Chapter 4

Point-Based Surface
Representation

The surface alignment algorithm proposed in this thesis is based on representing the
molecular surface and properties defined thereon by points. In this chapter we will explain
how we distribute the points on the surface. Our method requires each property to be
given by some scalar field defined on the molecular surface. From this scalar field we
compute a point density according to which the points are distributed. The scalar field
may be homogeneous, i.e. the scalar values are constant across the whole surface as, e.g.
in the case of the shape property. For other properties, such as the electrostatic potential,
the scalar field will be non-homogeneous, i.e. the scalar values vary across the surface.
Note that a property does not necessarily have to be defined on the whole surface but it
can also be defined in certain regions, only. This will be the case, e.g., for the hydrogen
bonding property.

The aim of our approach is to distribute the points on the surface as regular as it is
allowed by the given point density. Here, regularity means that the standard deviation of
the distances of neighbored points should be as small as possible. This avoids oversampling
of certain regions, while it guarantees that an equally weighted surface patch is assigned
to each point. In order to achieve a regular point distribution, we employ a two-step
algorithm. The first step generates an initial point distribution. In the second step, the
point positions are then iteratively relaxed according to the desired point density.

There exist several ways to generate an initial point distribution. A first approach
would be to distribute the points randomly on the surface. This work, in principle, but
imposes extra work on the relaxation step, which will need more iterations to arrive at a
satisfying distribution. We have therefore developed a second approach, which is based
on multilevel k-way graph-partitioning [92]. In this approach, we partition the surface into
equally weighted patches and place a point into the center of each patch.

For the relaxation step we employ a concept known as centroidal Voronoi tesselation
(CVT) [51]. A centroidal Voronoi tesselation is a Voronoi tesselation with the property
that its generators coincide with the mass centroids of the Voronoi regions. We have
developed a novel approximation scheme for computing the centroidal Voronoi tessela-

93

54 Chapter 4. Point-Based Surface Representation

tion of a 2-dimensional surface embedded in 3-dimensional space and represented by a
2-manifold triangular mesh. In this scheme we employ an iterative method known as
Lloyd’s method [113]. In each iteration step of Lloyd’s method we compute the Voronoi
tesselation of the surface w.r.t. the current point distribution and subsequently move the
points to the centers of the new Voronoi regions. This method converges quickly and
produces very good point distributions.

In order to obtain point distributions of good quality, however, the resolution of the
triangular mesh needs to be sufficiently fine, i.e. the number of triangles in the mesh need
be much larger than the number of points to be distributed on the mesh. This assumption
should be kept in mind when proceeding with the subsequent sections.

We begin this chapter in Section 4.1 with basic notations on triangular meshes and
graphs defined thereon. These notations will be referred to in subsequent sections. In
Section 4.2 we propose two algorithms for initializing point distributions. Section 4.3 deals
with the relaxation step. We present two algorithms for computing an approximation of the
centroidal Voronoi tesselation of a 2-manifold triangular mesh based on the graphs defined
in Section 4.1. Results will be given in Section 4.4, where we compare the algorithms
proposed in Sections 4.2 and 4.3 w.r.t. quality and run times. The results show that
the proposed algorithms are efficient and achieve point distributions of very good quality
for both homogeneous and non-homogeneous point densities. We conclude this chapter in
Section 4.5 with a short discussion including a comparison of our approach with previously
published approaches to distribute points on molecular surfaces.

4.1 Basic Notations

4.1.1 Triangular Mesh

As mentioned above, we assume the molecular surface to be given as a 2-manifold trian-
gular mesh.

Definition 4.1.1 (Triangular Mesh). A triangular mesh M = (V, E,T) is a triple con-
sisting of
e a set of vertices V. ={vy1,...,vm},
e a set of edges E = {e1,...,en} CV x V, with (v;,v;) € E = i# j, and
e a set of triangles T = {t1,...,ts} CV xV xV, with (vi,vj,v5) € T = i#j A
iFkN]F],
for which the following two properties hold:

1. Each vertex belongs to at least one triangle.

2. Each edge belongs to at least one triangle.
The set of vertices of M will be denoted by V(M). Likewise the set of edges and the set

of triangles of M will be denoted by E(M) and T'(M), respectively. If it is clear from the
context, we will simply use V', F, and T'.

4.1. Basic Notations 55

x(v3(1)) x(v3(2))

bo(z,t) - A(t)

b1(z,t) - A(t)

x(v1(8)) x(v2(t)) x(v1(1)) x(va(t))
(a) (b)

Figure 4.1: (a) Triangle ¢ with vertices v1(t),va(t),and v3(t). A point x with barycentric coor-
dinates by (z,t), ba(z,t), and bs(x,t) w.r.t. triangle ¢ resides in ¢. (b) The areas of the triangles
spanned by z and the vertices of ¢ are proportional to by(z,t), ba(z,t), and bs(z,t).

Definition 4.1.2 (2-Manifold Triangular Mesh). A 2-manifold triangular mesh, M, is a
triangular mesh where every point on M is contained in some open set which is topologi-
cally equivalent to R2.

From this definition it immediately follows that at most two triangles can be adjacent
to a single edge. In this thesis we will only consider 2-manifold triangular meshes. Hence,
we will often simply use the term triangular mesh of even mesh instead of 2-manifold
triangular mesh.

For v € V, we denote by x(v) € R3 the coordinates of vertex v. For t € T, we denote
by vi(t), i = 1,2, 3, the i’th vertex of t. Using these notations we can write the area of t,
denoted by A(t), as

At) = 5 (xea0) = x((0)) x (x(os(8) ~x(01(1))

where Z X ¢/ is the cross-product of the vectors # and ¢/.
Let € R3 be a point residing on triangle t. Then, = can be written as

x = by(z,t) x(v1(t)) + ba(x,t) x(va2(t)) + bs(x, t) x(v3(t)) ,
bi(z,t),...,b3(xz,t) € [0,1], by(x,t) + ba(x,t) + b3(x,t) =1,

where by (z,t),...,bs3(x,t) are the barycentric coordinates of x with respect to t (cf. Fig-
ure 4.1(a)). It can easily be seen that each b;(z,t), i = 1, 2,3, is proportional to the area
of the sub-triangle spanned by x and the edge opposite of v;(t) (cf. Figure 4.1(b)), i.e.,

Ax(vig1), x(vig2), x) = bi(x,t) A(t) , (4.1)

where A(x(vig1),X(vig2),) is the area spanned by x(vig1),X(vig2), and x, and i @ j
denotes ((1 —1+4j) mod 3)+1, 7€ {1,...,3}.

Given a scalar function p : V' — R defined on the vertices of M, for each triangle t € T
and each point x residing on ¢ we can define a linear interpolant j(z,¢) by means of the
barycentric coordinates of x as

pla;t) = bu(x,t) - p(vi(t)) + ba(z, 1) - p(va2(t)) + bs(, 1) - pvs(t)) - (4.2)

56 Chapter 4. Point-Based Surface Representation

U3 v3
o) Q
p2 P1
V1 & Yoy w10 bv2 vp

(a) (b)

Figure 4.2: Triangle with vertices v, v2, and v3, and mass centroid p.. The points pi, p2, and ps3
are the midpoints of the triangle’s edges. (a) The line through vertex v; and p; is the bisecting line
of the triangle’s angle at vertex v;. The intersection point p. of these lines is the mass centroid of
the triangle. (b) The mass centroid p. subdivides the triangle into three equally sized triangles.
(¢) The mass centroid also subdivides the triangle into three equally sized quadrangles spanned by
the triangle’s vertices, the mass centroid, and the midpoints of the triangle’s edges.

The coordinates of the center of mass of triangle ¢, denoted by x(t), are defined by

x(v1(t)) + x(va(t)) + x(v3(t))
3)

x(t) ==

which means that the barycentric coordinates of the center of mass of ¢ are equal to
1/3. Tt also means that x(¢) divides triangle ¢ into three equally sized sub-triangles (cf.
Equation (4.1) and Figure 4.2(b)). For the center of mass we will use the term mass
centroid synonymously.

By n(t) we denote the normal vector of t. Assuming that the vertices of t are in
counter-clockwise order, n(t) is given by

(x(v2(t)) = x(v1(£))) ¥ (x(v3(t)) = x(v1(£)))
1G(v2(t)) = x(v2(2))) x (x(vs(£)) = x(vr ()]
where ||Z|| denotes the length of vector Z.

We define the triangle neighborhood of some vertex v € V', denoted by N (v), as the set
of triangles incident to v (cf. Figure 4.3(a)), i.e.,

n(t) =

N(v) = {t 13ie{1,2,3):v= vi(t)} . (4.3)

Likewise we can define the triangle neighborhood of some edge e € E, denoted by N(e), as
the set of triangles that share edge e, i.e.,

N(e) == {t le= (u,v) At e N(u)/\teN(v)} .

Then the triangle neighborhood of some triangle t € T, denoted by N(t), can be defined
as the set of triangles that share a common edge with ¢ (cf. Figure 4.3(c)), i.e.,

N(t) == {t’ 1t £ tATi,je{1,2,3)iA):t € N((vi(t),vj(t)))} .

4.1. Basic Notations 57

Figure 4.3: (a) Triangle neighborhood N (v) of vertex v. (b) The gray polygon around vertex v
depicts the surface area A(v) assigned to vertex v. (c) Triangle neighborhood N(t) of triangle t.
(d) Extended triangle neighborhood N*(¢) of triangle ¢. The gray triangle does neither belong to
N(t) nor to N*(t).

The extended triangle neighborhood of some triangle t, denoted by N*(t), consists of the
set of triangles that share a common vertex with ¢ (cf. Figure 4.3(d)), i.e.,

N*(t) := {t’ |t AtATie{l,2,3}:t € N(vi(t))} :

_ Let T C T, then we can define the area, the center of mass, and the normal vector of
T, respectively, by

A(T) =) A(t)
teT
~ 1
x(T) := —— A(t)x(t) ,and
(T) A<T>tezf (1) x(t)
~ 1
0= 2 2 A0

Let p: V — R* be a weight function defined on the vertices V of M. Then, the weighted
center of mass and the weighted normal vector, respectively, of some T' C T' can be defined

as
1

x(T,p) := S - Ax(0).1) - AlD) 2 p(x(t),t) - A(t)x(t) ,and (4.4)
~ 1)
n(T,p) := X A0, A 2 p(x(t),t) - A(t)n(t) , (4.5)

where p(-,), defined in Equation (4.2), is the linear interpolant of p(-).
Given some T C T, we define the patch defined by T as

P(T) = {x €R3 |3t e T AI(a,t)€[0,1], i=1,2,3:
bi(x,t) + ba(x,t) + b3(x,t) =1 A
z =bi(x,t) x(vi(t)) + ba(x,t) x(v2(t)) + bz(x,t) x(vg(t))} .

58 Chapter 4. Point-Based Surface Representation

Occasionally, it is necessary to partition the surface such that each part of the surface is
assigned to exactly one vertex. If we assigned to each vertex v its neighborhood N (v) (cf.
Equation (4.3) and Figure 4.3(a)), we would assign each triangle to its three vertices. But
this neighborhood, also known as the 1-ring of v, is a good starting point. We therefore
assign to each vertex that part of each neighbored triangle which is spanned by vertex
v, the triangle’s mass centroid, and the midpoints of the triangle’s edges adjacent to v
(cf. Figure 4.2(c)). Since each triangle mass centroid partitions the triangle into three
equally sized sub-triangles, and the lines from the mass centroid to the midpoints of the
triangle’s edges subdivide these sub-triangles again into equally sized triangles, the area
of each neighbored triangle ¢ that will be assigned to vertex v is one third of the overall
area of t. Thus, for the surface area A(v) assigned to some vertex v (cf. Figure 4.3(b)) we
get

A(v):% S A
)

teN (v
The vertex normal vector can now be defined as

n(v) = > ten(w) Alt) n(t)
' > ten() Alt)

Given some V C V', we define the area of V and the patch defined by ‘7, respectively,
as

A(V) = ZA(’U) , and
veV
P(V) = {x ER} | e VAIENW AT {1,2,3):v=1;(t) A
3b;(z,t) € [0,1], 7 =1,2,3: bi(x,t) + ba(z,t) + bz(x,t) =1 A
x =by(x,t) x(v1(t)) + ba(x,t) x(v2(t)) + bs(x, t) x(v3(t)) A
bi(x7t) > bj(l’,t),j 7& ’L}
Let p: V — RT be a weight function defined on the vertices V' of M. Then, similar to

Equations (4.4) and (4.5), for some V C V we can define the weighted center of mass and
the weighted normal vector, respectively, as

. 1

X(V.p) = s gmv) Av)x(v) ,and
. 1

n(V,p):= S o) AW Uezvp(v) A(v)n(v)

Finally, we define the geodesic distance dp(.)(z,y) between two points x,y € P(-) as the
length of the shortest path from x to y on P(-). In order for the shortest path to exist,
P(-) needs to be connected.

4.1. Basic Notations 59

4.1.2 Graphs Defined on the Triangular Mesh

In the following we will introduce some graphs that can be defined on a triangular mesh.
These graphs play an important role in the point distribution process. The first graph,
called triangular mesh graph or simply mesh graph, is denoted by G(M) and defined
directly by means of the sets V(M) and T'(M).

Definition 4.1.3 (Triangular Mesh Graph). Let M = (V, E,T) be a triangular mesh.
Then the triangular mesh graph is defined by

G(M) == (V,E).

The second graph is called the dual mesh graph, which, as the name suggests, is defined
on the dual mesh. So let’s first define the dual mesh of some triangular mesh M.

Definition 4.1.4 (Dual Mesh). Let M = (V, E,T) be a triangular mesh, then the dual
mesh of M (cf. Figure 4.4(a) and (b)) is a triple M = (V, E, F) consisting of three sets:

o A set of vertices V= {?1,...,0s}, where each triangle t; € T is represented by vertex
v; € V, i.e. there is a one-to-one correspondence between the triangles of M and the
vertices of M, given by the bijective function my : T'— V defined by

mT(ti) =0;, Vi € {1,...,|T‘} .

o A set of edges E = {é1,...,é} C V x V, where each edge é € E connects the
vertices representing the triangles attached to some edge e € F, i.e.,

Vé=(a,0) e E= ' "€ TAIecE:
t't" e Ne) Amr(t')y =aAnmp(t’) =10 .
o A set of polygonal fages ﬁ~: {fl, e fm}, where each vertex v; € V is represented

by a polygonal face f; € F', i.e., there is a one-to-one correspondence between the
vertices of M and the faces of M.

For some mesh M, the set of vertices and the set of edges of M’s dual mesh will also be
denoted by V(M) and E(M), respectively.

We can now give a definition of the dual mesh graph.

Definition 4.1.5 (Dual Mesh Graph). Let M = (V,E,F) be the dual mesh of some
triangular mesh M. Then we define the dual mesh graph as

GM) = (V,E).

The dual mesh graph is used to obtain a good initial point distribution (cf. Section 4.2).
An example of a dual mesh graph is given in Figure 4.4(b).

There will yet be another graph of interest in the subsequent sections, which we will
call the extended dual mesh graph.

60 Chapter 4. Point-Based Surface Representation

(a)

Figure 4.4: (a) Mesh graph G(M). (b) Dual mesh graph, G(M), shown in black. (c) Extended
dual mesh graph, G*(M), shown as black solid and dashed lines.

Definition 4.1.6 (Extended Dual Mesh Graph). Let M = (V,E, F) be the dual mesh of
some triangular mesh M. Furthermore, let

B = {(@,5) |i #j Am7' (@) € N*(m7 (7))} S E .
Then the extended dual mesh graph is defined by
G*(M) = (V,E*) .

It consists of the same set of vertices as é(/\/l), but has an extended set of edges (cf.
Figure 4.4(c)).

4.2 Initial Point Distribution

In this section we describe two approaches that generate an initial point distribution. The
first one operates directly on the triangular mesh and uses a Monte Carlo method. The
second approach is based on mesh partitioning using a graph partitioning scheme on the
dual mesh graph.

4.2.1 Determination of Number of Points

Before we can start to distribute points on the molecular surface given by a triangular
mesh M = {V, E, T}, we need to determine the number of points to be distributed on M.
Let p: V — R™ be the point density defined on the vertices of M. The number of points
7(t) to be distributed on triangle ¢ is proportional to the triangle area and is computed
by
i1 p(vi(t)) _

() = 2L) = (x(0),1) - A(D) (4.6)
Since we are interested in distributing k& points on M, with k < |T'|, 7(¢) will be much
smaller than 1. Hence, rather than giving us the actual number of points to be positioned
into triangle ¢, 7(t) gives us the probability with which we position a single point into ¢.

4.2. Initial Point Distribution 61

The point densities we use are such that the distances between neighbored points in
the final point distribution will be within a certain range, e.g. 0.5 to 3.0 A. In Section 4.4
we give examples of point densities that are of interest to us. For a homogeneous point
density, the distances between neighbored points should be as similar as possible. For
non-homogeneous point densities, the point distances will vary according to the required
point densities. Using Equation (4.6), the overall number of points to be distributed on
M can be computed by accumulating the values 7(¢) and rounding this sum to the nearest
integer value, i.e.,

teT

4.2.2 Random Initialization Using a Monte Carlo Method

A simple way to distribute 7(7T") points on M, 7(T) < |T|, according to a given point
density p(-) is by using a Metropolis-Monte Carlo algorithm. A Monte Carlo algorithm
generates an ensemble of states according to some given distribution by successively gen-
erating a Markov chain. In our case, the states of the Markov chain are the triangles,
{tk}/@l. By generating a Markov chain, we want to determine the triangles into which
we position the points. The Markov chain will only be used to determine 7(7") distinct
triangles. Once 7(7") distinct triangles have been found, we stop.

In order to generate a Markov chain, we start with a randomly generated state, i.e. a
randomly selected triangle ¢;,. From this initial state, the Monte Carlo algorithm generates
a Markov chain

tiy =ty — oo — b, — >ty k‘E{l,...,|T‘},

such that the generated ensemble, i.e. the generated states of the Markov chain, has a
distribution equal to m(-) (cf. Equation (4.6)). The generation of a new state is done in
two steps. The first step proposes a new state, hence, it is called proposal step. The second
step is called acceptance step, since it decides whether the proposed state is accepted or
not. Let P(t — #) be the conditional probability to go from state ¢ to state . Then,
according to the detailed balance condition (see, e.g., Section 2.3 in [170]), the conditional
probability density function P(-) must satisfy

()Pt —t) =a(t)P(t —t) . (4.7)

If we use a Metropolis-Hastings algorithm, the conditional probability density function is
split into two factors
Pt —t) =Py (t =)Puc(t — 1),

the proposal probability Py, (-), and the acceptance probability, P,.(-). Since we propose
a new state by randomly selecting a triangle, the proposal probability is independent of
the previous state and hence P.(-) = const. One possible choice for the acceptance
probability satisfying Equation (4.7) is

1 ,if w(2) > 7 (t)
Puo(t—1t)= - (see, e.g., [170]).

:g) , otherwise

!

62 Chapter 4. Point-Based Surface Representation

Our subsequent relaxation step does not allow two points to be initially at the same
position. In order to avoid this, we do not allow two points to be positioned into the same
triangle. Hence, in order to generate 7(T") distinct triangles, we generate a Markov chain
that contains 7(7") distinct triangles. The initial point positions are then generated by
positioning a single point into the center of each of these triangles. The whole algorithm
for generating an initial point distribution using a Metropolis-Hastings type algorithm is
summarized in Algorithm 4.1.

Algorithm 4.1 Monte Carlo initialization of point distribution

Input: triangular mesh M and point density p: V — RT
Output: point positions {a:z};r:(:f)

1: Randomly select a triangle ¢.

2 T — {t}

3: while |T| < 7(T) do

4: Randomly select a triangle .

5: acc « generateRandNumber(0,1) > Generate random number from [0, 1].
6: if acc < P,.(t — t) then

7: if £ ¢ T then

8: T—TU {f}

9: end if

10: te—1

11: end if

12: end while
13: for i — 1,7(T) do
14: Select triangle t € T'.

15: z; — x(t)
16: T —T\{t}
17: end for

4.2.3 Graph Partitioning Based Initialization

While the previous approach to generate an initial point distribution on M does not take
into account the triangle neighborhood of each point, in this section we will introduce
a method based on mesh partitioning, that generates the triangle neighborhood prior to
positioning a point. The basic idea is to partition mesh M into m(T") equally weighted
patches and then place a single point into the center of each patch.

Mesh Partitioning

Instead of partitioning M directly into 7 (7") triangle patches, we work on M’s dual mesh
M, compute a vertex partitioning on M and generate the dual of this vertex partitioning,
giving a triangle partitioning on M. To be more precise, we work on the dual mesh graph,

4.2. Initial Point Distribution 63

G(M) = (V,E), since we do not need the faces of M (cf. Definition 4.1.5). Thus, we
reduce the problem of partitioning the triangular mesh to the problem of k-way graph
partitioning, which has been widely studied (see, e.g., [92] for references). The k-way
graph partitioning problem can be defined as follows.

Definition 4.2.1 (k-way Graph Partitioning [92]). Given a graph G = (V, E), partition
V into k subsets Vi,..., Vg, such that V; NV, =0, i # 4, |Vi| = |V;|, Vi,j € {1,...,k},
U; Vi = V, and the number of edges of E incident to vertices that belong to different V;
is minimized.

Here, the minimal edge cut criterion leads to the generation of rather compact sub-
graphs, which, when transformed back to the surface, represent circular-like surface patches.
This is exactly what we are looking for.

Graph partitioning has applications in many different areas, such as parallel scientific
computing, task scheduling, and VLSI design [92]. Even though the k-way graph parti-
tioning problem is known to be NP-complete, there exist many algorithms that find good
partitions in a reasonable time.

We apply an efficient method proposed by Karypis and Kumar [92], known as multilevel
k-way partitioning. Their method is a three-stage process and works as follows. First, the
original graph is successively coarsened down to some graph having a small number of
vertices. Second, on the coarsest graph a k-way partitioning is computed, which, at this
level, can be done easily and directly. Third, the k-way partitioning, which was computed
on the coarsest graph, is projected back to the original graph. This is done by successively
uncoarsening the graph and the partitioning thereon until the original graph is reached.
At each uncoarsening step, a refinement of the k-way partitioning is performed to finally
arrive at a good partitioning. This refinement step is the most crucial step in the method.
In [92], Karypis and Kumar present two refinement strategies and compare both of these
strategies with other existing graph partitioning schemes. Due to the multilevel approach,
the run time of their approach is only O(|E|), where |E| is the number of edges in the
original graph.

The k-way graph partitioning problem can be reformulated for graphs with weights
given on the vertices as follows:

Definition 4.2.2 (k-way Graph Partitioning with Vertex Weights). Given a graph G =
(V, E) and a weight function w : V' — R, partition V into k subsets V1,. .., Vj, such that
VinVi=0,i# 4, > ey wl') = > e, w(”), Vi,j € {1,...,k}, U; Vi = V, and the
number of edges of E incident to vertices that belong to different V; is minimized.

Fortunately, the multilevel k-way partitioning scheme proposed by Karypis and Ku-
mar also works for vertez-weighted graphs. The algorithms proposed in [92] have been
implemented in the graph-partitioning software library METIS [91] and can thus be used
directly. Note that the algorithm solves the k-way graph partitioning problem only approx-
imately, i.e., it is neither guaranteed that the edge cut is minimal, nor that the partitioning
is optimal. In general, however, the edge cut will be small and the partitioning w.r.t. to
the weights should be close to optimal.

64 Chapter 4. Point-Based Surface Representation

Algorithm 4.2 Partition mesh into k = 7(7T") equally weighted patches

Input: triangular mesh M and point density p: V — RT

Output: triangle partitioning {Tl}f:(?

1: Generate the dual mesh graph G(M) = (V,E) from mesh M = (V, E,T).
2: Define weight function w : V' — R* using Equation (4.6) by

w(?) == w(mp (D)) , Vi e V.

3: Apply the multilevel k-way partitioning algorithm to G (M) with weight function w(-),
resulting in a partitioning, {XN/i}f:l, of V.
4: Generate a mesh partitioning, {T;}¥_,, of T from the graph partitioning {171}5:1 as
follows:
TZ-::{HEIUEXN/Z-:m(t):v},Vie{l,...,k}. (4.8)

With Algorithm 4.2 we propose a method to partition a triangular mesh M into 7(7T')
patches T1,...,Tr(ry. From Definition 4.2.2 and Equation (4.8) it directly follows that
T =UT;, and T, NT; = 0, i # j. From the fact that the vertex partitions have almost
equal weights, it further follows that

S ort)y~ > wt") Vi el x(T)},

t'ET; €T

i.e. the triangle subsets T; have almost equal weights, too.

Point Positioning

Definition of Patch Center. Let {T;}¥_, be a partitioning of 7" obtained by applying
Algorithm 4.2 to mesh M. We will now explain how this partitioning is used to position k
points p1, ..., pr on M. As mentioned earlier, we position each point p; into the center of
its corresponding patch P(7T;). The center of some patch P(f) can be defined in several

ways. For example, we could define the center of P(T'), denoted by x(P(T")), as the point
minimizing the maximum geodesic distance to each point on the patch, i.e.

x(P(T)) ;= arg min max (dP(T)(x,y)) .

2 P(T) yeP(T)
We could also define x(P(T)) as the point that minimizes the average geodesic distance
or the average quadratic geodesic distance, respectively, given by
~ 7 dper) () dy
x(P(T)) := arg min fP(T) P@)
2eP(T) I dy

x(P(T)) := arg min
(P(T) zeP(T) fp(f) dy

, an

(4.9)

4.2. Initial Point Distribution 65

If we replace the geodesic distance d P(T)('v -) in Equation (4.9) by the Euclidean distance

Il and drop the constraint that the minimum has to be in P(T'), we obtain

- 7 |z — yl* dy
x(P(T)) := arg min fP(T) |
z€R3 fP(T) dy

which can be solved analytically and gives

~ fp(f)ydy
x(P(T)) = ——+——
(P@) = T

S AD)x()
A(T)
=x(T) .
In general, the center of mass of some patch P(ji) does not lie on P(T'), hence, we project
it back onto M in the direction of n(7") or —n(7"). Thus, we finally redefine x(P(T")) by

x(P(T)) :=x(T) 4+ In(T) , (4.10)
where [€ R and || is the shortest Euclidean distance to P(T") along n(T), with [> 0, or
—n(T), with [< 0.

If, in addition, a weight function p : V — R is defined on the vertices V of M, then

Equation (4.10) can be generalized, giving the weighted center of P(T'), by

x(P(T), p) :=x(T, p) +In(T, p) . (4.11)

Projection. The intersection of the rays starting from X(f, p) in either direction n(f,)
or —n(T', p) can be efficiently computed using a triangle octree (see, e.g., [152]). Octrees
constitute a generalization of quadtrees [39] to three dimensions. Quadtrees and octrees
represent hierarchical subdivisions of some subset of R? and R?, respectively, and are used
to efficiently store and retrieve data objects residing in this subset.

A quadtree (cf. Figure 4.5) is a rooted tree in which every internal node has four
children. Each node of the quadtree corresponds to a square. The four children of an
internal node n correspond to the four quadrants of the square corresponding to node
n. Since a square is always subdivided into four quadrants, the tree representing this
subdivision is called quadtree. A square will be subdivided if its corresponding leaf contains
more elements than a predefined threshold.

We use an octree to store all triangles of mesh M. To generate the octree we com-
pute the smallest cube enclosing the bounding box of the triangular mesh. The octree
representing this cube is a single node, the root node. During insertion of all triangles of
the triangular mesh, the cube is successively subdivided into sub-cubes such that no leaf
representing a sub-cube contains more than a previously specified number of triangles. A
triangle is added to a leaf if its corresponding sub-cube intersects the triangle. This data

66 Chapter 4. Point-Based Surface Representation

Figure 4.5: A quadtree and the corresponding subdivision of a square. The children of some
node v in the tree represent the quadrants of the square corresponding to v in left to right and top
to bottom order.

structure allows us to quickly identify those triangles that need to be checked for intersec-
tion. Instead of intersecting each ray from x(7, p) directly with the triangles of M, the
ray is first intersected with the cubes represented by the octree. If an intersection with a
cube occurs, the elements contained in this cube are potential candidates for intersection.
The intersection with the cubes is done in a hierarchical fashion, i.e. we first intersect the
ray with the cube represented by the root node of the octree. If this cube is intersected, its
children will be tested and so forth. Finally, we will arrive at a cube that is not subdivided
and hence, we need to check its elements, i.e. its triangles, for intersection with the ray.

For each x(T;,p) we cast two rays, one into direction n(7T;, p), the other one into
direction —n(7j, p). For each ray we take the closest intersection point as feasible point
for x(P(T;),p). In case we obtain two feasible points, we take the one that is closer to
x(T, p)-

With the above considerations we can now formulate Algorithm 4.3, which generates
an initial point distribution from a weighted mesh partitioning {7;}%_;.

Algorithm 4.3 Generate initial point positions from mesh partitioning

Input: triangle partitioning {Ti}le and weight function p: V — RT
Output: x(p1),...,x(pk)

1: forie{l,...,k} do

2: Compute x(T;, p) and n(T;, p).

3: Intersect rays from x(7;, p) with directions n(7;, p) and —n(7;, p) with P(T).
4: Set x(p;) < x(P(T3;), p).

5: end for

4.3 Point Relaxation

In this section we present a new algorithm to improve the distribution of points, given on
a 2-manifold triangular mesh, by relaxing the point positions w.r.t. to the neighborhood

4.3. Point Relaxation 67

of each point. The aim is to obtain a point distribution which should be as regular as
possible w.r.t. a point density given on the triangular mesh.

Point relaxation is done using centroidal Voronoi tesselation (CVT), which we extend
to 2-manifold triangular meshes. In Section 4.3.1 we give the definition of centroidal
Voronoi tesselation and one general result, which explains, why CVT can be used for
point relaxation. Finally, we give an algorithm for Lloyd’s method. In Section 4.3.2 we
then extend Lloyd’s method to triangular meshes. Since the computation of a Voronoi
tesselation requires the determination of geodesic distances on the surface, we first describe
how the geodesic distances between points on the triangular mesh can be approximated
using the graphs that were introduced in Section 4.1. This distance approximation then
directly allows us to give an algorithm for the computation of an discrete approximate
CVT on triangular meshes.

4.3.1 Centroidal Voronoi Tesselation

For the introduction of centroidal Voronoi tesselation (CVT) we largely follow the article
of Du, Faber and Gunzburger [51]. For a detailed discussion on algorithms and application
based on CVT, please see their article.

Definition 4.3.1 (Voronoi Tesselation [51]). Given some set 2 C RY and a finite set
of points X := {z1,..., 75} C Q, the set {V;}¥_, is called a Voronoi tesselation of €, if
VinV; =0, Vi,j € {1,...,k},i # j, and Ule V; = Q, where the Voronoi region V; is
defined as

Y, = {x € Q| do(z,2:) < do(z,2;),¥j € {1,...,k},j # z} , (4.12)

and where dq(-,-) denotes some distance metric on 2. The elements of X are called the
generators of the Voronoi tesselation.

Definition 4.3.2 (Centroidal Voronoi Tesselation). Given some set 2 C RV, a finite set

of points X := {r1,..., 2%} C Q, and a density function p : Q@ — R, the set {V;}%_, is

called a centroidal Voronoi tesselation of €, if {V;}¥_, is a Voronoi tesselation of Q with

the property that its generators coincide with the weighted centers of mass of the Voronoi

regions, i.e.

B fVi xzp(x)dz
Jy, p(z)dz '

If we consider a discrete set of points W = {y; }I' ; C RY instead of a continuous region
Q, we need to redefine Equation (4.12) slightly to

x; =x(Vi, p) : Vie{l,...,k}. (4.13)

Vi = {a: e W | dw(x,z;) <dwl(z,x;),Vje{l,...,k},j #1,
(4.14)
where equality is only allowed for i < j} .

Discrete centroidal Voronoi tesselations are related to optimal k-means clusters, which are
used, e.g., in the discrete and vector quantization community [51]. There, Voronoi regions
and their mass centroids are referred to as clusters and cluster centers, respectively.

68 Chapter 4. Point-Based Surface Representation

In [51], Du et al. give properties and proofs concerning centroidal Voronoi tesselations.
One important property is, that CVT can be used for minimization. This is formulated
in the following theorem.

Theorem 4.3.3 (Minimization [51]). Given Q C R", a positive integer k, and a density
function p(-) defined on €, let {z;}%_; denote any set of k points belonging to 2 and let
{V;}¥_, denote any tesselation of 2 into k regions. Let

k
Fv)i=1.. k) = ;/v pl) o — 22 de

Then, a necessary condition for F to be minimized is that the V;’s are the Voronoi regions
corresponding to the x;’s (in the sense of Equation (4.12)) and, simultaneously, the x;’s
are the centroids of the corresponding V;’s (in the sense of Equation (4.13)).

Proof. See Du et al. [51], Section 3.1, page 650. O

In the discrete case, the functional being minimized is given by

]:((xi,Vi),z' —1,.. k:) - Zk: S @) —ailf? .

i=1 z€V;

Lloyd’s Method

Lloyd [113] proposed an iterative method to construct a centroidal Voronoi tesselation
which he applied to vector quantization. KEach iteration consists of two steps. In the
first step, the Voronoi tesselation of a set of points is computed. In the second step, the
positions of these points are moved to the centers of the Voronoi regions computed in the
first step. These two steps are repeated until conversion is reached. It has been shown
(see, e.g., [51]), that Lloyd’s method locally converges, at least for the one-dimensional
case. However, even though no global optimization is guaranteed, Lloyd’s method has
been successfully applied in many applications (see [51] for references), in particular for
distributing points in R? [46, 79, 121]. His method is given by Algorithm 4.4.

4.3.2 Centroidal Voronoi Tesselation on Triangular Meshes

We now want to apply Lloyd’s method on triangular meshes to locally optimize the point
positions given by an initial point distribution. In order to apply Lloyd’s method on
triangular meshes, essentially we need to solve the problem of computing the Voronoi
tesselation of M for a given set of points on M. For each Voronoi region we can then
apply Algorithm 4.3 to obtain the new point positions.

Approximate Discrete Voronoi Tesselation

We have implemented three methods to compute an approximation of the Voronoi tes-
selation of the triangular mesh M = (V,E,T) with respect to a given set of points

4.3. Point Relaxation 69

Algorithm 4.4 Lloyd’s method to distribute k points p1,...,pr on 2

Input: some set @ C RY, number of points k, and point density p : Q — R
Output: relaxed point positions x(p1),. .., x(pk)

Generate initial positions z;, ..., .

repeat
Construct the Voronoi tesselation {V;}£_; of Q w.r.t. {z;}5 .
Compute the centers of mass x(V;, p) of all Voronoi regions V.
z; — x(Vi, p)

until x(V;, p) ~ x;

X<pi) - X(Vi7 p)

P = {p1,...,px} residing on M. All three methods compute Voronoi tesselations of
discrete subsets of M. While the first method computes a Voronoi tesselation of the
vertices V' of M, the other two methods compute a Voronoi tesselation of the triangles
T of M, where each triangle is represented by the triangle’s mass centroid. Instead of
computing a triangle tesselation directly, we work on M’s dual mesh M, compute a vertex
tesselation of M and transform this tesselation back to M to obtain a triangle tessela-
tion. To compute vertex tesselations of M and M, we use the mesh graphs defined in
Section 4.1.2. In order to assign the vertices of the respective graphs to the points of P,
we compute the shortest paths from each p; to the vertices in the local neighborhood of p;.
We have implemented two versions to compute the shortest paths: a breadth first search
algorithm and a Dijkstra multiple-source-multiple-destination algorithm.

Definition 4.3.4 (P-Extended Mesh Graph). Let G = (V, E) be the graph representing
any of the mesh graphs. Let further denote by t(p) € T the triangle on which the point p
resides. Since the point set P is not a subset of V', we need to extend G to the P-extended
mesh graph G' = (V', E’) as follows:

1. V!'=VUP

2. B/ = EUS, where S depends on whether the used mesh graph is the mesh graph
G(M), the dual mesh graph G(M), or the extended dual mesh graph G*(M), i.e.,

Ui {(piv) |35 € {1,2,3} s o = v5(t(p2))} i G = G(M)

= QUi {(pi,v) [mz' (v) € N(t(pi) } G =GM) (4.15)
Ui {(piv) [mz' (v) € N*(t(p:))} G =G (M)
Let X(P) = {x(p1),-..,x(px)} be the coordinates of points p1,...,px. Then, the function

l: E' — RT, defined as
|x(v) —x(@")| ,if 0" € VM)V € PAV € V(M)
W, 0") =S x()) = x(t")|| ,ifv' € PAv" € V(M) :t" =mz (") (4.16)

Ix(t) — x| if ', 0" € V(M) : ¥ = mz' ('), ¢ = mz' (")

70 Chapter 4. Point-Based Surface Representation

gives the weights of the edges of E’ depending on the used mesh graph. That is to say,
the edge weights are the Euclidean distances between the coordinates of points p € P,
vertices v € V(M) and the centers of mass of triangles ¢ € T', respectively. Only in the
case of mesh graph G(M) are the Euclidean distances between neighbored vertices equal
to the geodesic distances.

Let G' = (V' =V UP,E' = FUS), with S being defined as in Equation (4.15) and let
l: E' — RT be the weight function defined by Equation (4.16). We can then define the
discrete Voronoi tesselation, {V;}%_,, of V' (cf. Equation (4.14)) for the set of generators

{Pz‘}le as

Vi = {'U € V, ‘ dG’,l(Uapi) < dG’,l(Uupj)vvj € {17 vee 7k}7j 7é i7
(4.17)
where equality holds only for i < j} ,

where dg j(u,v), u,v € V', is the length of the shortest l-weighted path from « to v on
G

Algorithm 4.5 Breadth first search (BFS) on G’
Input: graph G’ = (V' =V U P, E’) and weight function [: B/ — R*
Output: Voronoi tesselation {V;}¥_,

Initialize queue @ «— P.
For each v € V: dist(v) < o0, voronoi(v) « —1
For each p; € P: dist(p;) < 0, voronoi(p;) « ¢
while Q # () do
q < Q.pop()
for (¢,v) € E' do
if dist(v) > dist(q) +((¢,v)) then > A shorter path to v has been found.
dist(v) « dist(q) + 1((g,v))
voronoi(v) « voronoi(q)
if v ¢ @Q then
Q.append(v)
end if
end if
end for
: end while
: for v e V' do
17: Vvoronoi(v) N Vvoronoi(v) U {’U}
18: end for

o e T e T e S = S =Y
I A N S

It is easy to see that Algorithms 4.5 and 4.6 both produce the desired Voronoi tesse-
lation of Equation (4.17), since both algorithms compute the locally shortest paths.

If we implement Algorithm 4.6 using a Fibonacci heap as min-priority queue, its amor-
tized run time is O(|V| - 1g|V| + |E|) (see, e.g., [34]). The min-priority queue used in

4.3. Point Relaxation 71

Algorithm 4.6 Dijkstra search on G’ (using min-priority queue)
Input: graph G’ = (V' =V U P, E’) and weight function [: B/ — R*
Output: Voronoi tesselation {V;}¥_,

Initialize queue Q « 0.
For each v € V: dist(v) « oo, voronoi(v) « —1
For each p; € P: dist(p;) < 0, voronoi(p;) « ¢
for v e V do
Q.insert (v, dist(v))
end for
while Q # () do
q < Q.popMin()
for (¢,v) € E' do
if dist(v) > dist(q) +((¢,v)) then > Shorter path to v has been found.
Q.relax(v, dist(q) + l((q7 v)))
voronoi(v) < voronoi(q)
end if
end for
: end while
: for v € V' do
Vvoronoi(v) N Vvoronoi(v) U {’U}
: end for

e S e i o T
S L A A Tl

Algorithm 4.6 guarantees that each vertex will be inserted into the queue only once, since,
when removing the vertex with the minimal distance, we know that the shortest distance
to that vertex has already been computed. This is due to the fact, that the edge weights
of the graphs are strictly positive. Hence, if there existed a shorter path to the consid-
ered vertex, then there would be some vertex with shorter distance still in the priority
queue, which contradicts our assumption that we are considering the vertex with shortest
distance still in the queue.

In theory, Algorithm 4.5 performs worse than Algorithm 4.6, since vertices might be
added to the queue more than once. The reason for this lies in the vertices being taken in
breadth first search order and not according to their currently shortest distance.

In our application, however, we found that the BFS algorithm works better than
Dijkstra’s algorithm. This is due to the fact, that the edge weights do not differ greatly,
and, hence, the order in which the vertices are taken from the first-in-first-out (FIFO)
queue does not differ much from the order specified by a min-priority queue. Hence,
the number of insertions is almost equal for both algorithms. The amortized cost of a
single “getMin()” operation using a Fibonacci heap is O(Ig|V']) (cf. [34]) in contrast to the
constant time needed for removing an element from a FIFO queue. Hence, in practice,
this higher cost only equalizes if the number of elements to be considered using a FIFO
queue is much larger then |[V].

From the Voronoi tesselation of Equation (4.17) computed with either Algorithm 4.5 or

72 Chapter 4. Point-Based Surface Representation

4.6 we can directly compute a vertex partitioning {V;}*_; or a triangle partitioning {7} }*_,
of M, depending on the mesh graph used. This partitioning serves as approximate Voronoi
tesselation of M for Lloyd’s method.

Lloyd’s Method

Let {W;}X_| be a partitioning of M = (V, E,T) — vertex or triangle partitioning — trans-
formed back from the Voronoi tesselation {Vi}le generated by applying either Algo-
rithm 4.5 or 4.6. Let p : W — R be a weight function defined on W. Then we define the
weighted center of V; as

X(Vhp) = X(P(Wi)v p)) (4'18)

where x(P(V), p), V C V, is defined similarly to x(P(T), p), T C T (cf. Equation (4.11))
as

x(P(V), p) :=x(V,p) +1n(V,p) . (4.19)

We can now specify the whole algorithm for distributing & points on the triangular
mesh M according to some weight function p(-), which is given by Algorithm 4.7.

Algorithm 4.7 Lloyd’s method to distribute points M
Input: triangular mesh M = (V, E,T), and point density p: V — R*
Output: relaxed positions x(p1),...,x(px) of point set P = {p1,...,pr}

1: Compute initial triangle partitioning, {T;}*_,. > Algorithm 4.2
2: Generate initial positions z; of points p; from {T;}¥_;. > Algorithm 4.3
3: Construct P-extended mesh graph G' = (V', E’). > Definition 4.3.4
4: repeat

5: Compute Voronoi tesselation, {V;}£_,, of G’ w.r.t. {a;}F ;. > Algorithm 4.5
6: Compute the weighted centers, x(V;, p), of all Voronoi regions V;. > Equation 4.18
7. until x(V;, p) = x;, Vi=1,...,k

8: x(pi) < x(Vi,p)

4.4 Experimental Results

We have investigated the quality of the proposed algorithms in several scenarios. For the
investigation of specific parts of the overall algorithm, we fixed the other parts and varied
only the respective sub-algorithm.

4.4. Experimental Results 73

Figure 4.6: Point neighborhood defined by the neighborhood of the triangle patches. The SES
is shown semi-transparent so as to allow to better view the point neighborhood. Note that the
point neighborhood partially changes during the relaxation process. (a) Point neighborhood due
to initial mesh partitioning. (b) Point neighborhood due to centroidal Voronoi tesselation.

Since it is difficult to directly measure the local point density

/W\ if the distance between neighbored points is rather large, we
measure the local point density by measuring the distance

MW\ between neighbored points. We assume a point distribution
that positions the points according to a perfect equilateral

W triangulation in 2-dimensional space. This triangulation has
the property, that six triangles are incident to each point

\M/ (see image on the left). If we assign to each point v one
third of the area of each triangle incident to v, then the

overall area assigned to v is two times the size of one of the equilateral triangles. Let A
denote the area of one such equilateral triangle. Then the point density p is given by

1
2 AN
Given an equilateral triangulation, the distance D between neighbored points is equal
to the length of the edges of the triangles. Since, in addition, the triangle area of an
equilateral triangle is given by

V3

Ap="p D%,

the distance D between neighbored points can be computed by

P

D=,—. (4.20)

So far, we have used the term point neighborhood without giving a clear definition
for it. However, a definition of the point neighborhood is straight forward using the

74 Chapter 4. Point-Based Surface Representation

neighborhood of the triangle mesh tesselation. So we define two points p and ¢, positioned
on the triangular mesh, to be neighbored, if their corresponding triangle patches are
neighbored (cf. Figure 4.6).

To illustrate the point distribution process and to analyze the quality of our algorithms,
we carried out experiments using the HIV-1 protease inhibitor amprenavir (APV). The
active conformer of APV was extracted from the protease-inhibitor complex (1HPV) from
the Protein Data Bank (PDB) [1]. The molecule was parametrized with the Merck Molec-
ular Force Field (MMFF) [73], using the program ZiBMoL [58] developed at the Zuse
Institute Berlin. With the program ZIBMOL, we also generated 63 conformers of APV.
These were used to analyze the point neighborhood generated during the point relaxation
process. For each conformer we ran the point distribution algorithm, computed the mean
distance of all neighbored points and the variance of the mean distance. These values, i.e.
the mean distance and the variance, were then averaged over all 63 conformers.

To analyze the distances between neighbored points, we computed the exact geodesic
distances on the triangular mesh using an algorithm implemented in the visualization and
analysis tool Amira [2]. This algorithm computes paths not along predefined edges but
across triangles where at each triangle border the direction of the path might change.
Computing the exact geodesic distances is much too expensive to be applied in the point
relaxation step, but here we used it for analyzing the quality of the generated point
distribution.

For the computation of the triangular meshes representing the solvent excluded surface
(SES), an algorithm implemented in the molecular visualization and analysis software
AmiraMol [3] was used (cf. Section 2.3.2). In all computations of the SES, the hydrogen
atoms were omitted. The run times given in this section refer to a 3GHz Intel Xeon
processor.

Even though our algorithms have been designed to handle non-homogeneous point
distributions, in this section we have decided to investigate the results for homogeneous and
non-homogeneous point distributions separately. We will start with the homogeneous case
and compare the results using different sub-algorithms proposed in the previous section.
For the non-homogeneous case, we will then only show that the quality of the gained
distributions is comparable to the homogeneous case.

4.4.1 Homogeneous Point Distributions

Figure 4.7 shows a series of images illustrating the point distribution process for a homo-
geneous point density p = 0.289 A which corresponds to a distance between neighbored
points of 2.0 A (cf. Equation (4.20)). The point density of the triangular mesh was 20 A2
For the initialization of the point distribution we used the graph partitioning approach
(cf. Algorithm 4.3). The point relaxation was done using Algorithm 4.7 operating on the
extended dual mesh graph (cf. Definition 4.1.6).

4.4. Experimental Results 75

Figure 4.7: Uniform point distribution of 125 points on the SES of the active conformer of
amprenavir with an approximate geodesic distance of 2.0 A between neighbored points. (a) The
initial point distribution was achieved using the graph partitioning approach. Shown is the initial
triangle partitioning together with its resulting initial point positioning. (b) Final point positioning
with corresponding centroidal Voronoi tesselation of the triangular mesh. (c¢) Point trajectories
showing the intermediate positions up to iteration 10 for the point distribution shown in (b). The
green spheres represent the final positions. (d) Close-up of the center of the image on the left side
with the surface triangles displayed in outlined mode.

76 Chapter 4. Point-Based Surface Representation

Figure 4.8: This series of images shows the iterative point positioning process on the SES of
the active conformer of amprenavir. 125 points were uniformly distributed on the surface with an
approximate geodesic distance of 2.0 A between neighbored points. The images on the left hand
side show results when starting with Monte Carlo initialization. The images on the right hand
side represent the process when starting with graph partitioning based initialization. (a) Initial
point positioning. (b) Trajectories of the points from initial to final positions after 50 iterations.
The spheres are colored according to their corresponding iteration step. The color mapping is
done using the colormap shown. The green spheres denote the initial positions as shown in (a).
(c) Final point positions after 50 iterations.

4.4. Experimental Results 77

211 T T T T 0.2

2.1 —e— Monte Carlo] 018 —e— Monte Carlo

—s=—graph partitioning —s=—graph partitioning

mean distance
variance

2.02
0

10 20 30 40 50) 10 20 30 40 50

iteration step iteration step

Figure 4.9: Comparison of point distribution process using Monte Carlo initialization and graph

partitioning based initialization. The triangular mesh resolution was 20 A7, The desired point
distance was 2.0 A. Left: Evolution of the mean distance. Right: Evolution of the variance of the
point distance.

Initial Point Distributions

In Section 4.2 we proposed two methods to generate an initial point distribution. In
the following, we want to investigate to what extend the choice of initialization method
influences the final point distribution and the convergence behavior of the relaxation step.
Figure 4.8 shows a comparison between the two methods. In both cases the same triangular
mesh with a point density of 20 A% was used, and the same number of points was to be
distributed on the surface according to a point density given by a desired neighbored
point distance of 2.0 A (cf. Equation 4.20). It can clearly be seen that the initial point
distribution generated with the Monte Carlo approach is much worse than the initial
point distribution generated by the graph partitioning approach (cf. Figure 4.8 (a)), which
already looks rather homogeneous. Due to the unfavorable initial point distribution by
the Monte Carlo approach, which, in the case of a homogeneous point distribution, is
equal to a pure random sampling, the points need to cover a much larger distance during
the relaxation step, apparent in the long point trajectories (cf. Figure 4.8 (b)). By visual
inspection, the qualities of the point distributions after 50 iterations are similar for both
initial distributions. However, using the graph partitioning approach, a satisfying point
distribution is achieved much earlier. This is confirmed by Figure 4.9, which clearly shows
that the variance of the mean distance of all neighbored points using graph partitioning
is much smaller at the beginning and reaches convergence much earlier than using the
Monte Carlo approach. Interestingly, the mean distance is slightly smaller using the Monte
Carlo approach. One reason for this might be the different point neighborhoods that are
generated by both approaches. If the point distribution is less regular, the number of
neighbored points will, in general, be larger. Hence, we also have more shorter distances.

78 Chapter 4. Point-Based Surface Representation

Point Relaxation Using Different Mesh Graphs

In this section we study the effect of the type of mesh graph used in the relaxation process.
Let us recall that the mesh graphs are used to approximate the geodesic distances on the
triangular mesh. Thus, the use of different mesh graphs influences the size and shape of the
approximated Voronoi regions. This affects the quality of the final point distribution. To
compare the point distributions gained by using different mesh graphs, we carried out two
experiments. First, we generated point distributions with a desired point distance of 2.0 A
on triangular meshes with a point density of 20 A2 Second, on triangular meshes with
a point density of 40 A% we generated point distributions with a desired point distance
of 1.0A.

The results of the two experiments are shown in Figures 4.10
and 4.11. For both experiments, it can clearly be observed
that the extended dual mesh graph performs best, both in
p* the length of the mean distance and in the variance. Second
best performs the dual mesh graph and worst is the mesh
graph. This effect is, at least partially, due to the triangula-
p7 tion. Consider a triangulation similar to the one seen in the
P u left image and compare the shortest paths, p, p and p*, from
u to v on the mesh graph G(M), on the dual mesh graph
G(M) and on the extended dual mesh graph G*(M), respec-
tively. In this case, p is v/2 times as long as p*. Even though the presented scenario is the
worst case, it reveals the problems with both the mesh and the dual mesh graph.

Figures 4.10 and 4.11 show that the point relaxation performs best using the extended
dual mesh graph. However, we might ask the following question: Does point relaxation
with, e.g., the dual mesh graph on a finer triangular mesh work better than point relaxation
with the extended dual mesh graph on a coarser triangular mesh? We therefore carried
out the following experiment. We compared the point relaxation process using the dual
mesh graph with a mesh resolution of 40 A7? with the point relaxation using the extended
dual mesh graph with a mesh resolution of 20 A7, The results are shown in Figure 4.12.
The plots show, that even when using a finer resolution for the dual mesh graph approach,
the extended dual mesh graph performs better both in convergence of the mean distance
and the variance of the point distance. The section on run times will also show that, using
these triangular mesh resolutions, point relaxation with the extended dual mesh graph is
faster than with the dual mesh graph. Hence, the extended dual mesh graph should be
preferred to both the dual mesh graph and the mesh graph, since the mesh graph performs
even worse than the dual mesh graph.

Surface Resolution

A better resolution of the triangular mesh should yield a better approximation of the
Voronoi regions on the triangular mesh, which should then lead to a better point distri-
bution. This assumption could be confirmed with our experiments. Figure 4.13 shows
that a point resolution of 40 A7 leads to a better convergence towards the desired point

4.4. Experimental Results

79

mean distance

212

211

2.1

2.09

2.02
0

—— mesh graph
—e— dual mesh graph
—=— extended dual mesh graph

10

20
iteration step

30 40

50

variance

0.2

0.18

——mesh graph
—e—dual mesh graph
—s—extended dual mesh graph

10

20

30 40

iteration step

50

Figure 4.10: Comparison of point relaxation based on different mesh graphs. All three relaxation
processes started from the same initial point distribution generated with the graph partitioning

approach. The point density of the triangular mesh was 20 A7, The desired point distance was
2.0 A. Left: Evolution of the mean distance. Right: Evolution of the variance of the point distance.

mean distance

1.06

1.055

1.05

1.045

1.04

1.035

1.025

1.02

1.015

1.01

——mesh graph
—e— dual mesh graph
—=— extended dual mesh graph

0 10

20

30 40

iteration step

50

variance

0.055

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

——mesh graph
—e—dual mesh graph
—=—extended dual mesh graph

10

20

30 40

iteration step

50

Figure 4.11: Same as Figure 4.10 with the modification that the triangular mesh had a point

density of 40 A% and the desired point distance was 1.0 A.

80 Chapter 4. Point-Based Surface Representation

212 T T T T 0.2 T

241L —=—dual mesh graph, 40 points per Angstroem2 018

—— extended dual mesh graph, 20 points per Angstroem2

0.16

0.14

0.12

mean distance
variance

0.1

0.08

0.06

—=—dual mesh graph, 40 points per Angstroem2

—— extended dual mesh graph, 20 points per Angstroem2

0.04

iteration step

10

20 30 40
iteration step

50

Figure 4.12: Comparison of point relaxation based on different mesh graphs and different mesh
resolutions. For the point relaxation on the dual mesh graph we used a triangular mesh with

a resolution of 40A~>. For the point relaxation on the extended dual mesh graph we used a

triangular mesh with a resolution of 20 A7, The desired point distance was 2.0 A in both cases.
Left: Evolution of the mean distance. Right: Evolution of the variance of the point distance.

—=— 20 points per Angstroem2

—=— 40 points per Angstroem?

1.03 ‘ ‘ ‘ ‘ 0.055, ‘
. 2
—— 20 points per Angst
1028k points per Angst roem2 | 0.05
—=— 40 points per Angstroem
1026l 0.045
0.04
@ 1.0241 -
= [}
[© 0.035
%]
2 1.022f 1 &
§ g 0.03
1.02f -

E 0.025

1.018¢ - 0.02

1.018f - 0.015

e e e s mamaasssEEEennnEE) .
1.014 : ‘ ‘ : 0.01 :
0 10 20 30 40 50 0 10

iteration step

20 30 40
iteration step

50

Figure 4.13: Comparison of point distribution process using different triangular mesh resolutions:
20 versus 40 A, The desired point distance was 1.0A. Left: Evolution of the mean distance.

Right: Evolution of the variance of the point distance.

4.4. Experimental Results 81

distance as well as to a smaller variance of the mean distance. However, the differences
are small. Hence, we can reason, that a point density of 20 A7 still constitutes a fine
enough resolution for a desired point distance of 1.0 A.

Run Times

Run times for the examples given in this section can be found in Table 4.1. Several
observations concerning the run times can be made by inspection of this table.

1. The surface generation plays a minor role in the overall run time.

2. The preprocessing for the extended dual mesh graph takes significantly longer than
the preprocessing for both mesh and dual mesh graph. The preprocessing includes
the computation of the lengths of all edges in the graph. Since the extended dual
mesh graph has significantly more edges than the other two graphs, the longer pre-
processing is due to this larger number of edges.

3. The initialization also plays a minor role in the overall run time. Even though
Monte Carlo initialization is faster than graph partitioning initialization, the longer
run time is justified by the better quality of the initial point distribution generated.

4. The main fraction of the overall time is needed for the relaxation step. In all of the
examples, 50 iterations were carried out. However, the plots show (cf. Figures 4.9,
4.10, 4.11, 4.12, 4.12, 4.13), that, in general, most of the relaxation is done after 20
or 30 iterations. Hence, if run time is a matter, we could stop after this number of
iterations.

4.4.2 Non-Homogeneous Point Distributions

The results of Section 4.4.1 show that it is favorable to start the relaxation process with
an initial point distribution generated using the graph partitioning approach. They also
show that relaxation using the extended dual mesh graph produces the best results, both
in terms of quality and convergence. Hence, in this section we will not deal with com-
paring different approaches, but we will show that the approaches that work best in the
homogeneous case work well in the non-homogeneous case too.

Distance Field - An Artificial Point Density

We start with an artificial point density representing the scaled distance field on the
surface from some arbitrarily selected point residing on the surface (cf. Figure 4.15(a)). In
contrast to the electrostatic potential, which has negative and positive values that need to
be handled separately, the distance field has only positive values, which vary continuously
across the whole surface. This makes it well suited for illustrating the capabilities of our
approach to non-homogeneous point distributions.

The computed distance field had values between 0.0 and about 18.0. In our experiments
we mapped this range to a range between 0.0 and 4.0 in order that the point density does

82

Chapter 4. Point-Based Surface Representation

Surface Initial Point
Figure Gen. | Preproc. | Positioning | Relaxation | Overall

4.9 MC 0.04 0.17 0.01 0.84 1.09

4.9 GP 0.04 0.16 0.05 0.80 1.07
4.10 G(M) 0.04 0.08 0.05 0.50 0.69
4.10 G(M) | 0.04 0.08 0.05 0.49 0.68
4.10 G*(M) | 0.04 0.16 0.05 0.80 1.07
4.11 G(M) 0.07 0.17 0.18 1.73 2.18
4.11 G(M) | 0.07 0.15 0.18 2.10 2.54
4.11 G*(M) | 0.07 0.30 0.18 2.30 2.91
412 20A72.G5(M) | 0.04 0.16 0.05 0.80 1.07
412 40A7°.G(M) | 0.07 0.19 0.08 1.15 1.56
413 20A7°.G*(M) | 0.04 0.18 0.13 1.62 1.99
413 40A72.G*(M) | 0.07 0.30 0.18 2.30 2.91

Table 4.1: Run times (in seconds) for homogeneous point distributions given in this section. MC
denotes Monte Carlo initialization, GP denotes graph partitioning. The notations of the graphs
are as defined in Section 4.1.2.

2.1

21

2.09

——non-homogeneous dist. with 20 points per Angstroem2 4
—*—non-homogeneous dist. with 40 points per Angstroem2

——homogeneous dist. with 40 points per Angstroem2

2.08

mean distance

10 20 30 40
iteration step

50

variance

0.14

0.131 —— non-homogeneous dist. with 20 points per Angstroem2 1

o.12} —*—non-homogeneous dist. with 40 points per Angstroem2 |
—— homogeneous dist. with 40 points per Ang:stroem2

0.04

20 30
iteration step

40 50

Figure 4.14: Comparison of point distribution process for non-homogeneous point distributions

using different triangular mesh resolutions: 20 versus 40 A™?. The behavior of the homogeneous
The point distances were scaled according to Equa-
tion (4.21) to allow comparison with the homogeneous case and to allow computation of mean
distance and variance. The desired scaled point distance was 2.0 A. Left: Evolution of the mean
distance. Right: Evolution of the variance of the point distance.

point distribution is given as reference.

4.5. Summary and Conclusion 83

not vary too greatly. We also scaled the point density by a factor p = 0.289 which
corresponds to a point distance of 2.0 A in the homogeneous case (cf. Equation (4.20)).
This gave us a density comparable to those of electrostatic potentials. In order to be
able to compare the point distances of the non-homogeneous point distribution with point
distances in the homogeneous case, we had to scale the geodesic distances as follows. Let
p be a shortest path and let d(p) be its length. Let further denote by p(p) the averaged
point density along p. Then d(p) is scaled to d*(p) as follows

d*(p) = —===d(p) . (4.21)

The results of this experiment are shown in Figure 4.14. The plots confirm a similar
behavior and quality as in the homogeneous case.

An example of a non-homogeneous point distribution according to a distance field is
shown in Figure 4.15.

Electrostatic Potential

The electrostatic potential on the surface of some molecule can be easily computed from the
atomic point charges of the molecule. As mentioned before, we used the Merck Molecular
Force Field (MMFF) [73] to parametrize the molecules. This parametrization includes the
computation of the atomic point charge of each atom. For each vertex on the triangular
mesh, we computed the electrostatic potential by summing up the electrostatic potential
created by all atomic point charges (cf. Equation 2.2.2). The electrostatic potential on the
surface of the active conformer of amprenavir was computed using an artificial dielectric
constant of 0.3, which gives values of the electrostatic potential on the surface roughly
between -2.0 and 2.0. Note, that the electrostatic potential is reciprocally proportional to
the dielectric constant. Hence, choosing a different value for the dielectric constant will
only scale the potential by a different factor.

The electrostatic potential together with points distributed on the surface according to
the potential are shown in Figure 4.16. Points representing the positive and negative parts
of the electrostatic potential, respectively, were positioned separately. In order to do so,
we first identified those triangles having the same sign of the electrostatic potential. For
these triangles we identified the connected patches. On each of these connected triangle
patches we then separately distributed points. The reason for handling each connected
patch separately is obvious: the shortest path from each point to each other needs to exist
in order for the algorithm to work.

4.5 Summary and Conclusion

In this chapter we presented a novel approach for distributing points regularly on a molec-
ular surface given by a 2-manifold triangular mesh. This new approach is based on cen-
troidal Voronoi tesselation. We applied centroidal Voronoi tesselation to triangular meshes
in three dimensions. In order to do so, three subproblems had to be solved.

84 Chapter 4. Point-Based Surface Representation

(d)

Figure 4.15: Non-homogeneous distribution of 247 points on the SES of amprenavir. For the

triangulation of the SES, a point density of 40 A™? was used. (a) The surface is colored according
to the distance field computed from a single point on the surface, represented by a yellow sphere
at the right side of the image. The distance field was computed on the triangular mesh graph
(cf. Definition 4.1.3) and scaled to a range of 0.0 to 4.0. The mapping of the scaled distances to
the colors is given by the colormap shown in the image. (b) Initial weighted triangle partitioning.
(c) Point trajectories generated during the point relaxation process. The colormap shows the color
mapping of the trajectory points according to the iteration step. (d) Centroidal Voronoi tesselation
of triangular surface. Note, that in the centroidal Voronoi tesselation the position of the yellow
sphere, i.e., where the distance field is 0, is on the boundary of the Voronoi regions near the point.
(e) Final point positions, which are given by the weighted centers of mass of the Voronoi regions
seen in (d).

4.5. Summary and Conclusion 85

Figure 4.16: Non-homogeneous distribution of 397 points on the SES of amprenavir. For the
triangulation of the SES, a point density of 20 A7 was used. First row: The surface is colored
according to the electrostatic potential on the SES. The color mapping is done according to the
depicted colormap. One side of amprenavir, (a), has a more positive potential than the other
side, (b), which is more negative. Second row: For those parts having positive or negative values,
respectively, we separately computed point distributions. (c¢) This image shows the centroidal
Voronoi tesselation (CVT) of the regions having positive values together with their generators. (d)
Here, the CVT of the negative regions and their corresponding generators are shown. Last row:
216 points (red) representing the positive regions and 181 points (blue) representing the negative
regions are shown on the surface.

86 Chapter 4. Point-Based Surface Representation

1. Initial point distribution. The centroidal Voronoi tesselation needs an initial set of
generators. In order for the algorithm to work efficiently, we developed an initial
point distribution scheme based on graph partitioning. We showed that this scheme
works better than initialization using a Monte Carlo method. We also showed that
the scheme is efficient and that it can be used directly for non-homogeneous point
densities.

2. Approximation of the Voronoi diagram on a triangular mesh. In order to approx-
imate the Voronoi diagram on triangular meshes, we need to be able to efficiently
approximate geodesic distances. We have proposed three methods based on graphs
defined on the triangular mesh. We tested all of these three methods both in terms
of quality and run time. The results show, that the extended dual mesh graph is
superior in terms of quality over the other two graphs. Even though its run time is
slightly worse than those of the other two methods, we suggest to favor this approach,
since it yields the best quality.

3. Computation of centers of Voronoi regions. The centroidal Voronoi tesselation, as
the name suggests, requires the computation of the center of each Voronoi region.
We have defined the center of a Voronoi region as the center of mass of the Voronoi
region projected back onto the triangular surface along the averaged surface normal
of the Voronoi region. The results presented in Section 4.4 show that this definition
is justified, at least for smooth surfaces, such as the solvent excluded surfaces used
here. The definition also generalizes directly to non-homogeneous point densities.

There exist a couple of virtual screening applications that use points distributed on molec-
ular surfaces. Stiefl et al. [159] and Bender et al. [23], e.g., use points distributed on
molecular surfaces for computing transformation invariant molecular descriptors. These
descriptors are then used to screen data bases of potential drugs. Bender et al. use points
generated directly by the surface triangulation. These points are, in general, not homoge-
neously distributed, i.e. the distances between neighbored points may vary considerably.
In contrast to this, Stiefl et al. approximate the molecular surface by points on a 3-
dimensional uniform grid. While the approach by Bender et al. has the drawback that
the points are not homogeneously distributed across the molecular surface, the approach
by Stiefl et al. positions the points not directly onto the surface. Thus, both applications
might benefit from the new point distribution method described in this chapter.

In addition to generating homogeneous point distributions, our method also works
for distributing points according to non-homogeneous point densities. This allows us to
generate point distributions that represent continuously varying properties on molecular
surfaces such as the electrostatic potential. In the following chapter we show how the
points distributed on solvent excluded surfaces can be used to compute partial matchings
of molecular surfaces.

	Basic Notations
	Initial Point Distribution
	Point Relaxation
	Experimental Results
	Summary and Conclusion

