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In a previous work, we explored zone broadening and the achievable plate num-
bers in linear drift tube ion mobility-mass spectrometry through developing a
plate-height model [1]. On the basis of these findings, the present theoretical
study extends the model by exploring peak-to-peak resolution and peak capac-
ity in ion mobility separations. The first part provides a critical overview of
chromatography-influenced resolution equations, including refinement of exist-
ing formulae. Furthermore, we present exact resolution equations for drift tube
ion mobility spectrometry based on first principles. Upon implementing simple
modifications, these exact formulae could be readily extended to traveling wave
ion mobility separations and to cases when ion mobility spectrometry is coupled
tomass spectrometry. The second part focuses on peak capacity. Thewell-known
assumptions of constant plate number and constant peak width form the basis
of existing approximate solutions. To overcome their limitations, an exact peak
capacity equation is derived for drift tube ion mobility spectrometry. This exact
solution is rooted in a suitable physical model of peak broadening, accounting
for the finite injection pulse and subsequent diffusional spreading. By borrow-
ing concepts from the theoretical toolbox of chromatography, we believe that the
present study will help in integrating ion mobility spectrometry into the unified
language of separation science.
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1 INTRODUCTION

In recent years, ion mobility spectrometry (IMS), both as
a stand-alone technique and in combination with MS (IM-
MS), has been the subject of intense research. These efforts

Article Related Abbreviations: DTIMS, drift tube ion mobility
spectrometry; IM-MS, ion mobility-MS; TWIMS, traveling wave ion
mobility spectrometry; VMD, virtual migration distance
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led to remarkable improvements in the sensitivity, versatil-
ity, and resolving power of commercial and custom-built
instruments [2]. Among the many creative ways invented
to harness electric forces for separating ions in gases, drift
tube (DT)IMS, traveling wave (TW)IMS, trapped (T)IMS
and field asymmetric waveform (FA)IMS proved to be the
most successful [3,4]. The primary focus of the present
study is DTIMS and DTIM-MS within the low-field limit.
However, similarities between DTIMS and TWIMS allow
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for occasional extension of the plate-heightmodel to derive
equations applicable for the latter technique as well.
DTIMS is a gas-phase electrophoretic method, where

charged analytes are separated according to their mobili-
ties (K) as they drift through a gas-filled cell, propelled by a
static, homogeneous electric field [5].Mobilities are related
to the mass, charge, size, and shape of ions, whereby
the motion of ions is governed by two-body collisions
with the neutral gas particles [6,7]. Within the low-field
limit, these collisions are essentially thermal (low reduced
field-strengths), making mobilities virtually independent
of the applied drift voltage. In general, nonlinear effects on
zone broadening are weak, and peaks converge to a Gaus-
sian profile. Thus, plate-height models can be efficiently
applied to describe DTIM separations. Having explored
zone dispersion in detail previously [1], in the present
study we further extend the plate-height model of IM-MS
and derive suitable formulae for peak-to-peak resolution
and peak capacity.
Single-peak resolving power (RP), the number of theo-

retical plates (N), and the plate height (HETP) are highly
useful indices to characterize and compare the perfor-
mance of separation methods based on differential migra-
tion. However, the analyst facing a practical problem is
often more interested in the actual resolution between
two neighboring peaks. Peak-to-peak resolution (RS) is a
widely employed, dimensionless measure of the extent of
separation between two Gaussian peaks [8]:

𝑅S =
𝑡2 − 𝑡1

2σt,1 + 2σt,2
=

|Δ𝑡|
4⟨σt⟩ (1)

In Equation (1), t1 and t2 are the centroid drift times
(or retention times, migration times, etc.), while σt,1 and
σt,2 are the corresponding temporal SDs of the distribu-
tions. By employing the absolute drift time (or retention
time, migration time) difference |Δt| and the arithmetic
mean of the standard deviations ⟨σt⟩, a more concise for-
mulation ensues. Despite the apparent similarity of the two
phrases appearing in IMS literature, single-peak resolving
power RP and peak-to-peak resolution RS should not be
confused. The first is related to the sharpness of a single
selected signal in the IM spectrum, often defined in a colli-
sion cross-section domain [2]. In contrast, RS reflects sepa-
ration between two adjacent peaks, influenced by both the
width of the two signals as well as the distance between
them.
The rationale behind Equation (1) is as follows: consid-

ering two identical Gaussians with the same area and SD,
RS will be unity when the line tangents to the closer-lying
inflection points of the peaks intersect at the baseline. Unit
resolution (RS = 1) in these cases means that each peak
overlaps 4.55% of the other peak’s area, while baseline res-

olution (RS = 1.5) results in a 0.27% overlap. The above
values, however, change at constant RS if the two peaks
are not identical: the same RS value may apply to different
peak pairs with different overlap, depending on the ratio
of their areas and SDs. Thus, RS is not a direct measure of
cross-contamination, and alternative functionswere devel-
oped that are better suited for preparative separations and
non-Gaussian peak profiles [9–11]. Althoughmany of these
functions reflect peak overlap more accurately, they are
much more difficult to calculate from experimental data
and have no clear advantages over Equation (1) in ana-
lytical separations, impeding their widespread application.
Thus, in separation science, Equation (1) serves as a practi-
cal and universally recommended index formeasuring res-
olution between peaks. Owing to its simplicity, popularity,
direct connection to peak capacity (see later) and the fact
that it served as the starting point for predictive resolution
equations in chromatography and electrophoresis, we also
choose Equation (1) as the basic definition to derive pre-
dictive formulae for stand-alone IMS and IM-MS.

2 RESULTS AND DISCUSSION

2.1 Chromatography-influenced
predictive resolution equations for drift
tube ion mobility spectrometry

Being a general definition and entirely descriptive, Equa-
tion (1) merely specifies the way resolution should be cal-
culated in case an ion mobility spectrum, chromatogram,
etc., is given. However, it does not help us identify underly-
ing factors influencing resolution, nor does it help to find
the optimal separation conditions. Therefore, predictive
equations need to be derived that reveal the fundamen-
tal factors determining RS, aid the optimization of sepa-
rations in practice, and may estimate RS under prescribed
experimental conditions. For clarity, in resolution equa-
tions specific for a certain technique the respective sepa-
ration method is indicated in the subscript of RS.

2.1.1 Equal peak width assumption

Assuming σt,1 + σt,2 = 2σt,2, Purnell derived a predictive
resolution equation for column chromatographyunder lin-
ear elution conditions [12]:

𝑅S, Ch =

√
𝑁2

4

𝑘2 − 𝑘1
1 + 𝑘2

=

√
𝑁2

4

α − 1

α

𝑘2
1 + 𝑘2

(2)

In Equation (2),N2 is the plate number for the later elut-
ing component, and k1 and k2 are the retention factors of
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the respective compounds, while α is the separation factor
expressing intrinsic selectivity (α= k2/k1). The subscript in
RS,Ch refers to chromatography. Definitions of chromato-
graphic parameters appearing seldom in the IMS literature
are provided in the Supporting Information, Section S1.
Employing the same equal peak width assumption, but

concentrating on the first peak (σt,1 + σt,2 = 2σt,1), Knox
[13] and Thijssen [14] arrived at the following formula:

𝑅S,Ch =

√
𝑁1

4

|Δ𝑘|
1 + 𝑘1

=

√
𝑁1

4
(α − 1)

𝑘1
1 + 𝑘1

(3)

Here, N1 is the plate count for the earlier eluting solute
and |Δk| stands for the absolute difference of retention
factors.
Equations (2) and (3) are equivalent and yield the same

result as Equation (1), provided the assumption of equal
peak widths is satisfied (

√
𝑁1(1 + 𝑘2) =

√
𝑁2 (1 + 𝑘1)).

This criterion, however, is often not met in practice, in
which case Equations (2) and (3) cease to be equivalent
and the choice to apply one or the other becomes arbi-
trary. If the second peak is broader, as inmost cases, RS val-
ues predicted by Equation (2) will be systematically lower,
while those predicted by Equation (3) will be systemati-
cally higher than the reference values calculated accord-
ing to Equation (1). Detailed derivations of the resolution
equations presented in Sections 2.1–2.3 can be found in the
Supporting Information, Section S2.
The first predictive resolution equation for DTIMS [15]

was based on Equation (2), inheriting its limitations stem-
ming from the equal peak width assumption:

𝑅S,DT =

√
𝑁2

4

α − 1

α
(4)

Here, α is defined as the ratio of ion mobilities instead
of the ratio of retention factors as in chromatography (α
≥ 1 by convention). The subscript in RS,DT indicates that
Equation (4) is specific to DTIM separations.
The general reasoning to obtain Equation (4) is as fol-

lows: the time the ions need to traverse an empty drift
cell in perfect vacuum (i.e., the analogue of chromato-
graphic void time) is negligibly short compared to the
actual drift time in gas-filled cells (equivalent of retention
time). Therefore, retention factors in DTIMS are virtually
infinite, meaning that the chromatographic migration fac-
tor k2/(1+k2) is essentially unity and may be neglected.
Although the resulting formula is useful, the above argu-
ment is not justified by physical models and may be
misleading: it implies that IMS is a chromatography-like
process with retention playing a central role. Instead, IMS
is a gas-phase electrophoretic process where convective
flow or partition between stationary andmobile phases are

absent. Thus, void time and retention (factors) cannot be
interpreted in relation to this technique.
To circumvent the shortcomings of the above reason-

ing that stem from physical differences between the tech-
niques, wemay instead concentrate onmore abstract, gen-
eral aspects of differential migration processes and utilize
the concept of virtual migration distances (VMDs), devel-
oped by Rathore and Horváth [16]. VMDs reveal analo-
gies between separation methods and the equivalence of
separation parameters across techniques. In this system,
the equivalent of the chromatographic migration factor
is the electromigration factor, which in case of DTIMS—
electrophoretic process in the absence of bulk flow—
equals 1. The equivalent of the chromatographic reten-
tion factor is the electrophoretic velocity factor, which is
infinitely large inDTIMS, analogously to condensed-phase
zone electrophoresis without electroosmotic flow. Thus,
obtaining Equation (4) from Equation (2) appears justi-
fied based on this concept. For the detailed description of
VMDs, the interested reader is referred to the seminal pub-
lication [16]. The equivalent separation parameters men-
tioned above together with respective VMDs are summa-
rized in the Supporting Information, Table S1.

2.1.2 Equal plate number assumption and
exact solutions

A generally more valid assumption for close-lying peaks
in isocratic elution chromatography and DTIMS is that
of equal plate numbers. Assuming N1 = N2 = N, Karger
obtained the following equation for chromatography [17]:

𝑅S,Ch =

√
𝑁

4

|Δ𝑘|
1 + ⟨𝑘⟩ =

√
𝑁

4

(
2
α − 1

α + 1

⟨𝑘⟩
1 + ⟨𝑘⟩

)
(5)

In Equation (5), ⟨k⟩ is the arithmetic mean of the reten-
tion factors.
An exact solution requiring no assumption on the width

of peaks or the plate number was derived by Said [18,19]
and Suematsu and Okamoto [20] by introducing an effec-
tive average plate number corresponding to a hypothetical
analyte, defined as:

𝑁avg =

(⟨𝑡R⟩⟨σt⟩
)2

(6)

Here, ⟨tR⟩ is the arithmetic mean of the two reten-
tion times, while the denominator contains the arithmetic
mean of the peaks’ temporal SDs. In practice, the ratio of
N1 and N2 is generally close to unity, in which case the
arithmetic [19,21] or geometricmean [22] of the plate num-
bers serve as sufficiently good approximation forNavg. The
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TABLE 1 Corresponding predictive resolution equations for chromatography and drift tube ion mobility spectrometry

Chromatography

Drift tube ion
mobility
spectrometry Assumption Reference and name√

𝑁1

4
(α − 1)

𝑘1

1+𝑘1

√
𝑁1

4
(α − 1) σt,1 + σt,2 = 2σt,1 Knox-Thijssen [13,14]√

𝑁2

4

α−1

α

𝑘2

1+𝑘2

√
𝑁2

4

α−1

α
σt,1 + σt,2 = 2σt,2 Purnell [12]√

𝑁

4

(
2
α−1

α+1

⟨𝑘⟩
1+⟨𝑘⟩

) √
𝑁

2

α−1

α+1
𝑁1 = 𝑁2 = 𝑁 Karger [17]√

𝑁avg

4

(
2
α−1

α+1

⟨𝑘⟩
1+⟨𝑘⟩

) √
𝑁avg

2

α−1

α+1
No assumption (exact)a Said [18–20]√

𝑁geo

4

(
2
α−1

α+1

⟨𝑘⟩
1+⟨𝑘⟩

) √
𝑁geo

2

α−1

α+1
Empiricalb –

a𝑁avg = (⟨𝑡⟩∕⟨σt⟩)2, the effective average plate number.
b𝑁geo =

√
𝑁1𝑁2, that is, the geometric mean of the two plate numbers.

resulting exact predictive equation for RS is very similar to
Equation (5):

𝑅S.Ch =

√
𝑁avg

4

|Δ𝑘|
1 + ⟨𝑘⟩ =

√
𝑁avg

4

(
2
α − 1

α + 1

⟨𝑘⟩
1 + ⟨𝑘⟩

)
(7)

The only difference is the presence of Navg. The term in
parenthesis reflects the relative velocity difference of the
analytes.
Equation (7) reveals the influence of fundamental sep-

aration parameters on resolution, does not suffer from
the shortcomings of Equations (2) and (3), and yields the
same RS values as Equation (1) in all cases, irrespective of
the ratio of peak widths or plate numbers. Therefore, we
may choose it as the basis of a more accurate formula for
DTIMS:

𝑅S,DT =

√
𝑁avg

2

α − 1

α + 1
(8)

Here,Navg is calculated according to Equation (6), using
drift times (tD) instead of retention times. Inheriting the
above-mentioned advantages of Equation (7), Equation (8)
appears as a suitable choice for a predictive resolution
equation in DTIMS. Table 1 provides a concise overview
of resolution equations for chromatography along with the
analogous formulae for IMS.
Figure 1 compares the performance of chromatography-

influenced predictive resolution equations for DTIMS,
highlighting their trueness under a broad range of settings.
Figure 1a portrays the situation with equal plate num-
bers assumed for the two separands. RS values predicted
by equations based on the equal peak width assumption
(red and yellow traces) show increasing deviation from the
true RS with growing values of α, that is, as the distance
between the peaks in the ion mobility spectrum increases.
Although the experimentally most relevant region is that

of close-lying peaks where α is relatively low, the results
clearly indicate the limitations of the equal peak width
assumption. Figure 1b represents a different setting: the
ratio of the two peaks’ temporal width is swept between
1 and 1.5, while α is held constant at 1.05. As the second
peak becomes broader relative to the first, equations based
on various assumptions show increasing systematic devia-
tion. Meanwhile, the exact equation (based on Said’s for-
mula for chromatography) successfully predicts the true
value of RS in the entire range. The empirical formula,
where Navg is approximated by the geometric mean of the
two plate numbers, yields results sufficiently close to the
true value. Thus, it proves to be a good alternative in prac-
tice. It is worthmentioning that the green trace reproduces
the true value at exactly one point: Where the peak width
ratio equals the value α = 1.05. At this point, N1 equals N2
and the assumption the equation is based on is satisfied.

2.2 Resolution equations for drift tube
ion mobility spectrometry from first
principles

Starting fromEquation (1), it can be shown thatRS depends
on the number of theoretical plates and the relative veloc-
ity difference (δv, nonnegative by definition) of the ana-
lytes [23]:

𝑅S =
|Δ𝑡|
4⟨σt⟩ =

√
𝑁avg

4

|Δ𝑡|⟨𝑡⟩ =

√
𝑁avg

4

|Δ𝑣|⟨𝑣⟩ ≡
√
𝑁avg

4
δv

(9)

In Equation (9), vi is the average velocity of the ith ana-
lyte zone through the separation field, defined as vi = L/ti.
As each analyte migrates through the same conduit (tube,
column, etc.) with length L, |Δt|/⟨t⟩ equals δv. Although
in stand-alone DTIMS, zone electrophoresis or column
chromatography under isocratic conditions the analytes
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F IGURE 1 Comparison of chromatography-influenced resolution equations for drift tube ion mobility spectrometry. Peak-to-peak
resolution RS calculated according to the various predictive resolution equations for DTIMS. Equations are color coded, and the names refer
to the respective chromatographic equations they derive from; in the empirical formula (purple trace), Navg is approximated by the geometric
mean of N1 and N2 (see Table 1). Calculated RS values are divided by the exact value of RS as defined in Equation (1), that is, a value of 1
represents perfect agreement. As α = 0 leads to zero RS, the plotted functions are not defined at this point. (A) Trueness of predicted RS as a
function of α, the ratio of ion mobilities. In these calculations, equal plate counts were assumed for the two components (N1 = N2); owing to
the normalization of RS values the absolute number of plates is indifferent. The exact and empirical equations would coincide with the green
trace. (B) Trueness of predicted RS as a function of the temporal peak width ratio σt,2/σt,1. The ratio of plate numbers changed according to the
peak width ratio (N1/2 ∼ 1/σt). In the calculations, α was fixed at 1.05, corresponding to 5% difference in mobilities. For calculating the green
trace (equal plate number assumption), N2 was used when the two plate counts differed

migrate at constant velocity, there is no need to assume
constant velocity to arrive at the above formula. In DTIMS,
δv is the ratio of the difference and the arithmetic mean of
two drift velocities, and as such, adopts values in the range
0 ≤ δv < 2. Although cases with one of the analyte zones
being stagnant or the velocity vectors pointing to oppo-
site directions are interesting on their own merit, due to
their irrelevance to standard DTIMS these are not consid-
ered here in relation to δv. In Equations (5) and (7), δv is
expressed using retention factors and the separation fac-
tor, α being inherited by the corresponding equations for
DTIMS. Instead of relying on chromatographic parameters
stemming from an analogy-driven approach, this section
aims to utilize first principles and relate δv to fundamental
parameters of IMS itself. We may look at δv as the oper-
ational selectivity describing the relative behavior of two
analytes in a separation.
In DTIMS, the drift velocity vd of ions is directly propor-

tional to their mobility K, the proportionality factor being
the drift fieldED. Thus, fromEquation (9) applicable to var-
ious differential migration processes, we arrive at the fol-
lowing expression for DTIMS:

𝑅S,DT =

√
𝑁avg

4

|Δ𝐾|⟨𝐾⟩ (10)

This formula is very similar to its well-known counter-
part for zone electrophoresis, the main differences being

the appearance of gas-phase ion mobilities instead of their
condensed-phase analogues, and the absence of an equiv-
alent for the electroosmotic flow [24,25]. By employing
the relation α = K1/K2 [15], Equations (8) and (10) can
be shown to be equivalent, providing a mutual valida-
tion. Equation (10) is exact as no assumption about peak
width or plate numbers was required for the derivation,
and clearly shows how RS can be improved in practice.
Besides the possibility of increasing the number of theo-
retical plates, which concerns instrument development to
a great degree, one may try to influence the relative mobil-
ities of the two analytes through altering the separation
conditions.
To explore the latter option in more detail, let us utilize

the fundamental low-field ionmobility equation and relate
K to quantities more closely associated with the ion struc-
ture and characteristics of the collision complex [6,7,26,27]:

𝐾 =

(
18π

μ𝑘B𝑇

)1∕2
𝑧𝑒

16𝑁Ω
= 𝐶

𝑧

Ω
√
μ

(11)

In Equation (11),μ is the reducedmass of the ion–neutral
collision complex, kB is the Boltzmann constant, T is the
temperature of the buffer gas (within the low-field limit
ions are assumed to be in thermal equilibrium with the
gas), z is the ionic charge state, e is the elementary charge,
N is the buffer gas number density, andΩ is the rotationally
averaged collision integral (herein collision cross-section),
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F IGURE 2 The influence of reduced mass difference on selectivity in drift tube ion mobility separations. (A) Relative velocity difference
δv of ion pairs with identical collision cross-sections and nonidentical masses (mimicking isotopologue separations), plotted as a function of
the mean ion mass. Colors encode representative buffer gases, ranging from the lightest (He) to the heaviest (SF6) gas applied in practice. The
relative mass difference of the ion pairs Δmion/⟨mion⟩ was held constant at 0.1. (B) Analogous δv versus ⟨mion⟩ plot showing the effect of a
constant absolute mass difference. Instead of keeping the relative mass difference fixed as on the left, the absolute mass difference of the ions
was held at 1 Da, resulting in a more rapid drop of δv with increasing ion mass. Note the difference between the ion mass ranges on the two
plots. For brief overview, the buffer gases used in the calculations with their rounded standard atomic/molecular weight in Da: He 4; N2 28;
N2O 44; Kr 84; SF6 146. In the calculations, all stable isotopes/isotopologues of the buffer gas atoms/molecules were considered, weighted
with their relative abundances

an effective area related to the target size for the ion–
neutral pair and the efficiency ofmomentum transfer upon
collision [28]. Ω values reflect the ions’ size and shape
and are independent of instrument geometry or mea-
surement conditions within the low-field limit, serving as
comparable molecular descriptors [29,30]. Dimensionless
factors, physical constants, and experimental parameters
that are the same for all species can be expressed by a
single integrated constant C, highlighting the dependence
of K on three analyte-related quantities: z, μ, and Ω.
These can be combined to yield the charge- and reduced
mass-normalized collision cross-section Ω’, defined
as [31]:

Ω′ =
Ω
√
μ|𝑧| (12)

Ultimately, DTIMS separates gas-phase ions according
to their Ω’ values. Thus, employing Ω’ (defined here as
a positive quantity) we may reformulate Equation (10) to
obtain the following expression for DTIMS:

𝑅S,DT =

√
𝑁avg

4

||ΔΩ′||⟨Ω′⟩ (13)

The above solution is exact and relates δv to the Ω’ val-
ues of the analytes in the given buffer gas, which are char-
acteristic to the ion–neutral complex and can potentially
be stored in databases. Thus, Equation (13) is accurate and

practical, has a high predictive potential, and reveals how
δv can be influenced in DTIM separations, addressed in
detail in the following subsections.

2.2.1 The influence of the reduced mass on
selectivity

The dependence of Ω’ on μ enables analysts to optimize
conditions for separations concerning ions with noniden-
tical masses, such as the separation of isotopes or iso-
topologues in stand-alone IMS. The larger the mass of
the gas particles compared to the masses of the two ions,
the larger the relative difference between the μ values of
the respective collision complexes will be (provided the
ion masses differ). Thus, δv may be tailored and RS con-
sequently improved by the adjustment of the buffer gas
atomic/molecular weight for the separation of lighter ions
with different masses [32,33].
Figure 2 explores in detail how differences in μ can be

exploited to influence selectivity in DTIMS. To study the
effect of reduced mass difference on δv independently of
other influencing factors,Ω and zwere assumed to be iden-
tical, the absolute values being irrelevant. Although kinetic
theory [34,35] and some experiments [33] suggest that iso-
topologues may have extremely small differences in their
Ω values, for practical purposes the assumption of iden-
tical Ω remains generally valid [36,37]. The two plots in
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Figure 2 depict δv for analyte pairs with nonidentical
masses as a function of their mean mass ⟨mion⟩. The col-
ors represent various buffer gases, ranging from the light-
est (He) to the heaviest (SF6) gas applied in practice. It is
apparent that δv decreases rapidly with increasing ⟨mion⟩,
and that heavier gases lead to improved selectivity. The
heavier the gas relative to the ions, the larger δv will be
for isotopologues. In Figure 2a, the relativemass difference
of ions Δmion/⟨mion⟩ was kept constant at 0.1. For an ion
pair with 10 Da average mass, it means 1 Da absolute dif-
ference, that is, 9.5 and 10.5Da for the two species; for a pair
with 100 Da mean mass, the difference is 10 Da. With the
gas particles becoming heavier, the reduced mass of each
collision complex approaches the mass of the respective
ion. Consequently, for any given value of ⟨mion⟩, δv con-
verges to Δ(mion

1/2)/⟨mion
1/2⟩ (corresponding uniformly to

roughly 0.05 in Figure 2a) as the mass of the gas parti-
cles increases. It is apparent that for heavy ions the afore-
mentioned convergence of δv is very slow, and the val-
ues remain low under experimentally feasible conditions
(mgas < 150 Da). In Figure 2b, the absolute mass differ-
ence between the members of each ion pair was fixed at
1 Da. Thus, Δmion/⟨mion⟩ decreases with increasing mean
ion mass, and δv drops even more rapidly as the analytes
become heavier. Note the difference between the range of
⟨mion⟩ values chosen in the two plots. The above analy-
sis did not involve gas mixtures, but the presence of mul-
tiple gas isotopes/isotopologues were considered [36,38].
Despite the simplicity of the model, the main trends and
strategies to exploit differences in ion mass to improve δv
could be revealed.

2.2.2 The influence of the collision
cross-section and the ionic charge state on
selectivity

As the ratio of the Ω values for two ions may also depend
on the buffer gas composition, the effect of different buffer
gases [39–41] and gas-phase modifiers [42,43] on selectiv-
ity have been extensively studied. Altering the ratio of Ω
values through changing or doping the buffer gas poten-
tially enables the analyst to tailor selectivity in (low-field)
IM separations, with particular relevance to isomer separa-
tions. However, in comparison to more flexible chromato-
graphic and condensed-phase electrophoretic separations
where selectivity can be influenced by tuning a myriad of
parameters and conditions over a broad range, the possibil-
ities in IMSaremore restricted, and the resulting effects are
less striking. It should also bementioned that the choice of
buffer gas can affect the plate count as well by influencing
the absolute value of transport properties [1,2,44], which is
important as RS depends on both Navg and δv.

Arguably themost important application of IMS and IM-
MS is the separation of isomers,where differences inΩ rep-
resent the only aspect of selectivity. As μ is the same for
isomeric species, Equation (13) can be simplified (assum-
ing the two analytes have the same charge):

𝑅S,DT =

√
𝑁avg

4

|ΔΩ|⟨Ω⟩ (14)

Equation (14) is very similar to that proposed by Dodds
et al. [45], the only difference being the appearance of
Navg, the effective average plate number defined accord-
ing to Equation (6). Equations (13) and (14) can also be uti-
lized to calculate the number of theoretical plates required
to achieve certain RS for a given analyte pair, as shown
in Figure 3. The plots highlight the intertwined influ-
ence of resolving power (expressed byNavg) and selectivity
(expressed by ΔΩ’/⟨Ω’⟩) on the ultimately achieved peak
resolution in DTIMS. In general, RS = 0.75 is required
to readily distinguish two peaks, whereas RS = 1.5 marks
baseline separation by convention. As cutting-edge high-
pressure DTIMS instruments may achieve plate numbers
on the order of 105 [2], separating isomers with roughly
0.5–1% collision cross-section difference represents the cur-
rent limit of this technique.
High kinetic energy (HiKE) IMS [46], FAIMS [47], or

its recent variation, field asymmetric time-of-flight (FAT)
IMS [48], exploit energetic hyperthermal collisions in high
fields and the resulting dependence of K and Ω on the
reduced field strength to influence selectivity. Although
this approach is effective and orthogonal to that of chang-
ing the buffer gas, it transcends the boundaries of linear
low-field IMS and therefore not discussed further.
There is little playing field for the analyst to influence

z selectively, but its effect is important to understand and
predict RS for ions having the same m/z but different
mass and charge, such as various oligomers. In the discus-
sion above, the separation of isotopologues, isomers and
oligomers serve as representative examples. In most ana-
lytical problems, especially those concerning stand-alone
IMS, it is the combined effect of μ, Ω, and z that needs to
be evaluated in relation to selectivity, as expressed by the
single parameter Ω’ in Equation (13).
As a final remark to Section 2.2, in relation to Equa-

tions (10), (13), and (14), we shall briefly address the pos-
sibility of predicting selectivity in DTIMS relying solely
on theoretical approaches. First, state-of-the-art computa-
tional methods are capable of generating correct structural
models for gas-phase molecular ions of ever-increasing
complexity. Second, two-body interactions governing sep-
aration in IMS are much more amenable to computa-
tional treatment than many-body encounters determining
retention in chromatography [49]. If the aforementioned
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F IGURE 3 Number of theoretical plates needed for achieving defined resolution between two peaks in drift tube ion mobility
spectrometry. (A) Double-log plot showing the effective average number of plates Navg required to reach defined RS values as a function of the
analytes’ relative velocity difference δv. It is worth mentioning that δv adopts nonnegative values below 2 in drift tube ion mobility
separations, but values close to this theoretical upper limit are of little practical relevance. RS = 1.5 corresponds to baseline separation; an
n-fold increase in RS requires an n2-fold increase in Navg. (B) Single-log plot highlighting the most relevant and experimentally accessible
region. Most separations in practice concern analyte pairs with δv < 0.1. At present, state-of-the-art high-pressure linear DTIMS instruments
may achieve theoretical plates on the order of 105

suitable ion structures are available, Ω and K can be
calculated in a variety of buffer gases with satisfying
accuracy [50–55]. Thus, with increasing computational
power and further progress of theoretical methods, the
prospect of predicting selectivity in DTIMS entirely com-
putationally, at least for simpler systems, does not seem far
fetched.

2.3 From stand-alone ion mobility
spectrometry to ion mobility-mass
spectrometry

In our analysis so far, we implicitly assumed that ion drift
related post-cell effects—the analogues of extra-column
factors in chromatography—are absent. This may be true
for stand-alone IMS (although detector rise time is still
important), but is not entirely valid in IM-MS where ions
may traverse ion funnels, ion guides, and mass analyzers
before reaching the detector. The residence time of ions in
these post-cell compartments adds to their net drift time
tD, the sum being the total arrival time tA. As mobility-
based separation does not take place inmany of these post-
cell compartments, their presence affects the calculation
of RS.
Post-cell effects on RS can be incorporated into the

expression of plate numbers, as shown below. Let us adopt
the dimensionless factor F from [1] as the fraction of non-
separative transport time tNS in relation to the total arrival

time tA:

𝐹 =
𝑡NS
𝑡A

=
𝑡NS

𝑡S + 𝑡NS
(15)

In Equation (15), tA was divided into a separative part tS
during which ions are separated according to their mobil-
ities, and into a nonseparative part tNS with no separation
taking place, that is, tNS is assumed to be the same for any
two neighboring species. In general, residence time of ions
in the mobility cell and the exit funnel (if present) amount
to tS, while tNS comprises the residence times in post-cell
compartments under high vacuum. Such explicit catego-
rization of compartments is physically justified. First, pres-
sure and temperature across a mobility cell and the corre-
sponding exit funnel are uniform because no conductance
limit is present between them. It means that ion mobilities
are left unchanged and δv is the same in these compart-
ments, even if the absolute velocities may differ (low-field
conditions are assumed). Second, additional separation of
two neighboring ion clouds in ion guides, etc., following
the drift region is not very significant, especially if the ions
have identical or similar m/z ratios. Therefore, employing
ΔtNS = 0 for these compartments introduces a negligible
error in the calculations. Using F, we can define the appar-
ent plate number for DTIM-MS:

𝑁app =

(
𝑡A
σt

)2

(1 − 𝐹)
2
=

(
𝑡S
σt

)2

(16)
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The numerator ofNapp correctly accounts for those com-
partments only where mobility separation takes place.
Because in compartments not contributing to separation

ΔtNS is zero in our assumption, ΔtA appears equal to ΔtS.
Thus, by substituting tA instead of tD into Equation (1), the
general expression for RS in the presence of post-cell com-
partments can be obtained:

𝑅S =
Δ𝑡A
4⟨σt⟩ = ⟨𝑡S⟩

4⟨σt⟩ Δ𝑡S⟨𝑡S⟩ =
√
𝑁app

4
δv (17)

Here, Napp is the effective average plate number cor-
rected with F according to Equation (16). Since δv in the
mobility cell and the respective exit funnel is the same, the
DTIM-MS specific predictive equation for RS appears as:

𝑅S,DT =

√
𝑁app

4

||ΔΩ′||⟨Ω′⟩ (18)

2.4 Peak-to-peak resolution in traveling
wave ion mobility separations

In this section, we aim to find a predictive resolution
equation for TWIMS [56,57] by extending the approach
employed for DTIMS before. The main difference between
the two techniques concerns selectivity and δv. Although
in DTIMS drift velocities are directly proportional to K, in
TWIMS this dependence is nonlinear and cannot be traced
back to first principles [58]. Hence, Equation (10) and sub-
sequent formulae derived from it are not applicable to the
latter method.
A widely applied solution to the above problem is to

transfer TWIM separations from their fundamental tem-
poral dimension into the collision cross-section domain,
that is, accounting for the altered selectivity by including
its effect into amodifiedΩ-based definition ofN or RP [45].
This approach has several advantages, but ultimately blurs
the clear distinction between two independent aspects of
peak resolution: plate count/resolving power and δv. The
method-specific, rather arbitrary modification of funda-
mental definitions (N and RP) also leads to some disso-
nance between this approach and the unified theoretical
toolbox of separation methods [8].
Here, we provide a solution that is mathematically

equivalent to the one mentioned above, but adheres to
the general formalism of separation science. To obtain the
desired formula for TWIMS, a suitable expression for δv
needs to be found and substituted intoEquation (9). In gen-
eral, the following power function is employed for collision
cross-section calibration in TWIMS, that is, to describe the
dependence between Ω’ and the ion transit time (post-cell

effects being neglected) [31,59]:

Ω′ = 𝐴(𝑡D)
𝐵 (19)

In Equation (19), tD is the transit time of ions through the
TWIMS cell, while A and B are parameters that depend on
experimental conditions. A and B are determined exper-
imentally during the general collision cross-section cali-
bration process using suitable calibrants [60,61]. Employ-
ing this semiempirical relation to express δv and the nota-
tion 1/B= γ, the predictive resolution equation for TWIMS
appears as:

𝑅S,TW =

√
𝑁avg

4

(
Ω′

2
γ
− Ω′

1
γ
)

⟨Ω′γ⟩ (20)

The subscript in RS,TW indicates the TWIMS specificity
of Equation (20). The exponent γ accounts for the altered
selectivity in TWIM separations. In DTIMS γ equals 1,
while in TWIMS it generally exceeds unity in practice, with
clearly favorable consequences to δv and RS. Besides deter-
mination through calibration, this factor may be estimated
theoretically for close-lying peaks under certain assump-
tions. As an illustrative example, for symmetric triangular
waveforms γ adopts a value of 2 if the maximum ion veloc-
ity is much lower than the wave velocity [58,62].
As of today, no complete analytical description of ion

motion in TWIMS cells operated with discretely stepping
potential waves is available, making the technique depen-
dent on suitable calibrants for most applications. How-
ever, a detailed model for hypothetical smoothly moving
waves has been developed [62], marking a significant step
toward the ultimate goal of TWIMS theory: an exact equa-
tion derived from first principles, describing the universal
relation betweenK and the ion velocity. Once such descrip-
tion is available, it will be possible to place selectivity on
entirely theoretical foundations in TWIM separations.

2.5 Peak capacity in ion mobility
separations

Having addressed peak-to-peak resolution, we may build
on these findings and explore peak capacity (PC) in IM
separations. PC was conceived originally by Giddings for
elution chromatography [63], but may be readily transfer-
able to other differential migration methods owing to the
abstractmathematical nature of the concept. PC represents
the maximum number of resolved peaks that can be fit
into the separation window, for example, chromatogram,
electropherogram, or ion mobility spectrum. It reflects
the hypothetical case when peaks are ideally distributed,
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meaning that RS is the same for any two neighboring
peaks within a single dimension of the separation window.
Although the exact value ofRS may be chosen arbitrarily, in
general it is defined to be 1 or 1.5 for practical reasons: val-
ues lower than unity would express significant peak over-
lap, whereas values higher than that of baseline separation
would correspond to the suboptimal utilization of the time
window with unoccupied spaces between peaks. In addi-
tion to the predefined value of RS, PC depends on two fac-
tors: The width of the peaks and the actively utilized size
of the separation window. The narrower the peaks and the
larger this window, the higher the peak capacity. Due to
nonideal, often random distribution of peaks in real sep-
arations, the number of resolved components in reality
is merely a fraction of this number as shown by Poisson
statistics [64,65]. Thus, PC may be viewed as an estimate
of the total number of resolvable components, serving as
a comprehensive measure of the overall separation perfor-
mance. PC is arguably the most suitable index to compare
separation methods: electrophoretic techniques may gen-
erate extremely high plate counts, but the separation win-
dow in these methods is rather narrow in comparison to
chromatography, both in the liquid and the gas phase. For
this reason, it is essential to obtain a suitable model for
peak capacity in IMS.
As mentioned above, the maximum number of resolved

peaks n in the separation window depends on the peaks’
temporal width (σt), the desired resolution between them
(RS,fix, the subscript referring to the fixed, predefined
nature of this parameter), as well as on the breadth of the
window spanning from the first to the nth peak [66]:

d𝑛

d𝑡D
=

1

4𝑅S,f ixσt (𝑡D)
(21)

𝑛

∫
1

d𝑛 =
1

4𝑅S,f ix

𝑡D,n

∫
𝑡D,1

d𝑡D
σt (𝑡D)

(22)

Here, σt(tD) emphasizes the potential variation of the
peak width across the separation window as a function
of the drift time. From Equation (22), one can obtain the
mathematical definition of peak capacity in its general
integral form [67]:

𝑃C,def = 𝑛 = 1 +
1

4𝑅S,f ix

𝑡D,n

∫
𝑡D,1

d𝑡D
σt (𝑡D)

(23)

To highlight the dependence of PC on the plate count,
Equation (23) can be rewritten usingN= (tD/σt)2, whereN

may also be a function of tD:

𝑃C,def = 1 +
1

4𝑅S,f ix

𝑡D,n

∫
𝑡D,1

√
𝑁 (𝑡D)

𝑡D
d𝑡 (24)

The way N and σt depend on tD is central to the peak
capacity problem. Solving Equation (23) or (24) to yield
the desired expression for PC requires the explicit form of
N(tD) or σt(tD) be known. In the following sections, two
approximate solutions based on well-known assumptions
borrowed from chromatography, as well as an exact solu-
tion derived from a suitable physicalmodel for peak broad-
ening in DTIMS, will be presented.

2.5.1 The constant plate number assumption

Assuming thatN is the same for each analyte and indepen-
dent of tD, that is, σt(tD)= tD(N)1/2 whereN is constant, the
solution of Equation (24) is straightforward and yields the
following expression:

𝑃C,𝑁 = 1 +

√
𝑁

4𝑅S,f ix

𝑡D,n

∫
𝑡D,1

1

𝑡D
d 𝑡D = 1 +

√
𝑁

4𝑅S,f ix
ln
𝑡D,n

𝑡D,1

(25)

In Equation (25), tD,1 and tD,n correspond to the first and
last peak, respectively, while the subscript of PC,N implies
that Nwas assumed to be constant. It is worth mentioning
at this point that none of the peak capacity-related equa-
tions presented so far is specific for IMS. Upon changing
tD to tR, Equation (25) becomes identical to the simple for-
mula for isocratic elution chromatography [63,66,67].
From the inverse proportionality between K and tD in

DTIMS, orK and tA inDTIM-MS, amore revealing formula
arises that is specific for the aforementioned technique:

𝑃C,𝑁,DT = 1 +

√
𝑁

4𝑅S,f ix
ln
𝐾1
𝐾n

(26)

The error stemming from ignoring the mobility-
independent contributions to tA in DTIM-MS is negligible.
Ω’ may also be used to express the ratio of drift and arrival
times, resulting in the following practical expression for
DTIMS and DTIM-MS:

𝑃C,𝑁,DT = 1 +

√
𝑁

4𝑅S,f ix
ln
Ω′

n

Ω′
1

(27)
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For separations utilizing the traveling wave technique,
Equation (27) can be modified according to Equation (19)
and employing the notation 1/B = γ:

𝑃C,𝑁,TW = 1 +

√
𝑁

4𝑅S,f ix
γ ln

Ω′
n

Ω′
1

(28)

Equation (28) makes it apparent that for the same ratio
ofΩ’ values and sameN—defined based on the temporal or
spatial SD of peaks, not on their width in aΩ-space—PC,N
will be higher for TWIMS than for DTIMS by the factor γ
(neglecting the constant 1 on the right-hand side). Practi-
cal values of γ normally fall in the range between 1.5 and
2 [60,61]. Owing to the nonlinear dependence of tD on Ω’,
the time window in a TWIM separation will be broader in
relation to the σt of peaks than in an analogousDTIM sepa-
ration. Consequently, the TWIM spectrum will be capable
of encompassing more resolved components provided N is
the same.

2.5.2 The constant temporal peak width
assumption

Let σt be constant across the whole separation window,
meaning that N(tD) = (tD/σt)2 where σt is independent of
the drift time. In this case, the solution of Equation (23)
appears as:

𝑃C,σ = 1 +
1

4𝑅S,f ixσt

𝑡D,n

∫
𝑡D,1

d𝑡D = 1 +
1

4𝑅S,f ixσt

(
𝑡D,n − 𝑡D,1

)
(29)

The subscript denotes σt being a constant. Alternatively,
employing σt = tD,1/(N1)1/2 where N1 is the plate count for
the first peak, Equation (29) can be rewritten as:

𝑃C,σ = 1 +

√
𝑁1

4𝑅S,f ix

(
𝑡D,n − 𝑡D,1

𝑡D,1

)
(30)

Equations (29) and (30) are analogous to the simple
expressions derived for gradient elution chromatography
[66–68]. From the general expression above we can obtain
equations specific for DTIM separations:

𝑃C,σ,DT = 1 +

√
𝑁1

4𝑅S,f ix

(
𝐾1 − 𝐾n
𝐾n

)
(31)

𝑃C,σ,DT = 1 +

√
𝑁1

4𝑅S,f ix

(
Ω′

n − Ω′
1

Ω′
1

)
(32)

For TWIM separations the respective equation appears
as:

𝑃C,σ,TW = 1 +

√
𝑁1

4𝑅S,f ix

(
Ω′

n
γ
− Ω′

1
γ

Ω′
1
γ

)
(33)

Thus, γ values exceeding unity will lead to an increase
in PC,σ.

2.5.3 An exact peak capacity equation for
drift tube ion mobility spectrometry based on
the injection-diffusion model of zone
broadening

Although equations based on the constant N and the con-
stant σt assumptions are certainly helpful, their value lies
mostly in their simplicity. In DTIM separations, assuming
N being the same for all species may be justified if dif-
fusion is the dominant dispersion process and the initial
spread of the injected ion cloud is negligible. On the other
hand, the constant peak width assumption may be valid
if σt is determined predominantly by the injection pulse-
width, with subsequent diffusional broadening being neg-
ligible. In practice, however, the contributions of these two
sources are generally comparable, especially under con-
ditions where resolving power is expected to be highest
[1,69]. As such, the above PC equations have limited appli-
cability in the experimentally most relevant cases.
To overcome these limitations and derive an exact, uni-

versally applicable PC equation for DTIM separations, a
suitable physical model of zone dispersion needs to be
considered. The two major sources of peak broadening in
DTIM separations are diffusion and the finite width of
the injected ion packets. Being independent processes, the
associated variances are additive yielding [1]:

σt,ID(𝑡D) =
(
σ2
t,inj

+ σ2
t,dif f

(𝑡D)
)1∕2

=

(
σ2
t,inj

+ 𝑡2
D

2𝑘𝐵𝑇|𝑧|𝑒𝑉D
)1∕2

=

(
σ2
t,inj

+
𝑡2
D

𝑁dif f

)1∕2

(34)

The above variance components are analogous to
those in zone electrophoresis assuming linear conditions
[23,25,70]. From Equation (34), the corresponding total
plate count NID can be readily calculated as:

𝑁ID (𝑡D) =
𝑡2
D

σ2
t,inj

+
𝑡2
D

𝑁dif f

(35)
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F IGURE 4 Systematic variation in the number of theoretical
plates across a single drift tube ion mobility spectrum. Considering
the finite width of the injection pulse and subsequent diffusional
broadening of the ion packets, the plate count NID will appear
different for each peak within a single separation at fixed drift
voltage. The plate number achieved for a given analyte will depend
on its drift time, which is inversely proportional to the ion’s
mobility. The calculations rely on the assumption that all ions have
the same charge state. The diffusion limit of theoretical plates was
set at 100 000 (black dashed line), corresponding to roughly 5.14 kV
drift voltage for singly charged ions at room temperature. Each
color-coded curve represents a different value of σt,inj, the temporal
standard deviation associated with the injection pulse. At extremely
short drift times the functions bear little practical relevance and
should be interpreted carefully: For ions with very high mobilities
the reduced field will inevitably exceed the low-field limit

In the above equations, σt,ID is the total temporal SD
of a given peak, the subscript referring to the injection-
diffusion physical model. Temporal variances (σt,inj)2 and
(σt,diff)2 express the contribution of injection and diffusion,
respectively. The dependence of σt,diff, σt,ID and NID on tD
is shown explicitly, kB being the Boltzmann constant, T
the temperature of the buffer gas and ions, |z| the absolute
value of the ionic charge state, e the elementary charge and
VD the drift voltage. Employing Ndiff, the diffusion limit of
theoretical plates, amore concise expression ensues. As z is
the only analyte-specific quantity influencing Ndiff, Equa-
tions (34) and (35) adequately describe peak broadening
and the plate count for a set of ions having the same charge
state. Owing to their relatively small contribution to peak
broadening, space charge effects were not included into
Equations (34) and (35). Figure 4 highlights the variation
of NID across the separation window as a function of tD. In
other words, it reflects the dependence of the plate count

on the ions’ mobility in a single DTIM spectrum with VD
and Ndiff held constant.
Upon substituting Equation (34) into Equation (23), or

Equation (35) into Equation (24), we obtain:

𝑃C,ID.DT = 1 +
1

4𝑅S,f ix

𝑡D,n

∫
𝑡D,1

d𝑡D(
σ2
t,inj

+
𝑡2
D

𝑁dif f

)1∕2
(36)

In Equation (36), the subscript of PC,ID,DT refers again
to the underlying physical model and the resulting DTIMS
specificity of the formula. The solution of Equation (36)
can be traced back to the following basic integral [71]:

∫
1√

1 + 𝑥2
d𝑥 = arsinh (𝑥) = ln

(
𝑥 +

√
𝑥2 + 1

)
(37)

Here, arsinh is the inverse or area hyperbolic sine func-
tion (the constant of integration was omitted). Thus, the
solution of Equation (36) takes the following form (step-
by-step derivation can be found in the Supporting Infor-
mation, Section S3):

𝑃C,ID,DT = 1 +

√
𝑁dif f

4𝑅S,f ix
ln
𝑡D,n +

(
𝑡2
D,n

+ 𝑁dif f σ
2
t,inj

)1∕2
𝑡D,1 +

(
𝑡2
D,1

+ 𝑁dif f σ
2
t,inj

)1∕2
(38)

An important aspect of Ndiff is that it adopts the same
value for all species within a given charge state. It is worth
mentioning that—owing to similarities in the underlying
mathematics—Equation (38) resembles the peak capac-
ity equation in chromatography when extra-column band
broadening is considered [72].
As a verification of Equation (38), the exact peak capac-

ity equation for DTIMS, let us examine its behavior at lim-
iting cases. If σt,inj is assumed to be zero (infinitesimally
short injection), Equation (38) becomes:

𝑃C,D,DT = 1 +

√
𝑁dif f

4𝑅S,f ix
ln
𝑡D,n

𝑡D,1
(39)

The subscript of PC,D,DT indicates that only diffusion
was considered, the initial width of the ion packet being
neglected. Equation (39) is analogous to Equation (25),
obtained by assuming constant N on the basis that diffu-
sion is the dominant dispersion process.
At the other extreme, σt,diff is negligibly small compared

to σt,inj. In this case, employing the Maclaurin series of
arsinh(x), Equation (38) can be simplified to the following
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F IGURE 5 Peak capacity in drift tube ion mobility spectrometry based on the injection-diffusion model. Peak capacity PC,ID,DT
calculated according to the exact formula Equation (38) and depicted as a function of drift voltage VD. (A) Curves are color-coded according to
the drift time ratio between the first and the last peak; tinj was fixed at 100 μs. (B) Colors encode different injection times tinj, varied from 25 to
400 μs forming an equirational progression, and the drift time ratio was chosen to be 1:3. The two green curves are therefore identical.
Calculations on both panels mimic real-life drift tube ion mobility separations, performed at 293.15 K in a 150 mm long drift cell using N2 or
air as buffer gas at atmospheric pressure. Ions were assumed to be singly charged, and RS,fix was chosen to be unity. Ion mobility of the first
species was fixed at 2.5 × 10−4 m2 V−1s−1, the mobility of the last species was changed according to the defined drift time ratio

form:

𝑃C,I,DT = 1 +
1

4𝑅S,f ixσt,inj

(
𝑡D,n − 𝑡D,1

)

= 1 +

√
𝑁inj,1

4𝑅S,f ix

(
𝑡D,n − 𝑡D,1

𝑡D,1

)
(40)

Details of the series expansion can be found in the Sup-
porting Information, Section S3. The subscript of PC,I,DT
reflects the elimination of diffusion from the model,
leaving injection the only source of dispersion consid-
ered. Ninj,1 is the plate count for the first peak and
equals (tD,1/σt,inj)2. Equation (40) appears equivalent to
Equation (30), which was obtained by assuming constant
temporal peak width determined by a tD-independent dis-
persion process, i.e. the duration of the injection pulse.
Figure 5 explores peak capacity in DTIMS based on the

injection-diffusion model and Equation (38), highlighting
the influence of the most important experimental param-
eters, such as the applied drift voltage VD or the injection
time tinj. The latter is the actual experimentally controlled
duration of the injection pulse, and the respective SD can
be readily calculated using the formula σt,inj = tinj/

√
12,

assuming rectangular pulse profile [1,25]. AsVD influences
both Ndiff as shown in Equation (34), as well as the drift

time through the relation tD = LD2/(KVD), the impact
of VD on PC,ID,DT is double-edged. Although PC,ID,DT
depends on several factors in a complex manner shown by
Equation (38), the most important trends are revealed by
Figure 5. The portrayed calculations mimic real-life DTIM
separations in every aspect, with K values chosen to reflect
atmospheric pressure experiments. It is evident that a
broader separation window may encompass more peaks
(Figure 5a). In contrast to chromatography, however, the
analyst has little control over this aspect of separation in
DTIMS. In general, factors that efficiently increase NID
across the whole spectrum also lead to higher PC,ID,DT,
such as employing shorter injection times as shown in
Figure 5b. Albeit less obvious, the influence of the buffer
gas pressure is highly important. Higher pressure leads to
lower absolutemobilities, manifesting in longer drift times
without altering σt,inj or Ndiff. Thus, raising the pressure
ultimately results in increased NID and PC,ID,DT values.
Similarly to resolving power or theoretical plates, PC,ID,DT
reaches a maximum at an optimal VD. The positions of
thesemaxima along the abscissa fall between theVD values
where plate counts for the first and last peak are highest
(data not shown).
Being the solution of Equation (36), we may view Equa-

tion (38) as a formula accounting for the variation of
the plate count across the whole DTIM spectrum. When



GRABARICS et al. 2811

relying merely on resolving power and plate count, experi-
mental conditions such as VD, tinj or the buffer gas pres-
sure are optimized considering a single, arbitrarily cho-
sen component of the mixture. Peak capacity, on the other
hand, enables one to optimize the separation considering
the whole set of separands. Thus, it serves as a more com-
prehensive index of the separation performance, and a bet-
ter guide for the analyst dealing with a large number of
analytes simultaneously.

3 CONCLUDING REMARKS

By merging appropriate mathematical concepts borrowed
from chromatography with the physical principles of
DTIM separations, approximate and exact equations were
derived for peak-to-peak resolution and peak capacity.
In relation to peak-to-peak resolution, existing

chromatography-influenced equations for DTIMS were
evaluated and refined (Section 2.1). Employing reso-
lution equations stemming from first principles, most
importantly Equation (13), selectivity and relative velocity
difference could be directly linked to the normalized
collision cross-section of ions. Through revealing key
factors influencing RS, these predictive formulae may
significantly benefit method optimization in everyday
practice. Equations obtained for stand-alone linear DTIMS
were also extended to DTIM-MS (Section 2.3) and TWIMS
(Section 2.4). Through the factor γ, which reappears
in expressions for peak capacity as well, Equation (20)
successfully accounts for the altered selectivity in TWIM
separations.
In Section 2.5, simple peak capacity equations were

obtained for DTIM and TWIM separations based on the
constant N and constant σt assumptions, borrowed from
chromatography. As the range of applicability and valid-
ity of these approximate solutions is limited, an exact for-
mula for peak capacity, Equation (38), was derived for
DTIMS considering the injection-diffusion model of peak
broadening. The peak capacity equations derived herein
may prove to be especially fruitful in applications utilizing
stand-alone IMSwithoutMS analysis, and in general when
dealing with extremely complex samples. In addition to
making the calculation and optimization of peak capacity
within a single IM separation more accurate and transpar-
ent, the equationswill also benefit the estimation of overall
peak capacity in multidimensional workflows incorporat-
ing DTIMS/TWIMS [65].
By further extending the plate-height model of IM-MS,

the present study may also serve as a small step toward
wholly integrating this emerging analytical technique into
the unified language of separation science.
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