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Simple Summary: The poult enteritis and mortality syndrome (PEMS) causes severe economic
losses in turkeys. Several agents were described to be associated with the PEMS; however, a specific
etiological agent(s) has not been identified. The diagnosis of PEMS is still a huge challenge for
several reasons: (1) no specific clinical signs or pathognomonic lesions, (2) isolation of some enteric
viruses still difficult, (3) the pathogenicity of several enteric viruses in turkeys is not fully understood,
(4) PEMS is an interaction between several known and might be unknown agents and (5) opportunistic
microorganisms also have a role in the pathogenesis of PEMS. Both electron microscopy and molecular
techniques can be used for diagnosis of PEMS and might help to discover unknown causes. Until now,
no specific vaccines against enteric viruses associated with PEMS. However, biosecurity, maintaining
a healthy gut and strengthening the immune system of turkey poults using probiotics, prebiotics
and/or phytogenic substances are crucial factors to prevent and/or reduce losses of PEMS in turkeys.
This review is a call for scientists to perform further research to investigate the real cause(s) of PEMS
and to develop a preventive strategy against it.

Abstract: Poult enteritis and mortality syndrome (PEMS) is one of the most significant problem
affecting turkeys and continues to cause severe economic losses worldwide. Although the specific
causes of PEMS remains unknown, this syndrome might involve an interaction between several
causative agents such as enteropathogenic viruses (coronaviruses, rotavirus, astroviruses and aden-
oviruses) and bacteria and protozoa. Non-infectious causes such as feed and management are also
interconnected factors. However, it is difficult to determine the specific cause of enteric disorders
under field conditions. Additionally, similarities of clinical signs and lesions hamper the accurate
diagnosis. The purpose of the present review is to discuss in detail the main viral possible causative
agents of PEMS and challenges in diagnosis and control.

Keywords: turkeys; PEMS; astroviruses; coronaviruses; rotaviruses; probiotics; prebiotics; phyto-
genic substances

1. Introduction

Several challenges such as intense global competition between producing countries,
permanent changes in social, political and consumer perceptions regarding food safety, ani-
mal welfare and environmental protection are influencing turkey production and health [1].
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A healthy gastrointestinal tract (GIT) is the key toward successful poultry production. The
fundamental role of turkey production is processing of feedstuffs into meat. The GIT is
the most extensive surface in the body that is constantly exposed to various infections.
Mechanical, chemical or biological disturbance of the digestive system usually negatively
impacts this process, which is subsequently accompanied by high economic losses, serious
problems are predominant in young birds [2]. In poultry, several viral infections either
as monocausal, multicausal or viral infections accompanied by non-infectious factors are
indeed causing high economic losses worldwide. These economic losses are due to high
mortality rates and reduction of animal performance as a result of decreased weight gain,
decreased egg production, decreased hatchability, increased medication costs and impaired
feed conversion rates [3].

The poult enteritis complex (PEC) is common in turkeys and characterized by depres-
sion, enteritis, diarrhea, low feed conversion ratio and poor weight gain. It is a general
term denoting all infectious intestinal diseases of young poults with uncertain etiology [4].
The PEC is caused by a group of multifactorial infectious and non-infectious agents with
significant effect on turkeys less than six weeks old [5]. Several syndromes were reported
as a part of PEC such as the poult enteritis and mortality syndrome (PEMS), maldigestion
syndrome, runting stunting syndrome (RSS), poult malabsorption syndrome, spiking mor-
tality of turkeys (SMT), poult enteritis syndrome (PES) in young turkeys between 1 day
and 7 weeks and light turkey syndrome (LTS), a problem of lower body weight at market
age turkeys [6,7]. In cases in which morbidity and mortality are high, the disease was
classified as PEMS, which is an economically devastating condition [8].

Several causative agents are implicated as the main causes of PEMS such as en-
teroviruses (turkey corona virus (TCoV), turkey astroviruses (TAstV), reoviruses and
adenoviruses)), and also bacteria such as E. coli, Salmonella, Campylobacter, Clostridia,
Cryptosporidium and Cochlosoma [5,6,9–15]. The severity of the disease depends on the
virulence of enteric viruses, coinfections, other interacting factors such as the age and
immune status of the affected birds [16] and management, nutrition and hygienic measures
(Table 1). Therefore, the true role of viruses in naturally occurring PEMS is difficult to
assess as sole etiologies [17]. In this review, we will discuss the possible causes, diagnosis,
and preventive measures of PEMS as a major challenge facing turkey production.

Table 1. Possible causes of enteric disorders in turkeys.

Infectious

Viral

Newcastle disease virus (Paramyxoviridae)
Avian influenza A (Orthomyxoviridae)

Infectious bursal disease virus (Birnaviridae)
Hemorrhagic enteritis virus (Adenoviridae)

Coronavirus enteritis (Coronaviridae)
Rotavirus (Reoviridae)

Reovirus (Orthoreoviridae)
Astrovirus (Astroviridiae)

Enterovirus (Picornaviridae)
Parvovirus (Parvoviridae)

Bacterial

Salmonella spp.
E. coli

Clostridia spp.
Chlamydia spp.

Mycotic Candida

Parasitic Ascaridia
Coccidia

Non-infectious
Nutritional Feed structure, palatability, energy content and

pellet quality

Management Temperature, stocking density, available feed space,
available water space, distribution of feeders and air quality
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2. Causes of PEMS
2.1. Turkey Coronavirus

TCoV is known for about 70 years; it was first isolated in 1951 in the USA by Peterson
and Hymas [18]. Later on, the virus was reported in several countries worldwide including
Australia, Brazil, Italy, UK, France and Poland [19–24]. In Europe, TCoV was isolated for
the first time in 2008 from turkey poults suffering from enteritis [21]. TCoV infections
remain a leading cause of massive economic losses in young turkeys in many countries [25].
The virus belongs to the family Coronaviridae, which is classified into two subfamilies,
namely, Letovirinae and Orthocoronavirinae. While the subfamily Letovirinae includes
the genus Alphaletovirus, the subfamily Orthocoronaviridae contains four genera based on
the phylogenetic analysis and genome structure: Alphacoronavirus (αCoV), Betacoronavirus
(βCoV), Gammacoronavirus (γCoV) and Deltacoronavirus (δCoV), [26]. Both γCoV and δCoV
infect birds, but some can also infect mammals [27,28]. The γCoV contains three subgenera,
namely, Igacovirus and Brangacovirus, both identified in birds, and Cegacovirus, reported in
mammals (beluga whale, SW1 virus) [26]. TCoV belongs to the genus γCoV and subgenus
Igacovirus, which contains other avian coronaviruses (ACoVs) such as infectious bronchitis
virus (IBV) and guinea fowl coronavirus (GfCoV). The virus is enveloped, containing
single-stranded, positive-sense, non-segmented RNA of 28-kb [29,30].

Like other ACoVs, the genome of ACoV consists of 15 non-structural proteins, en-
coded by open reading frame (ORF) 1a/b at the 5’-end, and four structural proteins (spike
(S), envelope (E), membrane (M) and nucleocapsid (N), encoded by other ORF at the
3’-end [21,31–33]. Generally, ACoVs have similar phylogenetic relationships and genomic
structures and close nucleotide identities. The IBV, TCoV and GfCoV exhibited nucleotide
identities of 90% for the replicase, E, M and N genes [28,29,34]. However, the S gene of
ACoVs shares at most 36% identity [31,35]. Three distinct genetic groups of TCoV isolates
in USA were identified, namely, in North Carolina isolates formed group I, Texas isolates
formed group II, and Minnesota isolates formed group III, suggesting the endemic cir-
culation of distinct TCoV genotypes in different geographic states [36]. Recombination
in coronaviruses is common. Wang and others documented a recombination event be-
tween a chicken coronavirus and TCoV in China using viral metagenomic analysis [37].
Additionally, an atypical TCoV strain was isolated from duodenum of 5-week-old turkey
poults suffering from acute enteritis in Poland. Molecular analysis revealed recombina-
tion between different γCoV genomic backbones, suggested potential transmission of
coronaviruses between different bird species [32].

The TCoV is involved in the economically devastating PEMS, a multifactorial syn-
drome [10]. The natural host of TCoV is turkeys, as this virus did not cause a disease
in chickens under experimental conditions [30]. TCoV causes high morbidity rates that
may reach 100% and a sudden increase in mortality of 10–50% in turkeys during the first
4 weeks of age. Although TCoV is more common in young poults, exposure of older ages
results in stunting with low mortality rates [38]. The natural route of infection of TCoV is
orally by ingestion of contaminated fecal materials. It replicates in enterocytes at the apical
portion of the intestinal villi in the jejunum and ileum and in the immune organs such
as the bursa of Fabricius [39]. The virus was also detected in dendritic cells, monocytes
and macrophages, highlighting its potential replication in antigen-presenting cells [40].
Movement of contaminated equipment, personal or vehicles and other birds probably
spread the virus. The disease is more common and severe during summer months (May
to August) with sporadic occurrence in autumn. Once turkeys are infected with the virus,
they remain life-long shedders [11].

Post-mortem lesions are mainly found in the GIT and bursa of Fabricius. Pale duo-
denum and jejunum that are distended watery with gaseous contents were reported. In
addition, ceca were distended and filled with watery contents. Atrophy of the bursa of
Fabricius may also be observed. Microscopic lesions include villus atrophy, infiltration
with mononuclear inflammatory cells in the lamina propria and decreased numbers of
goblet cells on villous tips. Lymphoid atrophy of follicular cells of bursa of Fabricius
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and heterophilic infiltration are also reported [10,40,41]. Experimentally, TCoV shedding
persists until 14-weeks post inoculation [42]. However, inoculation with the TCoV NC95
isolate was shed up to 7-weeks [43]. Additionally, latent infection with TCoV without
clinical signs is reported [44].

2.2. Astrovirus

The TAstV was first reported in 1980 in turkey poults suffering from diarrhea and
increased mortality in UK [45]. Since then, it has been documented worldwide [14,46–48].
TAstV infections are common in 4-week-old turkey poults as a coinfection in enteric disease.
TAstVs, belonging to the family Astroviridiae, are non-enveloped, single stranded positive-
sense RNA viruses with a genome size of 6.5–7.5 kb long. It contains three ORFs: ORF1a
encodes the non-structural proteins serine-protease, ORFab encodes RNA-dependent
RNA-polymerase and ORF2 encodes the structural proteins of the viral capsid [49]. Three
astrovirus types, namely, TAstV-1 (7003 nt), TAstV-2 (7325 nt) and avian nephritis virus
(ANV, 6927 nt) have been detected in commercial turkey flocks, with a prevalence of 100,
15.4 and 12.5%, respectively. The TAstV-2 has frequently been associated with PEC, PEMS
and PES [5,6,50,51]. Additionally, TAstV-2 has been detected in apparently healthy flocks
of turkeys [50,51]. The ANV is associated with nephritis and RSS in chicken and turkey
flocks and other avian species [52].

The TAstVs replicates in the basal portion of the lamina and rarely in the crypts [53,54].
Oral inoculation of TAstV in one-day-old specific pathogen free (SPF) turkey poults de-
creased the absorption of D-xylose [55], resulting in maldigestion of disaccharides, mal-
absorption and consequent osmotic diarrhea [56]. It was also found that 24 h after experi-
mental infections of one-day-old turkey poults, birds showed signs of intestinal infection
including yellowish brown watery to foamy diarrhea, followed by emaciation and stunting
growth [57,58]. Significant reduction of body weights as a result of decreased absorption of
nutrients was also found [58]. The main pathological changes are mainly located also in
the digestive tract and usually non-specific including dilated ceca with yellowish frothy
contents, fluid distention and inflammation of intestines [57]. It was also suggested that
TAstV virus might cause immunosuppression, hence the virus was detected in bursa and
thymus [59].

2.3. Adenovirus

Adenoviruses, family Adenoviridae, are DNA viruses with an icosahedral capsid
and a double-stranded, linear genome. Adenoviruses are described in many species
of vertebrate animals, including mammals, birds, reptiles, amphibians and fish [60–62].
Three different genera namely, Aviadenovirus, Siadenovirus and Atadenovirus can infect
poultry [63]. The Aviadenovirus comprises the fowl aviadenovirus (FAdV) and the turkey
aviadenovirus (TAdV) species [63]. FAdVs are grouped into the five species (FAdV-A to
FAdV-E), 12 serotypes (FAdV-1 to FAdV-8a and FAdV-8b to FAdV-11) and 12 genotypes.
Three TAdV species, namely TAdV-B (type TAdV-1), TAdV-C (type TAdV-4) and TAdV-D
(type TAdV-5) can infect turkeys [64–66], isolated from respiratory disease and PEMS.
These viruses also cause inclusion body hepatitis in turkey poults and may be responsible
for lower hatchability rates in breeder flocks [67,68]. Generally, further studies are required
to understand the pathogenicity of aviadenoviruses in turkeys, hence all aviadenoviruses
were identified within diseased turkey flocks in Germany, however, no apparent link
between case history and type of isolate were identified [65].

Hemorrhagic enteritis (HE) has been reported worldwide, i.e., Canada, England,
Germany, Australia, India, Japan, Israel and the USA [69]. Surprisingly, the HE virus does
not replicate in intestinal epithelium; however, it replicates in the endothelial cells that
causes vascular damage and ischemic necrosis of intestinal villi. HE virus causes severe
immunosuppression in turkeys, which subsequently stimulate opportunistic bacteria [70].
The HE infection is common in 4–12-week-old turkey poults [69]. The main signs include
depression, bloody droppings and sudden death [71]. The main post-mortem lesions
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are enlarged mottled spleen and distended and congested intestines, more prominent in
the proximal small intestine. The intestine might be filled with bloody exudate [69,71].
Microscopic examination revealed characteristic lesions including hyperplasia of white
pulp and lymphoid necrosis in the spleen at death [71]. Moreover, severely congested
mucosa, degeneration and sloughing of the villus epithelium and hemorrhage at the villus
tips were reported.

2.4. Rotaviruses

Rotaviruses, genus Rotavirus, family Reoviridae, have been associated with enteritis
in mammalian and poultry species [72–74]. Rotaviruses are non-enveloped icosahedral
particles and contain double stranded-RNA of 11 segments, which encode structural (VP1
to VP4, VP6 and VP7) and non-structural proteins (NSP1 to NSP6). According to VP6,
rotaviruses are classified into 10 groups (RVA-RVJ) [75]. Turkey rotaviruses belong to group
A rotaviruses [45], however, rotaviruses that are antigenically distinct (referred as rotavirus-
like particles) from group A turkey rotaviruses were also detected in turkey poults [76]. The
pathogenicity of rotaviruses in turkeys depends on several factors including the virulence
of involved strains, coinfections with other pathogens and management [77]. The main
clinical signs of rotaviruses infections are diarrhea, depression, high mortality rates, chronic
runting and stunting.

2.5. Reovirus

Avian reoviruses have been associated with enteric disease, arthritis/tenosynovitis,
respiratory distress, immunosuppression, poor feed conversion and malabsorption syn-
drome in poultry [78]. Avian reoviruses belong to family Orthoreoviridae, genus Or-
thoreovirus. These viruses are non-enveloped and have linear double stranded RNA with
10 segments. Fusogenic reovirus strains are characterized by the ability to fuse with in-
fected cells and form multinucleated syncytia, affecting mammals, birds and reptiles, while
non-fusogenic viruses are mainly infecting mammals [79]. Based on the molecular differ-
ences between avian reoviruses, species-specific reovirus types are being described, namely
turkey reovirus for turkey, duck reovirus for duck, goose reovirus for goose and avian
reovirus chickens [80]. Generally, young birds without maternal antibodies can be infected
with reoviruses [81]. However, the course of infection depends on the age of birds and
their sensitivity, pathogenicity of the reovirus strain, infectious dose, route of infection,
presence of maternal antibodies and immune status.

Turkey reoviruses are associated with arthritis and PEMS in turkeys [82]. Turkey
arthritis reovirus causes tenosynovitis in turkeys, leading to the reduction of performance
due to mortality and low feed conversion ratio. Additionally, although reoviruses have been
isolated from turkey poults suffering from enteritis disease, they have been isolated from
apparently healthy birds [83]. Experimentally infected SPF poults showed mild clinical
signs and exhibited no post-mortem lesions, highlighting that turkey reovirus might not be
the primary cause of PEMS [5]. There are conflicts about the replication of reoviruses in the
intestine of turkeys [5]. It is suggested that turkey reoviruses cause severe bursa atrophy
in poults at a young age that probably lead to a permanent immunosuppression [5],
which in turns cause enteric disease by stimulating the opportunistic microorganisms.
Moreover, experimentally infect young poults with turkey reovirus induced subclinical
tenosynovitis [84]. Sharafaldin et al. investigated the pathogenesis of turkey reoviruses.
The virus was detected in cloacal swabs at 1–2 dpi and peaked at 14 dpi. Additionally,
cytokines were elevated in intestines (at 7–14 dpi) and in gastrocnemius tendons (at 14 dpi),
suggesting a possible correlation between viral replication and cytokine response in the
early infection. Still, there is limited information about the pathogenesis of reovirus in
turkeys and development of its diagnosis and control [85].
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3. Diagnosis of Viruses Implicated in Turkey Poult Enteritis

The diagnosis of PEMS based on the clinical picture and gross lesions is difficult
because there are no specific clinical signs or pathognomonic lesions. Generally, cultivation
of some enteric viruses is also a challenge. Therefore, negative contrast electron microscopy
(EM), PCR and serology can help in the diagnosis of viruses causing enteric complex in
turkeys. The combined use of TEM and PCR in the diagnosis of PEMS is possible to
potentiate the advantages of both methods. While the strengths of the TEM lie in the
detection of the entire spectrum of virus groups, the PCR can be used for a more sensitive
and differentiated diagnosis after narrowing down the spectrum to certain viruses.

The negative contrast EM enables the discovery and morphological assessment of
all microorganisms present in a sample and thus offers great advantages compared to
many other used methods, Although the visual representation of viruses using EM requires
special knowledge regarding sample preparation and evaluation, this method enables
the detection of the entire spectrum of viruses in just one preparation approach with rea-
sonable effort. EM can be particularly successful in virus infections with a high presence
of pathogens, for example during an acute infection phase [86]. Enteric viral infections
stand out through the excretion of large amounts of pathogen in the feces and thus offer
good requirements for the visual detection and differentiation of the virus particles based
on specific morphological features [87,88]. In addition, with samples with a lower virus
concentration, significant virus enrichment can be achieved by means of ultracentrifuga-
tion [89]. In addition to the identification of known viruses that can be recognized in the
context of mono or mixed infections, it is also possible to discover new and previously un-
known viruses [69,90]. The negative contrasting electron microscope is an ideal instrument
for both individual bird diagnostics and for flock monitoring studies [87,91]. As a rule,
1–2% solutions of the heavy metal salts of molybdenum, tungsten or uranium are used as
contrast media [92]. However, phosphotungstic acid (PTA) can be also used for contrasting
because of its low toxicity [87].

Molecular-based methods are used also in the diagnosis of enteric viruses of
turkeys [16,43,49,93–98]. Sellers and his colleagues developed a multiplex RT-PCR for
simultaneous detection of enteric viruses in turkeys. Later on [79] developed a multiplex
RT-PCR test for the detection and differentiation of turkey astrovirus-1 (TAstV-1), TAstV-2,
ANV, chicken astrovirus (CAstV) and rotavirus in turkey and chicken samples [46]. El-
Adawy and others developed and validated a simple, sensitive, specific and cost-effective
multiplex PCR (mPCR) assay as a molecular screening approach for the detection of
six enteric avian pathogens; Campylobacter spp., Salmonella spp, Clostridium perfringens,
Escherichia coli, Histomonas meleagridis and Tetratrichomonas gallinarum for use in the daily
practice of a clinical microbiology laboratory. The sensitivity and specificity of multiplex
polymerase chain reaction (mPCR) was tested and evaluated. The mPCR is advantageous
when compared with conventional detection methods because it allows detecting and
distinguishing multiple pathogenic agents through the use of one test. It is cost effective,
time saving, specific and sensitive [99].

The diagnosis of TCoV depends on EM, PCR and serology. EM was used for identifi-
cation of TCoV in turkey poults suffering from PEMS. TCoV was detected in turkey poults
located in Germany using EM. When identifying TCoV particles, it must be considered
that fragments of cell membranes often look very similar to these virus particles (Figure 1).

This often makes it difficult to clearly assess electron microscopic specimens. Immu-
noelectron microscopy can also help in these cases. However, a virus-specific antiserum is
needed for this method of preparation. The detection of TCoV using PCR is described in
several studies. Due to the great genetic homology between the IBV and TCoV [10,100], the
first attempts to detect TCoV using PCR were based on the genetic analysis of already se-
quenced IBV strains [43,46]. A highly conserved non-coding region (3’UTR) at the 3’-end of
the RNA strand is particularly suitable for the design of PCR primers [101,102]. The 3’UTR
sequence fragments showed high homologies between the TCoVs strains and IBV [103].
Based on this fact, IBV (e.g., IBV vaccine strain H120) can be used as a positive control for
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the identification of TCoV based on 3’UTR-PCR [20,23]. Additionally, based on the fact
that N and M genes are highly conserved, there were attempts to identify TCoV using PCR
targeting these genes [43,46,103]. The high sensitivity of this diagnostic method makes it
possible to detect even very small amounts of virus particles. It was found that TCoV can
be detected in cloacal swabs just 24 h after an oral infection of turkey poults [5,42]. The use
of the 3’UTR primers and the N-gene primers had identical results. Despite the fact that no
coronavirus genome was found in the of Bursa Fabricii samples, detection was successful
in at least 27% of the cloacal swabs. These results highlighting that feces and intestinal
samples are the best samples suited for PCR detection of TCoV [22].
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Figure 1. Corona-like particles (100–150 nm) in fecal samples of turkeys. Negative staining with
phosphotungstic acid revealed that TCoVs are enveloped particles, roughly spherical, with diameters
ranging from 100 to 200 nm (scale bar: 50 nm).

The ELISA and immunofluorescent assay (IFA) can be used for the detection of
antibodies in sera collected from birds at 10–15 days after the onset of clinical signs to help
in the diagnosis of PEMS. Commercially available ELISA plates that are coated with IBV
antigens could be successfully used for the detection of antibodies to TCoV in antibody-
capture ELISA [104]. The recombinant S1 spike polypeptide was also used to develop a
TCoV-specific antibody ELISA [42]. Abdelwahab and others developed a recombinant
ELISA based on the N protein of TCoV expressed in a prokaryotic system for the detection
of antibody of TCoV. The relative sensitivity and specificity of the recombinant ELISA
compared with IFA were 86% and 96%, respectively [105].

In contrast, TCoV could not be detected in turkey stocks suffering from PEMS [50,51],
highlighting the fact that PEMS is a multifactorial syndrome and other potential causative
agents should also be investigated.

The diagnosis of astroviruses can be done based on EM and RT-PCR. The TAstV
was recognized as five or six-rayed star-shaped particles by negative contrast EM from
samples collected from poults suffering from PEMS in Germany (Figure 2). However,
this morphology only applies to about 10% of all the particles shown, while the rest
have a smooth surface [4,58,106,107]. In some cases, it is difficult to distinguish between
astrovirus particles and other enteral viruses such as picorna and enteroviruses, so that
such particles are often referred to as small round viruses (SRV) [58]. The average size
of the particles is 29.6 nm [106]. The RT-PCR can be used also for the diagnosis of TAstV
using primers specific to the polymerase or capsid genes [48,49,108]. Mixed infections
with TAstV and TCoV have been reported in turkeys causing a severe negative impact on
intestinal absorptive functions as causative factors of PEMS [55]. Additionally, coinfection
of turkeys with TAstV and rotavirus was also reported in the US [65].
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The diagnosis of adenoviruses depends on virus isolation and molecular identification.
Virus isolation can be done using cell cultures derived from the homologous species [94].
However, adenoviruses could be successfully derived from turkeys using chicken embryo
liver (CEL) cells isolated from SPF chickens. The main cytopathic effects on CEL cells
are rounded cell degeneration after the 1st and 4th passages [65]. Adenovirus could be
also detected in turkey poults using EM (Figure 3). Molecular typing can be done based
conventional PCR targeting the L1 region of the hexon gene [65,109]. Amplification and
sequence analysis of the polymerase gene can be used to distinguish between TAdV-B,
TAdV-C and TAdV-D [65,110].
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Due to the high sensitivity of PCR in determining the genotype of rotaviruses, it
is a good alternative to EM or virus antigen ELISA [111]. In human medicine, PCR
methods are established that amplify sections of gene 4 (VP4), gene 9 (VP7) or gene 9
(NSP4) [108,112,113]. To detect avian rotaviruses using PCR, highly conserved primers of
the NSP4 gene can be used [51,79]. The NSP4 gene sequences of the rotaviruses detected
by these authors were 96.1%–97.5% identical. Rotavirus particles could also be detected in
turkey poults using EM (Figure 4).

Animals 2021, 11, x FOR PEER REVIEW 9 of 16 
 

Figure 3. Adenovirus particles using electron microscopy (scale bar: 100 nm, CVUA-Stuttgart 
2010). 

Due to the high sensitivity of PCR in determining the genotype of rotaviruses, it is a 
good alternative to EM or virus antigen ELISA [111]. In human medicine, PCR methods 
are established that amplify sections of gene 4 (VP4), gene 9 (VP7) or gene 9 (NSP4) 
[108,112,113]. To detect avian rotaviruses using PCR, highly conserved primers of the 
NSP4 gene can be used [51,79]. The NSP4 gene sequences of the rotaviruses detected by 
these authors were 96.1%–97.5% identical. Rotavirus particles could also be detected in 
turkey poults using EM (Figure 4). 

 
Figure 4. Rotavirus particles using electron microscopy. (A) intact virus particles; (B) Virus parti-
cles without an outer protein layer (scale bar: 100 nm, image, CVUA-Stuttgart). 

4. Prevention and Control of Enteritis in Turkeys 
PEMS is an interaction between enteric pathogens and opportunistic infections in 

young turkeys. The main role of enteric viruses as primary agents in this syndrome is not 
fully understood. However, it is obvious that the interaction between enteric viruses and 
opportunistic bacteria/parasites and management increased the pathological effects. The 
development of PEMS depends on the virus–host interaction, virus pathotype, age of 
birds, immune status, biosecurity, and healthy conditions of the GIT. Therefore, several 
measures should be taken to control PEMS in turkeys, (1) reduction of the pathogenic load 
using antibiotic alternatives, (2) maintaining gut healthy and strengthening the immune 
system, (3) hygienic measures and (4) vaccinations. 

There is an increasing trend to use alternatives to antibiotics including probiotics, 
prebiotics, organic acids, essential oils and botanical extracts for turkey [114] in the aim of 
reducing the pathogenic load. Several studies highlighted the benefits of these products 
in the improvement of animal performance and reduction infections in turkeys [115–120]. 
Lactic acid bacteria (LAB) proved to be an efficient antibiotic alternative to control Salmo-
nella in turkeys by the reduction of intestinal colonization of Salmonella Typhimurium 
[121] and Salmonella Enteritidis [122]. Higgins and others found also that supplementation 
of turkey poults with LAB following antibiotic treatment improved significantly animal 
performance, compared with non-treated or probiotic-treated poults [123]. Additionally, 
Leyva-Diaz found that combinations between curcumin and copper acetate reduced the 
colonization of Salmonella Typhimurium in turkey poults and maintained a better intesti-
nal homeostasis [124]. It was also found that Propionibacterium freudenreichii subsp. freuden-
reichii modulated the beneficial microbiota and reduced the multidrug-resistant Salmonella 
Heidelberg colonization in turkey poults [125]. 

Figure 4. Rotavirus particles using electron microscopy. (A) intact virus particles; (B) Virus particles
without an outer protein layer (scale bar: 100 nm, image, CVUA-Stuttgart).

4. Prevention and Control of Enteritis in Turkeys

PEMS is an interaction between enteric pathogens and opportunistic infections in
young turkeys. The main role of enteric viruses as primary agents in this syndrome is not
fully understood. However, it is obvious that the interaction between enteric viruses and
opportunistic bacteria/parasites and management increased the pathological effects. The
development of PEMS depends on the virus–host interaction, virus pathotype, age of birds,
immune status, biosecurity, and healthy conditions of the GIT. Therefore, several measures
should be taken to control PEMS in turkeys, (1) reduction of the pathogenic load using
antibiotic alternatives, (2) maintaining gut healthy and strengthening the immune system,
(3) hygienic measures and (4) vaccinations.

There is an increasing trend to use alternatives to antibiotics including probiotics,
prebiotics, organic acids, essential oils and botanical extracts for turkey [114] in the aim of
reducing the pathogenic load. Several studies highlighted the benefits of these products in
the improvement of animal performance and reduction infections in turkeys [115–120]. Lac-
tic acid bacteria (LAB) proved to be an efficient antibiotic alternative to control Salmonella
in turkeys by the reduction of intestinal colonization of Salmonella Typhimurium [121] and
Salmonella Enteritidis [122]. Higgins and others found also that supplementation of turkey
poults with LAB following antibiotic treatment improved significantly animal performance,
compared with non-treated or probiotic-treated poults [123]. Additionally, Leyva-Diaz
found that combinations between curcumin and copper acetate reduced the colonization
of Salmonella Typhimurium in turkey poults and maintained a better intestinal home-
ostasis [124]. It was also found that Propionibacterium freudenreichii subsp. freudenreichii
modulated the beneficial microbiota and reduced the multidrug-resistant Salmonella Hei-
delberg colonization in turkey poults [125].

Several medical plants such as rosemary, sage, thyme and oregano exhibited a broad-
spectrum of antimicrobial properties and antioxidative effects [126,127] and improved
animal performance in turkeys [128]. Essential oils have also a broad spectrum of antibac-
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terial and antiparasitic effects [129,130] by increasing the permeability of the cell wall of
microorganisms and/or inactivation cellular enzymes [130]. It was found that benzoic acid
and essential oils improved performance, increased lactic acid bacteria populations and
decreased coliform bacteria in the caeca of turkey poults [131]. Additionally, thymol and
essential oils improved the antioxidant status of turkeys. Similar results were described in
broiler chickens in which essential oils improved the intestinal microbial balance through
reduction of coliform bacteria and increasing the Lactobacillus spp. of commercial broiler
chickens [132].

Generally, protozoan and immunosuppressive diseases such as Marek’s disease in
turkeys should be taken in to consideration [133]. Improvement of the immune system
of turkey poults has a role to resist diseases. The β-glucans have an immunomodu-
latory effect due to increasing the activity of immune cells such as macrophages and
neutrophils [134–136]. It also decreases Salmonella Enteritidis invasion and stimulates
phagocytosis, bacterial killing, and oxidative burst in heterophils isolated from 4-d-old
male Leghorn chickens 24 h after the oral challenge [137]. Supplementation of turkeys
with probiotics (mannan-oligosaccharide) in combination with probiotics enhanced the
immunoglobulin levels and improved performance [138]. Due to the negative impacts of
protozoan such as Histomonas meleagridis in turkeys on the health and welfare, preventative
management measures should be strictly applied to prevent the infection [2]. Additionally,
litter management requires also thoughtful consideration and active management [139].

Although there is no specific treatment, the prevention of PEMS includes vaccination
against potential pathogens in the case of available vaccines and hygienic measures. Until
now, there are no available vaccines against viruses causing PEMS. In addition, there is
no specific treatment. Although several efforts were done to develop effective vaccine
against TCoV using classical methods (attenuated and inactivated vaccines) and molecular
based (DNA and vector) vaccines, early and protective humoral and cellular immune
responses could not be obtained by the developed vaccines [25]. Further improvements
and optimization of vaccination regimes against TCoV are urgently needed.

5. Conclusions and Recommendations

Although no etiological agent has been identified as a specific cause of PEMS con-
dition, several potential infectious agents and non-infectious predisposing factors are
associated with this condition. The fact that the pathogenicity of several enteric viruses in
turkeys remains unclear and it cannot be excluded that PEMS initiated by an unidentified
virus. Opportunistic microorganisms such as Salmonella, E. coli, Clostridium and parasitic
infections complicate the disease, leading to severe economic losses. Although isolation
of the enteric viral agents is a challenge, EM and molecular identification can be used
for diagnosis. No vaccine against viruses associated with this condition are available.
Biosecurity including disposal of dead birds, litter management is very important in pre-
venting the spread of any infectious agent between farms and between birds of different
ages within the farm. Additionally, general management measures such as raising the
temperature, use of antibiotic alternatives to combat secondary bacterial infections and
supportive treatment might minimize the economic losses. Maintaining healthy gut and
strengthening the immune system of turkey poults are crucial factors to prevent enteritis
in turkeys. This can be achieved by supplementation of birds with probiotics, prebiotics
and/or phytogenic substances.
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