
PHYSICAL REVIEW RESEARCH 3, 023143 (2021)

Device-independent quantification of measurement incompatibility
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Incompatible measurements, i.e., measurements that cannot be simultaneously performed, are necessary to
observe nonlocal correlations. It is natural to ask, e.g., how incompatible the measurements have to be to achieve
a certain violation of a Bell inequality. In this paper, we provide the direct link between Bell nonlocality and
the quantification of measurement incompatibility. This includes quantifiers for both incompatible and genuine-
multipartite incompatible measurements. Our method straightforwardly generalizes to include constraints on the
system’s dimension (semi-device-independent approach) and on projective measurements, providing improved
bounds on incompatibility quantifiers, and to include the prepare-and-measure scenario.
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I. INTRODUCTION

One of the most intriguing phenomena in quantum theory
is that there exist physical quantities whose values cannot
be simultaneously obtained. The most celebrated example is
arguably the position and momentum of a particle, initially
formulated in terms of the uncertainty relation [1–3]. Such a
phenomenon, called measurement incompatibility (or simply
incompatibility), enables one to demonstrate several remark-
able quantum features such as quantum nonlocality [4,5],
quantum steering [6–8], and quantum contextuality [9–13]
(see Ref. [14], Refs. [15,16], and Refs. [17,18], respectively)
and provides a resource to many quantum information proto-
cols (see, e.g., Refs. [19–26]). In a more modern language,
incompatibility has been formulated as the nonexistence of a
joint measurement [27].

Nonlocality plays a central role in quantum information
(QI), more precisely, in the definition of device-independent
(DI) QI [5,28,29]: Without any characterization of the mea-
surement devices (e.g., measurement operators, states, and
system dimension) all information is encoded in P(a, b|x, y),
the probability of the outputs a, b given the measurement set-
tings x, y. Provided that P(a, b|x, y) is nonlocal, a surprisingly
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high variety of statements and QI protocols can be based
on such correlations: from quantum key distribution [28] to
entanglement detection [30], randomness certification [31],
verification of steerability [32–35], witnessing dimension of
quantum systems [36], and so on.

In this sense, a violation of a Bell inequality is also a
DI witness of incompatibility, as incompatible measurements
are necessary to observe it [14,37,38]. In this paper, we
address the quantitative question: How incompatible do the
underlying measurements have to be in order to observe a
certain quantum violation of a Bell inequality? A central
tool in our investigation is the notion of the moment ma-
trix, which has wide applications in the characterization of
quantum correlations and DI approaches [30,39–41]. Here, we
introduce the measurement moment matrix (MMM), which
allows us to quantify several quantities that are formulated
via semidefinite programming (SDP) [42] in terms of mea-
surement effects, such as incompatibility robustness [43–45],
genuine-multipartite incompatibility [46], and similar quanti-
ties [33,47,48].

Our results allows for investigations beyond the DI sce-
nario. In fact, due to its generality the idea of MMMs can
be straightforwardly extended to the semi-DI approach, i.e.,
where the dimension of the quantum system is assumed to be
known [49,50], to investigate the role of dimension constraints
or even nonprojectiveness in measurement incompatibility,
and it can be extended even to the prepare-and-measure sce-
nario.

II. INCOMPATIBLE MEASUREMENTS

Let us start by briefly reviewing the concept of mea-
surement incompatibility. Consider a quantum measurement
described by a positive-operator-valued measure (POVM)
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FIG. 1. Schematic representation of device-independent quan-
tification of measurement incompatibility. By performing mea-
surements on two distant particles and observing the correlations
P(a, b|x, y), we are able to estimate several measures of incom-
patibility among pairs, (1, 2), (1, 3), (2, 3), or triples, (1, 2, 3), or
genuine triplewise incompatibility among (1, 2, 3).

{EA
a|x}a for a given x, where the indices x ∈ X and a ∈ A label

the measurement settings and outcomes of the measurement,
respectively (Fig. 1). The operators EA

a|x, called effect opera-
tors, are positive semidefinite, i.e., EA

a|x � 0 ∀a, x, and satisfy
the normalization condition

∑
a EA

a|x = 1 ∀x. A collection of
POVMs {EA

a|x}a,x is called a measurement assemblage [51]. A
measurement assemblage is said to be compatible or jointly
measurable if it can be written as [52,53]

EA
a|x =

∑
λ

P(a|x, λ)Gλ ∀a, x, (1)

where {Gλ}λ is a valid POVM and P(a|x, λ) are non-negative
numbers such that

∑
a P(a|x, λ) = 1 for all x, λ. Physically,

joint measurability means that the statistic of each POVM in
the assemblage can be obtained by classically postprocessing
the statistic of a parent POVM {Gλ}λ, irrespective of the state.

Several incompatibility measures have been proposed in
the literature (see Ref. [54] for an overview). Here, we choose
the incompatibility robustness [43–45], defined as

IR
({

EA
a|x

})
: = min

{
t
∣∣ {(

EA
a|x + t · Na|x

)
/(1 + t )

}
a,x

is jointly measurable
}
, (2)

where the minimum is taken with respect to any arbitrary as-
semblage {Na|x}a,x. Here, IR is related to the minimum noise
necessary for {EA

a|x}a,x to become jointly measurable. From a
quantum information perspective, IR quantifies the advan-
tage that {EA

a|x}a,x provides with respect to jointly measurable
assemblages for a certain state-discrimination task [19–25].
Moreover, it can be efficiently computed via SDP [42,44]:

IR = min
{Gλ}

1

d

∑
λ

tr[Gλ] − 1

subject to Gλ � 0 ∀λ,
∑

λ

δa,λx Gλ � EA
a|x ∀a, x,

∑
λ

Gλ = 1

d

(∑
λ

tr[Gλ]

)
· 1, (3)

where λ := (λ1, λ2, . . . , λ|X |), λi ∈ A, encodes the determin-
istic strategies.

III. THE MEASUREMENT MOMENT MATRICES

As first noted by Moroder et al. [30], moment matrices
can be interpreted as the application of a completely positive
map to a (set of) positive operator(s), such as a quantum
state [30,39,40,55] or steering state ensembles [34,35]. Here,
we define the measurement moment matrices (MMMs) by
applying a completely positive map on POVMs

χ
[
EA

a|x
]

:=
∑

n

Kn
(
EA

a|x ⊗ 1B
)
K†

n ∀a, x, (4)

where the map is obtained by first embedding the system A
in the tensor product with a second identical system B, i.e.,
EA

a|x �→ EA
a|x ⊗ 1B, which is a completely positive map, and

then applying the Kraus operators Kn : AB → AB defined as
Kn := ∑

i |i〉ABAB〈n|(�AB)
1
2 Si, with {|i〉}i and {|n〉}n being the

orthonormal bases for the output space AB and the input space
AB, respectively, and {Si} being a sequence of operators to be
specified later. In this way, one obtains a moment matrix

χ�AB,{Si}
[
EA

a|x
] =

∑
i j

|i〉〈 j|tr[Si
(
EA

a|x ⊗ 1B)
S†

j �
AB]

(5)

for each a, x. In what follows, we simply use the symbol
χ [EA

a|x], or even χ , when there is no risk of confusion. The
MMM χ is a type of localizing matrix, proposed in the context
of noncommutative polynomial optimization [41], but here
we define them from the perspective of measurement effects.
In particular, their formulation is independent of the standard
Navascués-Pironio-Acín (NPA) moment matrix [40,55].

We choose the operators {Si} as products of POVM
elements, e.g., {Si} = {EA

a|x ⊗ 1B,1A ⊗ EB
b|y, EA

a|x ⊗
EB

b|y, EA
a|x ⊗ (EB

b|yEB
b′ |y′ ), etc.}, and following the convention

of Ref. [30], a level � is denoted by {S(�)
i } := 1 ∪ O(1) ∪

O(2)∪, . . . ,∪O(�), where O(�) := {EA
a1|x1

EA
a2|x2

· · · EA
a�−k |x�−k

⊗
EB

b�−k+1|y�−k+1
· · · EB

b�|y�
} is composed of all �-order products

of EA
a|x’s and EB

b|y’s. Even though the operators �AB,
{EA

a|x}a,x, and {EB
b|y}b,y are uncharacterized, one is still

able to obtain specific entries in χ , such as those
corresponding to accessible statistics in a DI setting, i.e.,
P(a, b|x, y) = tr(EA

a|x ⊗ EB
b|y�

AB). Moreover, by the Neumark
dilation [56], any POVM can be realized by a projective
measurement in a higher-dimensional space, implying
conditions such as 0 = tr(EA

a|xEA
a′ |x ⊗ EB

b|y), for a′ �= a, or
0 = tr(EA

a|x ⊗ EB
b|yEB

b′|y), for b′ �= b. Moreover, since the
MMMs are obtained by applying a completely positive map
on valid POVMs [see Eq. (4)], each χ is positive semidefinite
by construction. It is convenient to decompose χ into the
characterized parts and unknown parts [30]:

χ = χfixed(P) + χopen(u)

=
∑

a,b,x,y

P(a, b|x, y)Fa,b,x,y +
∑

v

uvFv, (6)

where all of Fa,b,x,y and Fv are symmetric matrices. The com-
plex numbers uv represent all the uncharacterized variables.
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IV. DEVICE-INDEPENDENT QUANTIFICATION OF
MEASUREMENT INCOMPATIBILITY

Via the MMM, we are able to define, for any SDP involving
effect operators, its DI relaxation, i.e., another version of the
problem involving only DI assumptions. As an example, we
will show below how to define the incompatibility robustness.
Several other examples, such as incompatibility jointly mea-
surable robustness, incompatibility probabilistic robustness,
incompatibility random robustness, and the incompatibility
weight, are described in Appendix A. The problem in Eq. (3)
is mapped to

min
{χ[Gλ],χ[Ea|x]}λ,a,x

∑
λ

χ [Gλ]1 − 1

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ] =
∑

λ

χ [Gλ]1 · χ [1],

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

P(a, b|x, y) = Pobs(a, b|x, y) ∀a, b, x, y,

(7)

where χ [Gλ]1 := tr(Gλ ⊗ 1B�AB). The objective func-
tion is the same as that of Eq. (3) due to the fact
that tr(

∑
λ Gλ ⊗ 1B�AB) = tr{[∑λ tr(Gλ)]1A ⊗ 1B�AB}/d =

(1/d )
∑

λ tr(Gλ). The first three constraints are directly
obtained from the three constraints in Eq. (3). The rest are as-
sociated with normalization of POVMs, positivity of POVMs,
and the observed nonlocal correlation, respectively. The above
problem is not an SDP yet, since the third constraint in
Eq. (7) is quadratic. To tackle this problem, we relax the third
constraint by keeping only the characterized terms in χ [1].
Namely, the relaxed constraint becomes

∑
λ χ [Gλ]fixed =∑

λ χ [Gλ]1 · χ [1]fixed, where, with some abuse of notation
(since no elements in χ [Gλ] are actually fixed), we mean to re-
tain only the constraints associated with entries in χ [1]fixed as
in Eq. (6), i.e., with the observed probabilities Pobs(a, b|x, y).

Given Pobs(a, b|x, y)

min
χ[1],{χ [Gλ],χ[Ea|x]}λ,a,x

∑
λ

χ [Gλ]1 − 1

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ]fixed =
∑

λ

χ [Gλ]1 · χ [1]fixed,

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

P(a, b|x, y) = Pobs(a, b|x, y)

∀a, b, x, y. (8)

The solution obtained above, denoted by IRDI, is a lower
bound on IR of the underlying measurement assemblage. In
other words, it tells us the minimum degree of measurement
incompatibility present when observing a certain nonlocal
correlation.

An analogous SDP can be used for bounding from below
the measurement incompatibility necessary for a given vio-
lation of Bell inequality. In this case, only the Bell value,
i.e., I (P), is given and not Pobs(a, b|x, y). As a consequence,
one simply removes entirely the third constraint in Eq. (7),
as χ [1]fixed is not characterized. Alternatively, by changing
the objective function, one may ask, What is the maximal
violation of a Bell inequality for a given value IR0 of the ro-
bustness? It can be easily shown that for each pair (I (P), IR0)
a feasible solution of one SDP is also a feasible solution of the
other; hence they characterize the same set. See Appendix B
for more details.

The formulation with the fixed IR0, however, turns out
to be more convenient, as it removes the nonlinearity in
the previous SDP. In fact, the substitution

∑
λ χ [Gλ]1 − 1 =

IR0 allows us to write the third constraint of Eq. (7) as∑
λ χ [Gλ] = (IR0 + 1)χ [1]. We then have

Given IR0

max
χ[1],{χ[Gλ],χ[Ea|x]}λ,a,x

I (P)

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ] = (IR0 + 1)χ [1],

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,∑

λ

χ [Gλ]1 = IR0 + 1. (9)

We apply this method to the tilted-Clauser-Horne-
Shimony-Holt (tilted-CHSH) inequality [57]; see the next
section for a detailed explanation and Fig. 2 for a summary
of the results. What we want to highlight now is that for the
simple case analyzed in Fig. 2, the SDP in Eq. (7) already pro-
vides an exact solution, despite the relaxation of the nonlinear
constraint. In contrast, for the case of genuine-multipartite
incompatibility robustness, discussed in Sec. VI below, we see
that different bounds arise when the same constraint is taken
into account or not; see also Appendixes C and D.

V. QUANTIFICATION OF INCOMPATIBILITY
ROBUSTNESS

As a first application of our method, we consider the sim-
plest Bell scenario, i.e., the CHSH scenario. More precisely,
we consider the tilted-CHSH [57] (see also Refs. [58,59])
inequality, parametrized by α, namely, I tilted

CHSH := α〈A1〉 +
〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉

L
� 2 + α, with 〈Ax〉 :=

PA(a = 1|x) − PA(a = −1|x) and 〈AxBy〉 := P(a = b|x, y) −
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FIG. 2. DI IR bounds with the MMM method and nonlocal
robustness (NLR). Red curve, IR of Bob’s optimal measurements
for the tilted-CHSH inequality; blue squares, DI lower bound from
the MMM method (second level of the hierarchy); black crosses,
lower bound from NLR.

P(a �= b|x, y) being the correlators. The maximal quantum
violation,

√
8 + 2α2, is achieved with two fixed Pauli mea-

surement on Alice’s side, i.e., X̂ and Ẑ , and tilted measure-
ments for Bob, i.e., cos μẐ + sin μX̂ , cos μẐ − sin μX̂ on the
partially entangled state |ψθ 〉 = cos θ |00〉 + sin θ |11〉, with
μ = arctan(sin 2θ ) and θ = (1/2) arctan(

√
(4 − α2)/2α2).

For each value of α, one can obtain the optimal state
and the optimal pair of measurements (unique up to local
isometries) providing the maximal quantum violation. The
value of Bob’s robustness for a given θ coincides with its DI
bound computed via the MMM assuming the corresponding
distribution P(a, b|x, y) (see Fig. 2). In the same figure, we
also plot the DI bound of IR obtained via the nonlocality
robustness (NLR) [33] method. The NLR method, as well as
another method proposed for the DI lower bound of incom-
patibility, i.e., the assemblage moment matrix (AMM) [34,35]
method, are based on the connection between steering and
incompatibility [15,16,44]. In contrast, the MMM relies on
the construction of a moment matrix directly from the mea-
surement operators. In Appendix E, we show that the AMM
can be identified with a special case of a MMM. Hence it can
never provide a better bound for incompatibility. In addition,
we explicitly show via the I3322 inequality [60] that the MMM
provides strictly better bounds.

VI. QUANTIFICATION OF GENUINE-MULTIPARTITE
INCOMPATIBILITY ROBUSTNESS

Here, we show how the MMM can be used to quantify
the genuine-multipartite incompatibility robustness (GMIR)
recently introduced by Quintino et al. [46]. An example is
provided in Fig. 3 for different Bell inequalities. All the results
presented use the maximization of the Bell violation for a
given robustness; see Eq. (13) below. As we discuss in Ap-
pendix C, the results obtained with this method are provably
better than those obtained minimizing the robustness for a
given Bell violation. Finally, in addition to being able to quan-
tify the GMIR, our method can also improve the thresholds
for its detection. We compare ours with those computed in
Ref. [46].
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FIG. 3. MMMs can also be used to compute lower bounds on
genuine triplewise IR in a DI setting. (a) DI lower bounds on gen-
uine triplewise IR in the elegant Bell scenario. (b) The black dashed,
red dash-dotted, and blue solid curves represent, respectively, DI
lower bounds on genuine triplewise IR in the I3322, I3

3422, and I2
3422

scenarios. The SDP carrying out the computation can be found in
Eq. (13).

A measurement assemblage of three measurements
{{Ea|x}a}x=1,2,3 is said to be genuinely triplewise incompat-
ible [46] if it is impossible to write it as a convex mixture
of three measurement assemblages, each containing a differ-
ent pair of compatible measurements [46]. More concretely,
if there exist three assemblages {{Jst

a|x}a}x=1,2,3 for (s, t ) =
(1, 2), (1, 3), (2, 3) such that {Jst

a|s}a and {Jst
a|t }a are jointly

measurable for any pair s, t and each Ea|x can be written as

Ea|x = p12J12
a|x + p23J23

a|x + p13J13
a|x (10)

for some probabilities p12, p23, and p13 that respect p12 +
p23 + p13 = 1, we will say that {{Ea|x}a}x=1,2,3 are not genuine
triplewise incompatible.

This condition can be written in a SDP form (see Ref. [46]
and Appendix C for a brief self-contained summary), which
leads to a SDP formulation of the robustness as

Given {Ea|x}a,x,

and variables
{
G12

λ , G13
λ , G23

λ

}
λ
,

{
J12

a|3, J13
a|2, J23

a|1
}

a
,

min
1

d

∑
λ

tr
[
G12

λ + G13
λ + G23

λ

] − 1

subject to Gst
λ � 0 ∀λ,

∑
λ

Gst
λ = 1

d

∑
λ

tr
[
Gst

λ

]
for (s, t ) = (1, 2), (1, 3), (2, 3);

Jst
a|x � 0 ∀a,

∑
a

Jst
a|x =

∑
λ

Gst
λ and

∑
λ

δa,λx

(
Gsx

λ + Gtx
λ

) + Jst
a|x � Ea|x,

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1). (11)
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Applying the same argument as the one for the standard in-
compatibility robustness above, SDP can have a DI relaxation
via moment matrices

Given Pobs(a, b|x, y), and

variables {χ [Ea|x]}a,x, and
{
χ

[
Gst

λ

]}
λ
,
{
χ

[
Jst

a|x
]}

a,

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1);

min
∑

λ

χ
[
G12

λ

]
1

+ χ
[
G13

λ

]
1

+ χ
[
G23

λ

]
1

− 1

subject to χ
[
Gst

λ

] � 0 ∀λ, (s, t ) = (1, 2), (1, 3), (2, 3);∑
λ

χ
[
Gst

λ

]fixed = χ [1]fixed
∑

λ

χ
[
Gst

λ

]
1

for (s, t ) = (1, 2), (1, 3), (2, 3);

χ
[
Jst

a|x
] � 0 ∀a,∑

a

χ
[
Jst

a|x
] =

∑
λ

χ
[
Gst

λ

]
and

∑
λ

δa,λx

(
χ

[
Gsx

λ

]+χ
[
Gtx

λ

]) + χ
[
Jst

a|x
] � χ [Ea|x],

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1);

χ [Ea|x] � 0 for all a, x,∑
a

χ [Ea|x] = χ [1] for all x,

P(a, b|x, y) = Pobs(a, b|x, y). (12)

Again, one can compute the maximum of a Bell inequality
I (P) for a given robustness IR0 as

Given IR0, and

variables {χ [Ea|x]}a,x,
{
χ

[
Gst

λ

]}
λ
,

{
χ

[
Jst

a|x
]}

a,

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1),

max I (P)

subject to χ
[
Gst

λ

] � 0 ∀λ, (s, t ) = (1, 2), (1, 3), (2, 3);∑
λ,(s,t )

χ
[
Gst

λ

] = χ [1](IR0 + 1) and

∑
λ,(s,t )

χ
[
Gst

λ

]
1

= (IR0 + 1),

with sum over (s, t ) = (1, 2), (1, 3), (2, 3);

χ
[
Jst

a|x
] � 0 ∀a,∑

a

χ
[
Jst

a|x
] =

∑
λ

χ
[
Gst

λ

]
and

∑
λ

δa,λx

(
χ

[
Gsx

λ

] + χ
[
Gtx

λ

])+χ
[
Jst

a|x
] � χ [Ea|x],

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1);

χ [Ea|x] � 0 for all a, x,∑
a

χ [Ea|x] = χ [1] for all x. (13)

TABLE I. Comparison of the thresholds for Bell-inequality vio-
lations able to certify genuine-tripartite incompatibility. Our method
always performs better than the one based on nonlocality arguments
(the set L2

conv in Ref. [46]) and better than or equal to the NPA
hierarchy with additional commutativity constraints (NPA+comm.,
the set Q2convJM defined in Ref. [46]; see Appendix D for details). We
recall that the bound for IE is tight, as proven in Ref. [46].

Bell inequality Table I of Ref. [46] NPA+comm. MMM (� = 2)

IE 0.0786 0.0786 0.0786
I2
3422 0.2768 0.2647 0.2515

I3
3422 0.2615 0.2247 0.2247

I3322 0.2487 0.2387 0.2335

As we mention above, in this case one can show that the
problem in Eq. (13), namely, the maximization of the Bell
violation for a given robustness, provides better bounds than
the inverse problem, namely, the minimization of the robust-
ness for a given Bell violation. This is due to the possibility of
removing the nonlinear constraint present in the intermediate
formulation. More details can be found in Appendix C.

In addition to the quantitative results plotted in Fig. 3, our
method is also able to improve the numerical thresholds for
the detection of genuine-multipartite incompatibility (GMI)
previously found in Ref. [46]; see Table I and Appendix D for
more details.

VII. SEMI-DEVICE-INDEPENDENT APPROACH AND
PROJECTIVE MEASUREMENTS

Another advantage of our method is that it admits a direct
extension to semi-device-independent (SDI) characterization
of incompatibility. This can be achieved by employing ideas
from the Navascués-Vértesi (NV) hierarchy [61], which gen-
eralizes the NPA hierarchy and aims to bound the set of
finite-dimensional quantum correlations. The key idea of this
generalization comes from the fact that moment matrices gen-
erated by states and measurements of a given Hilbert space
dimension d span only a subspace Sd of the whole space of
moment matrices. One can then try to add the correspond-
ing constraint to the problem in Eq. (7). In practice, this is
achieved by generating a basis of random moment matrices
(e.g., by means of the Gram-Schmidt process) by sampling
states and measurements of a given dimension.

In contrast to the DI approach, in which all POVMs can be
dilated to projective measurements by increasing the system’s
dimension, in the SDI approach one can additionally impose
the constraint that the measurements EA

a|x are projective.
We tried several approaches to the SDI quantification of

measurement incompatibility, with and without the assump-
tion of projective measurements. A few of them, which work
in the case of Bell inequalities [61], do not generalize to the
case of incompatibility quantification, either for fundamental
reasons or because they fail to provide an improvement in the
numerical results for the cases analyzed. A summary of these
approaches is given in Appendix F.

The most successful approach is the one in which dimen-
sion constraints are imposed by requiring that the observed
probabilities are generated by a system of bounded dimension.
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In this case, since we are restricting ourselves to dichotomic
measurements, we can use the fact that correlations generated
by projections are extremal. Let us denote by 
 ∈ Sd the
moment matrix generated via the NV method, assuming that
the measurements are projective, and by 
P(a,b|x,y) the matrix
entry corresponding to the observed probability P(a, b|x, y).
The SDP for the computation of the minimal robustness as-
sociated with a violation K of a Bell inequality I (P) can be
written as

Given K

min
{χ[Gλ],χ[Ea|x]}λ,a,x

∑
λ

χ [Gλ]1 − 1

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

I (P) = K,


 ∈ Sd , 
 � 0,

P(a, b|x, y) = 
P(a,b|x,y) ∀a, b, x, y,

(14)

where P(a, b|x, y) denotes the entries in the MMM
{χ [EA

a|x]}a,x, in the usual DI approach, corresponding to the
probability P(a, b|x, y), and 
, as discussed above, is gener-
ated by sampling moment matrices generated with dichotomic
projective measurements in dimension d .

Equivalently, one can fix the robustness IR0 and maximize
the Bell-inequality violation, as follows:

Given IR0

max
{χ [Gλ],χ[Ea|x]}λ,a,x

I (P)

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ] = (IR0 + 1)χ [1],

∑
λ

χ [Gλ]1 = IR0 + 1,

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,


 ∈ Sd , 
 � 0,

P(a, b|x, y) = 
P(a,b|x,y) ∀a, b, x, y,

(15)

with the same use of notation as above.
In order to compare the different methods, we computed

different lower bounds on the incompatibility robustness for
a given violation of the I3322 inequality. First, we tried the
dilation method presented in Eq. (F4) (in Appendix F) for
d = 2, which gave no improvement over the standard DI

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

FIG. 4. Quantification of incompatibility robustness for given
violation of I3322. Blue dash-dotted line, SDI approach for d = 2;
black solid line, DI approach. A similar curve (with a difference
of the order of 10−5) corresponds to the SDI calculation with the
additional assumption of projective measurements (SDI+proj.) for
d = 3, 4 (identical up to numerical precision). Red dashed line, SDI
approach with additional assumption of projective measurements for
d = 2.

approach. In contrast, the SDP in Eq. (14), for d = 2, provided
a substantially improved lower bound on the robustness, with
respect to the DI case. In addition, we also compare the
SDI approach with the one where the additional condition
of projective measurements is assumed. With the assumption
of projective measurements, we were able to obtain a sub-
stantially improved bound for the case of d = 2, whereas the
cases of d = 3 and d = 4, which provided identical bounds up
to numerical precision, improved only slightly the DI bound,
with a difference of the order of 10−5. All the corresponding
curves are plotted in Fig. 4. All calculations were performed
with the 2+ level of the hierarchy (i.e., the second level plus
additional terms) corresponding to a moment matrix of size
34 × 34. Moreover, notice also how the curve for the case SDI
plus projective measurement is concave. This is not in con-
tradiction with our definition of the SDP: A convex mixture
λχ1 + (1 − λ)χ2, of a solution χ1 for IR1 and χ2 for IR2,
does not necessarily provide a valid solution for the robust-
ness λIR1 + (1 − λ)IR2, because both χ and IR enter the
constraint

∑
λ χ [Gλ] = (IR0 + 1)χ [1] in a nonlinear way.

Finally, an analogous procedure allows us to extend
the MMM to another typical SDI scenario, namely, the
prepare-and-measure scenario. More details can be found in
Appendix G.

VIII. CONCLUSIONS AND OUTLOOK

We proposed a framework, the MMM, to quantify the
degree of (several notions of) measurement incompatibility
in a DI manner. The main idea behind our method is to
construct moment matrices by applying a completely positive
map on POVMs. Due to the operational characterization of the
incompatibility robustness [19–25], our result also bounds, in
a DI scheme, the usefulness of a set of POVMs in the problem
of quantum state discrimination. In contrast to previous DI
bounds of incompatibility in Refs. [33,34], our method does
not rely on any concept of steering, but provides a direct
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interpretation of the moment matrix as a completely positive
mapping of the measurement operators. Our MMM method
is shown to outperform both methods in the quantification of
incompatibility in simple examples, and we have rigorously
proven that it always performs better or equal to the method in
Ref. [34]. Moreover, the MMM method provides a DI bound
of the genuine-multipartite incompatibility, a recently intro-
duced notion, and it improves the known thresholds for its
detection. Finally, given its generality our method is straight-
forwardly adaptable to include additional constraints such as
the system dimension (semi-DI approach) and the assumption
of projective measurements, and it is applicable to the prepare-
and-measure scenario (see the discussion in Appendix G).

We leave as an open problem to determine the convergence
of the proposed hierarchy. Since we could not give either
a positive or negative answer to this question, we used the
term “relaxation” for the optimization problems throughout
the text. However, we would like to point out that at least in
the case of tilted CHSH, for which an analytical solution is
known, our method recovers the exact relation between the
incompatibility robustness and nonlocality (see Fig. 2).

As a future research direction, we would like to investigate
the connection between the DI and SDI quantifier of incom-
patibility and self-testing of measurements (see Ref. [62] for
a related approach). In fact, in Ref. [54], the authors showed
that for the incompatibility robustness, pairs of measurements
associated with mutually unbiased bases (MUBs) are the most
incompatible in any dimension, even if it is not proven that
they are the only ones. In the CHSH scenario, our calculation
showed that IRDI saturates IR of a pair of qubit measure-
ments corresponding to the MUB for the maximal quantum
violation of the CHSH inequality (Ref. [34] also saturates this
bound). For high-dimensional cases, one can use the family
of Bell inequalities in Ref. [63] to compute IRDI. Due to
the limitation of our computational capacity, we leave this
issue for potential future research. This intuition is further
strengthened by the work of Ref. [64], which showed that the
assemblage moment matrices proposed in Ref. [34] can be
used to self-test state assemblages. Therefore it is natural to
ask whether the MMMs can be analogously used to self-test
quantum measurements. Finally, a possible further extension
of this work is in the direction of the SDI characterization of
incompatibility in the prepare-and-measure scenario. In fact,
it is believed that incompatible measurements are necessary
for quantum advantage in the so-called random access codes
[65].
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APPENDIX A: DIFFERENT MEASURES OF GLOBAL
INCOMPATIBILITY

In this Appendix, we consider other measures of incompat-
ibility and explicitly write down their DI quantifications in the
SDP form. There are robustness-based measures,

IRi := min t

subject to

{
EA

a|x + t · Na|x
1 + t

}
a,x

is jointly measurable,
(A1)

where the noisy models {Na|x}a,x satisfy different constraints
(see, e.g., Ref. [54]) and each type of model is denoted by
superindices i. The last measure we consider is the incompat-
ibility weight [47]. For the simplicity of formulation of the
following SDPs we will not write explicitly the variables of
optimization. Instead, we specify the input to each SDP next
to “Given.”

1. The incompatibility jointly measurable robustness

The noisy assemblage {Na|x}a,x for the incompatibility
jointly measurable robustness IRJ [33] admits a jointly
measurable model. As such, IRJ can be computed via the
following SDP:

Given {Ea|x}a,x

min
1

d

∑
λ

tr[Hλ]

subject to EA
a|x =

∑
λ

δa,λx (Gλ − Hλ) ∀a, x,

Gλ � 0, Hλ � 0 ∀λ,

1

d

∑
λ

tr[Hλ] =
(

1

d

∑
λ

tr[Gλ]

)
− 1,

∑
λ

Hλ =
(

1

d

∑
λ

tr[Hλ]

)
· 1,

∑
λ

Gλ =
(

1

d

∑
λ

tr[Gλ]

)
· 1. (A2)

By applying the MMM and removing the constraints contain-
ing quadratic free variables, the solution of the following SDP
gives a lower bound on IRJ [66]:

Given Pobs(a, b|x, y)

min
∑

λ

χ [Hλ]1

subject to χ
[
EA

a|x
] =

∑
λ

δa,λx (χ [Gλ] − χ [Hλ]),

χ [Gλ] � 0, χ [Hλ] � 0 ∀λ,
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∑
λ

χ [Hλ]1 =
(∑

λ

χ [Gλ]1

)
− 1, (A3)

∑
λ

χ [Gλ]fixed =
(∑

λ

χ [Gλ]1

)
· χ [1]fixed,

∑
λ

χ [Hλ]fixed =
(∑

λ

χ [Hλ]1

)
· χ [1]fixed,

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

P(a, b|x, y) = Pobs(a, b|x, y) ∀a, b, x, y,

where χ [Gλ]fixed and χ [Hλ]fixed in the fourth and fifth con-
straints denote, as in the main text, χ [Gλ] and χ [Hλ],
respectively, retaining entries whose indices correspond to
nonvanishing terms in χ [1]fixed.

2. The incompatibility probabilistic robustness

The noisy model for the incompatibility probabilistic ro-
bustness IRP [67] is defined as Na|x = p(a|x) · 1 for all a, x,
with real numbers p(a|x) satisfying p(a|x) � 0 for all a, x,
and

∑
a p(a|x) = 1 for all x. The associated SDP can then be

written as

Given {Ea|x}a,x

min

(
1

d

∑
λ

tr[Gλ]

)
− 1

subject to EA
a|x =

∑
λ

δa,λx Gλ − q(a|x) · 1 ∀a, x,

Gλ � 0 ∀λ, q(a|x) � 0 ∀a, x,

∑
a

q(a|x) =
(

1

d

∑
λ

tr[Gλ]

)
− 1,

∑
λ

Gλ =
(

1

d

∑
λ

tr[Gλ]

)
· 1. (A4)

By applying the MMM, a DI lower bound can be computed
via the following SDP:

Given Pobs(a, b|x, y)

min

(∑
λ

χ [Gλ]1

)
− 1

subject to χ
[
EA

a|x
]fixed =

∑
λ

δa,λx χ [Gλ]fixed

− q(a|x)χ [1]fixed,

χ [Gλ] � 0 ∀λ, q(a|x) � 0 ∀a, x,

∑
a

q(a|x) =
(∑

λ

χ [Gλ]1

)
− 1,

∑
λ

χ [Gλ]fixed =
(∑

λ

χ [Gλ]1

)
· χ [1]fixed,

∑
a

χ
[
EA

a|x
] = χ [1A] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

P(a, b|x, y) = Pobs(a, b|x, y) ∀a, b, x, y.

(A5)

3. The incompatibility random robustness

The final robustness-based measure is the incompatibility
random robustness IRR [44,48], where the noisy assemblage
is composed of the white noise: Na|x = (1/|A|) · 1. As a re-
sult, the corresponding SDP is given by

Given {Ea|x}a,x

min

(
1

d

∑
λ

tr[Gλ]

)
− 1

subject to EA
a|x =

∑
λ

δa,λx Gλ

− 1

|A|

(( 1

d

∑
λ

tr[Gλ]
)

− 1

)
· 1,

Gλ � 0 ∀λ,

∑
λ

Gλ =
(

1

d

∑
λ

tr[Gλ]

)
· 1. (A6)

With the same technique, a DI lower bound on IRR can be
computed via the following SDP:

Given Pobs(a, b|x, y)

min

(∑
λ

χ [Gλ]1

)
− 1

subject to χ
[
EA

a|x
]fixed =

∑
λ

δa,λx χ [Gλ]fixed

− 1

|A|

(∑
λ

χ [Gλ]1 − 1

)
· χ [1]fixed,

∑
λ

χ [Gλ]fixed =
(∑

λ

χ [Gλ]1

)
· χ [1]fixed,

∑
a

χ
[
EA

a|x
] = χ [1A] ∀x,

χ [Gλ] � 0 ∀λ,

χ
[
EA

a|x
] � 0 ∀a, x,

P(a, b|x, y) = Pobs(a, b|x, y) ∀a, b, x, y. (A7)

4. The incompatibility weight

The last measure of incompatibility we consider is the
incompatibility weight IW [47]. Consider that one decom-
poses EA

a|x into EA
a|x = tOa|x + (1 − t )Na|x, where {Oa|x}a,x is
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any valid quantum measurement assemblage and {Na|x}a,x is a
jointly measurable measurement assemblage. IW is defined
as the minimum ratio of Oa|x, i.e., the minimum value of t
required to decompose EA

a|x. Consequently, IW can be com-
puted via the following SDP:

Given {Ea|x}a,x

min 1 − 1

d

∑
λ

tr[Gλ]

subject to EA
a|x �

∑
λ

δa,λx Gλ ∀a, x,

Gλ � 0 ∀λ,

∑
λ

Gλ = 1

d

(∑
λ

tr[Gλ]

)
· 1. (A8)

Following the same procedure as in the previous sections, we
obtain the following SDP, which can be used to compute a DI
lower bound on IW:

Given Pobs(a, b|x, y)

min 1 −
∑

λ

χ [Gλ]1

subject to χ
[
EA

a|x
] �

∑
λ

δa,λx χ [Gλ],

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ]fixed =
∑

λ

χ [Gλ]1 · χ [1]fixed,

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

P(a, b|x, y) = Pobs(a, b|x, y) ∀a, b, x, y.

(A9)

Note that all of the above SDPs that compute DI lower
bounds on the degree of incompatibility require detailed infor-
mation about the observed correlation {Pobs(a, b|x, y)}a,b,x,y.
If one is merely concerned with a Bell-inequality violation
without the specific characterization of {Pobs(a, b|x, y)}a,b,x,y,
the constraints containing χ [1]fixed have to be fully removed.

APPENDIX B: DIFFERENT CONSTRAINTS ON
INCOMPATIBILITY ROBUSTNESS

As we discussed in the main text, different relaxations of
the following problem exist:

min
{χ[Gλ],χ[Ea|x]}λ,a,x

∑
λ

χ [Gλ]1 − 1

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ] =
∑

λ

χ [Gλ]1 · χ [1],

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

P(a, b|x, y) = Pobs(a, b|x, y) ∀a, b, x, y,

(B1)

which are necessary to remove the nonlinear constraint,∑
λ χ [Gλ] = ∑

λ χ [Gλ]1 · χ [1]. Moreover, the problem in
Eq. (B1) assumes the knowledge of the full distribution of
probabilities {Pobs(a, b|x, y)}a,b,x,y, whereas in some cases, we
may want to estimate the robustness simply from the violation
of a Bell inequality.

In this case, we want to characterize the set of all possible
pairs (IR, I (P)), where IR represents the incompatibility
robustness and I (P) represents the value of some Bell expres-
sion. Notice that, even if I (P) is evaluated on a probability
distribution P, we are not assuming that such P is directly
accessible; the parameter in our problem is only the value of
the Bell expression.

The set of valid (IR, I (P)) can be defined by the following
SDP (feasibility problem):

Given IR0, I (P0)

find χ [1], χ [Gλ], χ [Ea|x]

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,∑

λ

χ [Gλ]1 = IR0 + 1,

I (P0) =
∑
a,x

αa,xtr
[
χ

[
EA

a|x
]

Wa,x
]
,

(B2)

where the matrices Wa,x and the coefficients αa,x are prop-
erly chosen to extract the Bell expression from the terms
corresponding to probabilities appearing in {χ [EA

a|x]}a,x. It is
clear, then, that the (nontrivial) extreme points of this set are
equivalently characterized by the following two problems:

minimize IR given I (P), and

maximize I (P) given IR. (B3)

In fact, one may have highly incompatible observables and
fail to obtain a high violation of a Bell inequality due to
the low entanglement in the shared state. The problems in
Eq. (B3) can be directly solved by transforming the feasibility
problem in Eq. (B2). By construction, a feasible solution of
one problem is also a feasible solution for the other one,
so they characterize the same set of pairs (IR, I (P)). It is
important to remark that here we are not using the full duality
properties of the SDP, but simply the relation between IR
and I (P) encoded in Eq. (B2) and the fact that the problems
in Eq. (B3) are sufficient to characterize the nontrivial part of
this set.
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The formulation with the fixed IR0, however, provides an
advantage since an extra condition can be imposed. In fact,
the substitution

∑
λ χ [Gλ]1 − 1 = IR0 allows us to write the

third constraint of Eq. (B1) as
∑

λ χ [Gλ] = (IR0 + 1)χ [1],
effectively removing the nonlinearity appearing in the SDP in
Eq. (B1). We then have

Given IR0

max
χ[1],{χ [Gλ],χ[Ea|x]}λ,a,x

I (P) =
∑
a,x

αa,xtr
[
χ

[
EA

a|x
]

Wa,x
]

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ] = (IR0 + 1)χ [1],

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,∑

λ

χ [Gλ]1 = IR0 + 1. (B4)

The fact that the SDP in Eq. (B4) provides a better char-
acterization of the set (IR, I (P)) is confirmed by numerical
calculations. First, the incompatibility robustness has been
analyzed in Fig. 2, where this distinction is not relevant. How-
ever, a characterization analogous to that in Eq. (B3) appears
also for the genuine-multipartite incompatibility robustness.
For that case, we can see directly that the use of the two
different formulations provides different results and that the
computation for a fixed robustness IR0 provides a better
bound. More details can be found in Appendix C.

APPENDIX C: SDP FORMULATION FOR
GENUINE-MULTIPARTITE INCOMPATIBILITY

In the following, we recall several results from Ref. [46],
in particular, the SDPs (C2) and (C4), and discuss their DI
relaxation via the MMM.

Following Ref. [46], we recall that genuine triplewise in-
compatibility, namely, the impossibility of writing

Ea|x = p12J12
a|x + p23J23

a|x + p13J13
a|x (C1)

for some probabilities p12, p23, and p13 with p12 + p23 +
p13 = 1, is equivalent to the infeasibility of the following
SDP:

Given {Ea|1}a, {Ea|2}a, {Ea|3}a

find J12
a|x, J23

a|x, J31
a|x, p12, p23, p31, G12

λ , G23
λ , G31

λ

subject to G12
λ , G23

λ , G13
λ � 0, p12, p23, p13 � 0,

Ea|x = J12
a|x + J23

a|x + J13
a|x ∀a, x,

J12
a|x � 0 ∀a, x;

∑
a

J12
a|x = p121 ∀x, (C2)

J12
a|x =

∑
λ

δa,λx G
12
λ for x = 1, x = 2,

J23
a|x � 0 ∀a, x;

∑
a

J23
a|x = p231 ∀x,

J23
a|x =

∑
λ

δa,λx G
23
λ for x = 2, x = 3,

J13
a|x � 0 ∀a, x;

∑
a

J13
a|x = p131 ∀x,

J13
a|x =

∑
λ

δa,λx G
13
λ for x = 1, x = 3,

where δa,λx is the deterministic strategy thatassigns probability
1 if the xth component of λ is equal to a.

One can quantify the triplewise incompatibility of a set of
measurements using SDP methods. We need few definitions
and properties: J3

a|x := Jsx
a|x + Jtx

a|x + Jst
a|x, for x = 1, 2, 3 and

s, t, x all different. When {J12
a|x, J13

a|x, J23
a|x}a,x is a solution of the

problem in Eq. (C2), we have that Jsx
a|x and Jtx

a|x arise each from
a joint measurement, Jst

a|x is positive, and {Gst
λ } is proportional

to a POVM with the same proportionality constant as {Jst
a|x}a

for all x, i.e.,
∑

a Jst
a|x = ∑

λ Gst
λ for all s, t, x. Finally, both

{J3
a|x}a and {G12

λ + G13
λ + G23

λ } are POVMs. From the above
formulation, we can define a robustness with respect to arbi-
trary noise as

t∗ = min

{
t

∣∣∣∣J3
a|x = Ea|x + tNa|x

1 + t

for
{
J3

a|x
}

solution of (C2), {Na|x}

measurement assemblage

}
. (C3)

Following the argument in Ref. [46], one shows that t∗ can be
computed as

Given {Ea|x}a,x,

and variables
{
G12

λ , G13
λ , G23

λ

}
λ
,

{
J12

a|3, J13
a|2, J23

a|1
}

a,

min
1

d

∑
λ

tr
[
G12

λ + G13
λ + G23

λ

] − 1

subject to Gst
λ � 0 ∀λ,

∑
λ

Gst
λ = 1

d

∑
λ

tr
[
Gst

λ

]
for (s, t ) = (1, 2), (1, 3), (2, 3);

Jst
a|x � 0 ∀a,

∑
a

Jst
a|x =

∑
λ

Gst
λ and

∑
λ

δa,λx

(
Gsx

λ + Gtx
λ

) + Jst
a|x � Ea|x,

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1);

(C4)

to show the strict feasibility, implying via Slater’s condition
that the primal and the dual problems have the same optimal
values, it is sufficient to take each Gst

λ = 1 and the correspond-
ing Jst

a|x coming from the linear constraints.
Clearly, the same argument can be extended to define

genuine-multipartite incompatibility beyond the triplewise
case.
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FIG. 5. Comparison between two SDPs computing the bounds.
The solid curves are bounds obtained by fixing a Bell violation and
minimizing the robustness [cf. Eq. (12)], while the dashed curves
are bounds obtained by fixing a robustness and maximizing the Bell
violation [cf. Eq. (C5)].

Finally, we can show that the SDP computing the maxi-
mum of a Bell inequality I (P) for a given robustness IR0,
namely,

Given IR0, and

variables {χ [Ea|x]}a,x, and
{
χ

[
Gst

λ

]}
λ
,
{
χ

[
Jst

a|x
]}

a
,

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1),

max I (P)

subject to χ
[
Gst

λ

] � 0 ∀λ, (s, t ) = (1, 2), (1, 3), (2, 3);∑
λ,(s,t )

χ
[
Gst

λ

] = χ [1](IR0 + 1) and

∑
λ,(s,t )

χ
[
Gst

λ

]
1

= (IR0 + 1),

with sum over (s, t ) = (1, 2), (1, 3), (2, 3);

χ
[
Jst

a|x
] � 0 ∀a,

∑
a

χ
[
Jst

a|x
] =

∑
λ

χ
[
Gst

λ

]
and

∑
λ

δa,λx

(
χ

[
Gsx

λ

] + χ
[
Gtx

λ

]) + χ
[
Jst

a|x
] � χ [Ea|x],

for (s, t, x) = (1, 2, 3), (1, 3, 2), (2, 3, 1);

χ [Ea|x] � 0 for all a, x,∑
a

χ [Ea|x] = χ [1] for all x,

(C5)

provides a better bound with respect to a similar SDP com-
puting the minimal robustness IR for a given Bell violation
I (P0). More details can be found in Fig. 5.

APPENDIX D: WITNESSES OF GENUINE-MULTIPARTITE
INCOMPATIBILITY

To make our discussion self-contained, we briefly recall in
this Appendix two witnesses of GMI presented in Ref. [46].
To keep the notation lighter, we will discuss only the case of
genuine-tripartite incompatibility; the argument can then be
generalized to more measurements.

The authors of Ref. [46] define the set LQ
12 as the set of

bipartite correlations with three measurements for Alice, in
which the pair x = 1, 2 is compatible (one should specify also
Bob’s settings and outcomes, i.e., the whole Bell scenario).
Given three measurements {{Ea|x}a}x=1,2,3, we say that [68]

P(ab|xy) belongs to LQ
12 if:

P(ab|xy) ∈ Q,

{{P(ab|xy)}a,b,y}x=1,2 is local. (D1)

For the set of quantum correlations Q, typically only an ap-
proximate characterization is possible, namely, via the NPA
hierarchy of a given level l .

In particular, for the case of Alice having only dichotomic
outcomes, the condition that {{P(ab|xy)}a,b,y}x=1,2 is local can
be simply imposed by requiring that all CHSH inequalities
for Alice’s pair of measurements and all possible pairs of di-
chotomized measurements for Bob are satisfied [69], namely,

P(ab|xy) belongs to LQ
12 if:

P(ab|xy) ∈ Q,

{{P(ab|xy)}a,b,y}x=1,2 satisfies CHSH for any

pair of dichotomized measurements for Bob. (D2)

In simple terms, this set is obtained by the NPA-hierarchy
constraints plus linear constraints corresponding to Bell
inequalities involving only x = 1, 2 and all possible di-
chotomized measurements on Bob’s side.

The above definition can be extended to the convex hull of
L12, L13, L23, i.e., L2conv, as follows.

P(ab|xy) belongs to LQ
2conv if:

P(ab|xy) ∈ Q,

P(ab|xy) = μ12P12(ab|xy) + μ13P13(ab|xy) + μ23P23(ab|xy),

Pi j (ab|xy) ∈ LQ
i j, μi j � 0, μ12 + μ13 + μ23 = 1. (D3)

As noticed in Ref. [46], imposing locality constraints at
the level of the observed distribution is not the same as im-
posing constraints on the joint measurability of observables
in the NPA hierarchy approximating the set Q. For instance,
consider the set Q12JM defined as follows.

P(ab|xy) belongs to Q12JM if:

P(ab|xy) ∈ Q, with

Ea|1 =
∑

a′
M12

aa′ ∀a, Ea′|2 =
∑

a

M12
aa′ ∀a′. (D4)

In other words, the two measurements {Ea|1}a and {Ea|2}a

are substituted by a single joint measurement M12
aa′ . In terms

of the NPA hierarchy, this can be simply obtained by taking
the moments involving M12

aa′ instead of {Ea|1}a and {Ea|2}a.
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Similarly, the convex hull Q2convJM can be defined as

P(ab|xy) belongs to Q2convJM if:

P(ab|xy) ∈ Q,

P(ab|xy) = μ12P12(ab|xy) + μ13P13(ab|xy) + μ23P23(ab|xy),

Pi j (ab|xy) ∈ Qi jJM , μi j � 0, μ12 + μ13 + μ23 = 1. (D5)

The SDP approximation of this set involves computing three
different NPA moment matrices, one for each distribution
Pi j (ab|xy).

It is important to remark that the NPA hierarchy can be
computed by assuming the dilation of the POVMs to projec-
tive measurements. It is also important to remark that, even
if some structures of measurement incompatibility require
POVMs (e.g., the hollow triangle), in Eq. (D5) only pair-
wise joint measurability (JM) conditions arise, one for each
Pi j . A total JM measurability condition among a measure-
ment assemblage {Ea|x}a,x is equivalent to the existence of a
common dilation in which the measurements are represented
by commuting projective measurements. In this sense, due to
the convex nature of the genuine-multipartite incompatibility
problem, there is no contradiction between the use of the
dilation and the fact that nontrivial compatibility structures
necessarily require POVMs.

APPENDIX E: RELATION BETWEEN THE
MEASUREMENT MOMENT MATRIX AND THE

ASSEMBLAGE MOMENT MATRIX

The assemblage moment matrices proposed in Ref. [34]
can be viewed as a special case of the MMM, as we show
below. If the sequence {Si} in Eq. (5) of the main text is only
composed of Bob’s projectors and their products, namely,
{Si} = {1 ⊗ Bi} with {Bi} = {1, EB

1|1, EB
2|1, EB

1|1EB
1|2, . . .}, then

Eq. (5) of the main text will be

χ =
∑

i j

|i〉〈 j|tr(B†
j Biσa|x ), (E1)

with σa|x := trA(EA
a|x ⊗ 1B�AB) being the state assemblage in

a steering-type experiment, which recovers the form of the as-
semblage moment matrices. Moreover, since each constraint
in the SDP for computing the bounds in Ref. [34] is also a
constraint of the SDP derived from Eq. (7) in the main text,
but not vice versa, the MMM bounds will never be worse
than those in Ref. [34]. In Ref. [35], the authors further ob-
tained tighter DI bounds on IR by bounding another measure
of steerability—the consistent steering robustness, which is
also a lower bound on IR [33]. If we consider again that
the sequence {Si} is only composed of Bob’s part, the only
difference between the SDP derived from Eq. (7) in the main
text and the SDP used for bounding the consistent steering
robustness in Ref. [35] is that the latter does not include
the fourth constraint of the former:

∑
a χ [EA

a|x] = χ [1]. As a
consequence, the present DI bound on IR will not be lower
than that of Ref. [35].

Finally, by computing explicitly the IR bounds associated
with a given violation of the I3322 inequality and provided by
the method in Ref. [34] and by the MMM method, respec-
tively, we show that the MMM method provides a tighter

52.02.051.0
0.05

0.1

0.15

0.2

FIG. 6. Comparison between lower bounds on IR in the I3322

scenario [60]. The blue solid and black dashed curves represent
lower bounds obtained from our method and from the method of the
assemblage moment matrices [34], respectively. The local and quan-
tum bounds for the I3322 inequality are 0 and around 0.250 875 561,
respectively [70]. The level of the hierarchy of the semidefinite
relaxation used to carry out the computation in both methods is the
third level.

value. The results of numerical calculations are plotted in
Fig. 6.

APPENDIX F: POVMs AND PROJECTIVE
MEASUREMENTS IN THE SDI SCENARIO

Projective measurements, via their idempotence and or-
thogonality properties (PaPb = Paδa,b), allow for a great
simplification of the sequences appearing in the construction
of moment matrices. In the DI scenario, all measurements can
be assumed to be projective due to the Neumark dilation, as
discussed in the main text. Such a dilation, however, requires
one to increase the Hilbert space dimension and is, thus, not
always possible if the dimension of the system is constrained
as in the SDI scenario. In some cases, however, projective
measurements can be recovered by a convexity argument.
For instance, for dichotomic measurements, it is known that
they are all convex mixtures of projective measurements (in-
tuitively, it is sufficient to decompose the 0-outcome element),
so we can restrict ourselves to projective measurements if the
objective function we wish to minimize is linear in the POVM
operator. This is the case for, e.g., Bell inequalities as noted
in Ref. [61], but it is also the case for the incompatibility
robustness. In order to show that, it is useful to introduce first
some slack variables ({Sa,x}a,x), namely,

IR + 1 = min
{Gλ}

1

d

∑
λ

tr[Gλ]

subject to
∑

λ

δa,λx Gλ + Sa,x = EA
a|x ∀ a, x,

Gλ � 0, Sa,x � 0 ∀ λ, a, x,

∑
λ

Gλ − 1

d

(∑
λ

tr[Gλ]

)
· 1 = 0,

(F1)
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to put the problem in the standard form

min
X

〈C, X 〉
subject to 〈Ak, X 〉 = bk ∀ k

X � 0. (F2)

It is then clear that the entries of the POVM elements Ea|x will
appear in the vector b, and consequently in the objective of the
dual problem

max
y

〈b, y〉

subject to
∑

k

ykAk � C. (F3)

It is clear that if, for a given x, Ea|x = ∑
i μiPi

a|x, the minimal
robustness will be obtained for a given projective measure-
ment {Pi

a|x}a,x.
It is not obvious, however, what happens if one tries to min-

imize the robustness for a fixed Bell-inequality violation. In
fact, by choosing one element of the decomposition as above,
we may decrease both the robustness and the Bell-inequality
violation.

A possible approach to the problem by dilation of the mea-
surements of both Alice and Bob has been already proposed
in Ref. [61]; while generating a basis for Sd , the space of
moment matrices corresponding to dimension d , one should
sample Alice’s and Bob’s measurements of the form

EA
a|x = U x(|a〉〈a|A′ ⊗ 1A)(U x )†,

EB
b|y = U y(|b〉〈b|B′ ⊗ 1B)(U y)†,

(F4)

with random unitaries U x and U y. Random states should
then be taken of the form ρ = |0〉〈0|A′ ⊗ |0〉〈0|B′ ⊗ |ψ〉〈ψ |AB.
Since we are interested in dichotomic measurements, the di-
mension of the auxiliary spaces A′ and B′ is 2 in both cases. In
practice, however, this method was not able to provide a better
bound of the SDI bound in d = 2 for the I3322 inequality.

APPENDIX G: EXTENSION OF MMM METHOD TO THE
PREPARE-AND-MEASURE SCENARIO

The prepare-and-measure (P-M) scenario, e.g., the one
given by random access codes [49,65], is a paradigm often
considered in quantum information processing as an alter-
native to the Bell scenario. The P-M scenario is a one-way
communication scenario in which one party, let us say Bob,
prepares a physical system in a state ρy chosen from a finite
set indexed by y and sends it to the other party, Alice. Alice
measures this system with a choice of measurement specified
by x. The conditional distribution P(a|x, y), where a is the
outcome of Alice’s measurement, is then used to semi-device-
independently characterize the states and measurements in

this scenario. The classical distribution P(a|x, y) is the one
produced by states and measurements which can be simul-
taneously diagonalized in some basis of the Hilbert space in
which they are defined.

One important distinction between the P-M and Bell
scenarios is that parties’ measurements do not need to be
spacelike separated. However, in order to observe a gap
between classical and quantum strategies, some form of re-
striction on the communication needs to be imposed [71,72].
Here, we consider the most common type of restriction, an
upper bound on the Hilbert’s space dimension in which the
states and measurements are defined. This enables us to use
the hierarchy of Ref. [61] to approximate the set of quantum
correlations P(a|x, y) and subsequently map the incompatibil-
ity robustness SDP to MMM SDP.

The map is a direct extension, merely a simplification of
Eq. (4) of the main text, and can be written as follows:

χ
[
EA

a|x
]

:=
∑

n

Kn
(
EA

a|x
)
K†

n ∀a, x. (G1)

Here, Kn := ∑
i |i〉AA〈n|Si, and {Si} is the following sequence

of operators: {Si} = {1A, EA
a|x, ρy, EA

a|xρy, etc.}. The MMM
can then be defined as

χ{Si}
[
EA

a|x
] =

∑
i j

|i〉〈 j|tr[Si
(
EA

a|x
)
S†

j

]
, (G2)

which is a direct analogy of Eq. (5) of the main text. Using this
map, one can formulate an SDI relaxation of incompatibility
robustness SDP, which reads

min
{χ[Gλ],χ[Ea|x]}λ,a,x

∑
λ

χ [Gλ]1 − 1

subject to
∑

λ

δa,λx χ [Gλ] � χ
[
EA

a|x
] ∀a, x,

χ [Gλ] � 0 ∀λ,∑
λ

χ [Gλ] =
∑

λ

χ [Gλ]1 · χ [1],

∑
a

χ
[
EA

a|x
] = χ [1] ∀x,

χ
[
EA

a|x
] � 0 ∀a, x,

χ
[
EA

a|x
] ∈ Sd ∀a, x,

χ [1] ∈ Sd ,

P(a|x, y) = Pobs(a|x, y) ∀a, x, y,

(G3)

where Sd is a subspace of moment matrices spanned by those
corresponding to states and measurements defined on Hilbert
space of dimension d .
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