A Point-Based Algorithm for Multiple 3D Surface Alignment of Drug-Sized Molecules

Dissertation

am Fachbereich Mathematik und Informatik der Freien Universität Berlin

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von

Diplom-Informatiker Daniel Baum

Berlin, März 2007

1. Gutachter:	Prof. Dr. Dr. h.c. Peter Deuflhard
	Fachbereich Mathematik und Informatik
	Freie Universität Berlin
2. Gutachter:	Prof. Dr. Joachim Selbig
	Institut für Biochemie und Biologie
	Universität Potsdam

Tag der Disputation: 11.07.2007

Abstract

One crucial step in *virtual drug design* is the identification of new *lead structures* with respect to a pharmacological target molecule. The search for new lead structures is often done with the help of a *pharmacophore*, which carries the essential structural as well as physico-chemical properties that a molecule needs to have in order to bind to the target molecule. In the absence of the target molecule, such a pharmacophore can be established by comparison of a set of active compounds. In order to identify their common features, a *multiple alignment* of all or most of the active compounds is necessary. Moreover, since the "outer shape" of the molecules plays a major role in the interaction between drug and target, an alignment algorithm aiming at the identification of common binding properties needs to consider the molecule's "outer shape", which can be approximated by the *solvent excluded surface*.

In this thesis, we present a new approach to molecular surface alignment based on a discrete representation of shape as well as physico-chemical properties by points distributed on the solvent excluded surface. We propose a new method to distribute points regularly on a surface w.r.t. a smoothly varying point density given on that surface. Since the point distribution algorithm is not restricted to molecular surfaces, it might also be of interest for other applications. For the computation of pairwise surface alignments, we extend an existing *point matching scheme* to surface points, and we develop an efficient data structure speeding up the computation by a factor of three. Moreover, we present an approach to compute multiple alignments from pairwise alignments, which is able to handle a large number of surface points. All algorithms are evaluated on two sets of molecules: eight *thermolysin inhibitors* and seven *HIV-1 protease inhibitors*. Finally, we compare the results obtained from surface alignment with the results obtained by applying an atom alignment approach.

Zusammenfassung

Die Identifizierung neuer Leitstrukturen (lead structures) zur Entwicklung optimierter Wirkstoffe ist ein äußerst wichtiger Schritt in der virtuellen Wirkstoffentwicklung (virtual drug design). Die Suche nach neuen Leitstrukturen wird oft mit Hilfe eines Pharmakophor-Modells durchgeführt, welches die wichtigsten strukturellen wie auch physiko-chemischen Eigenschaften eines bindenden Moleküls in sich vereint. Ist das Zielmolekül (target) nicht bekannt, kann das Pharmakophor-Modell mit Hilfe des Vergleiches aktiver Moleküle erstellt werden. Hier ist insbesondere die gleichzeitige Überlagerung (multiple alignment) aller oder nahezu aller Moleküle notwendig. Da bei der Interaktion zweier Moleküle die "äußere Form" der Moleküle eine besondere Rolle spielt, sollte diese von jedem Überlagerungsalgorithmus, der sich mit der Identifizierung von Bindungseigenschaften befasst, berücksichtigt werden. Dabei kann die "äußere Form" durch eine bestimmte Art von molekularer Oberfläche approximiert werden, die man als solvent excluded surface bezeichnet.

In dieser Arbeit stellen wir einen neuen Ansatz zur Überlagerung molekularer Oberflächen dar, der auf einer diskreten Repräsentation sowohl der Form als auch der molekularen Eigenschaften mittels Punkten beruht. Um die Punkte auf der molekularen Oberfläche möglichst regulär entsprechend einer gegebenen Punktdichte zu verteilen, entwickeln wir eine neue Methode. Diese Methode ist nicht auf Moleküloberflächen beschränkt und könnte daher auch für andere Anwendungen von Interesse sein. Basierend auf einem bekannten Point-Matching Verfahren entwickeln wir einen Point-Matching Algorithmus für Oberflächenpunkte. Dazu erarbeiten wir u.a. eine effiziente Datenstruktur, die den Algorithmus um einen Faktor von drei beschleunigt. Darüberhinaus stellen wir einen Ansatz vor, der Mehrfachüberlagerungen (multiple alignments) aus paarweisen Überlagerungen berechnet. Die Herausforderung besteht hierbei vor allem in der großen Anzahl von Punkten, die berücksichtigt werden muss. Die vorgestellten Algorithmen werden an zwei Gruppen von Molekülen evaluiert, wobei die erste Gruppe aus acht Thermolysin Inhibitoren besteht, die zweite aus sieben HIV-1 Protease Inhibitoren. Darüberhinaus vergleichen wir die Ergebnisse der Oberflächenüberlagerung mit denen einer Atommittelpunktüberlagerung.

Acknowledgments

The work described in this thesis has been carried out from 2003 to 2007 at the department of Visualization and Data Analysis at the Zuse Institute Berlin (ZIB). I am indebted to my supervisor Prof. Dr. Dr. h.c. Peter Deuflhard and to the head of my department, Hans-Christian Hege, for their continuous support and encouragement. I would also like to thank them not only for giving me the opportunity to graduate, but also for providing me with all the freedom to follow own ideas.

My work was partially supported by the Berlin Center for Genome Based Bioinformatics (BCB), funded by the Federal Ministry of Education and Research (BMBF). I would like thank Frank Cordes, leader of the BCB Junior Research Group "Conformation databases for virtual screening", for his great interest in my work, his stimulating ideas, and for his always open door.

This work was inspired by Daniela Pelz from the Department of Neurobiology, FU Berlin, with her work on the olfactory system of Drosophila melanogaster. Beside making me look at structural molecular alignment, I would like to thank her for a fruitful and very enjoyable cooperation.

I am very grateful for the creative and warm atmosphere at the department of Visualization and Data Analysis, and I would like to thank all members of my department for their valuable support. Johannes Schmidt-Ehrenberg deserves special thanks for his always open ear and mind to discuss all matters, no matter whether these were of scientific nature or not.

Some members of the department of Numerical Analysis and Modelling have also contributed to this work. In particular, I would like to thank Susanna Kube and Marcus Weber for their help with mathematical questions. I also owe many thanks to Holger Meyer and Frank Cordes, who provided me with conformational data of the molecules considered in this thesis.

This work would not have been written without all the help and encouragement I received from my family and friends. I consider myself a very happy person to be part of such a wonderful family. Most of all, however, I want to thank Brigitte for her love and understanding, and my children Judith, Luise, and Simon for many wonderful moments.

Contents

A	Abbreviations 1				
1	Intr	roduction			
	1.1	Proble	$m \ Formulation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	3	
	1.2	Examp	ble: Odor Molecules	5	
	1.3	Outlin	e of the Thesis	8	
2	Mo	lecular Analysis and Visualization 1			
	2.1	.1 Molecular Representations			
		2.1.1	Molecular Graph	13	
		2.1.2	3-Dimensional Molecular Structure	13	
		2.1.3	Electron Density	14	
	2.2	Physico-Chemical Interactions		14	
		2.2.1	Hydrogen Bonds	15	
		2.2.2	Electrostatic Interactions	16	
		2.2.3	Van der Waals Interactions	16	
		2.2.4	Hydrophobic Attractions	17	
	2.3	3 Visualization		18	
		2.3.1	3-Dimensional Molecular Structure	18	
		2.3.2	Solvent Excluded Surface	19	
		2.3.3	Volume Visualization	20	
	2.4	Confor	mation Analysis	21	
		2.4.1	Exploring Configurational Space	23	
		2.4.2	Metastable Molecular Conformations	25	

		2.4.3	Visualization of Metastable Conformations	26
3	Mo	lecular	Similarity	31
	3.1	Molec	ular Graph Based Similarity	32
		3.1.1	Maximum Common Subgraph (MCS) Algorithms	32
		3.1.2	Feature Trees	34
		3.1.3	2D Fingerprints	35
		3.1.4	Similarity Measures	36
	3.2	Basic	Concepts for 3-Dimensional Structure Similarity	38
		3.2.1	Clique Detection	38
		3.2.2	Geometric Hashing	39
		3.2.3	Genetic Algorithms	39
		3.2.4	Point Matching	40
		3.2.5	Contact Maps	40
	3.3	3-Dim	ensional Structure Similarity Algorithms	41
		3.3.1	Atom Based Similarity	42
		3.3.2	Pharmacophore Based Similarity	44
		3.3.3	Volume Based Similarity	45
		3.3.4	Surface Based Similarity	47
	3.4	Summ	ary	51
4	Poi	nt-Bas	ed Surface Representation	53
	4.1	Basic	Notations	54
		4.1.1	Triangular Mesh	54
		4.1.2	Graphs Defined on the Triangular Mesh	59
4.2 Initial Point Distribution		Point Distribution	60	
		4.2.1	Determination of Number of Points	60
		4.2.2	Random Initialization Using a Monte Carlo Method	61
		4.2.3	Graph Partitioning Based Initialization	62
	4.3	Point	Relaxation	66
		4.3.1	Centroidal Voronoi Tesselation	67
		4.3.2	Centroidal Voronoi Tesselation on Triangular Meshes	68

CONTENTS

	4.4	Exper	imental Results			
		4.4.1	Homogeneous Point Distributions			
		4.4.2	Non-Homogeneous Point Distributions			
	4.5	Summ	ary and Conclusion			
5	Pair	Pairwise Surface Alignment				
	5.1	Basic	Notations			
		5.1.1	Graphs			
		5.1.2	Local Surface Shape Features			
		5.1.3	Matchings			
	5.2	Initial	Transformations			
		5.2.1	Atom-Based Initial Transformations $\ldots \ldots \ldots \ldots \ldots \ldots \ldots $			
		5.2.2	Surface-Based Initial Transformations $\ldots \ldots \ldots \ldots \ldots \ldots \ldots $			
	5.3	Alignr	nent Optimization			
		5.3.1	Point Matching			
		5.3.2	Surface Point Matching			
		5.3.3	Handling Multiple Properties			
		5.3.4	Locating Close Points			
	5.4	Reduc	tion of Pairwise Matchings			
		5.4.1	Similarity of Matching Transformations			
		5.4.2	Determination of Diverse Pairwise Matchings			
	5.5	Molec	ular Data $\ldots \ldots 106$			
		5.5.1	Thermolysin Inhibitors			
		5.5.2	HIV-1 Protease Inhibitors			
	5.6	Exper	imental Results			
		5.6.1	Algorithmic Framework and Parameters			
		5.6.2	Experiments			
	5.7	Summ	ary and Conclusion			
6	Mu	ltiple S	Surface Alignment 131			
	6.1	Overv	iew			
	6.2	From	Pairwise to Multiple Alignments			

		6.2.1	Multiple Matchings	. 133
		6.2.2	Computing Multiple Matchings	. 135
		6.2.3	PATRICIA Trees	. 138
	6.3	Rating	g of Multiple Matchings	. 140
		6.3.1	Pareto Sets	. 140
		6.3.2	Sorting	. 143
	6.4	Experi	imental Results	. 143
		6.4.1	Thermolysin Inhibitors	. 144
		6.4.2	HIV-1 Protease Inhibitors	. 148
	6.5	Summ	ary and Conclusion	. 150
-	G		and Canaladina Damaska	1
7	Sun	imary	and Concluding Remarks	153
\mathbf{A}	Res	ults of	Pairwise Surface Alignment	157
	A.1	Therm	olysin Inhibitors	. 158
		A.1.1	Experimental Conformers	. 158
		A.1.2	Ensemble of Conformers	. 161
	A.2	HIV-1	Protease Inhibitors	. 162
		A.2.1	Experimental Conformers	. 162
		A.2.2	Ensemble of Conformers	. 165
в	Res	ults of	Multiple Surface Alignment	167
D	R 1	Therm	alvsin Inhibitors	168
	D.1	R 1 1	Experimental Conformers	168
		B12	Ensemble of Conformers	169
	В 9	HIV_1	Protease Inhibitors	170
	D.2	R 2 1	Experimental Conformers	170
		D.2.1 B 9 9	Ensemble of Conformers	171
		D.2.2		. 1/1
Bi	bliog	raphy		173

viii

173