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1
I N T R O D U C T I O N

Cancer is not only one disease but rather a set of diseases that are caused by alter-
ations in the genome. Much like evolutionary processes that produce innovations
through the pressure of competition, individual cells in the human body are con-
stantly subjected to pressure in their microenvironment. When a cell acquires a
growth advantage, it will proliferate faster than its environment, giving rise to a
tumor. Untreated, the tumor will grow and interfere with the normal functioning of
the tissue it is located in or that of the surrounding tissues, ultimately leading to
death. Ever since the discovery that the genome of tumor cells is altered in various
ways and especially since the advent of sequencing technologies, studies have tried
to discern the multitude of molecular processes that are dis-regulated, hoping to find
a cure for cancer.
Unfortunately, a single cure for cancer was not found but instead, large-scale studies
involving thousands of patients found an astonishing heterogeneity of tumor cells on
the genomic level. The evolutionary mechanisms at play result in remarkably diverse
changes that transform cells into cancer cells by giving them capabilities to outgrow
neighboring cells, migrate to other tissues and elude programmed cell death. Con-
sequently, a different approach to cure cancer was proposed which focuses on the
development of targeted therapeutics that are administered after the tumor was se-
quenced, termed precision oncology. The goal is no longer to find a single cure for
cancer but rather a medication for each of its variants. Precision oncology requires a
thorough understanding of the processes that lead to the formation of cancer cells in
order to develop precise medication and link genomic alterations to an optimal drug
combination to prescribe.
The main workforce within a cell are proteins, and genes are the blueprints from
which they are made. A central goal in precision oncology is therefore the accurate
identification of those genes linked to cancer. With the availability of large and diverse
data sets corresponding to various measurements within a cell, machine learning can
be used nowadays to predict an association for a gene with cancer malignancies. This
can in turn guide hypothesis-driven investigations of promising individual genes to-
wards a more comprehensive set of anti-cancer drugs, a more complete understand-
ing of cancer diseases and finally a decreased mortality of patients.

thesis outline

In this thesis, I will present an explainable machine-learning method to predict cancer-
associated genes from different molecular readouts of the cell. Chapter 2 will provide
a brief background in gene regulation and the various ways by which cells regulate
the amount of protein from the roughly 20, 000 genes in the genome and introduce
how these regulation programs are disturbed in tumor cells. We will discuss several
central ideas and hypotheses from cancer genomics and see that linking a mutation
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2 introduction

in the genome directly to a growth advantage of a cell is unsolved as of yet.
Chapter 3 will then present several experimental methods to provide large-scale ge-
nomic readouts for a bulk of tumor cells, such as gene expression or DNA methy-
lation. All of the experimental techniques presented here rely on sequencing, the
process of extracting the genomic sequence of a sample of cells.
In Chapter 4 we will learn about fundamental concepts and problems of machine
learning. At the end of the chapter, graph convolutional networks are introduced,
the core of EMOGI, my proposed method for the prediction of cancer-associated
genes. One of the key points that distinguish EMOGI from previous approaches con-
ceptually is its capability to integrate very different experimental readouts and the
possibility to explain EMOGI’s decision-making. Chapter 5 will finally explain how
graph convolutional networks are applied to genomic, epigenetic, transcriptomic and
proteomic data levels to predict cancer genes. The results of training EMOGI are val-
idated thoroughly on simulated and real-world data in Chapter 6. The power of the
proposed method is benchmarked exhaustively against other methods for the pre-
diction of cancer genes and validated on several independent cancer gene sets. The
robustness of EMOGI is evaluated in perturbation experiments and the major reasons
for the performance of the method are investigated by experiments where individual
data types are held out during training. Finally, Chapter 7 will investigate novel pre-
dictions made by EMOGI and discern distinct classes of cancer genes that go beyond
the classical definitions that describe cancer genes as more often mutated than ex-
pected by chance. The results are summarized and put into context in Chapter 8.



2
B I O L O G I C A L B A C K G R O U N D

All cells in the human body contain roughly the same genetic material and originate
from one stem cell. The information is encoded in a large molecule, the Deoxyribonu-
cleic acid (DNA) as a sequence of nucleotides. The ensemble of DNA is referred to as
the genome and contains a building plan for the cell. In each human cell the genome
is split into 23 different chromosomes. The chromosomes reside in the cell nucleus
and are typically heavily compacted and very different in size. Specific regions of
the genome are genes. Those regions code for proteins which then perform a wide
variety of tasks in the cell such as replication, reacting to outside signals and many
more. Genes are read by specialized proteins in a process termed transcription. While
genes are believed to be the most important part of the genome, they make up only
around 2% of it [1].
One of the most fundamental and only partially answered questions in molecular
biology is how two cells with the same genome can give rise to completely different
cell types with distinct functions and shapes. A neuronal cell, for instance, is very dif-
ferent from a liver cell, suggesting different mechanisms for shaping cell types and
fates. Several additional layers of regulation on top of the genetic sequence modify
the expression of proteins in the cell in various ways. How the DNA is compacted
in the cell nucleus differs between cell types, exposing some genes more than others
to transcription. Small chemical modifications of the DNA sequence allow the gene
to be transcribed or prevent transcription. Many more layers regulate cell fate and
not all of them have been discovered, but what they have in common is that they
establish and maintain tissue-specific levels of proteins in the cells.

Misregulation of these complex processes of genetic and epigenetic regulation can
have negative influences on the dynamic and transient equilibrium of protein levels
within a cell and ultimately lead to a phenotype or disease. While rare genetic dis-
eases usually have one causal change in the genome (a mutation) that explains the
phenotype fully, complex diseases result from combinations of environmental factors,
genetic predispositions and mutations acquired throughout the patient’s life. Cancer
among them is a set of complex diseases, which arise from mutations of the genome
but it is usually combinations of mutations that cause the phenotype. They can lead
to altered proteins or misregulation of protein levels and ultimately to a cell that
grows outside of the strict regulations within the tissue it is residing in. While it was
observed that cancer genomes typically divert from the original one, a full under-
standing of cancer diseases is lacking. This is due to the fact that a change in the
genome can produce a phenotype through various ways. When a cell is no longer re-
sponding to programmed cell death (apoptosis), for instance, multiple genes or their
proteins may be the cause for that and any of the multiple layers of regulation may be
responsible. Therefore, linking cancer phenotypes to genotypic changes is hard and
requires a deep understanding of regulation of protein expression in the cell.

3



4 biological background

2.1 dna , gene regulation & proteins

Most of the dry mass within a cell is protein [1]. Proteins drive almost all processes
in the cell and studying how many copies of which proteins are present at a certain
moment in the cell is crucial to understanding the molecular basis of these smallest
functional building blocks of the human body as well as the emergence of complex
diseases. But while only 1− 2% of the genome code for proteins [2], much more of it
is needed to explain the final protein concentrations within the cell. In the following
section, we will see the fundamental principles of gene regulation in order to grasp
how small genomic changes can cause mis-regulations in diseases such as cancer.

2.1.1 The Central Dogma of Molecular Biology

The DNA of living organisms is a sequence of nucleotides consisting of a phosphate,
sugar and one of four different bases. The bases are adenine, cytosine, guanine and
thymine, abbreviated with their starting letters A, C, G and T. A and T bind to each
other as do C and G. Each of the four bases thus has a complement and the DNA
is present as a double helix in which every nucleotide forms a base pair with their
respective counterpart. Hence, the genetic code of one strand of DNA can be recon-
structed from the other strand. This fact is used during cell division when the two
DNA strands are isolated and the bases of the second strand are reconstructed one by
one from the first one (template strand). The same principle can be used by the cell to
detect small changes in the DNA by checking if the two strands match everywhere.
If not, the cell can try to repair the damage or trigger cell death to prevent the error
from having an effect. Roughly 30.000 genes reside within the ∼ 3 billion nucleotides
of the human genome. Figure 2.1 shows the layout of a typical human gene and while
most genes have the elements depicted here, this does not hold true for all genes. A

Promoter
Region

5ʹUTR

TSS TTS

3ʹUTR

Exon

Intron

Open Reading Frame (ORF)

Regulatory
Region

Regulatory
Region

Figure 2.1: Typical layout of a gene. The promoter region contains TF binding sites and is
the place where transcription starts. Genetic alterations here have the potential
to change protein levels in a subtle way. The promoter region is followed by an
untranslated region (UTR) of variable length. The coding region (ORF) consists of
exons and introns. The introns are not translated to protein sequences but exons
can be skipped or spliced in different ways, providing yet another layer of reg-
ulation that increases the variety of proteins that can be assembled. Regulatory
regions like enhancers are located either upstream or downstream of a gene. As-
signing a set of regulatory regions to genes is an active area of research and has
not been solved yet [3, 4].

gene typically contains a promoter region where the transcription machinery is re-
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cruited to initiate transcription. The gene body contains exons and introns which are
transcribed into an Ribonucleic acid (RNA) molecule. Introns are less important for
the final protein sequence because the intronic sequences are removed as part of the
post-transcriptional modification process from the newly synthesized RNA. Genes
are transcribed by the RNA polymerase II protein complex (Pol II). This protein com-
plex is recruited to the promoter region of a gene with the help of special proteins
called Transcription Factors (TFs) and initiates the transcription process. A TF is
a protein with the capacity to bind DNA and thereby influences the rate at which
transcription occurs and ultimately the number of messenger RNA (mRNA) copies
produced in a certain amount of time. Most proteins do not bind DNA, however, but
rather perform other functions in the cell [5].
The central dogma of molecular biology states that DNA serves as a template for
RNA and the latter serves as a template for proteins [6]. The transcription process
produces a single-stranded molecule, the mRNA. The mRNA is then exported from
the nucleus to the ribosome and translated into a protein (see Figure 2.2 for details).
A series of three nucleotides (a codon) code for one out of 20 amino acids, the pro-
teins’ building blocks. Multiple codons can code for the same Amino Acid (AA) such
that it is possible for nucleotides to change without changing the AA sequence of the
protein. The finished protein then either remains in the cytoplasm to act as an en-
zyme, structural protein and more. However, it can also go back to the nucleus to
act as a regulator of transcription (TF). Proteins can bind to other proteins, DNA or
RNA, making the formation of feedback-loops possible where proteins regulate the
abundance of themselves or other proteins.

2.1.2 Regulation of Protein Abundance in the Cell

Cells are highly dynamic microenvironments and proteins are responsible for their
correct behavior. Therefore, the number of copies of a specific protein (protein abun-
dance or level) is subject to strict regulation. It is thus not surprising that some pro-
teins are transported back to the cell nucleus after translation to control the amount
of mRNA produced by their own gene or a set of target genes.
Different cell types have very different desired protein levels and most genes are not
transcribed at all in a specific cell type [7].
Many mechanisms of regulating protein abundance occur prior to transcription. The
promoter region can influence the expression of the gene through binding of TFs.
A TF binds to the promoter region, often by recognizing a specific sequence, the
so-called Transcription Factor Binding Site (TFBS). Thereby it either increases or re-
presses the recruitment of the transcription machinery. The more Pol II is recruited to
the promoter region of the gene, the more mRNA transcripts are produced and the
more protein gets translated.
Although the DNA is a linear molecule, it folds in 3D and therefore regions that
might be far away from each other in the sequence are actually close in space. Distant
regulatory regions, termed enhancers and silencers, can influence the expression of
their target genes. They are thought to loop to their target genes and provide binding
sites in the DNA to which more regulatory proteins, such as TFs can bind. Therefore,
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TFs binding to the enhancer or silencer can help with the recruitment of the tran-
scription machinery in a similar way as if they were directly bound to the promoter
sequence of the gene. Enhancers positively regulate gene expression of their targets
while silencers reduce their expression.
Another mechanism for regulating gene expression is the compaction of the genome
within the cell. Some regions are very tightly packed, making entire regions of the
genome inaccessible. Which regions of the genome are accessible differs significantly
between cell types [8].
After the production of mRNA, post-transcriptional regulatory mechanisms addition-
ally influence whether the mRNA is successfully exported to the ribosome and gets
translated there (see Figure 2.2). Small RNAs, called micro-RNAs can influence the
stability of specific mRNAs and either ensure that they are successfully exported or
degraded in the cell nucleus [9]. Therefore, post-transcriptional regulation describes
yet another layer for the cell to manipulate protein abundances in a fine-grained and
highly specific manner.
And finally, small chemical modifications to the DNA such as DNA methylation
can influence gene expression. DNA methylation describes the addition of a methyl
group to the DNA molecule. In mammals DNA methylation occurs almost exclu-
sively at Cytosine followed by Guanine (CpG) dinucleotides. In normal cells, the
DNA methylation landscape (often called methylome) is highly tissue-specific [10].
While around 75% of CpG sites are methylated in mammals [11], important regu-
latory elements and especially promoters surrounded by CpG islands are unmethy-
lated. These differences are usually very sharp and highly similar across cells of the
same cell type [10]. High DNA methylation in promoter regions was shown to have
a repressive effect on gene expression [12] in two different ways. First, TFs cannot
bind and transcription is hindered in highly methylated promoter regions [13], and
second, high DNA methylation can contribute to the formation of heterochromatin
where the DNA is so highly condensed that transcription cannot or only rarely occur.
The compaction process is caused by specialized proteins (MBD proteins) which then
recruit chromatin remodelers to the promoter region of a gene [14].
Unlike the methylation patterns in the promoter regions of genes, gene bodies were
associated with highly transcribed genes in the past [10, 14, 15]. The methylome is
established and maintained by specialized methyl-transferases, proteins that read,
write and remove methyl groups at CpG sites in the genome.
The exact concentration of a protein in a cell is highly dynamic and changes quickly

over time. It is often determined by multiple layers of regulation. How exactly abun-
dances are maintained and how they change over time is still unclear despite rapid
progress in sequencing technologies and new mechanistic insights.

2.1.3 Proteins Form Pathways

Proteins are the main building blocks of the cell and execute most of the cell’s func-
tions [1]. They are responsible for cell stability (forming membranes, filaments and
microtubules), transportation of molecules within the cell, reaction to stimuli from the
outside and more. But not surprisingly, proteins rarely work alone and every protein
binds to other molecules [1], most often with high specificity. Protein complexes, such
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mRNA
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Figure 2.2: Genesis and life cycle of proteins. DNA is transcribed into mRNA transcripts.
Transcripts get exported to the cytoplasm and get translated into proteins. The
proteins can either go back into the nucleus to act as regulators of transcription
(e.g. Transcription Factors) or form protein complexes and perform tasks in the
cell.

as the RNA Polymerase II transcription machinery mentioned above, consist of more
than 10 individual proteins that assemble through non-covalent bonds [16]. Further-
more, long processes like the reaction to outside stimuli require a coordinated action
from multiple proteins or complexes. Signal transduction involves receptor proteins
that detect the signal and then pass it down to other proteins, causing a cascade at
the end of which the cell reacts to the signal by changing transcription rates of genes.
Cascades or modules of interacting proteins that pursue a certain goal in the cell,
such as signal transduction, cell death or growth, are called pathways. The pathway
for programmed cell death, for instance, involves several hundreds of proteins [17]
(GO term GO:0097190).
The definition of what constitutes a pathway is vague. They are either defined based
on the molecular function that they associate with or from unbiased studies of Protein-
Protein-Interaction (PPI) networks. In such networks, proteins that can bind to each
other are connected, forming an undirected graph that can be studied using mathe-
matical tools (more on PPI networks in chapter 3.5).
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Figure 2.3: Cancer development without treatment. Somatic mutations are acquired through
errors in cell division or external factors. Driver mutations give abnormal cells a
growth advantage, leading to the formation of a tumor. The cancer cells in the
tumor will develop further mutations, often at an accelerating rate, leading to the
formation of sub-clones with different oncogenic characteristics. At some point,
the cancer cells will become able to invade other tissues through the blood stream
and metastasize. This is where cancers will become lethal, even if the original
tumor was not in a survival-critical tissue.

2.2 cancer diseases

Cancer is the second most frequent cause of death worldwide with a death toll of
more than 8 million people per year and describes a set of diseases. It occurs when
cells are no longer following their normal programs and start to grow in an uncon-
trolled manner [18] (see Figure 2.3 for an overview over cancer progression). The
accumulation of such “rogue” cells is called a tumor and tumors can start growing
in any tissue of the body, giving rise to different tumor types. In their later stages,
tumors very often metastasize, invading neighboring and even distal tissues. If not
treated, tumors (metastasized or not) will at some point interfere with the normal
functions of organs such as the lung, liver or heart and cause death.
Cancer cells that no longer follow their defined programs have altered genomic se-
quences that lead to abnormal protein sequences or altered concentration of proteins
within the cell. Therefore, cancer is a set of diseases of the genome [19]. It is be-
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lieved to arise from the accumulation of somatic mutations at random locations in
the genome through the lifetime of a patient. A mutation is a small alteration of the
genomic sequence (often only one or very few bases) and somatic mutations char-
acterize those mutations not present from birth but acquired and therefore present
only in a subset of all the cells in an individual. Another form of more complex ge-
nomic rearrangements are Copy Number Aberrations (CNAs) which are mutations
of larger portions of the genome at once. Different classes of CNAs exist. A region can
be copied, for instance, leading to a duplication of the sequence within the genome
or can be removed from the sequence, leading to a deletion of that region [20–22].
The study of CNAs — or structural variation more generally — is an active topic of
research and a detailed description is beyond the scope of this thesis. Importantly,
CNAs can change the number of copies of a gene and influence gene expression
when a gene is located within a CNA, giving rise to the term.
The reasons why cells acquire mutations are diverse. They can arise during the divi-
sion of a cell when the exact genomic sequence is not correctly replicated but also
from external agents, such as compounds in tobacco, UV light or radiation. Most of
the mutations that occur in the genome do not have an immediate effect on the cell.
However, once they occur in important regulatory regions or genes, mutations have
the potential to change the cell’s metabolism in various ways, the simplest being a
mutation that changes the mRNA product of a gene. This in turn might change the
translated protein sequence, potentially giving rise to an altered protein that does not
function correctly anymore.
As depicted in Figure 2.3, the accumulation of mutations in a cell continues. The
process often accelerates because crucial cell functions such as DNA repair, replica-
tion and programmed cell death are no longer functioning correctly until the cell
ultimately transforms into a cancer cell. Cancer cells are cells which grow outside of
the tightly regulated microenvironment of the surrounding tissue. In order to do so,
cancer cells must change the normal metabolism of the cell to no longer react to out-
side signals such as programmed cell death (apoptosis), divide more often than other
cells and acquire more energy to divide very often [23]. It is still unclear how exactly
the transformation process happens. Also, estimates on how many alterations are re-
quired for a cell to become cancerous vary greatly [22, 24–26]. Molecular profiling
has revealed that most somatic mutations in cancer genomes occur outside of genes
[27]. But due to the complex regulatory mechanisms, non-coding mutations can still
influence the expression of genes and hence aid the transformation of normal cells to
cancerous ones (tumorigenesis) [27, 28].
Despite the mutation generation process being random, the genomic alterations in
cancer cells carry much information about important elements for tumor progression
and initiation [25]. Cancer cells need a growth advantage over other cells in order to
form a tumor and metastasize. Genes that are more often mutated than one would
expect are probably associated with cancer or cancer-related cell functions [25, 29]
because the mutations would not be present so often if they did not confer a growth
advantage. Large-scale studies of cancer genomes such as those from The Cancer
Genome Atlas (TCGA) [30] have not only found mutations that occur in many pa-
tients but also several genes to be more often mutated than expected, giving rise to
the notion of cancer driver genes. Cancer driver genes are often defined as genes that,
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when mutated, increase the net cell growth in vivo [31]. Due to the complex nature of
gene regulation in humans, however, a gene is not required to carry a mutation to be
implicated in cancer diseases.

2.2.1 Personalized Medicine

The stochastic way in which mutations accumulate in a genome makes treatment of
cancers very hard. While some drugs specifically target hallmarks of cancer [23], oth-
ers specifically target proteins to reestablish normal cell functions. The later a tumor
is detected, the more diverse its mutational landscape has become [26, 32] because
once the cell has lost its genomic stability, mutations and genomic rearrangements
occur at a much higher rate. The different sub-populations within a tumor each have
their own vulnerabilities and resistance, hindering treatment [33].
The goal of personalized medicine is to sequence tumors and then decide on a treat-
ment based on the mutational composition of the tumor. Therefore, a deep under-
standing of cancer diseases as well as a plethora of very specialized drugs is needed
to cure patients. Examples of specialized treatments target HER2 overexpression in
breast cancers through kinase inhibitors and specialized antibodies [34] or target
the BCR-ABL fusion gene in Chronic Myeloid Leukemias through tyrosine kinase
inhibitors [35]. By now, personalized treatments for many cancer types are available
[36]. Most of the personalized cancer treatments target proteins that are either overex-
pressed, mutated or that are important for the growth of cancer cells but not required
in normal cells [37]. To develop a highly specialized battery of drugs, it is therefore
crucial to completely catalogue all genes with an association to cancer. Only then,
specialized treatment can be administered to restore normal cell functions, kill all
cancerous cells of a tumor and prevent relapse.

2.2.2 Finding Cancer Genes

Multiple studies have found cancer drivers in a hypothesis-driven way [38, 39] where
a gene was believed to have a specific function that relates it to cancer and that
association was tested in a laboratory. With the advent of mutation profiling data
for thousands of patients by TCGA or—more recently—the International Cancer
Genome Consortium (ICGC) Pan-Cancer Analysis of Whole Genomes (PCAWG)
[28], computational methods have emerged to statistically predict cancer driver genes
from molecular data sets [31, 40–44]. Early computational and experimental studies
for detecting cancer driver genes have focused on genes that are mutated more often
than expected by chance, leading to the discovery of EGFR, KRAS or MYC genes [19].

However, as seen in Section 2.1.2, multiple layers of regulation can cause changes
in protein concentrations. Hence, over-mutated genes only explain a fraction of the
underlying causes of cancer [19, 25, 37]. While a few genes are highly mutated, there
often exists a “long tail” of the mutation rates that contains less frequently mutated
genes which nonetheless influence cancer progression [19]. This partly comes from
the organization of proteins in pathways and complexes (see Section 2.1.3 for details)
where the normal cell functions can be modified or disabled by mutating any of the
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genes in the pathway. As a consequence, each of the genes within the pathway is only
mutated in a fraction of patients but the cellular function is disabled in all or many of
them. Different strategies have been adopted to account for that heterogeneity. One
way is not to consider different cancer types individually but rather in a joint analysis
(termed pan-cancer analysis) [30]. If somatic alterations are present in multiple can-
cer types, their statistical significance is increased, allowing to distinguish passenger
and driver mutations even for rarely altered genes. The rationale behind pan-cancer
analyses is that there are common alterations across cancer types and that rationale is
supported by evidence in many cases. It was, for instance, shown in multiple studies
that tumor cells often exhibit stem cell-like behavior and reactivate the same devel-
opmental genes across different cancer types in order to outgrow neighboring cells
[45–48], justifying pan-cancer approaches especially for rare or understudied tumor
types.
Another orthogonal strategy that computational methods have started to adopt is
the incorporation of Protein-Protein-Interaction data into the algorithms [41, 44, 49].
This way, alterations in a protein complex or pathway can be aggregated and signif-
icantly mutated modules were shown to correspond to known cancer pathways [41,
42, 50].
Both of the above-mentioned causes for heterogeneity only partly explain the ge-
nomic landscapes of tumor cells, unfortunately [25, 51]. Regulatory regions such as
enhancers can regulate gene expression via TFs and can equally be disrupted in can-
cer [28, 37, 52]. If binding sites of TFs are disrupted by a mutation, this can have an
effect on the expression of the target gene(s) of that regulatory region. As of yet, the
exact locations of regulatory regions determining the expression of a gene of interest
are not entirely known, making it hard to assess the exact consequences of mutations
occurring outside of genes despite recent efforts [52, 53]. On top of that, genomic data
of whole genomes of cancer patients only recently became available on a large scale
with initiatives such as PCAWG [28]. Therefore, to accurately understand the impact
of non-coding mutations in cancer, one has to decipher the complete set of regulatory
mechanisms because mutations can affect every layer of genome regulation.
Fortunately, it is possible to measure the abundance of mRNA in a cell experimen-
tally, making it possible to find putative cancer genes that are not mutated but
nonetheless show altered expression in tumor samples. Unlike the genome which
is the same across all cells (not counting somatic mutations), each cell type expresses
different genes at different levels in a highly dynamic fashion, making it harder to
quantify expression changes between tumor and normal samples [3, 54, 55]. Further-
more, mRNA expression is only an intermediate measure of the protein expression,
not accounting for post-transcriptional regulation through micro-RNAs (miRNAs) or
other mechanisms. Nonetheless, some of the variability in protein expression through
non-coding mutations and epigenetic aberrations can be explained through mRNA
expression and multiple studies have found cancer genes that are overexpressed but
rarely mutated [56–59]. One of the prototypical examples of such a gene is the tran-
scription factor family of MYC genes which are rarely mutated but often amplified
(targeted by a copy number duplication event) and overexpressed. Due to their role
as TFs, MYC overexpression leads to increased expression of target genes, many of
which play important roles in cell proliferation [20, 37, 60]. As was observed already
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for somatic genomic lesions, several genes were observed to be recurrently expressed
differently in different cancer types [37]. Following the rationale from above, a pan-
cancer approach therefore is expected to help identify genes that are only differently
expressed in a small part of the cohort, and that would be missed by investigating
single cancer types.
Lastly, alterations of the genome are not the only changes in cancer cells. Epigenetic
aberrations can influence gene expression and provide yet another mechanism of
how cancer cells corrupt normal cell functions. DNA methylation, introduced in the
previous section, is significantly altered in cancer genomes [61]. Mutations in readers
or writers of methyl groups at CpG sites (or mutations in their regulatory regions)
cause changes in the methylome. It has been observed in multiple cancers that the nor-
mally sharp patterns of DNA methylation are dissolved. This phenomenon of global
hypo-methylation is accompanied by a local hyper-methylation of selected CpG is-
lands [61, 62] and silences multiple genes. The broad changes of the methylome in
cancers most often lead to the deactivation or activation of cancer driver genes [10,
12, 62, 63] and hence, measurements of DNA methylation are important features
for the identification of cancer driver genes. In colorectal cancers, for instance, up
to 800 genes are transcriptionally silenced through aberrant DNA methylation com-
pared to normal adjacent tissues [64–66]. As for genomic lesions and differential
expression, many cancer-associated genes were reported to show differential methy-
lation patterns across multiple cancer types and especially that cancer cells show stem
cell-like behavior with certain developmental genes frequently being reactivated in
cancer cells [45, 47, 48, 67]. While the DNA methylation landscape is highly tissue-
specific, differentially methylated promoter regions are enriched for developmental
genes across multiple cancers [46]. Therefore, a pan-cancer approach is likely to give
a stronger signal of differentially methylated promoter regions compared to analyses
of individual cancer types and expected to better recapitulate the activation and/or
maintenance of the core pluripotency network through aberrant DNA methylation.

2.3 computational methods to predict cancer genes

To date, a plethora of computational tools has emerged to predict cancer-associated
genes but often adopt very different definitions of cancer genes. MutSigCV [40] and
20/20+ [31] are representatives of methods that predict cancer genes based on so-
matic mutations accumulated within the gene body. They follow the rationale that
genes which harbor frequent driver mutations confer a growth advantage to the cell
and the main focus of the methods is to distinguish driver mutations from random
passenger mutations. MutSigCV, for instance, constructs a sophisticated background
model that accounts for gene length and nucleotide composition for the prediction
of driver genes. 20/20+ is then even capable of differing between Tumor Suppressor
Genes (TSGs) and oncogenes from the distribution of mutations within a gene.
More recently, computational methods have started to model the heterogeneity caused
by pathways and other protein interactions through the use of PPI data. HotNet, Hot-
Net2 and hierarchical HotNet [41, 42, 68] attempt to find modules of frequently mu-
tated genes within PPI networks and found them to correspond to important cancer
pathways. Such methods often aim to identify entire modules instead of single genes,
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following the idea that the exact gene that is altered may vary from patient to patient
but the cellular function does not [69]. Recent advances further account for node de-
gree biases in the HotNet algorithms through specialized normalization [70].
All of the above-mentioned methods only use mutation data for their predictions. Re-
cently, predictive methods have started to incorporate different omics levels in their
predictions, often using Machine Learning (ML) for that [44, 49]. ModulOmics [49],
for instance, solves a linear integer programming problem to predict modules of can-
cer genes from genetic, transcriptomic and protein interaction data and regulatory
information about TFs. And LOTUS [44] integrates mutations alongside PPI infor-
mation and leverages a supervised ML approach to predict oncogenes and TSGs
separately.
Finally, several methods have been developed to solve similar problems, such as
grouping samples based on molecular profiles to identify subtypes of cancers or
predict survival and severity of patients [71]. While these problems are also highly
relevant, they are not in the scope of this thesis.

2.4 summary

Cancer is a set of highly complex diseases originating from genomic alterations (mu-
tations, structural variation and even chromosome duplications). Tracing all genomic
changes to a phenotype is theoretically possible but requires a rather complete un-
derstanding of gene regulation. The final level of a protein within a cell depends on
many factors and a complex regulatory landscape that is not completely understood
as of yet. Cancer cells typically “hijack” many different regulatory mechanisms in an
evolutionary manner to gain growth advantages over neighboring cells. Mutations in
the readers or writers of epigenetic marks, for instance, can cause genome-wide al-
terations, activate oncogenes or inactivate tumor suppressor genes [62]. Non-coding
mutations can suppress or activate genes when occurring in regulatory regions of
those genes [27], and mutations in TFs can alter the expression of many target genes
simultaneously [37]. However, multiple molecular readouts such as epigenetic modifi-
cations and mRNA expression can be used to associate cancer phenotypes with genes
when the regulatory processes underlying the phenotype are not fully understood.
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E X P E R I M E N TA L T E C H N I Q U E S

We are drowning in information and starving for knowledge.

— John Naisbitt [72]

We have now seen that it is hard to decipher the regulatory mechanisms and dy-
namics that control the highly different levels of protein abundances in all cells of a
human body with the same underlying genome. This chapter will briefly introduce
experimental methods to not only sequence the genome but also directly measure
intermediate products that help find mis-regulated cell states without having to fully
understand the regulatory landscapes that give rise to different cell types and protein
levels.

3.1 high-throughput sequencing

The DNA sequence is the most fundamental molecular readout because it is the same
across tissues and is not changing over time except for somatic mutations. Many ap-
proaches have been developed to sequence the genome or parts of it, starting with
Sanger sequencing [73], evolving to Microarrays [74] and now High Throughput Se-
quencing (HTS) (see [75] for a review of the history of DNA sequencing methods).
Today, HTS (or next-generation sequencing, NGS) is the most prominent way to se-
quence DNA in a sample (a bulk of cells). Different HTS sequencing methods exist
with Illumina dye sequencing being the most popular among them. An additional
overview of currently used next-generation sequencing approaches with their advan-
tages and disadvantages is given in Goodwin et al. [76].
In brief, most HTS methods work by first fragmenting the DNA molecule to obtain
many short nucleotide sequences, followed by a heavy amplification of the same [77].
Once amplified, sequencing uses only a single strand of the short DNA sequences
and reconstructs the second strand using polymerase as in normal cells. This en-
zyme reconstructs the second strand of the DNA sequence that is to be read, using
specialized nucleotides with fluorescent markers. Once one of such nucleotides is
attached to the newly synthesizing DNA strand, a camera takes a picture and uses
wavelengths and intensity to determine which nucleotide was just sequenced. High
throughput is achieved by performing the sequencing reactions massively in parallel.
To identify nucleotides with high accuracy, the same piece of DNA is heavily ampli-
fied and then sequenced thousands of times [2]. The sequencing can be targeted to
regions of interest, such as exomes [78] (termed Whole Exome Sequencing (WES))
or specific genes.
The results from HTS are short reads (typically ∼ 150 nucleotides long) that have to
be mapped computationally to a reference genome (see Figure 3.1). While the reads
are relatively short, they are highly accurate (correct in ∼ 99.9% of the cases), making
the detection of point mutations (one changed nucleotide) very reliable.
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Figure 3.1: Types of genomic alterations/rearrangements detectable through HTS. Different
types of genomic changes can be detected from HTS. Point mutations show mul-
tiple reads with nucleotides being different compared to the reference genome.
Small insertions and deletions (indels) can be detected when multiple reads leave
out a part of the reference or have extra nucleotides added. Larger chromoso-
mal rearrangements, such as copy number changes can also be detected. Figure
adapted from [79].

3.2 mutation profiling

High throughput methods can be used to detect genomic alterations in tumor cells
and have become the state of the art in cancer genomics studies and clinical applica-
tions [28, 79]. Single Nucleotide Variants (SNVs) are derived from sequencing tumor
and normal samples in parallel to exclude germline mutations and other divergences
from the reference genome. The capacity to detect SNVs is highly dependent on
the sequencing depth, that is how many bases are sequenced compared to the num-
ber of bases in the starting material (∼ 3.2 billions for whole human genomes, ∼ 30
millions for human exomes). Mutations are then called by computational tools that
count the number of reads showing the alteration and compare it to sophisticated
background models [80, 81] (see Figure 3.1). The challenges in calling mutations in
cancer genomes are that usually samples are not pure (immune cells, blood vessels
and other cells are mixed with tumor cells) and that different subpopulations in a
tumor can be mutationally very heterogeneous [19, 82]. This leads to mutations oc-
curring at low frequencies despite their importance in tumor formation, requiring
greater sequencing depth to distinguish them from experimental noise.
Next-Generation Sequencing (NGS) can also be used to detect structural changes in
cancer genomes, such as copy number changes and small indels [83] (see Figure 3.1
for an overview of genomic changes detectable from NGS read data). Again, the chal-
lenge in reliably detecting copy number aberrations in cancer genomes is a statistical
one and is usually tackled with computational methods that decide whether the reads
provide enough information about structural changes or not [20, 83, 84]. Paired-end
reads help with the ability to detect structural variation in cancer genomes [82]. For
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a review of the applications of NGS methods to detect mutations and chromosomal
rearrangements, see Meyerson et al. [79].

3.3 methylation profiling

DNA methylation describes the addition of methyl groups to the DNA molecule. In
humans, DNA methylation occurs almost exclusively at CpG dinucleotides. DNA
methylation represents the most extensively studied epigenetic modification and has
been defined as a major hallmark of cancer [85]. As discussed in Section 2.1.2, the
DNA methylation landscape (the methylome) is controlled by proteins that read and
write methyl groups to the DNA. Somatic mutations in their genes (or regulatory
regions of them) can introduce aberrant methylomes in cancer cells.
The most common approach to measure DNA methylation is bisulfite treatment and
conversion. Upon treatment with bisulfite, unmethylated cytosines (C) are changed
to uracil during library preparation. Uracil (abbreviated U) is normally only present
in RNA molecules and is read as a thymine (T) during sequencing. After the bisulfite
treatment, NGS is performed and the read counts are used to compute the fraction
of cells in the sample in which the cytosine was methylated. The resulting average is
called β-value and ranges from 0% (the CpG site is methylated in none of the cells)
to 100% (the CpG site is always methylated). There are different experimental proto-
cols for measuring DNA methylation with specific advantages and drawbacks which
are reviewed in [86]. The most widely used platform that allows for a larger cohort
is the Illumina Infinium 450k Methylation array based on microarrays. It sequences
> 450, 000 targeted CpG sites in the genome that were chosen to either lie in pro-
moter regions, gene bodies, regulatory regions or additional regions that have been
reported to be differentially methylated in the past [87, 88]. Each experiment with
that platform will give β-values for the exact same bases in the genome, allowing
comparison between different samples. However, that approach only covers 1% of
CpG sites in the genome [86].

3.4 gene expression quantification

Another shortcut to finding mis-regulated genes and proteins in cancer — thereby by-
passing the complex mechanisms of gene regulation — is a readout of the numbers
of copies of a gene product (mRNA or protein). While the number of copies of a pro-
tein in a cell can be directly measured as well [89], this process is harder and usually
produces data for only some proteins [89]. However, the mRNA levels can be mea-
sured through NGS methods in a high-throughput manner, making this approach
widely used. The mRNA levels then serve as proximal measurements of protein ex-
pression, despite not acknowledging post-transcriptional regulation through various
mechanisms.
The number of copies of mRNA transcripts in a cell are measured using RNA se-
quencing (RNA-seq) [90]. This experimental protocol first extracts RNA in a cell and
fragments it. Then, the RNA is reverse-transcribed to complementary DNA (cDNA),
adaptors are added and the fragments are amplified and subsequently sequenced
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with NGS (typically Illumina protocols but other approaches exist [91]). The result-
ing reads are mapped to a reference genome (if available) and the read counts for a
transcript serve as a measure of mRNA abundance. Reads are typically further pro-
cessed to account for artifacts occurring during amplification or adapter ligation and
final read counts are often expressed as Fragments Per Kilobase Million (FPKM) to
normalize for read length and sequencing depth. For an overview of different proto-
cols for RNA-seq, see the recent review by Stark et al. [54].

3.5 protein-protein interactions

In Section 2.1.3, we saw that proteins interact with other proteins or molecules such
as DNA or RNA and even organize in pathways to perform their function in the cell.
These interactions make it harder to find putative cancer genes because changes in
many proteins of a complex or pathway can cause the phenotype, no matter which
protein is affected by the change. Measuring how proteins interact in a cell gives an
approximation of pathways and complexes that are related to a specific protein of
interest. Interactions between proteins are believed to be a transient and dynamic
process that changes with different needs of the cell and any experiment finding two
proteins interacting reports a snapshot of such a process. Therefore, experimentally
measured PPIs describe the possibility of two proteins interacting rather than an in-
teraction taking place in all cell types and at all times.
Experimental methods to find PPIs differ in two approaches. Binary methods like
Yeast Two-Hybrid (Y2H) directly measure the interaction partners of a protein of in-
terest [92]. In that system, the first protein (bait) is fused to the DNA binding domain
of the yeast TF Gal4 while a second protein (prey) is fused to the activation domain of
the same TF. When the reporter gene of Gal4 is subsequently expressed, the two pro-
teins interact. Conducting many of those experiments in parallel allows studying all
or most interaction partners of the protein of interest. In Y2H, only direct interactions
between two proteins of interest are measured and false positives are typically low.
However, the interactions are measured in a yeast host, thereby drastically changing
the environment.
Co-complex methods, on the other hand, like Tandem Purification coupled to Mass
Spectrometry (TAP-MS) or co-immunoprecipitation, attempt to measure all the in-
teractions between the bait protein and its interaction partners at once. In TAP-MS, a
tagged protein is isolated along with all of its interaction partners from a solution by
immunoprecipitation and the resulting protein mix is then divided into smaller pep-
tides and subjected to mass spectrometry analysis. Co-complex methods also mea-
sure indirect interactions that originate because protein A interacts with protein B
and B with C and will then report a false interaction between A and C [93].
Nowadays, databases hold PPIs for a large variety of proteins such that an entire net-
work for an organism can be constructed. Such PPI networks usually contain inter-
actions from different platforms and experiments and meta-databases unify several
resources to produce high-confidence interaction networks [94, 95].
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C O M P U TAT I O N A L B A C K G R O U N D

All models are wrong but some models are useful.

— George E. P. Box

In the previous chapters, we have seen that linking genotypic changes to cancer phe-
notypes is a great challenge. At the same time, intermediate measures of gene prod-
ucts or epigenetic marks can be obtained with modern sequencing technologies. In
order to detect cancer-associated genes without a complete understanding of genetic
regulation, we can use a computational approach that integrates different heteroge-
neous data sets to predict whether a gene is or is not associated with cancer pheno-
types.
In this chapter we will learn the computational prerequisites for EMOGI, an explain-
able multi-omics graph integration approach that uses such heterogeneous data types
to predict cancer-associated genes.

4.1 learning from data

ML describes a field of study operating at the intersection of computer science, statis-
tics, and engineering. Methods and algorithms assigned to the field of ML are able to
learn complex patterns from a given data set. “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P,
if its performance at tasks in T , as measured by P, improves with experience E.” [96]
The task T is highly problem-dependent and can vary a lot, depending on the appli-
cation. A valid task could be the recognition of human faces in images [97], directing
the motors of a robot such that the robot walks without falling down [98] or the
detection of cancer genes from molecular data sets. The experience E in modern data-
driven machine learning is usually represented by data points (or examples) in which
a data set X consists of individual data points xi. Data points are mostly represented
as vectors xi ∈ Rp where p denotes the number of features per data point. The terms
data points and feature vectors will be used interchangeably to denote xi throughout
this thesis. Mostly, learning algorithms have the entire data set X at their disposition
and designers of such algorithms can freely choose to learn from one example at a
time or from all at once.
The performance measure P describes a metric that defines how well the algorithm
is currently achieving its goal and when it should stop learning. The performance
measure is usually defined by the learning problem [99]. In the case of a robot that
is learning how to walk, performance could be described by the distance without
falling. In case of image recognition, on the other hand, performance might be ac-
cessed through expert-curated data where the algorithm’s prediction is compared to
a label that was assigned by an expert to each image (a process called labeling). Most
often, a performance measure P can be derived more easily when many labeled data
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points are available. In computational biology, however, the performance measure is
often not an obvious choice because the goal is to generate knowledge which is only
useful when the domain of the application is not very well understood. In addition,
labels are often hard to come by in the field [100]. In some cases, experimental vali-
dation on a large scale can provide labels [101–103] but such studies are not always
available and often, the validations have to be done under slightly different condi-
tions than the application (use of cell lines instead of human tissues for knockdown
experiments, for instance).
Different learning algorithms have been developed for various types of applications.

Supervised Learning Unsupervised Learning

(a) (b)

Figure 4.1: Supervised & unsupervised learning. a In supervised learning, the learning al-
gorithm is provided not only with data points xi but also with labels yi that make
the learning easier. The labels take three different labels for three distinct classes in
this example. b For unsupervised learning, only the data points xi are given and
the algorithm has to distinguish the classes without any labels. In the example, a
distance metric (like the Euclidean distance) can be used to distinguish between
points that are close to each other and more distal points (the process is known as
clustering).

They can mostly be distinguished into supervised and unsupervised methods, de-
picted in Figure 4.1. Supervised methods are the focus of this thesis, although un-
supervised machine learning methods are used in Section 7.2. Supervised ML algo-
rithms use, in addition to the data points xi, a provided label (or target) yi, which
carries information on the true prediction outcome of a data point. This can be a class
label (an image contains a human face or not), a continuous value (the predicted ex-
pression level of a gene) or even a vector of values. Hence, supervised learning algo-
rithms learn a mapping from x to y, using the data set D = {(xi,yi}Ni=1. In supervised
learning tasks, the performance measure can easily be defined as the divergence of
the algorithms prediction ŷi from the true label yi.
Unsupervised methods, on the other hand, lack the label and therefore have to find
structure in the data itself. An example of unsupervised learning is clustering, where
the goal is to find groups of similar data points in an automated fashion, for instance
correctly inferring three groups of data points in Figure 4.1 b. Unsupervised learning
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is thought to be inherently harder and often require more assumptions about the
underlying data generation process [104].

(a) (b)

RegressionClassification

Figure 4.2: Classification and regression. The different problems of classification and regres-
sion are depicted in two panels. a In classification, the goal is to distinguish classes
of points. In a binary classification setting, a hyperplane (a line in 2D and gener-
ally a p− 1-dimensional plane in a p-dimensional problem) serves as the decision
boundary between the two classes (depicted as black line). b In regression, the
goal is to find a function that minimizes the distances of blue points to the line
(distances are depicted as black lines for some points). Here, the data is assumed
to lie on a line with some added error (the problem is said to be linear).

Supervised learning problems can be further divided into classification and regres-
sion problems. In classification, the target value yi denotes a class label and there is
a discrete number of classes. The simplest setting, called binary classification, distin-
guishes between two classes of data points. The concept of regression, on the other
hand, describes the problem of predicting continuous values. Predicting the future
value of a stock or the expression level of a gene are examples of regression problems.
Figure 4.2 depicts the conceptual difference between classification and regression.
While the former requires finding a decision boundary that separates the classes, the
latter has to fit a function through the data points in order to make predictions for
new data.

4.1.1 Linear & Logistic Regression

The two concepts of classification and regression are closely related in the setting of
linear regression and logistic regression. Linear regression describes an algorithm for
fitting a line through data points such that the line is most probably the one that
generated the data. The optimal solution for a one-dimensional case is depicted in
Figure 4.2b. The x-axis shows the feature x1 of the problem, while the y-axis shows
the output y. To find a linear mapping between feature and output, linear regression
attempts to find a line that minimizes the distance of each data point to the line.
The assumption behind linear regression is that the data was generated by a linear
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process where y = ax+b with some error e. The error e is denoted by the black lines
in Figure 4.2b and minimizing e corresponds to an optimal line that models the data
generation process.
Logistic regression, on the other hand, describes a classification method, despite its
name. It uses the general idea of a linear regression and embeds it into a binary
classification scenario. Here, the response variable y is a class variable, encoding the
membership of data points to either class 0 (orange) or class 1 (blue).

w

(a)
w

y

(b)

Figure 4.3: Logistic regression classifies by projecting the data on a weight vector w and
then applying a logistic function. a The binary classification problem from Fig-
ure 4.2b is depicted again. The weight vector w is learned during the training
process. All data points are projected onto w. b The data points projected on w
are depicted on the x-axis while the class labels y (0 and 1, encoded by blue and
orange points) are depicted on the y-axis. A logistic function is applied to the pro-
jected points to assign probabilities to the data points. Dashed lines indicate the
decision boundary between the classes.

Fitting a linear regression through the data points similar to Figure 4.2a, however,
is not ideal because of a linear increase of certainty that the point belongs to class
1 (the y-axis in Figure 4.3a) and no meaningful range of the output data. Ideally, a
classification method should output a probability that a point belongs to class 1 (the
orange points) and this probability should not increase linearly because the region
around the orange points should be assigned a probability close to 1. Only the region
close to the decision boundary should be ambiguous. Therefore, logistic regression
replaces the linear function f(x) = ax + b with the logistic function φ(x) = ex

1+ex ,
giving the logistic regression its name. The successful fitting of a logistic function
onto the one-dimensional data from before is depicted in Figure 4.3b. It assigns high
probabilities to the orange points and low probabilities to the blue ones. In between
there is a steep decrease in probability, such that the assigned probabilities around
the decision boundary vary a lot but stay stable in the well-defined regions.
Training a logistic regression model — and in fact, training most linear models — cor-
responds to finding a weight vector w that projects the data to a lower-dimensional
subspace (the two-dimensional problem from Figure 4.3a is projected on a one-dimensional
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weight vector in Figure 4.3b). The projection of x onto w makes it possible to find a
simple decision boundary (dashed lines in Figure 4.3) that indicates a switch between
the two classes.
Unfortunately, there exists no closed-form solution to find the optimal parameters
of a logistic regression problem. Therefore, optimization is mostly done through
maximum-likelihood estimation. This procedure tries to find the parameters w of
a model such that the probability of observing the real data is maximized. For a
logistic regression problem, the maximum-likelihood estimate can be written as:

L(w) =

N1∏
i=1

Pr(xi,w)
N2∏
i=1

(
1− Pr(xi,w)

)
(4.1)

where Pr(xi,w) = φ(wTx) = ew
Tx

1+ew
Tx

and N1 denotes the number of data points for
class 0 while N2 denotes the number of data points for class 1. When we now com-
pute the log-likelihood (products are transformed to summations in the logarithm,
making calculations easier and alleviating numerical issues), we obtain:

log(L) =
N1∑
i=1

wTxi −

N1∑
i=1

log
(
1+ ew

Txi
)
−

N2∑
i=1

log
(
1+ ew

Txi
)

=

N∑
i=1

yiw
Txi −

N∑
i=1

log
(
1+ ew

Txi
)

In theory, setting the derivative of L to 0 will denote extreme points in the maximum-
likelihood estimation that denote optimal weights w. Due to the non-linear function
and the exponential, however, it is hard to obtain an analytical solution. Therefore,
gradient ascent is typically used to compute optimal weights iteratively by moving
in the direction of the gradient.

4.1.2 Gradient Ascent & Gradient Descent

Gradient descent and ascent are popular iterative optimization algorithms. Gradient
descent finds extreme points of a function when the function is partly unknown but
differentiable.
Gradient descent operates by starting with an initial random guess of the parameters
w and computing the gradient of the function at that initial point. It then updates w
by taking a step into the direction of the steepest descent or ascent as indicated by
the gradient. This procedure is repeated until some criterion of convergence is met.
For the logistic regression, the gradient can be computed as:

∇L =

N∑
i=1

(
yixi −

ew
Txixi

1+ ew
Txi

)
(4.2)

=

N∑
i=1

(yixi − Pr(xi,w)xi) (4.3)

=

N∑
i=1

xi
(
yi − Pr(xi,w)

)
(4.4)
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Fi�ing a non-linear
function

Ensemble Learning Kernel Methods

φ(x1, x2) = x1
2, x2

2

Figure 4.4: Different approaches for non-linear problems. The most straightforward solu-
tion to deal with non-linear classification problems is to explicitly model a non-
linear function. Ensemble methods fit several weak classifiers (typically linear
ones) that each solve a part of the problem. Together, the weak classifiers can
model the problem as a whole. Finally, data transformations make the data linear
prior to using a classification algorithm. Most often, data points are mapped to
very high-dimensional spaces to ensure linear separability.

The gradient descent algorithm now proceeds by updating w according to:

w = w− η∇L (4.5)

until convergence. Gradient ascent replaces the minus sign with a plus sign to move
into the direction of the steepest ascent. This process is not guaranteed to yield an
optimal solution for arbitrary functions because the optimization can get caught in
local extrema. Many different variants of the gradient descent algorithm have been
developed, summarized in [105] with some variants converging faster or being able
to overcome small local extrema. For some functions, such as the loss function from
logistic regression, however, the results from gradient ascent are optimal and unique
[106] but even when this is not the case, results from gradient ascent or descent are
very useful in practice [99].

4.1.3 Non-Linear Problems

Many patterns in real-world data do not exhibit linear relationships. Especially in
highly complex systems such as cells, assuming linearity might not be justified [100].
Different strategies have been developed for such scenarios (depicted in Figure 4.4).
The most straightforward idea is to fit another function, that is not a line, to the data
(a circle or ellipsoid for the setting in Figure 4.4). This strategy is used by several
algorithms [107, 108] but can have several drawbacks and often requires knowledge
of the data. Most high-dimensional data sets cannot be visualized easily, leaving the
choice of function classes open. Furthermore, the number of parameters to learn per
dimension can increase substantially, for instance when using polynomials. This in
turn can lead to problems like overfitting which will be discussed in Section 4.2.
Another approach for modeling non-linear problems is to use multiple linear classi-
fiers and take a consensus vote of the individual classifiers in the end [109, 110]. This
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approach, termed ensemble learning, works very well in practice in domains where
the amount of data is limited because each “weak” classifier focuses on a part of the
problem [108].
A third common strategy is to transform the data such that the problem becomes lin-
ear [111]. This strategy to handle non-linearity in data sets is most exhaustively used
by kernel methods [112–114]. Instead of solving the classification problem in the orig-
inal space, they employ a transformation step to the data, trying to linearize it. After
the transformation step, the classification problem can be solved by a linear classifier.
While the choice of the transformation function is crucial but not straightforward, the
transformation often produces extremely high-dimensional spaces where linearity is
either guaranteed or very likely [111]. At the same time, the data transformation can
be achieved without ever computing the high-dimensional feature space through a
mathematical reformulation termed kernel trick. Kernel methods were applied very
successfully in various machine learning problems [106].
Each of the strategies has its advantages and disadvantages. To model a problem in
the original feature space, we had to fit more complex functions but such methods
are highly explainable (we can see what they learn and why predictions are made).
However, most data sets cannot be investigated visually, and therefore, an appropri-
ate function class is hard to find. At the same time, their increased flexibility requires
more weights to be trained. In addition, polynomial regression models are very sen-
sitive to outliers, reducing their capacity to generalize the model to unseen data.
Ensemble methods, on the other hand, often perform very well but when the deci-
sion boundary is highly complex, many weak classifiers are required to successfully
model the problem. Therefore, they are often harder to apply in practice [106, 108].
The third option, which is based on data transformation, relies on manually designed
kernel functions to simplify the problem. Furthermore, kernel methods need to store
the entire kernel matrix ∈ RN×N in memory, which does not scale well when they
are confronted with millions or billions of data points [99].

4.2 evaluating machine-learning models

The goal of ML models is to be able to extract meaningful patterns from a data set
in order to make predictions. The construction of a model usually involves a training
(or fitting) phase after which the model can make new predictions, such as predicting
expression levels of genes or human faces in images. Ideally, one would like to know
how well a model performs when it is confronted with new data points that are
similar to the training data. To do so, one can measure how accurately the training
data points were predicted after the training phase. However, a simple algorithm
that constructs a lookup table from the data would perform perfectly but still fail
with high probability in a real-world scenario.
To access the model’s performance on future data, the available data set is usually
split into a training and test set. The test set can be used after the training phase to
assess the model performance on unseen data and hence acts as an estimate of what
results can be expected from the ML model in practice.
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Figure 4.5: Bias-variance tradeoff as a function of model complexity. More complex models
(those with more free parameters to optimize) tend to overfit the data (displayed in
the upper right corner on a binary classification data set) while simpler models are
unable to adequately model the generative process. To obtain machine learning
models that work well on unseen data, a compromise between overfitting and
underfitting is sought. The concepts of overfitting and underfitting are directly
related to bias and variance.

4.2.1 Bias-Variance Tradeoff

Both, training and test error (the number of incorrectly classified data points in the
respective data sets), have their own characteristics with regard to the complexity of
the used machine-learning model. The complexity of a model is given by the number
of parameters that are optimized during training. Highly complex models with many
parameters are prone to overfitting. That means, they overestimate the data genera-
tion process and start to model outliers extensively. Very simple models, on the other
hand, tend to underestimate the data generation process because they do not have
the capacity to model the problem correctly. As depicted in Figure 4.5, a linear model
is unable to properly classify the data due to the constraints in the underlying class of
functions (a line) while a very complex model fits outliers, leading to a very “wiggly”
decision surface.
The expected error on unseen data can be formally written and decomposed into
bias and variance (see Section A.1 for a derivation of the bias-variance decomposi-
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tion). The bias measures how well the learning algorithm captures the relations in
the data while variance describes how extensively the model captures noise in the
data. Ideally, ML models generalizing well to unseen data would have minimal bias
and variance. Both, bias and variance, are directly related to the model complexity as
depicted in Figure 4.5 but also to the amount of training data. The more data points
available the more complex models can be trained without the risk of overfitting.
Models with minimal bias and variance are believed to be impossible and a com-
promise must be found [99, 106]. Finding the optimal balance between the two is
usually done by observing the training and test error as a function of model complex-
ity. When using iterative training procedures as gradient descent (described in the
previous section), the training time is often used as a proximal measure of complex-
ity and training is stopped when the test error starts rising again.
In situations where the amount of training data is scarce, model performance can of-
ten be increased by using domain knowledge. That is, by making assumptions about
the data that are true in practice and that lead to fewer weights in the model. Sec-
tion 4.4 introduces convolutions as an example of a method to encode basic assump-
tions about images into models, thereby reducing the complexity and ultimately the
number of parameters to train by orders of magnitude.

4.2.2 Performance Metrics

An ideal machine learning model generalizes well to unseen data. That capacity is
measured on a test set of data which was not shown to the model during training.
The metrics, used to finally evaluate machine learning models, differ between prob-
lems. To see if model training converges (for iterative training procedures), the loss
is often assessed. The loss describes the quantity optimized by the training algorithm.
When the loss of a model starts to increase on the test set while still decreasing on
the training set, overfitting occurs. The most widely used metric for multi-class prob-
lems (more than two classes) is accuracy. This metric simply counts the fraction of
correctly predicted data points and is often more meaningful than the loss of the
model. In a binary classification setting, accuracy requires the choice of a threshold
when the model’s output are probabilities to assign a class to a data point. Most ML
models output a probability score for each class and data point. Hence, the choice of a
cutoff or threshold is required to assess accuracy in such cases. To alleviate problems
with thresholding, area under the curve (AUC) metrics are widely used in binary
classification settings. Here, different types of errors are used as a function of the
threshold, and the integral under the resulting curve serves as a performance indica-
tor. The precision-recall curve is the most popular performance measure for binary
problems. It depicts recall (how many of the positive data points were found) on the
x-axis and precision (how many of these predictions are correct) on the y-axis for all
possible thresholds of the model (most often 0 to 1) and measures the integral under
the resulting curve. Such a metric is well suited for problems with class imbalance
(one class has more data points than the other) where other metrics often fail.
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4.2.3 Cross-Validation

Complex algorithms have many additional parameters that influence their perfor-
mance in practice like regularization, convergence parameters and model complexity
parameters. Such additional parameters which are not optimized during the train-
ing process are called hyper-parameters. Choosing them adequately is often not
trivial, yet their optimal values highly depend on the data set used. To tune the
hyper-parameters of a machine learning method, the training set is further split into
a training and validation set, reducing the amount of data left for training once more.
Cross-Validation (CV) refers to the process of iteratively training models on parts
of the data while dynamically changing the validation set. In 10-fold CV 9

10 of the
training data is used to train a configuration (specific setting of hyper-parameters) of
the model while the 10

th part is used for validation. Subsequently, nine additional
models are trained, each using the next 10

th of the training set as validation set. Per-
formance of the 10 models is averaged to assess the quality of the configuration. This
way, the validation set can be used in parts for training. CV exchanges computational
time for more usable training data.

4.3 neural networks

An Artificial Neural Network (ANN) is a non-linear, supervised machine learning
method that can be used for regression and classification. It can be understood as
a hierarchical ensemble of logistic regression classifiers that are trained together. To
simplify and visualize an ANN individual classifiers (or units) are thought of as a
node in a network. Figure 4.7 depicts such a visualization along with the formula for
the classifier. The framework for neural networks is very general and has inspired
many different algorithms and variants [99].
Typically, ANNs are organized in hierarchical layers. Layer l receives input from the
previous layer l− 1 and the first layer receives a data point as input as depicted in
Figure 4.8. Conversely, the last layer produces an output for the data point (a vector
of class probabilities in classification problems or a vector of real values for regression
problems). Each layer is an ensemble of individual classifiers (called units or neurons)
and traditionally logistic regressions are used as units.
Intuitively, neural networks adopt to non-linear data by combining two of the ideas
from Section 4.1.3 and Figure 4.4. On the one hand, each of the layers corresponds
to an ensemble classifier that constructs several decision boundaries on the data set.
On the other hand, each layer transforms its input data in a way that facilitates the
overall learning problem. Figure 4.6 visualizes how ANNs solve a non-linear problem
by transforming the data until the problem becomes linear. By using the output from
the first ensemble learner (two logistic regression classifiers on the left), the non-
linear xor-problem becomes suddenly linear because the orange points are linearly
separable on the right.
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Figure 4.6: How neural networks combine ensemble learning and data transformations to
solve non-linear problems. The results of two weak learners on the left are de-
picted in the middle. They transform the data until the problem becomes linear. A
third weak learner (depicted on the right) then separates orange and blue points.

4.3.1 Multiple Layers of Transformations

As presented in Section 4.1.1, a logistic regression transforms data points by project-
ing them on a weight vector w and then applying a logistic function to the projection.
This process is again depicted as in Figure 4.7 in a compact graphical notation along
with the mathematical formulation from Section 4.1.1. Such a compact representation
helps to visualize ANNs that wire multiple logistic regression units together. Multi-
ple units that receive the same input but learn individual weight vectors are called
layers. A layer of a neural network mathematically corresponds to the multiplication
of a weight matrix W with the data point x or even the whole data set X. This leads
to the layer-wise propagation rule:

H(l+1) = φ
(
W(l)H(l)

)
(4.6)

where H(0) = X. The number of columns of W(l) corresponds to the number of units
for that layer, and the number of rows corresponds to the dimensions of X (or the
input to layer l for that matter).
Multiple layers can be stacked on top of each other by using the output of layer l —

y = φ
( p∑
i=1

wixi
)

= φ
(
wTx

)
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Figure 4.7: Formula and graphical representation of an ANN unit. A unit in an ANN re-
ceives an input vector (x), projects it on the weight vector w, and then applies a
non-linear function on the projection. The left depicts the formula, corresponding
to the graphical representation on the right.
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denoted H(l) — as input to layer l+ 1. Figure 4.8 depicts such a neural network with
different unit sizes in more detail. Layers that are neither input nor output layers are
referred to as hidden layers (marked in green and red). Their role is to consecutively
transform the data such that it becomes linear at the output layer.
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Figure 4.8: A complete neural network composed of two hidden layers with 3 and 4 units
each. The input vector x ∈ Rp is “clamped” to the input units. It then flows
through three layers of transformations until reaching the output layer (in blue).
The depicted ANN transforms x to a two-dimensional output vector. The weights
can be summarized as a weight matrix W(l). At each unit a denotes the projection
wTx and h = φ(a) corresponds to the unit’s output.

The activation function φ of an ANN does not have to be a logistic function and
does not have to be the same across all layers. In fact, logistic functions are not very
well suited for deep neural networks (those with multiple hidden layers) because they
saturate at 1 [115]. The most widely used activation function is the rectified linear
unit (ReLU) function [99, 116, 117], depicted in Figure 4.9 alongside other popular
activation functions. Importantly, the activation functions are the only introduction of
non-linearity into the data. Without them the whole formulation of a neural network
collapses to recurrent applications of weight matrices (and therefore linear functions).
This could be written as only one linear transformation, yielding a simple ensemble
classifier without hierarchical structure.
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Figure 4.9: Popular choices for activation functions. The ReLU function is the currently most
widely used activation function. The non-linearity at 0 is explicitly treated in im-
plementations and set to zero. The sigmoidal activation function is often used for
the output layer in binary classification. The hyperbolic tangent function (tanh) is
similar to the sigmoidal function but sometimes faster to evaluate.

Similar to most machine learning models, neural networks are trained through the
optimization of a performance measure P as defined in Section 4.1. In the context
of deep learning, the performance measure is most often called loss function with
popular choices for the loss function being the mean-squared error (MSE) or the
cross-entropy function [99] given by:

L = −

C∑
c=1

yc log(ŷc) (4.7)

Training refers to the process of starting with a random initial guess for the weights
and iteratively minimizing the loss function through gradient descent, similar to the
procedure for training a logistic regression classifier in Section 4.1.1. For that, ANNs
have to be fully differentiable, limiting the choice of activation functions. For a single
logistic regression training is relatively simple. For an entire network of such clas-
sification units, a key question is how the loss L can be used to compute partial
derivatives of all the weights in order for the Gradient Descent (GD) algorithm to
work. The answer is an algorithm called backpropagation. This algorithm is used
to train most neural networks (including those discussed throughout the thesis but
also most unsupervised variants such as generative adversarial networks, variational
autoencoders, transformer models and other state-of-the-art neural networks). It is
highly efficient and explained in more detail in the next section.

4.3.2 The Backpropagation Algorithm

Neural networks are almost exclusively trained with a form of the GD algorithm. It
regards the network as a function f(x;Θ) that is differentiable and is parametrized by
Θ = {W(1),W(2), . . .W(l)}. As seen in Section 4.1.2, GD minimizes the loss function
in an iterative manner. For that, it requires the partial derivatives of the loss with
respect to the model parameters (see Equation 4.5).
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The backpropagation algorithm computes the partial derivatives of the loss function
with respect to the individual weights in a neural network denoted by:

∂L

∂w
(l)
ij

in an efficient manner. It makes use of the chain rule of calculus, thereby distributing
the gradient from the output layer to the last hidden layer and from there further
down the hierarchy. Let y = g(x) and z = f(y) = f(g(x)). Then the chain rule states
that:

∂z

∂x
=
∂z

∂y

∂y

∂x
(4.8)

The calculations of the neural network from Figure 4.8 can be written by using the
layer-wise propagation rule from Equation 4.6 as:

ŷ = φ
(
W(3)φ

(
W(2)φ(W(1)X)

))
(4.9)

which is a nested application of functions.
The key idea in backpropagation is to compute the derivatives starting from the last
layer and to express them in terms of derivatives that were already computed in a
higher layer by using the chain rule.
In more detail, backpropagation starts by computing the derivative of the loss func-
tion with respect to the input for every unit in the network. Those derivatives, de-
noted δ, can be expressed solely in terms of the above layers when using the chain
rule. Therefore they can be computed in a reversed layer-wise manner starting from
the output and going back to the input layer.
The derivative of the loss L for a unit i in layer l with respect to its input can be
regarded as the amount of error that the unit contributes to the overall loss. It can be
formulated as:

δ
(l)
i =

∂L

∂a
(l)
i

=
∂h

(l)
i

∂a
(l)
i

∂L

∂h
(l)
i

= φ ′(a
(l)
i )

|l|∑
j=1

w
(l+1)
ji δ

(l+1)
j (4.10)

where a = wTx denotes the projection of x on w, h = φ(a) the output of a unit
and φ ′ corresponds to the first-order derivative of the activation function φ. From
Equation 4.10 it becomes immediately clear that the activation function φ needs to be
fully differentiable. The derivative of the loss with respect to the output of the ANN
depends on the choice of the loss function, for instance φ ′(yi − ŷi) for the mean-
squared error loss function where ŷi = f(xi) denotes the network output for data
point xi.
Once all δ values are computed in the network, the partial derivative of the loss with
respect to a weight can be written as:

∂L

w
(l)
ij

= h
(l−1)
i δ

(l)
j . (4.11)

We have now seen how the partial derivatives of the loss with respect to each of the
weights can be computed efficiently. It requires additional storage for the δ values at
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each unit but involves only pointwise products and can therefore execute very well
on SIMD architectures, such as Graphics Processing Units (GPUs) or Tensor Pro-
cessing Units (TPUs). The derivatives for the activation functions are usually simple
and require linear computation time.
Backpropagation works very well in practice and can be scaled up to millions or bil-
lions of data points, only increasing training time but not memory requirements. This
is a fundamental difference to other popular non-linear machine learning algorithms,
such as kernel machines. It is believed to be the main reason why deep neural net-
works have shown great success in modern large-scale learning problems [99, 118].

4.4 convolutional architectures

A major drawback of the standard fully connected ANN presented so far is the high
number of parameters that have to be learned when the input is high-dimensional (p
is large). In such a scenario, the first layer contains at least p weights even when only
using one unit in the first hidden layer. This behavior is often unacceptable because it
yields a highly complex model with the associated disadvantages, such as overfitting
(see Section 4.2.1). Especially when working with images which are inherently high-
dimensional (the number of pixels), fully connected neural networks are unsuited.
As introduced in Section 4.2, a common strategy in such cases is the incorporation
of domain knowledge into the machine learning task to reduce the variance of the
model. The edges and their weights in an ANN can be wired arbitrarily, allowing for
very flexible connection patterns across layers.
In the case of images, patterns can be located in any area of the image and are usually
only spanning across parts of the image. Therefore, the local neighborhood of a pixel
is more informative for characterizing patterns than distantly located pixels.
These properties can be incorporated in a neural network by constructing units that
act as feature detectors. By using the same few weights at many locations of the image,
genomic sequence, or audio sample the unit has to find a pattern in the data rather
than partitioning the entire data space. In this process, referred to as weight-sharing,
a unit that slides over the input data point corresponds to a local feature detector
and its activation peaks when the pattern of interest is found in the data. This corre-
sponds to a common pre-processing strategy for image data that was used before the
era of deep learning, where Sobel-Feldman filters [119] or other hand-crafted feature
detectors were used to find interesting patterns in the images. The location and in-
tensity of the detected features were used as input for a machine learning algorithm
[99, 120].
The sliding window approach can be mathematically written as a convolution opera-
tion widely used in image or speech processing.

4.4.1 Convolutions & The Convolution Theorem

The convolution operation is applied widely in the natural sciences but has gained
a slightly different meaning in machine learning than in other domains [99]. In ma-
chine learning a convolution applies a small discrete function w to a larger series of
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measurements x. w is often referred to as the kernel, x is the input and the result of
the convolution operation is denoted as the feature map. Typically, the kernel func-
tion is represented as a matrix and the entries in w are learned via backpropagation
while x denotes a data point.
The one-dimensional convolution operation can be written as:

c(i) = (x ∗w)(i) =
k∑
j

x(i)w(i− j) (4.12)

but can be extended to sliding over two dimensions simultaneously for the use of
images or three dimensions for applications to video and other temporal data.
The convolution operation is characterized by the size of the kernel k. Figure 4.10

depicts a one-dimensional convolution operation and the corresponding architecture
of a neural network. Interestingly, convolutions are pointwise products of input and

x2 x3 x4 x5 x6 x7 x8x1 x9

a1 a2 a3 a4 a5 a6 a7H=ϕ( )
ah ah ah ah ah ah ah

x2 x3 x4 x5 x6 x7 x8x1 x9
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Figure 4.10: Example of 1D-convolution between a 9-dimensional input vector and a 3-
dimensional kernel. The input vector x ∈ R9 is convoluted with a kernelw ∈ R3.
Left: The sliding window approach uses the same weights for the whole sequence
x and forms an activation vector a that indicates “hits” of the pattern charac-
terized by w. Right: The same convolution operation as a neural network with
sparse connections and weight-sharing. The edge color indicates the weight.

kernel matrices in the frequency space. The frequency space is a common represen-
tation of high-dimensional data (typically images or audio) as a set of frequencies. It
is computed through the well-known Fourier transform. Without going further into
details of the Fourier transform, the convolution theorem states that the convolution
depicted in Figure 4.10 can be written as a pointwise multiplication in the frequency
space. Let F(x) denote the Fourier transform. Then the convolution theorem states
that:

(x ∗w) = F−1
(
F(x) ·F(w)

)
(4.13)

For neural networks, this theorem not only has runtime advantages when chaining
multiple convolution operations (through first transforming x to the frequency do-
main, applying multiple convolution operations and then re-transforming x to the
original domain) but can also help to extent convolutional architectures to domains
where Fourier transforms are defined but the convolution operation is not. An exam-
ple of such a domain are graphs which have no natural definition of a sliding-window
operator but a definition of a convolution operator, introduced in Section 4.5.2.
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4.4.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) uses hierarchies of convolutional layers
[120]. The convolution operation is implemented through the construction of a weight
matrix with the same values repeated in a specific order (called Toeplitz matrix)
which is multiplied by the input. It is then followed by a pooling operation where
the result of the convolution is shortened. Max-pooling, for instance, simply takes the
maximum value of 2 or 4 adjacent values and discards the others. Pooling helps to
shrink the size of the convolution results, thereby reducing the size of the layer out-
put compared to the input. The ensemble of convolution and pooling characterizes a
convolutional layer. Typically, several convolutional layers are followed by a variable
number of fully connected layers introduced in the previous section.
With the consecutive stacking of convolutional layers, a CNN introduces another bias
to the model. It not only assumes that the location of a pattern is less important (trans-
lation equivariance) but also that patterns are organized hierarchically. A human face,
for example, is made up of eyes and a mouth, which in turn have several character-
istics and are composed of simple edges and strokes in the image. CNNs have been
successfully used for image modeling tasks [97, 121] and have by now become the
de facto standard for image recognition problems [118]. Indeed, several studies have
found that the human brain processes images in a similar hierarchical fashion [118,
122, 123].
The huge success of CNNs raises the question if convolutional architectures can be
applied to other domains where the input does not correspond to linear sequences
or regularly arranged pixels. Biological networks, for instance, are presumably orga-
nized in modules that in turn consist of sub-modules and ultimately protein com-
plexes. However, how to define a convolution on a graph is not clear. The degree of
nodes (the number of nodes a node is connected with) differs substantially between
proteins [124–126]. In addition, there is no natural order of neighbors of a node [127,
128] so nodes cannot be treated as a sequence.

4.5 graph deep learning

Before going into the generalization of convolutions to graphs, we need basic knowl-
edge about graph theory. We will see how to formalize a graph as sets of nodes and
edges and how random walks provide a stochastic framework to examine neighbor-
hoods of nodes. From there, we will define convolutions on graphs and see how we
can simplify them to work in the deep neural network framework.

4.5.1 Graph Theory

Graphs are one of the most fundamental data structures in computer science and the
core of many real-world applications [129].
We define a graph G = (V ,E) as a pair of vertices (V) and edges (E). An edge connects
two vertices i and j can optionally have a weight wij ∈ R attached to it. Edges can be
directed or undirected. Vertices are also called nodes and throughout the thesis those
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two will be used interchangeably. A node i can be associated with attributes in the
form of a vector xi ∈ Rp.
Mathematically graphs are often represented by their adjacency matrix A ∈ (0, 1)N×N.
An entry in Aij = 1 means that nodes i and j are connected while a 0 represents
no connections. If the edges in G are undirected A will be symmetric. If the edges
are weighted, A contains the weight instead of the boolean indicators for connections.
The degree of a node denotes the number of connections that the node has with other
nodes. The degree matrix D = diag(

∑
jAij) contains the degree of each node on the

diagonal while all other entries are 0. Apart from the degree, many more metrics exist
to describe the position of a node inside the network. Many of them were originally
defined for social networks but are applied in different life sciences as well. Between-
ness centrality of a node i denotes the number of shortest paths in the graph that pass i
[130]. The core (sometimes referred to as k-shell) is another measure of centrality and
is determined iteratively by removing isolated nodes from the network. The longer a
node “survives” those iterations, the more central it is in the network and the higher
is its core [131].
In many real-world cases nodes have certain properties that describe them. For in-
stance, a social network, where people are represented by nodes, might contain other
characteristics of the individuals as vectors. Such a vector, in which each dimension
represents a node of the graph, is referred to as a signal x ∈ RN on the graph and
the field of Graph Signal Processing (GSP) is concerned with analyzing the node
features with respect to the graph. Multiplying the adjacency matrix A and the sig-
nal x, for instance, smooths the signal over the graph by aggregating the signal from
neighboring nodes.

Spectral Graph Theory

Similar to the adjacency matrix, the laplacian matrix L of a graph is defined as:

L = I−D− 1
2AD− 1

2 . (4.14)

The graph laplacian is a symmetric matrix when the graph is undirected. Therefore,
it has real-valued non-negative eigenvalues. When taking the intuition of a random
walker from above the eigenvectors of the graph laplacian denote those configura-
tions where making a step would change the distribution of the walker only by a
constant. In other words, the signal received by a node is equivalent to the signal
of the node itself. The graph laplacian deducts the incoming signal (the off-diagonal
entries contain negative values) while scaling the node signal by the degree. Hence,
the eigenvectors of the graph laplacian denote frequencies of the graph.
Formally, the eigenvectors associated with the eigenvalues form an orthonormal ba-
sis and the eigenvalues are nonnegative real values. The eigenvalues of the laplacian
have several interesting properties. For instance, the smallest eigenvalue is 0 when
the graph is connected. If not, it denotes the number of components in the graph.
The second-smallest eigenvalue solves the minimization problem

λ2 = min
x

xTLx

xTx
=

∑
(i,j)∈E

(
xi − xj

)2
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Figure 4.11: Different eigenvectors on the Minnesota road graph. The GFT produces eigen-
vectors sorted by their corresponding eigenvalues. The first eigenvectors capture
low frequencies and smooth patterns in a graph signal. The later eigenvalues
capture higher frequencies, analogous to the classical Fourier transform [138].

for the eigenvector x and its corresponding eigenvalue λ2. This yields a partition of
the graph in two subgraphs and therefore describes the lowest frequency of G. In
a similar fashion, the larger eigenvectors describe higher frequencies in G. This is
visualized on the Minnesota road network graph where edges in the graph are roads
connecting landmarks in Figure 4.11.
We have now seen how solving the eigen-decomposition of G produces a basis of
frequencies of the graph G. This decomposition is called the graph Fourier transform
(GFT) and works analogous to the discrete Fourier transform.

4.5.2 Convolutions on Graphs

Since the successes of CNNs on image processing problems, efforts have been made
to generalize them to non-regular grids, such as graphs [128, 132–137]. An image can
be regarded as a graph where each pixel corresponds to a node and edges denote
adjacent pixels. A biological network, however, does not have such a regular pattern
of connectivity, making it hard to formulate a convolution operator over such a graph.
Two main assumptions make CNNs so successful on many machine learning prob-
lems: First, transitional equivariance means that the exact location of a pattern in the
data is not important but the detection of the pattern is and second, local support
means that the detector of the pattern is much smaller than the input dimensions.
Together, those two assumptions allow for weight-sharing and make the number of
parameters to train independent of the dimensionality of the input [139]. To extend
convolutions to graphs, one has to construct an operator that preserves those assump-
tions.
Graph convolutions can generally be divided in spatial or spectral approaches. The
former tries to find a way to construct local neighborhoods of a graph, transform
them into matrices and then apply convolutions and pooling similar to standard
CNN architectures [127]. The latter makes use of spectral graph theory and the con-
volution theorem to formulate a convolution operation on graphs.
In Section 4.4.1 we learned how a convolution becomes a pointwise product in the
Fourier space of a function. This is possible because convolutions are linear operators
that diagonalize in the Fourier domain [132]. As introduced in the previous section,
the eigenvectors of the graph laplacian L (4.14) form a Fourier basis and the GFT
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therefore corresponds to an eigen-decomposition of L that transforms the graph to a
frequency domain over the nodes [140]. The GFT is defined as:

L = UΛUT (4.15)

where U is the matrix of eigenvectors and Λ the diagonal matrix with the correspond-
ing eigenvalues. Equation 4.15 can be solved using eigen-decomposition or Singular
Value Decomposition (SVD). Let x ∈ RN be a signal on a graph G, corresponding
to a scalar value per node. x can be convoluted with a filter w ∈ RN in the frequency
domain of the graph by:

x ∗w = U
(
(UTx) · (UTw)

)
(4.16)

In this form the kernel w of a graph convolution learns to recognize patterns of
the nodes in the spectral domain. The filter w is theoretically translation equivariant
due to the convolution theorem. However, w has to be N-dimensional and therefore
does not operate locally on regions of the graph, unlike a convolution on images or
speech. Furthermore, the number of parameters depends on the number of nodes in
the network. If the machine learning task is the classification of nodes, the number
of parameters for a single graph convolution is at least as high as the number of data
points.
To construct localized filters that operate only in a small region of the graph at a
time, polynomials with local support can be used [128, 133]. Here, a polynomial
(usually recursively defined Chebychev polynomials) is used to construct a filter in
the vertex domain (prior to the transformation to the spectral domain). The degree of
the polynomial defines a local support around a graph node and is constructed using
only the nodes around a center node i. More specifically, a Chebychev polynomial of
degree K around a node i is guaranteed to have support over vertices that are at most
K hops apart from node i [141].
A Chebychev polynomial is recursively defined as:

Tk(L) = 2LTk−1 − Tk−2(L) (4.17)

with the anchors for recursion being T0(L) = 1 and T1(L) = L. Using such polynomials
of the laplacian, a graph convolution can be approximated by:

x ∗w ≈
K∑
k=0

θkTk(L̃)x (4.18)

where θk ∈ RK is a vector of Chebychev coefficients and thus the learnable param-
eters of a graph convolution. L̃ = 2L

λmax−I
denotes a scaled version of the laplacian

where λmax corresponds to the largest eigenvalue of L.

tThe Chebychev polynomial from Equation 4.18 is an approximation to the original
spectral convolution operator that is localized. That is, the number of parameters de-
pends on K and no longer on the number of nodes or features [128]. Furthermore, the
SVD of the laplacian is no longer needed which makes the method computationally
much more efficient and renders it usable for large graphs.
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4.5.3 Graph Convolutional Networks
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Figure 4.12: Visualization of a graph convolutional layer as used by Graph Convolutional
Networks [133]. The first multiplication of L and X conducts a one-step random
walk for every feature independently. The result is linearly transformed by a
weight matrix. A GCN with one layer already greatly outperforms a fully con-
nected network [142].

An observation from studying CNNs shows that higher layers automatically ag-
gregate information from lower layers beyond the reach of the filters (visualized in
Figure 4.13) even when no pooling is used [99]. This is because the result of a convolu-
tion contains information about nearby features, and therefore the next convolutional
layer will “see” larger neighborhoods. The same holds true for graph convolutions
and can be used to further simplify their formulation. By restricting K = 1 only the
first-order neighborhood of a node (direct neighbors only) is considered [133] and
larger neighborhoods are accounted for through multiple graph convolutional lay-
ers [142]. Furthermore, by simply setting λmax to 2 the layer-wise propagation rule
of graph convolutional networks can be written independently of the polynomial
formulation. Neural networks are expected to learn the scaling of the laplacian auto-
matically through a bias term [133], justifying the approximation of λmax. A graph
convolutional layer can then be defined through a graph convolution and a non-
linear activation function. The convolution operator from Equation 4.18 was defined
for only one-dimensional features but can easily be extended to multidimensional
features. The final simplified propagation rule of a Graph Convolutional Network
(GCN) [133] becomes:

H(l+1) = φ
(
L̃H(l)W

)
(4.19)
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Output LayerHidden LayerInput Layer

Figure 4.13: Size of the receptive field in CNNs and Graph Convolutional Networks
(GCNs). One unit in the output layer receives information from all neighbor-
ing nodes in the layer below (denoted hidden layer). The same effect holds for
the input layer. Almost the entire input layer is aggregated in a single output
unit, making the use of pooling not strictly necessary. This has to be taken into
consideration when designing GCNs.

where H(0) = X ∈ RN×p is a p-dimensional feature matrix and L̃ denotes the lapla-
cian from Equation 4.14 but replaces A with Ã = A+ I (added self-connections). This
has the effect of aggregating the feature values of the node itself into the graph con-
volution.
The simplified layer-wise propagation rule strongly resembles a fully connected prop-
agation rule from 4.6 only that it is multiplied by a normalized version of the adja-
cency matrix A. When interpreting the node features X as independent probability
distributions over the vertices, a GCN performs a one-step random walk prior to a
fully connected neural network layer. This procedure, known as laplacian smoothing,
already has broad applications and was shown to be successful also outside the neu-
ral network formulation [69, 142].
A GCN stacks multiple layers of graph convolutions. In contrast to CNNs, no fully
connected layers are used at the end [133]. Different architectures for GCNs have
been proposed within the last years [136, 142], some of them implementing strategies
for pooling [132, 139, 143]. However, pooling is not required to reduce the number
of parameters in the graph setting and not conclusively shown to yield a significant
benefit for GCNs.

Training Graph Convolutional Networks

In Section 4.3.2 we saw how neural networks can be trained with backpropagation
and gradient descent to minimize the classification error of some given data set X
with respect to the labels y. For the GCN model training, we are confronted with a
graph from which it is hard to extract individual nodes for classification. Usually, only
a small fraction of nodes carry a label while the majority of nodes are unknown. The
classification goal of a GCN is to label the unknown nodes. Therefore, the loss func-
tion is computed only for the known vertices. This is a form of semi-supervised learn-
ing because the unknown nodes still influence the loss of the known ones through
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aggregation in the graph convolutions [133]. Semi-supervised learning is a hybrid of
supervised and unsupervised learning (depicted in Figure 4.1) where unlabeled data
points are used in combination with labeled ones in the learning procedure.

4.6 interpreting neural network decisions

Supervised machine learning is a powerful concept that enabled incredible progress
in multiple sciences [144, 145]. In research it is now more and more used as a tool to
gain insights into processes that are not fully understood [145–147].
Hence, it is often crucial that the underlying algorithms are somewhat transparent
in their decision-making process [148–151], giving rise to the field of explainable or
interpretable machine learning (nowadays often termed XAI for eXplainable Artificial
Intelligence). Interpretable or explainable machine learning refers to finding models
that allow users to understand what the model learned and why a certain prediction
was made. Though interpretability is a broad concept, it is commonly defined as
letting a user gain knowledge about the predictions made by the model [152]. As a
result, interpretation depends highly on the use case that can range from verification
of successful training [150, 153, 154] to gaining knowledge about scientific problems
[155–157].
Interpretability can help to establish trust in a model, especially when there is no
gold standard verification available as it is often the case in biology. When a model
can recapitulate some of the previously identified mechanisms that connect input and
output, there is a good chance that successful learning is not only based on biases
and artifacts in the data but rather reflects true underlying relationships.

4.6.1 Interpretable Machine Learning

Linear Classifier Non-linear Classifier

x1

x2

Figure 4.14: Explanations of data points for linear and non-linear classification boundaries.
The linear case yields the same explanations for all data points because they point
in the same direction away from the decision boundary. In the non-linear case
explanations can be very different for different data points due to the complex
decision boundary. (Figure inspired by [151])
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Some machine learning models are intrinsically interpretable (such as most lin-
ear models, decision trees and small rule-based systems). This is because the model
learns a coefficient for each of the features and the features with largest coefficients
are the most important to the model. The interpretability comes from the model di-
rectly operating in the feature input space and the choice of an explicit function class
(linear functions). Furthermore, the decision boundary of a linear classifier gives the
same importance to each feature for every single data point [151].
This changes when considering non-linear models. Such models typically do not oper-
ate directly in the feature space but transform the data as pointed out in Section 4.1.3.
As a consequence, each data point can have its own feature importance when using
non-linear models, visualized in Figure 4.14.
Unfortunately, complex problems usually require advanced non-linear models. Espe-
cially in deep neural networks individual weights no longer carry any meaning. As
a result, non-linear methods in general but neural networks in particular have been
labeled black boxes [158, 159]. Many different methodologies fall under the hood of
explainable machine learning [152, 159], and many of them are applicable to ANNs.
This thesis focuses on so-called post-hoc interpretation. The goal here is to query a
trained model on what it has learned about the data with respect to the problem to
solve.
Post-hoc interpretation of neural networks can be roughly divided into two different
processes. Model-centric (sometimes called dataset-level) interpretation aims to find
the features that are most important for the model with respect to the classification
or regression problem that the model tries to solve. In CNNs model-centric interpre-
tation often refers to the visualization of convolutional filters by various techniques
[160–162].
Attribution methods (or prediction-level interpretation approaches), on the other
hand, find important features for the classification of a specific data point. While
for linear models the two types of interpretation are equivalent (see Figure 4.14 for a
visual intuition), this is not the case for non-linear models.
When classifying cancer vs. non-cancer genes, for instance, it is highly important to
know why a certain gene or data point was classified as a cancer gene. Model-centric
feature interpretation would probably not yield much biological insight because ev-
ery feature might be important for some genes while no single feature dominates
classification. Prediction-level interpretation, however, can overcome this limitation
and directly give information about why individual decisions were made.
Different attribution methods have been proposed within the last years [151, 158, 160,
163, 164], some of them being specific to ANNs while others are model-agnostic [164,
165].

4.6.2 Strategies for Prediction-Level Interpretation

Prediction-level interpretability methods can be grouped in three different approaches:
perturbation-based, gradient-based and local linear methods. Each of the three strate-
gies has its own advantages and drawbacks or is only applicable to a subset of ML
models.
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Figure 4.15: Different Approaches for Prediction-Level Explanations. (Left) Perturbation
methods such as Occlusion hide parts of the input and assess the output proba-
bility of the trained model to identify regions of the input that were important
for classification. (Middle) Local linear models can be trained on a subset of data
points close to the point of interest. Such models are inherently interpretable and
locally faithful to the original model. (Right) Gradient-based methods exploit
differentiable models such as ANNs and apply a modified version of the back-
propagation algorithm to identify relevant inputs. (Panel adapted from [166])

Perturbation-Based Interpretability

Perturbation-based interpretation methods attempt to change the input data point
in various ways and observe the classification outcome. The occlusion or gray-box
method [160] covers parts of a scene systematically and assesses the change in the
prediction outcome. The Shapley value method [165] borrows random data points
from the training set and inserts a feature value from the data point of interest into
the borrowed data point.
The general methodology of perturbation-based interpretation methods is similar to
general feature selection where a model is trained on only a subset of features to
see which features are most informative for the classification task [108]. The only
difference is that the models are not retrained but only specific data points are modi-
fied to hide some of the input features (occlusion) or to replace one feature with the
value from another data point (Shapley values). Perturbation methods are often slow,
especially for high-dimensional feature spaces [167], but do not make any further
assumptions on the models.

Local Linear Models

Another strategy for the interpretation of non-linear ML models is the construction of
a local linear model that approximates the more complex non-linear one at the point
and surroundings of the data point of interest [164]. Local linear models are similar
to perturbation methods, but instead of masking parts of the input, they query the
model about data points close to the data point of interest. The different outputs of
data in close proximity are used to construct a linear model that approximates the
original one. The new local model is faithful to the original model in the surroundings
of the data point of interest but linear and hence interpretable. LIME [164] for instance
uses the coefficients of the linear model as feature importance of the original one.
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Local linear models are also very similar to gradient-based methods because they
basically estimate the gradient of the non-linear decision function at a specific point
of interest. However, local linear models are model-agnostic and also work with non-
differentiable models.

A downside of local linear models is the construction of a separate model to ex-
plain the decisions of the original one. It is not clear if the computed explanation
corresponds to the actual reason for the classification or if the gradients of the com-
plex and linear model point in the same direction by chance. If many explanations
exist for a data point, local linear models might not produce a faithful one.

Gradient-Based Interpretability

All neural networks trained through backpropagation are fully differentiable, as dis-
cussed in Section 4.3.2. This property can be exploited by interpretation methods.
Gradient-based interpretation methods attempt to redistribute the output of a spe-
cific data point back to the input space, similar to the backpropagation algorithm.
In fact, early approaches used the backpropagation algorithm directly to compute
the gradients of the input units of an ANN [168]. However, this method informs on
how the input data should change in order to modify the output class but does not
explain why the model assigned a specific class to the data point [166]. Thus, many
more approaches for differentiable models such as ANNs were developed over the
last years [151, 158, 163, 169, 170] with some methods being equivalent to others [171,
172]. In this thesis Layer-wise relevance propagation was used as a gradient-based in-
terpretation method of choice. A more detailed explanation of Layer-wise relevance
propagation (LRP) follows in the next section.

4.6.3 Layer-Wise Relevance Propagation

As mentioned in the previous section, LRP is an attribution method for interpreting
non-linear models such as ANNs or CNNs, which exploits the differential architec-
ture of such models [158]. To understand the contribution of a single feature of a data
point xi to the model prediction f(xi) by a classifier f, LRP attempts to decompose
f(xi) into a sum of relevance scores Rd, corresponding to input dimensions. There-
fore, the sum of all relevance scores approximately corresponds to the classification
outcome:

f(x) ≈
∑
d

Rd (4.20)

The interpretation of relevance scores is that Rd < 0 contributes evidence against
the structure that the classifier has learned, while Rd > 0 contributes evidence for the
presence of such structure and Rd ≈ 0 contributes no evidence to it. LRP redistributes
the relevance scores from the output layer of the model back to the input units by ap-
plying a layer-wise propagation rule iteratively, analogously to the backpropagation
algorithm (see Figure 4.8 and Section 4.3.2).
The general idea behind this algorithm is that the input domain is meaningful to a
human user and the decomposition of the relevance therefore allows to determine
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why a classification was made.
The total amount of relevance at each layer remains the same, leading to the conserva-
tion property defined as:∑

d

R
input
d = ....

∑
i

Rli =
∑
j

Rl+1j = .... = f(x). (4.21)

This process is depicted in Figure 4.16 and can be imagined as a flow of relevance
through the network. Edges with high weights associated to them will have higher
amounts of relevance flowing through them, compared to edges with small weights,
thereby reflecting the learned architecture of the network.
Exploiting the chain rule of calculus (Equation 4.8), the layer-wise relevance propaga-
tion rule can be formulated as:

R
(l)
i =

∑
j

hiwij∑
i hiwij

R
(l+1)
j (4.22)

where R represents the relevance of node i and j in layer l and l+ 1, respectively, and
where h is the output of unit i and wij is the weight connecting unit i and j. We can
interpret Equation 4.22 as a measure of how important the output of unit i was for
each of the units in the next layer. This measure is normalized to the other units of
layer l and Equation 4.22 thus satisfies the conservation property from Equation 4.21.
The same layer-wise propagation rule holds true for convolutional layers which can
be regarded as a special case of a fully connected layer where weights are repeated
multiple times (Section 4.4). Different activation functions can also be handled [158,
166, 173].
LRP thereby obtains relevance values that illustrate the importance of individual

features for the entire input, given a data point of interest. Relevance values can be
both positive or negative, indicating whether the presence of a feature has a posi-
tive or negative impact on the classification result. Because individual gradients tend
to be noisy, multiple slightly different LRP rules have been derived [173–176] that
absorb contradictory explanations [174] or allow giving weights to positive and neg-
ative explanations (reviewed in [176]). In this work the ε-LRP rule was used which
adds a small constant to the denominator of the general LRP rule to absorb noise or
contradicting gradients. The ε-LRP rule can be written as:

R
(l)
i =

∑
j

hiwij

ε+
∑
i hiwij

R
(l+1)
j . (4.23)

In practice it was shown that the basic LRP (and ε-LRP) propagation rule in Equa-
tion 4.22 can be expressed in terms of a modified gradient rule [166, 171, 172] when
only ReLU activation functions are used, making LRP compatible with modern deep
learning frameworks such as Tensorflow [177]. Ancona et al. [171] reformulate the
LRP rule through partial derivatives with respect to the internal mappings Hl and
compute the values using a propagation rule more similar to the backpropagation
algorithm (see Kindermans et al. [172] or Ancona et al. [171] for the mathematical
proof). Assuming top layer relevances R(l+1) corresponding to the nodes of H(l+1),
the relevance for the nodes in H(l) can be computed as:

R(l) = H(l) · δH
(l+1)

δH(l)
· R

(l+1)

H(l+1)
(4.24)
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Figure 4.16: The workflow of layer-wise relevance propagation (LRP). It attempts to redis-
tribute the total amount of relevance R = f(x) to the units of the network. Net-
work weights are indicated as edges and units (or neurons) correspond to nodes.
Larger weights (wij, connecting x(l)i and x(l+1)j ) produce a higher flow of rele-
vance during the LRP backward pass. (Figure reproduced from [166])

where H(l) denotes the intermediate representation learned by the GCN at layer l.
Connecting LRP decomposition steps for consecutive layers yields:

R(Input) = X · δH
(1)

δX
· · · · · δH

(L)

δH(L−1)
= X · δf(X)

δX
(4.25)

where H(0) = X corresponds to the input data vector or matrix X and R(Input) to the
vector or matrix of relevance values for each input feature.

4.7 summary

This chapter introduced some of the fundamental problems of ML as well as meth-
ods to solve them. We saw that non-linear models are able to learn more complex
tasks but at the price of having more free parameters which makes them prone to
overfitting. Neural networks are a class of non-linear models that transform data in
layers to yield representations. Those representations are more and more capable of
solving the classification or regression problem at hand. Convolutions allow intro-
ducing domain bias to neural networks. Graph convolutions achieve the same for
data sets embedded in graph structures and thereby provide a powerful classifica-
tion framework to combine relational and feature data. Finally, neural networks can
be interpreted by exploiting their differential and hierarchical architectures.
The next chapter will introduce EMOGI, an interpretable method based on GCNs to
predict cancer-related genes from multi-omics features and relational protein-protein
interactions.



5
G R A P H C O N V O L U T I O N A L N E T W O R K S F O R PA N - C A N C E R
D R I V E R I D E N T I F I C AT I O N

In Section 2.2, we have seen that the precise linking of genotype to phenotype is
a hard problem and requires an almost complete understanding of gene regulation.
And because cancer malignancies are evolutionary diseases of the genome, many if
not all cellular processes can be hijacked and corrupted in order for cells to acquire
a growth advantage and grow outside of their otherwise tightly regulated microenvi-
ronment. But Chapter 3 gave an overview of additional experimental approaches that
provide shortcuts and approximations of cell states. RNA-seq, for instance, directly
measures the amount of produced mRNA in a bulk of cells and can give hints on
gene products involved in cancer-related processes without having to link complex
genomic changes in non-coding regions, epigenetic readers/writers or other molecu-
lar mechanisms to them.
However, the battery of "-omics" data available nowadays poses significant challenges
on the computational side of cancer genomics. The vast amount and heterogeneous
nature of different omics require tailored machine learning algorithms. They have to
be able to integrate data from different representations, generalize well in the face of
scarce training sets but still process giga and terabytes of high-dimensional data.
This chapter will introduce an Explainable Multi-Omics Graph Integration (EMOGI)
model that integrates Single Nucleotide Variants, Copy Number Aberrations, DNA
methylation in promoter regions and gene expression data with Protein-Protein-
Interactions in an explainable machine learning model. EMOGI is based on GCNs
(introduced in Section 4.5) and classifies genes into cancer-related and cancer-unrelated
genes. It is an extension of the GCN model introduced by Kipf & Welling [133]. The
interpretation of classification decisions is done with LRP, introduced in Section 4.6.3,
and allows to gain insights into the cancer types as well as data types important for
the classification of a gene as cancer-related gene and further permits to attribute
parts of the relevance to the PPI partners of a gene of interest.

5.1 the emogi graph convolutional model

A ML model that is able to reliably predict cancer genes has to incorporate differ-
ent data types and representations. Mutation rates [29], copy number changes [20],
epigenetic states [61] and the expression of genes [37] have proven essential data
types to understand cancer processes in the past (introduced in Section 2.2.2). Fur-
thermore, Protein-Protein-Interactions carry orthogonal, non-redundant information
about protein complexes and pathways that are highly relevant for the detection of
cancer genes [41, 44, 49]. The goal of this study is gaining knowledge about cancer
processes based on the all of the data types mentioned above. To that end, inter-
pretability is absolutely crucial. An interpretable model, however, requires that the
data is integrated early and in one model jointly. That way, redundancies and re-
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Figure 5.1: EMOGI data collection, model training and explanation. a Different Omics-
levels from more than 10, 000 patient biopsies (see Table A.1 for detailed num-
bers) were collected from TCGA [30]. Specifically, SNVs, CNAs (experimental
approaches to detect mutations are discussed in Section 3.2), DNA methylation
profiles (whose experimental background is described in Section 3.3) and gene
expression data (experimental techniques described in Section 3.4) were collected.
Each data type is individually processed according to standard procedures in the
field to the point where a matrix of genes × cancer types is obtained for each
of them. Those matrices are concatenated to form the feature matrix X which is
used as input to EMOGI alongside a PPI network represented as a graph where
nodes correspond to genes and edges denote interactions between their proteins
in the cell. b A GCN is trained in a semi-supervised fashion on the partially la-
beled graph where nodes carry multi-omics feature vectors. c The LRP framework
is used a posteriori to interpret EMOGI and to identify classes of cancer-related
genes and modules that drive cancer progression and maintenance.
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occurring patterns in the different data sets are discovered directly and can guide
the classification. An alternative approach would be to first construct a ML model
for each data type and join their learned data representation. This process is often
referred to as late integration.
The molecular processes within a cell are highly complex and dynamic. The orthog-
onal data types are heterogeneous and measure different states as well as molecular
processes. It is therefore very likely that any predictive modeling approach trying to
predict cancer associations for genes has to incorporate non-linear relationships in
order to make sensible predictions.

EMOGI combines somatic mutation information in the form of SNVs and CNAs
with DNA methylation at promoter regions and gene expression data for different
cancer types. Each data type is preprocessed to obtain a gene-sample matrix (the
data collection and preprocessing steps are explained in Section 5.2). Figure 5.1 gives
an overview of the EMOGI workflow. The data is preprocessed in a gene-centered
manner to obtain a feature matrix X where each gene corresponds to a data point.
X has a row per gene and the columns represent the different cancer types and
omics levels. According to the early integration scheme, the feature matrices for each
omics level are subjected to normalization and then concatenated to form X (this
is explained in more detail in Section 5.6). This feature matrix and a PPI network
are used together for training a GCN model that learns to distinguish cancer-related
from cancer-unrelated genes. Proteins in the network are considered products of their
genes and therefore, PPIs are treated as interactions between genes. EMOGI solves
a binary classification problem using Known Cancer Genes from different expert-
curated databases that serve as positive labels, as well as negative labels (non-cancer
genes) that are obtained by recursively filtering all genes. Any gene that might have
an association with cancer is removed from the set of all genes until a set of genes
is reached that has no association with cancer with high probability (details in Sec-
tion 5.2.6).
The labeled genes are used to compute the loss (details on how the loss is com-
puted are given in Section 5.3), backpropagation (explained in Section 4.3.2) is used
to compute the new weights iteratively and the ADAM optimizer [178] is used as
Gradient Descent method. Training starts with small random weights drawn from
a normal distribution [117]. At each iteration of the GD algorithm (called epoch),
weight updates are computed from the whole batch of training data (X and the PPI
network) and this procedure is iterated until convergence (usually around -5, 000-
10, 000 epochs). Regularization such as dropout and norm penalties (explained in
Section 5.4) are used to avoid overfitting and help generalization.
After training of EMOGI, LRP [151, 158] is used to map the classification output back
to the input for any gene of interest. The interpretation gives most important features
and interaction partners for any gene of interest.

5.2 data collection & processing

Figure 5.1a shows how the EMOGI method combines different publicly available data
sets and integrates them to form a feature matrix X, a graph G and labels y that serve
as input for the GCN algorithm. This section will explain in more detail how the
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data was collected and processed to be most informative to a computational method.
Generally, relative values that compare a quantity of a feature in tumor compared to
a normal cell from the same cell type are more informative than absolute numbers
from cancer samples alone to predict associations with cancer diseases. For somatic
SNVs and CNAs, the difference from a normal genome is given by definition. For
both, gene expression and DNA methylation, however, this is not the case. Both of
these data types have sharp, tissue-specific patterns as introduced in Section 2.1.2 (see
Figure A.2 for UMAP embeddings of all omics levels into a two-dimensional space)
and are expected to be informative only as relative measurements that compare tu-
mor and normal tissue samples. Fortunately, TCGA also contains normal samples
from adjacent tissues of the same type for several cancer types (see Table A.1 for
the number of samples per omics level) and makes it possible to construct relative
measurements between tumor and normal tissue.

In total, SNVs, CNAs, DNA methylation and gene expression data of more than
8, 000 samples were collected from TCGA, covering 16 different cancer types. Ta-
ble A.1 lists all 33 available cancer types from TCGA alongside the corresponding
number of samples for each of them, and whether they could be used for EMOGI.
The analysis was limited to those cancer types for which DNA methylation informa-
tion in tumor and normal tissue was available and for which already pre-processed
gene expression data from Wang et al. [55] existed. For the other cancer types, either
DNA methylation or gene expression in the adjacent normal tissue was lacking. Un-
fortunately, all leukemias (blood cancers) had to be removed from this study because
normal blood samples can no longer be taken from patients with blood cancers. The-
oretically, it is possible to incorporate those cancer types as well but it would require
samples from healthy donors that serve as normal control. Such a normalization us-
ing different donors, however, can result in significant biological and experimental
biases because different patients may have different expression levels (biological vari-
ation) and experimental molecular methods (RNA-seq and methylation assays) have
been reported to suffer from batch effects [179, 180].

All four omics data sets for the same 16 cancer types were pre-processed individu-
ally and finally concatenated to form a N× (4 ∗ 16) matrix where N corresponds to
the number of genes (see Figure 5.1). PPI data was collected from different sources.
Genes that are not present in the largest connected component of the PPI network
were removed from the feature matrix. To ensure that the scale of the individual
feature matrices is roughly similar, min-max normalization was applied prior to the
concatenation, although neural networks are expected to deal with differently scaled
features by adapting the weights accordingly [133]. The resulting feature matrix ex-
hibits clear patterns of correlations across genes, which are displayed in Figure 5.2.
Each omics level is more correlated with itself than with other data types, justifying
the use of normalization to scale the data. Furthermore, closely related cancer types,
such as colon and rectal cancers exhibit higher correlations across all omics levels. And
finally, a medium high anti-correlation between gene expression and DNA methyla-
tion data is biologically meaningful because of the silencing effect of DNA promoter
methylation (further explained in Section 2.1.2). CNAs are less correlated due to the
sparsity of CNAs in the samples.
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Figure 5.2: Correlations of features with each other over cancer and data types. After data
collection of mutation rates, DNA methylation at promoters and gene expression
the Pearson correlation between all of them are depicted. The color indicates corre-
lation versus anti-correlation, and the deeper the color, the higher the correlation
observed (legend on the right). Because correlations are symmetric, only the lower
triangle is depicted.

5.2.1 Single Nucleotide Variants

TCGA releases somatic mutation data in a Mutation Annotation Format (MAF).
Those files contain all detected somatic mutations in a cancer type. Each row rep-
resents a somatic mutation along the patient it occurred in. Calling mutations from
short-read DNA sequencing is done by MuTect2 [181, 182]. The tool calls (or pre-
dicts) a variant from the supporting reads using a statistical significance test. Several
tools for variant calling have been proposed over the years [28, 79, 181–184] and
each has its own advantages. Furthermore, variant callers usually classify mutations
into missense mutations that change the protein AA sequence, nonsense mutations
that introduce a premature stop codon and silent mutations that do not change the
resulting protein sequence. Silent mutations were removed in the EMOGI data pre-
processing to reduce the number of random passenger mutations and concentrate on
mutations that have an effect on the mRNA or the protein.
There are a significant number of mutations occurring randomly in the genome [25,
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185]. Thus, longer genes are expected to accumulate more mutations, no matter if
they associate with cancer diseases or not. Famously, the very long TTN gene—an es-
sential component of sarcomeres that is important for muscle tissues—is sometimes
used as a marker gene for methods that do not correctly account for gene length [40].
For the EMOGI preprocessing, the mutation rate (or mutation frequency) mrgp for a
gene g in a patient p was normalized according to:

m̃rgp =
mrgp

1+ bpmrp ∗ lg
(5.1)

where lg denotes gene length and bpmrp denotes the patient-specific mutation rate
per nucleotide, i.e. the overall probability that any base in the genome is mutated.
Furthermore, some samples in TCGA were reported to be ultra-mutated due to ex-
treme genomic instability. Those were removed using a list of known ultra-mutated
samples that was extracted from Synapse (syn1729383). The preprocessing for SNVs
roughly follows the preprocessing pipeline from HotNet2 [41]. No differences were
made between loss-of-function mutations, missense mutations or gain-of-function
mutations. This is because when a gene is more often mutated than expected, this
already implies a selective growth advantage to the cell. The directionality of that
genomic change (i.e. if it disables a gene or gives it new interaction partners or other
new function) is not crucial to infer an association and hence not distinguished in
EMOGI.

5.2.2 Copy Number Aberrations

DNA sequencing can also be used to detect CNAs of genes (see Section 3.2 and Fig-
ure 3.1 for details). CNAs arise through larger insertions or deletions in the genome
and frequently occur in tumors because the DNA repair mechanisms are increasingly
damaged. Amplified genes have more copies present in the genome while deleted
genes have only one or no copies left from which RNA and finally proteins can be
produced. The tool GISTIC2 [84] was used in this work to estimate the target genes
of CNAs. The tool operates by identifying copy number profiles from mapping al-
gorithms and then deconstructing them into individual somatic CNA events using
a sophisticated background rate of CNAs. GISTIC2 also infers target genes from the
identified CNAs events. Copy number gains and losses, corresponding to amplified
or deleted genes were identified in the TCGA cohort for the 16 cancer types using
GISTIC2. The results from GISTIC2 were downloaded via firehose from 1. As for the
SNVs, ultra-mutated samples from syn1729383 were removed, and the copy number
rate of a certain gene was defined as the number of times a gene was amplified or
deleted in a specific cohort. No difference was made between gains or losses in this
context because EMOGI predicts cancer-related genes and not TSGs or oncogenes
specifically. In theory, one would expect TSGs to be more often deleted while onco-
genes, such as the famous oncogene MYC, are often amplified in cancers [20].

1 https://gdac.broadinstitute.org

https://gdac.broadinstitute.org
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Figure 5.3: Preprocessing of DNA methylation for a single gene. Depicted is a gene with
three alternative TSSs. To extract a meaningful DNA methylation of the promoter
region for that gene, the Gencode annotation [186] was used to extract the coordi-
nates of the TSS of the most 5 ′ transcript. Next, the promoter region was defined
as the region ±1000 Base Pair (bp) around the TSS and the average β value in
that region was computed.

5.2.3 DNA Methylation in Promoter Regions

DNA methylation data from the 450k Illumina bead array platform (described in Sec-
tion 3.3) was collected from TCGA. The platform measures the very same 450, 000
CpG sites in the genome for each sample. CpGs sites are selected by the manufac-
turer such that promoters, gene bodies and regulatory regions are sufficiently covered
[87, 88]. The promoter region of a gene was defined as the ± 1000 base pair region
around the Transcription Start Site (TSS) of that gene. Due to alternative splicing
and slightly differing annotations, different transcripts exist for the same gene. For
the EMOGI preprocessing, the transcript that is located farthest in the 5’ direction was
used to select the TSS and corresponding promoter window (see Figure 5.3). Gencode
(V 28) [186] was used as annotation for the genes. Within a promoter region of a gene,
the average β value across all CpG sites was used to determine the DNA methylation
status in the promoter. This value ranges between 0 and 1 and describes the portion
of cells in the sample that were methylated. DNA methylation experiments are —
similar to RNA-seq experiments — very susceptible to batch effects. Those effects
arise because different sequencing facilities and hospitals introduce small unwanted
technical variation that cannot be avoided and often, most of the variability in the
data is explained by the laboratory or hospital taking/sequencing the sample rather
than a biological difference. ComBat [187] is a tool that was proposed to deal with
batch effects. It employs an empirical Bayes latent variable model to reduce batch
effects generally in NGS data. For the methylation data, the plate number of the
samples was used as batch variable the model2. ComBat was used independently for
each cancer type.
For each gene i, the measure of differential DNA methylation at its promoter in

cancer type c is defined as dmci . This value describes the difference in methylation
signals between cancer sample βti , and matched normal sample βni , averaged across
all samples Sc available for cancer type c. It can be written as:

dmci =
1

|Sc|

∑
s∈Sc

(
βti −β

n
i

)
. (5.2)

2 https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/

https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
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dmci was computed for all genes across all 16 cancer types and aggregated in a matrix
of genes and cancer types.

5.2.4 Gene Expression

To measure the expression level of each gene in each sample, data from Wang et al.
[55] was used. In the study, RNA-seq data (introduced in Section 3.4) of both tu-
mor and control samples from TCGA are combined with gene expression data from
the GTEx consortium. The authors have realigned the reads to the reference genome,
quantile-normalized the data and batch-corrected it using ComBat [187]. The data set
was reported to be better suited for differential expression analysis because the scales
of normal and tumor samples were more similar compared to the original released
expression data from TCGA [55].
For each gene, differential expression was computed as log2 fold change between
expression in cancer versus a matched normal sample. If a normal sample from the
same patient (and the same tissue) was available, this sample was used to compute
the fold changes. In cases where that was not available, the median gene expression
value from all other normal samples was used for normalization. To verify that sam-
ples were correctly normalized, MA plots were computed and depicted in Figure A.1
for all 16 cancer types. In those, when the majority of genes is not located on the blue
line (that indicates no change), tumor and normal samples are not on the same scale.
This, however, is not the case for the data set from Wang et al. [55].
Similar to the DNA methylation, all samples from the same cancer type were aver-
aged to obtain a matrix of genes and cancer types.

5.2.5 Protein-Protein Interaction Networks

Section 3.5 has introduced how PPIs can be experimentally measured. Each exper-
iment, however, only yields small parts of the puzzle that the interactome poses.
Therefore, multiple databases have started to fuse PPI information in human cells
from different large-scale studies [94, 95, 188–190]. These databases usually contain
scores that quantify the certainty of interactions between proteins and compare ev-
idence from literature mining, Y2H, TAP-MS and other approaches. In total, these
networks have collected between 100, 000 (IRefIndex) and up to 5 million (STRING-
db) interactions. All of the networks have quite different characteristics and can yield
very different results in the recovery of disease genes [190].
For EMOGI, five different networks — each of which incorporates hundreds of stud-
ies — were evaluated, namely STRING-db [95], IRefIndex [188], Multinet [189], PC-
Net [190] and Consensus Path DB (CPDB) [94]. Two different versions of IRefIndex
(one from 2015, one from 2019) were compared to gain knowledge about the progress
and changes of PPI networks over time, yielding 6 different networks in total.
Each of the networks was preprocessed slightly differently. For CPDB and STRING-
db, only high confidence interactions were considered, using a cutoff of 0.5 for CPDB
and a cutoff of 0.85 for STRING-db, respectively.
Multinet and the old version of IRefIndex were collected from the Hotnet2 github
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repository3. For the most recent version of IRefIndex, only binary (involving only
two proteins) and human interactions were considered. Finally, PCNet was not pre-
processed further. For all networks, edges with weights above the respective thresh-
old were selected while the others were discarded. This resulted in unweighted and
undirected networks, similar to the original application of GCNs to citation networks.

5.2.6 Positive and Negative Examples

In Section 4.5.3, we saw that GCNs are a semi-supervised machine learning method.
To improve the randomly initialized weights, they evaluate a loss function on labeled
data points. While these only represent a fraction of the nodes in the graph, it is
crucial that the labels are accurate.
Much work was dedicated to developing a catalogue of cancer driver genes in the past
[31, 191–199] and has led to databases such as the COSMIC cancer gene census (CGC)
[195], OncoKB or the Network of Cancer Genes (NCG). To compile a set of known
cancer genes that serve as labels for the positive class (cancer-related genes), 711
Known Cancer Genes (KCGs) from the NCG were collected. The NCG comprises
a manually curated list of cancer genes, highly overlapping with the COSMIC CGC
(see Figure A.7 for overlaps between different sets of KCGs). The vast majority of
known cancer genes have been annotated as such because they were mutated more
often than expected by chance in large cohorts of patients [19]. This is a problem
for a multi-omics setup where the goal is to find cancer genes based on multiple
sources of evidence. To obtain a more diverse set of known cancer genes without
losing the accuracy of manually curated data, the known cancer genes from the NCG
were extended by gene sets from DigSEE [199]. This database represents a set of high-
confidence cancer genes mined from PubMed abstracts and additionally categorizes
them by the type of evidence that supports it. This way, additional 43 cancer genes
that have observed changes in DNA methylation and 137 cancer genes with altered
gene expression patterns were included in the list of positive labels.
Negative labels (e.g. cancer-unrelated genes) were harder to obtain as there are no
databases that collect non-cancer genes and hence, those had to be collected through
a filtering approach. The idea behind the filtering is to consecutively remove all genes
that could have an association with cancer diseases until only a sufficiently small set
of genes remains. Firstly, all genes that are part of the positive labels were removed.
Next, all genes contained in the OMIM database [200] were removed. This excludes
all known disease genes for any disease. While this step removes many genes that
have no association with cancer, it helps to make sure that prominent disease genes
no longer are present in the set of non-cancer genes. Next, all genes that belong to
known cancer pathways from KEGG [201] were removed as well as genes that were
reported to be significantly more mutated than expected in large-scale cancer screens
(using a set of significantly mutated genes from the COSMIC database). Finally, genes
predicted to be involved with cancer by MutSigdb [202], as well as genes whose
expression was found to be correlated to the expression of cancer genes [203] were
removed. For the application with EMOGI only genes present in the PPI graph were

3 https://github.com/raphael-group/hotnet2
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Figure 5.4: Different number of positive and negative examples shift the decision bound-
ary. Depicted are three settings of a binary classification: (left) Both classes contain
roughly the same number of data points and therefore, the decision boundary is
located exactly between the two classes and has a maximum distance to points
from both classes. (middle) The positive class is underrepresented, resulting in
a shift of the decision boundary towards the positive class. (right) The negative
class is under-represented and the decision boundary is shifted towards the neg-
ative class. The distribution of the data points did not change between the three
scenarios. The gray dotted line depicts the original balanced decision boundary.

used. The final set of labels thus depends on the chosen PPI network. For the CPDB
PPI network, for instance, it comprises 796 positively and 2187 negatively labeled
genes.

5.3 class imbalance

In the previous section, we saw that the number of labels for the positive class (cancer-
related genes) is much smaller than the negative class of non-cancer genes. This can
pose a problem when computing the loss because the class with more labeled data
points (the majority class) might dominate the classification (see Figure 5.4 for a visu-
alization of how the decision boundary shifts with class imbalance). The extreme case
would be a classifier that learns to only predict the majority class for all data points
because the minority class does not increase the loss sufficiently. Such a case repre-
sents a situation where the optimization converges to a local minimum that might
give small losses and high accuracy but is not desired.
Solutions to deal with class imbalance typically include oversampling of the minor-

ity class, subsampling of the majority class or directly modifying the loss function to
give higher weight to the minority class. Oversampling means using data points from
the minority class multiple times per epoch and is not straightforward to implement
for GCNs because the graph structure would require that the oversampled genes are
embedded in the graph somehow. Subsampling the majority class, on the other hand,
is undesired because it would significantly reduce the number of labeled genes and
add another stochastic element to the training process.
Thus, direct modification of the loss function was used to scale the loss for the minor-
ity class by a certain factor. This factor is considered a Hyper-Parameter (HP) to the
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model and optimized alongside other HPs as discussed in Section 5.7.
For EMOGI, a binary cross-entropy loss was used for training which is common prac-
tice for modern Deep Neural Networks (DNNs) [99]. To give more weight to the
positive class, this loss function can be modified as:

L = −
(
wposy log(ŷ) + (1− y) log(1− ŷ)

)
(5.3)

where wpos denotes the scaling factor for the positively labeled points and ŷ = f(x)

denotes the output from the GCN.
This way, the original amount of training data remains unchanged and the additional
weight given to the minority class can be optimized along with other HPs.

5.4 gcn regularization

In total, 2187 labeled genes were obtained for the CPDB PPI network which con-
tains 13, 627 genes, corresponding to a labeling rate of 15%. At the same time, the
EMOGI model has roughly 10, 000 trainable weights with the exact number very
much depending on the model architecture that is selected during HP optimization
(explained in Section 5.7). This means that the number of trainable weights is signif-
icantly higher than the number of data points (termed p � N problem and closely
linked to the curse of dimensionality and introduced in Section 4.2.1). A successful
model therefore has to be rigorously regularized to generalize well. Regularization
of ML algorithms generally aims to reduce model complexity and therefore variance
through the increase of the model bias (see Section 4.2 or the book by Goodfellow et
al. [99]).
Regularization of neural networks is currently an active topic of research and many
different techniques have been proposed in the recent years. Among the most suc-
cessful ones are norm penalties and dropout [99]. While the former is a general ML
regularization method also applicable to linear regression and other methods, the lat-
ter is a method specifically designed for neural networks. EMOGI makes use of both
of them and effectively increases bias, reduces variance and improves its generaliza-
tion to data beyond the training set.

5.4.1 Norm Penalties

Norm penalties are a common technique used in ML and were shown to be effective
also for ANNs [99, 108, 204]. They are often referred to as weight decay or shrinkage
in different subfields. The idea behind norm penalties is the addition of a regulariza-
tion term to the loss function that encourages small values for the parameters unless
the data suggests otherwise [104]. Generally, a norm penalty for an objective function
L can be written as:

L̃(Θ,X) = L(Θ,X) +αΩ(Θ) (5.4)

where Θ denotes the model parameters, Ω denotes a norm penalty function and α
corresponds to a weighting of the original objective (L) and the penalty (Ω). Different
norm penalties can be used, with the most common ones being the L1 norm (known
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Figure 5.5: LASSO (L1) and Ridge (L2) norm penalties. The figure depicts a fictive two-
dimensional optimization problem whose optimal solution is denoted by β. The
red circles indicate the distance from β. The diamond (for LASSO) and the circle
(for Ridge) represent the constrains to the parameters β1 and β2. Lagrangian
constrained optimization attempts to find a point that fulfills both optimization
criteria by selecting the point within the diamond or circle that it is closest to the
optimal solution β. For LASSO, this would result in β2 to be 0 which is desired in
linear problems.

as LASSO [205]) and the L2 norm (known as Ridge regularization [206]). Norm penal-
ties are a specialized version of Lagrangian constrained optimization where the ad-
dition of a second objective (like setting most parameters to 0) is in conflict with
the original objective (fitting the data as well as possible) and a compromise has to
be found. Figure 5.5 visualizes this conflict for a two-dimensional problem for the
LASSO and Ridge norm penalties.
In linear problems, LASSO (L1 norm) is often preferred because of the diamond
shape that shrinks most model parameters to exactly 0, while Ridge regularization
(L2 norm) shrinks to a value close to 0. Therefore, LASSO uses the least amount of
parameters possible while still obtaining a good fit of the data, making the model
more interpretable (Figure 5.5) [104, 106].
In neural networks, the weights (especially in higher layers) do no longer have a di-
rect meaning and hence, it is not preferred to have them set to exactly 0. Nonetheless,
the penalty enforces a competition between the weights because the overall size of
all weights is bound. Therefore, features that do not contribute to the data fitting ob-
jective will have smaller weights associated with them while important patterns are
associated with higher weights. Hence, norm penalties help to reduce variance and
increase bias of the model by preferring smaller values to larger ones.
For this work, L2 norm penalties were used to encourage smaller weights for all
layers.

5.4.2 Dropout

Ensemble methods such as random forests or boosting build several weak learners
and average their outputs to obtain a more robust estimate of the prediction. Inter-
estingly, an ensemble of models can always increase model performance or at least
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Figure 5.6: Dropout regularization through dropping random connections in a neural net-
work.The network on the top depicts a fully connected neural network with two
hidden layers. During the training process, a fraction of connections is randomly
chosen and set to 0 and this process is referred to as dropout (depicted on the bot-
tom). This makes the network learn important patterns multiple times. Another
view of dropout is that the sparse networks (depicted on the right) all correspond
to different models. The final fully connected model corresponds to an ensemble
classifier [99].

result in the original performance when the errors of the individual models are per-
fectly correlated [99, 108]. This makes ensembles a powerful method to use in a broad
variety of applications. Unfortunately, neural networks are already computationally
expensive to train, making larger ensembles of neural networks often infeasible.
Dropout is an approximation of ensemble learning without having to train multi-

ple models [207]. Instead, the iterative training procedure is used to train a slightly
different model at each epoch. Randomly, a fraction of the connections in the neural
network are set to 0, training an exponential number of different thinned networks
in parallel (visualized in Figure 5.6).
Intuitively, dropout prevents overfitting since individual units cannot gain very high
importance in the network because the risk that these units are dropped at some
point is very high. Dropout encourages learning patterns and concepts redundantly,
making the resulting model more robust.
During test time, dropout is no longer applied which gives the effect of averaging
across all the thinned networks, similar to the majority vote taken by other ensemble
models [207].

5.5 extension of graph convolutions to feature tensors

EMOGI was adapted to perform gene classification for a specific cancer type at the
level of individual patients, without averaging features across the samples of a given
cancer type, but using the omics values of the single patient samples for training. In
order to do so, the graph convolution operation defined in [133] (and described in
Section 4.5.3 and Equation 4.19) was adapted to work with a feature tensor of rank 3.
In detail, a feature tensor F ∈ RN×S×C was constructed, harboring one “dimension”
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Figure 5.7: Graph convolution operation for rank 3 tensors. The adapted graph convolution
operation takes one “slide” (corresponding to a single omics level) of the feature
tensor F and the weight tensor W along with the graph Laplacian L to perform
a graph convolution (slides are indicated by different colors). This produces 4

activation maps (for SNVs in red, CNAs in purple, DNA methylation in blue and
gene expression in green) that are summed together after the convolution. This
procedure is analogous to how rbg channels of color images are convolved in
CNN models for image processing [120].

for the genes (N), one for the patient samples (S) and one for the omics levels (C),
as summarized in Fig. 5.7. The different omics levels were treated similarly to the
rgb channels of a color image processed by a CNN model. This led to the following
formulation of the convolution operation for the first model layer, leading to the
activation map H1:

H1 = σ
( C∑
c=1

L ∗ F::c ∗W(0)
::c

)
(5.5)

where W ∈ RS×H×C denotes the weight matrix to be learned (similarly to Equa-
tion 4.19 in Section 4.5.3), H is the dimension (number of units) of layer 1 and L the
graph Laplacian. The activations of the separate omics levels c ∈ 1, ....,C are added
after convolving every omics level separately with the graph Laplacian L and the
weight matrix W. This is analogous to what is usually done with the rgb channels of
a color image in a CNN. The extended graph convolution is depicted in Fig. 5.7. This
produces an activation map (H(1)) that has the same dimensionality as the activation
map of the first layer defined in the original model (with a two-dimensional feature
matrix as input, see Section 4.5.3). The successive layers are hence not affected by
the use of a rank 3 tensor, and the previously defined graph convolution operation
(Equation 4.19) can be used for all layers after the first one.

5.6 model training

EMOGI is trained using a feature matrix X (derived using multi-omics data and ex-
plained in Section 5.2), a PPI network encoded as adjacency matrix A (explained
in Section 5.2.5) and sets of known cancer and non-cancer genes (derived in Sec-
tion 5.2.6). X is derived from four individual feature matrices for the individual omics
levels (SNVs, CNAs, differential DNA methylation in promoter regions and differen-
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tial gene expression). The four matrices intrinsically have very different scales. There-
fore, min-max normalization was applied to force the values to have a similar scale.
Min-max normalization rescales a data vector using the following equation:

xnorm =
X−min(X)

max(X) −min(X)
. (5.6)

The normalization is required because some data types have a specific scale, such as
DNA methylation in promoters which ranges between -1 and 1 while gene expression
can be positive and negative but without a scale, and SNVs and CNAs information is
only positive without a defined scale. After normalization, the four individual omics
matrices are concatenated (depicted in Figure 5.1a) to form a feature vector of length
16 · 4 = 64 for each gene under consideration. The impact of the normalization is
depicted in Figure A.3.
Conversely, unmeasured values for genes in the network (missing DNA methylation
in the promoter of the respective gene, for instance) were set to 0. Hence, the final
feature matrix X contains exactly those genes that are present in the PPI network.
The labeled genes are split into a training and test set (visualized in Figure 5.8), such
that the ratio between positives and negatives is maintained in both sets. The training
set contains 75% of the labeled genes while the test set contains the remaining 25%
and is not used during the training or HP optimization.
Two neural networks might achieve the same high performance but can in theory
classify data points based on different criteria. To gain knowledge about new puta-
tive cancer genes, it is not only important to interpret the features leading to the
classification of a gene but also to know how certain the model is about it. Ensemble
classifiers (introduced in Section 4.1.3) allow for an estimate of uncertainty through
a potential disagreement between the weak learners. Similarly, if the weak learners
are interpretable, estimates about the certainty of that interpretation can be made.
To profit from that property, multiple EMOGI models were trained independently of
one another with slightly different training and validation sets. The test set was not
used at this stage for evaluation. The training sets for each of the models were com-
puted using 10-fold Cross-Validation (CV) (explained in Section 4.2 and visualized
in Figure 5.8). That is, the training set is once again split into 10 different sets to train
10 EMOGI models. Each of the models is trained on 9

10 of the training data while
the remaining 10% are left out to validate successful training. In the end, roughly
60% of the total labeled data was used for training each model. For model inference,
an average vote of the 10 different models is taken. This way, the output probability
of EMOGI actually reflects 10 different models that were trained with slightly less
data. By querying each of the models separately for interpretation, estimates of the
certainty of the interpretation can be obtained. Chapter 6 will show that the certainty
of the interpretation actually correlates with the final output probability with higher
output probabilities also giving more robust feature interpretations.
Each of the GCN models receives an adjacency matrix, multi-omics features and la-
bels and computes several layers of graph convolutions using Equation 4.19. ReLU
functions are exclusively used as non-linear activation functions. The last layer per-
forms a graph convolution with a single filter and a sigmoidal non-linearity. There-
fore, the output f(X) = ŷ of an EMOGI model corresponds to a vector ŷ ∈ RN in
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which each entry denotes the probability of a gene to associate with cancer diseases.
In each epoch, the weighted cross-entropy loss derived in Section 5.3 is computed and
the backpropagation algorithm is used to compute derivatives of the weights. The
ADAM optimizer [178] is used as an advanced form of stochastic GD and EMOGI
models are trained for a fixed number of epochs.
The model architecture (number of filters per layer and number of graph convolu-
tional layers), the learning rate η and regularization parameters are—among others
- HPs to the EMOGI model. The next section discusses the optimization of HPs and
reasonable ranges of parameters to expect.

5.7 hyper-parameter optimization

Labeled Genes

(npos = 796, nneg = 2,187)

75% train - 25% test

Training Set

(npos = 597, nneg = 1,640)

Test Set

(npos = 199, nneg = 547)

Repeat for every hyper-parameter combination

Model 1

Model 4

Model 2

Model 3

Model 5

AUPR

ACC

AUROC

Training Set

(npos = 478, nneg = 1,312)

Val. Set

npos = 119

nneg = 328

Figure 5.8: Data splitting, CV and HP optimization. The labeled genes are split into training
and test sets, preserving ratios of positive and negative labels. The training set is
further split into training and validation sets.

A key challenge to successful model training is the high number of parameters
that can have crucial effects on the training procedure but are not trainable. A pa-
rameter that cannot be trained but is used to parametrize the model is called Hyper-
Parameter (HP). Such parameters most often reflect design decisions in the modeling
process such as weighting regularization against the objective function, specifying
the architecture of the model or determining the length of the training procedure.
Table 5.1 lists the different HPs of EMOGI as well as reasonable parameter ranges
that are used in the literature.
Unfortunately, there is no guarantee that the parameter ranges listed there actually
correspond to good choices for the different HPs in the particular setting of predict-
ing cancer-related genes. Therefore, CV can be used to find optimal or near-optimal
combinations of parameters in combination with a grid search.
Optimizing HPs of ML methods is a time-consuming problem because each combina-
tion of HPs can yield unique results and there are no guarantees regarding continuity
of the performance with respect to changes in the HPs. Consequently, all combina-
tions have to be tried out in a brute-force approach. In the previous section, we saw
that reasonable ranges for most HPs can be guessed from other applications even
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Name Description Parameter Ranges

Number of
Layers (L)

The number of graph convolu-
tional layers used for training
EMOGI.

2–3 layers were reported sufficient
[133]. More layers can actually be
harmful [142].

Number of
Units per
Layer

The number of units/filters per
graph convolutional layer.

No prior knowledge.

Number of
Epochs

The number of epochs/length of
the training

Kipf & Welling use 200 epochs
maximum with early stopping in
place. Metrics per epoch can help
assess if training time was suffi-
cient.

Dropout
Rate

Describes how many percent of the
units are dropped during training
time (Section 5.4.2)

Dropout rates of 0.5 − 0.8 are rec-
ommended throughout the litera-
ture .[99, 207]

Weight De-
cay (λ)

Denotes the importance of weight
decay/norm penalty regulariza-
tion compared to the original objec-
tive (0 = no regularization, 1 = no
data fitting, Section 5.4.1)

1e−4 and 1e−5 were used in [133]
but no other prior knowledge.

Learning
Rate (η)

Describes how big the steps are per
weight update.

The original publication used 0.01
but this parameter is tightly cou-
pled with the number of epochs
and weight decay. Typical values
range from 0.1 − 0.0001 [208] but
also depend on the optimizer used.

Support (K)

Local support of the graph convo-
lution (Section 4.5.2). K = 0 cor-
responds to a standard neural net-
work, K = 1 corresponds to the
GCN from [133] and higher values
of K use Chebychev polynomials
from [128].

Experiments with K = 1 and K =

2 were done but interpretability
is further complicated with higher
support. Therefore, K = 1 was
used throughout this work and
larger network structures were ac-
counted for through multiple lay-
ers of graph convolutions.

Cancer
Gene
Weight

The factor by which KCGs are mul-
tiplied to alleviate the effect of im-
balanced classes (see Section 5.3 for
details)

No prior knowledge but ranges be-
tween 1 and 100 can be assumed
reasonable and small changes are
unlikely to change the overall ob-
jective drastically. Strongly interde-
pendent with the learning rate η.

Table 5.1: Hyper-Parameters of the EMOGI model. Several hyper parameters influence the
performance of EMOGI and good values are hard to estimate. This table depicts
sensible default values and ranges to try from previous studies and helps to guide
hyper-parameter search.
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though there is no guarantee that a different combination of HPs gives much better
results in practice.
CV can be used to estimate reasonable HPs for ML models and in particular for
neural networks. By splitting the training set further into training and validation sets
(the orange box in Figure 5.8), each of the k models in the CV can be trained indepen-
dently. To test the behavior of different combinations of HPs empirically, one can use
the validation set to assess the generalization error of a model. In practice, there are
often data points that are harder to classify than others. Hence, computing k models
with the same HPs results in a less biased estimate of how well the final model will
generalize. To test which combination of HPs will most likely perform best on the
test set a grid search will sequentially train k models for each possible combination
and assess metrics, such as the Area under the Precision-Recall Curve (AUPRC) or
accuracy (described in Section 4.2).
In Chapter 6, we will use the grid search in combination with CV to find reasonable
HPs for EMOGI.

5.8 explaining emogi predictions

To find multi-omics features of a gene and interaction partners of their proteins
that drive the classification, LRP [158] was used (introduced in Section 4.6.3). This
gradient-based, prediction-level interpretability method for neural networks was cho-
sen for this work because it does not make assumptions about locality in the input,
such as many perturbation-based methods. Occlusion, for instance, marks patches of
an image which requires the assumption that neighboring pixels are interdependent
(see Figure 4.15). Local linear models produce a faithful classifier in the surroundings
of the data point of interest but it is unclear if its explanations really correspond to
what the classifier has learned. Some gradient-based methods, on the other hand, are
equivalent when only considering ReLU activations in the hidden layers [171, 172],
which is the case for EMOGI. LRP has reported good results in practice [151] and
is faster than DeepLIFT [163], for instance. And although it was reported not to con-
sider deeper layers of DNNs [209], the EMOGI model only uses relatively shallow
architectures (see Table 5.1), alleviating that problem.

To recapitulate, LRP uses the weights of a trained neural network and propagates
a relevance measure R back to the input space. Initially, the relevance R(L) = f(x)

and is then redistributed through the network. The basic implementation supports
fully connected and CNN architectures but for this work, LRP was adapted to GCNs.
When applying LRP to GCNs, let us remember that each graph convolution layer
does the following computation:

H(l+1) = σ
(
LH(l)W(l)

)
(5.7)

where L = D̃− 1
2 ÃD̃− 1

2 denotes the normalized graph Laplacian, Ã the adjacency ma-
trix with added self connections, D̃ii the degree matrix, W a learnable weight matrix
and σ a non-linear function, such as the ReLU activation function (see Section 4.5.3
for details).
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At the time when the project was implemented, no adaptations of gradient-based
attribution methods to GCNs were known in the literature. Recently, however, two
studies have adapted LRP to work with such models [210, 211] and a third article
provides more theoretical insights [212]. The proposed method by Hu et al. [211] to
interpret GCNs with LRP treats graph convolutional layers as two fully connected
layers, applying the standard LRP rule (Equation 4.22) twice: once to decompose
features (X) and weights (W) and once again to decompose the result and the graph
Laplacian L. This results in the following equations for each layer:

R̃li =
∑
j

x̃liw
l
ij∑

i x̃
l
iw
l
ij

R
(l+1)
j (5.8)

where X̃ = LH(l−1). To then decompose the graph Laplacian and input data, the same
rule is used again:

R̃li =
∑
j

xliL∑
i x
l
iL
R
(l+1)
j (5.9)

In this work, the deepexplain package [171] was used to compute LRP for genes
of interest. Making use of the “input times gradient” rule, deepexplain directly com-
putes the LRP values using the following equation:

Ri = xi ·
δgSc(x)

δxi
(5.10)

where Sgc(x) corresponds to the output of the network at output unit (or neuron) c
for an input data point x. g indicates a modified gradient rule for non-linearities φ
(activation functions) denoted as: gLRP =

φ(hi)
hi

where hi corresponds to the activa-
tion of unit i prior to the activation function (see Figure 4.8 for a visualization of hi).
Equation 5.10 computes the relevance Ri for any unit i of the neural network. When
we now only consider ReLU activation functions in a GCN model, we can immedi-
ately see that the non-linearities reduce to 1 for positive hi and 0 for all other values
for hi. Therefore, the approach by Hu et al. is equivalent to the computations in this
work.
In its original application for image classification, LRP computes a value for each
pixel of an input image, indicating the importance of that pixel for the classification.
Therefore, it returns for each input image a matrix, also called relevance map, of the
same size of the original image, where each cell visualizes the relevance of a single
pixel for classification [158, 166, 171].
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Figure 5.9: Extraction of explanations using LRP. Left panel: for each gene LRP returns 1) a
feature importance matrix EF containing the omics feature contributions from each
cancer type to the gene of interest and 2) an interaction importance matrix EI con-
taining the PPI interaction contributions to the gene of interest. The right panel
(top) summarizes how LRP and the obtained feature matrices for each gene EF(g)
are summarized to obtain the EFtotal matrix which is subjected to bi-clustering
analysis (Chapter 7). The right panel (bottom) summarizes how LRP and the
obtained interaction importance matrices for each gene EI(g) are aggregated to
obtain the EItotal matrix which is then used for module detection (Chapter 7).

For the application presented here, the input to EMOGI consists of two matrices,
namely the graph Laplacian L and the feature matrix X. Therefore, when LRP is used
to find the most relevant omics features and PPIs for a gene of interest g, we obtain
for that gene one matrix for the feature explanations, which is denoted EF(g) and
one for the explanations of interaction partners, denoted EI(g). These matrices have
the same shape as the input matrices for features and network, namely (N× 64) and
(N×N), as each gene is characterized by 64 feature values and N corresponds to the
number of genes in the PPI network (see Section 5.6 for details).
EF and EI can be obtained using:

EF(g) = X · δf(X,L)
δX

(5.11)

EI(g) = L · δf(X,L)
δL

, (5.12)

where both matrices X and L are treated as individual inputs to the GCN.
The intuition behind this is that GCNs aggregate features from neighboring nodes,
resulting in a setting where the classification of a gene is not solely based on the
features of that gene but also the features of surrounding genes in the PPI network.
Therefore, explanations for genes are also not only based on the gene of interest but
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also its surrounding genes in the network. Hence, both EF(g) and EI(g) are matrices
instead of vectors as one would intuitively assume. In practice, the values of all rows
(genes) in EF(g) and EI(g) are close to zero or very small except for the values corre-
sponding to the gene of interest g and it can be easily seen from equation 5.12 that
EI(g) is 0 for non-interacting gene products.

To answer the question about which cancer-type specific omics features mostly con-
tribute to the classification of a certain gene, the row of EF(g) that corresponds to the
gene of interest is extracted, resulting in a vector with 64 entries containing the impor-
tance of every omic feature in each cancer type (see Figure 5.9, left panel). The sum of
the entries of this vector of feature explanations corresponds to the total multi-omics
feature contribution for the gene of interest.
Similarly, to answer the question about the most important interaction partners for
the classification of gene g, the row of EI(g) that corresponds to that gene is extracted
(Figure 5.9, left panel). This yields a vector with N entries, each denoting the impor-
tance of each gene in the network to the classification of the gene of interest (g).
In Section 5.6, we saw that EMOGI is an ensemble method that uses 10 different GCN
models to predict cancer-related genes. Consequently, all LRP computations are done
for the 10 models independently and averaged to produce a final interpretation for a
gene. This allows quantifying measures of uncertainty like the standard deviation or
variance of explanations. EF(g) and EI(g) are assumed to be averaged matrices across
the 10 models for the remainder of the section.

For the bi-clustering analysis that will be presented in Section 7.2 the vectors of
feature explanations for all genes are simply stacked on top of each other to create
a matrix of shape (N× 64), denoted as EFtotal, that can directly be subjected to the
biclustering algorithm (Figure 5.9, right panel).
The module analysis — presented in Section 7.3 — aims at finding core sub-networks
which represent the most important parts of the interactome used by EMOGI for can-
cer gene classification. In order to understand how LRP values for gene interaction
partners are used to identify such important modules, we need to keep in mind that
EMOGI mostly uses a two-layered GCN (Section 6.2.1 will show that only few graph
convolutional layers are required for good performance) which learns and propa-
gates features from a first-order gene-gene interaction neighborhood to a second-
order neighborhood. This means that higher order interactions, and not only direct
interactions between genes, contribute to the classification
To capture core interactions that are repeatedly important for the classification of
multiple genes, and therefore identify cancer-related modules, it is not sufficient to
extract, for a given gene g, the row of EI(g), corresponding to the importance of its
direct interactors. Instead, also the indirect contributions from the PPI graph have to
be taken into consideration.

To achieve that, the N interaction explanation matrices EI(g) were collected for
all genes. Those matrices were subjected to an element-wise summation to obtain the
matrix EItotal, where the value of each cell represents the total importance of a certain
PPI for the classification of the input genes (Figure 5.9, right panel). The higher the
value in a cell of EItotal, the more important was the interaction globally, often for
many genes.
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Next, min-max normalization is applied to each row of EItotal, such that every gene
contributes the same total amount of LRP to the matrix, thereby removing biases from
genes with high node degree in the PPI network. The final normalized matrix EItotal
is then converted to a directed, weighted graph, where nodes correspond to the genes
from the original PPI network and edge weights correspond to the entries of the
normalized EItotal, i.e. to the importance of each interaction in the EMOGI model.
Finally, a threshold was selected and all edges with weights below that threshold are
removed to obtain a sparse graph, which is then subjected to the Strongly-Connected
Component (SCC) calling algorithm (see Figure 5.9 and the results in Section 7.3).

5.9 implementation & code availability

EMOGI was implemented in Python using Tensorflow [177]. The basic implemen-
tation of GCNs [133] was extended and for the LRP computation, the deepexplain
package [171] was used.
All source codes to train the EMOGI model or to reproduce the results are freely avail-
able on https://github.com/schulter/EMOGI. This repository also contains manifest
files that can be used to download TCGA data using the GDC Data Transfer Tool.
The trained multi-omics models for all six PPI networks can be downloaded from
https://owww.molgen.mpg.de/~sasse/EMOGI/.

5.10 summary

In this chapter, we saw how the EMOGI model is constructed. The GCN method
from [133] was extended and adapted to a pan-cancer gene stratification setting. The
multi-omics data sets from TCGA were individually preprocessed for 16 different
cancer types to derive pan-cancer multi-omics feature vectors for ten thousands of
genes. Furthermore, 6 different PPI networks were collected and preprocessed to fit
with the GCN model. Class imbalance was taken into account through incorporation
of a weighted loss function and the EMOGI model was heavily regularized using
dropout and norm penalties. To increase the robustness and to quantify uncertainty
in both predictions and explanations for genes, multiple GCN models were trained
as an ensemble. The high number of HPs were optimized using a grid search in a CV
scheme. And finally, EMOGI predictions can be explained using the LRP framework,
yielding contribution scores of multi-omics features across cancer types as well as
contributions of individual interaction partners in the PPI network.

https://github.com/schulter/EMOGI
https://owww.molgen.mpg.de/~sasse/EMOGI/
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VA L I D AT I N G T H E E M O G I M O D E L

Chapter 5 gave an overview of how the EMOGI model was constructed. This chapter
will evaluate the model predictions using a variety of strategies. First, we will see
how EMOGI captures patterns in simulated data, both from a network and feature
vectors. This demonstrates the model’s capability to profit from non-redundant and
heterogeneous data types.
Because it is not entirely clear if the catalogue of cancer driver genes is complete
[19, 25, 31, 198] and because more and more diverse mechanisms of how cancer
malignancies hijack the normal cell regulations are being discovered (as discussed in
Section 2.2), there is no gold standard of cancer genes available. Therefore, EMOGI
was validated on a broad variety of sets of putative cancer driver genes and LRP for
well-studied genes was used as an additional validation. The reasoning behind the
latter being that if the features important for the classification of a well-studied gene
match with the literature and experimental data from mouse models or other in vivo
data, EMOGI can be trusted to successfully capture biological signals.
EMOGI does not only integrate data from different omics levels but also integrates
different cancer types in a pan-cancer analysis to amplify signals present in multiple
cancers. It was shown previously that rare mutations can be detected reliably with
pan-cancer studies when cancer specific approaches fail [30] and a similar rationale
holds true for DNA methylation and gene expression data [37, 61, 67], as introduced
in Section 2.2.2.

The robustness to noisy data as well as the benefit of integrating multiple omics
levels was validated using perturbation experiments where either the PPI network or
the feature vectors were randomly perturbed prior to model training. Furthermore,
by leaving out entire data sources, such as SNVs, CNAs, DNA methylation or gene
expression data, the impact of data types was assessed. The drop in performance of
the reduced model can be used to assess the importance of the perturbed or removed
feature and gives first novel insights into cancer biology.

6.1 simulated data

Validating a model that uses feature vectors and a graph structure as sources of infor-
mation to classify the nodes in the graph is not trivial. This is because in real-world
data sets, artifacts and biases instead of real biological features might govern the
classification. Simulated data can help to ensure that the learning is working in the
expected way. Section 2.1.3 has shown that proteins organize in complexes and path-
ways. Biological networks in general and PPI networks in particular were shown in
the past to form densely connected modules that connect to other regions through
only relatively few nodes [213].
The goal of this first simulation experiment was to see whether EMOGI can truly cap-
ture topological properties of biological networks and feature vectors simultaneously.

69
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Figure 6.1: Simulated network and features. A random network with 1053 nodes and 2200
edges was generated and 38 cliques of size 5 were inserted at random positions.
Feature vectors xi ∈ R24 were drawn from normal distributions. Feature vectors
for the 190 (38 · 5) clique nodes were drawn from the orange distribution while the
other nodes received feature vectors drawn from the blue distribution. Random-
ized network image taken from https://flic.kr/p/dQyBpn.

To that end, a binary supervised classification problem was formulated similarly to
Figure 4.3 in Section 4.1.
A graph G that resembles a biological network was simulated and graph motifs were
implanted into G. Figure 6.1 shows how a clique (a subgraph where every node is
connected to every other node) was implanted into a random network by adding
edges to the graph. For the generation of such networks, the tool NetSim1 was used.
Thirty-eight cliques of size 5 were implanted at random positions into a network with
1, 053 nodes while each clique was at least two nodes away from all other cliques.
Feature vectors were simulated through Gaussian random numbers drawn from two

different distributions. The first distribution (marked in blue in Figure 6.1) was used
to generate feature vectors for the nodes outside of the graph motifs while the or-
ange distribution was used for the nodes within the graph motifs. All nodes were
split into train and test sets and EMOGI was trained on the simulated data. For that,
a non-optimized set of HPs was used and the performance of EMOGI was compared
to that of a logistic regression.
The three different setups represent situations where the node features contain vary-
ing degrees of information regarding the classification task to correctly distinguish
clique nodes from the rest of the network. In the first simulation, the node features
are very informative and should be more important than the network topology. In the
second simulation, node features are only slightly different for the two classes and
the network topology could be helpful to distinguish the two classes. And for the
third simulation, the node features are drawn from the same distribution and only
the network topology is informative to classify the nodes correctly.

1 https://github.com/schulter/NetSim

https://flic.kr/p/dQyBpn
https://github.com/schulter/NetSim
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Figure 6.2: Simulation results on a random network with cliques. For all three scenarios
depicted in Figure 6.1, a precision-recall curve depicts the performance of EMOGI
and two other supervised classification methods. The random forest is a non-linear
method while logistic regression is a linear algorithm.

Figure 6.2 depicts the performance on the test set for the three different setups. In the
first, not only EMOGI but also a logistic regression (introduced in Section 4.1.1) can
easily distinguish between the two classes. The logistic regression achieves an area
under the precision-recall curve of 1.0 which means that it classifies every data point
in the test set correctly.
The second scenario puts the two distributions already much closer to one another
and the overlap between the two distributions is significant. Due to the 24 values per
feature vector, however, the nodes can still be fairly well classified by a logistic regres-
sion. EMOGI still performs slightly worse compared to the logistic regression in this
setting but some points are missed. This is probably because the logistic regression
only learns to assign higher features to the positive class and lower features to the
negative class.
In the third setting, both distributions are equal and only EMOGI is able to classify
the nodes correctly while the logistic regression fails and predicts nodes at random.
The performance of EMOGI, however, is lower compared to the first two situations.
This shows that EMOGI is capable of using both sources of information simultane-
ously. Furthermore, protein complexes often correspond to cliques in PPI networks
[214–216] and hence their successful prediction without explicitly searching for them
is a useful property. This behavior also demonstrates that EMOGI can learn patterns
solely based on the graph topology.

6.2 performance evaluation

Knowing that EMOGI can benefit from network and feature information, especially
in cases where the information is non-redundant, encourages applying the method
to the pan-cancer and multi-omics data set discussed in Chapter 5. However, to apply
such a complex non-linear classification method, an optimized set of HPs is needed
and the algorithm has to be exhaustively validated and tested on multiple sets of
putative cancer genes.
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Architecture: 2 GC layers (300, 100 units)
Weight Decay: 0.005
Learning Rate: 0.001
Dropout: 0.5
Cancer Gene Weight: 45

Hyper-Parameter Combinations

Figure 6.3: Hyper-Parameter optimization of the EMOGI model. The combination of HPs
that yielded the 4

th highest average AUPRC was selected because it resulted in
the best compromise between robustness and performance.

6.2.1 Finding Hyper-Parameters for EMOGI

As introduced in Section 5.7, the EMOGI algorithm contains several hyper-parameters
that have to be set and heavily influence the performance of the model. On top of the
classical parameters of literally all deep learning models, a weight for the positive
class (a scalar factor by which the loss of known cancer genes is scaled to increase
their importance) is required to account for class imbalance. To select the best HPs for
EMOGI, a grid search was conducted using 5-fold CV. As introduced in Section 4.2.3,
CV splits the data into n equally sized subsets. This is followed by n iterations in
which n − 1 splits are used for training and the ith split is used for validation to
compute the classifier’s performance.
A grid search over a reasonable number of values for each HP was conducted as
explained in Section 5.7. EMOGI was optimized on the CPDB PPI network for every
possible combination of those values, corresponding to 288 combinations of HPs in
total. Figure 6.3 depicts the 20 highest-performing HP combinations, evaluated us-
ing the AUPRC. The best combination of HPs was selected as the combination that
yielded the best median AUPRC values after 2000 training epochs but that is also
robust, i.e. has low variance across CV folds (the 4th-best combination in Figure 6.3).
This resulted in a dropout rate of 0.5, a learning rate of 0.001, multiplication of the
loss for positives by 45, a weight decay of 0.005 and two graph convolutional layers
with 300 and 100 filters, respectively. This is in line with previous studies that reorted
over-smoothing with higher numbers of layers [136, 142].

6.2.2 Training EMOGI on Multi-Omics Data

EMOGI was trained on a high confidence set of cancer and non-cancer genes based
on multi-omics features and various PPI networks from publicly available databases
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Figure 6.4: Performance evolution over training time (epochs). Depicted is the evolution of
the loss, accuracy and AUPRC (see Section 4.2.2 for a description of the metrics)
over the time of the training (7, 000 epochs in total), averaged over 10 different CV
runs on the CPDB PPI network. The blue graph denotes the test set performance
and the red graph denotes the training set performance for the different metrics.
Accuracy is measured using a threshold of 0.5.

(as explained in detail in Section 5.2), in order to assess whether the method’s perfor-
mance is consistent across different PPI networks (see Section 5.1 for an overview of
the training process).
During the optimization procedure, various performance metrics were measured to
monitor training progress and detect potential overfitting. Figure 6.4 depicts the com-
puted loss, accuracy and AUPRC values as a function of epochs (the training time),
averaged over the 10 different CV runs for the CPDB PPI network. No overfitting
can be detected in this setting and the training loss converges. The high difference be-
tween training and test loss comes from dropout which is only used during training
but not during inference.
After successful training using the CPDB graph, EMOGI predicts 4, 522 genes to

be associated with cancer using a threshold of 0.809 for the predictions. The thresh-
old is selected based on the intersection between precision and recall, as depicted
in Figure 6.5 on the left side. Both, precision and recall are regarded as functions
of a specific threshold (see Section 4.2 for details). The intersection between the two
metrics corresponds to a threshold (on the x-axis) that optimally balances precision
and recall which is desired in this application. To select genes for further hypothesis-
driven studies, a higher threshold is probably recommended that produces more
precise cancer gene predictions.
The EMOGI model further recovers 89% of KCGs and 47% of CCGs to be associated
with cancer malignancies (Figure 6.5, right side).
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Figure 6.5: Overlap of EMOGI’s positive predictions with KCGs and Candidate Cancer
Genes (CCGs) on the CPDB PPI network and cutoff selection. To quantify an
overlap between gene sets, a threshold on the EMOGI score had to be chosen.The
cutoff was selected such that it balances precision and recall optimally as depicted
on the left. Recall decreases when the cutoff increases because fewer genes are
considered positive predictions. Precision, on the contrary, increases when the cut-
off increases because the predictions are more and more conservative and only
high-confidence predictions are considered for a high cutoff value. The intersec-
tion between the two metrics therefore represents a good value for the cutoff. The
optimal selected threshold is 0.809 for EMOGI on the CPDB PPI network.

6.2.3 Performance on Validation Sets
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Figure 6.6: Test set performance of EMOGI. EMOGI was trained on the pan-cancer data
using 10-fold CV. This training process produces 10 different models whose per-
formance is depicted here. EMOGI was also trained on 6 different PPI networks to
assess robustness. Each of the 10 folds of the CV is depicted in the precision-recall
curves. The thick blue line denotes the average performance and the gray shading
denotes ±1 standard deviation
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Next, the performance of the successfully trained EMOGI models for all six PPI net-
works was analyzed on the 10 different validation sets. As depicted in Figure 6.6,
EMOGI exhibited a range of AUPRC values between 66% and 71% for six different
PPI networks computed on the validation sets.
The averaged performance (micro-averaged PR curves were used) is very similar
across PPI networks with STRING-db performing worst in this context. Interestingly,
the older IRefIndex network from 2015 yields the best performance of EMOGI despite
the network having the least interactions. The reasons for that behavior are not clear
but a study bias [217] could explain the phenomenon. Study bias refers to an artifact
in the data that originates from an unequal interest in proteins and genes. Canonical
cancer genes, for instance, are investigated much more often in Y2H or other PPI
screens, thereby producing a network where previously identified disease genes ex-
hibit higher node degree and other characteristics [124–126, 218]. And indeed, node
degree is 5 times higher for the gene sets used to train EMOGI than for other genes.
The CPDB PPI network, on the other hand, was previously reported to be useful to
identify disease genes in a variety of diseases [190] but EMOGI seem to be unable
to profit from that. To further shed light into this issue but also to assess the per-
formance of EMOGI on the test in comparison to established cancer gene prediction
methods, several other methods and tools were used on the EMOGI training and test
data sets.

6.2.4 Existing Methods for Cancer Gene Prediction

EMOGI was benchmarked against a large variety of ML methods for the prediction
of cancer genes in order to validate its performance on a test set that was held out
during training and HP optimization. The compared methods represent the state-of-
the-art from both, the ML community and the cancer genomics field. They can be
distinguished based on whether they use the network topology, multi-omics features
of genes or both. Furthermore, some methods were specifically tailored for the predic-
tion of cancer genes (briefly introduced in Section 2.2.2) and a thorough comparison
with them is essential to prove that integration of heterogeneous data types is an
advantage.

Random Forest Model

A Random Forest is a non-linear classifier that uses ensembles of decision trees for
classification. It fits multiple such trees in a greedy optimization scheme and makes
use of a majority vote between the trees to decide on a class.
A Random Forest classifier to predict cancer gene was trained on the multi-omics fea-
tures only, namely genomic (from SNVs and CNAs), epigenomic and transcriptomic
features, regardless of the PPI network using the RandomForestClassifier function, with
default parameters, from the scikit-learn python package [219]. The algorithm is a
generic, supervised ML method that used the same set of KCGs and non-cancer
genes as EMOGI. The result of the Random Forest consists of a probability for every
gene to be associated with cancer which was consequently used to derive AUPRC
values.



76 validating the emogi model

DeepWalk

This method computes a node embedding in an unsupervised fashion from the net-
work alone and does not incorporate node features or labels. DeepWalk constructs a
vector representation of each node, trying to preserve the topological features of that
node such that nodes with similar topologies are close to one another in the learned
representation. It works by conducting small random walks on the graph iteratively,
starting at each node in the network at a time. These walks explore the local structure
around the node for which the representation is to be computed and are interpreted
by DeepWalk as sentences of natural language. The algorithm then iterates over the
random walks starting at node i and optimizes the node embedding to maximize
the probability that the other nodes of the random walk are close to node i in the
learned representation. This method, called skip-gram model, was very successfully
used in natural language processing [220]. Here, DeepWalk is used to compute a vec-
tor representation of the nodes and a Support Vector Machine (SVM) with radial
basis function kernel is applied to that representation to classify between cancer and
non-cancer genes. The use of an SVM as was suggested by the authors of DeepWalk
in a personal correspondence. Training and test sets for training of the SVM were
identical to those used for training EMOGI. To find optimal HPs for DeepWalk, a
grid search was used over reasonable ranges. Optimal values for the length and num-
ber of the random walks, the size of the vector representation and the window size
were determined that way.

GCN Without Node Features

The same implementation of GCNs was used but the feature matrix was replaced by
a vector of 1s, as suggested by the authors 2. To obtain reasonable hyper-parameters, a
small grid search was conducted and it was found that the HPs used by the complete
EMOGI model worked well also in this case. Therefore, EMOGI was trained based
on the PPI network topology using an architecture of two graph convolutional layers
with 300 units in the first layer and 100 units in the second layer, a dropout rate of
0.5, weight decay of 0.005, a learning rate of 0.001 and a cancer gene weight of 45.

PageRank

The PageRank algorithm, originally developed by Google to rank web pages in their
search engine result, conducts Random Walk with Restarts (RWRs) on a network to
identify highly influential nodes [221]. The PageRank algorithm outputs a probabil-
ity distribution used to represent the likelihood a certain node in a network will be
reached by starting randomly somewhere in the network. It was used here to rank
genes according to their likelihood of being cancer genes based on the PPI network, ir-
regardless of their omics features. An implementation of PageRank from the NetworkX
python package with a restart probability of 0.3was used and node probabilities were
used to compute AUPRC values.

2 https://github.com/tkipf/gcn/issues/10
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DeepWalk + Features

EMOGI was also benchmarked against a combination of DeepWalk embeddings
alongside the multi-omics feature matrix computed for the 16 cancer types. For that,
the DeepWalk embeddings of the PPI network were concatenated with the omics fea-
tures for each gene. Next, a Random Forest (RF) classifier (see section on Random
Forests above) was trained on the combined matrix using the same labeled data and
the same training and test splits as EMOGI. A Random Forest was chosen because
the omics values and DeepWalk embeddings are not likely to span the same fea-
ture space but RFs are known to work well with differently scaled data. Again, the
Random Forest implementation from the scikit-learn python package was used using
default parameters.

HotNet2 Diffusion

Network propagation amplifies a biological signal based on the assumption that
neighboring genes in an interaction network are more likely to share the same pheno-
type [69]. The algorithm of Network Propagation forms the basis of HotNet(2) [41, 68]
and hierarchical HotNet [42], where an average mutation score across cancer types
is associated with every node in the PPI network and propagated to nearby nodes
in an iterative manner using RWR, similarly to the PageRank algorithm. Here, the
HotNet2 implementation of the RWR procedure and their precomputed heat scores
for the genes were used. The diffusion process converges in a steady-state probability
distribution from which AUPRC values can be computed, similar to the PageRank
application.

MutSigCV

MutSigCV is one of the most popular tools to identify cancer driver genes [40]. It pri-
oritizes highly mutated genes, i.e. genes with a mutation frequency which is higher
than what expected by chance, based on a background model which takes into ac-
count both gene sequence composition and gene length. Here, MutSigCV was used
to predict cancer genes from one type of omics data only, the mutation rate. Gene-
associated q-values for each of the TCGA studies were computed separately and
averaged over all 16 cancer types to produce gene scores. The − log1 0 was used to
compute AUPRC values, similar to [41].

20/20+

This method is a widely used machine learning method that predicts cancer genes
based on mutations. Tailored specifically to the problem of cancer gene prediction,
20/20+ uses a random forest alongside a ratiometric approach to predict oncogenes
and tumor suppressor genes [31].
Here, the tool was applied to the MAF files for all 16 cancer types used in this thesis
which were obtained from TCGA. Specifically, all 16 MAF files were concatenated us-
ing custom code. To be used with 20/20+, a liftover of the mutations from hg38 back
to the hg19 reference genome had to be computed because 20/20+ is not compati-
ble with the newer genome version. Next, 20/20+ was applied to the hg19 mutation
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coordinates from the concatenated MAF file, as indicated in the documentation for
pan-cancer applications 3. Finally, the “driver score” was extracted for all genes to
compute AUPRC values.

6.2.5 Comparison to Existing Cancer Gene Prediction Methods

The comparison to the aforementioned methods was done using the test set that was
not shown to any of the methods during training and the AUPRC value on the test
set was used as a metric. AUPRC is the most appropriate metric for this comparison
because it is independent of the choice of a specific cutoff to determine if a gene is
associated with cancer or not and, in addition, accounts for class imbalance.
If competing methods required training, the training set of EMOGI was used for that.
PR curves do not require methods to output probabilities but can base the curve on
any continuous score. EMOGI was compared to baseline methods such as a Random
Forest classifier, the PageRank algorithm [221] and the DeepWalk method [222], as
well as other tools specifically developed for cancer gene prediction, such as Mut-
SigCV and network propagation-based methods such as HotNet2 [41, 69]. Further-
more, the capability to predict cancer genes of several established node metrics, such
as degree, core, betweenness and the clustering coefficient were investigated and com-
pared to EMOGI for the CPDB PPI network, as depicted in Figure A.5.

3 https://2020plus.readthedocs.io/en/latest/tutorial.html#pan-cancer-analysis



6.2 performance evaluation 79

HotNet2
Diffusion

GCN Without
Features

DeepWalk
+ SVM

N
et

w
or

k 
O

n
ly

N
et

w
or

k
&

 O
m

ic
s

Fe
at

u
re

s
O

n
ly

C
an

ce
r

S
p
ec

if
ic

0.73

0.58

0.61

0.5

0.52

0.70

0.54

0.36

0.63

0.21

A
v
e
ra
g
e

Figure 6.7: Performance comparison between EMOGI and other methods. EMOGI’s per-
formance on the test set was evaluated and compared to other methods across
6 different PPI networks. Area under the Precision-Recall Curve for different
prediction methods was computed on a test set of known cancer and non-cancer
genes which was held out during model training and HP optimization. Dark blue
cells in the heatmap correspond to high performance, i.e. high AUPRC values,
while light blue ones correspond to lower performance.

Random forests operate on feature matrices and hence, in this setting it makes use
only of the gene features while discarding the PPI network topology. PageRank, on
the other extreme, is a popular algorithm which uses only the information encoded
in the PPI network for classification, while discarding node features. It works by re-
garding random walks on a graph as a Markov chain that reaches an equilibrium
after a certain number of steps. PageRank computes this equilibrium (often called
steady-state distribution) in a closed form and thus finds influential network nodes.
The DeepWalk method also operates only on the PPI network and was chosen for
comparison because it captures the topology of networks beyond metrics like node
degree or betweenness [222]. Both, DeepWalk and the PageRank algorithm are un-
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supervised ML methods. To assess the impact of supervision (or semi-supervision)
in the context of cancer gene prediction, EMOGI was compared further to a GCN
without features. This also uses the implementation from [133] but replaces the multi-
omics features with an uninformative vector of 1. EMOGI was also compared to the
HotNet2 diffusion process and a custom approach that couples DeepWalk embed-
dings with multi-omics features. The former benefits from both feature and network
information through the use of RWRs and has been successfully used in the last few
years to identify cancer genes, as well as network modules of cancer genes [41, 69,
190]. The latter uses the learned DeepWalk embeddings and concatenates them with
the multi-omics feature matrix X. The resulting matrix is then used by a Random
Forest to classify cancer-related and cancer unrelated genes using the EMOGI train-
ing data. The two methods profit from both, multi-omics features and PPI network
topology and provide powerful baselines.
Lastly, EMOGI was benchmarked against two popular tools that are tailored to pre-
dict cancer genes, namely MutSigCV [29] and 20/20+ [31]. Both operate only on
mutation frequency features but while MutSigCV find genes that are significantly
more often targeted by SNVs, 20/20+ makes use of a ratiometric approach.
Figure 6.7 depicts precision-recall curves for EMOGI and the aforementioned other
methods. The performance of EMOGI is in part higher compared to Figure 6.7 be-
cause the mean prediction across all 10 models on the test set was used instead of the
evaluation on the different CV validation sets.
For all six PPI networks, EMOGI outperformed all other methods on average by at
least 3% AUPRC. The custom implementation using DeepWalk embeddings as well
as multi-omics feature vectors performs comparable on the CPDB PPI network and
even outperforms EMOGI on PCNet but then does worse than EMOGI on all other
networks. All other methods achieve substantially lower AUPRC values compared
to EMOGI. Interestingly, both DeepWalk variants perform best on the CPDB PPI net-
work, a resource which is known to enhance the computational prediction of true
disease genes compared to other PPI networks [190]. In line with that observation,
DeepWalk alone — operating only on the PPI graph structure — performs by far best
on the CPDB network. Another interesting observation is the generally high perfor-
mance of methods that only make use of the PPI network. It indicates that modern
PPI networks have encoded the main properties of known cancer genes in their topol-
ogy. This can either be due to a study bias where known cancer drivers such as KRAS
or TP53 are much more extensively studied than other genes and hence have more
interaction partners in the network [217]. Or it can be that our filtering procedure
for the non-cancer genes discards central genes in the PPI network, thereby bias-
ing the test set, or a combination of both. Evidence for that is a 5-fold higher node
degree for the positive set of known cancer genes compared to the negatives (non-
cancer genes), a correlation between node degree and essentiality in loss-of-function
screens (introduced in Section 7.1.3) and a higher node degree for all cancer gene
sets, including novel predictions from EMOGI (introduced in Section 7.1), depicted
in Figure A.4. However, node degree alone — or any other network metric such as be-
tweenness centrality or clustering coefficient, for that matter — does not explain the
high performance of DeepWalk (depicted in Figure A.5). All of these metrics perform
considerably worse on the test set and similar observations with another computa-
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tional method were made in [44].
Interestingly, DeepWalk is unable to distinguish cancer from non-cancer genes on the
Multinet network. This can be due to the fact that Multinet also contains additional
regulatory interactions and therefore does not only reflect PPIs. Because DeepWalk
projects nodes close to one another that occur in the same random walk, cancer path-
ways are expected to be close in the projection and hence, the SVM is expected to
identify those pathways reliably.
This leads to a fundamental problem in many scientific applications of supervised
machine learning. The labeled data is imperfect and therefore, test set performance
must not be the only criterion to rely upon.

6.3 performance on independent gene sets

To better understand how consistent and robust EMOGI and the other methods per-
form in correctly recovering cancer genes, and whether performance is biased to-
wards a specific dataset and/or PPI network, the performance of all investigated
methods was assessed on four other sets of annotated cancer genes which were
treated as additional independent test sets.
The first set is represented by candidate cancer genes from the NCG which are
non-overlapping with the KCG set used for training of EMOGI [194]. The second
set comprises a list of genes from the OncoKB database [193], a manually curated
dataset of cancer mutations annotated according to validated oncogenic effects. Only
high-confidence cancer genes, i.e. with evidence from more than three sources, were
included in this set. The third set comprises a list of literature-curated cancer genes
from the ONGene database [192] and the fourth set a list of high-confidence cancer
driver genes compiled using different computational tools [198].
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Figure 6.8: AUPRC-AUPRC scatterplot comparing performances between methods on in-
dependent data sets. The performance of each tool is measured using AUPRC
values. Only hits in the gene set are considered true positives. All genes that were
present in EMOGI’s training or test sets were removed to ensure unbiased com-
parison. Each method and PPI network correspond to a point in the plots. The
color indicates the method and the shape of the point indicates the PPI network.
Points in the upper right corner exhibit higher AUPRC values for both gene sets. a
Oncogenes from the ONGene database [192] and cancer genes from OncoKB [193]
were used for a comparison. b A computationally derived cancer gene set from
Bailey et al. [198] as well as the Candidate Cancer Genes from the NCG was used
for a comparison of methods for cancer gene prediction.

Figure 6.8 shows the performance of all investigated methods. To compute AUPRC
in this setting, hits in the gene set were counted as true positives and all other pre-
dicted cancer genes not contained in the set were considered false positives. This
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resulted in much lower AUPRC values for all methods.
On the two sets of curated cancer genes from OncoKB and ONGene, EMOGI per-
formed consistently better than other methods, although the performance of all tools
(except the ones based on gene features only) differed vastly between PPI networks.
On the candidate cancer genes from the NCG, a Random Forest classifier was the
best performing method. The Random Forest, however, did not achieve high AUPRC
on any of the other cancer gene sets. Because the candidate cancer genes are de-
rived to a large proportion from TCGA data [194], they show highly differential gene
expression and DNA methylation and are also often mutated, explaining why the
performance of the random forest is so high. On the computationally derived data
set from Bailey et al., the methods designed for cancer gene prediction (MutSigCV
and 20/20+) performed best. This is reasonable because these genes represent the
most highly mutated genes from cancer screens and have been proposed based on
predictions by MutSigCV and 20/20+ [198].
While the performance of feature-only based methods, such as Random Forest, Mut-
SigCV and 20/20+, was not stable and highly depended on the analyzed data set,
EMOGI outperformed all the other network-based methods consistently on all four
independent data sets, indicating that the method is robust across different types of
data.
The evaluation of the different methods on six different PPI networks shows that
CPDB represents a highly informative network with respect to the task of identify-
ing cancer driver genes. Evidence for that is the high performance of network-only
methods on the test set for CPDB (see Figure 6.7) and the high performance of that
PPI network on all four independent data sets for various methods (see Figure 6.8)
Therefore, the rest of the analyses will focus on CPDB as PPI network of choice.

6.4 explanations for known cancer genes

With EMOGI being validated on several different sets of cancer genes, another way
to establish trust in the method is through investigating important features for the
classification of individual genes. As seen in Section 4.6.1, the important features for
the classification of individual data points can differ with non-linear ML models.
To further validate the predictions made by EMOGI, feature and network contribu-
tions of well-known cancer driver genes were compared with literature knowledge
about them. To explain the decisions made by the EMOGI model, LRP [158, 173]
was employed on a trained model for a certain gene of interest. As introduced in
Section 4.6.3, LRP feeds the output probability of a gene being involved with cancer
malignancies back into the model and propagates in back to the input space. Applied
to EMOGI, LRP identifies not only the most contributing features but also the inter-
action partners of those gene products that were most important for the classification
of the gene of interest (see Section 5.8 for an explanation of how the LRP framework
was adapted to work with GCNs).
Cancer genes were selected from the predictions that are known to be either highly
mutated, amplified or deleted, differentially methylated in promoter regions or dif-
ferently expressed in several different cancers. Their LRP values were inspected for
all four omics across the 16 cancer types, along with their most important interaction
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partners from the CPDB PPI network.
First, the tumor suppressor gene APC which has been described in the literature as
highly mutated in colorectal cancer and shown to activate the Wnt signal transduc-
tion pathway in nascent intestinal tumor cells [223] was analyzed. EMOGI correctly
identifies mutation rates in colon and rectal tissues as the most relevant features for
classification.
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Figure 6.9: Feature importance for known cancer genes. The feature and network contri-
butions for four well-known cancer genes were analyzed using LRP. The first
column depicts the multi-omics features for the 16 different cancer types. Col-
ors correspond to the data type (red for SNVs, purple for CNAs, blue for DNA
methylation and green for gene expression). Darker colors correspond to higher
importance. The second column depicts the 10 most important interaction part-
ners of the gene and the third column shows the percentage of contributions from
the PPI network, relative to the importance of the multi-omics features. Interac-
tions with known cancer genes are marked in red and the contribution of the gene
itself is marked in blue.

Next, the transcription regulator TWIST1, which plays essential roles in tumor ini-
tiation, invasion and metastasis in a variety of cancers [224] was investigated using
LRP. TWIST1 promoter hypermethylation, one of the most important factors in the
epigenetic reprogramming of TWIST1, has been identified in cancers of different ori-
gins and suggested to be a useful biomarker for screening colorectal tumors [225].
EMOGI correctly identifies DNA methylation in lung cancer and colorectal cancer,
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followed by kidney and thyroid cancers, as the most important features for classifica-
tion of TWIST1 as cancer gene. Furthermore, CNAs in prostate adenocarcinoma are
identified as a potential novel molecular mechanism by which TWIST1 contributes to
the cancer phenotype for which evidence was already found previously [226, 227].
Third, explanations for STIL were investigated; a gene that was reported to be highly
overexpressed in multiple cancer types [228]. EMOGI identified gene expression in
uterine and cervical but also other cancer types as important contributors to the clas-
sification of STIL as cancer gene.
Lastly, the famous oncogene MYC was examined, a gene which is often amplified [20,
60] and overexpressed [37, 229] across cancer types. Accordingly, CNAs across many
cancer types are found to be most important for the classification of MYC as cancer
gene. Additionally, gene expression is the second-most important data type for the
classification of MYC.
LRP explanations were computed for four additional KCGs and are depicted in the
appendix as Figure A.8. They include E2F1, a key regulator of DNA repair and known
to be abnormally expressed in cancer cells [59]. Here, EMOGI identifies gene ex-
pression across different cancers as the most important feature, together with high
mutation rate in rectal cancer, in line with a previous study showing that somatic
mutations that disrupt microRNA target sites in the E2F1 mRNA lead to a mecha-
nism of oncogene activation in colorectal cancer [230]. Additionally, KRAS was exam-
ined, a highly mutated KCG across cancer types [231]. Finally, to complement the
LRP analysis, two KCGs were investigated that are mostly classified because of their
interactome. These include CREBBP, where especially HOX TFs were reported to
be important interaction partners of CREBBP [232–234] and NRAS, a RAS signaling
oncogene [235] that is rarely mutated [236] but can promote tumor growth substan-
tially [231, 237].

As introduced in Section 5.6, CV allows measuring the uncertainty of predictions
empirically by computing well-known measures, such as the standard deviation (Std,
denoted σ). This also holds true for the LRP explanations which are computed for
each CV EMOGI model separately (see Section 5.8 for an explanation). A striking
correlation between the certainty of the explanations and the EMOGI score (aver-
age output probability across CV models) can be observed (spearman correlation
R = 0.84, p-value < 2.2e−16). The correlation is depicted as contour plot in the ap-
pendix as Figure A.9 and describes an arc where highly predicted and rejected genes
are associated with low uncertainty but intermediate predictions have uncertain ex-
planations.

Not only the omics features, but also the gene interaction partners in the PPI net-
work might contribute substantially to the classification of cancer genes. For exam-
ple, EMOGI predicts that the most important interaction partners of the TSG RB1
are the E2F1 transcription factor, known to be regulated by RB1, and the histone
deacetylase HDAC1 (depicted in Figure 6.10). This is in line with numerous previous
studies which have reported that the RB1/E2F pathway regulates cell cycle progres-
sion, apoptosis and DNA repair and has been found to be disrupted in virtually all
cancers [238]. Accordingly, LRP identifies E2F1 as the most contributing interaction
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partner of RB1 and vice versa. Furthermore, normal expression of histone deacyte-
lases is disrupted in various cancers and they have been reported to play crucial roles
in the activation and repression of cancer genes [239]. Overexpression of HDAC1 in
particular is associated with poor patient outcomes [239]. Furthermore, RB1 is known
to recruit histone deacetylases to repress transcription of E2F-regulated genes [240],
which would explain why EMOGI identified these strong connections between the
three genes.
In addition, the SWI/SNF chromatin remodeling complex can be reconstructed in the
same way. The complex was previously connected to different cancer types in a pan-
cancer computational analysis [41] and also experimentally shown to be implicated
in the diseases [241]. In particular, ARID1A was shown to be significantly mutated in
bladder and uterine cancers [242] and ARID1B was reported to be mutated in brain
cancer (juvenile neuroblastoma) [243].
And lastly, the PIK3 signaling pathway can be partly recovered and PPIs between

RB1

E2F1

SP2 IGF1 CDKN2A ... FEZF2 HOXA11 ...

HDAC1

ARID1A

PBRM1

SMARCA4

ARID2

CDX2

SMARCB1

ARID1B

NRAS
KRAS

PIK3CA

SWI/SNF ComplexRB1 Complex

PIK3 Signalling Pathway

Figure 6.10: Three cancer-related protein complexes or pathways identified through man-
ual inspection. The networks were collected by inspecting the most important
interaction partners for genes located in important pathways or complexes, espe-
cially those identified in [41]. For each pathway/complex, only genes with highly
contributing interactions to other genes of the module are depicted. Interaction
strength corresponds to edge thickness.

KRAS, PIK3CA and NRAS are highly important for the classification of these genes
as cancer-related genes. PIK3/AKT/mTOR signaling is an important pathway for the
regulation of proliferation, apoptosis and angiogenesis (the process of growing blood
vessels to assure nutrient transport to the tissue) and thus often implicated with can-
cer [41, 244].
Although a manual inspection of the most important molecular and network features
for all predicted genes is unfeasible, the relative contribution of the network versus
the omics features seems to considerably vary from gene to gene, with cancer genes
such as NRAS and CREBBP being more driven by the interactome, and genes such as
KRAS and APC being driven more by the genetic features of the genes.
The fact that EMOGI classifies well-known cancer genes because of previously iden-
tified alterations is further evidence that its predictions are trustworthy and that it
learns to distinguish cancer from non-cancer genes through different and heteroge-
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neous molecular readouts, such as genomic, transcriptomic, epigenetic and interac-
tion factors.

6.5 the impact of different omics levels

With EMOGI being validated on several different sets of cancer genes and it being
able to reproduce literature knowledge of several well-studied cancer genes, it is in-
teresting to investigate which omics levels are most important for the identification
of cancer genes on a more global scale.
To that end, the model was trained using only subsets of the four omics information.
As mentioned already above, the CPDB PPI network was used because it yielded the
highest performance for EMOGI and DeepWalk (with or without additional multi-
omics features, Figure 6.7 & Figure 6.8). AUPRC values were computed on both the
KCGs and CCGs from the NCG separately. While the KCGs were used for train-
ing and testing (see Section 5.2.6), the CCGs are not. As depicted in Figure 6.11, the
performance increases significantly with the integration of more omics types for both
gene sets, denoted by the arrows and associated p-values from a two-sided t-test. In
particular for the KCGs, using only a subset of the four omics decreased EMOGI’s
performance in almost all cases. Figure A.10 depicts the pairwise statistical signif-
icance when increasing the amount of data in more detail for the omics levels. A
statistically significant increase in performance for most of the cases was observed.
An exception is the SNV-only model which achieves a high performance on both,
KCGs and CCGs, exemplifying that mutation rates are the most important single
omics type for cancer gene classification, as expected. However, it seems that CNA
information boosts the performance of all models greatly when it is not the only data
type presented to EMOGI. This observation is in line with the sparse nature of CNAs
in patient samples (see Figure A.2 and Figure 5.2) and was observed previously [20].
Furthermore, gene expression and DNA methylation data appear to be partly redun-
dant, as is expected given that highly methylated promoter regions of genes reduce
their expression [61].
Interestingly, the identification of KCGs appears to benefit more from the hetero-
geneous data sets, compared to the CCGs because the difference between the full
multi-omics setup and the reduced combinations of features is high and the increase
compared to the random performance is much higher.
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Figure 6.11: Recovery of cancer gene sets from the NCG using only subsets of omics data
for EMOGI training. AUPRC values were computed for EMOGI models trained
on subsets of omics levels using either KCGs or CCGs as reference cancer gene
set on the CPDB PPI network. Models are grouped according to using one data
type (single), two types of omics levels (dual), three types of omics (triple) or all
four (multi-omics). The arrows and numbers above denote significance p-values
from a two-sided t-test between the AUPRC of models using fewer omics levels
and EMOGI models using more data. Gray arrows denote no significance. The
black dotted line denotes the random performance for both gene sets. Error bars
denote standard deviation across the different folds of the cross-validation.

For the CCGs EMOGI’s performance is robust when using only two data types as
long as one of them is the SNV mutation rate. This is comprehensible, given that the
NCG candidate cancer genes represent a gene set based on elevated mutation rates
in tumor samples across cancer types [194].
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Figure 6.12: Sensitivity for different omics subtypes, relative to the multi-omics setting on
the CPDB PPI network. The EMOGI models using subsets of the multi-omics
features were compared in their capacity to recover KCGs. Depicted is the frac-
tion of KCGs contained in the predictions (sensitivity) for each of the models.
The cutoffs were determined based on the intersection between precision and re-
call. Bars represent the fraction of sensitivity for each model with respect to the
full multi-omics setting and are ranked according to sensitivity. A value of e.g.
0.85 means that EMOGI trained on that subset of features was able to achieve
85% sensitivity compared to the full model in the recovery of KCGs.

As additional confirmation to the benefit of using multi-omics node features, the
percentage of detected known cancer genes for EMOGI trained on a subset of the
omics types was compared to the full multi-omics setting (Figure 6.12). All subsets
of the full data only recover a subset of what the full EMOGI model predicts. Gene
expression information appears to be least predictive on its own, resulting in 72% re-
covered known cancer genes while the combination of SNV, CNA and DNA methy-
lation appears most informative with almost 93% recovery rate. However, while a
lower recovery rate means that less known cancer genes were successfully predicted,
it does not mean that the models necessarily predict the same genes. A further com-
parison of the overlap between predictions is given in Figure A.11 and highlights that
most of the predictions are shared between the models, which is reassuring. Further-
more, each data type brings about several unique predictions but those are lower for
the multi-omics model compared to the models trained on only one omics level.
The analysis of EMOGI’s performance on a subset of omics data shows empirically
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that the integration of orthogonal data types is in part responsible for the high per-
formance of EMOGI compared to other tools and approaches.

6.6 perturbation experiments

In an additional validation, it was tested if the PPI network structure or the multi-
omics features were most informative for the graph-based data integration method
presented in this thesis. In Section 6.4, we already saw that some genes are almost
entirely predicted because of their neighborhood in the PPI graph while others are
classified as cancer-related genes because of their genomic, epigenetic or transcrip-
tomic alterations in cancer.
To investigate the benefit of network or multi-omics features, several perturbation ex-
periments were performed in which either the network edges or the feature vectors
of individual genes or both at the same time were perturbed. The decrease in per-
formance compared to the original model was used as a measure for the importance
of the data but also as a measure of robustness of the model. A model that still per-
forms well under conditions of slight or moderate perturbations is more trustworthy.
In addition, it would imply that evidence for a gene to be associated with cancer can
come from interaction partners or features alike.
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Network & Features
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Figure 6.13: Feature and network perturbation results. The full EMOGI model was per-
turbed by either shuffling feature vectors of genes, shuffling PPIs or both. EMOGI
models were trained on the perturbed data using 5-fold CV and AUPRC values
were computed for the perturbed models. Error bars denote standard deviation,
the raw performances for the perturbed models are shown as dots and the line
follows the average performance across CV runs.

Therefore, a systematic perturbation of both node features and network interac-
tions was conducted. For the features, two genes were randomly selected and their
entire feature vectors were exchanged. This process was then repeated for either 25%,
50% or 75% of the nodes. A complete randomization was achieved by generating
random feature vectors of length 64.
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The network perturbations, on the other hand, were generated using a double-edge
swap. Here, two edges are randomly selected (e.g. u — v and x — y) and rewired
such that one obtains two new edges u — x and v — y. This procedure is also
repeated until either 25%, 50% or 75% of the edges are swapped. This procedure
preserves the node degree of all nodes because all four nodes receive and lose a con-
nection [245]. It was shown in the past that great care is needed when predicting
cancer genes or modules from PPI data because cancer genes tend to have signifi-
cantly higher node degrees compared to other genes [41, 68] due to study bias [217].
To completely randomize the PPI graph, two scenarios were considered which either
preserve the node degree or not. To evaluate EMOGI on a completely random graph
that preserves the node degree, a random network was generated using the algorithm
by Miller and Hagberg [246]. To also randomize the node degree of genes, a second
random network was generated that does not preserve the node degree but which
loosely resembles biological networks (the node degree follows a power law distribu-
tion). For that, the algorithm from Holme and Kim was used [247].
EMOGI was trained on all of the combinations of perturbed networks, features or
both and evaluated in comparison to the original multi-omics, non-perturbed model.
Figure 6.13 depicts the performance of all such models in a compact way.
Perturbing only one data type per time, either the omics features or the network’s
edges, significantly reduced EMOGI’s AUPRC values at each step (according to a
t-test and a significance level of 0.05, not shown), except for the transition from 50%
to 75% and from 75% to random for the network perturbation. However, EMOGI
using even significantly corrupted data was performing much better than a random
classifier—which would only yield an AUPRC value of 0.27 - especially when only
perturbing one type of data. This shows a high robustness to small perturbations and
noise in both, multi-omics data and PPIs and is recomforting because a substantial
amount of noise can be expected to be present in any NGS data generation process
[54, 82, 86, 93] (introduced in Chapter 3).
Jointly perturbing both data types still yielded AUPRC values of about 55% when
the node degree distribution of the network was preserved, indicating that the topo-
logical features of the PPI network, such as node degree, can already distinguish, to
a certain extent, between cancer and non-cancer genes. Randomization of all node
features and network edges without preserving node degree significantly reduced
EMOGI’s AUPRC down to about 27%, which corresponds to the performance of a
random classifier (depicted in Figure 6.7).

These experiments show that both network and omics features are important and
non-redundant in ensuring the model’s accuracy, justifying the use of a complex
model that incorporates diverse data representations for the task of predicting cancer-
related genes.

6.7 the impact of a pan-cancer analysis

In a final validation of EMOGI, it was investigated if the model benefits from the pan-
cancer approach, as hypothesized theoretically in Section 2.2.2 or if it is even better
suited in a cancer type specific setting.
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To recapitulate briefly, it was observed that while many cancer genes are specific to a

Sensitivity Analysis

Breast Cancer Test Set Performance

Sensitivity Analysis

Thyroid Cancer Test Set Performance

Breast Cancer Thyroid Cancer

Figure 6.14: Performance of cancer type specific EMOGI models. The two cancer type spe-
cific EMOGI models were compared to the pan-cancer model. Tables on the top
depict sensitivity of patient-wise and averaged EMOGI models in comparison
to the full pan-cancer model on the cancer-specific training and test sets, as
well as an independent set of literature-mined cancer-specific driver genes from
DriverDB [191]. The cutoffs were chosen based on the intersection between preci-
sion and recall. At the bottom, precision-recall curves compare the performance
of the three models (pan-cancer, patient-wise and averaged) for breast and thy-
roid cancer on the breast or thyroid cancer test sets.

type of cancer, several genes are recurrently altered across different types of cancers
[30, 41]. This observation holds true not only in light of SNVs and CNAs where the
long-tail phenomenon (stating that some genes are frequently mutated while a ma-
jority of cancer driver genes are only rarely mutated) has long been recognized, but
also for epigenetic and transcriptomic data. Cancer cells often acquire stem cell-like
features and similar genes are epigenetically altered or differentially expressed across
cancer types [248]. Hence, previous studies have argued that using multiple cancer
types simultaneously gives more statistical power to an algorithm to detect rarely
altered cancer genes [30, 41].
To assess whether training EMOGI on pan-cancer data has an advantage over a model
trained on a single cancer type, cancer type-specific EMOGI models were created for
two cancers: breast cancer (BRCA), a well-studied cancer type where many marker
genes are known, and thyroid cancer (THCA), which encompasses a cohort of similar
size in TCGA (see Table A.1), but is less studied in terms of marker genes compared
to BRCA.
For both cancer types, specific training, validation and test sets were collected us-
ing the COSMIC cancer gene census [195] which contains, for every gene, the cancer
types where the gene is most likely a driver gene. As for the pan-cancer model, the
set of positives was enriched using the DigSEE database [199], resulting in 496 breast
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cancer genes and only 65 thyroid cancer genes. 2187 negatives (non-cancer genes)
were collected as for the pan-cancer model. To obtain good HPs, a grid search was
used as depicted in Figure 5.8 and explained in Section 4.2.3, although fewer parame-
ter ranges were tried because reasonable settings of the pan-cancer model were partly
already discovered and could be reused.
To investigate the behavior of EMOGI on a cancer-specific data set, EMOGI was
trained on the CPDB PPI network averaging the values of each omic level across all pa-
tient samples of a certain cancer type, similarly to the pan-cancer setting. These mod-
els as referred to as averaged cancer-specific models, namely averaged BRCA model and
averaged THCA model. In this setting, each gene is associated with a four-dimensional
feature vector that encompasses average mutation rates, copy number changes, dif-
ferential DNA methylation at the promoter and differential expression of the gene.
Second, for both cancer types a model was created where the omics values across

samples are not averaged. Instead, an additional rank was added to the multi-omics
feature matrix X, making it a tensor of rank 3 (introduced in Section 5.5). The added
rank corresponds to the patient samples, in order to train EMOGI directly on patient-
specific omics features. The input tensor X ∈ RN×S×4 contains N genes as rows, S
samples as columns and 4 omics levels as channels, similar to a digital representation
of a rgb color image. These models are referred to as patient-wise models, namely
patient-wise BRCA and patient-wise THCA model.
Next, the cancer-specific models were systematically compared to the pan-cancer
EMOGI model, depicted in Figure 6.14. Due to the collection of cancer-specific train-
ing, validation and test sets, a direct comparison on either test set is inherently unfair.
Because the pan-cancer model is conceptually expected to also recover cancer-specific
genes, all three models were compared on the cancer-specific test sets.
The pan-cancer model achieves higher sensitivity on an independent cancer gene set
from DriverDB [191] and higher AUPRC compared to both the averaged cancer-specific
and patient-wise models on the respective cancer-specific test set. The advantage of
a pan-cancer model is expected to be less pronounced, given the high number of
known breast cancer genes used for training the cancer-specific models. And indeed,
sensitivity on both, the training and test set is equivalent for the patient-wise and
pan-cancer model for breast cancer (Figure 6.14 top left). Nonetheless, even in this
well-studied cancer type, the pan-cancer model achieves higher AUPRC values, espe-
cially in the high-recall regime (the right part of the PR curve). Interestingly, for both
cancer types a patient-wise model, which captures patient variability during training,
achieved a better performance than the averaged cancer-specific models.

The advantage of pan-cancer analysis becomes strikingly more evident for thyroid
cancer, where fewer marker genes are known and the cancer-specific models struggle
to achieve a good performance. Here, the pan-cancer model achieves a 10-fold higher
sensitivity on an independent set of thyroid cancer genes from DriverDB [191] while
the thyroid-specific models appear barely trainable, given the few marker genes for
that disease.
Further insights can once more be gained from explaining EMOGI’s decisions. Fea-
ture explanations were computed using the pan-cancer model for three breast cancer
genes, PRDM2, SIRPA and POLG, all of which are contained in the COSMIC CGC but
are missed by both breast cancer models, yet predicted by the pan-cancer model. This
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is because their alterations in cancer types other than breast cancers contributed to
their correct classification, pointing out once more the benefits of using a pan-cancer
approach (Figure 6.15). While PRDM2 and SIRPA show CNAs and DNA methylation
in breast cancer as the most prominent feature for their classification, POLG is mainly
predicted because of its elevated mutation rates and CNAs in other cancer types. In-
terestingly, SIRPA is mostly predicted because of its interaction partners while POLG
appears to be more often mutated across cancer types.

6.8 summary

EMOGI is a pan-cancer graph integration method which benefits from complemen-
tary information represented by a feature matrix and a network (shown in Section 6.1)
and which can faithfully predict cancer driver genes from heterogeneous molecular
data sets. We have seen that it outperforms various other algorithmic approaches for
the prediction of cancer genes in a variety of experimentally derived, manually cu-
rated or computationally predicted cancer gene sets (shown in Section 6.2). Various
perturbations have shown that the complexity of the non-linear classifier as well as
the integration of heterogeneous data types is justified because removing or perturb-
ing any of those results in a lower performance (shown in Section 6.5 and Section 6.6).
Additionally, the use of a pan-cancer approach outperforms cancer-specific models.
Interestingly, a patient-wise EMOGI model achieves stable performance on a breast
cancer cohort, indicating that this modification of the algorithm could be used to
stratify patients in the future. Finally, the model appears to base its predictions on
molecular mechanisms that have been discovered previously and that are reasonable
for a variety of well-studied cancer genes (shown in Section 6.4).
Taken together, the results from this chapter show convincingly that EMOGI is a pow-
erful, trustworthy and robust algorithm for the prediction of cancer-related genes.
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Figure 6.15: Explanations from pan-cancer model for selected breast cancer genes. The first
column depicts the multi-omics features for the 16 different cancer types. Col-
ors correspond to the data type (red for SNVs, purple for CNAs, blue for DNA
methylation and green for gene expression). Darker colors correspond to higher
importance. The second column depicts the 10 most important interaction part-
ners of the gene and the third column shows the percentage of contribution from
the PPI network, relative to the importance of the multi-omics features. Interac-
tions with known cancer genes are marked in red.
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After a thorough validation of EMOGI, we have seen that it is robust across manually
curated, computationally predicted and experimentally derived cancer gene sets. On
the test set, EMOGI outperforms various cancer-specific and general ML and graph
algorithms by 3% – 37% AUPRC values and the most important features for the classi-
fication of important and well-known cancer drivers are in accordance with literature
knowledge.
Next, we set out to examine novel predictions of the algorithm and see if they are rea-
sonable and promising new predictions. We then take the interpretability framework
to the next level, truly exploiting the multi-omics integrative approach, and attempt
to derive classes of cancer genes based on which data sets and cancer types drive the
classification of genes. Our results bring us closer to a more fine-grained definition of
what a cancer driver gene can look like, and makes us appreciate the vastly different
ways in which a gene can influence cancer cell growth.

7.1 newly predicted cancer genes

The first step to gain new insights about cancer diseases from EMOGI is by examining
novel predictions. Those Newly Predicted Cancer Genes (NPCGs) are predicted with
a very high probability but are not previously annotated as cancer genes in common
databases. Such a list of novel candidates can afterwards be evaluated more closely.

7.1.1 Deriving Top Predictions From Multiple Models

In order to compile a high-confidence list of NPCGs without biasing the results to-
wards a specific PPI network, top predictions from all six EMOGI models were aggre-
gated. In more detail, the top 100 predictions from all six models were collected and
those genes that were not previously annotated as cancer genes were extracted. This
was done by removing all genes that were part of the positive set (see Section 5.2.6 for
details). The list of NPCGs was ranked according to the number of EMOGI models
that the gene was among the top 100 predictions. This yielded a list of 165 NPCGs
that were then used for further analysis (a complete list of all NPCGs can be found
in Table A.2).

7.1.2 Novel Predictions Interact with Known Cancer Drivers

In a first attempt to characterize the novel predictions beyond their high EMOGI
score, interactions of NPCGs with KCGs was assessed. The rationale behind that be-
ing that cancer driver genes are likely to be located in the same pathways or protein
complexes as KCGs as explained in Section 2.1.3 but do not have to be significantly

97
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Figure 7.1: Newly Predicted Cancer Genes (NPCGs) interact with known cancer genes. a
Rank correlation plot between the EMOGI score for each gene (output probability,
x-axis) and the number of interactions of that gene with known cancer genes (y-
axis) in the CPDB PPI network. Genes with high predicted probability of being
cancer genes tend to interact with more KCGs. b Interactions with KCGs for
NPCGs specifically, visualized as cumulative density function of the fraction of
interactions that occur with KCGs for both NPCGs and all other genes. The top
ten interaction partners of NPCGs are also shown. Orange bars correspond, for
each gene, to the fraction of interactions with NPCGs and blue bars corresponds
to the total fractions of interaction partners from the PPI network. The genes
depicted here are ordered by the fraction of interactions with NPCGs. Known
cancer genes are highlighted in bold. c Average fraction of the contribution of the
omics data versus the PPI network, as computed through the LRP framework for
Known Cancer Genes (KCGs), Candidate Cancer Genes (CCGs), NPCGs and
Others, where this last group refers to genes which are not present in any of the
previous three sets.

altered genetically or epigenetically themselves.
Figure 7.1a shows a contour plot, visualizing the genome-wide correlation between
EMOGI score — representing the probability of a gene of being a cancer gene —
and the number of interactions that the gene’s protein has with KCGs (Spearman
correlation 0.63, p-value < 2.2e−16). Genes with a high-ranked EMOGI score are top
predictions. A significant correlation between the EMOGI score and the number of in-
teractions of that gene with KCGs was observed. Strikingly, all of the NPCGs had at
least one interaction with a KCG and KCGs were also significantly enriched among
the top 10 interaction partners of NPCGs. This is depicted in Figure 7.1b, where the
fraction of genes from the NPCGs that interact with the gene in question is depicted
in orange. For example, the well-known cancer driver genes TP53, BRCA1, EP300 or
EGFR were among the 10 genes that most interact with NPCGs. This observation
was not biased towards genes with a high degree in the PPI network, as the fraction
of interactions that occur with KCGs is higher for the NPCGs compared to all other
genes, depicted in the cumulative density function (Figure 7.1b).
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Figure 7.2: Newly Predicted Cancer Genes (NPCGs) are essential genes in CRISPR inter-
ference (CRISPRi) loss-of-function screens. a The top 20 NPCGs that have a
significant negative growth effect (CERES score 6 −0.5) on tumor cell lines from
the Achilles Project with the corresponding number of affected tumor cell lines.
The dotted black line corresponds to the average number of affected cell lines.
NPCGs are enriched for essential genes (Fisher’s exact test, p-value = 4.9e−11,
odds ratio = 3.1). b Fraction of affected tumor cell lines for Known Cancer Genes
(KCGs), Candidate Cancer Genes (CCGs), NPCGs and Others, where this last
group refers to genes which are not present in any of the previous three sets,
similar to Figure 7.1c.

This demonstrates that NPCGs are located in closer proximity to KCGs in the PPI
network than expected by chance. This in turn is strong evidence that NPCGs are
often located in the same pathways or complexes as the KCGs, making these novel
predictions interesting candidates for drug targets that might not have been previ-
ously characterized.
This result was validated from another perspective, exploiting the potential of EMOGI’s
explainability. The LRP framework was applied to extract the contribution of the net-
work versus the node features to the classification of the NPCGs, as explained in
Section 5.8. This time, however, LRP was conducted for all genes in the CPDB PPI
network, enabling comparison between different gene sets. As depicted in Figure 7.1c,
the overall contribution from the multi-omics features is low in comparison to the
other gene sets and hence, the contribution from the interactome (the PPI network)
was higher for NPCGs than for any other gene set. Interestingly, it was even higher
than for the KCGs, indicating that the NPCGs indeed represent a set of genes whose
main reason for being classified as cancer genes is the interactome.

7.1.3 Novel Predictions Are Essential in Tumor Cell Lines

The validation of cancer genes experimentally is not straightforward. Knockout or
knockdown experiments in humans are impossible for obvious reasons and systemat-
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ically perturbing genes in mice not only is expensive and time consuming but would
also mean an enormous sacrifice of mice. However, immortalized tumor cell lines
exist and can be perturbed in high-throughput loss-of-function screens [249]. Such
screens systematically knock down one gene at a time using CRISPRi or RNA inter-
ference (RNAi) systems. In the Achilles project [249], such screens were done for all
genes across 625 (publicly available) tumor cell lines. The effect of the knock-down on
the cell culture growth was then measured, enabling the in vitro validation of EMOGI
predictions.
In the project, each gene is assigned a so-called CERES score in each cell line which
summarizes the effect of that gene on cell proliferation from the loss-of-function
screen [250]. A score 6 −0.5 means that the knock-down of the gene significantly
reduced the culture growth, indicating a potential oncogene for the cell line). Sim-
ilarly, a score > 0.5 means that the knock-down significantly promotes tumor cell
growth and that the perturbed gene is a potential TSG.
However, it was observed that positive CERES scores are often due to random effects
1 [250] and were therefore not considered in the validation. To derive a single essential-
ity score per gene that indicates how important a gene is for the survival of tumor cell
lines independent of the cell line, a significant effect (CERES score 6 −0.5) for more
than 78 tumor cell lines was considered as a threshold. That is, if a gene negatively
affects the growth of more than 78 tumor cell lines, it is defined to be essential. The
threshold of 78 corresponds to the average number of cell lines affected by a gene
and therefore, essential genes affect more cell lines than the average.
NPCGs were significantly enriched in essential genes (p-value= 4.4e−15, Fisher’s ex-
act test). Among the top 20 essential NPCGs depicted in Figure 7.2a, there were genes
that affected up to 600 tumor cell lines, such as the ubiquitin protein UBC which has
been associated with DNA repair and apoptosis, cyclin-dependent kinase CDK1 or
the polo-like kinase PLK1 which is associated with cell cycle and gliomas. Further-
more, NPCGs significantly decreased tumor cell line growth of more cell lines on
average, compared to KCGs and CCGs, as depicted in Figure 7.2b. The difference is
highly significant and interestingly, NPCGs have a stronger effect on cell line survival
than even the KCGs (p-value = 0.015, fisher’s exact test). Loss-of-function screens
such as the data from the Achilles project have several drawbacks, however. First, the
cells grow in an artificial system where they can grow outside of their normal mi-
croenvironment. An immune system is not present in cell line cultures, for instance,
that heavily influences selective growth advantages of cells in vivo because it will de-
tect tumor cells that cannot adapt adequately. Second, there are no such screens for
normal cell lines of the same tissues. This makes it hard to tell if an effect of a pertur-
bation will affect all cells or only the cancer cells. The latter is especially important
because it could be that NPCGs are enriched with so-called housekeeping genes. These
are genes required for the normal functioning of any cell in any tissue [251] and are
not of special interest as potential drug targets because their disruption would not
necessarily have a stronger effect on tumor cells than normal cells.

1 https://depmap.org/portal/faq/#dep_positive_ceres_score

https://depmap.org/portal/faq/#dep_positive_ceres_score
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Figure 7.3: NPCGs are not solely housekeeping genes. a The fraction of known housekeep-
ing genes derived by [251] present in KCGs, CCGs, NPCGs and Others. Error bars
denote the 95% confidence interval. b The housekeeping score for the same four
gene sets. The score is derived using RNA-seq data from the Genotype-Tissue
Expression (GTEx) consortium and combines mean and variance of gene expres-
sion across tissues. c Fraction of essentiality of genes among the four different
gene sets. Each gene is catalogued by the number of tumor cell lines for which
it is essential (significantly decreases tumor cell growth). d Pathway enrichment
analysis for NPCGs using the KEGG database. The top 10 enriched pathways for
the 212 NPCGs are shown (a complete list of enriched pathways can be found
in Table A.3). In the table, Count denotes the number of NPCGs included in the
pathway and size denotes the pathway size.

The high number of NPCGs that are essential for the survival of tumor cell lines
directly raised the question whether the novel predictions from EMOGI are mainly
housekeeping genes whose alteration is lethal in any cell. Eisenberg and Levanon
[251] defined a list of 3, 804 housekeeping genes which were used as a validation. As
depicted in Figure 7.3a, NPCGs contain indeed a higher fraction of housekeeping
genes compared to other gene sets but this fraction was still at around 30–35%.
Housekeeping genes are expected to be expressed at constant levels across tissue
types in normal cells. To complement the analysis from above, RNA-seq data from
the GTEx consortium for 16 different tissues (the same tissues that were used for the
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pan-cancer analysis) was used. To assess how stable the expression of a gene is across
those tissues, a housekeeping score was defined as:

HKi = µi ×
1
√
σi

where µi denotes the average normalized FPKM value for gene i across GTEx tis-
sues and σi denotes variance of the gene across tissues. The rationale behind this
formulation is that genes which are highly expressed throughout tissues receive high
scores while genes that are only expressed in certain tissues are penalized because
they exhibit high variance.
Again, the NPCGs have a higher housekeeping score on average, compared to the
other gene sets (Figure 7.3b), indicating once more that a fraction of NPCGs are
housekeeping genes.
Another way to assess the issue of housekeeping genes is to assess the number of
tumor cell lines affected by the genes. To that end, for each gene the percentage of
cell lines it significantly affects was compared. As shown in Figure 7.3c, more than
20% of NPCGs significantly reduce tumor cell culture growth of more than half of
the cell lines while this number is smaller for other gene sets. However, most of the
genes affect less than 10% of cell lines and the fraction of those genes that signifi-
cantly reduce tumor cell culture growth of some but less than half of the cell lines is
highest for NPCGs compared to the other gene sets.
In addition, pathway analysis of the novel predictions shows that NPCGs are not en-
riched for housekeeping functions but for signaling, cell cycle, cancer pathways and
development functions (see Figure 7.3d and Table A.3 for a full list of enriched KEGG
pathways), indicating that many NPCGs most likely exhibit cell lethality specific to
cancer and not to all cells. These results taken together show that EMOGI predicts
essential cancer genes without having been trained on such data. While some of them
are probably required for the normal functioning of cells, this is not the case for all
NPCGs.

7.2 classes of cancer genes

Early cancer sequencing studies have defined cancer driver genes as:

[a gene] whose mutations increase net cell growth under the specific mi-
croenvironmental conditions that exist in the cell in vivo [31].

We have seen by now that novel predictions by EMOGI go beyond such a classical
definition of what constitutes a cancer driver gene, in line with more recent studies
that underlined the importance of epigenetic and non-coding alterations (introduced
in Section 2.2). Understanding EMOGI’s predictions globally and extracting groups
of cancer genes guided by similar molecular mechanisms is therefore the next logical
step. The key idea behind that is to use the LRP framework for all genes in combi-
nation with unsupervised ML (introduced briefly in Section 4.1) in order to reveal
groups of cancer genes predicted as such because of different and unique patterns in
the data.
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First, EMOGI’s predictions were grouped based on their most important contribut-
ing multi-omics feature contributions using bi-clustering. Second, a complementary
approach was employed to find modules of PPIs that were important for the classifi-
cation of multiple genes.

7.2.1 Bi-Clustering of Feature Contributions

Index for rows Index for columns

E
ig

en
v

al
u

e

Largest
Eigengap

Largest
Eigengap

0 10 20 30 40 50
0

.2

.4

.6

.8

2.0

1.5

1.0

0.5

0

0 10 20 30 400 200 400 600 800 1000

1.75

1.5

1.0

0.5

0

Figure 7.4: Eigengap analysis to determine optimal cluster numbers. X-axes depict the
eigenvalues ordered by their size and the y-axes denote the value of the eigen-
values. The optimal number of clusters k is derived from the largest eigengap. For
the rows, the first 50 eigenvalues are enlarged in the box.

Clustering attempts to find latent structures in a data set by grouping observations
(or data points) in groups or clusters, maximizing distances between clusters and
minimizing distances within clusters. While a plethora of clustering algorithms exist,
two questions are fundamental for their application. First, the number of desired
clusters (k) in the data is hard to define. For some applications this might be an
obvious choice but mostly, there is no clear answer and additional computational
methods have been developed to find good estimates. Second, a distance measure
(metric) has to be defined that makes sense for the particular data set.
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Figure 7.5: Contribution of omics data across predictions for different gene sets. Values are
measured for the CPDB PPI network and all contributions sum to 1.

To stratify genes and data as well as cancer types at the same time, bi-clustering was
used. This subfield of clustering attempts to reveal a checkerboard structure in any
data matrix. Initially proposed for the analysis of gene expression studies with several
conditions, spectral bi-clustering is a powerful bi-clustering method [252]. It works
by converting a data matrix into a bipartite graph where one set of nodes denotes
rows (in this case genes) in the data and the other set of nodes denotes columns (data
and cancer types here). The eigenvalue decomposition of the Laplacian of that graph
computes signals over that graph which do not change the feature distributions (see
Section 4.5 for details on spectral graph theory and an introduction to GSP). Hence,
the first eigenvectors can be clustered using any well-established clustering method
(such as k-means) to partition the graph. This can be used to reorder the data ma-
trix such that groups with similar rows and columns are close to one another. Initial
attempts to use biclustering on the multi-omics feature contributions of all genes
resulted in a partitioning between highly predicted genes and all other genes (see
Figure A.13). This is reasonable because the overall amount of relevance from the
LRP corresponds to the output probability for a gene (as explained in Section 4.6.3).
Furthermore, the binary cross-entropy loss function used to train EMOGI is known
to push data points to receive either 1 or 0 output probability. Hence, a fundamental
difference between highly predicted genes and lowly predicted ones can be expected.
To employ a bi-clustering of feature contributions nonetheless, only the top 1, 000 pre-
dictions from EMOGI were subjected to spectral bi-clustering, reducing the problem
because the genes all received an output probability close to 1 and therefore LRP
explanations are reliable (see Figure A.9). Furthermore, the number of 1, 000 reflects
an upper bound to the size of current databases like the COSMIC CGC (699 genes)
or oncoKB (642 genes).
For spectral clustering, the eigengap heuristic [138] has been shown to work well
to find the appropriate number of clusters k, even when used in combination with
LRP [151]. The eigengap heuristic states that an appropriate number of clusters will
be found when the difference between two consecutive eigenvalues is large. An in-
tuitive motivation for the use of eigengap heuristics is that in the ideal clustering
setting, there are k different connected components in the graph. In that scenario, the
first k eigenvalues will be 0 and the gap between λk and λk+1 > 0 [253]. This also
holds true for less well separated clusters [138].
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In the application presented here, eigengap analysis was performed for rows and
columns independently. This resulted in 20 row clusters and 5 column clusters as
optimal values, as depicted in Figure 7.4.
The second open question for clustering is the choice of an appropriate metric. Here,
the Euclidean distance was chosen. Negative contributions from the LRP were set to 0
because such negative contributions do not have a clear biological meaning. Because
the LRP values have no specific scale or unit, they were subjected to standard scaling
(denoted by Equation 5.6) prior to clustering.
Figure 7.6 depicts the result from the clustering. Interestingly, mutation rates seem to
be the most important data type for the classification of top predictions by EMOGI.
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Figure 7.6: Bi-clustering of genes and feature contributions. Rows correspond to genes and
columns correspond to omics types across the 16 TCGA cancer types. Column
labels are colored according to data types. Each cell of the matrix corresponds to
the LRP value of a certain gene for a certain omic level in a certain cancer type.
Values have been subjected to min-max normalization. Bi-clusters correspond to
the blocks defined by the partition on the left side and on the top of the matrix
and representative blocks have been highlighted in red and numbered from 1 to
8. On the right side of the matrix, the cumulative contribution of all omics features
to the gene classification, relative to the total of network and feature contribution
is displayed as running average with window size 20.

This is shown by the high values in the first column cluster which includes the high-
lighted clusters 1, 2 and 5, 7, 10 and 12. This initial impression is further quantified in
Figure 7.5 where mutation rates make up more than 50% of the feature contributions
(excluding the contributions from the interactome) for the top 1000 predictions, a
higher value compared to other gene sets. This is in line with our current knowledge
of cancer and is expected because KCGs were identified as cancer genes due to their
high mutation rates in various cancers and therefore included in the training data for



7.2 classes of cancer genes 107

EMOGI. Furthermore, the high importance of mutations was already observed above,
when training EMOGI on only a subset of features.
16 of the 20× 5 = 100 bi-clusters were selected and highlighted in Figure 7.6a. The
clusters were selected by visual inspection because they seem to represent distinct
classes of cancer genes. Roughly half of the selected gene clusters corresponded to
cancer type-specific mutation-driven gene predictions (cluster 1, 2, 5, 7, 10 and 12a in
Figure 7.6). However, inspecting the genes included in those clusters also highlighted
some important differences: The contribution of the omics features to the classification
of genes in cluster 1, 4 and 12, for example, was much lower than the PPI network
contribution (Figure 7.6b & Figure 7.8). In addition, cluster 12 included a high percent-
age of NPCGs, as well as the highest fraction of interactions with KCGs (Figure 7.6b)
and several genes that are known to influence patient prognosis (Figure 7.7). It is also
the only cluster showing high contributions in both, SNVs and gene expression for
several cancer types.

Figure 7.7: Metastasis,prognosis and tumor initiation genes per cluster. Prognostic cancer
genes from Wee et al. [254], genes involved in metastasis from Priestley et al.
[255] and genes associated with tumor initiation from CIGene [256] were col-
lected. From the bi-clustering analysis in Figure 7.6, the percentage of prognostic,
metastatic and tumor initiation-associated cancer genes contained in each biclus-
ter was computed. The numbers above the bars denote absolute numbers. Colors
match those in Figure 7.6. Note that genes can be contained in multiple gene sets,
e.g. be associated to both prognosis and metastasis.

Cluster 2, on the contrary, was enriched with well-known cancer genes, such as
TP53, KRAS or PIK3CA, where omics features, in particular SNVs, contributed more
than the PPIs network to their classification. Consistently, this cluster was also de-
pleted in genes interacting with KCGs and enriched for cancer pathways (Figure 7.6b
& Figure 7.8). In addition, cluster 2 shows the highest median lethality in tumor cell
lines (Figure 7.6) and was enriched for metastasis-related genes (Figure 7.7). Clus-
ter 5, also containing mutation-driven genes, was enriched in KCGs participating in
cancer-specific pathways and in developmental genes (Figure 7.8) which are often
reactivated in cancer cells, especially to acquire migration capabilities required for
metastasis [257]. Accordingly, this cluster also contained one of the highest numbers
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of metastatic genes, compared to the other clusters (Figure 7.7). Interestingly, cluster
7 is a small cluster also driven by SNVs and highly enriched with NPCGs, but de-
pleted in interactions with KCGs, despite the general trend of NPCGs to be classified
because of their interactome (see Figure 7.1c).
Clusters 6 and 9 were characterized by copy number changes (Figure 7.6a) and in-
cluded genes belonging to known cancer pathways (Figure 7.8), as well as genes
known to be often amplified, such as MYC or NRAS in cluster 6 and cyclin-dependent
kinases or the tumor initiation genes EGFR and ERBB2 in cluster 9. Cluster 8 and 3,
and to a lesser extent 4 and 12, where the interactome played a more important role
(Figure 7.6a), are examples of groups of genes whose classification was driven by
gene expression changes alone (cluster 3) or in combination with other omics features,
such as DNA methylation (cluster 4 and 8). In particular, cluster 12 was characterized
by genes exhibiting both high mutation rates and altered gene expression in a sub-
group of cancer types (sub-clusters 12a and 12b).
Finally, cluster 11 included subsets of genes whose cancer classification was mainly
driven by aberrant DNA methylation, among them FOX TFs, the DNA methyl-
transferase DNMT3L and the RUNX1 TF that was previously reported to be dif-
ferentially methylated in cancer [258, 259]. Pathway analysis shows enrichment for
immune-related genes for this cluster (Figure 7.8).
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Figure 7.8: Statistics on the biclustering analysis (continued from the previous page) Bar
plots (left column) show average omics feature contributions to the classification of
the genes in each cluster. The middle column shows the amount of omics features
relative to the network contribution for that cluster, and error bars denote the
standard deviation across genes in the cluster. The right column shows enriched
KEGG pathways in each cluster with corresponding p-values, number of cluster
genes belonging to specific pathways and the total number of genes in the pathway.
Split clusters are marked by a gap between the two clusters (e.g. Biclusters 3a and
3b).

7.2.2 Summary

All in all, the bi-clustering analysis reveals distinct classes of cancer genes. It dis-
tinguishes between interactome-driven (mainly represented in clusters 1, 4 and 12),
SNV-driven (clusters 5, 7 and 10), methylation-driven (cluster 11), expression-driven
cancer genes (clusters 3 and 8) and cancer genes being driven by CNAs (clusters 6
and 9). But not only the data type but also the concepts represented by the clusters
are different. The concept of transcriptional addiction, for instance, hypothesizes that
tumor cells often rely on individual genes to maintain their altered metabolism and
that these silent players are promising drug targets. The concept exists for some time
now but identifying such regulators or TFs from molecular data sets is difficult be-
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cause gene expression alone is noisy and might not show significant differences in
tumor samples. However, cluster 12 exhibits characteristics fitting very well into the
concept and the genes in the cluster might be interesting to investigate further.
In addition, the bi-clustering also highlighted some cancer type specific patterns (Fig-
ure 7.8), indicating that carcinogenesis in different tissues might be triggered by dif-
ferent and complementary molecular mechanisms.
While the clustering procedure is highly informative to distinguish classes of cancer
genes and helps to not only complement our definition of what a cancer gene might
look like but also to find potential new drug targets, it only uses the multi-omics fea-
ture contribution for the clustering. But as we have seen throughout this thesis, PPI
interactions are a vital component to the classification and LRP gives us scores for
individual PPIs (as introduced in Section 5.8). Therefore, we will look at those parts
of the PPI network that EMOGI uses most for the classification of genes in the next
step to find modules and PPI that are generally important for tumor formation and
maintenance.

7.3 modules of important interactions

Cancer network modules, connecting functionally related genes, help to further en-
hance our understanding of cancer initiation and progression at the level of cellular
pathways. We have seen in Section 4.6.1 that non-linear classifiers have individual
explanations and therefore require a way to aggregate all individual explanations
for data points into a model-centric explanation of the important connectome, i.e. the
parts of the PPI interaction graph most relevant for EMOGI.
Section 5.8 (and Figure 5.9 in particular) has introduced that modules in the PPI
graph can be computed through the aggregation of individual explanations across
all genes. To that end, interaction contribution matrices for all 13, 627 genes from
the CPDB PPI network EI were subjected to a pointwise summation and the result-
ing matrix (EItotal) was interpreted as a weighted and directed graph where edge
weights correspond to the importance of interactions. This graph is next sparsified
and Strongly-Connected Components (SCCs) are computed within the sparse graph.
Those SCCs correspond to the most important parts of the PPI network and biologi-
cally represent cancer gene networks and highly relevant pathways.

7.3.1 Deriving Edge Weights From Explanations

The LRP rule produces — in addition to the multi-omics contributions — scores for
edges in the PPI network from the point of view of the gene that the explanation is
calculated for (Section 5.8 explains how LRP was used for EMOGI). Depending on
the local support of the graph convolutional network (the degree of the Chebychev
polynomials used, as explained in Section 4.5.3) and the number of graph convolu-
tional layers, those include direct neighbors and indirect connections as well.
From the above-mentioned aggregation — explained in more detail in Section 5.8 —
results a directed and weighted graph. The edge weights represent a general impor-
tance of PPIs, which is reflected by a mild correlation between edge betweenness (the
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fraction of shortest paths that pass through the edge) and the importance of the edge
in the directed contribution graph (Pearson’s correlation coefficient 0.08, depicted in
Figure A.14). From that graph, standard community detection algorithms can be used
to find modules of nodes with high PPI weights.
One such standard algorithm first truncates the graph by removing all edges below a
certain threshold and then computes SCCs within the truncated network. SCCs are
defined for directed graphs only and denote sub-graphs in which there exists a path
from every node to every other node. SCCs have been used previously for the de-
tection of highly mutated cancer modules where a directed network was computed
using random walks [41] and can be computed efficiently, even for large graphs [260].
Selecting only a subset of edges is required because biological networks are most of-
ten scale-free and hence, redundant paths from all nodes to all others exist [125, 218].
Similarly to the number of clusters for the bi-clustering procedure, the choice of a
cutoff for the directed network is not trivial. One way that is used in practice [41] is
to decide how many modules at what sizes are reasonable to assume and then select
a threshold that produces such numbers of modules. To that end, the threshold that
resulting in the highest amount of SCCs with size > 5 was selected (depicted in Fig-
ure 7.9 along with how the threshold affects the network). Tarjan’s algorithm [260]
was used to find SCCs in the network.
The resulting modules are those parts of the CPDB PPI network that EMOGI is
most focused on and correspond to a connectome of important pathways, protein
complexes or other biological structures that are encoded in the topology of the PPI
graph.
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7.3.2 Modules of Cancer-Related Protein-Protein Interactions
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Figure 7.9: Thresholding removes edges and reveals components of high contributions. a
Removing all edges below a certain threshold makes the PPI network more sparse
and only PPIs with high contributions stay. In such a sparse network, Strongly-
Connected Components (SCCs) can be detected. However, finding a threshold
that creates a sparse network with a sufficient number of components is not
straightforward. b The threshold can be determined by trying out which one
yields the highest number of components. Here, the goal was to find meaning-
ful SCCs with size > 5. The threshold of 0.14 produces 9 SCCs of sufficient size.

With the selected threshold of 0.14 (depicted in Figure 7.9b), 45 SCCs with a total
number of 323 genes were found. The largest SCC contains 149 genes and the small-
est one only 3. The average SCC size was 3.1, but further analysis was only done for
the 8 SCCs of size >= 5.
Those first 8 components included genes involved in well-known cancer pathways, or
complexes that have more recently been observed to be important in cancer, as well
as new sub-networks with potential new roles in cancers.

The largest SCC corresponds to a big SCC of 149 genes and represents the core
“interactome” used by the EMOGI model to perform the cancer gene classification
task (Figure 7.10). This component is enriched in genes predicted as cancer-related
by EMOGI, as well as KCGs in cancer pathways, such as focal adhesion, TGF-beta
signaling pathway, ECM-receptor interaction, Wnt signaling pathway and ErbB sig-
naling pathway, among others (Table S9, KEGG pathway enrichment analysis). Inter-
estingly, the SCC is highly enriched for extracellular matrix genes (according to Gene
Ontology enrichment, p-value = 2.4e−10, Table S8) which are known to be a major
structural component of the tumor microenvironment [261].
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Oncogene from ONGene

COSMIC Cancer Gene
Census

Candidate Cancer Genes
from NCG

Bailey et al., 2018

Figure 7.10: EMOGI allows extraction of PPI network components corresponding to known
cancer sub-networks, as well as putative novel cancer modules. The largest
SCC of important edges in the CPDB PPI network. Red gene names indicate
that the gene was predicted as cancer gene by EMOGI, the shape of the nodes
indicates presence in a database of cancer genes and the size scales with the
number of tumor cell lines in which the gene was essential in the Achilles cancer
dependency map (see Section 7.1.3 for details). The width of the edges scales
with the importance of the edge for the EMOGI model.

Among the well-known cancer genes that the component revolves around are
BRCA1, GRB2 and CDH1, mainly associated with breast cancer, the tumor suppressor
COL1A2, whose altered expression patterns have been linked to the development of
colorectal cancer [262] and the ErbB family member EGFR, driver of tumorigenesis
in mainly lung, breast and brain cancer [263]. EGFR interacts with PTPRD, a receptor
known to regulate oncogenic transformation and cell growth [264]. PTPRD in turn
interacts with several other genes linked to cancer, such as the Interleukin 17 receptor
IL17RD or FYN — a NPCG.
Cell adhesion molecules take part in intercellular and extracellular matrix interac-
tions of cancer, playing a pivotal role in cancer development and metastasis [265].
The largest SCC contains several proteins of the endoplasmic-reticulum proteins in-
volved in cell-cell adhesions, such as β-catenin (CTNNB1), the blood coagulation fac-
tor F8, calreticulin (CARL) and the heat shock protein B1. Other important genes of
this component are those forming star-like structures, for example the endocytic cell
signaling receptors LRP1 and LRP2, which have been shown to be critically involved
in many processes driving tumorigenesis and progression [266], the inflammatory
caspases CASP3 and CASP5, which have been shown to regulate apoptotic response
[267] and the TXN transcription factor, which links a sub-module centered around
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the TGFBR3 tumor suppressor gene to BRACA1 and its interacting partners.

SCC 2

SCC 4

SCC 3

SCC 6 SCC 7 SCC 8

Oncogene from ONGene

COSMIC Cancer Gene
Census

Candidate Cancer Genes
from NCG

Bailey et al., 2018

SCC 5

Figure 7.11: Additional SCCs with five or more genes. SCCs in a network where edges are
directed and weighted, based on the importance of the edge for the classification.
The approach identifies 7 additional SCCs which are depicted here. The size
of the nodes is proportional to the number of tumor cell lines where the gene
was found to be essential, according to the Achilles data. Gene names marked
in red correspond to genes which were predicted to be cancer genes by EMOGI,
and different node shapes indicate whether and in which database the gene was
already annotated as cancer gene.

The second-largest SCC, depicted in Figure 7.11 along with all other components
with five or more genes, contained some well-known cancer regulators, such as the
tumor suppressor TP53, which forms a star-like structure at the center of the compo-
nent, its regulator MYH9, known to function either as tumor suppressor [268] or onco-
gene in different cancers [269] and the histone-lysin 36 methyltransferase SETD2, a
marker of active chromatin and trancriptional elongation recently identified as poten-
tial tumor suppressor in solid cancers [270]. Accordingly, P53-signalling is enriched
in that SCC (KEGG pathway enrichment analysis, p-value = 0.0035).
The remaining identified components correspond to complexes that have more re-
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cently been observed to be important in cancer, as well as new sub-networks with
potential new roles in cancers. For example, the BBsome complex was found, a cargo
adapter for many signaling proteins with important roles in cilia homeostasis [271],
whose association with cancer is not yet known from the scientific literature (Fig-
ure 7.11, SCC 3).
Furthermore, the fifth-largest SCC (Figure 7.11) is centered around the TSG CRHBP,
identified as TSG due to its role in regulating apoptosis and inflammation [272].
The component appears to be linked to the ubiquitination processes because of the
prominent positions of the NPCGs UBR1 and UBR2. Ubiquitination is important for
cellular homeostasis and alterations in this process lead to various types of cancer
[273]. In addition, the fifth-largest SCC is linked to the pro-survival NF-κB pathway
through the SQSTM1 gene [274].
A last component of interest, containing only NPCGs, is the 8

th-largest SCC with
LRP6, a receptor protein in the Wnt/β-catenin signaling cascade that was reported
to regulate cell differentiation, migration and proliferation [275]. It interacts with the
Proliferation-Associated Protein CAPRIN2 that also regulates Wnt signaling [276] and
SERPINF1, a protein that inhibits angiogenesis, the process of growing blood vessels
which is highly linked to cancer [277] (Figure 7.11).

7.3.3 Summary

Interrogating the direct network derived from the LRP analysis allows us to extract
modules corresponding to those parts of the PPI network where EMOGI focuses the
most, and allows the identification of well-known cancer modules, as well as new
complexes with putative undiscovered associations to cancer.
However, as pointed out by another study [151], the averages of gene-wise explana-
tions should not be over-interpreted, as the average may simply point to more central
parts of the PPI network while individual genes have highly specific local topologies
important for their classification as cancer genes. If a module of interactions is highly
important for only a few cancer genes, this might not be adequately represented in
our module detection because we average over all the genes in the PPI network, de-
creasing the module’s impact on the overall analysis. Nonetheless, the identification
of such modules complements the analysis of novel findings by EMOGI.

7.4 discussion

EMOGI is a powerful classification method that integrates heterogeneous data across
cancer types. When we examined new findings from the algorithm, we saw that
EMOGI found new putative cancer genes, termed NPCGs. Examining the NPCGs
in more detail, we found them interacting with KCGs. This is strong evidence that
NPCGs are part of known cancer protein complexes, pathways or even more general
cellular processes. From a computational perspective, the nodes (genes) in the PPI
network are said to exhibit high homophily because neighboring nodes have a higher
chance to share the class label. GCNs were previously shown to perform well in such
applications with high homophily but this finding also explains an observation made
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in Section 6.2.5. The high performance of DeepWalk, only trained on the PPI network
and unable to incorporate knowledge from the omics levels exhibited a high perfor-
mance and outperformed many of the other methods on the CPDB PPI network. The
high homophily in the network, however, provides an explanation for the observa-
tion. DeepWalk conducts short random walks (of length 10) across the network and
projects nodes that are often seen together during the walks close to one another.
Hence, DeepWalk will fully exploit the homophily and project cancer genes in close
proximity. The SVM used to classify based on the node embedding is then capable
of identifying cancer genes close to each other.
Very interestingly, the NPCGs are also more likely to be essential genes in loss-of-
function CRISPRi screens and their knock-down leads to reduced growth of cancer
cell lines. This observation is surprising because EMOGI was not trained on such
data. While it was shown in previous studies that central nodes in PPI networks are
also more likely to be lethal when removed [93, 214, 278], neither the PPI network
nor the multi-omics features provide the GCN algorithm with a direct measure of es-
sentiality. Because such loss-of-function screens do not exist for non-cancer cell lines,
it is hard to argue that all of the essential NPCGs are valid drug targets since their
knockdown could be lethal for normal cells as well. However, the analysis presented
here showed that the NPCGs are not solely housekeeping genes, making at least a
part of them interesting targets for further studies.
Next, we attempted to find groups of cancer genes driven by similar evidence, thereby
fully exploiting the heterogeneous data integration of EMOGI. Following the hypoth-
esis that a gene does not have to be mutated itself in order for it to be associated with
cancer, several different classes of cancer genes were found. Some were interactome-
driven and required a set of interaction partners to be classified as cancer genes and
consequently, most of the NPCGs were found in those clusters. Previous studies have
identified such “helper genes” in the past [279] and their presence was discussed pre-
viously [37].
More traditional groups of cancer genes represent clusters driven by SNVs that con-
tain many known cancer genes and less impact from the interactome. Genes from
such clusters can probably be found with other computational methods, such as Mut-
SigCV or 20/20+ that analyze mutation frequencies in genes.
CNA-driven clusters were enriched for tumor initiation genes and generally con-
tained more KCGs compared to other clusters. Among the copy-number driven genes
were MYC or NRAS that are known to be amplified in multiple cancer types.
A third group of cancer genes is comprised of differentially expressed genes whose
altered gene expression might be the result of non-coding mutations or epigenetic
changes. Such genes could be interesting to study further because they might rep-
resent regulators that the cancer cell is relying heavily upon to gain or maintain its
growth advantage in the tissue microenvironment [37]. Accordingly, genes for which
gene expression was most important exhibited high essentiality in CRISPRi loss-of-
function screens.
Lastly, a cluster of genes driven by aberrant DNA methylation was discovered. Exam-
ining those genes more closely, we identified TFs and immune-related genes in this
group of genes.
In addition, the classes of cancer genes further divide into more tissue-specific sub-
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clusters, highlighting that the pan-cancer approach is helpful when attempting to
find general regulators of cancer diseases. The bi-clustering analysis revealed distinct
classes of cancer genes but relied on the multi-omics features for its grouping. To
also analyze contributions of individual PPIs in more detail, we examined modules
of highly important interactions. Here, we found a large module that largely captures
the Wnt signaling pathway and contains many well-known cancer genes. This com-
ponent represents a connectome, a highly relevant module comprised of cancer genes
and important regulators of cell proliferation, apoptosis and other pathways relevant
for cancer (Table A.5 and Table A.4). The finding highlights that analyzing the con-
tributions of individual PPIs in more detail can yield further insights and provide
additional putative novel cancer genes.
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D I S C U S S I O N & C O N C L U S I O N

8.1 discussion

It is widely accepted that cancer diseases arise through the accumulation of somatic
mutations which confer growth advantages enabling cells to grow outside their oth-
erwise tightly regulated microenvironment. The exact molecular changes underlying
such transformations, however, are often still unknown. This is partly due to the sheer
complexity of cells where redundancies in cellular pathways, as well as a plethora of
layers of regulation are responsible for the concentration of particular proteins within
the cell. Hence, each tumor is unique with its own resistance to specific drugs and
with different growth characteristics.
To nonetheless be able to effectively treat cancer diseases, the long-term goal of per-
sonalized medicine attempts to first sequence (or otherwise profile) tumor cells and
then guide treatment with specialized drugs targeting the unique characteristics of
the profiled tumor cells. However, personalized medicine requires a deep understand-
ing of key regulators which might be mis-regulated in tumors as well as a battery of
drugs able to target a wide variety of such regulators. While they do not have to be
proteins and drugs targeting RNAs have been successfully developed in the past, the
majority of personalized cancer drugs attempt to restore or repair protein levels and
continue to do so (see Section 2.2.1 for an introduction to precision medicine). The
identification of genes that are often mis-regulated in cancer diseases is therefore a
crucial point in precision medicine.

Their identification is complicated not only by an exact definition of what consti-
tutes a cancer gene but also by the vast amount of sequencing data generated in
high-throughput screens and large consortia like TCGA or the ICGC. Machine learn-
ing methods can help to find abnormalities in large data sets across cohorts but have
mainly been used to find highly mutated genes or pathways [29, 41, 42]. However,
it is by now widely accepted that while mutations are causing cancer diseases, their
effects are often indirect [19, 25, 37] and consequently, the identification of cancer
driver genes either requires a complete understanding of gene regulation or the inte-
gration of complementary experimental readouts, such as DNA methylation or gene
expression profiles.

In this thesis, we saw how EMOGI — a new approach for identifying pan-cancer
genes — is able to integrate different data modalities into an explainable machine
learning model. EMOGI is based on Graph Convolutional Networks and on the in-
tegration of connectivity between genes (and their products) in a PPI network with
features, such as mutation rates, copy number changes, gene expression and DNA
methylation changes into a single predictive model.
In two main aspects EMOGI represents a methodological advancement with respect
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to previous methods. First, it is able to combine multivariate omics data with gene-
gene proximity in biological networks, thereby extending previous approaches based
on either detection of frequently mutated genes or disease modules from combina-
tions of somatic aberrations. Second, for a machine learning method to be considered
trustworthy in clinical applications, one needs to ensure that its decisions are sup-
ported by meaningful patterns in the input data. EMOGI is interpretable through
the application of the LRP propagation rule, allowing to explain individual predic-
tions and to highlight which input features, i.e. omics levels or network interactions,
are the most important for classification. Interpretability of machine learning models
becomes increasingly important when the goal is to gain mechanistic insights in a
biological process or in clinical applications, where additional support is needed to
build trust into a predictive model.

The lack of a precise definition of what characterizes a gene that associates with
cancer diseases leads ultimately to a lack of bona fide cancer gene sets, complicating an
unbiased evaluation of prediction methods. This is underlined by the low agreement
between methods for cancer gene prediction and cancer gene sets ([31], Figure A.6
and Figure A.7).
In the absence of a gold standard set of cancer genes, the performance of EMOGI
was evaluated on several cancer gene sets and compared to other methods for can-
cer gene prediction in Chapter 6. While no method outperformed all others in all
settings, EMOGI performed best on average, achieving between 3% and 37% higher
AUPRC values compared to the other tools. EMOGI’s performance was also very sta-
ble across different cancer gene data sets, while the performance of other methods,
mainly Random Forests and 20/20+, were highly dependent on the data set. This
most likely reflects different biases in data set collection and highlights once more
that different assumptions about cancer driver genes lead to different results. The
data set from Bailey et al. [198], for instance, includes cancer genes mainly predicted
from mutation rates and consequently, MutSigCV and 20/20+ performed very well
on this data set. The deep learning method DeepWalk was among the methods that
exhibited, on average, the highest performance after EMOGI, despite the fact that
it uses only network topology and not the omics features for cancer gene prediction.
This observation suggests that recently compiled PPI networks encode the main prop-
erties of known cancer genes in their topology, but it also points towards a study bias
where well-known cancer drivers, such as KRAS and TP53 have been more inten-
sively studied and therefore more of their interaction partners in PPI networks are
known [217]. Furthermore, as already discussed briefly in Section 7.4, the high per-
formance of DeepWalk also implies high homophily in PPI networks such as CPDB
or STRING-db, where two interacting genes have a much higher chance to share the
same label (e.g. cancer gene or not). Consequently, network propagation and similar
methods can only hope to identify putative cancer genes from pathways and protein
complexes of which parts have previously been annotated if they start exploration
from a set of known cancer genes.

Perturbation experiments from Section 6.5 showed that the integration of both net-
work and omics features was crucial to achieve a high classification performance and
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that the use of multi-omics data boosted EMOGI’s performance compared to the
case when only a subset of omics levels was used for training. The fact that the mu-
tation rate accounted for most of the method’s performance probably reflects the
over-representation of highly mutated genes versus genes harboring other types of
alterations in the training and test sets but is also likely to be biologically meaningful
as cancer malignancies are ultimately a set of diseases of the genome. The multi-
omics setting is further likely to increase the certainty in individual predictions, as
can be seen from the overlap between predictions for omics types. EMOGI recovered
89% of the known cancer genes and contains well-known cancer drivers among its
top predictions, such as PTEN, PIK3CA, AKT1, APC, KRAS, TP53 and others. Coupled
to the LRP feature importance analysis, EMOGI was able to differentiate cancer gene
predictions based on their main molecular contributions, i.e. mutation rate-driven
predictions versus other molecular alterations, such as copy number changes, DNA
methylation and gene expression. The LRP framework also identifies important in-
teraction partners of genes and the manual inspection of those revealed important
cancer pathways and protein complexes in Section 6.4, such as the RB1-E2F1-HDAC1

complex, the PIK3 signaling pathway and the SWI/SNF protein complex, correspond-
ing to evidence for their molecular mechanisms in the scientific literature [41, 50, 239,
280].

A comprehensive list of 165 Newly Predicted Cancer Genes (NPCGs) was de-
rived in Section 7.1 and found to be sensible by various measures. All of the NPCGs
interact with at least one known cancer driver (Section 7.1.2) and there is a clear
enrichment of essential genes within the NPCGs, with 70% of the novel predictions
being essential for the survival of at least five tumor cell lines (Section 7.1.3). While
there is an enrichment of NPCGs with housekeeping genes, a significant fraction
of NPCGs show tissue-specific expression and functional enrichment analysis finds
signaling and other cancer-related pathways enriched. In addition, NPCGs are classi-
fied as such primarily because of their network features, i.e. interactions with known
cancer genes, and only to a lesser extent because of their mutation rate or other omics
features, according to the LRP explanations. One of the most highly ranked NPCG,
YWHAZ, is not listed in the cancer gene databases used throughout the thesis but
has been recently associated with hallmarks of cancer due to its overexpression in
leukemia and gastric cancers [281]. This example and many others strongly suggest
that EMOGI is able to propose new candidate cancer genes for further experimental
validation and that novel predictions represent a set of genes that contributes to the
formation and/or maintenance of tumors while not being always subjected to genetic
modification themselves.

Bi-clustering of genes and individual LRP contributions across cancer types identi-
fied subgroups of cancer genes characterized by distinct sets of molecular alterations
and provided a summary of the different strategies that EMOGI implemented to
classify cancer genes. The algorithm distinguishes clusters which consisted predomi-
nantly of genes were the network topology had a stronger effect on the classification
decision compared to the omics features and vice versa. Furthermore, it differentiated
groups of genes whose classification was driven mainly by SNVs and groups where
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CNAs, alteration of DNA methylation or gene expression in subsets of cancers was
the strongest determinant for classification.
These results question one of the most widely used definitions of a cancer driver gene
proposed by Vogelstein et al. [25], who defines it as a gene that increases cell growth
when somatically mutated. Although this holds true for the majority of genes and
EMOGI’s predictions exhibit mutation frequency as the most important omics feature
(as seen in Section 6.6), it is now established that the transformation of a cell to a can-
cer cell can be achieved through many different ways, not only through mutations
and copy number changes targeting the gene itself, but also through epigenetic mech-
anisms, such as promoter DNA methylation [37] or non-coding mutations in regula-
tory regions which indirectly activate or silence other genes [19, 41, 282]. Mourikis
et al. identified hundreds of “helper” genes which, unlike cancer drivers that har-
bor recurrent alterations, are less frequently or barely mutated but localize in close
proximity to known cancer genes in regulatory networks [279]. With the discovery of
interactome-driven cancer genes, this analysis further supports such findings.
Another important benefit of the bi-clustering could be the identification of false-
positive predictions and artifacts in the data. Such an application of the LRP rule was
done in [151], where spectral clustering of contributions in image data was used to
quickly assess if some images rely on artifacts. In the application presented here, one
could speculate if the high number of CNAs in kidney renal carcinomas observed
for some genes (Figure 7.6) might contain errors or hyper-mutated samples that were
not previously annotated. With the difficulty in preprocessing omics data and the
high noise inherent to the experimental protocols, such a methodology could pro-
vide a valuable tool for finding artifacts and false positive predictions.
Finally, the individual LRP values for the gene-gene interactions from the PPI net-
work permitted to pinpoint those part of the interactome where EMOGI is focusing
on, allowing to identify important cancer-related complexes and pathways.

All of these individual results bring us closer to a more fine-grained definition of
what a cancer driver gene can look like, and makes us appreciate the vastly different
ways in which a gene can influence cancer cell growth. Previous studies have exam-
ined some of these ways individually. HotNet(2) [41] finds cancer modules based
on interaction data and proximity of cancer mutations, MutSigCV [40] or 20/20+
[31] predict highly mutated genes, and a recent method integrates multiple omics
to identify modules of cancer genes, but not individual biomarkers [49]. Being able
to explain the classifications, however, allowed to dissect different classes of cancer
genes, as well as shared and complementary mechanisms for subgroups of genes for
the first time.

8.2 outlook

The EMOGI framework proposed here is quite general, as it can integrate any type
of omics data, other than those used for this study, as well as different transcriptional
and post-transcriptional regulatory networks. Therefore, the method can be used out-
side of the cancer genomics field and be applied to study other complex diseases,
where multi-omics data are available and functional connections between genes are
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relevant to the classification of disease genes.
Due to the averaging of features across patients for a given cancer type, the analysis
presented in this thesis is blind to distinct sub-populations within a cancer tissue.
However, EMOGI can be easily adapted to perform disease classification directly at
sample or patient level and then use the LRP importance analysis to stratify patients
based on the learned classification features, providing an important analysis tool
for future applications in precision oncology and beyond. The patient-wise model
presented in Section 6.7 represents a first step in that direction and serves as a proof-
of-concept that such a patient stratification can be done with high performance. Al-
though the implementation of a patient-wise model was already done, a detailed
evaluation of such an application to a specific cancer subtype and the identification
of distinct survival groups of patients remains future work.

8.3 conclusion

In this thesis, we saw how the integration of heterogeneous molecular data sets im-
proves the prediction of cancer driver genes. EMOGI is capable of identifying genes
that are missed by tools that only use individual data types and is further able to
make use of a interpretability framework to dissect the molecular mechanisms lead-
ing to individual classifications. With the advent of large data sets in the field, com-
putational approaches that integrate all available data sets are expected to yield new
insights into cancer biology and guide the development of personalized treatments
in the near future.
We hope that the novel predictions open avenues for cancer research to focus on the
backbone of interaction partners in important pathways. This would not only offer
ways to target proteins that have not been in the focus of current research but might
allow for drugs applicable to multiple cancer types.
We believe that the classification of genes into different subclasses of cancer genes
might open new therapeutic avenues. For instance, non-mutated genes that become
crucial for cancer cell survival through other means might be easier to target than
signaling genes or transcription factors.
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a.1 the decomposition of the bias-variance tradeoff

Let y denote the true labels of a data set X and let ŷ denote an estimate of these labels
by a ML model. Bias and variance can be written as:

Bias(ŷ) = E[ŷ− y] (A.1)

Var(ŷ) = E
[(
ŷ− E[ŷ]

)2] (A.2)

Then the mean-squared error (MSE) can be written as:
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= Var(ŷ) +Bias(ŷ)2 (A.7)

a.2 data preprocessing

TCGA Studies and Sample Numbers

DNA Meth. Somatic Mut. Gene Expr. Incl.?

Study
Name

Cancer Type Tumor Normal TCGA Synapse Tumor Normal GTEx

BRCA
Breast invasive
carcinoma

796 96 1044 Yes 1109 113 218 Yes

GBM
Glioblastoma
multiforme

153 2 396 Yes 169 5 1403 No

OV
Ovarian serous
cystadenocarci-
noma

10 - 433 Yes 379 - 108 No

LUAD
Lung adenocarci-
noma

475 32 569 Yes 535 59 374 Yes

UCEC
Uterine Corpus
Endometrial
Carcinoma

439 46 542 Yes 552 35 90 Yes
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KIRC
Kidney renal
clear cell carci-
noma

324 160 339 Yes 538 72 36 Yes

HNSC
Head and Neck
squamous cell
carcinoma

530 50 510 Yes 502 44 70 Yes

LGG
Brain Lower
Grade Glioma

534 - 513 Yes 529 - - No

THCA
Thyroid carci-
noma

515 56 496 Yes 510 58 355 Yes

LUSC
Lung squamous
cell carcinoma

370 42 497 Yes 502 49 374 Yes

PRAD
Prostate adeno-
carcinoma

503 50 498 Yes 499 52 119 Yes

SKCM
Skin Cutaneous
Melanoma

472 2 470 Yes 470 1 974 No

COAD
Colon adenocar-
cinoma

315 38 433 Yes 480 41 203 Yes

STAD
Stomach adeno-
carcinoma

395 2 441 Yes 375 32 204 Yes

BLCA
Bladder Urothe-
lial Carcinoma

419 21 412 Yes 414 19 11 Yes

LIHC
Liver hepatocel-
lular carcinoma

380 50 375 No 374 50 136 Yes

CESC

Cervical squa-
mous cell car-
cinoma and
endocervical
adenocarcinoma

309 3 305 Yes 306 3 11 Yes

KIRP
Kidney renal pap-
illary cell carci-
noma

275 45 288 Yes 288 32 36 Yes

SARC Sarcoma 265 4 255 No 263 2 621 No

LAML
Acute Myeloid
Leukemia

140 - 149 Yes 151 - 456 No

ESCA
Esophageal carci-
noma

186 16 184 No 162 11 790 Yes

PAAD
Pancreatic adeno-
carcinoma

185 10 183 Yes 178 4 197 No

PCPG
Pheochromo-
cytoma and
Paraganglioma

181 3 179 No 180 3 - No
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READ
Rectum adeno-
carcinoma

99 7 158 Yes 167 10 173 Yes

TGCT
Testicular Germ
Cell Tumors

150 - 150 No 150 - 203 No

THYM Thymoma 124 2 123 No 119 58 - No

KICH
Kidney Chromo-
phobe

66 - 66 No 65 24 36 No

ACC
Adrenocortical
carcinoma

80 - 92 No 79 - 159 No

MESO Mesothelioma 87 - 83 No 86 - - No

UVM Uveal Melanoma 80 - 80 No 80 - - No

DLBC

Lymphoid Neo-
plasm Diffuse
Large B-cell
Lymphoma

48 - 37 No 48 - - No

UCS
Uterine Carci-
nosarcoma

57 - 57 No 56 - 90 No

CHOL
Cholangio Carci-
noma

36 9 51 No 36 9 - No

SUM 8998 746 10408 20 10351 786 7447 16

Table A.1: Cancer types and data availability. The table shows the available number of sam-
ples for different omics levels for tumor and normal tissues. The last column indi-
cates if the study was included in the pan-cancer analysis presented in this thesis.
Included were all studies for which gene expression and DNA methylation data
was available for normal and tumor tissues in sufficient quantities and further
somatic mutation data was available.



128 appendix

MA plots for Gene Expression Data

Figure A.1: MA plots between tumor and normal gene expression values. For each cancer
type, the MA plot depicts the log2 fold change against the average expression
for every gene. Point in the plots therefore correspond to genes and differentially
expressed genes are found away from the blue line (representing 0). The red line
depicts a Loess regression of the data.
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UMAP Plots for Samples and Omics Levels
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Figure A.2: UMAP embeddings of the input data types. For each of the omics levels, an
UMAP embedding [283] was computed where each point corresponds to a pa-
tient/sample from TCGA and the color denotes the cancer type that the sam-
ple is associated with. UMAP computes a two-dimensional representation of the
high-dimensional feature space corresponding to a gene times sample matrix con-
taining the different omics features.
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The Distribution of Preprocessed & Normalized Feature Vectors
R
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Figure A.3: Distribution of multi-omics features before and after min-max normalization.
The colors represent the omics levels.
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a.3 degree bias in the inputs to emogi

R = 0.36

P-value < 2.2e-16

Figure A.4: Node degree bias in training data and PPIs. The contour plot depicts the corre-
lation between the essentiality in CRISPRi loss-of-function screens with the node
degree. Both measures were ranked and spearman correlation was computed
(R = 0.36). The boxplots show the distribution of node degree for NPCGs and
other genes, as well as the distribution of interactions with KCGs for NPCGs
and other genes.
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a.4 performance evaluation

Performance of Additional Network Metrics

HotNet2 Diffusion (AUC = 0.62

Figure A.5: PR curve of competing methods and additional network metrics on the CPDB
PPI network. Different additional metrics often used in network analysis are
added to the comparison of the methods introduced in Section 6.2.5 and EMOGI.

Overlap between Predictions for Tools

Figure A.6: Overlap between predictions for various computational methods. The upsetplot
depicts the relevant intersections (for visualization purposes, combinations with
no or very low overlap were removed) between the predicted genes for the 7 com-
peting methods and EMOGI. MutSigCV was left out of this comparison because
of the few predicted cancer genes from that method. Thresholds on the probabil-
ity cutoffs were computed for all methods individually, based on the intersection
between precision and recall (see Figure 6.5 for details on the computation of
optimal thresholds).
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a.5 validation on independent cancer gene sets

Overlap between Cancer Gene Sets

Figure A.7: Overlap between cancer gene sets used throughout the thesis.
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a.6 the LRP explanations for known cancer genes as model valida-
tion
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Figure A.8: Further explanations for KCGs on the CPDB PPI network Depicted are im-
portant omics features, as well as the most important PPI interaction partners
computed through the LRP technique for four additional selected genes (see Sec-
tion 6.4 for details). Heatmaps depict the importance of individual cancer types
for different omics levels (darker colors indicate higher importance). The bar plots
(middle column) depict the 10 most important interaction partners for the gene of
interest. The scale of the bars denotes how much of the overall EMOGI score orig-
inates from the interaction with that gene. The right column depicts the amount
that the interactome contributes to the classification of the gene of interest and
ranges from 1 (only the PPIs was important) to 0 (only the features were impor-
tant).
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R = 0.83
P-value < 2.2e-16

Figure A.9: Correlation between LRP feature contributions Std and EMOGI score. Spear-
man correlation depicted as contour plot for all 13, 627 genes of the CPDB PPI
network. Darker colors correspond to higher density. Both, EMOGI score and the
Std of LRP feature values were ranked and higher ranks correspond to higher Std
or EMOGI scores.
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a.7 performance on a subset of omics levels

Known Cancer Genes

Single -- Dual Dual -- Triple Triple -- Full

Figure A.10: T-tests for EMOGI models with increasing omics data for KCGs. The heatmap
depicts the results of two-sided t-tests for all pairwise combinations of models
when the amount of data for the features is increased. (left) Transition between
one data type and two data types. The SNV-only EMOGI models achieve partly
AUPRC values comparable to models using two omics levels. (middle) Transi-
tion between two omics levels and three. Models with increased data perform
significantly better, apart from the the model without CNAs information. (right)
The full multi-omics model performs better than the models only using three
omics levels.
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a.8 feature perturbations

Figure A.11: Overlap between single omics level EMOGI predictions on the CPDB PPI
network. The upsetplot depicts the overlap between EMOGI models that were
trained on only SNVs, CNAs, DNA methylation in promoters or gene expres-
sion in comparison to the multi-omics model. Threshold to select predicted
genes were calculated based on the intersection between precision and recall
for each model separately.
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a.9 newly predicted cancer genes

Contributions from Individual PPI Networks

Figure A.12: Top 80 NPCGs. For each gene, the bar shows in how many EMOGI models (for
6 different PPI networks) the gene was among the top 100 predictions.

List of all NPCGs

Name Models_top100 NCG_Candidates OncoKB Affected_Celllines

SPTAN1 6 True False 21

HDAC2 6 True False 13

TTN 5 True False 8

SP1 5 False False 130

YWHAZ 5 False False 121
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PRKDC 5 False True 0

SPTA1 4 True False 0

SYNE1 4 True False 0

SHC1 4 False False 38

GRB2 4 True False 527

PLEC 3 True False 42

FLG 3 True False 0

UBC 3 False False 612

ACTB 3 True True 465

IQGAP1 3 False False 10

HSPA8 3 False False 187

HDAC1 3 False True 26

FYN 3 True True 0

PLK1 3 False False 625

RELA 3 True False 188

SOS1 3 True True 122

SIN3A 3 True False 578

CDC5L 2 False False 625

SIRT7 2 False False 17

SNW1 2 False False 625

PPP1CA 2 False False 460

SMAD1 2 False False 0

CDK1 2 False False 625

CDK2 2 False False 553

CHEK1 2 False True 624

SMC3 2 True True 625

TTK 2 True False 616

H2AFX 2 False False 471

NFKB1 2 False False 11

ATF2 2 False False 0

ACTG1 2 True True 201

SIRT1 2 False False 5

MCM2 2 False False 625

SMARCC2 2 False False 4

TCF4 2 False False 5

PTK2 2 True False 429

MAPK3 2 False True 7

YWHAG 2 False False 23
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UBE2I 2 False False 620

ATXN1 2 True False 8

LRP1 2 True False 12

TBP 2 True False 352

KDM5B 2 False False 0

SRF 2 False False 463

KAT2B 2 False False 0

HIST1H3E 1 False True 17

CFTR 1 False False 2

HIST1H3J 1 False True 17

HIST1H3G 1 True True 55

HIST1H3F 1 False True 18

HIST1H3D 1 True True 22

HIST1H3C 1 True True 46

HIST1H3H 1 True True 16

HIST1H3I 1 False True 109

HIST2H2BE 1 False False 260

OBSL1 1 False False 29

HERC2 1 True False 135

UBR4 1 False False 614

WNK1 1 True False 611

MDN1 1 False False 624

FBXW11 1 False False 244

DST 1 True False 2

HIST3H3 1 False True 0

TP53BP1 1 True True 53

YWHAQ 1 False False 1

SMC2 1 True False 625

MCM7 1 False False 625

E2F4 1 False False 6

TPX2 1 True False 624

CKAP5 1 False False 625

BIRC5 1 False False 625

FOXM1 1 True False 193

RACGAP1 1 False False 625

SMC4 1 True False 623

CENPE 1 False False 510

CCNB1 1 False False 573
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EXO1 1 False False 30

PBK 1 False False 0

UBB 1 True False 24

CCNB2 1 True False 0

CDC42 1 True True 610

ADGRV1 1 True False 0

TNRC6A 1 True False 2

KMT2B 1 True True 111

TNRC6C 1 False False 4

MAPK11 1 False False 0

TAF1L 1 True False 0

USP34 1 False False 5

NIPBL 1 True False 229

PCLO 1 True True 0

TNRC6B 1 False False 14

BPTF 1 True False 421

MAPK14 1 False False 78

USP24 1 False False 18

CTNNA1 1 True True 34

MYCBP2 1 True False 0

AGO3 1 False False 5

CDH9 1 True False 0

FANCM 1 True False 158

HECW2 1 True False 0

ALB 1 True True 0

LYN 1 True True 1

CEP135 1 False False 208

BAG3 1 False False 2

CRK 1 False False 77

LRRK2 1 True True 0

CALM1 1 False False 7

GSK3B 1 False True 10

USP7 1 True False 495

NR3C1 1 True False 4

SPI1 1 False False 23

CTBP2 1 False False 274

FOS 1 False False 6

JUND 1 False False 25



142 appendix

BATF 1 False False 2

BMX 1 False False 0

GTF2B 1 False False 624

BDP1 1 False False 579

POU2F2 1 True False 5

PAX6 1 False False 4

RFX5 1 False False 57

PTK2B 1 True False 2

TAF1 1 True True 335

USF1 1 False False 10

SUMO2 1 False False 520

IRF3 1 False False 0

HTT 1 False False 39

FOXA2 1 True False 33

HDAC5 1 False False 3

KAT2A 1 False False 21

IRF1 1 False True 12

ATF3 1 False False 2

CTCFL 1 False False 0

NEK10 1 False False 2

NEDD4 1 True False 0

TFAP2A 1 False False 21

PRKCA 1 False False 9

CACNA1A 1 True False 16

BTRC 1 False False 0

CALM3 1 False False 4

DLG4 1 False False 29

SUMO1 1 False False 7

SNTA1 1 False False 0

UBQLN4 1 False False 412

NCK1 1 False False 1

ATN1 1 False False 23

FN1 1 False False 1

VCL 1 False False 96

TLN1 1 False False 619

DLG1 1 False False 0

SOX10 1 False True 174

ATF7IP 1 True False 39
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LRP2 1 True False 11

TERF1 1 False False 514

PRPF40A 1 False False 621

STAT1 1 False False 0

TGFBR1 1 True True 49

HOXA5 1 False False 14

PRKCD 1 False False 1

MDFI 1 False False 0

Table A.2: List of NPCGs. The table also depicts the number of models for which the gene
was among the top 100 predictions (Models top100 column), presence of the gene
among the CCGs or oncoKB high confidence genes. Furthermore, the number of
cell lines for which the gene was essential in CRISPRi loss-of-function screens
from the Achilles project is depicted.

Pathway Enrichment Analysis for NPCGs

ID Pvalue OddsRatio ExpCount Count Size Term

4110 6.58E-12 10.75809717 2.32994718 18 122 Cell cycle

4722 9.09E-11 9.741109358 2.36814303 17 124

Neurotrophin signaling
pathway

5131 6.18E-10 14.88635184 1.12677773 12 59 Shigellosis

4114 8.30E-10 9.883850327 2.02438033 15 106 Oocyte meiosis

5220 4.99E-08 10.89945991 1.31775701 11 69 Chronic myeloid leukemia

4660 7.20E-08 8.171379265 2.02438033 13 106

T cell receptor signaling
pathway

5200 2.86E-07 4.436399217 6.01584722 21 315 Pathways in cancer

4510 5.21E-07 5.390120238 3.68590004 16 193 Focal adhesion

4912 1.03E-06 7.76691953 1.75700935 11 92 GnRH signaling pathway

4380 2.67E-06 6.276718404 2.32994718 12 122 Osteoclast differentiation

4010 3.40E-06 4.373712494 4.75538399 17 249 MAPK signaling pathway

5100 3.47E-06 8.8625387 1.26046323 9 66

Bacterial invasion of ep-
ithelial cells

5130 5.74E-06 9.887338501 1.01219017 8 53

Pathogenic Escherichia
coli infection

4062 7.05E-06 4.854166667 3.47582284 14 182

Chemokine signaling
pathway

4664 7.26E-06 8.008403361 1.37505079 9 72

Fc epsilon RI signaling
pathway

4520 8.15E-06 7.881617647 1.39414872 9 73 Adherens junction

4012 2.36E-05 6.802225755 1.585128 9 83 ErbB signaling pathway
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5160 2.64E-05 5.336319638 2.44453474 11 128 Hepatitis C

4670 5.27E-05 5.407509158 2.17716375 10 114

Leukocyte transendothe-
lial migration

4662 7.02E-05 6.711768851 1.41324665 8 74

B cell receptor signaling
pathway

5214 0.0001 7.113239676 1.16497359 7 61 Glioma

4914 0.0001 5.895193798 1.585128 8 83

Progesterone-mediated
oocyte maturation

4330 0.00016 8.594497608 0.84030882 6 44 Notch signaling pathway

5140 0.00036 5.989224138 1.35595286 7 71 Leishmaniasis

5221 0.00056 6.649814471 1.05038602 6 55 Acute myeloid leukemia

4620 0.00057 4.78867543 1.90979277 8 100

Toll-like receptor signal-
ing pathway

4910 0.00071 4.154117647 2.46363267 9 129 Insulin signaling pathway

5215 0.00133 4.715339861 1.68061764 7 88 Prostate cancer

4810 0.00152 3.200050201 3.87687932 11 203

Regulation of actin cy-
toskeleton

4370 0.00174 5.241202346 1.29865908 6 68 VEGF signaling pathway

5120 0.00174 5.241202346 1.29865908 6 68

Epithelial cell signaling in
Helicobacter pylori infec-
tion

5212 0.00188 5.156926407 1.31775701 6 69 Pancreatic cancer

5213 0.00267 5.84025403 0.97399431 5 51 Endometrial cancer

5142 0.00312 4.008590442 1.94798862 7 102

Chagas disease (American
trypanosomiasis)

4621 0.00404 5.262172285 1.06948395 5 56

NOD-like receptor signal-
ing pathway

5210 0.00584 4.787319422 1.16497359 5 61 Colorectal cancer

4666 0.00748 3.804545455 1.73791142 6 91

Fc gamma R-mediated
phagocytosis

4720 0.00814 4.390311291 1.26046323 5 66 Long-term potentiation

4622 0.00814 4.390311291 1.26046323 5 66

RIG-I-like receptor signal-
ing pathway

4971 0.00814 4.390311291 1.26046323 5 66 Gastric acid secretion

4115 0.00814 4.390311291 1.26046323 5 66 p53 signaling pathway

4320 0.00905 7.925274725 0.43925234 3 23

Dorso-ventral axis forma-
tion

4650 0.00904 3.239709205 2.36814303 7 124

Natural killer cell medi-
ated cytotoxicity

5145 0.00946 3.21157218 2.38724096 7 125 Toxoplasmosis
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5211 0.00979 4.181882022 1.31775701 5 69 Renal cell carcinoma

4530 0.01208 3.052280311 2.50182852 7 131 Tight junction

5146 0.01337 3.325445173 1.96708655 6 103 Amoebiasis

4270 0.01337 3.325445173 1.96708655 6 103

Vascular smooth muscle
contraction

4340 0.01372 4.723950617 0.93579846 4 49

Hedgehog signaling path-
way

5110 0.01678 4.425925926 0.99309224 4 52 Vibrio cholerae infection

5223 0.01790 4.334693878 1.01219017 4 53

Non-small cell lung can-
cer

4350 0.01869 3.51271437 1.54693214 5 81

TGF-beta signaling path-
way

5222 0.02154 3.377186744 1.60422592 5 84 Small cell lung cancer

4540 0.02255 3.334269663 1.62332385 5 85 Gap junction

4360 0.02549 2.844931617 2.27265339 6 119 Axon guidance

3022 0.02632 5.101382488 0.64932954 3 34 Basal transcription factors

4730 0.03153 3.592467043 1.20316944 4 63 Long-term depression

4916 0.0317 3.026046987 1.77610727 5 93 Melanogenesis

5016 0.04284 2.302729004 3.2466477 7 170 Huntington’s disease

Table A.3: KEGG pathway enrichment for NPCGs.



146 appendix

a.10 biclustering of LRP feature contributions

Biclustering of all Genes

Figure A.13: Biclustering analysis for all genes in the CPDB PPI network. The rows corre-
spond to genes and the columns to data types. the same processing steps were
used as for the biclustering analysis of the top 1000 genes.
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Gene Ontology Enrichment Analysis for Biclusters

a.11 module discovery in the CPDB PPI network

Correlation between Edge Betweenness & LRP Edge Weight

R = 0.08, p-value < 2.2e-16

Figure A.14: Ranked correlation between LRP edge weights and edge betweenness. The
contour plot depicts ranked weights of edges according to the summed LRP in-
teraction contributions (EItotal, see Section 5.8 for details) in comparison with
edge betweenness. The latter is a global metric of edge importance and mea-
sures the fraction of shortest paths between nodes that pass through the edge.
Spearman correlation is shown on top with a correlation coefficient of 0.08.

Gene Ontology Enrichment Analysis for the largest SCCs

Name
Ratio
Study

Ratio
Pop.

Pvalue Depth Count Pval. Corr.

extracellular matrix or-
ganization

19/148 253/20913 2E-14 5 19

2.4E-
10

cell-cell adhesion 10/148 143/20913

7.4E-
08

3 10 0.00046
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cerebral cortex cell mi-
gration

4/148 8/20913

1.6E-
07

7 4 0.00064

platelet degranulation 9/148 124/20913

2.5E-
07

8 9 0.00064

cellular response to
amyloid-beta

6/148 38/20913

2.6E-
07

7 6 0.00064

cellular protein
metabolic process

11/148 225/20913

6.2E-
07

5 11 0.00126

astrocyte activation in-
volved in immune re-
sponse

3/148 4/20913

1.4E-
06

5 3 0.00212

positive regulation of
amyloid fibril forma-
tion

3/148 4/20913

1.4E-
06

7 3 0.00212

response to amyloid-
beta

4/148 14/20913

2.3E-
06

6 4 0.00311

ephrin receptor signal-
ing pathway

7/148 86/20913

2.6E-
06

8 7 0.00319

cellular response to
indole-3-methanol

3/148 5/20913

3.4E-
06

6 3 0.00384

positive regulation of
gene expression

13/148 392/20913

4.5E-
06

6 13 0.0046

transforming growth
factor beta receptor
signaling pathway

7/148 95/20913

5.1E-
06

8 7 0.00478

response to drug 11/148 284/20913

5.9E-
06

3 11 0.00516

receptor-mediated en-
docytosis

7/148 100/20913

7.1E-
06

6 7 0.00583

positive regulation of
amyloid-beta forma-
tion

4/148 19/20913

8.6E-
06

8 4 0.00659

collagen catabolic pro-
cess

5/148 43/20913

1.3E-
05

3 5 0.0091

neuron migration 7/148 110/20913

1.3E-
05

5 7 0.0091

bone mineralization 5/148 45/20913

1.6E-
05

5 5 0.01032

MAPK cascade 10/148 260/20913

1.7E-
05

9 10 0.01032

entry of bacterium into
host cell

3/148 8/20913

1.9E-
05

6 3 0.01108
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response to hypoxia 8/148 163/20913

2.1E-
05

5 8 0.01196

positive regulation of
phosphorylation

4/148 26/20913

3.2E-
05

8 4 0.01702

wound healing 6/148 89/20913

4.1E-
05

4 6 0.0208

protein processing 5/148 56/20913

4.7E-
05

6 5 0.02326

smooth endoplasmic
reticulum calcium ion
homeostasis

2/148 2/20913 5E-05 11 2 0.02348

amyloid precursor pro-
tein metabolic process

3/148 11/20913

5.5E-
05

5 3 0.02499

regulation of neuron
projection develop-
ment

4/148 31/20913

6.5E-
05

8 4 0.02863

learning or memory 5/148 61/20913

7.2E-
05

5 5 0.03036

extracellular matrix dis-
assembly

5/148 64/20913 9E-05 6 5 0.03698

positive regulation
of NIK/NF-kappaB
signaling

5/148 65/20913

9.7E-
05

8 5 0.03855

extracellular region 54/148 1793/20913

3.9E-
21

2 54

6.8E-
18

collagen-containing ex-
tracellular matrix

23/148 374/20913

2.2E-
15

3 23

1.4E-
12

extracellular space 42/148 1472/20913

2.3E-
15

2 42

1.4E-
12

extracellular exosome 43/148 2093/20913

6.9E-
11

6 43 3E-08

endoplasmic reticulum
lumen

15/148 299/20913

3.6E-
09

5 15

1.3E-
06

extracellular matrix 13/148 235/20913

1.3E-
08

2 13

3.8E-
06

plasma membrane 61/148 4401/20913

2.4E-
08

3 61

5.9E-
06

perinuclear region of
cytoplasm

20/148 693/20913

9.9E-
08

2 20

2.2E-
05

endoplasmic reticulum 23/148 1016/20913

7.6E-
07

5 23 0.00014
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lamellipodium 10/148 184/20913

7.8E-
07

4 10 0.00014

Wnt signalosome 4/148 12/20913

1.1E-
06

2 4 0.00018

Golgi apparatus 22/148 992/20913

1.9E-
06

5 22 0.00028

endosome lumen 4/148 18/20913

6.8E-
06

5 4 0.00092

platelet alpha granule
lumen

6/148 67/20913

7.9E-
06

7 6 0.00099

Golgi lumen 7/148 103/20913

8.7E-
06

5 7 0.00101

cytoplasm 56/148 4626/20913

1.5E-
05

2 56 0.00161

receptor complex 9/148 207/20913

1.7E-
05

2 9 0.00177

cell surface 15/148 591/20913 2E-05 2 15 0.00197

cytoskeleton 12/148 403/20913

3.1E-
05

5 12 0.00284

focal adhesion 12/148 415/20913

4.1E-
05

5 12 0.00359

cell-cell junction 8/148 184/20913

5.1E-
05

4 8 0.00425

clathrin-coated pit 5/148 59/20913

6.1E-
05

4 5 0.00477

cell junction 8/148 190/20913

6.4E-
05

2 8 0.00477

catenin complex 4/148 31/20913

6.5E-
05

4 4 0.00477

axon 10/148 309/20913

7.2E-
05

5 10 0.00492

beta-catenin destruc-
tion complex

3/148 12/20913

7.3E-
05

2 3 0.00492

lateral plasma mem-
brane

5/148 65/20913

9.7E-
05

2 5 0.00632

adherens junction 7/148 157/20913 0.00013 5 7 0.00812

blood microparticle 6/148 112/20913 0.00015 2 6 0.00868

node of Ranvier 3/148 15/20913 0.00015 2 3 0.00868

apical part of cell 5/148 74/20913 0.00018 2 5 0.01021

protein-containing
complex

14/148 644/20913 0.0002 1 14 0.01087
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endosome 9/148 294/20913 0.00025 7 9 0.01344

membrane raft 8/148 235/20913 0.00028 5 8 0.01422

synaptic vesicle 6/148 131/20913 0.00034 9 6 0.01719

neuron projection 9/148 338/20913 0.00069 4 9 0.03289

spindle midzone 3/148 25/20913 0.00071 2 3 0.03289

desmosome 3/148 25/20913 0.00071 5 3 0.03289

gamma-secretase com-
plex

2/148 6/20913 0.00073 4 2 0.03294

smooth endoplasmic
reticulum

3/148 27/20913 0.0009 6 3 0.03837

nuclear outer mem-
brane

3/148 27/20913 0.0009 6 3 0.03837

glutamatergic synapse 9/148 353/20913 0.00094 4 9 0.03937

death-inducing signal-
ing complex

2/148 7/20913 0.00102 4 2 0.04163

calcium ion binding 28/148 698/20913

7.7E-
14

5 28

3.2E-
10

heparin binding 12/148 168/20913

2.8E-
09

4 12

5.9E-
06

protein binding 119/148 12001/20913

4.4E-
09

2 119 6E-06

low-density lipopro-
tein particle receptor
binding

6/148 21/20913

5.6E-
09

5 6 6E-06

protease binding 9/148 106/20913

6.4E-
08

4 9

4.9E-
05

integrin binding 10/148 142/20913

6.9E-
08

4 10

4.9E-
05

growth factor receptor
binding

4/148 10/20913

4.9E-
07

4 4 0.0003

heparan sulfate proteo-
glycan binding

4/148 16/20913

4.1E-
06

4 4 0.00217

extracellular matrix
structural constituent

8/148 137/20913 6E-06 2 8 0.00284

signaling receptor bind-
ing

12/148 353/20913

8.3E-
06

3 12 0.00351

amyloid-beta binding 6/148 77/20913

1.8E-
05

4 6 0.00678

transforming growth
factor beta binding

4/148 23/20913

1.9E-
05

4 4 0.00678
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transforming growth
factor beta-activated
receptor activity

3/148 9/20913

2.8E-
05

8 3 0.00856

cysteine-type endopep-
tidase activity involved
in execution phase of
apoptosis

3/148 9/20913

2.8E-
05

7 3 0.00856

peptidase activator ac-
tivity

3/148 10/20913 4E-05 4 3 0.01065

cysteine-type endopep-
tidase activity involved
in apoptotic process

3/148 10/20913 4E-05 6 3 0.01065

guanosine-
diphosphatase activity

2/148 2/20913 5E-05 7 2 0.01172

triglyceride binding 2/148 2/20913 5E-05 3 2 0.01172

enzyme binding 11/148 360/20913

5.3E-
05

3 11 0.01177

phospholipase A1 ac-
tivity

3/148 12/20913

7.3E-
05

6 3 0.01545

cadherin binding 10/148 315/20913

8.5E-
05

4 10 0.01715

collagen binding 5/148 67/20913 0.00011 3 5 0.02024

unfolded protein bind-
ing

6/148 107/20913 0.00011 3 6 0.02024

identical protein bind-
ing

24/148 1466/20913 0.00012 3 24 0.02024

cargo receptor activity 3/148 14/20913 0.00012 1 3 0.02024

apolipoprotein binding 3/148 16/20913 0.00018 3 3 0.02964

ubiquitin protein ligase
binding

9/148 294/20913 0.00025 5 9 0.03799

endopeptidase activity 5/148 81/20913 0.00028 4 5 0.03799

tau protein binding 4/148 45/20913 0.00029 4 4 0.03799

uridine-diphosphatase
activity

2/148 4/20913 0.0003 7 2 0.03799

CD8 receptor binding 2/148 4/20913 0.0003 4 2 0.03799

choline binding 2/148 4/20913 0.0003 4 2 0.03799

calcium ion sensor ac-
tivity

2/148 4/20913 0.0003 6 2 0.03799

beta-catenin binding 5/148 85/20913 0.00035 3 5 0.04304
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protein phosphatase
binding

5/148 86/20913 0.00036 5 5 0.04414

Table A.4: Gene Ontology Enrichment Analysis (GOEA) for the largest SCC.

Pathway Enrichment Analysis for the largest SCCs
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KEGGID Pvalue Odds Exp. Count Count Size Term

4510 1.57E-05 5 3 12 193 Focal adhesion

5200 3.05E-05 4 5 15 315 Pathways in cancer

5213 7.85E-05 10 0.735677 6 51 Endometrial cancer

4350 0.000143 7 1 7 81 TGF-beta signaling pathway

4512 0.000943 6 1 6 80 ECM-receptor interaction

5010 0.001529 4 2 8 154 Alzheimer’s disease

5210 0.001722 6 0.879927 5 61 Colorectal cancer

5218 0.002615 6 0.966477 5 67 Melanoma

5219 0.002692 8 0.591426 4 41 Bladder cancer

4610 0.002976 6 0.995327 5 69
Complement and coagula-
tion cascades

4520 0.003805 5 1 5 73 Adherens junction

5130 0.006837 6 0.764527 4 53 Pathogenic Escherichia coli infection

4810 0.008312 3 3 8 203 Regulation of actin cytoskeleton

5215 0.008404 4 1 5 88 Prostate cancer

4310 0.014481 3 2 6 139 Wnt signaling pathway

5100 0.014631 5 0.952052 4 66 Bacterial invasion of epithelial cells

4660 0.017819 4 2 5 106 T cell receptor signaling pathway

5416 0.017831 4 1 4 70 Viral myocarditis

4360 0.027835 3 2 5 119 Axon guidance

4012 0.031102 4 1 4 83 ErbB signaling pathway

4210 0.032311 4 1 4 84 Apoptosis

4340 0.033029 5 0.706826 3 49 Hedgehog signaling pathway

5217 0.034783 5 0.721252 3 50 Basal cell carcinoma

4320 0.042708 7 0.331776 2 23 Dorso-ventral axis formation

4916 0.044432 3 1 4 93 Melanogenesis

4744 0.049721 6 0.360626 2 25 Phototransduction

5142 0.058791 3 1 4 102

Chagas disease (American
trypanosomiasis)

5146 0.060523 3 1 4 103 Amoebiasis

5216 0.064871 5 0.418326 2 29 Thyroid cancer

4141 0.065734 2 2 5 151

Protein processing in endo-
plasmic reticulum

4010 0.066048 2 4 7 249 MAPK signaling pathway

4742 0.068874 5 0.432751 2 30 Taste transduction

4115 0.069109 3 0.952052 3 66 p53 signaling pathway

61 0.070102 17 0.072125 1 5 Fatty acid biosynthesis

4670 0.08135 3 2 4 114

Leukocyte transendothelial
migration

Table A.5: KEGG Pathway enrichment for the largest SCC.
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During the time of my PhD, I was involved in another project other than the predic-
tion of cancer-associated genes. Together with Annkatrin Bressin and Annalisa Mar-
sico, and in collaboration with the lab of Benedikt Beckmann, I developed TriPepSVM,
a machine-learning method to predict RNA-binding proteins in bacteria and humans.
In Section 2.1.2 we saw that gene regulation is complex and occurs at several different
levels. One of such layers is the regulation of RNA after transcription, termed post-
transcriptional regulation. An important aspect of post-transcriptional regulation are
RNA-binding proteins (RBPs) which form ribonucleoprotein complexes (RNPs) by
dynamic, transient interactions, and control different steps in RNA metabolism, such
as RNA stability, degradation, splicing and polyadenylation. Numerous diseases have
already been linked to defects in RBP expression and function, among them cancer
diseases [284–286]. In the project, a support-vector machine (SVM) was trained on
the genomic sequences of known RNA-binding proteins (positive set) and non-RNA
binders (negative set) for different species. For that, TriPepSVM makes use of a string
kernel [287] that allows to use strings in the SVM framework. Briefly, string kernels
compute all sub-strings of length k for a given string (or RNA sequence in this case)
and arrange them in a vector representation where every entry corresponds to a sub-
string. The values in the vector indicate the number of times that the sub-string was
present in the sequence. String kernels in general correspond to a linear transforma-
tion, making TriPepSVM an interpretable machine-learning method (as demonstrated
in Section 4.6).
Interestingly, this simple approach that only relied on the frequencies of k-mers (sub-
strings of length k) outperformed or performed similar to other methods that use
much more information to distinguish RNA binders from non-RNA-binding proteins,
even when more training data was available (e.g. for human). Leveraging feature in-
terpretation of the most important k-mers, we found an enrichment with intrinsically
disordered regions (IDRs). Interestingly, this fits very well with the observation that
IDRs are important in liquid-liquid phase transitions [288].
Finally, our collaborators could experimentally validate three out of four newly pre-
dicted RNA-binding proteins, in line with an accuracy of around 80%.
My role in the project was to continue the development and benchmarking of TriPepSVM
and to set up and maintain a github repository for the project. The project along with
all analyses is publically available at https://github.com/marsicoLab/TriPepSVM.
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S U M M A RY

Cancer is thought to arise from the accumulation of genetic changes in the DNA of
the patient. Mutations can occur during replication of cells or from external factors.
Given the current knowledge of gene regulation it is not yet possible to link cancer
phenotypes directly to the genetic alterations.
Despite the vast increase of available high-throughput molecular data, the in silico
identification of disease genes for multi-factorial diseases such as cancer is still a
challenging task. Perturbation of entire modules in cellular networks, and genetic, as
well as non-genetic gene alternations, contribute to tumorigenesis. This necessitates
the development of predictive models able to effectively integrate and process differ-
ent data modalities. Most approaches cannot combine multi-dimensional molecular
data with gene-gene interactions and the few methods that achieve that are hard to
interpret.
In this thesis, I introduce EMOGI, an explainable machine learning method based on
Graph Convolutional Networks (GCNs) to predict cancer genes by combining multi-
omics data, such as mutations, copy number changes, DNA methylation and gene
expression profiles across different cancers, together with Protein-Protein Interaction
(PPI) networks. By profiting from different data representations, EMOGI was more
accurate than previous methods in predicting known cancer genes, with an average
increase in area under the precision-recall curve of 3% – 37% across different PPI
networks and data sets.
We applied the Layer-Wise Relevance Propagation (LRP) technique to learn the molec-
ular features that contributed to the classification of each individual cancer gene. We
also identified relevant cancer modules in the PPI network, and stratified genes ac-
cording to whether their classification was mainly driven by the interactome, muta-
tion rate or alterations in either DNA methylation or gene expression. We propose a
new high-confidence list of 165 putative novel cancer genes which do not harbour re-
current alterations, but rather participate in PPIs with well-known cancer drivers. We
functionally validated those novel predictions with publicly available loss-of-function
screens. We believe that our results might open new diagnostic and therapeutic av-
enues in precision oncology, and that our method can applied to predict biomarkers
for other complex diseases.
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Z U S A M M E N FA S S U N G

Krebserkrankungen sind die Folge von genetischen Veränderungen in der DNA des
Patienten. Diese Mutationen entstehen durch Fehler bei der Replikation oder äußeren
Einflüssen und nehmen im Laufe des Lebens zu. Mit dem bisherigen Kenntnisstand
der Genregulation ist es jedoch nicht möglich, alle Mutationen direkt mit dem Phe-
notyp in Verbindung zu bringen.
Die stetig wachsende Masse an sequenz-basierten Daten von Tumoren und normalen
Zellen hat die Herausforderungen an computergestützte Methoden enorm verändert.
Insbesondere die Identifikation von Genen, die mit Krankheiten assoziiert werden
können, ist nach wie vor komplex. Insbesondere bei Krebserkrankungen und anderen
komplexen Krankheiten sind es meist Kombinationen von vielen verschiedenen Mu-
tationen, epigenetischen Veränderungen und die Perturbation von Modulen in zel-
lulären Netzwerken, die zur Erkrankung führen oder für Resistenzen verantwortlich
sind.
Daher ist es zwingend notwendig, statistische Methoden zur Priorisierung und Vorher-
sage von krebs-assoziierten Genen zu entwickeln, welche verschiedene Typen von
Daten integrieren, um die komplexen Dynamiken in Krebserkrankungen zu berück-
sichtigen. Die meisten bisher entwickelten Methoden fokussieren sich entweder nur
auf genetische Veränderungen im Tumor (sog. Copy Number Alterations oder einzelne
Mutationen von Basenpaaren), vernachlässigen zelluläre Netzwerke von interagieren-
den Proteinen oder sind nicht interpretierbar.
In dieser Arbeit präsentiere ich EMOGI, eine interpretierbare Methode des maschinellen
Lernens, welche auf Graph Convolutional Networks (GCNs) basiert. GCNs stellen
eine Erweiterung der Konvolutions-Netze da, welche Graph-basierte Daten mit hochdi-
mensionalen Attributen der einzelnen Knoten verknüpfen und in ihre Vorhersagen
einbeziehen. Ich nutze EMOGI, um krebs-assoziierte Gene zu identifizieren, die im
Nachgang in gezielten Hypothesen-basierten Studien verifiziert werden können. EMOGI
integriert genetische Daten (Punktmutationen und strukturelle Variationen), DNA
Methylierung und Transkriptions-Daten für 16 verschiedene Krebsarten mit Protein-
Protein Interaktionsnetzwerken und ist akkurater als bisherige Methoden.
Außerdem nutze ich die Interpretations-Methode Layer-wise Relevance Propagation
(LRP) für neuronale Netze, um die Klassifizierung einzelner Gene a posteriori zu ver-
stehen. Mithilfe von LRP können diejenigen Attribute von Genen und auch Protein-
Protein Interaktionen identifiziert werden, die für die Klassifikation eines Gens ver-
antwortlich waren. Anschließend können wir die LRP Erklärungen für einzelne Gene
in einer Cluster-Analyse gruppieren und finden Gruppen von Genen, die ähnlichen
Prinzipien im Tumor unterliegen. Wir schlagen 165 Gene vor, die bisher nicht mit
Krebs in Verbindung gebracht worden sind und zeigen, dass diese mit bekannten
Krebsgenen interagieren und interessanterweise außerdem für das Überleben von
Krebszelllinien notwendig sind.
Ich glaube, dass EMOGI eine wertvolle Methode ist und die erzielten Ergebnisse neue
Möglichkeiten in der Diagnose und Therapie von Krebserkrankungen darstellen kön-
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nen. Die hier vorgestellte Methode ist nicht auf die Anwendung von Krebserkrankun-
gen beschränkt, sondern kann für andere komplexe Krankheiten, für die ähnlich viele
Datenmengen vorhanden sind, genutzt werden.
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