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Abstract: Fungus-bacterium interactions are widespread, encompass multiple interaction types from
mutualism to parasitism, and have been frequent targets for microbial inoculant development. In
this study, using in vitro systems combined with confocal laser scanning microscopy and real-time
quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide
protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colo-
nizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show
that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with
probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find
evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and
“hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a
bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial
predator on solid agar medium. Besides highlighting the importance of tripartite microbial inter-
actions, we discuss implications of our results for the development and application of microbial
consortium-based bioprotectants and biostimulants.

Keywords: bacterial-fungal interactions; biofilm; mycophagy

1. Introduction

The rhizosphere constitutes the hot-spot for soil microbial activity where bacteria and
fungi coexist and interact [1,2]. Plants drive microbial communities in the rhizosphere
by establishing a continuous flow of carbon mainly in the form of rhizodeposits [3–6]
which comprise sugars, amino acids, and organic acids [7,8]. More than 10% of the
C transported below ground is allocated to mycorrhizal or saprophytic fungi and to
rhizobacteria, which constitute the bulk component of the rhizosphere but can also colonize
plants as endophytes [3,9–14].

These fungi act as secondary carbon sinks in the soil and can recruit distinct bac-
terial communities via modulating the composition of their exudates leading to the
so-called “mycorrhizosphere” and “sapro-rhizosphere” [15–18]. These fungi-associated
bacteria can feed on fungus-derived exudates, in exchange for beneficial services pro-
vided to the fungi [16,19,20]. In addition to this, some of the bacteria inhabiting the
myco/saprorhizosphere can form tight physical associations with the fungi which can
often lead to the formation of biofilm-like structures [21–24]. Biofilms are described as
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the aggregation of bacterial cells embedded into a self-produced matrix of extracellular
polymeric substances [25]. These biofilms can have beneficial effects, including nutrient
exchange between both partners and the migration of bacteria along the hyphae [24,26,27].
Regardless of the effect of bacterial biofilms on the fungal partner, the existence of a biofilm
lifestyle is rather common in nature [28]. Furthermore, biofilm formation on the fungal
hyphae can provide the fungal partner protection against predators, toxic compounds,
and buffering of environmental variations [29,30]. However, bacterial biofilms on fungal
hyphae can also compete for nutrients and this can be detrimental for the fungi [31,32].

Some soil-inhabiting bacteria have evolved different strategies to compete for limited
resources in the myco/saprorhizosphere. They can either obtain C from the exudates
released by fungi or by using the fungal hyphae as a substrate [33–35]. The existence of
fungivorous bacteria which can feed on living fungal tissue has been extensively studied
for bacteria belonging to genus Collimonas [36,37]. Collimonads can feed on living fungal
biomass and convert it into bacterial biomass, using a strategy known as “mycophagy”.
These bacteria are known to have antifungal properties [36,38,39] and have been extensively
studied for their antagonistic activity against pathogenic soil fungi [36,39–47], saprophytic
fungi [48], and beneficial fungi [38,49], thereby emphasizing their role in altering the fungal
community composition in the soil ecosystem [50,51].

As opposed to feeding on fungal hyphae or intrahyphal contents, a large number of
soil bacteria have evolved strategies to utilize fungus-secreted metabolites [52,53]. Bacteria
belonging to the genus Kosakonia of the family Enterobacteriaceae are common residents of
the rhizosphere which are often found to be associated with plant tissues as endophytes
and can promote plant growth via different mechanisms [54–57]. Kosakonia radicincitans
(DSM 16656) is a nitrogen-fixing bacterium [58], which has a broad host range and upon
successful inoculation can promote plant growth and yield under greenhouse conditions
and field trials [59–62]. This makes it a potential bio-supplement suitable for application
in agricultural systems. However limited information is available on the interaction of
K. radicincitans with common soil fungi [63].

Serendipita indica, previously known as Piriformospora indica, is an AM-like plant-
beneficial root-endophytic fungus belonging to the family Serendipitaceae (formerly Sebaci-
nales group B) [64]. This is a ubiquitous fungus that has been isolated from different ecolog-
ical environments [65,66] and is known to colonize the roots of diverse plant species [67,68].
It can improve plant growth via a wide range of mechanisms, such as increasing nutrient
uptake, inducing tolerance against biotic and abiotic stresses, and conferring resistance
against pathogens [67,69–71]. However, few studies have highlighted the outcome of its
interaction with rhizospheric bacteria [70,72].

The interaction of collimonads with pathogenic fungi has been well documented
to support their role as potential biocontrol bacteria [42,73,74]. However, the impact of
these bacteria on common soil fungi still remains largely unknown. Interestingly, my-
cophagous bacteria have been found to be associated with saprotrophic fungi such as
Mucor hiemalis and Trichoderma harzianum and plant-beneficial fungi such as the AM fungi
Rhizoglomus irregulare (previously known as Glomus intraradices) and Gigaspora decipiens, and
the ectomycorrhizal fungus Laccaria bicolor [75–77]. In addition to this, the mycophagous
bacterium Collimonas pratensis was recently isolated as an endophyte inhabiting the mycor-
rhizal tissues of orchid plants [78]. Altogether, this indicates that mycophagous bacteria
are widespread in nature across different ecological habitats. Höppener-Ogawa and col-
leagues [51] reported that collimonads can alter the composition of common soil fungi
in the rhizosphere including plant-beneficial AM fungi. However, how this impacts the
biomass of beneficial fungi in the rhizosphere is not clear as the authors measured the
total soil ergosterol, which is not a suitable biochemical marker for estimating the biomass
of AM fungi [79–81]. Interestingly, the presence of collimonads also altered the fungal
community structure of AM fungi in the plant roots. This is a particularly important result
as it points out that even though collimonads are wide-spread in terrestrial environments
at low densities (104–106 cells per gram of soil) they can still strongly impact the fungal
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community composition in the soil ecosystem. In addition to this, studies have shown
that collimonads have a feeding preference for certain specific taxonomic or functional
groups of fungi [41,50,51]. Therefore, it is imperative to know whether collimonads can
feed on beneficial fungi such as S. indica leading to a potential loss of fungal inoculum
in the fields. It is also important to test whether bacterial-fungal consortia comprising of
biofilm-forming bacteria can protect the fungus against attack by mycophagous bacteria.

Therefore, in the present study we tested whether K. radicincitans can confer protec-
tion to the beneficial root-endophytic fungi S. indica against fungus-feeding bacterium
C. fungivorans by forming a biofilm on the fungal hyphae. We conducted in vitro my-
cophagy assays to evaluate whether the two bacteria can feed on fungal biomass, and
investigated biofilm formation and different feeding strategies used by the bacteria to
benefit from S. indica.

2. Materials and Methods
2.1. Microorganisms Used in This Study

In the present study we used the root-endophytic fungus Serendipita indica (DSM 11827)
which was originally isolated from the Thar Desert in India [82]. In addition to this, the
two bacteria used in this study include the mycophagous bacterium Collimonas fungivorans
(Ter 331) (Genbank accession numbers AJ310395 and CP002745.1 for sequenced 16SrDNA
and whole genome, respectively) which was isolated from slightly acidic dune soil in the
Netherlands [36]. The nitrogen-fixing bacterium Kosakonia radicincitans (DSM 16656) was
isolated from the phyllosphere of wheat plants [58].

2.2. Cultivation of Microorganisms

S. indica was routinely cultured on Hill-Käfer complex medium [83] (CM; glucose
20 gL−1, Peptone 2 gL−1, yeast extract 1 gL−1, casamino acid 1 gL−1, agar 15 gL−1, 50 mL
20× salt solution (NaNO3 120 gL−1, KCl 10.4 gL−1, MgSO4·7H2O 10.4 gL−1, KH2PO4
30.4 gL−1), 10 mL microelements (MnCl2·4H2O 0.5 gL−1, H3BO4 1.4 gL−1, ZnSO4·7H2O
2.2 gL−1, FeSO4·7H2O 0.5 gL−1, (NaH4)6Mo7O24·4H2O 0.11 gL−1, CuSO4·5H2O 0.16 gL−1,
CoCl2·5H2O 0.16 gL−1, Na2EDTA.2H2O 5.1 gL−1; pH 6.5) using standard 90 mm Petri
dishes and incubated at 24 ◦C for two weeks.

C. fungivorans and K. radicincitans were cultivated in 10% tryptic soy broth or solid
medium (3 gL−1 TSB; Sigma Aldrich, Munich, Germany). The Petri dishes were incubated
at 24 ◦C in a stationary incubator. The bacterial inoculum was prepared by transferring
a single colony into an Erlenmeyer flask containing 50 mL of 10% TSB broth (Carl Roth,
Karlsruhe, Germany). The flasks were incubated at 24 ◦C under gentle shaking at 180 rpm
for all the assays. The cells were harvested by centrifugation (10,000× g, 10 min), rinsed
three times in sterile NaCl (0.05 M) solution, and re-suspended in saline solution to a final
concentration of 106 CFU per mL for all in vitro experiments unless mentioned otherwise.
Glycerol stocks of all microorganisms were maintained in 70% glycerol at −80 ◦C.

2.3. Fungal Growth Inhibition Assay

Assays were conducted on water yeast agar (WYA) (KH2PO4 1 gL−1, NaCl 5 gL−1,
yeast extract 0.05 gL−1 and agar 20 gL−1, pH 6.8) using standard 90 mm Petri dishes. This
media imitates the carbon limiting conditions of the soil [84]. C. fungivorans (Ter 331) and
K. radicincitans (DSM 16656) were grown in 10% TSB and incubated at 24 ◦C for 48 h at
180 rpm. Bacterial inoculum was prepared as mentioned in Section 2.2. 5 µL of bacterial
suspension was inoculated on a Petri dish in a 40 mm × 40 mm square for 4 days before
the fungus was introduced. S. indica was cultivated on Hill-Käfer complex medium. On the
5th day, a 10 mm plug from a two-week-old actively growing S. indica colony was placed
in the center of the plate at a distance of approximately 20 mm from the bacterial patch.
The plates were incubated at 24 ◦C for 3 weeks and were scored for fungal growth. The
experiment was done in triplicate and repeated three times.
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2.4. Mycophagy Assay

A mycophagy assay was conducted to test whether C. fungivorans (Ter 331) and
K. radicincitans (DSM 16656) can feed on S. indica (DSM 11827). The assay was performed
as described by Ballhausen and colleagues [48]. Briefly, C. fungivorans and K. radicincitans
were grown overnight in 10% TSB at 24 ◦C. The bacterial suspension was prepared as
described in Section 2.2. A Petri dish containing phytagel medium (Phytagel 4 gL−1

and MgSO4 0.72 gL−1) (Sigma Aldrich, Munich, Germany) was inoculated with 100 µL
of bacterial suspension using a sterile spreader. Phytagel forms a semi-solid medium
which contains almost no nutrients [85]. A 10 mm fungal plug was excised from a two-
week-old S. indica colony and placed on an autoclaved aluminum disc in the center of
the Petri dish, to avoid the diffusion of nutrients from the fungal plug into the phytagel
(Figure S1). The plates were incubated at 24 ◦C for two weeks. Phytagel plates with
or without fungi/bacteria were used as controls. Hyphal morphology of S. indica was
observed in all treatments using a stereomicroscope (Leica SZX 10, Wetzlar, Germany) after
2 weeks of incubation including uninoculated fungus. The experiment was done using
four replicates and repeated three times. After incubation, the fungal plugs were removed
carefully, the bacteria were washed with 2 mL MES buffer (pH 5.5), and the optical density
(OD600 nm) of the bacterial suspension was measured and compared to the bacteria or
uninoculated fungus controls. Mycophagy was scored as ratio of ODtreatment/ODcontrols,
quantified by dividing the average OD600 of each treatment by the average OD600 of the
control (either bacteria or fungus only). The experiment consisted of four replicates. In
order to retrieve fungal biomass, phytagel medium was dissolved using citrate buffer
(8.3 mM trisodium citrate, 1.7 mM citric acid, and 1% Triton X100; pH 6.0) as described by
Cranenbrouch et al. [86]. The Petri dishes containing fungal hyphae were incubated with
5 mL of citrate buffer for 2 h at 50 ◦C, and the fungal biomass was collected and washed
with water to remove traces of phytagel. After drying at 40 ◦C for 24 h, fungal dry weight
was measured.

2.5. Extraction of Metabolites of S. indica

S. indica (DSM 11827) was grown in liquid CM for two weeks at 24 ◦C under gentle
shaking at 180 rpm. The fungal metabolites were extracted by adding Resin Amberlite
XAD4 (Sigma Aldrich, Munich, Germany) at 40 gL−1 of Hill-Käfer complete medium. In
order to recover the fungal metabolites from the resins, they were washed with 200 mL
of methanol three times. The recovered metabolites were concentrated (470 times) via
rotatory evaporator. The media without the fungus was extracted in the same way and
used as the control.

2.6. Growth of the Bacteria on Metabolites of S. indica

In order to evaluate the growth of K. radicincitans (DSM 16656) and C. fungivorans
(Ter 331) on S. indica (DSM 11827) metabolites recovered in Section 2.5, a growth assay
was conducted using 96-well plates (Greiner, Frickenhausen, Germany). For this purpose,
M9 minimal media was used as this medium contains only salts and nitrogen, and can
be supplemented with a carbon source and vitamins as needed [87]. The M9 medium
(Na2HPO4 6.76 gL−1, KH2PO4 3 gL−1, NaCl 0.5 gL−1, NH4Cl 1 gL−1, pH 6.8) was amended
with fungal metabolites (see Section 2.5) as the only source of carbon (2% metabolites v/v).
In the control treatment, M9 medium was amended with metabolites recovered from media
without S. indica (see Section 2.5) as the sole source of carbon (2% metabolites v/v). A
bacterial suspension of K. radicincitans and C. fungivorans was prepared as described in
Section 2.2 and the cell density was adjusted to 106 CFU per mL. The 96-well plate was
inoculated with 170 µL of M9 media amended with S. indica metabolites or metabolites
extracted from the CM without S. indica (see Section 2.5). Each well was inoculated with
10 µL of bacterial suspension. The plates were incubated at 24 ◦C at 120 rpm and growth
of K. radicincitans and C. fungivorans was measured as optical density (OD600 nm) every
24 h for 3 days using a plate reader (Tecan 1100, Männedorf, Switzerland).
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2.7. Co-Cultivation of Bacteria and Fungus (with or without Physical Contact)

S. indica (DSM 11827) was co-cultured either with C. fungivorans (Ter 331) or K. radicinci-
tans (DSM 16656) using a 6-well plate (Sarstedt, Nümbrecht, Germany). In order to obtain
a S. indica colony without agar, a cellophane membrane was used to culture the fungus as
described [88]. Briefly, cellophane membranes were boiled in EDTA (1 gL−1 of deionized
water) for 30 min, rinsed with water, and autoclaved at 120 ◦C for 15 min. Membranes
were put on top of solidified CM in a 90 mm Petri dish. Using a sterile surgical blade,
fungal mycelia were scraped from a two-week-old S. indica plate and placed on the cello-
phane membrane. The Petri dishes were incubated at 24 ◦C for 5 days to get a colony of
appropriate size (10 mm × 10 mm). Cellophane membranes containing fungal colonies
were washed in NaCl (0.08 M) solution with gentle shaking to release the fungal colonies
(Figure S2). A bacterial suspension of C. fungivorans and K. radicincitans was prepared as
described in Section 2.2. The cell density was adjusted to 106 CFU per mL. Each well in the
6-well plate was inoculated with 3 mL of phosphate buffered saline solution (PBS; NaCl
8 gL−1, KCL 0.2 gL−1, KH2PO4 0.24 gL−1, and Na2HPO4 1.44 gL−1; pH 7.4) and 50 µL of
bacterial suspension of C. fungivorans or K. radicincitans along with one fungal colony patch.
To physically separate the fungus and bacteria, well inserts with a pore size of 0.4 µm
(Sarstedt, Nümbrecht, Germany) were used (Figure S2). The bacteria were incubated in
PBS, with the following treatments: (1) bacteria alone; (2) bacteria in physical contact with
S. indica; (3) bacteria without physical contact with S. indica. The growth of the bacteria was
measured as the bacterial optical density (OD600 nm) every 24 h for 3 days. The experiment
was performed with six independent replicates and repeated twice.

2.8. Tripartite Interaction: K. radicincitans, S. indica and C. fungivorans on Solid Media

S. indica (DSM 11827) was cultivated on CM plates for 1 week. K. radicincitans
(DSM 16656) was cultured on 10% TSB plates and incubated at 24 ◦C for 48 h. One single
colony of K. radicincitans was carefully picked using a sterile loop and inoculated parallel
to the fungal colony at 20 mm distance. After 3 days of co-cultivation, when fungal hyphae
encountered K. radicincitans, a fungal plug of 10 mm was taken from the point of contact and
placed on nutrient-limiting water yeast agar (WYA) plates. The bacterial-fungal consortium
was allowed to grow on WYA plates for 1 week; during this time, K. radicincitans formed a
thick biofilm on the fungal hyphae, which was observed using a stereomicroscope (Leica
SZX 10, Wetzlar, Germany). C. fungivorans was grown as described in Section 2.2. The
cell density was adjusted to 106 CFU per mL. 10 µL of bacterial suspension was streaked
parallel to the fungal colony at 20 mm distance. The plates were incubated at 24 ◦C for
10 days after which a photographic record of the bioassay was registered using a Nikon
D750digital SLR camera (Nikon Inc., Sendai, Japan) using identical camera settings and
light conditions. The growth of the fungus was measured as the surface of the Petri dish
covered by the fungal mycelia using ImageJ 1.48 software (https://imagej.nih.gov/ij/,
accessed on 22 June 2021). The experiment consisted of nine replicates.

2.9. Study of Tripartite Interaction: K. radicincitans, S. indica, and C. fungivorans in Liquid Media

In order to evaluate the protective effect of K. radicincitans on the growth of S. in-
dica in the presence of the fungus-feeding bacterium C. fungivorans, an in vitro assay
was conducted using 6-well plates. The experiment consisted of the following treat-
ments: (i) S. indica co-cultivated with both K. radicincitans and C. fungivorans; (ii) S. indica
co-cultivated with K. radicincitans; (iii) S. indica co-cultivated with C. fungivorans; and
(iv) uninoculated S. indica. Briefly, fungal colonies of approximately 10 mm × 10 mm
were cultivated as explained in Section 2.7. Bacterial suspensions of K. radicincitans and
C. fungivorans were prepared as described in Section 2.2. The final cell density was adjusted
to 106 CFU per mL. In the case of treatment (i) (see above), each well was inoculated
with one fungal colony and 100 µL of K. radicincitans. Thereafter, the 6-well plates were
incubated at 24 ◦C for 3 h with no shaking (to allow the formation of biofilm). After 3 h, the
6-well plates were inoculated with 100 µL of C. fungivorans and the plates were incubated

https://imagej.nih.gov/ij/
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at 24 ◦C, with gentle shaking at 80 rpm to aerate the system. In the case of treatments
(ii) and (iii) (see above), each well was inoculated with one fungal colony and 100 µL of
K. radicincitans or C. fungivorans. In the case of treatment (iv) (see above), each well was
inoculated with a single colony of S. indica and 100 µL of sterile saline solution (0.05 M). The
plates were incubated at 24 ◦C, with gentle shaking at 80 rpm. Each treatment consisted of
six biological replicates and three technical replicates. Samples were taken after 2 h and
72 h for DNA extraction.

2.10. DNA Extraction and Quantitative PCR (qPCR)

Total DNA was extracted from fungal colonies using the Qiagen DNeasy plant mini kit
(Qiagen GmbH, Hilden, Germany) as described in the manufacturer’s instructions. DNA
quality and quantity were spectro-photometrically confirmed using NanoDrop (Thermo
Fischer Scientific, Darmstadt, Germany). The qPCR assays were run using the CFX96
Touch™ Real-Time PCR Detection System (BioRad, München, Germany). For absolute
quantification of the three microorganisms, a standard curve was generated using serial
dilutions of genomic DNA isolated from S. indica, K. radicincitans, and C. fungivorans,
respectively. To establish the relationship between Cq-values and the concentration of
target fungal or bacterial DNA (ng/µL), a calibration curve was established for each primer
combination using a dilution series of the corresponding DNA as a template.

Standard curves were generated by plotting threshold cycles (Cq) versus genome
equivalents of the microorganism, as described by Whelan et al. [89]. Cq values in each
dilution (dilution factor 10) were measured in triplicate using real-time qPCR to generate
the standard curves for S. indica, K. radicincitans, and C. fungivorans, respectively. The
Cq values were plotted against the logarithm of their initial template copy numbers. Each
standard curve was generated by a linear regression of the plotted points (Figure S3).
From the slope of each standard curve, PCR amplification efficiency (E) was calculated as
described by Rasmussen et al. [90].

S. indica was quantified using a SYBR green I-based method using primers targeted to
Pitef1 [91] (Table S1). The SsoAdvanced universal SYBR green super mix (Biorad, Munich,
Germany) was used at a final concentration of 1× for the PCR. Primers Tef-f and Tef-r were
added to a final concentration of 400 nM along with 1 µL of DNA template. The volume of
the reaction mixture was adjusted to 20 µL using nuclease-free water. Amplifications were
performed using the following conditions: 5 min at 95 ◦C, followed by 40 cycles of 30 s at
95 ◦C and 30 s at 59 ◦C.

C. fungivorans was quantified using a TaqMan-based method using the primer pair Ed-
dyFor and Eddyrev along with Collimonas-specific probe Sophie (Table S1) as described [45].
SensiFAST Probe lo-ROX Mix (Bioline, Luckenwalde, Germany) was used at a final concen-
tration of 1× for PCR. Primers Eddy3for and Eddy3rev were added to a final concentration
of 400 nM along with TaqMan probe Sophie (100 nM) and 1 µL of DNA template. The
volume of the reaction mixture was adjusted to 20 µL using nuclease-free water. Amplifica-
tions were performed using the following conditions: 5 min at 95 ◦C, followed by 45 cycles
of 10 s at 95 ◦C and 45 s at 60 ◦C.

Lastly, K. radicincitans was quantified using a TaqMan assay with the primer pair
519f and E.radr along with the E.rad TaqMan probe specific to Kosakonia (Table S1) as
described by Ruppel et al. [92]. Briefly, SensiFAST Probe lo-ROX Mix (Bioline) was used
at a final concentration of 1× for PCR. Primers 519f and E.radr were added to a final
concentration of 400 nM along with the E.rad TaqMan probe (100 nM) and 1 µL of DNA
template. The volume of the reaction mixture was adjusted to 20 µL using nuclease-free
water. Amplifications were performed using the following conditions: 5 min at 95 ◦C,
followed by 45 cycles of 10 s at 95 ◦C and 30 s at 60 ◦C.

2.11. Confocal Laser Scanning Microscopy (CLSM) Analysis

The colonization of S. indica hyphae by K. radicincitans and C. fungivorans was observed
using a laser confocal microscope 510 META (Carl Zeiss Jena GmbH, Jena, Germany) and a
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Zeiss Plan-Apochromat 63×/1.4 oil objective or 25× or 40× objectives. GFP-expressing
strains of K. radicincitans and S. indica were used to visualize the interaction, whereas the
mCherry strain of C. fungivorans was used to visualize its interaction with S. indica. The
RFP and GFP-expressing strains were produced by the plasmid insertion method [74,92,93].
K. radicincitans and S. indica eGFP fluorescence signals were captured using argon laser
excitation at 488 nm (BP 505–50), whereas C. fungivorans RFP fluorescence signals were
captured using argon laser excitation at 543 nm (BP 530-600).

To check the viability of S. indica, when the fungus was co-cultured with either
C. fungivorans or K. radicincitans, the Live/dead® BaclightTM bacterial viability kit (Thermo
Fisher Scientific) was used. Briefly, mycelia were incubated with a mixture containing
equal volumes of Syto9 (3.34 mM) and propidium iodide (PI) (20 mM) for 20 min prior
to the analysis. PI emits red fluorescence when bound to nucleic acids and impaired cell
membranes. Therefore, PI is excluded from viable cells and can only penetrate cells when
their membrane is compromised, thus it can be used to identify dead cells [93]. The images
were analyzed using ZEN (blue edition) software (Carl Zeiss Jena GmbH, Germany).

2.12. Data Analysis

Statistical analysis was performed using STATISTICA version 13 software (TIBCO
Statistica® 13.3.0). Experiments in Sections 2.1–2.8 were analyzed by ANOVA, followed by
a Tukey’s range test or Tukey’s test of additivity with a cut-off significance at p ≤ 0.05.

3. Results
3.1. Fungal Growth Inhibition Assays

The in vitro assay performed to check fungal growth inhibition by the two bacteria
revealed that both C. fungivorans and K. radicincitans did not inhibit the growth of S. indica
under the tested experimental conditions (Figure S4).

3.2. Mycophagy Assay

The results of the mycophagy assays indicate that both K. radicincitans and C. fun-
givorans could utilize the fungus as a source of carbon (Figure 1a). However, there was
a significant difference in the growth of the two bacteria when confronted with S. indica.
The growth of K. radicincitans increased by only 2-fold when confronted with S. indica as
the only source of nutrients. Whereas, the growth of C. fungivorans increased by 8-fold
(Figure 1a) indicating it could benefit more from S. indica than K. radicincitans. Interestingly,
the biomass of S. indica was reduced by 2.5-fold when confronted with C. fungivorans
(Figure 1b). Whereas in the case of K. radicincitans the fungal biomass was reduced by
only 1.6-fold (Figure 1b). Therefore, though both bacteria could benefit from the fungus,
they did so in different quantities. When the hyphae of S. indica were visualized micro-
scopically (Figure 2a), no structural damage to the fungal hyphae was detected when it
was confronted with K. radicincitans (Figure 2b). However, in the case of C. fungivorans the
increased bacterial growth was coupled with broken fungal hyphae (Figure 2c). Therefore,
we hypothesized that the two bacteria use different strategies to benefit from S. indica.
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Figure 1. Results of mycophagy assays. (a) Growth of Collimonas fungivorans and Kosakonia radicincitans when co-cultivated
with Serendipita indica as the sole source of carbon. (b) Fungal biomass of S. indica when co-cultivated with either
C. fungivorans or K. radicincitans, or the uninoculated fungus (control). Different letters above bars represent significant
differences (p < 0.05) according to one-way ANOVA followed by a Tukey’s range test. Error bars indicate the standard
deviation of means of four different replicates.

Microorganisms 2021, 9, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 1. Results of mycophagy assays. (a) Growth of Collimonas fungivorans and Kosakonia 
radicincitans when co-cultivated with Serendipita indica as the sole source of carbon. (b) Fungal bio-
mass of S. indica when co-cultivated with either C. fungivorans or K. radicincitans, or the uninoculated 
fungus (control). Different letters above bars represent significant differences (p < 0.05) according to 
one-way ANOVA followed by a Tukey’s range test. Error bars indicate the standard deviation of 
means of four different replicates. 

 
Figure 2. (a) Morphology of the uninoculated S. indica hyphae (control). (b) Fungal morphology in 
the presence of K. radicincitans. (c) Fungal morphology in the presence of C. fungivorans. 

3.3. Growth of the Bacteria on Fungal Metabolites 
In order to test the hypothesis of different feeding strategies by C. fungivorans and K. 

radicincitans, we evaluated the growth of both bacteria in minimal (M9) medium supple-
mented with S. indica metabolites as the only source of carbon. The control treatment con-
sisted of metabolites extracted from the media without fungus. During 48 to 72 h of culti-
vation, both bacteria showed a significant increase in biomass in the media amended with 

Figure 2. (a) Morphology of the uninoculated S. indica hyphae (control). (b) Fungal morphology in the presence of
K. radicincitans. (c) Fungal morphology in the presence of C. fungivorans.



Microorganisms 2021, 9, 1566 9 of 22

3.3. Growth of the Bacteria on Fungal Metabolites

In order to test the hypothesis of different feeding strategies by C. fungivorans and
K. radicincitans, we evaluated the growth of both bacteria in minimal (M9) medium sup-
plemented with S. indica metabolites as the only source of carbon. The control treatment
consisted of metabolites extracted from the media without fungus. During 48 to 72 h of cul-
tivation, both bacteria showed a significant increase in biomass in the media amended with
fungal metabolites compared to the control treatment (Figure 3a,b). However, the growth
of K. radicincitans increased by 2-fold, whereas the growth of C. fungivorans increased by
only 1.3-fold. This suggests that while both bacteria could utilize the fungal metabolites for
their growth, K. radicincitans was more efficient in feeding on fungal metabolites compared
to C. fungivorans (Figure 3a).
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Figure 3. Growth of (a) K. radicincitans and (b) C. fungivorans when cultivated in M9 medium amended with metabolites
extracted from complete medium (CM) inoculated with S. indica after two weeks of incubation. White bars represent the
growth of K. radicincitans and C. fungivorans in the control treatments amended with metabolites extracted from CM medium
without S. indica. OD600 nm was measured in all the treatments after 24 h, 48 h, and 72 h. Different letters above bars
represent significant differences (p < 0.05) according to two-way ANOVA using treatment (S. indica metabolites or CM
without fungus) and time (2 h and 72 h) as factors; followed by a Tukey’s additive test. Error bars indicate the standard
deviation of means of twelve different replicates.



Microorganisms 2021, 9, 1566 10 of 22

3.4. Co-Cultivation of Bacteria and Fungus (with or without Physical Contact)

In order to further confirm the different feeding strategies used by the two bacteria,
we evaluated the role of physical attachment between the two microorganisms. We hypoth-
esized that since C. fungivorans can benefit from the fungus via hyphal feeding, physical
attachment to the fungus would be crucial for it to benefit from S. indica. In the case of
K. radicincitans, physical attachment could facilitate bacterial access to fungal metabolites
but the bacteria could also benefit from the fungus without any physical attachment.

S. indica was co-cultivated with either K. radicincitans or C. fungivorans in 6-well
plates. When S. indica was physically separated from the bacteria, no indication for the
growth of C. fungivorans was observed when it was co-cultivated with the fungus or alone
(Figure 4a), confirming that in order to benefit from S. indica, physical attachment to the
fungus is a prerequisite for C. fungivorans. In the case of K. radicincitans, the bacterial growth
increased by 6.6-fold even when it was physically separated from S. indica compared to
the bacteria-only treatment (Figure 4a). Therefore, physical attachment to S. indica is not
crucial for K. radicincitans. When present in physical contact with the fungus, the growth of
C. fungivorans increased by 22.5-fold compared to the bacteria without S. indica (Figure 4b).
Interestingly, the growth of K. radicincitans increased by 29-fold compared to the treatment
without fungus (Figure 4b).
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Figure 4. (a) Growth of C. fungivorans and K. radicincitans when co-cultivated without physical contact with S. indica.
(b) Growth of C. fungivorans and K. radicincitans when co-cultivated with physical contact with S. indica. Different letters
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3.5. Tripartite Interaction: K. radicincitans, S. indica, and C. fungivorans

In order to test the hypothesis that K. radicincitans can protect S. indica against the
fungus-feeding bacterium C. fungivorans, we performed an in vitro co-cultivation assay.
First, when S. indica was cultivated with K. radicincitans, the bacteria formed a close physical
association with the fungus, leading to the formation of a thick biofilm, which colonized the
fungal hyphae (Figure 5a). Afterwards, when this pre-assembled S. indica–K. radicincitans
biofilm was confronted with C. fungivorans, the fungus covered a significantly larger area on
the Petri dish compared to the control, which consisted of S. indica without K. radicincitans
(Figure 5c,d). In the control treatment, S. indica did not show any growth beyond the zone
of confrontation with C. fungivorans (Figure 5d, red arrow). Additional images are available
in the supplementary file (Figures S5 and S6).
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Figure 5. (a) K. radicincitans forming a biofilm-like structure on the hyphae of S. indica. (b) The area covered by uninocu-
lated S. indica and S. indica–K. radicincitans consortia when confronted with the fungus-feeding bacterium C. fungivorans.
(c) A Petri dish showing the growth of S. indica–K. radicincitans consortia (red arrow) when confronted with C. fungivorans.
(d) Growth of uninoculated S. indica (red arrow) when confronted with C. fungivorans. Different letters above bars represent
significant differences (p < 0.05) according to one-way ANOVA followed by a Tukey’s range test. Error bars indicate the
standard deviation of means of six different replicates.

3.6. Quantification of Bacterial and Fungal Copy Numbers via qPCR

The tripartite interaction between S. indica, K. radicincitans, and C. fungivorans was
studied in vitro using a 6-well plate system comprising of buffered liquid medium. The
fungal single gene copy number was estimated using qPCR. Two hours post inoculation,
the fungal single gene copy number did not show any change when the fungus was co-
cultivated with K. radicincitans or C. fungivorans or both compared to the uninoculated
fungus control. However, a significant decrease in the S. indica single gene copy number
was observed 72 h post inoculation when it was co-cultured with C. fungivorans and
when S. indica was co-cultured with a combination of C. fungivorans and K. radicincitans,
compared to the uninoculated fungus control (Figure 6a). In the same experiment, the
single gene copy numbers of the two bacteria were also quantified in the presence of
S. indica. Interestingly, the presence of S. indica significantly increased the single gene copy
number of K. radicincitans 2 h post inoculation compared to C. fungivorans. A similar trend
was seen after 72 h, indicating that S. indica supported the growth of K. radicincitans more
than the growth of C. fungivorans (Figure 6b). We also quantified each bacterium when all
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three microorganisms were present in the system. Interestingly, after 2 h the single gene
copy number of K. radicincitans was significantly higher than C. fungivorans when both
bacteria were present in the system. However, this trend disappeared after 72 h probably
due to intense competition for nutrients.
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3.7. Confocal Laser Scanning Microscopy (CLSM) Analysis

Live/dead staining:
Live/dead staining revealed structural damage to the hyphae of S. indica when it was

confronted with C. fungivorans, which was evident by enhanced red fluorescence (Figure 7c).
In the case of K. radicincitans, few hyphae of S. indica were found with a damaged cell wall
(Figure 7d) compared to the control treatment (Figure 7a). Heat-killed hyphae were used
as positive controls and showed increased red fluorescence due to PI staining (Figure 7b).
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Figure 7. Imaging of microcolonies of S. indica co-cultured with K. radicincitans or C. fungivorans for 72 h at 24 ◦C. The
samples were dual-stained with propidium iodide (red) and Syto9 (green) and observed under confocal microscope
at 65× magnification. (a) S. indica hyphae without bacteria (control). (b) Heat-killed hyphae of S. indica without bac-
teria (control). (c) S. indica hyphae when co-cultured with C. fungivorans. (d) S. indica hyphae when co-cultured with
K. radicincitans.

Interaction of S. indica with C. fungivorans and K. radicincitans
When S. indica was cultured without any bacteria, no damage to fungal hyphae could

be observed (Figure 8a). When S. indica was co-cultured with the RFP-expressing strain of
C. fungivorans, bacterial aggregates were found attached to the hyphal tips of the fungus
4 h post inoculation (Figure 8b). Lysis of hyphal tips was evident after 24 h (Figure 8c)
and 48–72 h post inoculation, broken hyphae of S. indica were observed (Figure 8d,e).
When S. indica was co-cultivated with the GFP-expressing strain of K. radicincitans, the
bacteria colonized the fungal hyphae leading to formation of bacterial aggregates during
the 72 h period of incubation and no lysis of fungal hyphae was detected microscopically
(Figure S7).
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4. Discussion

In the present study, we provide evidence indicating that the hyphae-colonizing
bacterium Kosakonia radicincitans can confer protection to the beneficial root-endophytic
fungus Serendipita indica against the fungus-feeding bacterium Collimonas fungivorans when
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co-cultured on solid agar medium. The basis of this protective effect seems to be based on
the principle of reciprocity, whereby the bacteria utilize the fungal metabolites for growth
and in exchange provide protection to the fungus against C. fungivorans by forming a thick
biofilm. K. radicincitans harbors an arsenal of genes encoding for biofilm formation and
has been reported to establish biofilms on plant roots for successful colonization [63,94].
We present here evidence of biofilm formation by this bacterium on the hyphae of the
plant-beneficial fungus S. indica for the first time. However, when the three microbes
were co-cultivated in liquid medium using the 6-well plate system, this protective effect
diminished. The probable reason for this could be the extreme nutrient-limiting conditions
of the buffered system. Furthermore, it is possible that K. radicincitans biofilms were not
properly established due to the short duration of this experiment. There has been previous
work on the protective effect of bacterial biofilm formation against antifungal compounds
such as cycloheximide [95]. In this study we go several steps further, and provide evidence
that S. indica can grow while it is being protected from mycophagous bacterial feeding by
a K. radicincitans biofilm along its hyphae. This is a particularly interesting finding and
requires further investigation as it indicates a mutually beneficial interaction between two
economically important plant growth-promoting microorganisms.

Interestingly, in our experiments the interaction of S. indica with K. radicincitans and
C. fungivorans revealed that the two bacteria use different feeding strategies to benefit from
the fungus, namely, metabolite feeding and hyphal feeding (Figure 9). C. fungivorans could
only grow when it was physically associated with the hyphae of S. indica, thereby indicating
that physical attachment to the fungus is probably a prerequisite for C. fungivorans to benefit
from it. This close proximity to S. indica might be important for C. fungivorans as it can
trigger the production of specific metabolites [33,96,97], as was reported in the case of
Aspergillus nidulans and its hyphae-adhering bacterium Streptomyces hygroscopicus [98]. In
addition to this, close association to the fungal hyphae can also lead to easy and increased
access to fungus-derived nutrients, probably by breaking the fungal hyphae to access the
cytoplasmic contents [47,96,97]. However, this close physical association had a detrimental
effect on the fungus, as was revealed during our microscopy analysis, which showed
that C. fungivorans could colonize the hyphal tips of S. indica, leading to the formation
of bacterial aggregates which eventually led to the breakage of fungal hyphae. This is
in line with the previously reported mycophagous lifestyle of C. fungivorans [41,84]. In a
study by Höppener and colleagues [50], inoculation of a soil microcosm containing field
soil with fungus belonging to Absidia sp. led to a significant increase in the population of
indigenous collimonads, however no reduction in the fungal biomass was reported. In
addition to this, in the same experiment, no increase in the population of common fungal
hyphae-associated bacteria such as Pseudomonas and Burkholderia, which are known to feed
on fungal metabolites, was detected [38,53,99,100]. This observation further supports the
“hyphal feeding” strategy of collimonads. In contrast to this study, our results indicate a
significant reduction in the biomass of S. indica when it was co-cultivated with C. fungivorans
under in vitro conditions. This could be due to the differences in sensitivity of the two
fungi towards collimonads or the feeding preference of the bacteria [41,45].
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terial biofilms can confer protection to the inhabiting bacteria against grazing by soil pro-
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Figure 9. A conceptual model of hyphal protection and bacterial feeding strategies employed by K. radicincitans and
C. fungivorans. Photosynthetically fixed carbon enters the rhizosphere via roots and fungal hyphae. Metabolite feeding:
K. radicincitans colonizes the fungal hyphae and forms a thick biofilm while feeding on fungal metabolites. The biofilm
confers protection to the fungal hyphae against C. fungivorans on solid agar medium (A1–A3). Hyphal feeding: the
fungus-feeding bacterium, C. fungivorans, colonizes and feeds on the fungal hyphae via mycophagy (B1–B2).

Contrary to C. fungivorans, physical attachment to the fungus was not necessary for
K. radicincitans to benefit from S. indica but it improved the growth of bacteria probably
due to the higher diffusion of nutrients. Our microscopy analysis revealed that K. radicinci-
tans colonized the hyphae of S. indica, forming stable biofilms, but no damage to the
fungal hyphae could be detected in the tested experimental conditions. This indicates that
K. radicincitans could benefit from S. indica by feeding on the fungal metabolites and, unlike
C. fungivorans, did not cause lysis of the fungal hyphae. The role of K. radicincitans as a
plant growth-promoting rhizobacterium has been extensively studied [59,60,101,102], but
the interaction of this bacterium with common soil fungi has been poorly elucidated [63].
Biofilm formation by K. radicincitans on the hyphae of S. indica can have several advantages
for the bacteria. First, the attachment to fungal hyphae as a substratum can lead to better
access to fungal exudates and limit the competition for space and nutrients with other soil
bacteria [103]. Second, K. radicincitans could use the water film along the fungal hyphae
to migrate in the soil to nutrient-rich niches [30,104–106]. In addition to this, bacterial
biofilms can confer protection to the inhabiting bacteria against grazing by soil protozoans
compared to their planktonic state [107,108]. An interesting observation among fungus-
colonizing bacteria is the essential role of motility in the colonization and movement along
the fungal hyphae via swimming/gliding in the associated water film [104–106]. In the
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case of K. radicincitans, it has been reported to be a highly mobile and competitive rhizo-
spheric bacterium and this is probably due to the genomic adaptation of the bacterium,
as K. radicincitans harbors genes of T3SS clustered together with chemotaxis genes and
all other genes required for flagella biosynthesis, suggesting that this strain uses “T3SS”
genes for motility purposes [63]. Therefore, it is important to investigate the growth of
K. radicincitans along the fungal hyphae of different taxonomical groups of fungi and artifi-
cial glass fibers or nylon threads as a proxy for fungal hyphae to evaluate if the colonization
of fungal hyphae is a rather general phenomenon for K. radicincitans or was it regulated by
the phenomenon of reciprocity in the case of S. indica.

“Cooperation” between fungi and bacteria with reciprocal benefits has been described
extensively for mycorrhizal fungi [20,38,104,109,110]. In addition to protective services,
such “mycorrhiza helper bacteria” can also support the fungal partner by providing nutri-
ents that are otherwise inaccessible to the fungus. Zhang and colleagues [20] showed that a
phosphate-solubilizing bacterium, Rahnella aquatilis (strain HX2), colonized the hyphae of
the arbuscular mycorrhizal (AM) fungus, Rhizoglomus irregulare, and provided phospho-
rous to the fungus from an organic P source that is otherwise inaccessible to the fungus in
exchange for fungal-derived carbon. Later on, Jiang et al. [104] concluded that R. aquatilis
(strain HX2) formed a biofilm on the AM fungal hyphae which aided in the swimming of
the bacteria in a water film along the fungal hyphae while feeding on the fungal exudates
and directing the fungus towards the phytate, thereby confirming the theory of cooperation
via reciprocity. On similar lines, the interaction between S. indica and the nitrogen-fixing
bacterium, Azotobactor chroococcum, revealed a close physical association between the two
microbes, which enhanced the carbon pool in the mycelium and triggered nitrogen in-
flux [72]. S. indica lacks nitrate transporters, nitrate, and nitrite reductases, but can readily
take up ammonia [111]. It is therefore possible that, in addition to protection, K. radicinci-
tans, which is able to fix atmospheric nitrogen even under additional nitrogen sources [58],
could probably also provide nitrogen to S. indica in exchange for fungal-derived carbon.
Therefore, it is important to further test the reciprocal benefits of the K. radicincitans–S. indica
interaction. One approach could be to trace nutrient exchange between the microorganisms
by applying a dual isotope labeling technique, using 15N-labeled KNO3 and 13C labelled
glucose in the in vitro co-culturing system developed in this study [112]. In addition to this,
the expression of two high-affinity ammonium transporters of S. indica, namely PiAMT1
and PiAMT2, which are predicted to be involved in the transport of ammonium, can also be
monitored during co-cultivation with K. radicincitans to elucidate the molecular mechanism
of this interaction [113].

S. indica and K. radicincitans are important bioinoculants for which commercial prod-
ucts are already available. From an application point of view, the biggest challenge for
microbial inoculants to enhance crop productivity and yield in low-input agricultural
systems are rhizosphere establishment, plant colonization, successful competition with
native microorganisms, and maintenance of viability in the field [113]. It is often observed
that beneficial activity shown by the microbes in laboratory assays does not translate to
effective outcomes in the field. This has been attributed to effects of abiotic as well as
biotic factors [114,115]. Additionally, antagonism by other microorganisms can have a
negative effect on the viability and efficacy of microbial inoculants [115,116]. Bacterial-
fungal biofilmed biofertilizers (BFBBs) are being extensively tested to enhance the efficacy
of microbial inoculants under field conditions [117,118]. The biofilms can provide structure
and stability to the partners, thereby enhancing the functionality of the beneficial mi-
crobes [119,120]. The use of biofilmed inocula has been shown to protect the bio-inoculant
against predators such as earthworms [121]. However, the ubiquitous presence of my-
cophagous bacteria, belonging to diverse bacterial taxa, might lead to survival pressure
on the beneficial microbes. Therefore, it would be important to test the survival of fungal
inoculants with biofilms of different bacteria against potential mycophagous bacteria to
improve the efficacy of bioinoculants in the field. The first step towards achieving this goal
could be to conduct greenhouse experiments with controlled environmental conditions



Microorganisms 2021, 9, 1566 17 of 22

to monitor this protective effect under soil conditions. Therefore, more experiments are
needed to confirm the outcome of this bacteria–fungal–bacteria tripartite interaction in
planta—especially from the point of view of application.

5. Conclusions

In summary, our findings demonstrate that biofilm formation by K. radicincitans pro-
tected the hyphae of plant-beneficial fungus S. indica against the mycophagous bacterium
C. fungivorans on solid agar medium. However, the tripartite interaction between S. indica,
C. fungivorans, and K. radicincitans has a distinct cost-benefit relation for all three partners.
The two bacteria differed in their mechanism to benefit from the fungus. In the case of K.
radicincitans, the bacteria could actively feed on fungal metabolites, leading to increased
bacterial biomass, with or without any physical contact with the fungus. However, in the
case of C. fungivorans, physical attachment to the fungal hyphae was crucial for the bacteria
to benefit from the fungal partner. The increase in bacterial biomass was directly related
to the reduced fungal biomass, providing evidence for the mycophagous lifestyle of such
bacteria as previously reported. Our study also demonstrates an innovative approach to
the study of complex tripartite interaction using different in vitro systems, which might
pave the way for further screening of beneficial bacterial-fungal interactions. In future
studies, it will be crucial to estimate the loss of beneficial fungi due to the feeding of
mycophagous bacteria. Since biofilm formation on fungal hyphae seems to be a more
common phenomenon than previously reported, it is imperative to evaluate the protective
effect of such bacterial-fungal biofilms against bacterial predators [21,100]. Screening of
“potential protective” bacteria can aid in developing more efficient BFBBs. Such biofilmed
inocula might enhance the survival and efficacy of bio-inoculants in field conditions. More
studies are required to evaluate the endurance of such biofilmed consortia of bacteria and
fungi against bacterial predators in soil systems during greenhouse and field trials.
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phane membrane or (d,e) co-culturing of fungus with Collimonas fungivorans or Kosakonia radicincitans
using 6-well plates with or without cell culture inserts; Figure S3: qPCR-generated standard curves of
(a) Kosakonia radicincitans and (b) Collimonas fungivorans for absolute quantification by TaqMan assay
using Kosakonia and Collimonas specific dual-labelled probes. (c) Standard curve of Serendipita
indica, which was quantified by SYBR green I assay; Figure S4: Area of Serendipita indica colonies
(cm2) after three weeks of growth. S. indica was confronted with either Kosakonia radicincitans or
Collimonas fungivorans on water yeast agar plates; Figure S5: Petri dishes showing the area covered by
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(a2–i2) Images analyzed by ImageJ software, used to measure the area covered by S. indica on the
Petri dishes; Figure S7: Imaging of microcolonies of Serendipita indica co-cultured with Kosakonia
radicincitans for 72 h at 24 ◦C. Table S1: List of primers and probe sequences used in this study.
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