. To accurately resolve the degen-

erate fundamental bending excitations of a (quasi-)linear molecule not only the bending

angle has to be described, but also the rotation about the molecular axis. Since we in-

clude the latter only implicitly through the effective potential, we impose isotropy upon

rotation about the molecular axis on the nuclear wave function. As a result, we cannot

describe the nodal structure associated with the fundamental bending excitations. How-

ever, the first bending overtone has a totally symmetric component, which can be resolved

by our model. The lowest calculated bending excitations should therefore correspond to

the first bending overtones. These are blue-shifted as well, although the magnitude of the

shifts varies more strongly than for the stretching modes. This may point to an increased

sensitivity of the bending mode to the rare gas environment. The accurate reproduction

of the experimentally observed fundamental excitation energies validates our modeling

approach.

All in all, we consider the workflow established in Paper B a relatively integral rep-

resentative of models used to describe matrix isolation spectroscopy. Concerning the

constitution of the potential energy surface, earlier attempts to investigate matrix effects

were restricted to guest-host interactions based on true diatomics-in-molecules poten-

tials. [147,158,159] With these, the interaction regards only two atoms at once, that is a matrix

atom and an atom that is part of the guest molecule. For instance, in the studies of HRgX

species (Rg: Ar, Kr, Xe; X: F, Cl) in rare gas environments by Bihary et al. [147] the inter-

actions of HRgX molecules with rare gas atoms are described in terms of isolated H-Rg,

Rg-Rg and X-Rg pairs. In our interaction potentials the complete guest molecule with

all its internal degrees of freedom is treated, providing a rather accurate description of

guest-host interactions that goes beyond the two-atom picture. For the identification of

optimized rare gas environments we do not rely on starting structures with predefined

molecular orientations along high-symmetry directions in the cell. This would be a com-

mon approach, which has been employed by us in Paper A, but also in other investi-

gations of matrix isolated species, such as the works of Niimi et al. [148,149] and Bihary

and collaborators. [147] Instead of that, we opt for a less biased procedure and use an opti-
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mization scheme, which produces relaxed structures from a disordered arrangement of the

guest and host atoms embedded in a crystallic framework of matrix atoms. With respect

to the vibrational properties of the guest, we aim for very accurate and reliable results.

Therefore, we include the molecular vibrational anharmonicity and intermode coupling,

while other studies restrict themselves to normal mode analyses. [127,128,157] Unlike in the

path integral Monte Carlo studies by Wang and Xie [126] we do not target a specific pre-

determined vibrational transition, but calculate all the transitions available for the given

choice of explicitly treated coordinates and the accessible region of the potential energy

surface. Moreover, the external molecular degrees of freedom are treated implicitly and

static effects by the environment are included.

3.3 Trifluoride in Argon - Extending the Model

In Paper C the investigation of the trifluoride anion in rare gas matrices is continued.

For this we apply the modeling workflow described in Paper B to the trifluoride in argon

environments with analogous structural models and computational procedures.

To study the trifluoride-argon models, we initially used a many-body expanded PES com-

bining the internal trifluoride potential introduced in Paper B with two-body F−3 -Ar and

Ar-Ar interaction terms. However, in the course of the investigation it became apparent

that an important contribution to the PES was not regarded. Therefore, we extended the

initial potential energy surface by including three-body F−3 -Ar2 interactions. The new

MBE-PES is used only to refine the stability analyses of the guest-host models and the

anharmonic vibrational analyses of the entrapped trifluoride anions. Corresponding to

that, in Paper C we present highly accurate F−3 -Ar, Ar-Ar and F−3 -Ar2 interaction poten-

tials. The F−3 -Ar potential is determined by fitting PIP functions to a database of about

60000 CCSD(T)-F12b/aug-cc-pVTZ-F12 interaction energies, while the Ar-Ar interac-

tion is described by refitting the Ar-Ar potential function of Patkowski and Szalewicz [160]

to 226 ab initio points. To obtain a F−3 -Ar2 potential, PIP functions are fitted to the three-

body interaction energies of about 73000 F−3 -Ar2 configurations collected with CCSD(T)-

F12b/aug-cc-pVDZ-F12 calculations. The quality of the continuous potential functions

is ascertained through examining mean errors and ab initio potential scans. Judging from

the increased magnitudes of the F−3 -Ar and Ar-Ar interaction potentials compared to

their neon counterparts, a stronger influence of the Ar atoms in the guest-host systems
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is expected. For example, the well-depths of the Ne-Ne and Ar-Ar potentials amount

to roughly 30 cm−1 and 95 cm−1, respectively. The individual F−3 -Ar2 interactions are

mostly repulsive and much weaker than the attractive F−3 -Ar interactions.

The MH optimizations of the three basic trifluoride-argon models yield three structural

motifs, one typical of each vacancy situation. The corresponding surroundings of the tri-

fluoride are shown in Figure 3.3. Aside from the double-vacancy environment (Ar-MDV)

observed for F−3 in neon as well, there is an interstitial (Ar-MIN) and a single-vacancy

motif (Ar-MSV). While the occurrence of different environments is in part due to the

Ar - MIN Ar - MSV Ar - MDV
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111

011
101

110
001

001

111 111

Figure 3.3: Structural motifs identified for the argon models. MIN, MSV and MDV refer
to F−3 in an interstitial, a single-vacancy and a double-vacancy cavity, respectively. The
images are used in Paper E1.

increased spacing in the argon crystal framework, it also points to the stronger Ar-Ar in-

teraction potential, which does not allow the trifluoride to displace host atoms as strongly

as in neon. The effect of the argon environment on the trifluoride structure is relatively

small. However, there is a distinct difference between the double-vacancy motif and the

remaining environments. For the former one of the F-F bonds in the trifluoride is elon-

gated, whereas the other motifs display solely compressed bonds. This shows that the

F−3 -Ar interaction is able to affect the molecular properties in qualitatively different ways.

The stabilities of the different argon environments are estimated from the total interaction

energies in the optimized structures. At the level of two-body interactions, that is a PES

including only F−3 -Ar and Ar-Ar interactions, the single- and double-vacancy motifs are

more stable than the interstitial environment. This discrepancy is further cemented after

adding three-body F−3 -Ar2 interactions and the harmonic vibrational zero-point energies

for the movable section of the cells. Moreover, the relative stabilities of the more favorable

motifs are inverted when the three-body interactions and zero-point energies are consid-

ered. This illustrates the well-known importance of relatively small effects in the deter-

mination of thermodynamically favored structures for extended argon systems. [161,162]
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The anharmonic vibrational analyses presented in Paper C show that the effect of the

three environments on the trifluoride vibrations matches their influence on the molecular

geometries. In particular, relative to the free trifluoride the interstitial and single-vacancy

motifs display blue-shifts to both stretching modes, whereas the double-vacancy envi-

ronment produces red-shifted corresponding excitations. The latter motif (Ar-MDV) is

the sole environment that yields vibrational excitation energies approaching the measured

quantities. When only the two-body interactions are included in the PES, the correspond-

ing theoretical (387 ± 1 cm−1) and experimental [144] (389 cm−1) values typically agree

very well for the symmetric stretching mode. However, the agreement is only qualitative

for the fundamental antisymmetric stretching excitation - calc.: around 517 ± 1 cm−1,

exp. [132]: 510.6 cm−1. With respect to the quantitative reproduction of the experimental

reference by our workflow, this means that at this point a significant factor seems to be

neglected in the model for trifluoride-argon. This missing contribution is identified as

the F−3 -Ar2 three-body interaction, whose addition to the MBE-PES notably affects the

vibrational excitation energies yielded by our procedure. The changes of the latter obey

specific trends, irrespective of the structural motif. The symmetric stretching mode is af-

fected rather weakly and if at all slightly blue-shifted, whereas the antisymmetric stretch-

ing excitations are significantly red-shifted. Notably, for the doubly-vacancy environment

the latter excitation energies are reduced to about 508 ± 1 cm−1, while their symme-

tric stretching counterparts are left mostly unchanged. Thus, the differences between the

experimentally observed excitation energies and those computed for the double-vacancy

motif are further reduced by regarding the F−3 -Ar2 terms. This improvement is another

indicator of the relevance of non-additive three-body interactions for polarizable species

in argon environments.

The results of the vibrational analyses in Paper C clearly suggest that the double-vacancy

environment is the dominant host structure for the trifluoride in actual matrix isolation ex-

periments. According to our estimate of the structural stability, it is also the environment

most strongly stabilized by guest-host and host-host interactions as well as vibrational

zero-point effects. The energetical distance of the double-vacancy environment to the

second-most stable single-vacancy motif amounts to roughly 4 kJ mol−1, i. e. is very

small. However, if the matrix is allowed to form slowly enough the more stable mini-

mum may be preferred. Likewise, conversions between the two motifs are unlikely once

an environment is formed, due to the low temperatures in the matrix isolation experiment.

In addition to that, while testing various influences on the cavity stability we have en-
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countered another indication for a preferred formation of the double-vacancy site. This

is further described in Paper E1. To be precise, we ran constant-temperature molecular

dynamics simulations with consecutively increasing temperatures between 4 K and 60 K

for cells with zero, one or two vacancies. In the simulations all constraints on the atoms

were lifted with the objective to study how fast the different environments would dis-

band. Generally, at 30 K any long-ranged order would be destroyed within 20 ps simula-

tion time. When comparing the different structures and temperatures, it became apparent

that for the double-vacancy environment a particular trifluoride-argon aggregate displayed

relatively high stability against the increasing temperatures. Accordingly, this structural

feature may assemble rather early in a condensation process, i. e. at relatively high tem-

peratures, and ensuingly promote the formation of the double-vacancy environment. It

is important to stress that this kinetic perspective should by no means be considered a

proof, but more a clue that demands further examination. Despite these preceding argu-

ments for the preference of the double-vacancy motif, the single-vacancy environment

should be formed as well, at least to a small extent. This is in line with the infra-red

experiments of Redeker et al., [132] where a blue-shifted, broad and weak shoulder to the

antisymmetric stretching peak has been observed. Although our calculations predict a

stronger blue-shift, this feature may originate from the F−3 in the single-vacancy site.

3.4 Conclusion and Outlook

The central aim of the present work was to compose a modeling procedure for very accu-

rate investigations of the vibrational properties of small molecules in cryogenic rare gas

environments. Judging from the results in Paper B and Paper C, we are confident that our

modeling workflow is appropriate for this objective. In accord with that, it should be ap-

plicable in an analogous way to other molecules. To this end, several aspects may have to

be adapted to the investigated systems. In the first step of the modeling scheme we applied

calculations at the CCSD(T)-F12 level with a basis set of triple zeta quality. If applicable,

this is typically a good choice, when aiming for accurate results. However, principally

other electronic structure methods can be employed in the workflow as well. Likewise,

different functional forms may be used in the fitting of the potential functions. [163–166] For

the second step, other global optimization techniques are available. [167–169] In comparison

to that, the final step of the modeling workflow, the vibrational analysis of the entrapped

molecule, requires more attention when transferring to other systems.
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Already for tetra- or pentaatomic guests a full description of all internal degrees of free-

dom in the variational calculation becomes significantly more difficult. To reduce the

dimensionality of the problem, a selection of indispensable internal coordinates may be

treated explicitly, while the remaining coordinates are either included implicitly via the

effective potential or frozen. This should be applicable if the investigated properties are

well described by a manageable subset of the internal degrees of freedom. Moreover,

an explicit treatment of a larger number of internal coordinates can be facilitated by fur-

ther contracting the basis functions, for instance with the methods of Bacić and Light or

Handy and collaborators. [170,171] However, there are also situations, where an explicit in-

clusion of uniform molecular rotations or translations is necessary for fully reproducing

the experimental data. This is illustrated by water molecules in neon and argon matri-

ces, for which rovibrational transitions can be observed. [36,172,173] Additionally, a thor-

ough description of molecular rotations would allow the calculation of the fundamental

bending excitations in (quasi-)linear molecules. This is desirable, as our results indi-

cate that those excitations can be very sensitive to the environment, possibly serving as

identifiers for structural motifs. A guideline to explicitly treating translations and rota-

tions of entrapped molecules has been provided by the full nine-dimensional calculation

of vibration-rotation-translation (VRT) quantum states of water in a frozen fullerene C60

unit by Felker and Bacić. [174] In principle, a corresponding expansion of our vibrational

procedure facilitates the accurate description of all types of molecular motion in the en-

vironments. Thus, depending on the examined system, a nuclear problem in reduced

dimensions with an effective potential could be assembled modularly and solved. Yet,

practically this remains a challenging task, as coordinates and basis functions have to be

selected carefully and the numerical cost of solving the problems becomes prohibitive

rapidly. The latter aspect is especially true for the calculation of rovibrational states of the

entrapped molecules, where aside from the problem of dimensionality the huge density

of (VRT) states is an obstacle.

Beyond that, the vibrational procedure can be extended to include the coupling between

the environmental and molecular motion. This dynamic contribution to the matrix effects

is currently not regarded in our vibrational analyses, where the matrix atoms are frozen.

Possible routes to include the motion of host atoms have been described in the studies of

Bihary et al., [147,155] Wang and Xie [126] as well as Niimi and coworkers. [148] The former

two rely on VSCF and path integral Monte Carlo schemes, respectively, and would thus

require abandoning our current approach. The third route demands repeated variational

calculations in the course of a classical Monte Carlo simulation, which seems compatible
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with our method. However, due to the large number of calculations necessary, it may

be practical only for one- or two-dimensional nuclear problems. The resulting neglect

of further coordinates in the variational procedures may introduce inaccuracies compara-

ble in magnitude to the dynamic part of the matrix effect. Thus, it is not clear that this

modification of our workflow is sensible. Alternatively, the dynamic matrix effect may

be assessed from complementary classical molecular dynamics simulations based upon

the MBE-PES. To this end, power spectra can be retrieved from the classical trajecto-

ries of the free molecule and the guest-host system and compared to corresponding static

quantum chemical calculations.

Overall, the studies presented in Paper A, Paper B and Paper C illustrate the use of theo-

retical (quantum chemical) methods when investigating chemical or physical experiments.

In general, theoretical studies may not only yield the same information as experiments,

but also provide insights beyond the measured properties. Regarding vibrational matrix

isolation spectroscopy, this means that, aside from reproducing the observed signals, theo-

retical studies may uncover the relations between the observations and structural features

of the matrix systems unavailable from experiments. For instance, our modeling work-

flow (Paper B, Paper C) accurately reproduces the experimentally measured excitation

energies in case of matrix-isolated trifluoride anions. This allows for linking the observed

signals to certain guest-host environments. Moreover, due to choosing a truncated many-

body expansion to model the systems’ potential energy surfaces, the influence of the rare

gas atoms on the molecular properties can be attributed to concrete interaction types. This

generates a more thorough understanding of the way different rare gas matrices interact

with guest molecules.
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Paper A

"A Validation of Cluster Modeling in the Description of Matrix Isolation Spectroscopy"

F. Bader,∗ T. Lindic and B. Paulus

J. Comput. Chem. 41, 751–758 (2020)

DOI: 10.1002/jcc.26123

URL: https://doi.org/10.1002/jcc.26123

Figure 4.1: Graphical Abstract of Paper A ( c© 2019 Wiley Periodicals, Inc.)

Author contributions:

The project was planned by B. Paulus and myself. T. Lindic and I collected the electronic

structure data. The results were analyzed collaboratively by the authors. I drafted the

manuscript and T. Lindic and B. Paulus helped revising it.
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Paper B

"A pair potential modeling study of F−3 in neon matrices"

F. Bader,∗ J. C. Tremblay and B. Paulus

Phys. Chem. Chem. Phys. 23, 886–899 (2021)

DOI: 10.1039/d0cp05031h
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Figure 4.2: Graphical Abstract of Paper B ( c© PCCP Owner Societies 2021)

Author contributions:

The project was conceived by myself. The methodology was worked out by myself and

J. C. Tremblay. I performed all calculations. Some of the used computational programs

were implemented by myself and J. C. Tremblay. The results were analyzed by J. C.

Tremblay, B. Paulus and myself. I authored the manuscript, supported by J. C. Tremblay

and B. Paulus.
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Paper C

"Theoretical modeling of molecules in weakly interacting environments: Trifluoride an-

ions in argon"

F. Bader,∗ J. C. Tremblay and B. Paulus

manuscript submitted to Physical Chemistry Chemical Physics on May 26, 2021
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Figure 4.3: Graphical Abstract of Paper C

Author contributions:

The idea to examine the system was mine. The investigation was planned by myself and

J. C. Tremblay, with contributions by B. Paulus. All calculations were run by myself.

J. C. Tremblay, B. Paulus and I analyzed and interpreted the results. The manuscript was

drafted by myself, with revisions from J. C. Tremblay and B. Paulus.
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Theoretical modeling of molecules in weakly interact-
ing environments: Trifluoride anions in argon

Frederik Bader,∗a Jean Christophe Tremblayb and Beate Paulusa

The properties of molecules can be affected by the presence of a host environment. Even in inert
rare gas matrices such effects are observable, as for instance in matrix isolation spectroscopy. In
this work we study the trifluoride anion in cryogenic argon environments. To investigate the struc-
ture and vibrational properties of the guest-host systems, a potential energy surface of compound
F−3 -argon structures is determined from ab initio calculations with the CCSD(T)-F12b approach.
Argon environments are probed with minima hopping optimizations of extended trifluoride-argon
clusters. The vibrations of F−3 within the optimized environments are examined with anharmonic
vibrational analyses. Among the three identified structural surroundings for the trifluoride, two are
characterized by relatively favorable guest-host and host-host interactions as well as vibrational
zero-point energies. A striking dependence of the trifluoride properties on the particular argon
environment reveals the delicate influence of the host atoms on the guest molecule. Very good
agreement with measured data suggests that in experiment F−3 occupies a double-vacancy site.

1 Introduction
In matrix isolation spectroscopy molecules are entrapped in a
frozen unreactive material, that is a matrix, and examined spec-
troscopically. While inside the host structure, the guest molecules
are shielded from intermolecular interactions that may trigger
further reactions. Likewise, the interactions between the guest
molecules and the matrix are weak because of the inert character
of commonly used host materials, such as rare gases or molecular
nitrogen. As a consequence, the matrix isolation technique can be
used to investigate highly reactive species and weakly interacting
systems that would not be stable in other media. Despite their
general weakness, the guest-host interactions influence the spec-
troscopic behaviour of the guest molecules by affecting sensitive
properties, for example vibrational excitation energies. The re-
sulting changes observable in the experimental data are denoted
matrix effects. With respect to vibrational spectroscopy, the guest-
host interactions typically express themselves as peak shifts and
splittings in the molecular spectra. The matrix effects are often
not particularly large. Nonetheless, their investigation through
experimental as well as computational schemes is a worthwhile
endeavour. That is because unravelling the origin of the effects
yields insights into the specific way a given matrix material inter-
acts with a given guest species. In particular, appropriate theoret-

a Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Berlin, Ger-
many. E-mail: f.bader@fu-berlin.de
b Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR
7019, ICPM, 1Bd Arago, 57070 Metz, France.

ical analyses may help to assign the bands in more complicated
spectra or link the observed signals to certain structural environ-
ments, thus providing information typically not directly available
from experiment.

The trifluoride anion F−3 is a compound that nicely illustrates
the importance of matrix isolation. Unlike the triatomic monoan-
ions of the heavier halogens, the trifluoride has at this point been
generated exclusively in rare gas or nitrogen matrices and mass
spectrometry experiments.1–8 Aside from providing a proof of ex-
istence, the infra-red (IR) vibrational spectra of F−3 in varying rare
gas environments reveal information about the interaction of the
molecule with its surroundings through a matrix effect. Namely,
in comparison to neon matrices the fundamental antisymmetric
stretching excitation is red-shifted by about 15 cm−1 in argon and
krypton.4,5 In principle, this observation could be explained qual-
itatively in terms of stronger interactions between the trifluoride
and the more polarizable rare gas atoms. A more thorough un-
derstanding of the observed signals may be obtained through a
theoretical study. The first step in this direction has been taken
by Riedel and coworkers, who probed the interaction of the tri-
fluoride and a single neon or argon atom with high-level ab initio
calculations.4 However, in order to represent the situation in a
matrix isolation experiment properly a more complete modeling
approach is necessary.

To be precise, a quantum chemical model of the trifluoride an-
ion in the presence of rare gas matrix atoms has to comprise two
important features. First and foremost, the electronic structure
of the guest species has to be described accurately. Various the-
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oretical investigations on the free trifluoride anion identified the
necessity of highly accurate quantum chemical correlation meth-
ods for an adequate description of the molecule.4,5,9–20 Regard-
ing fundamental vibrational excitations, coupled cluster schemes
including triple excitations have been shown to produce results
of good accuracy.4,5,20 Aside from that, several shells of rare gas
atoms around the trifluoride have to be included to correctly
model the interplay between guest-host and host-host interac-
tions. Concerning the extent of the guest-host system an obvi-
ous, tested approach would be the use of density functional the-
ory (DFT) methods.21–23 However, this is not applicable due to
the delicate electronic structure of the trifluoride. Alternatives
to a DFT description of the complete system are wave function
embedding methods or a many-body expansion (MBE) of the po-
tential energy surface.24,25 With the former an accurate correla-
tion method can be used to describe the trifluoride, while a com-
putationally cheaper scheme, such as DFT, is used for the host
atoms. Then, the guest-host interaction is determined by embed-
ding the correlated wave function in a potential generated by the
host atoms as described by the lower-level method. In the MBE
approach the full system is separated into subsystems. Likewise,
the full potential energy surface is decomposed into energy con-
tributions by the fragments and all interactions among them. By
truncating the MBE the potential energy surface of the full system
can be approximated in terms of the isolated subsystems and in-
teractions between only a small number of fragments, for instance
two- and three-body terms. The latter are typically small enough
to be treated with an accurate quantum chemical method.

In a preceding investigation of F−3 in neon we have presented
a modeling procedure to determine the fundamental vibrational
properties of triatomic molecules in rare gas environments.26 The
scheme is based on a many-body expansion of the potential en-
ergy surface for F−3 -XN systems of arbitrary size and yields opti-
mized structural environments for the trifluoride as well as fun-
damental anharmonic vibrational states of the molecule in the
presence of matrix atoms. Here, we transfer and expand this pro-
cedure to the trifluoride anion entrapped in argon environments.
For this more terms in the many-body expanded potential energy
surface are necessary, as shown by the comparison to matrix iso-
lation experiments.

2 Computational Details

In this work we investigate the trifluoride anion in solid argon.
To this end, the potential energy surface of F−3 -ArN systems is
described by a many-body expansion of the potential energy,

Etot = EF−3
(~RF−3

)+N ·EAr +
N

∑
i, j>i

EAri−Ar j (
~RAri ,

~RAr j )

+
N

∑
i=1

EF−3 −Ari
(~RF−3

,~RAri)

+
N

∑
i, j>i

EF−3 −Ari−Ar j
(~RF−3

,~RAri ,
~RAr j )+ . . . ,

(1)

where EF−3
and EAr are the internal trifluoride potential and the

energy of a single Ar atom, while EF−3 −Ari
, EAri−Ar j and EF−3 −Ari−Ar j

refer to the respective two- and three-body interactions. For our
study we use two truncated forms of the potential energy surface,
denoted PES-2B and PES-3B. The former contains only terms up
to two-body interactions in the many-body expansion (free F−3 ,
free Ar atoms, F−3 -Ar and Ar-Ar interactions), while the latter ad-
ditionally features three-body F−3 -Ar2 interactions. In a first step,
continuous representations of the constituents of the many-body
expanded potential energy surface have to be determined. We de-
scribe the free trifluoride anion with the corresponding potential
function presented in our previous study.26 The remaining com-
ponents of the truncated PES are obtained from fitting different
potential functions to CCSD(T)-F12b energies.

2.1 ab initio data sets

The electronic structure data for the F−3 -Ar interaction potential
was collected with the same computational setting as in the pre-
vious work to maintain comparability between the different rare
gas systems. Therefore, the CCSD(T)-F12b method was com-
bined with a cc-pVTZ-F12 basis set and appropriate augmenta-
tion functions as well as auxiliary basis sets for density fitting
and singles corrections.27–32 The calculated interaction energies
were counterpoise-corrected to account for the basis set super-
position error (BSSE).33 This is backed by test calculations ex-
hibiting BSSEs of 45 cm−1 for the strongly attractive region of the
F−3 -Ar interaction, even though the triple-zeta F12 basis set should
approach the basis set limit. All calculations were performed with
the Molpro software package.34,35

The ab initio data set for the F−3 -Ar interaction potential con-
sisted of 60085 configurations. The internal trifluoride coordi-
nates were restricted to bond lengths between 1.45 Å and 2.15 Å
as well as F-F-F angles between 140◦ and 180◦. The argon atom
was moved within the fraction of a sphere of 10 Å around the cen-
tral F atom that was irreducible upon permuting F atoms. Data
points in this configuration space were collected with a combi-
nation of grid-based and stochastic sampling. With the former
strategy a set of roughly 14000 ab initio energies was obtained.
The remaining configurations were sampled stochastically. De-
tails on the grid-based sampling procedure are described in the
supplementary information.

For the F−3 -Ar2 interaction potential the investigated configura-
tion space was restricted analogously to the F−3 -Ar interactions.
The fitting data set comprised the energies of 72970 configura-
tions, which were obtained from Molpro calculations with the
CCSD(T)-F12b method, an aug-cc-pVDZ-F12 basis set and corre-
sponding auxiliary basis sets.27–32,34,35 The configuration space
was sampled with various schemes. The largest portion, that is
about 54000 configurations, was stochastically sampled. Close
to 19000 of these structures were focussed on the interaction
regime with relatively short trifluoride-argon distances. Further-
more, ab initio molecular dynamics at the MP2/6-31G∗ level as
implemented in Gaussian 16 with varying initial structures and
conditions were used to gather 9654 further configurations.36 A
set of 8838 geometries was collected by sampling along the triflu-
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oride normal modes in the presence of two Ar atoms. Lastly, 2307
F−3 -Ar2 arrangements were cut out of selected optimized minima
from the minima hopping (MH) runs with the PES truncated at
the two-body interaction level. The final fitting data set was ob-
tained by deleting F−3 -Ar2 configurations with energies outside of
-30 cm−1 and 120 cm−1 from this set of structures.

To describe the Ar-Ar interaction potential a data set of 226
configurations was determined, sampling distances between 2 Å
and 24.5 Å.

2.2 Potential functions and fitting

The continuous interaction potential functions are permutation-
ally invariant polynomials (PIP) determined with the monomial
symmetrization approach (MSA) of Bowman and coworkers.37

For the F−3 -Ar potential the maximal polynomial order was set to
N = 7, which results in 348 coefficients to optimize. The Morse
parameter a0 inherent to the MSA procedure was set to 4.0 Bohr.
Also, an energy weighting was used to improve the fit in regions
of attractive interactions. These are the same settings as for the
F−3 -Ne potential of our previous work. Moreover, we have supple-
mented the potential function with a smooth damping function
that tunes out the interaction between 9 Å and 10 Å,

f (rFc-Ar) =





1 rFc-Ar < rc1
1
2 ·
(

1+ cos(π · rFc-Ar−rc1
rc2−rc1

)
)

rc1 ≤ rFc-Ar ≤ rc2

0 rFc-Ar > rc2

(2)

with rFc-Ar being the distance between the central F atom and the
argon atom. The cutoff parameters rc1 and rc2 were set to 9 Å and
10 Å, respectively.

To describe the F−3 -Ar2 interaction potential PIP functions of
maximum order N = 5 (364 coefficients) and a0 = 2.7Bohr were
used. The inclusion of F−3 -Ar2 interactions is restricted to the ar-
gon atoms in the first two shells of neighboring atoms by using a
damping function. The latter has the same functional form as for
the F−3 -Ar interactions (Equation (2)), with the argument rFc-Ar

corresponding to the larger of the two Fc-Ar distances and the
cut-off parameters rc1 and rc2 being 6 Å and 7 Å.

Lastly, the potential function for the Ar-Ar interaction is taken
from the work of Patkowski and Szalewicz and refitted to the cal-
culated Ar-Ar interaction energies.38 The functional form is

V (R) = (A+B ·R+C ·R−1 +D ·R2 +E ·R3) · e−α·R

−
8

∑
j=3

f2 j(R;b) · C2 j

R2 j ,
(3)

with the parameters A, B, C, D and C6 being optimized during
the fitting procedure. The other parameters are taken from refer-
ence38 and not reoptimized. The functions f2 j(R;b), with

f2 j(R;b) = 1− e−b·R ·
2 j

∑
k=0

(b ·R)k

k!
, (4)

are damping functions introduced by Tang and Toennies.39

2.3 Structure optimizations

With the resulting PES-2B argon environments for the trifluoride
are determined via minima hopping (MH) optimizations.40 The
basic model for the argon environments is a cubic fcc 5×5×5 su-
per cell of 500 Ar atoms with a lattice constant of 5.35 Å. The
latter is larger than the experimental value of 5.30 Å, but leads to
Ar-Ar distances in the cell that are close to the equilibrium dis-
tance in the employed argon pair potential.41 The trifluoride is
placed at the center-of-mass of this cell. Two additional initial
structures for modeling vacancy sites are obtained by removing
one and two argon atoms from the vicinity of the molecule, re-
spectively. For the minima hopping optimizations several struc-
tural manipulations are applied to the initial cells. These are de-
scribed in the supplementary information together with further
computational details of the MH optimizations and the structural
analyses. When assessing the stability of the minima identified
during the MH runs, the guest-host and host-host interaction en-
ergies are examined with PES-3B. Also, normal mode analyses
are performed with PES-2B for the (movable) core section of the
cubic cells to estimate the vibrational zero-point energies of the
systems. For the minima that contain vacancy sites a correction
based on the per-atom binding energy in a pure argon fcc struc-
ture is introduced to the host-host interaction energy. Likewise, in
the corresponding normal mode analyses the core section of the
cubic cells is slightly expanded. These measures are taken to sim-
plify comparing the models with a differing number of Ar atoms.
Details are given in the supplementary material.

2.4 Anharmonic vibrational analyses

In the final step, the structures obtained in the MH runs are used
to calculate fundamental vibrational properties of the F−3 anion
in the presence of the argon atoms. This is achieved by solv-
ing a three-dimensional nuclear Schrödinger equation in an effec-
tive potential. The Hamiltonian in Jacobi coordinates and atomic
units is

Ĥ(r,R,ϑ) =− 1
2mA

∂ 2

∂ r2 −
1

2mB

∂ 2

∂R2

−
(

1
2mAr2 +

1
2mBR2

)
·
(

∂ 2

∂ϑ 2 + cotϑ · ∂
∂ϑ

)

+ min
~RM,α,β ,γ

Vtot(r,R,ϑ ,~RM,α,β ,γ;~RArN ) ,

(5)

where r, R and ϑ are the scattering coordinates and angle, respec-
tively. The coordinate r is the distance between a terminal and the
central F atom, while R corresponds to the distance of the center-
of-mass of these atoms to the remaining F atom. The trifluoride
center-of-mass coordinates are denoted ~RM and the Euler angles
α, β and γ define the orientation of the trifluoride in the envi-
ronment. ~RArN refers to the frozen argon atom coordinates. The
masses mA and mB are defined as

mA =
mF ·mF

mF +mF
mB =

mF · (mF +mF)

mF +mF +mF
, (6)
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where mF =18.998403 u is the mass of a fluorine atom. The nu-
clear problem is solved by setting up a corresponding matrix rep-
resentation and extracting the eigenstates with a coupled two-
term Lanczos eigensolver using full reorthogonalization.42–46 The
basis functions are direct products of potential optimized (r and
R, 25 functions each) and regular Legendre functions (ϑ , 205 ba-
sis functions) in a discrete variable representation (DVR),

|Ψn〉= ∑
i, j,k

C(n)
i jk |ψr

i 〉 |ψR
j 〉 |ψϑ

k 〉 , (7)

where |ψ l
m〉 denotes a DVR basis function of coordinate l.47–49

The Powell algorithm is used to optimize the center-of-mass co-
ordinates and the molecular orientation for each (r, R, ϑ) con-
figuration.50 The regions of configuration space, which are not
regarded in the fitting procedures, are neglected by introducing
a potential cut-off. The vibrational analyses are performed with
PES-2B and PES-3B.

3 Results and discussion

3.1 Interaction potentials

The F−3 -Ar potential obtained from fitting PIP functions to the cor-
responding ab initio data set describes interaction energies in the
range of -900 cm−1 to 2100 cm−1. Further properties of the fit-
ted potential are shown in the left column of Figure 1. The top
panel shows the distribution of F−3 -Ar interaction energies in the
relevant range, between -800 cm−1 and 800 cm−1, as well as the
cumulative root mean square (rms) error. The fitting data set is
focussed on capturing the attractive interaction between the com-
pounds. Accordingly, for negative interaction energies the rms
error is 3.5 cm−1, while it amounts to roughly 8.5 cm−1 over the
whole data set.

In the second panel of the left column of Figure 1 the mean
errors of the fit in energy windows of 25 cm−1 are shown. In
case of the F−3 -Ar interaction the fit does not seem to behave sys-
tematically over the whole range of investigated interaction ener-
gies. For strongly attractive interaction energies below -800 cm−1

the mean errors are positive, pointing towards an overestimation
by the fit. Beyond that and up to energies of about -500 cm−1

the fit tends to lie below the ab initio points, whereas it over-
shoots the data points slightly in the range of -500 cm−1 and -
250 cm−1. Between -250 cm−1 and 200 cm−1 the mean errors ap-
proach zero, indicating that roughly equal amounts of data points
are over- and underestimated. For the more repulsive interac-
tions the mean errors become larger and trend towards negative
values. Generally, this kind of oscillatory behaviour should be
treated with caution. However, as the mean errors in the attrac-
tive range of interaction energies are below 1 cm−1, any system-
atic behaviour is not strongly pronounced in the relevant region.
Hence, we think that in our case this is not an indictment of the
fit. The final three panels in the left column of Figure 1 depict po-
tential scans along different coordinates that were not included in
the fitting data set. They show that the fit is able to reproduce the
energies in the region of attractive interactions very accurately.

The right column of Figure 1 contains information on the F−3 -
Ar2 interaction potential. The data distribution in the top panel

reveals that the three-body interaction between the trifluoride
and two argon atoms is very weak. The energy range of the fitting
data set was truncated to lie between -30 cm−1 and 120 cm−1.
However, the majority of data points features energies between
0 cm−1 and 50 cm−1, speaking for a slightly repulsive contribu-
tion to the compound potential energy surface. The cumulative
rms error is in the range of 2 cm−1 for attractive configurations,
but drops to 1 cm−1 as soon as the large number of weakly repul-
sive interactions are taken into account. The overall rms error is
1.1 cm−1.

The mean errors within energy windows of 5 cm−1 shown in
the second panel in the right column of Figure 1 are close to
zero in the well-sampled region between -10 cm−1 and 70 cm−1.
This indicates that the fit neither over- nor underestimates the
CCSD(T)-F12 data points within that energy range in a systematic
way. Also, the selected potential scans in the final three panels il-
lustrate the qualitative agreement between the ab initio energies
and the fit. While the bond length scan speaks for a very accurate
description of the discrete data, the fit is slightly too repulsive
for most of the angles in the ϑFFF scan. Moreover, the final panel
shows that the fitted potential may become too repulsive for small
rF-Ar distances. Yet, the deviations are small enough to consider
the fit accurate.

The comparison of the fitted Ar-Ar interaction potential to the
ab initio points indicates a very accurate fit. The rms error is
0.2 cm−1. The equilibrium distance is 3.784 Å and the depth of
the potential well is 96.297 cm−1. These values are close to their
counterparts given by Patkowski and Szalewicz, namely 3.762 Å
and 99.351 cm−1.38 The final parameter set for the Ar-Ar interac-
tion potential is listed in Table 1.

Table 1 Optimized parameters for the Ar-Ar interaction potential in atomic
units. ∗ Parameters taken from Szalewicz and Patkowski, not reoptimized
during fitting procedure. 38,51,52

A / E h 581.172 C6 / E ha6
0 60.112

B / E ha−1
0 -117.887 C8 / E ha8

0 1491.114∗

C / E ha0 -530.076 C10 / E ha10
0 50240.000∗

D / E ha−2
0 9.262 C12 / E ha12

0 1898195.000∗

E / E ha−3
0 -0.266∗ C14 / E ha14

0 86445426.000∗

α / a−1
0 1.553∗ C16 / E ha16

0 4619452502.000∗

b / a−1
0 2.393∗

3.2 Argon environments
During the first segment of the MH runs the cells with rattled Ar
atoms were equilibrated such that the fcc crystal structure is for
the most part recovered. For each vacancy situation the minima
identified during this equilibration period (roughly 200) were dis-
regarded in the further analysis. The remaining minima can be
clustered with respect to the orientation of the mostly linear tri-
fluoride in the intact Ar fcc structure. In this way ten sets of struc-
turally comparable minima were obtained: five for the 0V setup
(denoted MCX-0V with X ranging from 1 to 5), two for the 1V sys-
tems (MCX-1V) and three for cells with two vacancies (MCX-2V).
The examination of the argon environments for the structures in
the MCX-YV clusters revealed that each vacancy situation featured
a different structural motif.
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Fig. 1 Interaction potentials for F−3 -Ar (left panels) and F−3 -Ar2 (right panels). Top: Distribution of data points and cumulative rms error. Second row:
mean errors in energy windows of 25 cm−1 (left) and 5 cm−1 (right), respectively. Last three rows: Illustrative potential scans along various coordinates.
Markers: ab initio data points. Lines: Potential fits. Additional information on the scans is provided in the supplementary material.
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MC1-0V

MC1-1V

MC3-2V

argon concentration (rel. units)

Fig. 2 Plane projection plots for the MC1-0V, MC1-1V and MC3-2V clusters alongside extracts from the corresponding most stable minima. The former
plots show the average density of argon atoms around F−3 in the minima of the MCX-YV clusters relative to a uniform distribution of argon atoms.

For the 0V structures the trifluoride anion is typically centered in
a cavity in interstitial place. It has pushed aside mainly two argon
atoms to accommodate itself in the tight confines. These Ar atoms
are located at opposite sides and ends of the molecule. Moreover,
the trifluoride is not aligned with a high-symmetry axis of the

crystal framework. This is illustrated by a snapshot of the typical
0V cell shown on the right in the first row of Figure 2. On the left
a representative plane projection plot is shown for the minima
of the MC1-0V cluster. In the plot the cavity is rather tight and
somewhat concave, confirming that the environment is very nar-
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row. Correspondingly, the trifluoride motion should be hindered.
Likewise, a sharp pattern for the distribution of argon atoms in
the plane projection is clearly discernible, indicating that this is
indeed the dominant environment. In the following the structural
motif of the 0V minima is denoted MIN or interstitial motif.
In the MCX-1V clusters the cavity occupied by the trifluoride cor-
responds to the single-vacancy site incorporated into the cell.
Within the cavity the trifluoride bonding axis is to a large de-
gree aligned with a direction perpendicular to quadratic planes in
the cell (see second row in Figure 2). This structural motif will
be referred to as MSV or single-vacancy motif. In the plane pro-
jection plots the cavity appears larger than for the 0V case and
of convex shape. Moreover, the trifluoride is not centered in the
cavity. The distribution functions show that the distances from
the central F atom to the two closest Ar atoms along the molecu-
lar axis are roughly 4.8 Å and 5.9 Å, respectively. Correspondingly,
a stronger trifluoride-argon interaction for one of the terminal F
atoms seems to be preferred over a weaker interaction for both
terminal F atoms. Thus, the cavity generated by a single vacancy
already seems to be too long for the F−3 in the sense that not all
interactions with the Ar atoms in the first neighboring shell are as
attractive as possible.

Regarding the 2V structures, two situations occur. For the MC1-
2V minima the MH runs produced structures with two single-
vacancy cavities. One of them is empty, while the other hosts
the trifluoride anion. For these structures the argon environment
around the guest molecule corresponds to the one observed for
the 1V cells. The second case concerns the MC2-2V and MC3-2V
minima. Here, the MH runs yielded a single cavity that comprises
both vacancy sites in the cell. The cavity and the trifluoride in
it are oriented along a direction normal to hexagonal planes of
argon atoms, as shown in the final row of Figure 2. According to
that, the motif is called double-vacancy motif and MDV. The plane
projection plot for the minima of the MC3-2V cluster expectedly
shows that the cavity for this environment is wider than for the 0V
and 1V structures. It is elongated too, with distances of around
5.0 Å and 6.2 Å between the central F atom and the two closest
Ar atoms along the molecular axis. As was the case for the MSV

motif, the trifluoride within the MDV environment is not located
at the center of the cavity, but slightly shifted towards one end.

The effect of the different environments on the internal tri-
fluoride coordinates is illustrated in Figure 3. For all three va-
cancy situations the optimized trifluoride structures are almost
linear, with intramolecular angles above 177◦. The trifluoride
bond lengths of the minima in the MIN and MSV environments
are reduced by below 0.01 Å compared to the free trifluoride. The
similar behaviour of the two motifs is peculiar, as the structural
surroundings are very different from each other. In particular, the
MSV cavity should be significantly less strained than the intersti-
tial MIN motif. Compared to that, the trifluoride structures for the
MDV clusters behave differently. Here, one of the bond lengths is
close to the value for the free molecule, while the other is slightly
elongated within the range of 5 mÅ to 7 mÅ. Probably, the reason
for the notable geometry distortion of F−3 in the argon MDV envi-
ronment, meaning the elongation of only one bond, is found in
the F−3 -Ar interactions with the immediate argon surroundings. A

Fig. 3 Trifluoride bond lengths and intramolecular angle for the minima
found in the MH runs. Only every other minimum is shown.

closer look at these interactions uncovers that typically the elon-
gated bond involves the terminal F atom, which in the MDV plane
projection plots is closer to the nearest Ar atom along the molec-
ular axis. Thus, the distortion seems to be motivated by maximiz-
ing the attractive interaction involving the corresponding termi-
nal F and axial Ar atoms, while the molecule is anchored by the
interactions of the central F atom with its equatorial Ar neighbors.

At this point loose predictions of the argon atoms’ effect on the
vibrational behaviour of the trifluoride can be established. Judg-
ing from our observations in the preceding study on neon systems,
the compression of the internal coordinates for the molecules in
the MIN/SV environments should correspond to an increased rigid-
ity of the molecule, a hardening of the potential around the equi-
librium structure and blue-shifts to the fundamental vibrational
excitations. Given the stronger F−3 -Ar interaction, stronger sig-
nal shifts are expected. With respect to the minima of the MDV

motif, the bond elongation may indicate a weakening of the po-
tential around the minimum with respect to changes of the bond
lengths. This should correspond to a red-shift of the stretching
vibrations. However, as only one bond is directly affected, it is
not clear how this will actually factor into the calculation of the
vibrational states.

In Table 2 the averaged cohesive energies and harmonic zero-
point energies for the minima of the different MCX-YV clusters
are listed. With respect to the total cohesive energies, the MSV

and MDV structures are most stable. The motifs are separated by
only about 10 meV and thus their stability should be considered
equal. In comparison, the minima of the interstitial motif are less
stabilized by roughly 150 meV to 160 meV. The exception to this
is the MC1-2V cluster. The corresponding minima feature cohe-
sive energies between the values of the MIN and MSV structures,
despite the trifluoride molecules being embedded in the MSV en-
vironment. From the contributions of the F−3 -Ar, F−3 -Ar2 and Ar-Ar
interactions, it is apparent that this is due to the presence of an
additional empty single-vacancy site in the movable section of the
cells and the resulting loss of optimized Ar-Ar interactions. There-
fore, this cluster is disregarded in the remaining stability analysis.
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Table 2 Averaged total cohesive energies and contributions by the guest-
host and host-host interactions as well as harmonic zero-point energies
(ZPE) (in eV) of the minima in the MCX-YV clusters. ZPEs are obtained
from normal mode analyses including all movable atoms for the ten most
stable structures of each MCX-YV cluster.

cluster EF−3 -Ar EF−3 -Ar2
EAr-Ar Ecoh EZPE Etot

MC1-0V (MIN) -1.23 0.27 -35.04 -36.00 0.96 -35.04
MC2-0V (MIN) -1.24 0.26 -35.04 -36.02 0.96 -35.06
MC3-0V (MIN) -1.23 0.27 -35.05 -36.01 0.96 -35.05
MC4-0V (MIN) -1.23 0.27 -35.05 -36.01 0.96 -35.05
MC5-0V (MIN) -1.23 0.27 -35.05 -36.01 0.96 -35.05
MC1-1V (MSV) -1.29 0.27 -35.14 -36.16 0.93 -35.23
MC2-1V (MSV) -1.29 0.27 -35.14 -36.16 0.93 -35.23
MC1-2V (MSV) -1.29 0.27 -35.06 -36.08 0.93 -35.15
MC2-2V (MDV) -1.30 0.23 -35.10 -36.17 0.90 -35.27
MC3-2V (MDV) -1.30 0.23 -35.10 -36.17 0.90 -35.27

Concerning the interplay of guest-host and host-host interac-
tions, the interstitial motif is least balanced. The attractive contri-
butions, that is the two-body interactions, are rather small, while
the repulsive ones stemming from the three-body F−3 -Ar2 term are
relatively large. For the other two structural environments, the at-
tractive F−3 -Ar interactions are very similar and more stabilizing
than for the MIN motif. However, the remaining contributions to
the cohesive energy behave differently for the former two motifs.
In case of MSV the Ar-Ar interaction is more attractive compared
to MIN and MDV, whereas the repulsive F−3 -Ar2 interactions are
on par with the MIN structures. On the other hand, in the double-
vacancy motif the missing contributions by the optimized Ar-Ar
interactions are compensated by a reduced repulsive three-body
interaction, befitting the more spacious cavity.

The harmonic zero-point energies typically decrease with in-
creasing number of vacancy sites in the cell, indicating a con-
current reduction of spatial strain in the structures. As for all
vacancy situations the same number of degrees of freedom was
included in the harmonic analyses, the changes of zero-point en-
ergies should be a result of the particular environments. Again,
the MC1-2V minima behave similar to the 1V structures, as they
correspond to MSV environments. When the zero-point energies
are added to the cohesive energies the trends regarding the stabil-
ity of the environments are mostly reinforced, that is the single-
and double-vacancy motifs become even more stable than the in-
terstitial motif. Also, relative to MSV the stability of MDV is further
increased, with the latter motif now being about 40 meV more sta-
ble than the former. Nonetheless, they are still similarly stable.

3.3 Vibrational properties of F−3 in argon

The fundamental anharmonic vibrational properties of the triflu-
oride anion in the ten most stable minima of each MCX-YV cluster
were examined. Vibrational states were assigned through excita-
tion energies as well as nodal structure. The states are denoted
by the triples (ns,na,nϑ ), containing the quanta in the symmetric
(ns), antisymmetric (na) and bending (nϑ ) modes. The discussion
of the vibrational analyses is initially focussed on the calculations
based on PES-2B. Only in the latter portion of the discussion these
results are compared to those of the PES-3B calculations.

To start off with the effect of the argon environment on the

vibrational states, representative nuclear densities and difference
densities for the fundamental vibrational states are shown in Fig-
ure 4. The upper two rows display the nuclear densities after inte-
gration along r and R (first row) and ϑ (second row) for the most
stable MC1-0V minimum. They illustrate that the fundamental vi-
brational states are not changed qualitatively by the interactions
with the argon atoms. The densities along ϑ reveal that the triflu-
oride is slightly bent even in the vibrational ground state (first col-
umn on the left). Moreover, the fundamental bending excitation
can be identified via the node in the ϑ -density in the right-most
column. The fundamental ns (second column) and na (third col-
umn) excitations for the quasi-linear trifluoride are characterized
by nodes along the (r+R)- and the (r−R)-direction, respectively.

The differences between the nuclear densities of the free tri-
fluoride and the entrapped molecule may help to uncover more
delicate effects of the argon on the vibrational states. To this end,
the final three rows of Figure 4 show difference density plots for
the densities integrated along ϑ and the most stable minima of
the MC1-0V, MC2-1V and MC2-2V clusters, representing the MIN,
MSV and MDV motifs. The difference densities for the trifluorides
in the former two structural environments are very similar to each
other. Based on the slightly shortened trifluoride bond lengths in
the MIN and MSV surroundings, the fundamental vibrational tri-
fluoride states are expected to appear compressed as well. This
seems to be the case, as the corresponding nuclear densities in
the presence of argon atoms are centered at smaller r and R val-
ues. On the other hand, the vibrational states of the trifluoride
in the argon MDV environment behave differently. Here, the dif-
ference densities (final row of Figure 4) show that the states are
expanded towards larger distances r and R. Moreover, the expan-
sion typically seems to be aligned more strongly with either r or
R (R in Figure 4). This agrees well with the observation that in
the argon MDV motif one of the trifluoride bonds is elongated.

In Table 3 averages of the fundamental vibrational excitation
energies are shown for the different potential energy surfaces
(PES-2B, PES-3B) and MCX-YV clusters alongside theoretical and
experimental reference values. At this point the reader shall be
reminded that the current constitution of our model for the calcu-
lation of the vibrational states does not allow for a description of
the fundamental bending excitation. Instead, the excitation en-
ergy corresponding to the first bending overtone is determined. A
full account of this is given in our previous work.26

Firstly, a general trend regarding the calculated fundamental
excitation energies can be extracted from the values in Table 3.
That is a sizable difference in the sensitivity of the bending and
the stretching modes with respect to the environment. Whereas
the averages of the stretching excitation energies are rather con-
sistent within a given argon environment, the bending excitations
are characterized by strongly varying transition energies. In ac-
cordance with that, the empirical standard deviations of the cal-
culated averages differ as well. For the stretching excitations, they
usually range around 1 cm−1, allowing the qualitative analysis of
the excitation energies for individual minima through the aver-
ages of the corresponding MCX-YV cluster. Contrasting to that,
the bending excitation energies are scattered for the minima of
each MCX-YV cluster, typically featuring averages with standard
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Fig. 4 Nuclear densities of fundamental vibrational states for F−3 in argon. Vibrational analyses based on PES-2B. Top two rows: Nuclear densities
integrated along r and R (first row) and ϑ (second row) for the most stable structure of the MC1-0V cluster. Final three rows: Difference densities along
r and R for the most stable minima of the MC1-0V (MIN), MC2-1V (MSV) and MC2-2V (MDV) clusters, calculated with respect to the densities of free F−3 .

deviations of 10 cm−1 or more. On the one hand, this qualitative
difference between the stretching and bending modes indicates a
greater effect of the environments on the latter. On the other, the
stronger fluctuations of the bending energies should partly be a
result of the adiabatic treatment of the Euler angles defining the
molecular orientation.

With respect to the fundamental vibrational transitions of the
trifluoride in the MIN environments, blue-shifts to the excitational
energies of all three modes relative to the free molecule are ob-
served. For the symmetric stretching mode the increase of the

average excitation energy amounts to approximately 10 cm−1 to
12 cm−1. Likewise, the antisymmetric stretching mode is typi-
cally blue-shifted by 6 cm−1 to 8 cm−1. The energy associated
with the first bending excitation increases by 25 cm−1 to almost
80 cm−1 compared to the free molecule. In view of the structural
surroundings the blue-shifts compared to the free molecule are
in agreement with the expectations. The trifluoride is located in
a very narrow cavity with relatively strained Ar-Ar interactions
and matching guest-host interactions on the repulsive side of the
most attractive F−3 -Ar distance. Thus, any further bond elonga-
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Table 3 Averaged fundamental vibrational excitation energies (in cm−1)
of the ten most stable minima in each MCX-YV cluster. 2B and 3B re-
fer to calculations with PES-2B and PES-3B, respectively. Values for the
free F−3 molecule are taken from Table 3 of our previous work. 26 Experi-
mental values are taken from the works of Riedel et al. and Andrews and
coworkers. 4,5,53

νs νa νϑ
free F−3 394 522 502

exp. 389 510.6 -
2B 3B 2B 3B 2B 3B

MC1-0V (MIN) 406 407 530 522 549 554
MC2-0V (MIN) 404 405 528 519 543 547
MC3-0V (MIN) 405 406 529 520 540 544
MC4-0V (MIN) 404 406 529 520 528 533
MC5-0V (MIN) 405 406 529 520 580 586
MC1-1V (MSV) 408 410 530 521 593 595
MC2-1V (MSV) 407 410 529 520 541 543
MC1-2V (MSV) 408 410 529 521 605 607
MC2-2V (MDV) 387 387 517 508 528 525
MC3-2V (MDV) 388 387 517 507 528 531

tion or bending should yield more unfavorable trifluoride-argon
interactions, essentially leading to a hardening of the trifluoride
potential around the equilibrium structure and a blue-shift of the
vibrational excitations.

The fundamental excitations energies of the trifluoride in the
MSV environments are very similar to the MIN structures. Aside
from the general tendencies, the actual averaged excitation ener-
gies and standard deviations match as well. Although the simi-
larity of the excitation energies for the MIN and MSV minima is
in line with the analyses of the internal F−3 coordinates and the
nuclear densities, it is somewhat unexpected upon considering
the varying structural constitution of the two environments and
the sensitivity of vibrational excitations. Unlike MIN the MSV mo-
tif features a proper vacancy site, such that the environment is
not strongly distorted by accommodating the trifluoride. Accord-
ingly, the host-host as well as guest-host interactions should be
relatively unstrained, which is confirmed by the cohesive ener-
gies listed in Table 2. Therefore, the origin of the blue-shift to
the stretching excitation energies cannot be the same as for the
MIN environment. Rather than being hindered by unfavorable
F−3 -Ar interactions, it seems that the trifluoride in the MSV motif
is fixated by strongly attractive interactions with the host atoms.
The increased rigidity of the trifluoride may be rationalized in
terms of particularly strong interactions for the equilibrium con-
figuration that decrease significantly upon displacement of the
molecule. With regards to the potential landscape around the
minimum configuration, this corresponds to an effective poten-
tial hardening, which would explain the calculated blue-shifts.

The situation is different for the MDV structures. Here, both
stretching modes are characterized by red-shifted averaged fun-
damental excitation energies compared to the free trifluoride.
The symmetric one is shifted by 6 cm−1 to 7 cm−1 and the an-
tisymmetric one by about 5 cm−1. While the stretching vibrations
for the trifluoride in the MDV environment appear different from
the other structural motifs, the excitation energies of the first
bending overtone do not. With blue-shifts of roughly 25 cm−1

compared to the free molecule, the fundamental excitations are

similar to those of the other environments. However, it is notable
that among the typical averages for the νϑ excitation both MDV

values range at the low end. This may speak for an increased
flexibility of the trifluoride with respect to bending motions in
the MDV cavity. The red-shifts of the fundamental stretching ex-
citations are in accord with the constitution of the cavity and the
internal trifluoride coordinates. As the former is wider than in
the MSV environment, spatial strain in the form of narrow dis-
tances between guest and host atoms should not factor into the
effect of the argon atoms on the vibrational trifluoride proper-
ties. Compared to the MSV minima the contributions of the F−3 -Ar
interactions to the total cohesive energies are slightly larger for
the MDV motif. Yet, a corresponding decrease of flexibility for the
trifluoride does not occur. Instead, the specific arrangement of
argon atoms around the trifluoride seems to cause a softening of
the potential along one of the bond stretching directions. Accord-
ingly, the equilibrium configuration features one elongated triflu-
oride bond and vibrational excitations through stretching modes
are facilitated.

With measured excitation energies of 389 cm−1 and
510.6 cm−1 for νs and νa, respectively, the experimental in-
vestigation of matrix-isolated trifluoride in argon reveals a
red-shift of the fundamental stretching modes compared to the
neon systems (exp.5: 525 cm−1, calc.26: 399 cm−1, 525 cm−1)
as well as the theoretical values for the free trifluoride (see Table
3). At the PES-2B level, the MIN and MSV environments produce
stretching excitations that are blue-shifted relative to the free
trifluoride and the neon reference values. In contrast to that, the
MDV environment captures the correct trend. Correspondingly,
both stretching modes are red-shifted compared to the free
molecule and the one entrapped in neon. However, while the
calculated fundamental excitation energies of the symmetric
stretching mode (387 cm−1) are rather close to the experimental
reference value, the red-shift of the antisymmetric stretching
excitation to about 517 cm−1 is not quite pronounced enough.
This may be due to the MDV environment not being the exact
structural environment observed in experiment, but it could
also be a result of including only two-body interactions in the
potential energy surface.

In order to determine the effect of the F−3 -Ar2 interactions on
the vibrational trifluoride properties, the vibrational analyses of
the ten most stable structures of each MCX-YV cluster are re-
peated with PES-3B. The inspection of the resulting nuclear den-
sities showed that typically the vibrational states are not changed
qualitatively by including the three-body interactions (see Figure
2 in the supplementary material for an example). On the con-
trary, the excitation energies are affected notably. This is obvious
from the fundamental excitation energies (3B) listed in Table 3.
Strikingly, the addition of the three-body interaction term influ-
ences the stretching excitations in different ways. Across the three
structural environments the symmetric stretching mode is slightly
blue-shifted, whereas the antisymmetric stretching excitations ex-
perience a sizable red-shift between 8 cm−1 and 10 cm−1. The cal-
culated bending excitation is consistently blue-shifted by 2 cm−1

to 6 cm−1. Also, the standard deviations associated with the aver-
ages remain comparable to those obtained for PES-2B. Through
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inclusion of the F−3 -Ar2 interactions the agreement between the
experimentally observed signals and the excitation energies cal-
culated for MDV is further improved.

Judging from the anharmonic vibrational analyses solely the
MDV environment seems to affect the trifluoride in a way that
fully agrees with the experimental observations. This is in line
with the stability analysis showing that the double-vacancy motif
is the most stable one if zero-point effects and F−3 -Ar2 interactions
are accounted for. However, given the comparable stability of
the MSV environment, the reason for the MDV motif’s dominance
in experiment is not quite identified. Corresponding to that, Re-
deker et al. observed a blue-shifted shoulder to the antisymmetric
stretching signal in their infra-red spectra of F−3 in argon.5 This
speaks for a different trapping site in the argon matrix, such as
the MSV environment. However, our vibrational analyses do not
necessarily confirm this hypothesis, as the calculated blue-shift
relative to MDV is too large. From a theoretical perspective differ-
ent aspects may contribute to the preference of MDV. Concerning
the stability of the different environments, Ar3-three- or F−3 -Ar3-
four-body interactions may further favor the larger cavity. Also,
the trifluoride motion should be least impaired in the MDV cavity,
effecting entropic stabilization. Alternatively, kinetic factors may
support a favored double-vacancy site formation.

4 Conclusion
To conclude, we have studied trifluoride anions in argon environ-
ments with respect to the structures of the rare gas surroundings
and the vibrational properties of the entrapped F−3 . Two potential
energy surfaces were used to examine different trifluoride-argon
models. The results were analyzed and compared to matrix isola-
tion experiments.

Using minima hopping optimizations, we extracted three un-
derlying structural environments in the trifluoride-argon systems,
whose occurrence is linked to the number of vacancy sites in the
cell. The interstitial motif MIN is dominant in cells without va-
cancy sites, MSV prevails in single-vacancy cells and the MDV envi-
ronments appear only in structures with two vacancies. The MDV

and MSV motifs were found to be the most stable environments.
Moreover, we observed somewhat unexpected effects of the argon
surroundings on the internal trifluoride coordinates that speak for
a significant influence of the guest-host interaction on the vibra-
tional properties. The final step of the investigation consisted of
the vibrational analyses of the structures obtained in the minima
hopping runs. In the examination of the fundamental vibrational
states and excitation energies we observed that the MIN/SV struc-
tures and the double-vacancy motif display qualitatively different
properties. Notably, among the different environments only MDV

produces stretching excitations in qualitative agreement with the
experimental observations. We showed that the agreement with
experiment can be made almost quantitative by accounting for
F−3 -Ar2 interactions in the model potential energy surface. This
emphasizes the importance of non-additive three-body interac-
tions in a highly accurate description of weakly interacting sys-
tems. In order to predict corresponding matrix effects in future
applications, we aim to expand our model to calculating full rovi-
brational states of the guest molecule.

Upon request to the authors PES-2B and PES-3B are available.
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ICPM, 1Bd Arago, 57070 Metz, France

E-mail: f.bader@fu-berlin.de

1



Grid-based sampling for the F−3 -Ar potential

A part of the ab initio data set for the F−
3 -Ar interaction potential was collected with grid-

based sampling. This was done by incrementally changing the following six coordinates: the

trifluoride bond lengths, the F-F-F angle, the distance between the central F atom and the

Ar atom (rF-Ar) and the two angles used to define the orientation of the argon around the

trifluoride (θ, φ). These are depicted in Figure 1.

Figure 1: Coordinates included in the grid-based sampling.

For non-linear trifluoride configurations the grid-based sampling was employed to supply

additional data in the region of strongest attractive interaction. Thus, the distance rF-Ar was

varied between 4.0 Å and 5.5 Å with a step of 0.5 Å. The F-F bond lengths were incremented

between 1.69 Å and 1.77 Å in steps of 0.02 Å, laying a focus on the bond length region close

to equilibrium, while the intramolecular angle was set to 150◦, 160◦ and 170◦. The remaining

two (orientational) angles were changed from 0◦ to 90◦ and 0◦ and 180◦ in steps of 30◦ and

60◦, respectively. For linear trifluoride configurations the bond lengths were sampled with

an irregular grid between 1.5 Å and 2.0 Å. The distance between the central F atom and the

Ar atom was varied between 3.0 Å and 10.0 Å in steps of 0.5 Å and the polar angle θ was

set to the values 0◦, 5◦, 15◦, 25◦, 35◦, . . . , 85◦, 90◦. The azimuthal angle φ is a redundant

coordinate for the linear trifluoride and was thus not sampled. In total, the grid-based

strategies comprised about 14000 data points.
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Test scans for the F−3 -Ar and F−3 -Ar2 potentials

The six test scans presented in Fig. 1 of the main text are obtained with the coordinate

configurations listed in Table 1. The coordinate systems are defined as shown in Figure 1

above.

Table 1: Coordinate configurations for the potential scans shown in Fig. 1 of the
main text. The row ”panel” refers to the panel in Fig. 1 of the main text.

F−
3 -Ar F−

3 -Ar2
panel 3 4 5 3 4 5
rFF,1 1.930 1.723 1.820 scan 1.723 1.720
rFF,2 scan 1.723 1.690 1.723 1.723 1.750
θFFF 180.0 scan 175.0 180.0 scan 180.0
rF-Ar 3.700 3.100 scan 3.523 3.100 scan
θ 63.0 90.0 1.0 124.6 90.0 60.0
φ 134 0 0 313.6 90.0 0.0

rF-Ar,2 - - - 4.853 5.105 3.600
θ2 - - - 136.2 54.0 120.0
φ2 - - - 67.2 83.1 0.0

Structural modeling and minima hopping runs

To model the matrix environment a trifluoride anion was placed at the center-of-mass of a

cubic fcc 5×5×5 super cell of 500 argon atoms. Then, the argon atoms were split in two

groups: the 104 atoms closest to the guest and the remaining ones. The positions of the

atoms in the latter group were fixed to retain a fcc crystal structure environment. Likewise,

the trifluoride was treated as a linear rigid rotor. Depending on how many vacancy sites were

examined zero, one or two argon atoms were removed from the trifluoride’s vicinity. Then,

the positions of the movable (inner) argon atoms and the orientation of the trifluoride as

well as its center-of-mass position were rattled and loosely equilibrated with a local LBFGS

relaxation. At this point, five minima hopping (MH) optimizations sharing a list of minima

were started. In total, 1000 local minima were examined. The initial temperature was set
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to 200 K. The molecular dynamics part of the MH runs was run with a time step of 1 fs and

terminated as soon as the trajectory was found to be in a minimum for the second time. The

local relaxation step was performed with the LBFGS method and a stopping force criterion

of 0.05 eV/Å. The temperature and energy adjustment parameters were set to β1 = 1.1,

β2 = 1.1, β3 = 1.0/1.1, α1 = 0.98 and α2 = 1.0/0.98. The initial energy acceptance criterion

was E0 = 0.5 eV. After the MH optimizations the constraints on the trifluoride were lifted

and the structures yielded by the MH runs locally reoptimized with the LBFGS method and

a force criterion of 0.01 eV/Å. This part of the modeling procedure was carried out with the

Atomic Simulation Environment.1

The plane projection plots were generated with the trajectory analysis tool TRAVIS.2
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Cohesive and vibrational zero-point energies

The cohesive energies were calculated by summing up the energies of the individual guest-

host and host-host interactions. To account for the fact that the three trifluoride-argon

models contain a differing number of argon atoms, the energy contribution of the Ar-Ar

pairs was corrected in case of the MCX-1V and MCX-2V structures. In order to do this,

for each removed rare gas atom the average binding energy of an argon atom in an argon

bulk fcc crystal is added to the host-host energy contribution. The average binding energy is

estimated from the pure 5×5×5 fcc argon supercell by taking half of the interaction energy

of a central argon atom with all other 499 rare gas atoms in the cell. The correction is

90 meV for each removed Ar atom.

The scheme is motivated by the circumstance that in matrix isolation the environment

forms around the guest molecule. Thus, the rare gas atoms displaced by the trifluoride

should become part of the argon bulk structure, instead of being fully removed from the

frozen matrix.

The zero-point energies are obtained from harmonic normal mode analyses based on PES-

2B. Only the degrees of freedom in the movable part of the structures are included, while

the outer rare gas atoms remain frozen. However, for the single- and double-vacancy models

the movable section is expanded by one and two argon atoms, respectively, to maintain

comparability of the zero-point energies to the cell without vacancies.
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Vibrational states of entrapped F−3 based on PES-3B

Analogous to Fig. 4 in the main text, Figure 2 illustrates the nuclear densities for the fun-

damental vibrational states of the entrapped F−
3 described by PES-3B.

Figure 2: Nuclear densities of vibrational states of F−
3 in argon, obtained with PES-3B. Top

two rows: Densities integrated along r and R (first row) and ϑ (second row) for the most stable
structure of the MC1-0V cluster. Final three rows: Difference densities along r and R for the most
stable minima of the MC1-0V (MIN), MC2-1V (MSV) and MC2-2V (MDV) clusters, calculated with
respect to the nuclear densities of free F−

3 .
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[161] K. Rościszewski, B. Paulus, P. Fulde and H. Stoll, Phys. Rev. B, 1999, 60, 7905.

[162] P. Schwerdtfeger, R. Tonner, G. E. Moyano and E. Pahl, Angew. Chem. Int. Ed.,

2016, 55, 12200–12205.

[163] A. C. Van Duin, S. Dasgupta, F. Lorant and W. A. Goddard, J. Phys. Chem. A,

2001, 105, 9396–9409.

[164] J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401.

[165] J. Behler, Angew. Chem. Int. Ed., 2017, 56, 12828–12840.

127



BIBLIOGRAPHY

[166] C. Schran, F. Uhl, J. Behler and D. Marx, J. Chem. Phys., 2018, 148, 102310.

[167] B. Hartke, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 879–887.

[168] J. M. Dieterich and B. Hartke, Mol. Phys., 2010, 108, 279–291.

[169] J. M. Dieterich and B. Hartke, J. Comput. Chem., 2011, 32, 1377–1385.
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