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Abstract

Fluorescence Optical Imaging (FOI) is a new method to assess Rheumatoid
Arthritis, Psoriasis, and other inflammatory diseases. It can reveal inflammatory
tissues and microcirculatory disorders with high spatial and temporal resolution.
However, the analysis of the image data is currently performed manually with
no or weak consideration of the time component. To date, there is no automatic
image analysis pipeline for inflammatory diseases based on FOI data. Further-
more, the distinct phenotypes of Rheumatoid Arthritis, Psoriatic Arthritis, and
comparable diseases are not fully described in FOI, yet. This thesis proposes
a new unsupervised, data-driven approach, that enables disease assessment of
inflammatory diseases of the hands under the unfavorable conditions (e.g., low
data-availability) of medical imaging. Data-driven methods such as deep neural
networks often require extensive and well-annotated data sets, which are rare
and expensive in clinical research. The here presented approach uses a Vari-
ational Autoencoder and reduces the complexity of the problem by learning a
low-dimensional latent space. This latent space enables further analyses such
as data exploration, subgroup classification, and analysis of the underlying dy-
namics under low data-availability and low quality of clinical labels. For data
exploration, subgroups can be summarized in latent space and then be decoded
back into an image. This feature-wise average results in superior images com-
pared to the pixel-wise average. Furthermore, the latent space allows for cluster
identification by employing two-dimensional projections such as UMAP. The la-
tent space representations enable classification tasks under low data-availability
with a two-step approach. Therefore, extensions of the proposed model using
Neural Networks and Random Forests are evaluated and compared. The ap-
proach can distinguish between Psoriasis Vulgaris and Psoriatic Arthritis with
accuracies over 70%. On synthetical data, accuracies of up to 97% are achieved.
In combination with the Koopman Operator Theory the underlying dynamics can
be approximated linearly. This approach decomposes the temporal effects within
the data, and it enables subgroup comparisons and outlier detection. This thesis
investigates the application of the proposed pipeline with respect to the quality
of the underlying data and discusses the necessary conditions to learn a general-
izing model. The dependency of high-quality labels for supervised approaches is
demonstrated with synthetical and clinical datasets.
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Zusammenfassung

Optische Fluoreszenz Bildgebung (Fluorescence Optical Imaging, FOI) ist ein
neues Verfahren, mit dessen Hilfe entzündliche Gelenkkrankheiten wie rheuma-
tische Arthritis und Psoriasis bewertet werden können. Entzündetes Gewebe und
Störungen der Mikrozirkulation können mit hoher räumlicher und zeitlicher Au-
flösung dargestellt werden. Die Analyse dieser Bilddaten erfolgt zurzeit jedoch
hauptsächlich manuell ohne Berücksichtigung der Zeitkomponente. Derzeit ex-
istiert kein automatischer Bildanalyseprozess für entzündliche Gelenkerkrankung-
en auf Basis von FOI-Daten. Darüber hinaus sind die charakteristischen Phäno-
typen der einzelnen Krankheiten wie rheumatischer Arthritis oder Psoriasis noch
nicht vollständig für FOI beschrieben. Diese Arbeit präsentiert einen neuen
datengetriebenen Ansatz mit Hilfe des unüberwachten Lernens, der eine Krank-
heitsbewertung bei entzündlichen Gelenkerkrankungen der Hände auch unter den
ungünstigen Bedingungen (z.B. geringe Datenverfügbarkeit) der medizinischen
Bildgebung ermöglicht. Datengetriebene Methoden wie die Tiefen Neuronalen
Netzwerke erfordern häufig eine große Menge an gut annotierten Daten, die in
der klinischen Forschung selten und teuer sind. Der hier vorgestellte Ansatz
benutzt einen Variational Autoencoder, um einen niedrigdimensionalen latenten
Raum zu lernen, der die Komplexität des ursprünglichen Problems drastisch re-
duziert. Dieser latente Raum ermöglichte somit weitere Auswertungen, darunter
die Datenexploration, Klassifikation von Teilgruppen sowie die Analyse der zu-
grundeliegenden Dynamiken, auch wenn die Datenverfügbarkeit und die Qualität
der Zielvariablen gering sind. Zur Datenexploration können Teilgruppen im laten-
ten Raum zusammengefasst und wieder in ein Bild übersetzt werden. Diese Bilder
auf Basis eines Durchschnitts der Merkmale sind Bildern eines pixelbasierten
Durchschnitts überlegen. Darüber hinaus können Cluster von ähnlichen Patien-
ten in einer zwei-dimensionalen Projektion mittels UMAP identifiziert werden.
In einem Zwei-Schritt-Verfahren ermöglicht die Darstellungen im latenten Raum
die Klassifikation von Teilgruppen, auch wenn die Verfügbarkeit von Zielvari-
ablen eingeschränkt ist. Dafür wird das vorgeschlagene Modell um ein weiteres
Neuronales Netzwerk oder einen Random Forest erweitert und evaluiert. Dieser
Ansatz kann zwischen Psoriasis Vulgaris und Psoriatischer Arthritis mit einer
Genauigkeit von über 70% unterscheiden. Auf synthetischen FOI-Daten werden
bis zu 97% erreicht. In Anlehnung an die Theorie der Koopman Operatoren
können die zugrundeliegenden Dynamiken linear approximiert werden. Dieser
Ansatz zerlegt die unterschiedlichen zeitlichen Effekte innerhalb der Daten und
ermöglicht so Vergleiche von Teilgruppen, sowie die Detektion von Ausreißern.
Diese Arbeit untersucht die Anwendung des vorgeschlagenen Ansatzes in Bezug
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auf die Qualität der zugrundeliegenden Daten und diskutiert die notwendigen Be-
dingungen, um ein verallgemeinerndes Modell zu lernen. Die Abhängigkeit von
hochwertigen Zielvariablen für überwachte Ansätze wird an synthetischen und
klinischen Datensätzen veranschaulicht.
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• CNN = Convolutional Neural Network

• DAS28 = Disease Activity Score 28

• FOI = Fluorescence Optical Imaging

• GAP = Global Average Pooling

• MCP = metacarpophalangeal joints

• PsV, PsA = Psoriasis Vulgaris, Psoriatic Arthritis

• PIP = proximal interphalangeal joints

• RA = Rheumatoid Arthritis

• TJC28 = Tender Joint Count 28

• VAE = Variational Autoencoder
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1
Introduction

1.1 Medical Imaging

Medical Imaging has become indispensable to modern medicine and is an essen-

tial tool for diagnostics [1]. A variety of different imaging techniques enables

physicians a non-invasive view into the human body. Depending on the physical

principle behind the technique, it is possible to reveal anatomical and functional

features. Computer tomography (CT) is based on electromagnetic radiation (X-

rays) and has its strength in highlighting different tissue densities. It is thus ideal

for revealing fractures of bones and internal bleedings. In oncology, it is often

combined with contrast fluids and Positron-emission tomography (PET) to detect

tumors and metastases. Magnetic resonance imaging (MRI) is a radiation-free

method that enables volumetric imaging of soft tissues. It is primarily used to
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detect tumors, inflammatory tissue, as well as lesions of cartilage and tendons.

For conditions like bone fractures, medical imaging can be the primary tool for

the diagnosis. However, for many conditions and diseases, additional diagnostic

procedures play an equally important role, such as histopathological, molecular

biological, and physical examinations.

With the costs decreasing, the popularity of these methods is increasing for

clinical diagnosis, as well as for research [2] [3]. This means that for every patient

more and more data can be acquired. Thus, Medical Imaging potentially enables

physicians to make holistic, differential, and personalized diagnoses. However,

this also means that physicians have to analyze, assess, and consider more data

per patient. Thus, computer-aided diagnostics (CAD) has become increasingly

important to modern medicine as well. However, the algorithmic analysis of

medical imaging data is not trivial, and can erroneous results can occur unnoticed

[4].

This thesis aims to underline the importance and the potential, as well as the

problems and challenges of a new type of medical imaging - fluorescence optical

imaging - and its analysis in the context of inflammatory diseases of the joints.

1.2 Inflammatory Autoimmune Diseases of the

Joints

In numerous conditions, the immune system is attacking normal, healthy tissues

of the human body. These so-called autoimmune diseases are highly prevalent in

the population [5]. The affected tissues, severity, and the impact on the individual

patients vary strongly between the diseases. Diseases like Multiple sclerosis affect

mainly neurons and nerval tissues and result in sensory and motoric defects,

whereas the Coeliac disease affects the tissues of the small intestine, which results

in gastrointestinal problems.
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This thesis focuses on conditions and disorders that affect joints and their

surrounding tissues, such as cartilage, joint capsule, and bone. The joints of the

human body are essential to its mobility and flexibility. Joint-affecting disorders

can thus profoundly impair the mobility and quality of life. Many of these diseases

share the underlying mechanism. During a process called citrullination, which is

a normal physiological post-transcriptional process in dying cells, peptidylargi-

nine deiminase (PAD) converts arginine to citrulline. Citrullinated proteins can

be a target for the immune system. However, due to genetic mutations and

environmental factors, citrullination can happen far more frequently in healthy,

non-dying cells making them a permanent target for the immune system.

1.2.1 The Human Hand and its Joints

The human hand is made up of 27 bones connected by several types of joints,

which are essential to its nimbleness. The joints of the human hand and an

illustration of a joint under healthy and inflammatory conditions are shown in

Figure 1. The most relevant joints for this thesis are the metacarpophalangeal

joints (MCP) between the fingers and the palm, and the proximal and distal

interphalangeal joints (PIP, DIP) between the finger segments (“phalanges”). As

well as the joints of the carpal bones of the wrist (intercarpal joints), they belong

to the synovial joints. Synovial joints sit in the synovial cavity and are defined

by the synovial capsule, which is filled with the synovial fluid. This is the region

that is affected by most inflammatory diseases.

1.2.2 Rheumatoid Arthritis

Rheumatoid Arthritis (RA) is one of the most common autoimmune diseases,

mainly affecting the joints such as the synovial joints in the hand. It is estimated

to have a 0.5 - 1.0% worldwide prevalence [6] [7] [8]. Arthritis patients often

suffer from chronic pain, limited mobility, and severe joint deformations. This is

9



Figure 1: Illustration of the joints in the human hand

(left) Schematic structure of a healthy synovial joint. (middle) An inflammatory joint. (right)

Schematic illustration of the bones and joints in the right human hand with Rheumatoid Arthritis.

(Source: Servier Medical Art)

usually due to immune system-specific inflammatory reactions targeted at joint

tissue, such as cartilage [9] [10]. Genome-wide studies have identified several

genetic factors that favor RA, including some alleles of the well-known HLA-

DRB1 gene [11].

Current diagnosis approaches include molecular biological markers (e.g., rheu-

matoid factors like immunoglobulins) and image-based techniques, such as X-ray,

CT, and MRI [12].

Current treatment strategies focus on relief of symptoms, slowing down the

progression of the disease, or surgically removing parts of the joints in a syn-

ovectomy. Thus, the effectiveness of the treatment is highly dependent on early

diagnosis and good monitoring of the progression [6] [13].
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1.2.3 Psoriatic Arthritis

Besides the common Rheumatoid Arthritis, there is also the Psoriatic Arthritis

(PsA). In contrast to a regular Psoriasis Vulgaris (PsV), it usually involves af-

fected joints as seen in RA, but characterizes itself with an abundance of Rheuma-

toid factor [14]. PsA shows similar symptoms as RA with additional dermato-

logical manifestations. It affects the patient’s quality of life similarly as RA [15].

The estimated prevalence of PsA varies from 0.05 – 0.25% to 0.3 - 1.0% of the

population [16] [17].

Many genetic risk factors are known to favor PsA. Most of these factors are

mutations or variants of genes, which all play critical roles in the immune system,

including HLA-B, IL12B, TRAF3IP2, TNIP1, and TYK2 [18].

A differential diagnosis of PsA is difficult. As in RA, a combination of physical

examinations of the joints, radiological imaging, and blood markers are necessary

[19]. In addition, careful investigation of the nails and the skin is required to

identify known symptoms of Psoriasis.

As in RA, there is no cure for PsA, and treatments only slow down the pro-

gression. According to current guidelines inhibitors against tumor necrosis factor

(TNF), like etanercept, infliximab, and adalimumab, are recommended for severe

PsA [20]. Recently, antibodies against interleukin (IL) 12/23 and 17A have been

approved and show good efficacy [21] [22].

1.3 Fluorescence Optical Imaging

Recently, Indocyanine green-enhanced fluorescence optical imaging (FOI) has

been introduced and proven to be competitive to MRI [23] [24] [25]. Indocyanine

green (ICG) is a fluorescent dye that binds to plasma proteins such as globulins.

In the diagnostics of inflammatory diseases, ICG is applied intravenously while

the examined body parts (e.g., hands) are being imaged continuously. The image
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acquisition starts prior to the injection and ends after a few minutes when the

dye has been completely removed from the circulation by the liver. This enables

to visualize the vascular circulation and microcirculation and detect alterations

or anomalies. Because of its property to bind globulins, inflammatory regions

will show up with high signal intensities in the image. Recent studies suggest

that FOI can reveal subclinical inflammatory activity in asymptomatic patients

with early Rheumatoid Arthritis and negative MRI [24]. Figure 2 illustrates the

FOI acquisition procedure.

Currently, the main application for FOI is the disease assessment and clinical

research of inflammatory diseases, such as RA and PsA. Furthermore, FOI is

actively used in pre-clinical cancer research for non-invasive imaging of cancer-

related drug delivery and lymph node growth monitoring [26] [27] [28] [29] [30].

◄Imaging Start

◄ICG Injection 

◄Max. Intensity

◄Imaging End

Figure 2: Illustration of the FOI procedure

(left) The hands of the patient are placed in the imaging chamber of the FOI device. The light

source and the image sensor are situated in the top part of the device. (right) The three phases of

signal distribution. (Source: nanoPET)
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1.3.1 Image Analysis of FOI Data

The analysis of the images is currently performed by experienced FOI observers,

who manually mark joints with higher intensities. Approaches from the analysis

of MRI data cannot easily be transferred. Most approaches for assessing inflam-

matory joint diseases based on MRI are focusing on measurements of the joint

space width in finger and wrist joints [31] [32] [33], which cannot be assessed with

FOI. The lack of automatic analyses for MRI data is tried to cope with precise

guidelines on manual measurements for RA and PsA [34] [35]. Since analyzing

all frames individually is impractical, the frames are summed up within three

phases, which are then analyzed separately. Phase 1 (early enhancement phase)

begins with the image acquisition and ends with the beginning of the fingertip

illumination. The following phase 2 (intermediate phase) ends once the signal

intensities in the fingertips begin to decrease. All frames after the second phase

until the end of the image acquisition are defined as phase 3 (late phase).

The standard procedure for FOI data analysis is, according to recent pub-

lications [23] [24], very subjective. At first, the signal intensities of the image

need to be scaled in relation to the fingertip signal. All joints are then examined

and checked for activity. A joint is counted as active if it shows higher signal

intensities relative to its surrounding tissue or its counterpart on the other hand.

An activity score is assigned to each examined joint between 0 and 3 depending

on the size of the affected area of the joint. A score of 0 is assigned if no activity

is present. The other three scores are given for area sizes of up to 25%, up to

50%, and above 50%, respectively. The summation of the scores of all 30 joints

defines the fluorescence optical imaging activity score (FOIAS).

This procedure allows for bias at the phase definition, image scaling, and ac-

tivity determination of each joint. Although the analysis is usually performed

by an experienced analyst and without additional knowledge about the patient
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(“blinded”), the underlying image data allows for further indications besides in-

flammatory activity, that may bias the analyst. Especially in RA, hands can be

severely deformed, which is then clearly visible in the FOI data. This could influ-

ence the rater subconsciously and favor a “diseased” classification. Figure 3 shows

two example cases of PsV and PsA. The PsA patient shows clear inflammations

of the PIP joints in both index and middle fingers.

Figure 3: Example FOI images from Psoriasis patients

(left) A patient with Psoriasis Vulgaris (PsV). Only the thumbs show increased signal intensities.

(right) A patient with Psoriatic Arthritis (PsA). The proximal interphalangeal joints of index and

middle finger show higher signal intensities on both hands. This indicates increased inflammatory

activity in these joints.

1.4 Clinical Data

The data in this study was provided by nanoPET Pharma GmbH within the

BMBF-funded project “Fluoromath”. Experienced physicians acquired the im-

ages in a multicenter trial on Xiralite devices. The imaging started ten seconds

prior to ICG injection and was performed every second for 6 minutes, resulting

in 360 frames per patient.

Figure 4 gives an overview of all diseases that are present in this study. The

data set contains 2383 patients, including 185 with PsV and 383 with PsA. 75.3%
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of the patients are female. 475 patients are diagnosed with Rheumatoid Arthritis

(RA). Besides the assigned diseases, other clinical parameters have been recorded

for the patients. The median age of all patients at examination is 58 years (25%

– 75% IQR: 50 – 68 years). The median body weight is 75kg (IQR: 65 – 88kg)

over all patients, and 87 kg (IQR: 78 – 96 kg) and 71 kg (IQR: 62 – 83 kg) in

male and female patients, respectively. Additionally, the Disease Activity Score

(DAS28) and the Tender Joint Count (TJC28) are available for all patients.

The DAS28 is a validated scoring system for the assessment of RA, established

by the European League Against Rheumatism [36]. It is based on the number of

tender joints, number of swollen joints, Erythrocyte Sedimentation Rate (ESR),

and the subjective disease assessment (SDA) of the patient. The DAS28 ranges

between 0 - 10 and can be discretized into three categories. Values until 3.2

are considered “inactive”, above 3.2 and until 5.1 “moderate active”, and values

above 5.1 “very active”. It is calculated using the formula:

DAS28 =0.56 ∗
√

#tender joints+

0.28 ∗
√

#swollen joints+

0.7 ∗ lnESR + 0.014 ∗ SDA

The TJC28 is the number of joints with tenderness upon touching. The score

includes in total 28 joints. These are the MCP and PIP joints of both hands, as

well as the wrists, elbows, shoulders, and knees. There is no defined procedure

available that corrects these joint-based scores for patients that have undergone

an amputation of a relevant joint or limb. Thus, the only present case in this

study has been excluded from these analyses.
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Figure 4: Cohort Statistics

Distribution of assigned diagnoses, that have been assigned to each patient prior to enrollment.

1.5 Problem, Motivation & Approach

Inflammatory diseases are highly prevalent. But many of them are not fully

understood yet. The individual diagnosis and assessment of severity currently

require the judgment of experienced physicians. For many years, magnetic res-

onance imaging (MRI) has been the de-facto standard for radiation-free, image-

based disease assessment of inflammatory diseases like rheumatic Arthritis. Re-

cently, fluorescence optical imaging (FOI) has been established as a new method.

In contrast to MRI, FOI acquires images at a higher temporal resolution without

compromising the spatial resolution, which enables the identification of distur-

bances in microcirculation. However, the quantitative assessment still involves

manual interaction of an experienced physician or technician, and the temporal

resolution is not used to the full extent [23] [37] [38]. This introduces a bias

and is hardly comparable or reproducible. But an unbiased, comparable, and re-

producible quantitative disease assessment is crucial in order to fully understand

diseases, make reliable diagnoses, and monitor the progression.

Based on time-resolved FOI data, this thesis presents a novel approach for

analyzing inflammatory disorders. The presented data-driven approach aims to

highlight differences between diseases in general, assess the severity of individ-
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ual patients, and monitor their progression over the course of a therapy. This

is achieved by automatically extracting features from the images, summarizing

them in a low-dimensional representation, and thus enabling a variety of mathe-

matical methods for further analyses such as classification and approximation of

the underlying dynamics.

This chapter has described the general motivation by highlighting the medical

importance and current approaches to analyzing inflammatory diseases in time-

resolved fluorescence imaging. The second chapter elaborates on the problems

of Machine Learning approaches for medical image analysis and introduces a

new data-driven approach and its prerequisites. The approach is based on a

Variational Autoencoder and generates a low-dimensional representation of the

original data. This low-dimensional representation aims to enable and facilitate

further analyses. The third chapter extends the approach for classification and

describes how characteristic problems of labeled data can be dealt with. In a two-

step approach, the classifier is built using the low-dimensional representations for

subgroup classification. The fourth chapter extends the approach with an analysis

of the time component of medical image data and how to discover their underlying

dynamics. This is realized by employing two copies of the model and joining them

with a linear operator in the low-dimensional space. This procedure is derived

from the Koopman Operator Theory. The fifth and final chapter summarizes the

thesis and discusses the findings.
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2
A new unsupervised Approach to enable

Disease Analysis

2.1 Problem Formulation

The latest approaches in the field of Image Analysis are using Machine Learn-

ing, more specifically Deep Neural Networks, to solve problems of segmentation,

classification, or recognition. Some approaches are able to outperform humans

in specific tasks [39] [40] [41]. However, they perform only well under condi-

tions, which are rarely fulfilled in medical imaging problems. A common require-

ment for the success of data-driven methods, like Convolutional Neural Networks

(CNNs), is the availability of large, well-annotated data sets. While there is

no exact formula to give a lower bound on the necessary amount of data, this
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theoretical lower bound will increase with the dimensionality and complexity of

the problem, the number of classes and the inter-class similarity [42] [43]. So-

called Transfer Learning approaches can achieve competitive results under limited

data-availability [44]. However, these approaches still require unambiguous and

well-annotated data.

This thesis presents a solution for scenarios in which classical supervised ap-

proaches with CNNs usually fail. These scenarios are also typical for medical

image analysis or share at least most of the characteristics. The first character-

istic of these scenarios is that the given data for the problem is usually high-

dimensional. In general, this is true for many image-based problems, since each

pixel in the image represents a mathematical dimension. But especially in med-

ical image analysis, the resolution matters [45] [46]. While many general image

analysis tasks, like classification, can be performed on low-resolution images or

down-sampled images, dealing with high resolutions and the resulting ability to

detect very fine structures or subliminal anomalies is the unique selling point

for Machine Learning in medical applications. Another problem is the lack of

sufficiently sized data sets [47]. This results directly from the costs of the im-

age acquisition itself. Medical devices, including imaging devices like Computed

Tomography (CT), Magnetic resonance imaging (MRI), are expensive to procure

and maintain. Medically trained personal is usually necessary to perform the

image acquisition, and experienced physicians are crucial for the diagnosis. This

is one of the main reasons, besides ethical questions, why large medical image

data sets are rarely publicly available. However, a third characteristic of medical

image analysis is often the limited domain. For example, the task of detecting

tumors in X-ray images of lungs usually starts with hundreds of X-ray images of

thoraxes in an upright orientation. This is reducing the actual degrees of freedom,

as the individual pixels are strongly correlated in certain areas of the image. Fur-

thermore, working in a limited domain allows to include domain knowledge into
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the model. Domain knowledge can be included in the design of the architecture

of a Neural Network, or solely in the form of constraints [48] [49].

Further problems are not limited to medical imaging. They have been de-

scribed for many medical and biological data analyses. The success of supervised

Machine Learning approaches not only depends on a suitable input data set. The

availability and quality of the respective target values, e.g., labels or classes, are

equally important. And although the target values are usually lesser complex

structures, they are as valuable as the input data. While the image acquisition

itself can be performed by specially trained personnel or even the patient itself,

the target value or label usually requires a differential diagnosis by an experi-

enced physician or several physicians. As this circumstance directly correlates

with costs, it results in reduced availability, since the data is either not acquired

or not published. Moreover, several factors can impair the quality of the target

values. For example, in some cases, there is no clear boundary between healthy

and diseased patients. An ill-posed problem formulation can also lead to ambigu-

ous results. The third chapter of this thesis is dealing with classification problems

and presents the difficulties with labeled data in more depth.

The presented approach in this chapter aims to reduce the dimensionality of

the data by learning a low-dimensional space, in which each dimension will aim

to represent meaningful features. This unsupervised approach is independent of

good labels for each data point, but makes use of those, if they are available for

subgroups. The reduced space enables the exploration of the data set and its sub-

groups. Thus, the proposed approach aims to solve the problems of the unknown

phenotypes in FOI and low data-availability. The application for classification of

subgroups and the analysis of dynamics are discussed in the subsequent chapters.
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2.1.1 Related Work

This thesis focuses on automatic, data-driven apporaches. Thus, methods that

belong to the field of typical image analyses are not considered here. Unsuper-

vised Learning can be applied in many fashions on medical imaging data, even

beyond traditional clustering methods. The application of Stacked Autoencoders

and Deep Belief Networks has been reviewed for feature extraction and image

registration in fMRI images [50]. Conditional Variational Autoencoders enable

to learn representations from lungs and brains from a healthy population [51].

Imaging data from a diseased patient is then detected as outliers. However, un-

supervised learning does not necessarily be implemented with neural networks.

Twellmann et al. use a fuzzy clustering by employing vector quantization, a

grouping of similar image voxels, to detect lesions in breast MRI [52]. Further

approaches are referenced to in the following paragraphs, accompanied by the

introduction into their respective methods.

2.2 Machine Learning & Deep Learning

2.2.1 Deep Neural Networks

When analyzing images or data in general, the problem can become too large or

complex such that analytical or manual approaches are not feasible. One of the

most common reasons is that the wanted effect is unknown or too complex to

be formally described. In these scenarios, data-driven methods from the field of

Machine Learning become interesting. While many Machine Learning methods

have been published within the last decades, the latest developments in data-

availability and computational power have led to an increase in performance and

popularity.

Deep learning and in particular Convolutional Neural Networks (CNNs) are
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showing increasing performance and thus popularity for the analysis of exten-

sive, high-dimensional data. CNNs can detect 1000 and more different classes

of objects in images with error rates below 5% and are outperforming humans

in terms of accuracy and of course, speed [40] [53] [54]. While this is true for

general images and photos, the frequency of CNNs in medical imaging is still

low, where established image features, such as scale-invariant feature transform

(SIFT) and histogram of oriented gradients (HOG), and other manually defined

features found the basis of image analyses [55]. One reason for that is access to

large and well-annotated image databases. In contrast to big internet compa-

nies, which have access to a tremendous amount of photos and images, clinical

researchers are limited by privacy policies, ethical restrictions, access to patients,

and the costs of image acquisition [56]. Another reason is the stigma of being

a non-transparent black box, which is still attached to data-driven methods, in

particular, deep learning and CNNs. This inhibits the spreading of these meth-

ods in the clinical application, although many approaches have been proposed to

shine a light into these black boxes.

The general form of neural networks has not changed drastically since the first

proposal of the perceptron in 1958 by Rosenblatt [57]. The idea is inspired by

biological neurons. As pictured in Figure 5, the neuron computes a weighted sum

of the input signals, comparable to the dendrites in the biological model. Only if

this sum exceeds a certain threshold, the neuron outputs a signal, otherwise not.

This behavior is adapted from the axon of the biological neuron, which fires a

specific signal only if a certain electrophysiological potential is exceeded. In the

mathematical model of the neuron, a layer consists of a linear system followed by

an activation function (here denoted as g), which is typically non-linear:

f (x) = g (Wx+ b) .

The shape of the weight matrix W is determined by the dimensionality of the
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input space and the desired output space. In theory, any function Rn → Rm can

be approximated by scaling the output dimensionality large enough or by chaining

enough layers to a network. This universal approximation theorem has first been

proven for single layer networks [58], and then for multi-layered networks [59].

Later Lu et al. [60] and Hanin [61] have proven this theorem with the widely used

rectified linear unit (ReLU) activation function.
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Figure 5: Illustration of the Neural Network Principle

The dendrites of a biological neuron receive the input information of the previous neural layer. Their

signals are weighted and summed up in the cell body. Only if the sum exceeds a certain threshold,

the neuron outputs a signal. (Source: CS231n Stanford)

2.2.2 Convolutional Neural Networks

When working with image data, classical Neural Networks with fully connected

layers become infeasible, since the number of parameters will explode with the

number of pixels. Therefore, Convolutional Neural Networks (CNNs) are used

for images. CNNs keep the number of parameters low by learning filters, which

convolve over the image and extract features (Figure 6). A series of convolutional

and pooling layers is often followed by one or more fully connected layers. This

24



two-part layout of feature extractor and classifier is still frequently used in CNNs

for classification and regression tasks.

3
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32

32x32x3 image
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Figure 6: Principle of a Convolutional Layer

Here a 5x5 filter convolves over the image. The product of the filter and each 5x5 patch of the

input image results in a smaller activation map. (Source: CS231n Stanford)

Figure 7 (top) shows the first CNN with high accuracy and feasible computa-

tional effort. It has been proposed by LeCun et al. [62] [63], and achieves a test

error rate well below 1% in the classification task of handwritten digits. In 2012,

Krizhevsky et al. [64] succeeded in the “ImageNet Large Scale Visual Recognition

Challenge” (ILSVRC-2010), and achieved top-1 and top-5 error rates of 39.7%

and 18.9% in classifying 1000 different real-world objects. The inception blocks

developed by Lin et al. [65] in 2013 introduced parallel convolutional layers with

different filter sizes. This concept has been applied successfully [40] and extended

several times in order to achieve achieved top-1 and top-5 error rates of 16.4% and

3.1%. The bottom of Figure 7 illustrates the architecture of the first successful

Inception network by Google.

The development of CNNs has been characterized by an increasing number of

convolutional layers with the intention to extract more complex information from

the images. An illustrative example are the filters from a CNN, which has been

trained on a data set containing faces [66]. While the first layers have filters for
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features like edges, deeper layers have filters, which are activated on high-level

features like eyes and noses. The last layers show already face-like structures.

Comparable to Eigenfaces, a linear combination of these features should be able to

reconstruct any face from the data set [67] [68]. Unfortunately, deeper models are

harder to train, while not decreasing the error rates. The introduction of residual

blocks helped training models with 152 layers while maintaining comparable error

rates [69].

Figure 7: Architecture of the LeNet and the Inception Network

(top) Architecture of the AlexNet. (bottom) The first Inception architecture GoogLeNet (Source:

LeCun, Krizhevsky)

2.2.3 Optimizing a Neural Network

2.2.3.1 Optimizers

While the design of a neural network is non-trivial but crucial for a good perfor-

mance, finding the optimal parameters or “weights” for a given task is the main

task. For supervised tasks, the optimal parameters θ for the mapping fθ(x) from

the input space x ∈ X to the according output space y ∈ Y , which are usually
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labels, is desired with low error:

argmin
θ
‖y − fθ (x)‖2

2

In practice, the number of data points and parameters is too large to compute

the optimal parameter at once. Thus, the error is minimized iteratively in small

steps, on small subsets of the data. This method is called Stochastic Gradient

Descent SGD) [70]. Since its introduction in 1951, SGD has been extended many

times to improve convergence, but the principle remains the same. The parame-

ters θ at iteration t are updated for every batch of size b of the training data in

opposite direction of the gradient ∇θ of the error function Eθ, with a restricted

step size or learning rate η:

θt+1 = θt − η ∗ ∇θtEθt(x(i:i+b); y(i:i+b))

A notable, popular extension is the Adaptive Moment Estimation (Adam) [71]

optimizer. As most extensions to SGD, Adam computes the first and second

moment of the gradient. Simplified, the optimizer memorizes past gradients and

tries to maintain the average direction, making it less sensitive to local minima.

This is realized by computing the decaying averages of past mt and past squared

gradients vt:

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) g2
t ,

where gt is the gradient at iteration t. The parameters β1 and β2 control the

exponential decay rate and are usually close to 1. Since the initialization of the

moments can introduce bias, the moments are corrected by m̂t = mt/(1−βt1) and

v̂t = vt/(1− βt2). The parameters are updated using the formula:
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θt+1 = θt −
η√
v̂t + ε

m̂t.

It is noteworthy that although neural networks are technically just optimiza-

tion problems, and the mathematical field of optimization offers a powerful tool-

box of fast and efficient global optimizers, in practice, only SGD and its variants

are being used for most problems. Since SGD is a local optimization method,

it only converges reliably, if the objective function is convex or pseudo-convex.

Hence, most efforts in optimizing convergence and performance are methods to

avoid local minima and flat regions, and to ensure convergence to the global mini-

mum. Modern, global optimizers are currently not feasible for large networks and

large data sets. Only Particle Swarm Optimization techniques have been applied

recently [72].

2.2.3.2 Activation Functions

As mentioned, the power of deep neural networks come from chaining layers,

which are linear functions, and from non-linear activation functions after the lay-

ers. The motivation behind activation functions is again the biological model. In

a neuron, all input signals are weighted and summed up. If this weighted sum

exceeds a certain threshold, the neuron fires. While early neural networks mim-

icked exactly this behavior, recent activation functions have been developed with

better numerical characteristics. There are many different variants of activation

function in use, where Sigmoid, tanh, and ReLU, are one of the most frequently

used ones. Furthermore, classification networks usually have a Softmax activation

in their last layer. This ensures that the model emits class probabilities, which

can be optimized using a categorical Cross-Entropy.

Both, Sigmoid and tanh are inspired by the binary behavior of biological

neurons. In contrast to the Sigmoid function, the tanh is zero-centered. However,

both suffer from slow convergence due to the vanishing gradient problem. ReLUs
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Name Function

Sigmoid f (x) = 1
1+e−x

Tanh f (x) = ex−e−x

ex+e−x

ReLU f (x) = max (0, x)

Softmax f (x)k = exk∑
k
exk

Table 1: Equations of Activation Functions

Sigmoid Tanh ReLU

Figure 8: Activation Functions

(left) The Sigmoid function returns either 0, 1, or values in between near x = 0. (middle) The

Tanh function acts similarly but its values range from -1 to 1. (right) The ReLU function returns

the input value, if it is positive, else 0. See Table 1 for the corresponding equations.

were first proposed in 2000 [73] for digital circuits, and later proven to converge

faster [74]. In general, rectifying activation functions, such as swish, seem to

achieve better results [75], if the vanishing gradients problem is controlled. For

classification tasks, the Softmax function is widely used in combination with a

cross entropy loss, as it normalizes the output to a probability distribution.

2.3 Variational Autoencoder

2.3.1 Autoencoder

In Unsupervised Learning, autoencoders are one of the most popular methods.

In general, autoencoders aim to learn a low-dimensional representation of a given

input and subsequently reconstruct the input as accurate as possible. An autoen-

coder essentially consists of two parts: the encoder φ, which transforms the input
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data into a low-dimensional representation, and the decoder ψ, which transforms

the representation back into the original space. Figure 9 illustrates the architec-

ture of an autoencoder with convolutional layers as encoding and decoding trans-

formations. This so-called “informational bottleneck” forces the autoencoder to

identify the important information in the data set and to learn a domain-specific

representation. While the encoder and decoder can be practically any transfor-

mation, they are often implemented as Neural Networks. In general, for given

data x the following loss function is minimized:

argmin
θ
‖x− ψθ(φθ (x))‖2

2

One obvious use case is image compression [76]. If both the sender and the

recipient are in possession of the autoencoder, they only need to exchange the low-

dimensional representation. In this way, both need to exchange less information.

Another popular application is image denoising. Here, the input is presented

in a distorted form, e.g., with additional noise or missing image patches. The

autoencoder then aims to reconstruct the original, undistorted image [77].

Encoder Decoder

Figure 9: Illustration of a Convolutional Autoencoder

The input image is fed in from the left. After a couple of convolutions, more and more features are

extracted, while the spatial resolution is decreased. The middle part represents the low-dimensional

representation and thus the informational bottleneck. From there a series of upsampling convolutions

is performed to generate the output image.
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2.3.2 Variational Autoencoder

Autoencoder can easily overfit and simply “memorize” the data set, without gen-

eralizing. As a result, minor deviations of the low-dimensional representation can

lead to drastic changes in the decoded information. In the opposite direction,

small differences in the input image can result in entirely different representa-

tions. In 2013, Kingma and Welling introduced the Variational Autoencoder

VAE) [78]. The VAE aims to learn a meaningful, robust latent space, in which

the low-dimensional representations live. This is mainly done by learning a mul-

tivariate normal distribution N (µ, σ) instead of fixed representations. The rep-

resentation is then sampled from this distribution. This forces the encoder and

decoder to learn a latent space, in which similar input data points have a small

distance. Figure 10 illustrates the architecture of a VAE with convolutional layers

as transformations for the encoder and decoder. The central part represents the

sampling layer.

This sampling layer introduces a non-differentiable function into the Neural

Network. Thus, it is impossible to compute a gradient and perform backpropa-

gation. To circumvent this problem, the so-called “reparameterization trick” is

applied. Instead of sampling the representation (here denoted as z) directly from

N (µ, σ), a vector is sampled from N (0, 1) and then scaled with the outputs from

the layers, which represent µ and σ:

z ∼ N (µ, σ) → z = µ+ σ ∗ ε, ε ∼ N (0, 1)

The loss function is extended by a regularization term. The Kullback-Leibler

divergence is added to the reconstruction loss. This restricts the latent space

and forces the VAE to bundle data points with similar features. In practice,

the VAE can be seen as a regular autoencoder, but with Gaussian noise added

to the low-dimensional representation. The regularization term, which computes
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the KL-Divergence between the latent space representations and the standard

Gaussian distribution, is as follows:

LossKL = −1
2

K∑
k=1

(1 + log σk − µ2
k − σ2

k)

As an alternative to the KL-Divergence, the Rényi Divergence and Chi-Diver-

gence are also subject to current research in variational inference [79] [80].

Once a VAE has been trained to a data set, it can be used for several purposes.

In this thesis, two characteristics of the VAE will be used. First, all the important

information is coded in just a few dimensions. Since the VAE is aiming to recon-

struct the input images as good as possible, it can be assumed that all necessary

information is preserved and contained in the latent space representation. The

problem of having too many dimensions in the input space and too few examples

can be solved this way. The second advantage is the informational quality of

the latent space. Perceptually similar images should have a small distance in the

latent space. Additionally, the dimensions of the latent space should, in theory,

correlate with a visual meaning. Assuming this holds true and these dimensions

can be identified, it should be possible to define a weighted metric based on the

medical relevance of each dimension. This metric would weigh dimensions, which

encode shape-related features like the position and size of the hands, less than

dimensions that encode the signal distribution.

Besides the mentioned approaches at the beginning of this chapter, recent

applications use the trained VAE to compute the likelihood of new data to fit

the model to identify abnormalities [81], or the distance to control samples in the

latent space to detect pathologies [51]. These approaches compute how well a

data point fits to the learned model. In contrast, the proposed approach in this

chapter investigates the differences between subgroups within the latent space

and aims to describe the prevalent variety of samples fully.
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Encoder DecoderSampling

Figure 10: Illustration of a Variational Autoencoder

The input image is fed in from the left. After a couple of convolutions, more and more features are

extracted, while the spatial resolution is decreased. The flattened output of the last convolution is

used to compute the vectors for µ and σ, from which the low-dimensional representation is sampled.

This is then used to generate the output image through a series of upsampling convolutions.

2.4 Methods & Experiments

All experiments are implemented in Python 3.6 using the libraries TensorFlow for

the Neural Networks and scikit-image for image handling [82] [84]. scikit-learn is

used for the remaining data-processing [83]. The preprocessing of the image data

is an important and crucial step prior to the training of the model. Here, the

preprocessing consists only of a background segmentation and normalization of

the values to a fixed range. Usually, the values of the input data can be normalized

to a range between 0 and 1 or standardized to have µ = 0 and σ = 1. This ensures

that the range of gradients is similar across all layers of the network for faster

convergence. The background of the image data is set to 0 to remove device-

specific background noise and patterns. To distinguish between the foreground,

that is the area covered by the two hands, and the background, all pixel values

below half of the mean of a time series are defined as background. This threshold

has been found empirically and proven to be good enough.

It is good practice to perform the training and compute the performance on

two distinct sets of images – the training and the validation set. Here, both sets
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are sampled from the original data set, and the training set consists of 80% of

the original data set, whereas the remaining 20% are used for validation. A third

set, the test set, is often used for computing the final performance statistics. It

is not applied here since the available data is already very limited. Additionally,

all presented model statistics in this thesis are computed from a 5-fold cross-

validation.

The model is trained using the Adam optimizer with an initial learning rate

of 10−4, exponentially decaying at a rate of 10−6. All models are trained for 50

epochs, that is, the whole training set is presented 50 times in shuffled sequences.

The batch size, on which the gradients are computed, is 32. This number is

mainly restricted by the computational power of the general-purpose computing

graphics processing unit (GPGPU), which was available for this work. Although

the batch size should not affect the training outcome drastically other than in

terms of speed, it has been shown to have at least a small effect [85]. A small

batch size leads to more gradient computations per epoch. A larger batch size

enables better distribution estimations. All weights of the model are regularized

with small-weighted L1 and L2 penalties to favor generalizing weights. To avoid

the recognition of device-specific background noise, Gaussian noise is added to

the input images with σ = 0.01.

Hence, the remaining hyperparameters that are needed to be optimized are

the latent space dimensionality and the weight of the Kullback-Leibler divergence

in the loss term.

2.4.1 Latent Space Size

An obvious question that arises is how large the latent space has to be sized.

In general, it should be large enough to encode all the relevant information, but

small enough to contain only the necessary information. This chapter will present

two approaches to answer the question. The experimental approach iteratively
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increases the dimensionality of the latent space until the reconstruction quality

stops increasing. For comparison, the second approach directly estimates the

intrinsic dimensionality of the data set. While there are several approaches to

estimate the intrinsic dimensionality of a data set, in this thesis, a Geometry-

Aware Maximum Likelihood Estimation (GeoMLE) is used [86]. In contrast

to other methods, GeoMLE is claimed to produce robust results also on high-

dimensional, non-linear data. It is based on a Maximum Likelihood Estimation

MLE) approach [87], which is relying on uniformly distributed data along a linear

manifold. Both criteria are usually not met in real-world data sets.

2.4.2 Perceptual Loss Function

Autoencoders aim to reconstruct the input data with a low error. In order to train

a neural network based VAE, a differentiable loss function is needed. This is usu-

ally the mean squared error (MSE) of the pixel-wise difference between the input

image and the reconstructed image. Unfortunately, this leads to slightly blurred

or smooth output images [88]. A simplified way to understand this problem is

to look at the problem from a probabilistic point of view. The MSE is usually

defined as the sum of squared differences divided by the number of samples:

MSE = 1
N

N∑
i

‖x̂i − xi‖2
2 .

The probability function of the Gaussian distribution is defined as follows:

p (x|µ, σ) = 1√
2πσ2

exp
(
−‖µ− x‖

2
2

2σ2

)
.

Assuming µ = x̂, σ = 1, and ignoring the normalization factor 1√
2πσ2 , it

becomes obvious to see the similarity between the MSE and the log-likelihood of

the Gaussian distribution:
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log p (x|µ) ∝ −1
2 ‖µ− x‖

2
2 .

Similarity measures like the Structural Similarity Index (SSIM) are not dif-

ferentiable and can only be used as a metric, but not as an objective function.

Ledig et. al [89] proposed a perceptional loss based on Convolutional Layers.

Therefore, the input image and reconstruction image are convolved with fixed,

pre-trained filters. Depending on the desired reconstruction quality, it is possible

to use only the first convolutional layer or many layers. This results in multiple

feature maps on which the MSE can be computed. While this workaround does

not solve the initial problem, the reconstructed images share more features with

their corresponding input images on average. This principle has been applied

successfully in several experiments, including the generation of super-resolution

images [89] [90] [91] [92] [93].

2.4.3 Visualization Methods

Even though the presented approach aims to reduce the dimensionality of the data

significantly, the visualization of data with more than two or three dimensions

becomes non-trivial. Principal component analysis (PCA) is an established and

well-known method to reduce dimensionality but has many assumptions on the

data and other limitations.

t-Distributed Stochastic Neighbor Embedding (t-SNE) [94] is a dimensionality

reduction algorithm, that is frequently used for visualization of high-dimensional

data. It aims to project the relative distances between data points in a low-

dimensional embedding. This way, similar data points remain clustered together,

even in 2D. The optimal t-SNE projection is found by solving

min
∑
i 6=j

pij log pij
qij
,
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where pij is a Gaussian distributed similarity probability in the high-dimensio-

nal input space, and qij a t-distributed similarity probability in the low-dimensional

output space.

Uniform Manifold Approximation and Projection for Dimension Reduction

(UMAP) [95] is an extension of t-SNE. It aims to represent the relative distances

between clusters of similar data points. This is realized by adding a repellant

force into the optimization term of t-SNE:

min
∑
i 6=j

pij log pij
qij

+ (1− pij) log
1− pij
1− qij

.

According to McInnes, the first part of the equation “gets the clumps right”,

whereas the second part “gets the gaps right”, figuratively speaking.

2.5 Results

This section presents the results of the unsupervised learning approach. Here, a

Variational Autoencoder (VAE) is used to learn a low-dimensional latent space

of FOI data from hands with various inflammatory diseases. First, the recon-

struction properties of the VAE are shown under different training conditions,

followed by example cases where the approach fails. Second, the latent space is

explored with respect to clinically relevant subgroups. This exploration is done

by projecting the representations into 2D using UMAP, and by decoding average

latent space representations for subgroups.

2.5.1 VAE generates FOI Images with low error

The VAE model is capable of generating subjectively similar images as the input

images. The output images seem to lack details like blood vessels while main-

taining essential features like inflammatory joints and the outline of the hands.

Figure 11 shows 5 randomly selected example images in the top row and their
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reconstructions by a trained VAE using the traditional MSE loss and a percep-

tual loss in the center and bottom row, respectively. The reconstruction quality

suffers significantly when the MSE is used as a loss function. The images appear

blurred and lack essential details.
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Figure 11: Comparison of Input Images and their Reconstructions by the VAE

(top) Original input images (middle) Reconstructed images with a VAE using MSE loss (bottom)

Reconstructed images with a VAE using a perceptual loss

Quantitively, the SSIM between input and output images is on average 0.91

and the pixel-wise Pearson correlation 0.9. Figure 12 shows the quality of recon-

struction measured by SSIM and Pearson correlation in dependency of the latent

space dimensionality and the applied loss function. Both, SSIM and correlation,

are increasing until a latent space dimensionality of 50. A further increment

of dimensionality does not lead to significantly better reconstructions. Starting

with a dimensionality of 16 the reconstructions become subjectively appealing.

Depending on the selected time point of the video data, the estimated intrinsic

dimensionality varies between 15 and 49. Figure 12 shows the results from the

GeoMLE algorithm for several time points. During the first 50 seconds of the

videos, the intrinsic dimension varies between 15 and 25. Subsequently, the in-
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trinsic dimension jumps to 49 and is then slowly decreasing to 20 at the end of

the videos. The intrinsic dimension over all patients and frames is estimated at

50. In general, in all cases the employment of the perceptual loss function results

in better reconstructions compared to the traditional MSE loss.

20 40 60 80 100
Latent Space Dimensionality

0.6

0.7

0.8

0.9

1.0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

WKL = 1 WKL = 10 WKL = 100

50 100 150 200 250 300 350
Time Point [s]

0

10

20

30

40

50

In
tri

ns
ic

 D
im

en
si

on

Figure 12: Dimensionality-related Results

(left) Pixel-wise Pearson correlation in dependency of the latent space size and weight of the KL

divergence term (right) Estimation of the Intrinsic Dimensionality for each time step of the videos

using GeoMLE.

To validate the regularizing effect of the KL-Divergence on the latent space,

it was weighted in the optimization term. The weights are chosen from a range

between 1 and 100. With the increasing weight of the KL-Divergence term, the

reconstruction quality is reduced.

To identify cases, in which the reconstruction fails, the SSIM has been com-

puted for all data points. Figure 13 shows five examples with the lowest SSIM

from the training and validation set, respectively. Apparently, cases with severe

deformations of the hand cannot be reconstructed accurately in both the training

and validation set.

2.5.2 Exploring & Interpreting Latent Space

In order to explore the latent space representations visually, the above-mentioned

methods for further reduction of dimensionality can be applied. In Figure 14
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Figure 13: Examples for poor reconstruction results

(top) Original input images (bottom) Reconstructed images with a VAE. The three right-most

samples have strongly differing hand shapes, that are underrepresented in the dataset. The re-

constructions of the two samples on the left are subjectively good, but lack details of the signal

distribution.

the representations for all data points are shown using a UMAP projection into

2D. Different colorizations are applied for the available clinical parameters. The

strongest effect on the point distribution has the time. With progressing time, the

points are separating from one large lump of points, and form four very distinct

clusters. Female and male patients are distributed equally over the clusters.

However, within each cluster both groups seem to form sub-clusters. Patients with

an inactive DAS28 or TJC28 score are more frequent in the upper right cluster

at the third time point. But they are also present in the other three clusters.

The colorization with the Psoriasis classes does not show significant differences

in distribution. Only the upper left cluster in the third time point contains

relatively more PsV than PsA patients, but the overall number is small. RA

negative and positive patients do not show any apparent pattern of distribution.

The average latent space representations for subgroups of the patients can be

decoded back into the image space. Figure 15 shows the decoded averages for

the two Psoriasis groups next to the averages of the same patients computed in

the image space. In general, the averages from the image space appear blurry

due to the large variation of position, shape, and size of the hands. In contrast,
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Figure 14: UMAP Visualization of Latent Space

UMAP Visualization of all patient’s latent space representations at three different time points (rows).

The points are colorized using five clinical parameters (columns). Since not each clinical parameter

is applicable or available for each patient, data points with missing information are shown in pale

gray as reference.

the decoded latent space averages appear clear, crisp, and subjectively natural.

When comparing the average images between the two subgroups, the averages

from the image space do not allow for any differential interpretation. However,

the decoded latent space averages show higher signal intensities in the finger

regions. The mean intensities along the central axis of the fingers are 0.6 and 0.7

in the decoded averages for PsV and PsA, respectively. This difference is also

present in the mean intensities across all images of these two groups. The mean

intensity computed over all PsV patient’s images is 0.61 and 0.73 in PsA.

When comparing two groups, which are expected to not differ pathologically,

the signal intensity difference disappears. Figure 16 shows the decoded averages

for the female patients compared to the male patients. The signal distributions
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Figure 15: Comparison of generating average Images in Latent Space and Image Space

(top) Decoded images from the average latent space representations of PsV and PsA patients.

(bottom) Average images generated from the original images of PsV and PsA patients.

only differ in the thumb areas. However, the size of the average female hand is

only 80.2% of the size of the average male hand.
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x

Male Female

Figure 16: Decoded average Latent Space Representations of male and female patients

(left) Decoded images from the average latent space representations of all male patients (middle)

Decoded images from the average latent space representations of all female patients (right) Overlay

image of the outlines.
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To further understand the latent space, a latent space representation can be

varied in a single dimension and subsequently be decoded into an image. Figure 17

shows the effects of varying a single dimension of the latent space representation

of a single patient. It has been varied within its observed range from minimum to

maximum, and the resulting new representation has been decoded (left to right in

the figure). With increasing the value, the signal intensities of the finger regions

begin to increase until they appear much brighter.

Figure 17: Effect of varying a single dimension

The decoded images based on a single latent space representation, that has been modified in a

single dimension from its observed minimum (left) to its observed maximum (right).

The low-dimensional representation can be computed for each frame of a

video. Figure 18 shows the average standard deviation across all encoded videos.

Approximately half of the dimensions have very low standard deviations across

the course of a video. Only five dimensions show high variations. This informa-

tion can be used to explore the latent space further. Figure 19 shows the t-SNE

and UMAP visualizations of all encoded videos with color-coded time. Using all

dimensions, one large lump of points appears with individual trajectories of dense

points. However, when computing UMAP on the five dimensions with the highest

temporal variance, the structure changes drastically. Early time points form a

small, dense lump of points on the left side. Later time points seem to spread in

space. Interestingly, the latest time points are not on the rightmost side of the

plot. Until 180 seconds into the video, the latent space representations spread to

the right. Afterward, they are returning in the direction of the origin. However,

the same effect is not present in the t-SNE projections. Using only the five di-

mensions with high temporal variance, there is no clear overall temporal behavior
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visible as in the UMAP projection.
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Figure 18: Temporal Variance of the low-dimensional representations

Average variance computed over all latent space trajectories for each individual latent space dimen-

sion. There are only a few dimensions that vary significantly over the duration of the videos. The

majority remains relatively constant.

Figure 19: t-SNE and UMAP Visualization of Time

Projections of all latent space representations into 2D using t-SNE and UMAP (top and bottom),

using the full latent space representations of all videos and frames (left), and using only the five

dimensions with the highest average temporal variance (right).
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2.6 Discussion

This chapter introduced an unsupervised approach to translate fluorescence im-

ages of hands into a low-dimensional representation. This representation forms

the basis for further analyses. The dimensions can be divided into shape-related

and signal distribution determining dimensions.

The reconstructions by the VAE model are generally good. They include im-

portant image features, such as inflammatory joints, even in a small-sized latent

space. If these features appear in the reconstructed image, then all necessary

information must be encoded in the latent space. The estimation of the intrinsic

dimensionality agrees with the experimental results. Increasing the dimensional-

ity of the latent space correlates with increasing reconstruction quality until the

intrinsic dimensionality is reached. Additionally, the employment of a perceptual

loss function during the training increases the reconstruction quality.

Hands, that deviate significantly in their shape from the average, show sub-

jectively bad reconstructions. This is underlined by low correlation values and

SSIM. The reason for this may be an underrepresentation of these cases in the

data set.

Averaging subgroups in the latent space allows for the generation of visually

pleasing summary images for these subgroups. Averaging subgroups in the image

space is technically possible and straightforward but does not lead to informative

images. Every patient has unique hands in terms of shape, size, and position.

Thus, the hands are not aligned in the images, and the average signal intensity of

a pixel becomes meaningless. However, it is in principle possible to standardize

the shapes of the hands and then compute the average image. The comparison of

these images with the decoded averages remains for future work. It is noteworthy,

that the computed latent space average may be incorrect since the underlying

manifold is not regarded.
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The presented method reveals marginal differences between PsV and PsA. The

decoded averages for both groups differ in signal intensity, as it is expected from

the clinical definition of both diseases. However, the magnitude of differences

does not meet the expectation. This is the outcome of the poor quality of the

assigned labels and agrees with the underlying image data. Although the distinc-

tive characteristic between PsV and PsA patients is the presence of inflammatory

joints, a considerable amount of PsV patients shows signs of inflammation. A re-

liable label that indicates the actual presence of inflammatory joints may lead to

more significant differences.

An indicator for a well-learned latent space is the UMAP projection, that

incorporate the whole sequences. When restricting the UMAP projection on the

dimensions with high temporal variance, the trajectories in latent space agree with

the rapid influx and slow wash-out of the fluorescent marker ICG. When using the

full dimensionality for UMAP, the variety of shapes distorts the interpretation.

However, t-SNE was not able to show the same effect.
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3
Enabling explainable Classification of

Inflammatory Diseases in FOI with

limited Data

3.1 Problem Formulation

As described in the previous chapter, analyzing high-dimensional data with a

limited number of data points is difficult. When the training set is too small to

represent the variety of each subgroup, it is hard to build a robust, generalizing

classifier. Even the supervised training of a small CNN with just a few layers

based on a few hundreds of images becomes infeasible, since the dimensionality

of the input space and thus the degrees of freedom are too large. The problem
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becomes more difficult if the labels are ambiguous to some extent or they are not

representing the ground truth. In medical image analysis, a classification between

healthy and diseased patients is often desired. For mostly ethical reasons however,

data sets of clinical trials often contain only diseased patients [96] [97] [98].

As described in the first chapter, the data set used in this thesis contains

image data from patients of various diseases and different severities. The data

basis for building a generalizing model, which robustly classifies patients into

either diseased or healthy, is not given. However, there are groups in this data

set, which should be distinguishable at least by definition. For example, it can

be assumed that patients with Psoriasis (PsV) show different disease patterns

than patients with Psoriatic Arthritis (PsA). The latter group is defined by an

inflammatory involvement of the finger joints. Hence, both groups should be

distinguishable. Simplifying a classification problem by focusing on only two

groups of the data set is limiting the data-availability and worsening the ratio

between the number of data points and parameters that have to be trained.

The predictive capability of a classification model strongly depends on the

quality of the labels of the training data. In general, labels for medical imaging

tasks require experienced physicians. Consequentially, the assigned labels reflect

the experience and awareness of the respective physician. This dependency is

one of the main reasons for a high interobserver or interrater variability in many

medical imaging problems [99] [100]. One solution to this problem is to involve

multiple raters and perform a majority vote on the labels. However, this is

often not feasible due to financial constraints. Additionally, the quality of labels

depends also on a proper problem formulation. Figuratively, if the label is the

answer, then its quality depends also on the quality of the question. For example,

if the rater must decide whether there is a cat or a dog in the image, the answer

and thus the assigned label will most likely be appropriate. However, if the

rater has to describe what is shown in the image, the quality of the labels may
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suffer severely, with respect to the binary classification task of cats and dogs.

Even if the task is formulated very specific, the resulting labels in the previous

example may be ambiguous, if something else than a cat or a dog is present in the

image. Labels for classification tasks applied in medical imaging are often not

trivial. Depending on the application, a robust distinction between “healthy”

and “diseased” may simply be infeasible. The intuitive solution is to increase

the number of classes, with the intention to better represent the reality. But by

adding intermediate classes or different grades of the disease, the classification

problem can become more complicated. First, this approach reduces the number

of examples per class, with the resulting problems as described before. Second,

the patients are often not uniformly distributed over the different classes. Classes,

which are significantly over- or underrepresented, can introduce severe biases into

the classification model [101] [102]. Although there are approaches to correct for

such a bias, the classes and their distribution should already be considered during

the design of the trial. An increasing finer granularity of the classes also increases

the likelihood of a high interobserver or interrater variability since boundaries

between certain degrees or grades of a disease can be fluent.

The data set in this study suffers from both problems. Aggravatingly, the

disease assignment was done prior to the imaging procedure. Since the data

set originates from a study with a different problem, the only disease-related

label that is available is the patient’s primary disease during the enrollment of

the study. Thus, these labels may correlate with the ground truth, but do not

necessarily represent the ground truth. Not only is this impairing the predictive

performance of a classification model, it is also limiting the assessment of the

performance itself.

A different problem that arises in classification tasks is the understanding of

the model’s decision. A classification model can achieve statistically high per-

formance, but for the application in Medical Imaging, it is often a requirement
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to have plausible or traceable explanations for the individual classification. It is

expected, that a model makes predictions or classifications based on medically

relevant image features, just as an experienced human rater would do. The so-

called Clever Hans phenomenon [103] is generally not desired and can lead to

classifications based on background artifacts or left-over captions in the image

itself [104]. Having an explainable classification does not only assure the correct-

ness of an individual classification, it can furthermore help to gain insights into

the data. As stated in the introduction of this thesis, FOI is a relatively new

method that has been established in the research of inflammatory diseases only

recently. Hence, the characteristic and distinctive phenotypes of these diseases

are not fully understood at this point. Having a reliable, explainable classification

model can assist in gaining new insights in this field.

This chapter describes an extension of the unsupervised learning approach

presented in the previous chapter. The here proposed approach essentially uses

the low-dimensional latent space to build a classifier. This way, the ratio be-

tween the dimensionality and the number of data points becomes more favorable.

However, this alone is not reducing the problem of ambiguous labels. But since

the VAE reduces the dimensionality drastically, it is possible to build a classi-

fier for specific subgroups. Hence, this approach may also be considered as a

semi-supervised learning approach. Although the initial situation with respect to

data-availability and data quality may seem limited as described above, a suffi-

ciently performing model can be used for further analyses. Assuming the model

has learned the features that distinguish the chosen subgroups, it can be used to

explain its decision and understand these features.

3.1.1 Related Work

As already introduced, the classification of medical images and images in general

has been researched over the past decades and solved for many problems. Given
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reliable target values, transfer learning approaches can lead to well-performing

classification models under low data-availability [44]. However, so-called semi-

supervised VAEs have been investigated recently for image classification [105]

[106] [107]. The architecture of the VAE in these approaches is comparable to the

here proposed approach. The extensions for the classification task are employed

using an additional fully connected layer [106], a Support Vector Machine [105],

or predefined class centroids [107]. In summary, these approaches achieve higher

classification performance compared to supervised CNNs like GoogLeNet with

fewer data. With more data used for training, the supervised VAE approaches

are outperformed.

3.2 Methods & Experiments

3.2.1 Extending the VAE for Classification

The first approach is an extension of the Neural Network of the VAE. Figure

20 illustrates three approaches that extend the VAE for classification purposes.

After successful training of the VAE, the decoder is discarded, and the sampling

layer is removed from the encoder. The truncated encoder model is then extended

by a Global Average Pooling (GAP) layer and an additional fully connected clas-

sification layer with two output nodes, using a Softmax activation to emit class

probabilities. The spatially resolved features from the last convolutions are re-

duced through the GAP layer to a single feature vector. This has been proven to

be very effective for classification tasks [65]. This approach (denoted VAE-GAP)

aims to build a model that is sensitive to the presence of image features from the

convolutional layers.

In an alternative approach (denoted VAE-FC) the encoder is not truncated,

and the classification layer is appended after the sampling layer. The motivation

behind this approach is to make use of the learned latent space representations,
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which are the essential image features including their abstract spatial information.

In both approaches, the previously trained weights are frozen, and only the

weights of the additional classification layer are trained. Although it is possible to

include the classification layer in the primary model und train it simultaneously

with the VAE, it is not feasible here due to the limited availability of labels. The

training in two phases simplifies the focus on subgroups. In the first step, the VAE

is learning a general representation of hands in FOI. Here the full potential of

the data set is used, although it is already limited. While the focus on subgroups

may worsen the problem of data-availability, the number of parameters, that have

to be trained is reduced drastically, since only one layer has to be trained. Its

number of parameters depends only on the number of classes or subgroups and

the dimensionality of the latent space (VAE-FC) or the number of features from

the last convolutional layer (VAE-GAP).

The second approach (VAE-RF) is not an extension of the Neural Network of

the VAE itself, but implements a Random Forest based on the low-dimensional

representations. Random Forest does not belong to the group of Deep Neural

Networks, but it is a proven, powerful Machine Learning method, an ensemble

method based on decision trees [108] [109] [110]. Again, the training is performed

in two steps: Training of the VAE and training of the Random Forest model. An

advantage of the Random Forest is the so-called Feature Importance, that can be

computed. This may identify the important dimensions of the latent space, that

differ between the chosen subgroups.

3.2.2 Explaining Decisions

A robust, generalizing classifier can be identified through several accuracy metrics

and error estimates. In medical image analysis, however, the examining physician

(and the patient) are not only interested in the model’s classification or prediction.
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Figure 20: Architecture of the Classification Networks

(left) VAE-GAP (middle) VAE-FC (right) VAE-RF

3.2.2.1 Class Activation Maps

One way to understand the decision making of CNNs are Class Activation Maps

(CAM) [111]. CAM aims to represent the activation of a classification CNN for

a given class and a given input image. To achieve this, the activation output of

the last convolution (or pooling) layer of the network, which still contains spatial

information for each learned feature, is multiplied with the weight matrix w of

the fully connected classification layer. The CAM for a given input image and

class c is defined as

Mc(x, y) =
∑
k

wck fk(x, y)

where fk(x, y) is the output of the last convolution for the given input image

at feature k and spatial position (x, y). This weighted linear sum of the feature

maps from the convolutional output is upscaled to the original image size to

identify image regions, which generate the activation for the class c.
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3.2.2.2 Occlusion Maps

Occlusion Maps are a simple way to identify image regions, which are important

for a class prediction. Therefore, a small patch of the input image is occluded

by setting the intensity values to zero, the average intensity of the image, or

Gaussian noise. Then the occluded image is fed forward through the model and

the class probability is computed. This procedure is performed repeatedly by

sliding the patch over the complete image. For each position of the patch, the

change in probability is calculated and shown as a 2D heatmap. Important image

regions will show significantly lower probabilities for the respective class.

3.2.2.3 Local Interpretable Model-Agnostic Explanation

Local Interpretable Model-agnostic Explanations (LIME) [112] treat the model as

a black box. In contrast to Occlusion Maps the model’s prediction is evaluated

based on permutations of a given input image. Therefore the image is over-

segmented into many segments using quickshift [113]. Random combinations of

these segments are classified using the model to compute the importance of each

segment. The importance is determined by computing the variation of the output

probability depending on the presence or absence of the image segment.

3.2.3 Control Experiment on synthetic Data

As stated at the beginning of this chapter, the success of a classification task

highly depends on the quality of data. To reveal the full potential of the ap-

proaches above, an additional control experiment is conducted. This experiment

follows the procedure as the other experiments, but is performed on synthetic

data, which is derived from the FOI data set. The synthetic data set aims to

represent an ideal scenario with two distinct groups. The synthetic “diseased”

group is characterized by a bright spot on the area between MCP joints and car-
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pus, representing a prominent inflammation of the metacarpal bones. The second

group lacks this distinct feature. The data set is generated by randomly selecting

50% of the patients and manually adding a synthetic inflammation template on

one of the patient’s hands. The template is a filled circle with a radius of 25

pixels, that has been blurred with a Gaussian filter with large standard deviation

(σ = 10). The signal intensity of the added template is scaled to 90% of the

brightest signal in the individual image, so it does not introduce an additional

scaling bias. The synthetic “healthy” group has not been altered.

This data set is an ideal control in many aspects. The respective labels can be

considered accurate since all of the “diseased” patients actually have the desired

disease pattern. Furthermore, all of the “healthy” patients lack this particular

disease pattern. The chosen template resembles an actual inflammatory joint.

However, the template is positioned between the MCP joints and carpal joints.

There are only the metacarpal bones and no joints that can be already inflam-

matory. This reduces the chance of false-positives in the “healthy” group.

3.3 Results

This section presents the results of the classification experiments. At first, the

above-introduced approaches are compared. These are extensions of the VAE

model from the previous chapter, using additional layers and a Random Forest.

Afterward, the classification is evaluated for different subgroups based on the

available clinical data for the patients. The labels that define these subgroups

vary in their quality and clinical relevance. The classification explanations are

then evaluated and compared. Finally, the results from the control experiment

with the synthetical FOI dataset are presented in terms of classification metrics

and explainability.
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3.3.1 VAE allows classification of subgroups

To investigate the classification capabilities of the approaches, different labels are

used target variables. Here the classification of Rheumatoid Arthritis (RA) and

Psoriasis (PsA/PsV) is investigated, as well as the sex, the Disease Activity Score

(DAS28), and the Tender Joint Count (TJC28) of the patients. For simplicity,

the continuous DAS28 and ordinal TJC28 have been binarized. The DAS28 is

cut-off at a score of 3.2, which is the defined threshold between “inactive” and

“moderate activity”. The TJC28 is grouped into “no tender joints” (TJC28 = 0)

and “tender joints present” (TJC28 ≥ 1). Since the original data are videos, the

classification capabilities are tested at different time points of the videos.

When extending the neural network of the encoder into a classification net-

work, the resulting model achieves an accuracy of up to 62% for the classification

of the two Psoriasis groups, depending on the chosen time point. However, when

using only the pre-trained Convolutional layers followed by a GAP and a classi-

fication layer (VAE-GAP), the accuracy is most of the time close to 50%. Figure

21 shows the classification statistics for both extended encoder approaches. The

VAE-GAP approach shows its highest accuracies during the early enhancement

phase. The VAE-FC approach shows comparable accuracies during the early en-

hancement phase at single time points but is significantly superior only during

the intermediate phase between 150s and 200s.

Using Random Forests, the prediction accuracy between the two Psoriasis

groups varies around 70% in dependency of the time point and can reach up to

73.8% after 70 seconds into the video. Figure 22 shows the prediction accuracy

of the VAE-RF model for selected time points and clinical parameters. The

clinical parameter that can best be distinguished is the sex of the patient, with an

accuracy of up to 87.84% after 100 seconds. The TJC28 can be classified as good

as Psoriasis. But in contrast to Psoriasis, here the accuracy is slowly increasing
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Figure 21: Accuracy over Time of the CNN models

The accuracy for the classification of PsV vs. PsA is shown for both methods, VAE-GAP (blue),

VAE-FC (orange) and VAE-RF (green) in dependency of the time point of the video. The bold line

denotes the mean, whereas the shaded area denotes the standard deviation. The VAE-RF achieves

overall the best results.

until it reaches its maximum of 62.8% at 90 seconds. The classification accuracy

of RA is very poor and does not exceed 60% at any time point. The accuracy for

the DAS28 peaks around the same time as the TJC28 and achieves an accuracy

of 62.9%, which is subsequently decreasing.

Figure 22: VAE-RF Statistics

The accuracy for the classification of clinical parameters using the VAE-RF model is shown in

dependency of the time point of the video. The bold line denotes the mean, whereas the shaded

area denotes the standard deviation.

When looking at the feature importance (FI) from the Random Forest in

Figure 23, only a small number of dimensions of the latent space are relevant for

each of the classification tasks. The interpretation of each FI for each clinical
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parameter is not trivial. However, there are a few noticeable correlations. The

classification of DAS28 and TJC28 share their most important dimension. Also,

RA and TJC28 have a few important dimensions in common. However, the

patient’s sex seems to rely on more important dimensions, than the other clinical

parameters.
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Figure 23: Random Forest Feature Importance

Random Forest Feature Importance for the five classification tasks. The classifications of clinically

relevant labels share their most important dimensions with each other. The classification of the

patient’s sex is made by the shape of the hand and relies on a different set of dimensions.

3.3.2 Classifications can be explained

Figure 24 shows the computed Occlusion Maps and LIME results for two example

patients from the two Psoriasis groups. Both patients are classified correctly into

PsV and PsA by the VAE-RF model. The Occlusion Maps reveal that almost

all parts of the hand decrease the probability of a PsA classification (blue areas)

in the PsV patient. The PsA patient shows mostly neutral regions. The area of

the index fingers and the thumbs, which appear relatively bright in the original

image, favor the PsA classification (red areas). The results from LIME indicate

mostly regions that favor a PsV classification (blue) in the PsV patient’s hands.

However, a few regions around the index finger on the left hand seem to favor a

PsA classification. Most parts of the hands of the PsA patient show only weak
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tendencies towards any classification. Only the thumb of the right hand appears

to be strongly indicating a PsA classification.
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Figure 24: Classification Explanation

Classification Explanation using Occlusion Maps and LIME on images from a PsV (left) and PsA

(right) patient. The original image is shown in the top. The Occlusion Maps (center) and LIME

(bottom) indicate healthy-favoring regions in blue and disease-favoring regions in red.

3.3.3 Control Experiment confirms Feasibility of Pipeline

When repeating the experiments above with the synthetic data set, the classifica-

tion with the trained encoder and subsequent Random Forest performs the best
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in terms of accuracy (96.50 ± 0.30, mean±standard deviation), area under the

curve (AUC: 99.63 ± 0.04), and false-positive rate (FPR: 5.05 ± 0.57). Only its

false-negative rate (FNR: 1.95± 0.35) is slightly outperformed by the VAE-GAP

approach (1.55 ± 0.15). The VAE-FC approach achieves the worst performance

in all four metrics (Accuracy: 93.65± 0.55, AUC: 98.55± 0.28, FNR: 3.55± 1.54,

FPR: 9.15 ± 1.79). However, all approaches achieve better results on the syn-

thetic data set than on the original FOI data set. The complete overview of

classification metrics for all three approaches is shown in Figure 25.
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Figure 25: Classification Metrics for the Control Experiment

The classification performance measured in accuracy, ROC area under the curve, false-negative rate,

and false-positive rate (from left to right) for the three classification approaches. All approaches

use the encoder of the trained VAE with different extensions. VAE-GAP uses only the Convolution

layers followed by a Global Average Pooling layer and a fully connected classification layer, VAE-FC

uses the full encoder with a subsequent a fully connected classification layer, and the VAE-RF trains

a Random Forest based on the latent space representation from the encoder.

The classification explanations for the control experiment are shown in Figure

26 for two randomly selected cases. Both methods, Occlusion Maps and LIME,

mark the area of the inserted template of the “diseased” patient as highly fa-

voring the “diseased” classification. The “healthy” patient’s Occlusion Map is

mostly covered in blue, suggesting that most parts of the hands are not favoring
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a “diseased” classification. However, the explanation with LIME suggests large

areas of the hands as “diseased”-favoring. In contrast to the Occlusion Maps,

the explanation maps computed with LIME indicate in both patients, that some

parts of the image background contribute to the “healthy” classification, while

other parts contribute to a “diseased” classification. In the few cases where the

prediction is incorrect, the predicted probabilities are near the 50% threshold. An

example with two failure cases and corresponding Occlusion Maps can be found

in the Appendix. The example with a false-positive prediction shows a pattern

that resembles the inflammation template, although it has not been inserted.
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Figure 26: Classification Explanations for the Control Experiment

Classification Explanation using Occlusion Maps (center row) and LIME (bottom row) on images

from a “healthy” (left) and “diseased” (right) patient. The inserted template for the synthetic

“diseased” group can be seen on the left hand of the right patient.

3.4 Discussion

The here achieved classification accuracies of RA and PsA vary between 60% and

80%. Compared to other binary classification tasks, where accuracies close to

100% are not unusual, these values are not competitive at first sight. The success

of a classification task depends on multiple factors, before the actual fitting of
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the model. First, the assigned labels in the data set must be correct. Second, the

desired difference must be present in the data. As introduced at the beginning

of this chapter, the quality of the assigned labels may be the main cause for

the comparatively low performance. It is unknown how reliable the assigned

diagnoses for each patient are. Furthermore, it is unclear how strong the actual

difference in the images is. This is underlined by the fact that the VAE-RF model

achieves a very good accuracy when trained on the target variable sex. While the

categorization into the different diagnoses can be ambiguous and suffers a high

inter-rater variability, the definition of sex is assumed to be less erroneous.

One observation from analysis of the feature importance is that the classifi-

cation of the patient’s sex mostly relies on distinct latent space dimensions than

those of the other clinical parameters. The classifications of RA, PS, DAS28, and

TJC28 are expected to be based mainly on their signal distributions since they

are all intended to separate patients with and without inflammatory joints. In

contrast, it can be assumed that the classification of the patient’s sex is made

only by the size and shape of the hands. This is supported by the different av-

erage body weights of male and female patients, which may affect the size and

shape of their hands. A problem is the comparison of the feature importance for

each clinical parameter. With an increasing number of clinical parameters and

latent space dimensions, the task becomes too exhausting for a manual or visual

inspection. A further improvement could be a correlation analysis or a hierar-

chical clustering to identify common important features and clinical parameters

with similar phenotypes.

The classification explanations with Occlusion Maps and LIME deliver rea-

sonable explanations of the Psoriasis classifications. The two methods do not give

the same results, but the interpretations of both are also not conflicting. The in-

terpretations of the explanations seem generally plausible. Areas, which favor a

PsA classification, seem to correlate with relatively higher signal intensities in
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the input images. This agrees with the defining, distinguishing characteristic of

the two Psoriasis groups. As introduced in the first chapter, it can be assumed

that PsA patients have inflammatory joints and thus higher signal intensities in

the finger.

The control experiment with the synthetical data set confirms the feasibility

of the analysis pipeline under ideal conditions. As introduced at the beginning

of this chapter, the synthetical data set has accurate labels that reflect the de-

sired disease pattern. The classification experiment achieves very high accuracies

with low false positive and false-negative rates. This highlights the importance

of data quality. The overall tendencies from the previous experiments are con-

firmed, the combined approach of the VAE’s encoder with subsequent Random

Forest achieves the best results. An even better classification performance can be

achieved with further tuning of the hyperparameters. However, this tuning was

omitted, and training was performed with the same parameters as in the previous

experiments in order to have comparable results. Further optimization of these

parameters might also reduce the number of false predictions since their predicted

probabilities are close to the 50% threshold. Without further optimization, either

false-positives or false-negatives can be reduced by adjusting this threshold.

But based on this classification, interpretable and plausible explanations can

be computed using Occlusion Maps. These highlight the area of the inserted

template clearly. The explanation generated by LIME does not provide contra-

dicting results, but their interpretation is less straightforward since they implicate

importance in parts of the background. This effect can also be seen in the ex-

periments with the original FOI data and may come from the fact that random

combinations of image segments are combined and tested.
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4
Data-driven Decomposition of

Time-resolved Disease Pattern

4.1 Problem Formulation

The previous two chapters present approaches for exploration, summarization,

and classification of medical images without considering time. Some diseases

may differ only in their temporal behavior, and the underlying dynamical system

may be unknown, complex, and non-linear.

Research of inflammatory diseases using FOI is very basic to date. As men-

tioned in the previous chapter, the analysis of the FOI data is performed manually.

The influence of the time component of the data is mostly neglected. Either the

individual frames are summed up entirely or within the three defined phases of
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signal distribution. Only a few studies perform a time-dependent analysis of the

image data [114] [115]. However, these approaches only measure signal intensities

of manually defined regions (e.g., finger joints) or compute descriptive statistics

(e.g., average and maximum signal intensity) for each frame and plot these. An

in-depth analysis of the underlying dynamics or relations between features and

time is not performed.

There are several studies that apply methods from the field of Dynamical

Systems on time-resolved medical imaging data. Recently, Casorso et al. [116]

have applied the eigenmodes of autoregressive models [117] to functional MRI

(fMRI) data, by comparing the fMRI data of brains in resting state versus brains

under motor-task conditions. This approach is able to reveal motor areas, that

are not found with classical methods. Kunert-Graf et al. [118] use Dynamic Mode

Decomposition and compare the resulting modes between individual patients as

well as groups of patients to reveal resting state networks in fMRI data.

This chapter introduces a new approach, which approximates the underlying

dynamics with a linear operator in the low-dimensional latent space. The major

extension to the previous approaches is the usage of two VAEs. The two VAEs

each translate a frame at time point t and t + 1, respectively, into latent space.

Additionally, a linear operator aims to predict the latent space representation

from t to t+1. The introduction of a temporal dependency is aiming to regularize

the latent space. This enforces the dynamical behavior to be linear in latent

space. After successful training of the model, this linear operator can be used

for further analyses. However, in contrast to other studies and practices, a single

model and thus a single operator is trained. While this general approach of finding

a linear operator, that describes the temporal behavior, is quite common, it is

usually applied to data from a single experiment. This procedure is useful, when a

manageable amount of experiments is analyzed and compared. In fluid dynamics,

this procedure can be used to analyze the airflow around a given structure and
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compare the airflow behavior in dependency of the modifications of that structure.

Given the number of cases and the poor quality of clinical labels in the FOI

data set, the here presented procedure does not compare the characteristics of

individual operators. It rather compares the individual deviations from the global

linear operator. Furthermore, established methods are compared with the here

presented approach. The proposed new architecture aims to solve the problem

of finding a linear operator for time series propagation. The approach aims to

achieve this by simultaneously solve the problem of learning a low-dimensional

space in which this linear operator works well.

4.1.1 Related Work

Dynamical systems can be analyzed by a variety of methods such as Dynamic

Mode Decomposition and its derivatives [119] [120]. However, this thesis focuses

on data-driven approaches using Neural Networks. The combination of Neural

Networks and Koopman operators has recently been investigated with time-lagged

autoencoders or their derivatives [121] [122]. Time-lagged autoencoders extend

the framework of autoencoders for time series such that for a given data point

at time point t the succeeding data point at t + 1 is predicted. Lusch et al.

[122] wrap the Koopman operator into an auxiliary network, that parametrizes

continuous frequency spectra. Instead of approximating the Koopman operator,

the auxiliary network approximates only the eigenfunctions of the hypothetical

operator. The VAMPnet, proposed by Mardt et al. [121], aims to approximate

a Markov State Model (MSM). This is realized by appending a Softmax layer

to the encoder and thus encoding a state probability vector. By applying the

variational approach for Markov processes (VAMP) and the derived VAMP-2

score, VAMPnets can be trained without a decoder network and thus without

reconstruction loss. This approach is similar to a Deep Canonical Correlation

Analysis (DCCA), where two non-linear functions in the form of neural networks
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are learned, whose representations are highly linearly correlated.

4.2 Linear Time Evolution Operators

In a variety of research areas, such as engineering and physics, the understanding

of dynamical systems plays an important role. The behavior of such dynamical

systems can be chaotic, non-linear, non-deterministic, or just unknown. While

there are many different approaches to analyze these systems, they are often

approximated using low-dimensional linear time evolution operators. A common

example of such an operator is the transition matrix P of a Markov State Model

(MSM). This operator propagates a state probability vector one time step further.

By decomposing P into its eigenvalues and eigenvectors, stable and meta-stable

distributions can be revealed. The application of MSMs has been successfully

demonstrated for many problems including conformational dynamics. In the

latter, MSMs have also been combined with Deep Neural Networks. Recently,

Koopman operators have been combined with Deep Neural Networks to tackle

similar problems. In contrast to MSMs, Koopman operators do not propagate

state probabilities. Instead, they live in an observable space. This chapter aims

to make use of the idea behind the Koopman Operator Theory by including a

linear operator for time evolution into the VAE framework.

4.2.1 Koopman Operator Theory

The dynamics of dynamical systems are usually time-continuous processes. How-

ever, measurements of these systems happen mostly in discrete time steps. Hence,

xt+1 = φ (xt)

describes the evolution of the state x ∈ Rn from time point t one step to t+1.

The dynamics of φ are usually high-dimensional and non-linear for real-world
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problems. Additionally, φ itself is usually unknown. The Koopman Operator

Theory states that a dynamical system can be approximated linearly if transferred

to an infinite-dimensional space [123]:

Kf (x) = f (φ (x)) = (f ◦ φ)(x)

Thus, the Koopman Operator K can be used to evolve a system’s observables

in time:

f (xt+1) = Kf(xt)

In theory, f can be any function in L∞. However, a low-dimensional dis-

cretization of K can be approximated with a corresponding f . If such a linear

operator K̂ can be estimated with low error, it can be used for predicting or un-

derstanding time series. Additionally, f can be represented as a Neural Network,

whose weights are chosen such that K̂ approximates K well enough. Due to

the high dimensionality and the resulting requirement for high data-availability

and high computational power, the approximation of such an operator has be-

come feasible only recently. Alternative approaches to approximate Koopman

operators are Dynamic Mode Decomposition and its derivatives [119] [120].

One way to interpret the dynamics is the decomposition of the linear operator

into its eigenvalues and eigenfunctions of this operator [124] [125]. This spectral

analysis can reveal the effects of different frequencies and is suitable for station-

ary, recurring and time-reversible processes. However, if the underlying process is

assumed to be non-reversible, the Schur decomposition has been proposed as an

alternative [126], if the matrix has the properties of a stochastic matrix. Alterna-

tively, a singular value decomposition (SVD) is suggested [127] [128]. In general,

the SVD of a (m× n) matrix M is defined as follows:

M = UΣV ∗
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The diagonal entries of the matrix Σ contain the singular values, which corre-

spond to the eigenvalues. They are the square roots of the non-zero eigenvalues

of both MM∗ and M∗M . The (m×m) matrix U and the (n× n) matrix V ∗

contain the left- and right-singular vectors, respectively. These singular vectors

form a set of orthonormal vectors or basis vectors. In contrast to an eigenvalue

decomposition, the SVD will result in real-valued singular values and vectors, if

the matrix M is real-valued, which makes the subsequent analysis more man-

ageable. For simplicity, the singular values are assumed to be already sorted in

descending order in this chapter. The singular vectors with large singular values

are denoted dominant singular vectors.

4.3 Methods & Experiments

In order to use a linear operator like the Koopman Operator within the VAE

framework, the architecture has to be extended. Essentially, two copies of the

VAE for the time points t and t + 1, respectively, are connected in latent space.

Figure 27 shows the extended architecture. The encoder of the VAE is repre-

senting the function f in the Koopman equation. The transfer operator K̂ is

implemented as a fully connected layer. In contrast to regular practice in neural

networks, the bias term is set to zero, and no activation function is used. This

layer is attached to the latent space representation yt of the input image xt, which

is generated by the encoder. The output ŷt+1 estimates the latent space represen-

tation yt+1 of the succeeding frame xt+1. The loss function is extended by adding

the error of the estimated ŷt+1 and the actual yt+1 from the encoder output of

xt+1:

LossK =
∥∥∥K̂f(xt)− f(xt+1)

∥∥∥2

2
=
∥∥∥K̂yt − yt+1

∥∥∥2

2
= ‖ŷt+1 − yt+1‖2

2

It is crucial that the two copies of the VAE share the same weights. Otherwise,
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the function f in the Koopman equation would be different on both sides of

the equation. It is noteworthy, that this approach of shared VAE weights does

not double the number of parameters that must be optimized. Only the new

parameters of the linear operator have to be fitted additionally. This increases

the number of parameters only by the squared number of latent space dimensions.

Thus, the increase in computational effort is manageable.

In this chapter, two experiments are conducted to evaluate the approach. The

general procedure for these experiments begins with the training of the extended

model (here denoted: Koopman-VAE) on the time series. After the model has

converged to a low error level, the weights of the linear operator, which represent

the transfer operatorK, can be analyzed. The underlying dynamics are computed

by evaluating the eigenfunctions of K on the trajectories in latent space.
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Figure 27: Architecture of the Koopman-VAE

The architecture of the Koopman-VAE is a combination of two VAEs which are interconnected in

latent space by a fully connected layer. The first VAE handles the data at time point t, whereas the

second VAE handles the succeeding time point t+ 1. The weight of the additional layer represents

the linear operator and propagates the latent space representation from the first to the second time

point.

Two experiments are conducted, one with known dynamical behavior, one

71



with unknown. First, the Lorenz system will be used. Here the dynamics are

known, well described, and previously analyzed with different methods. The

second experiment will be performed on the FOI data from the previous chapters.

Here, the underlying dynamics are unknown. However, the results from the

previous chapters about this particular data set and the results from this chapter

about the method from the first experiment may help to evaluate the results.

4.3.1 Lorenz System

To validate the approach, the first experiment is performed with a toy data set,

where the underlying dynamics are known. The Lorenz system is a non-linear

system of ordinary differential equations with chaotic behavior. It is defined as

follows:

dx

dt
= a (y − x)

dy

dt
= x (b− z)− y

dz

dt
= xy − cz

With the constants set to a = 10, b = 28, and c = 8
3 the system shows its

known behavior with two attractors. Estimations of the dynamical properties

using linear approximations have successfully been applied by employing DMD

and SINDy [129] [130] [131].

Here, the Lorenz system is realized as a moving filled circle on an image

plane. The trajectory of this circle is given by the (x, z)-coordinates of the Lorenz

system, which represent the horizontal and vertical position on the image plane,

respectively. Figure 28 shows a single frame together with the full trajectory of

the circle. The system is simulated for 500 time points, and the trajectory is

translated into image frames. Then the Koopman-VAE model is trained, and the

dynamics are computed. Additionally, the trajectory and the signal intensity of
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the generated frames are distorted with Gaussian noise of low variance (N(µ =

0, σ = 1) and N(µ = 0, σ = 0.02), respectively).

This chapter aims to show that the combination of a VAE with a linear op-

erator for propagation in time is feasible. Therefore, a detailed hyperparameter

evaluation is omitted. A latent space dimensionality of eight has been proven to

be good enough for this purpose and is used for the experiment here.
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Figure 28: Trajectory of the Lorenz-System

The Lorenz system is here realized as an image problem. The computed trajectory is projected on

the image plane. The position at each time point is realized as a filled circle moving along the

trajectory.

4.3.2 FOI Data

The second experiment aims to discover the underlying dynamics of FOI data.

In contrast to the previous example, the dynamic behavior is unknown. Here,

the Koopman-VAE is trained on the frames of the FOI examination. The model

is trained on the whole training set of patients. The resulting operator K and

its eigen- and singular value decomposition are then used to analyze the system

in general, and to evaluate the individual dynamics of each patient’s time series.

These individual dynamics can then be aggregated by different clinical parame-

ters, like the diagnosed disease, in order to understand the effect of these factors
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on the dynamical behavior.

4.4 Results

This section shows the results of the previously introduced experiments. These

aim to show the capabilities of the Koopman-VAE, which consists of two identical

VAE models, that are joined with a linear operator in latent space. The analy-

sis of the trained Koopman-VAE model on the Lorenz system is presented. In

accordance with the result sections of the previous chapters, the reconstruction

quality is elaborated. Subsequently, the results from the eigenvalue and singu-

lar value decomposition are shown and compared with the original data. The

analysis of the FOI data is following the same scheme. However, due to a miss-

ing ground truth of the dynamics, a comparison with original coordinates is not

possible. Instead, the revealed dynamics are compared between subgroups of pa-

tients. Furthermore, it is evaluated whether the transformations with eigen- and

singular vectors enhance the classification abilities of the method.

The following notation is used: LS-n denotes the n-th dimension of the la-

tent space trajectory. EV-n denotes the evaluation of the n-th eigenvector on the

latent space trajectory, beginning with EV-0, which originates from the domi-

nant eigenvector. Analogously, SV-n denotes the evaluations of the left singular

vectors. The eigenvectors and singular vectors are evaluated on the latent space

trajectories by using the dot product.

4.4.1 Koopman-VAE learns Lorenz System

As in the second and third chapters, also the extended model is able to recon-

struct the input images with high similarity. The mean SSIM is 0.89, and the

pixel-wise Pearson correlation is 0.85. The visual analysis of the reconstruction

generally shows soft edges compared to the original image. Figure 29 shows the
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reconstructions of the full circle at selected positions. The quality of the recon-

struction varies with the position of the circle in the frame. These are positions

at which the circle is moving with higher velocities.
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Figure 29: Reconstructions of the Lorenz System Frames

(top) Input frames (bottom) corresponding reconstructions by the VAE.

The latent space representations of the encoded Lorenz System are shown in

dependency of the original coordinates in Figure 30, without considering time.

Some dimensions correlate strongly with either the horizontal or vertical position

(X- and Y-coordinate, respectively). Some dimensions correlate only partially.

The horizontal position shows the strongest correlation with the second latent

space dimension (LS-1, r=-0.79), whereas the vertical position correlates the most

with LS-4 (r=-0.88). Besides apparent linear correlations, some latent space

dimensions show a circular, almost spiral-like pattern (e.g., X vs. LS-7 and Y vs.

LS-1).

Figure 31 compares the eigenvalues and singular values of the linear operator

for the Lorenz system. The eigenvalues range between 1.014 and 0.903. Four

eigenvalues are real-valued, the other are complex conjugates. All eigenvalues are

close to the unit circle, except for the smallest one. Thus, their eigenvectors may

represent metastable points in the latent space. The complex eigenvalues indicate

a non-reversible process.

The singular values are distributed in a broader range, with a larger gap
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Figure 30: Latent Space representations of the Lorenz System

Relative horizontal (top) and vertical (bottom) position of the circle versus the individual dimensions

of the latent space representation. The black line represents a linear regression, the correlation

coefficient is annotated in the top right of each plot.

between the largest and second-largest singular values. Furthermore, the two

smallest singular values are slightly detached, but less than the dominant singular

value.
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Figure 31: Eigenvalues and Singular Values

Eigenvalues (left) and Singular Values (right) of the linear operator that was trained on the Lorenz

system.

The eigenvectors and their evaluation on the latent space trajectory are shown

in Figure 32. Generally, the eigenvector evaluations show similar characteristics,

each with recurring a pattern. Only the evaluations of the last eigenvector (EV-7)

has a visually different pattern compared to the others. EV-0 and EV-4 reveal

nearly identical temporal behavior.

Figure 33 shows the results from the singular value decomposition analogously

to the results from the eigenvalue decomposition. In contrast to the evaluations
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Figure 32: Eigenvalue Decomposition of the Lorenz System

Eigenvectors (blue: real part, orange: imaginary part) and their evaluation on the latent space

representation of the Lorenz system (red, only real part shown).

of the eigenvectors on the latent space trajectory, each singular vector evaluation

results in a unique temporal behavior with recurring patterns.

To validate the results from the decompositions, Figure 34 compares the re-

sults of the EVD and SVD with the original coordinates. Since the here used

videos are a 2D projection of the Lorenz system, the exact position is known

from the simulation. The original trajectory of X-Y-coordinates can be com-
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Figure 33: Singular Value Decomposition of the Lorenz System

Left and right singular vectors (left and center column, respectively) and the evaluation on the latent

space representation of the Lorenz system (red).

pared with the trajectories in latent space as well as in the transformed spaces

from the EVD and SVD. The absolute Pearson correlation coefficient is used,

since a strong negative correlation may reveal the original coordinates as well,

just with a different sign.

A brief visual analysis reveals that the five most correlating trajectories, in

fact, resemble the X-coordinate. All shown trajectories have sharp spikes around
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time point 20, which are not present in the original trajectory. The horizontal

position correlates most with EV-7, the evaluation of the eigenvector with the

lowest eigenvalue (r=0.856). The dominant eigenvector generates the trajectory

with the second-highest correlation (EV-0, r=-0.842). It also correlates strongly

with SV-7 (r=0.823), which originates from the singular vector with the lowest

singular value. The trajectory from the dominant singular vector (SV-0) shows a

lower correlation of r=0.704 (see Appendix). The strongest correlation between

the horizontal position and a latent space dimension is given by LS-1 (r=0.796).
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Figure 34: Comparison of Decomposition Methods with the Original Data

Original horizontal coordinate (X) of the Lorenz system and the evaluations of single eigenvectors and

singular vectors, sorted by absolute correlation with the original coordinate (Top 5 only). Negative

correlating trajectories have been flipped for a better visual comparison. Positive and negative

correlations are indicated by the respective symbols behind the correlation coefficient. The full

comparison can be found in the Appendix.

4.4.2 Koopman-VAE reveals Dynamics in FOI Data

The Koopman-VAE model that is trained on the FOI data is analyzed analogously

to the model trained on the Lorenz system. Since the underlying dynamics are

unknown, there are no original coordinates to compare.

The trained Koopman-VAE model reconstructs the images in comparable

quality as the simple VAE model from the previous chapters. The average SSIM

and pixel-wise correlation are 0.94 and 0.92, respectively. Although the Koopman-

VAE has a more complex architecture compared to the initial VAE, the recon-
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structions are visually as good as in the second chapters. Thus, a comparative

figure like Figure 11 and Figure 29 is omitted here for brevity.

Figure 35 shows the eigenvalues and the singular values of the linear operator

trained on the FOI data. The lowest eigenvalue is 0.777, the largest is the complex

conjugate pair 1.007+/-0.002i. In total there are only 8 real-valued eigenvalues

and 21 complex conjugate pairs of eigenvalues. The majority of eigenvalues are

close to an absolute value of 1, only the last seven are a little distant to the unit

circle. The largest gap is between the second-lowest and lowest eigenvalue (0.823

and 0.777, respectively). The large number of complex eigenvalues indicates non-

reversibility.

The singular values range between 2.130 and 0.409. Both, the largest and the

lowest singular value are separated by a gap from the remaining 48 values. The

latter form a slowly decaying plateau between 1.259 and 0.659, that shows no

significant gaps.
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Figure 35: Eigen- and Singular Values for the FOI Data

Eigenvalues (left) and Singular Values of the linear operator that was trained on the FOI data

Figure 36 shows selected eigenvectors and their evaluation on the latent space

representations of the FOI data, colored by the Psoriasis label. The eigenvectors

are selected by their eigenvalues. The five highest and the five lowest are shown

for brevity, a full overview can be found in the Appendix. The videos have been

cropped in time for better comparison. Each video starts with the first frame
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where the ICG is present and ends after 200 seconds. The left part of Figure

36 shows that many of the eigenvectors have only a few distinct peaks in single

dimensions, with the remaining dimensions close to zero (e.g., dimension 31 in

the dominant eigenvector). The right part of Figure 36 shows that all evaluations

show most of their activity in the first 60 seconds. Later time points are slowly and

smoothly converging to zero. Two types of temporal behavior can be identified.

The first pattern characterizes the eigenvectors with high eigenvalues. Starting

at zero, the amplitude of the trajectories quickly increases in either a negative or

positive direction and then slowly converges back to zero. The second pattern

can be seen at the lowest eigenvalues. Here the amplitude initially diverges from

zero, subsequently returns and overshoots zero, and then slowly converges back

to zero.

When looking at the trajectories of the individual patients, there are only a few

patients that exhibit outlying dynamics, which do not match the general patterns.

Additionally, there are no visually significant differences between patients of the

PsV and PsA subgroups. Generally, the difference is the largest during the early

enhancement phase, approximately until time point 40. The average trajectories

for both subgroups differ the most in EV-49 (Figure 38, top).

Figure 37 shows the results of the singular value decomposition. Selected left

and right singular vectors are shown with their evaluation on the latent space

representations. The singular vectors are selected by their singular values. As

with the results from the EVD, only the five highest and the five lowest are shown,

and the full overview is in the Appendix.

Unlike the eigenvectors, only a few singular vectors are characterized by dis-

tinct peaks. As seen in the singular vector evaluations of the Lorenz system, a

variety of trajectory patterns can be seen in contrast to the eigenvector evalua-

tions. The trajectory patterns of the eigenvector evaluations can be found here

again, however, in different variations. SV-0 trajectories initially diverge from
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zero with a high amplitude until time point 10. Subsequently, the amplitude is

decaying exponentially.

The trajectories of each singular vector are generally less homogeneous and

show more outliers than those that are generated by the eigenvectors. While the

majority of trajectories appear smooth, some trajectories demonstrate rippled

temporal behavior. The differences between PsV and PsA are even smaller, com-

pared to the eigenvector evaluations. The visually most significant difference of

the average trajectories can be found in SV-47 (Figure 38, bottom), where PsV

patients have, on average, a lower amplitude.

As already introduced in this section, a ground truth for the underlying dy-

namics of the FOI data is not available. Hence, the classification performance is

evaluated using the transformations above. The same clinical parameters are used

as in the previous chapter. Figure 39 shows the classification accuracies based

on the trajectories in latent space and their transformations through eigenvectors

and singular vectors these clinical parameters. There are no significant changes

except for the label “Sex”, where the classification based on SV trajectories leads

to better accuracies. The eigenvector evaluation leads to lower accuracies. At the

time point of maximum accuracy based on LS trajectories (87.80%, SD: 1.35), the

accuracies based on SV and EV trajectories are 89.35% (SD: 1.24) and 79.20%

(SD: 2.06), respectively. However, the classification of PS, RA, and DAS28 based

on EV trajectories shows marginally better accuracies at later time points of the

FOI videos.
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Figure 36: Eigenvectors and their evaluation on the Latent Space trajectories

Eigenvectors (left) and their evaluation on the latent space trajectories (right). Shown are only the

eigenvectors with the five largest and the five smallest eigenvalues with their real and imaginary part

(blue, orange). The evaluations are colored by the Psoriasis group (PsV: green, PsA: red). The

averages for these groups are shown in dashed lines.
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Figure 37: Results of the SVD with FOI Data

Left and right singular vectors (left, center), and the evaluation of the left singular vectors on the

latent space trajectories (right). Shown are only the singular vectors with the five largest and the

five smallest singular. The evaluations are colored by the Psoriasis group (PsV: green, PsA: red).

The averages for these groups are shown in dashed lines.
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Figure 38: Evalutaion of EV-49 and SV-47 on the FOI Data

The evaluation of the least dominant eigenvector (EV-49, top) and the third least dominant singular

vector (SV-47, bottom) on the latent space trajectories. The evaluations are colored by the Psoriasis

group (PsV: green, PsA: red). The averages for these groups are shown in dashed lines.
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Figure 39: Classification on EV, SVD, LS

Average classification accuracies for five clinical parameters based on LS, EV, SV trajectories. Shaded

areas represent standard deviation. Note: The Y-axis of the Sex plot is scaled differently.

85



4.5 Discussion

This chapter has demonstrated the capabilities of the unsupervised learning ap-

proach to reveal underlying dynamics in video data. The combination of a Varia-

tional Autoencoder (VAE) with a linear evolution operator proves to be feasible.

The first experiment, which used the known Lorenz system to validate the re-

sults, successfully revealed the original coordinates of the system. Although the

full potential of the Koopman-VAE model on the Lorenz system was not aimed

to achieve here, the results seem plausible. Further optimization of the approach

is necessary to investigate the full potential. The dependency of hyperparameters

like the latent space dimensionality has not been investigated and may improve

the results. The lack of reconstruction quality at time points of high velocities of

the trajectory may come from underrepresentation since the moving circle spends

less time at these positions.

The dominant eigenvector of the linear operator is slightly larger than 1. This

may originate from numerical artifacts. The operator was found by optimizing a

large neural network with three different loss terms. Hence, it may not fulfill the

best numerical requirements. For example, there are negative entries, and neither

the rows nor the columns have unit norm. Improving the network architecture,

loss function may help as well as incorporating constraints.

The simple computation of the correlation coefficient is not the best way to

discover correlations in time series, as it does not account for lags and other effects.

However, given the low dimensionality, it is sufficient to sort the trajectories for

visual comparison.

In summary, the FOI-Experiment demonstrated plausible results. The pro-

posed Koopman-VAE model successfully learned and revealed the underlying dy-

namics of the FOI imaging application. Although the dynamical system and the

resulting trajectories have a substantially less complex temporal behavior com-
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pared to the Lorenz system, the results confirm the general applicability of the

approach, which is purely data-driven and without image analysis. A detailed

investigation of the approach’s capabilities to reveal the underlying dynamics of

the FOI data is still necessary. Like the experiment with the Lorenz system,

numerical artifacts may affect the quality of the analyses. Further optimization

of the hyperparameters and the neural network are necessary to reveal the full

potential of this approach, which was not the scope here.

The approach revealed that there are also differences between subgroups, al-

though they are not significant. Especially the SVD of the linear operator and

the transformation with singular vectors showed potential to reveal outliers. Tra-

jectories that demonstrated rippled temporal behavior in SV-3 in contrast to the

smooth majority of trajectories were later confirmed by manual inspection to

show pulsating signal intensities in the thumbs. Trajectories, where the ampli-

tude increased with a large delay, appeared to have a delayed injection of the

contrast fluid. However, a confirmation of the reasons for the deviating behavior

of the outliers was not possible due to missing documentation.

Due to the missing ground truth, it is not possible to compare the transformed

trajectories with the actual underlying dynamics. Hence, it is not possible to cor-

relate these trajectories comparable to the first experiment. Future experiments

should at least incorporate two subgroups with a known difference in their dy-

namical behavior. These experiments can potentially leverage the interpretation

of the eigenvectors and singular vectors, which is still outstanding. An intuitive

way for the interpretation of these vectors is the transformation back into the

image space using the VAE’s decoder. However, it is not guaranteed that these

vectors correspond to valid latent space representations of FOI images.

The classification based on the transformed latent space trajectories did not

lead to clinically relevant improvements. As already mentioned in the previous

chapter, the insufficient quality of labels may still play a significant role. Fur-
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thermore, it is unclear to which degree the diseases differ in their dynamics. The

only significant change can be observed at the classification of the patient’s sex.

Here, the SVD improved the classification accuracy slightly. This is unsurprising,

as a principal component analysis (PCA) is known to improve classification accu-

racies in some cases. A PCA is, in principle, an SVD of the data. The difference

here is that the SVD is performed on the linear operator, not on the latent space

trajectories. A speculative guess for the decreased performance of the EV tra-

jectories is that the EVD contains mostly information about the dynamics. This

is supported by the high correlation of EV trajectories in the first experiment

(Figure 34). If the main difference between female and male patients is the size

of the hands, which is constant during the imaging procedure, rather than the

dynamics, this would explain the decreased classification performance.

Future experiments may aim to train separate operators for the respective

subgroups. A comparison of eigenvalues and eigenvectors, as well as singular

values and vectors, may reveal the dynamical differences between those groups.

However, this would probably require more data of better quality.
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5
Summary, Discussion & Outlook

5.1 Summary

This thesis has introduced a new data-driven analysis pipeline for disease as-

sessment in time-resolved medical image data. The here presented approach

focuses on a Variational Autoencoder, which reduces the dimensionality of the

present data set by learning a latent space. This learned latent space enables

and facilitates subsequent analyses. Three of these possible analyses have been

demonstrated here.

First, subgroup analysis and data exploration have been proven to give feasible

results. The average latent space representation for clinically relevant subgroups

can be computed and decoded back into the image space. These feature-wise

averages are superior over the pixel-wise averages and result in visually pleasing,

89



interpretable images. The application of UMAP enables further investigation

of the latent space and reveals clusters of similar patients. When comparing

the latent space averages of subgroups, the differing dimensions can explain the

difference in the image space. Varying a single dimension of a latent space repre-

sentation and observing the effect on the decoded image can explain the feature

that this dimension encodes.

Second, classification with limited data-availability has successfully been de-

monstrated. Several approaches have been compared. The two-step approach,

that uses a Random Forest classifier on the latent space representations of the

trained VAE, has been proven to be very effective on the synthetic FOI data set,

and the actual FOI data with clinical target values. Additionally, this framework

allows for explainable classifications via Occlusion Maps.

Third, a linear approximation of the underlying dynamics of the time-resolved

data has been demonstrated. Two copies of the VAE have been joined with

an additional layer that represents an approximation of a Koopman operator.

Using the known Lorenz system, the Koopman-VAE has successfully revealed

the underlying dynamics. Furthermore, the approach has been used to reveal the

dynamics of time-resolved FOI data. This has enabled the discovery of patients

with deviating temporal behavior.

Generally, this thesis has investigated the conditions, which lead to a well-

trained model. The employment of a perceptual loss function improves the re-

construction quality significantly. It results in reconstructions that maintain the

visual features of the original input data. The pixel-wise mean squared error leads

to blurry reconstructions. The effect of weighing the Kullback-Leibler-Divergence

in the global loss function has been evaluated.

The here proposed, novel approach has successfully been implemented as soft-

ware prototype. This software is actively used by the project partner. It enables

their researchers to conduct own machine learning experiments and to develope
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explainable classification models for phenotypes of further diseases. Therefore,

new data is acquired by manual categorization. This is now possible with sub-

stantially lower effort, since only a small number of cases needs to be annotated.

Preliminary results show that tendosynovitis can be detected with approximately

90% accuracy.

5.2 Discussion

The here presented analysis pipeline enables data exploration, explainable image

classification, and approximation of the underlying dynamics. As introduced and

elaborated in the individual chapters, each of these tasks has been solved or

investigated before. However, this approach has investigated these tasks in the

context of medical imaging and its accompanying problems. As stated in the

previous chapters, these problems are mainly the limited data-availability, the

insufficient quality of target values, and the absence of ground truth.

5.2.1 Reduction of Dimensionality enables previously in-

feasible Analyses

The key element of the here presented approach is the drastic reduction of dimen-

sionality in combination with a weak reliance on labels. This is mainly realized via

unsupervised learning of the VAE. Here, all available image information is used

to learn a low-dimensional representation of the data, the latent space. With

more than 200 thousand pixels, each image of the FOI data set contains a lot

of information. But not the entire information is vital for the desired task. The

VAE compresses the information by finding common features and encoding only

the deviation of it. For example, each image shows two hands in a standard-

ized arrangement. In the image, this is represented with a few thousand pixels.

Whereas in the latent space, this can be encoded in only a few dimensions, that
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encode for the shape and size of the hands. Analogously, the signal distribution

of the contrast fluid is stored very detailedly in the image. This could potentially

be described with a few dimensions, that encode for the inflammatory joints or

disease pattern.

Ideally, each dimension of the latent space encodes for a distinct feature. This

disentanglement has not been fully achieved. But the different temporal vari-

ances in Figure 18 indicate, that only a few dimensions vary over the duration of

the video and encode for the signal distribution, while the constant dimensions

encode for the shape. To achieve the goal of disentanglement, the model can be

extended to incorporate for prior knowledge. One extension can be the addition

of a classification layer with sparsity promoting constraints or regularizations. In

combinations with labels that represent pre-computed image features or measure-

ments, this can enforce the VAE to encode these features in distinct dimensions

of the latent space. An extension, which does not require additional labels, can

be derived from the Koopman-VAE. Under the assumption, that shape and size

of the hands do not vary between two time steps of a video, the two VAE copies

can encode a common vector for these time-invariant features, and independent

vectors for the signal distribution at t and t + 1. Similar approaches, that also

use adversarial learning have been proposed recently [132].

The lack of disentangled dimensions may result in accurate average latent

space representations. Here, the averages have been computed without regard-

ing the manifold. Ideally, these computations incorporate Riemannian geometry.

This problem also occurs in so-called shape spaces. Although these erroneous av-

erage latent space representations can be decoded and result in valid reconstruc-

tions, it is not guaranteed that these represent the correct feature-wise average

image. The same problem applies to the eigenvectors and singular vectors, which

thus cannot be decoded reliably.
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5.2.2 Two-step Training simplifies explainable Classifica-

tion under limited Data Availability

A characteristic problem of medical imaging data that occurs in each chapter

is the insufficient quality of labels. This has been demonstrated successfully

with the classification experiment using the synthetic FOI data set. The ideal

condition of having accurate labels for two distinct classes has led to a well-

performing classifier. However, under ideal conditions, the classification problem

can be solved with less effort using a supervised classification network like the

GoogLeNet or ResNet. The here presented approach can reveal the quality of

the labels in early stages of the analysis, especially during the data exploration

using UMAP.

The here presented approach has demonstrated to enable classification expla-

nations. The explanations generated with LIME have not given fully interpretable

results. In contrast, the Occlusion Maps have provided intuitive and interpretable

explanations. This has been validated with the synthetic FOI data set, on which

the inserted inflammation templates have been highlighted correctly and inter-

pretable.

5.2.3 Underlying Dynamics can be revealed

As introduced in the previous chapter, there are more elaborate approaches to

analyze and reveal underlying dynamics. However, it has been shown here, that

a simple implementation of a linear operator can result in good approximations

of the dynamics. The original coordinates of the Lorenz system have been re-

vealed successfully. The FOI experiment lacks a ground truth for comparison,

but it has been possible to identify cases with outlying temporal behavior. This

has been possible through the decomposition of the linear operator into its eigen-

vectors and singular vectors. The approach further enables the comparison of
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the dynamics between subgroups. However, significant differences have not been

revealed. Beyond the missing ground truth for the dynamics, the approach suf-

fers from missing standardization of the data. As introduced before, the signal

intensities of the FOI data are not normalized without a bias. Additionally, the

temporal behavior is not normalized either. Besides the influences from the indi-

vidual conditions of the patients, that are subject of this research, the influx and

wash-out of the contrast fluid ICG is strongly dependent on body mass, heart

rate, blood pressure, and non-physiological factors.

The here chosen implementation of the linear operator is adapted from the

Koopman Operator Theory and approximated by minimizing the propagation

error. When comparing the approach with recent research on the numerical ap-

proximation of Koopman Operators, it becomes clear that the here found operator

may not fulfill all criteria of a Koopman Operator [133] [134]. Furthermore, the

linear operator has the same dimensionality as the latent space, and an accurate

modeling of the dynamics may require a higher dimensional operator.

5.3 Outlook

As already stated, the low-dimensional latent space representation enables a va-

riety of further analyses. Future research can investigate the computation of

disease networks. This would require a disentangled latent space, such that

diseases-irrelevant information can be excluded. In combination with a reason-

able distance metric, a network can be constructed that represents the variety

and relations between the individual inflammatory diseases and their grades of

severity. This network enables differential diagnoses. And in combination with

longitudinal studies, such a network can enable an unbiased therapy response

monitoring for individual patients. As stated in the individual discussions of the

previous chapters, the performance can potentially be improved through hyper-
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parameter optimization. This has been omitted to maintain comparable results.

Similarily, a sensitivity analysis needs to be performed. Here, only the effect of

the latent space size and the weight of the KL-loss have been investigated. Fur-

ther robustness has been enforced through the addition of noise to the input data.

Future work can further investigate the applicability of the approach on image

data-driven in other domains. The VAE can be used on microscopy images of

cancer cells to generate a phenotypic fingerprint of the cells, that describes the

signal distribution of fluorescent markers. The effect on this fingerprint can then

be observed in dependency of chemical treatment. Drug candidates that lead

to similar phenotypes can be identified by clustering their phenotype in the la-

tent space. Cell migration can be investigated with the proposed Koopman-VAE.

Videos of cells migrating in a synthetical scratch wound assay are a common way

to investigate angiogenesis and inter-cellular interactions [135] [136]. Different

migration behaviors can potentially be identified.
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Synthetical Data Classification Failures

Healthy (syn.)
 Disease-Probability: 0.540317

Diseased (syn.)
 Disease-Probability: 0.477827

Figure 40: Two example cases of the synthetical FOI dataset with false prediction

Two examples from the synthetical FOI dataset (top) and corresponding Occlusion Map (bottom).

The false-positive example (left) and the false-negative example both have probabilities for the

“diseased” class near the 50% threshold.
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Koopman-VAE

Full list of correlations (Lorenz)

0 50 100 150 200 250 300
Time Step

Am
pl

itu
de

X-Position
EV-7
r=0.857 (+)
EV-0
r=0.844 (-)
SV-7
r=0.824 (+)
LS-1
r=0.795 (-)
EV-4
r=0.757 (-)
SV-0
r=0.705 (+)
LS-5
r=0.622 (-)
LS-6
r=0.568 (+)
SV-2
r=0.429 (-)
LS-0
r=0.411 (-)
SV-3
r=0.405 (-)
SV-1
r=0.377 (+)
LS-7
r=0.376 (+)
LS-3
r=0.350 (+)
SV-6
r=0.249 (+)
SV-4
r=0.211 (+)
EV-1
r=0.193 (-)
EV-2
r=0.151 (+)
EV-3
r=0.151 (+)
LS-2
r=0.086 (+)
EV-5
r=0.040 (-)
EV-6
r=0.040 (-)
LS-4
r=0.026 (+)
SV-5
r=0.023 (+)

Figure 41: Full Comparison of Decomposition Methods with the Original Data (horizontal Compo-

nent)

Original horizontal coordinate (X) of the Lorenz system and the evaluations of single eigenvectors

and singular vectors, sorted by absolute correlation with the original coordinate. Negative correlating

trajectories have been flipped for a better visual comparison.
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0 50 100 150 200 250 300
Time Step

Am
pl

itu
de

Y-Position
EV-6
r=0.925 (+)
EV-5
r=0.925 (+)
EV-3
r=0.917 (-)
EV-2
r=0.917 (-)
LS-4
r=0.876 (-)
SV-6
r=0.831 (-)
LS-3
r=0.791 (+)
SV-2
r=0.755 (-)
LS-0
r=0.745 (+)
EV-1
r=0.734 (-)
SV-4
r=0.730 (+)
SV-3
r=0.648 (+)
SV-5
r=0.646 (-)
LS-7
r=0.547 (-)
SV-0
r=0.446 (-)
EV-4
r=0.405 (+)
LS-5
r=0.365 (-)
SV-1
r=0.297 (-)
LS-6
r=0.265 (-)
SV-7
r=0.261 (-)
EV-0
r=0.222 (+)
LS-2
r=0.166 (-)
LS-1
r=0.141 (+)
EV-7
r=0.025 (-)

Figure 42: Full Comparison of Decomposition Methods with the Original Data (vertical Component)

Original vertical coordinate (Y) of the Lorenz system and the evaluations of single eigenvectors and

singular vectors, sorted by absolute correlation with the original coordinate. Negative correlating

trajectories have been flipped for a better visual comparison.
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Full dynamics of EVD
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Figure 43: Eigenvectors and their evaluation on the Latent Space trajectories

Eigenvectors (left) and their evaluation on the latent space trajectories (right). Shown are the

eigenvectors with their real and imaginary part (blue, orange). The evaluations are colored by the

Psoriasis group (PsV: green, PsA: red). The averages for these groups are shown in dashed lines.
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Full dynamics of SVD
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Figure 44: Singular Vectors and their evaluation on the Latent Space trajectories

Left and right singular vectors (left, center), and the evaluation of the left singular vectors on the

latent space trajectories (right). The evaluations are colored by the Psoriasis group (PsV: green,

PsA: red). The averages for these groups are shown in dashed lines.
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