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ABSTRACT

Let X be a separated scheme of finite type over k with & being a perfect field of positive characteristic
p. In this thesis we define a complex K, x,o4 Via Grothendieck’s duality theory of coherent sheaves
following [Kat87] and build up a quasi-isomorphism from the Kato-Moser complex of logarithmic de
Rham-Witt sheaves v, x to K, x 104 for the étale topology, and also for the Zariski topology under the
extra assumption k = k. Combined with Zhong’s quasi-isomorphism from Bloch’s cycle complex Z§
to Up, x [Zhold, 2.16], we deduce certain vanishing, étale descent properties as well as invariance under
rational resolutions for higher Chow groups of 0-cycles with Z/p"-coefficients.

ZUSAMMENFASSUNG

Sei k ein vollkommener Korper der Charakteristik p > 0. Sei X ein separiertes k-Schema vom endlichen
Typ. In dieser Doktorarbeit definieren wir ein Komplex K, x 104 iiber Grothendiecks Dualitétstheorie
kohédrenter Garben nach [Kat87] und ein Quasiisomorphismus von dem Kato-Moser-Komplex der loga-
rithmischen de Rham-Witt Garben 7, x nach K, x jo4 fiir die étale Topologie und auch fiir die Zariski
Topologie unter der zusétzlichen Annahme k = k. In Kombination mit Zhongs Quasiisomorphismus
vom Blochs Zykelkomplex Z$ nach v, x [Zhol4, 2.16], leiten wir bestimmte Eigenschaften fiir Hohere
Chowgruppen von 0-Zyklen mit Z/p"-Koeffizienten ab.
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INTRODUCTION

In this work, we show that Bloch’s cycle complex of zero cycles mod p™ is quasi-isomorphic to the
Cartier operator fixed part of a certain dualizing complex. From this we obtain new vanishing results
for the higher Chow groups of zero cycles with mod p™ coefficients for singular varieties.

Let X be a separated scheme of finite type over k of dimension d with k& being a perfect field of
positive characteristic p. Bloch introduced his cycle complex Z% (m) in [Blo86] as the first candidate
for a motivic complex under the framework of Beilinson-Lichtenbaum. Let m,i be integers, and A? =
Speck[Tp, ..., T;]/(O_T; —1). Here Z5 (m) := zp(—, — ® —2m) is a complex of sheaves in the Zariski or
the ’etale topology. The global sections of its degree (—i — 2m)-term z,,(X, ) is the free abelian group
generated by dimension (m + i)-cycles in X x A’ intersecting all faces properly and the differentials are
the alternating sums of the cycle-theoretic intersection of the cycle with each face (cf. Section 2). In
this article we define a complex K, x ;04 via Grothendieck’s duality theory of coherent sheaves following
the idea in [Kat87] and build up a quasi-isomorphism from the Kato-Moser complex of logarithmic de
Rham-Witt sheaves 7, x (namely the Gersten complex of logarithmic de Rham-Witt sheaves, which is
introduced and studied in [Kat86a, §1][Mos99, (1.3)-(1.5)]) to K, x,i0g for the étale topology and also for
the Zariski topology under the extra assumption k¥ = k. Combined with Zhong’s quasi-isomorphism from
Bloch’s cycle complex ZS := Z5%(0) to v, x [Zhol4, 2.16], we deduce certain vanishing and finiteness
properties as well as invariance under rational resolutions for higher Chow groups of 0-cycles with Z/p"-
coefficients. The proofs in this article are self-contained in respect to Kato’s work [Kat87].

Let us briefly recall Kato’s work in [Kat87] and introduce our main object of studies: K, x iog-
Let m : X — Speck be the structure morphism of X. Let W, X = (|X|,W,Ox), where |X| is the
underlying topological space of X, and W, Ox is the sheaf of length n truncated Witt vectors. Let
W,m : W, X — Spec W,k be the morphism induced from 7 via functoriality. According to Grothendieck’s
duality theory, there exists an explicit Zariski complex K, x of quasi-coherent sheaves representing
(Wom)'Wyk (such a complex K, x is called a residual complex, cf. [Har66, VI 3.1]. We will collect
some related facts in Section 1.1.). There is a natural Cartier operator C’ : K, x — K, x, which is
compatible with the classical Cartier operator C : W, Q4 — W,Q% in the smooth case via Ekedahl’s
quasi-isomorphism (see Theorem 1.17). Here Wnﬂg( denotes the degree d := dim X part of the de
Rham-Witt complex. We define the complex K, x 104 to be the mapping cone of C’ — 1. What Kato
did in [Kat87] is the FRP counterpart, where FRP is the "flat and relatively perfect” topology (this is a
topology with étale coverings and with the underlying category lying in between the small and the big
étale site). Kato then showed that K, x 04 in the topology FRP acts as a dualizing complex in a rather
big triangulated subcategory of the derived category of Z/p™-sheaves, containing all coherent sheaves
and sheaves like logarithmic de Rham-Witt sheaves [Kat87, 0.1]. Kato also showed that in the smooth
setting, K, x,10g is concentrated in one degree and this only nonzero cohomology sheaf is the top degree
logarithmic de Rham-Witt sheaf [Kat87, 3.4]. For the latter, an analogy on the small étale site naturally
holds. Riilling later observed that with a trick from p~!-linear algebra, [Kat87, 3.4] can be done on
the Zariski site as well, as long as one assumes k = k (cf. Proposition 1.24). Comparing this with the
Kato-Moser complex v, x, which is precisely the Gersten resolution of the logarithmic de Rham-Witt
sheaf in the smooth setting, one gets an identification in the smooth setting 7, x ~ K, x 0y on the
Zariski topology. Similar as in [Kat87, 4.2] (cf. Proposition 1.32), Riilling also built up the localization
sequence for K, x ;o4 on the Zariski site in his unpublished notes (cf. Proposition 1.33). Compared with
the localization sequence for Z5 [Blo94, 1.1] and for 7, x (which trivially holds in the Zariski topology),
it is reasonable to expect a chain map relating these objects in general.

The aim of this article is to build a quasi-isomorphism Zlog S Un X = K x,10g in the singular setting,
such that when pre-composed with Zhong’s quasi-isomorphism ¥ : Z$ — 7y, x [Zhol4, 2.16], it gives
another perspective of Bloch’s cycle complex with Z/p"-coefficients in terms of Grothendieck’s coherent
duality theory. More precisely, we prove the following result.

Theorem 0.1 (Theorem 5.10, Theorem 6.4). Let X be a separated scheme of finite type over k with k
being a perfect field of positive characteristic p. Then there exists a chain map

Clog,ét CVUn, X ét — Kn,X,log,éh

and when k =k, a chain map
Clog,Zar - Un,X,Zar — Kn,X,log,Zar

which are quasi-isomorphisms.



Composed with Zhong’s quasi-isomorphism 1, we have the following composition of chain maps
Zlog,ét © Eét : ZS{,ét/pn — K X log,et
and when k =k, the composition of chain maps

- ol . 7cC n =
Clog,Zar © 1pZar . ZX,Zar/p — Kn,X,log,Zar

which are quasi-isomorphisms.

We explain more on the motivation behind the definition of K, x 10g. In the smooth setting, the
logarithmic de Rham-Witt sheaves can be defined in two ways: either as the subsheaves of W, Q%
generated by log forms, or as the invariant part under the Cartier operator C. In the singular case, these
two perspectives give two different (complexes of) sheaves. The first definition can also be done in the
singular case, and this was studied by Morrow [Morl5]. For the second definition one has to replace
W,Q% by a dualizing complex on W, X: for this Grothendieck’s duality theory yields a canonical and
explicit choice, and this is what we have denoted by K, x. And then this method leads naturally to
Kato’s and also our construction of K, x jog. Now with our main theorem one knows that Z5 /p™ sits
in a distinguished triangle

c’'—1 1
%/pn — Kn,X ? Kn,X + ?

in the derived category D°(X,Z/p™), in either the étale topology, or the Zariski topology with k = k
assumption. In particular, when X is Cohen-Macaulay of pure dimension d, then the triangle above
becomes

c /n Cc'—1 +1

S /p" = Whwx[d] — Whwx|[d] — .
where W,wx is the only non-vanishing cohomology sheaf of K, x (when n = 1, Wiwx = wx is the
usual dualizing sheaf on X)), and Z5 /p™ is concentrated at degree —d (cf. Proposition 8.1). This is a
generalization of the top degree case of [GL00, 8.3], which in particular implies the above triangle in the
smooth case.

As corollaries, we arrive at some properties of the higher Chow groups of 0-cycles with p-primary

torsion coefficients. (The versions stated here are not necessarily the most general ones. See the main
text for more general statements.)

Corollary 0.2 (Proposition 8.2, Cogﬂlary 8.3, Corollary 8.7, Corollary 8.11). Let X be a separated
scheme of finite type over k with k = k.

(1) (Cartier invariance)
CHo(X, ¢: Z/p") = H (Wi X, Kp,x zar) .
(2) (Affine vanishing) Suppose X is affine and Cohen-Macaulay of pure dimension d. Then
CHo(X,q,Z/p") =0

for q # d.
(3) (Etale descent) Suppose X is affine and Cohen-Macaulay of pure dimension d. Then

Rle(Zs 6 /P") = R'e.Vn xct =0, i# —d.

(4) (Invariance under rational resolution) For a rational resolution of singularities f : X — X
(c¢f. Definition 8.8) of an integral k-scheme X of pure dimension, the trace map induces an
isomorphism

CHo(X,q;Z/p") — CHo(X, ¢; Z/p")
for each q.

Now we give a more detailed description of the structure of this article.

In Part 1, we review the basic properties of the chain complexes to appear. Section 1 is devoted
to the properties of the complex K, x i0g, the most important object of our studies. Section 1.1 is a
preliminary subsection on residual complexes and Grothendieck’s duality theory. After this, we study the
Zariski version in Section 1.2-Section 1.5. Following the idea in [Kat87], we define the Cartier operator
C’ for the residual complex K, x, and then define the complex K, X,log to be the mapping cone of
C’ — 1 in Section 1.2. We compare our C’ with the classical definition of the Cartier operator C for top
degree de Rham-Witt sheaves in Section 1.3. To avoid interruption of a smooth reading we collect the
calculation in the next two subsections (Section 1.3.2-Section 1.3.3). The localization sequence appears
in Section 1.4. In these subsections, the most important ingredients are a surjectivity result of C’ — 1
(cf. Proposition 1.24. See also Section A for a short discussion on o-linear algebra), the trace map of a
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nilpotent thickening (cf. Proposition 1.32), and the localization sequence (cf. Proposition 1.33). They
are observed already by Riilling and are only re-presented here by the author. After a short discussion
on functoriality in Section 1.5, we move to the étale case in Section 1.6. Most of the properties hold
true in a similar manner, except that the surjectivity of Ce — 1 : W”Q.gl(.ét — I/Vnﬂﬁ(,ét over a smooth
k-scheme X holds true without any extra assumption of the base field '(except perfectness, which is
already needed in defining the Cartier operator). This enables us to build the quasi-isomorphism (jog,6t
without assuming k being algebraically closed in the next part. The rest of the sections in Part 1 are
introductory treatments of Bloch’s cycle complex Z$ (m), Kato’s complex of Milnor K-theory C’%t(m)
and the Kato-Moser complex of logarithmic de Rham Witt sheaves 7, x +(m), respectively.

In Part 2 we construct the quasi-isomorphism Zlog D Un X = K, x10g and study its properties in
Section 5. We first build a chain map ( : Cé\g — K, x and then we show that it induces a chain map
Clog : C)A(/I — K, x,1og- This map actually factors through a chain map Zlog tUnx — Ky X109 Via the
Bloch-Gabber-Kato isomorphism [BK86, 2.8]. We prove that Zlog is a quasi-isomorphism for ¢t = ét, and

also for t = Zar with an extra k = k assumption. In Section 6, we review the main results of [Zho14, §2]
and compose Zhong’s quasi-isomorphism 1) : Z5 /p" — Up x with our Zlog. This composite map enables
us to use tools from the coherent duality theory in calculation of certain higher Chow groups of 0-cycles.

In Part 3 we discuss the applications. Section 7 mainly serves as a preparation section for Section 8.
In Section 8 we arrive at several results for higher Chow groups of 0-cycles with p-primary torsion
coefficients: affine vanishing, finiteness (reproof of a theorem of Geisser), étale descent, and invariance
under rational resolutions.

NOTATIONS AND CONVENTIONS

(1) Basic settings. k will always be a perfect field of characteristic p > 0. k-schemes will be assumed
to be separated schemes of finite type over &, unless otherwise stated. (In particular, in subsection
Section 1.1 we shall allow more general schemes.) Let X be a k-scheme. Let 7 : X — k be the
structure morphism of X. Let W, X := (|X|, W,,Ox), where |X| is the underlying topological
space of X, and W,,Ox is the sheaf of truncated Witt vectors, and let W,n : W,, X — W,k be
the morphism induced from 7 via functoriality. Fx denotes the absolute Frobenius map of X,
W, F'x is the map induced from Fx via functoriality. When X = Spec A is affine, we also write
FA (resp. WnFA) for FSpecA (resp. WnFSpecA)-

(2) Topologies. Xza,, X¢t denote the small Zariski site and the small étale site, respectively (we will
use a subscript ¢ when the topology ¢ is unspecified). Their structure sheaves are denoted by
Ox and Ox 4. Let €, be the restriction functor from the category of étale abelian sheaves to
the category of Zariski abelian sheaves. Denote by Re, the right derived functor of e,. The
functor €, can be restricted to a functor from the category of Ox z.r--modules to the category of
Ox ¢-modules, and let €* be the left adjoint of this restricted functor. Then one has €, o€* = id.
The functor €* (resp. €,) can be restricted to the category of quasi-coherent sheaves on Xz,
(resp. Xet), and the pair (e, €*) induces a categorical equivalence between quasi-coherent étale
sheaves and quasi-coherent Zariski sheaves by étale descent. We follow [Stacks, Tag 01BE] for
the notion of quasi-coherence on the small étale site (see also [Stacks, Tag 03DX]).

We clarify a possible ambiguity here. Fix n € N5g. Let G be an étale Z/n-sheaf. Let

fzar : (Zariski Z/n-sheaves) — (Zariski abelian sheaves)
fet : (étale Z/n-sheaves) — (étale abelian sheaves)

be the forgetful functors, which are clearly seen to be fully faithful. Let
€, : (étale Z/n-sheaves) — (Zariski Z/n-sheaves)

be the restriction functor. The functor fz.. and fs are clearly exact, and fs sends injective
étale Z/n-sheaves to e,-acyclic objects (this is because Rie,G is the sheaf associated to presheaf
U+ H'(Ug, G); and injective étale Z/n-sheaves are flasque by [SGA4-2, Exposé V 4.10(2)] and
thus Cech acyclic for any Cech cover [SGA4-2, Exposé V 4.5] which is equivalent to T'(Ug;, —)-
acyclic for all U € X [Mil80, IIT 2.12]). Then the Leray spectral sequence implies that

Re, o fét(g) = R(E* o fét)(g) = R(fZar o 6;)(g) = fZar o Rf;(g)

This means the i-th cohomology sheaves of €, and €, are the same for étale Z/n-modules.
Denote by D®(X¢,7Z/n) the derived category of Z/n-modules in the topology * with bounded

cohomologies. The forgetful functor f; induces a triangulated functor f; : D%(X;,Z/n) <

D®(Xy,7) for both t = Zar and t = ét, which is exact and faithful (the faithfulness can be seen


https://stacks.math.columbia.edu/tag/01BE
https://stacks.math.columbia.edu/tag/03DX
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from the description via homotopy category [Har66, 1.4.7]: whenever two chain maps between
complexes of Z/n-modules are Z-linearly chain homotopic, they are naturally Z/n-linearly chain
homotopic). As a functor between derived categories, f; is compatible with the derived restriction
functors Re,, Re!, as explained above.

The subscript ¢ will be omitted when ¢ = Zar. We will also omit this subscript ¢ occasionally

for maps between étale sheaves, when it is clear from the context. (These rules do not apply to
the introduction, where we have deliberately cut down symbols to avoid heavy notations).
De Rham-Witt theory. Let X be a k-scheme. Denote by W,,Q5% or W,Q5% /k the de Rham-Witt
complex on X as defined in [I1179]. Since k is a perfect field of positive characteristic p, Illusie’s de
Rham-Witt complex agrees with the relative version of Langer-Zink in [LZ04] (we will only use
this relative version in Lemma 1.21), thus our notations shall cause no confusion. When n =1,
Wn§% is also denoted by Q% or Q2% , which is the same as the complex of Kéhler differentials. In
particular, we have the following four maps according to [[1179, I] and an observation of Hesselholt-
Madsen that the V-filtration equals the R-filtration in general [HMO3, 3.2.4] (see also [Morl5,
§2.3]. By V-filtration of W,,Q% we mean the decreasing filtration {VW,,_;Q% —l—dViWn_Z-Q’;}_l}i
of W, 0% indexed by ): the restriction map

R:W,Q% - RW,_1Q%,
the lift-and-multiplication-by-p map
p: RW, Q% — W, 0%,
the Verschiebung map
ViR(Wp_1Fx) Wy 1Q% — W,Q%,
and the Frobenius map
F W, Q% = R(Wy_1Fx )W, _1Q%.

Here by abuse of notation we denote by R : W, _1 X — W, X the closed immersion induced
by the restriction map R : W,0x — W, _1Ox on structure sheaves. All the four maps stated
above are W,,Ox-linear. We will denote by W, Q% the abelian sheaf F(W,,1Q%) regarded as
a W, Ox-submodule of (W, F X)*WnQZX We sometimes erase the subscript X when there’s no
confusion.

When we write an element in W, Q% in terms of a product with respect to an totally ordered
index set, we make the following assumptions: when an index set is empty, the respective factor
of the product does not occur; when an index set is non-empty, the factors of the product are
ordered such that the indices are increasing. With these assumptions we avoid any confusion
concerning signs.

Coherent duality theory. We follow [Har66][Con00] for the Grothendieck duality theory, and
in particular we adopt the sign conventions from [Con00]. We will be working with residual
complexes as defined in [Con00, §3.2]. When X is a k-scheme, X is equipped with a canonical
residual complex K, x for every n > 1 (see Section 1 below). For f: X — Y being a morphism
of finite type between k-schemes, we use f© instead of f' to denote the extraordinary inverse
image functor for residual complexes as in [Har66, VI 3.1]. An introduction to the functor f&
and some related facts of the Grothendieck duality theory are collected in Section 1.1. When X
is Cohen-Macaulay of pure dimension d, K, x is concentrated in degree —d [Con00, 3.5.1]. This
only non-vanishing cohomology sheaf is denoted by W,wx. When n = 1, this is denoted by wx
(wx is the usual dualizing sheaf for coherent sheaves on X).

Local cohomology. Let Y = Spec B be an affine scheme and Z C Y be a closed subscheme of
pure codimension ¢. Suppose Z is defined by a sequence t = {¢1,...,t.} C B. Define the Koszul
complex associated to sequence t

c c—1 2
ANB 2 \Be— . B ABe 2 e N B

with K~9(t) = K (t) = N\? B¢ for ¢ =0,...,c. Denote by {e1,...,e.} the standard basis of B¢,
and e;, .., = ey A---Nej, € Ky(t). Then the differential is given by

q
oia) = gt (€)= D (D) e S



(This is consistent with the conventions in [Con00, p.17].) When ¢ is a regular sequence, K(t)
is a free resolution of B/(t) as B-modules, where (t) denotes the ideal (¢1,...,%¢.) C B.
Let M be a B-module. Define

K*(t,M) := Homp (K~ *(t), M).
Its differential is therefore given by

q+1
d?{a(t’M)(g)(ei17~~7iq+1) = Z(_l)]+1tijg(ei1 ..... Ty iq+1)

=1
with g € Homp (K ~9(t), M). The map g — g(e1,... ) thus induces an isomorphism
HY(K®(t,M)) ~ M/(t)M.
When t is a regular sequence, this is the only non-vanishing cohomology of the complex K*(¢t, M)
by [EGAIII-1, Ch. III (1.1.4)].

Denote by tV the sequence IV, ... t. Let M be the associated quasi-coherent sheaf of M on
Y. Then by [SGA2, Exposé II Prop. 5], there is an natural isomorphism

colimy HE(K*(tN, M)) ~ HS(Y, M).

We denote by { Zl ] the image of m € M under the composition

M — HomB(/C\ B, M) — HY(K*(t,M)) — H5(Y, M),

where the first map is associating m € M the B-linear homomorphism [e; . . — m]. Notice that

this composition restricted to (t)M is the zero map.

.....

t
from the definition in [BER12, (4.1.2)] by a sign when ¢ is a regular sequence.

Our convention for { m ] is consistent with the definitions in [CR11, §A][CR12], but differs

Part 1. The complexes
1. KATO’S COMPLEX K, X l0g,t

Let X be a separated scheme of finite type over k of dimension d. In this section, we aim to define
and analyse a complex K, x 04+ for t = Zar and ¢t = ét over a separated scheme X of finite type over
k. The original idea of this complex comes from [Kat87, §3], except that Kato is working in a different
topology. Our treatment here is self-contained, but the influence of Kato’s work [Kat87] on this work is
definitely inevitable. We will be working in ¢t = Zar exclusively in Section 1.2-Section 1.5, and will omit
the subscript ¢ = Zar in these subsections. Then we will be working in the étale topology in Section 1.6.
But before all these, we review Grothendieck’s duality theory for coherent sheaves with an emphasis on
residual complexes and the functor f% in Section 1.1.

1.1. Preliminaries: Residual complexes and Grothendieck’s duality theory. Grothendieck’s
duality theory aims to generalize the Serre duality for coherent sheaves from the smooth case to the
singular case. More substantially, one needs a well-formulated functor f' in the derived category and a
trace map Try : Rf. o f* — id for a proper morphism f. To overcome the difficulty of gluing objects in
the derived category, Grothendieck defined the notion of residual complexes, which are certain objects
in the category of complexes of quasi-coherent sheaves with coherent cohomology sheaves, to serve as
a “concrete” substitution for dualizing complexes. f' (denoted by f* in this case) and Tr ¢ could now
be defined locally for residual complexes, and then one has the respective global maps by gluing these
local maps. In this subsection we collect some basic facts for Grothendieck’s duality with an emphasis
on residual complexes and the functor f©. The general references for this topic are [Har66][Con00]. The
topology will be the Zariski topology throughout this subsection.

Notation 1.1. All schemes in this subsection Section 1.1 will be assumed to be noetherian with finite
Krull dimension (the finite Krull dimension condition is a necessary condition for a scheme to admit
a dualizing complex, cf Remark 1.3(2)). D(X) denotes the derived category of Ox-modules. Dgyc(X)
(resp. D (X)) denotes the full subcategory of D(X) consisting of complexes whose cohomology sheaves
are quasi-coherent (resp. coherent) Ox-modules. D (X) (resp. D~ (X), D’(X)) denotes the full
subcategory of D(X) consisting of complexes that are cohomologically bounded below (resp. bounded
above, bounded). Combinations of these notations might also appear, like D? (X), D(X), etc.
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According to [Har66, I 4.8], the natural inclusion functor from the category of quasi-coherent Ox-
modules to the category of Ox-modules induces a categorical equivalence from the full subcategory of
the derived category of quasi-coherent Ox-modules consisting of complexes cohomologically bounded
below to DF.(X).

1.1.1. Dualizing complexes and residual complezes. The general references for this part are [Har66, V,
V1], [Con00, §3.1, §3.2].

Definition 1.2 (Dualizing complex). (1) ([Con00, p.118]) A dualizing complex on a scheme X is a
complex R € Db(X) such that
e R has finite injective dimension (i.e. R is isomorphic in D(X) to a bounded complex of
injective Ox-modules), and
e the natural map

Ng : id = RHomo, (RHome, (—, R), R)

is an isomorphism in the derived category D.(X).

(2) ([Con00, p.123]) For any dualizing complex R on a scheme X and any x € X, there exists an
unique integer d = dg(z) such that H~%(RHomspec 0., (k(z), Ry)) # 0 (cf. [Har66, V.3.4 and
V.7.1]). We call dr the codimension function on X associated to R, and define the associated
filtration Z*(R) of X by

Z7(R) = {x € X | dr(z) > p}.

We remark that a complex in D(;“C(X ) is of finite injective dimension if and only if it is quasi-isomorphic
to a bounded complex of quasi-coherent injective Ox-modules (cf. [Har66, 1.7.6(i) and p.83 Defl]).
For this one only needs to show the “only if” part. In fact, such a complex is isomorphic in D(X)
to a cohomologically bounded complex of quasi-coherent O x-modules by the categorical equivalence
[Har66, 1.4.8], and by applying the canonical truncation functor one can assume this complex is bounded.
This bounded complex of quasi-coherent O x-modules is again isomorphic in D(X) to a bounded below
complex of quasi-coherent injective O x-modules by [Har66, IT 7.18] and the Cartan-Eilenberg resolution.
Applying the canonical truncation functor again we get a bounded complex of quasi-coherent injective
Ox-modules. In the end one notices that every morphism in D*(X) with an injective target can actually
be represented by a chain map [Wei94, 10.4.7].

Remark 1.3. (1) Connection with pointwise analogs. In [Con00, p.120], Conrad defined the notion
of weak (resp. strong) pointwise dualizing complexes) on a locally noetherian scheme. In general
one has dualizing implies strongly pointwise dualizing implies weakly pointwise dualizing. Note
that under our assumption Notation 1.1, these three notions coincide (cf. [Con00, p.120], [Har66,
V 8.2)).

(2) Existence and examples [Har66, V §10][Con00, p.133].

(a) A scheme X is said to be Gorenstein if every local ring of X is a Gorenstein local ring [Har66,
p-296]. One of the equivalent definitions of a Gorenstein local ring is a noetherian local ring
admitting a finite injective resolution [Har66, V 9.1]. Examples of Gorenstein rings include
Z, fields, regular rings, W, k. When a scheme X is Gorenstein, Ox[0] is a dualizing complex
[Har66, V §10 p.299 1.]. In particular, any regular scheme has a dualizing complex Ox|[0].

(b) If f: X — Y is a morphism of finite type and Y admits a dualizing complex R, then f'R
(as defined in [Con00, (3.3.6)]) is a dualizing complex on X. In particular,

(i) any scheme of finite type over a Gorenstein ring (of finite Krull dimension) admits a
dualizing complex;
(ii) when X is smooth of pure dimension d over a Gorenstein ring A (with finite Krull
dimension), then wy,4[d] := Q?(/A [d] is a dualizing complex on X.
To mention a necessary condition: If a scheme admits a dualizing complex then it must be
catenary and have finite Krull dimension. ([Har66, p.300 1.2.])

(3) Uniqueness, [Har66, V 3.1][Con00, p.123-p.124]. Let X be a scheme and with dualizing complexes
R,R’. Then there exists a unique locally constant Z-valued function n = n(R,R’) on X (n is
just an integer when X is connected), and a unique line bundle £ = £L(R, R’), such that there is
an isomorphism

/BR,R’ : RI >~ E[n} ®L R.
From the construction in [Har66, V 3.1], L(R, R') is defined to be H™"(RHomo, (R, R’)).

(4) Connection with the ring-theoretic version. For a noetherian ring A (to fit in our general as-
sumption we also assume A has finite Krull dimension), one can likewise define the notion of



a dualizing complex. Then the notions of a dualizing complex on A and on Spec A coincide.
([Con00, 3.1.4))

Definition 1.4 (Residual complex). (1) ([Con00, p.125]) A residual complexr on a scheme X is a
complex K such that
e K is bounded as a complex,
all the terms of K are quasi-coherent and injective O x-modules,
the cohomology sheaves are coherent, and
there is an isomorphism of Ox-modules

@Kq ~ @ iz (T),

qEZ zeX

where i, : SpecOx , — X is the canonical map and J(z) is the quasi-coherent sheaf on
Spec Ox , associated to an injective hull of k(z) over Ox , (i.e. the unique injective Ox 4-
module up to non-unique isomorphisms which contains k(x) as a submodule and such that,
for any 0 # a € J(x), there exists an element b € Ox , with 0 # ba € k(x). For a discussion
on injective hulls, see [Lam99, §3D and §3J]). J(z) as a sheaf on Spec Ox , is supported on

the closed point, therefore i,.J(z) as a sheaf on X is supported on {z}.
Unlike dualizing complexes, residual complexes are regarded as objects in the category of com-
plexes of Ox-modules instead of the derived category.
(2) ([Con00, p.125]) Given a residual complex K on X and a point « € X, there is a unique integer
dx (), such that i,.J(z) is a direct summand of K, i.e.,

K7~ @ zwd ().
dK(a:):q

The assignment © — dg () is called the codimension function on X associated to K (cf. [Har66,
IV, 1.1(a)]). We define the associated filtration

2°(K) = {z € X | dx(2) > p}.
As a first property, residual complexes can be regarded as dualizing complexes via the natural functor
Q : (complexes of Ox-modules) — D(X),
according to [Har66, chapter VI, 1.1 a)] and Remark 1.3(1).

Next we want to define a functor Fz. relating dualizing and residual complexes. First of all we need
make some proper assumptions on the filtration Z° involved.

Definition 1.5 ([Har66, p.240][Con00, p.105]). Let X be a scheme and let Z°®* = {ZP} be a decreasing
filtration of X by subsets Z? such that

e it is compatible with specialization, i.e., each ZP is stable under specialization, and each x €
ZP — ZP*1 is not a specialization of any other point of ZP, and

e it is stationary on above and separated, i.e., X = ZP for some sufficiently negative p and (| ZP =
(), so X is disjoint union of ZP — ZP*1 over p € Z.

If Z* is such a filtration, we denote by Z*[n] the filtration with Z*®[n]P = ZP*".

According to the first item, the intuition for such a filtration should be that ZP consists precisely of
those points in the closure of the points in Z? — ZP*1, i.e.,

7= J
rezZpr—ZzZpr+l
where {2} denotes the closure of the point 2 in X, and this relation is strict in the sense that
2= VN O
weZr—Zr+1—{xo}

for any zo € ZP \ ZPT1.

Example 1.6. Recall that the (co)dimension of a point z € X is defined to be the (co)dimension of its
closure {z} as a topological space.



(1) The dimension filtration
7P = {z € X | dim {z} < —p}
of X and its shifts o
Z°nP ={z € X |dim{z} < n —p}
are examples of filtrations satisfying Definition 1.5.
(2) A more standard example of Definition 1.5 is the codimension filtration
ZP ={z € X | dimOx , > p}
of X and its shifts
Z*npP ={z € X |dimOx,, >p+n}.
On each irreducible component of X, the dimension filtration is clearly a shift of the codimension

filtration, which is a descending filtration in a more natural way. The terminology of the dimension
filtration is actually non-standard, we include it here just for convenience reasons.

Now review some terminology from local cohomology ([SGA2, Exposé 1], see also [Har66, IV][Har67]).
Let Z be a locally closed subset of X. Then there exists an open subset V' of X containing Z as a closed
subset (e.g. V = X\ (Z\ Z) where Z denotes the closure of Z). Let F be an abelian sheaf on X. Define
the following subgroup of F(V)

Iz(F):=Tz(Flv) :={s e F(V) | any = with germ s, # 0 lies in Z}.
One can check that this definition of Iz (F) is independent of the choice of V: indeed, one has
I'z(Flv) =Ker(I'(V,F) = I(V — Z, F))

and for any open subset V/ D V such that V' contains Z as a closed subset, the restriction map induces
an isomorphism 'z (Fl|y+) =~ I'z(F|y). The functor I'z(—) is easily seen to be left exact, and its ¢-th
derived functor will be denoted by HZ(—).

Define I'; to be the functor which assigns to any abelian sheaf 7 on X the sheaf

Uw— FUr‘]Z(]:|U)
on X. I',(F) is not necessarily a subsheaf of F. Clearly,
Suppl,(F) ={z e X |L,(F), #0} C Z.

The functor I',(—) is left exact, and its g-th derived functor will be denoted by H%(—).

For any open subset W of Z, there exists an open subset V of X such that W = Z NV where Z
is the closure of Z in X (e.g. V = W' N (X \ (Z\ Z)) where W’ is any open subset of X such that
W =W’NZ). This means that W is closed in V, and thus locally closed in X. Let

i:Z =X
be a canonical immersion of the locally closed subset Z of X with any possible structure sheaf on Z (i.e.,
only the underlying topological space of Z matters). Define i' F to be the sheaf
on Z. This is a subsheaf of i~'F on Z: for each open W C Z, let V be an open subset of X such that
W =27nV (and thus W = ZNV). Then the composition
Tw(F) =Tw(Flv) > L(V.F) > T(VNZi'F)=T(W,i"'F)

is injective: for any s € 'y (F|y) having zero image in I'(W,i~1F), by definition of the inverse image
functor we have s = 0 in I'(V’, F) for an open subset V' of X with V/ D W. But we also have s = 0
in I(V — W, F), and thus s = 0 in T'(V, F). The functor i' is left exact, and its g-th derived functor is
denoted by R%'. Note that for an immersion i : Z < X between separated k-schemes of finite type,
the symbol i' is not the same as the extraordinary inverse image functor between derived categories
from duality theory (cf. [Con00, (3.3.6)]). In particular, i* applied to an Ox-module does not give out
an Ox-module in general. Under either interpretation, the symbol (—)' in this paper serves only for
heuristic purposes, and thus shall not cause any confusion for understanding the main part of this paper.
For a given sheaf 7 on X, the sheaf I',,(F) on X and the sheaf i'F on Z are related by

L, (F) =i, F.
Thus one has identification of stalks for any point z € Z:

(Lz(F))z = (I'F)s.
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The right hand side is due to the facts that an immersion can always be decomposed into a closed
immersion and an open immersion, and that the pushforward via either such a closed immersion or an
open immersion preserves stalks over points in Z. This identification of stalks implies an identification
of sheaves on Z

i'F =i 'T4(F).
Since the functor i~! is exact, one has an identification of the derived functors
RY'F =i "HY(F).
In particular:
e When Z is closed, denote by j: U = X \ Z — X its open complement. Then we have
L, (F) =Ker(F — j.j ' F).
In this case we have a canonical injective map
L, (F)— F.
e When Z is open, one easily sees
i F=i"'F and Tz(F)=I(ZF).
Thus we have an isomorphism of sheaves
L (F)=i.i 'F
and a canonical homomorphism of sheaves
F =T, F)

given by the adjunction. One can also canonically interpret the local cohomology groups in this
case as
HY(F)=HYZ,i'F) and HL(F)= RY%.(i"*F).
Consider a set Z which is stable under specialization. One notices that sets ZP from Definition 1.5,
and in particular, the sets from the codimension filtration, i.e., Z? = {z € X | dim Ox , > p} for some p,

are typical examples of such a Z. These sets are far away from being locally closed in general. Following
[Har66, IV §1, Var. 1 Motif D and p223 5.], define the abelian sheaf

T,(F) :=colimgI'4(F)

where A runs over all closed subsets of X of codimension > p. Note that the set of all such A is a
well-defined family of supports as defined in [Har66, IV §1 Var. 1], and all these abelian sheaves T 4 (F)
together with the connecting homomorphisms

Ly(F) = Ly(F)
for all A C A’ (induced by the natural injective map I'4(F) < T'4/(F)) form an inductive system.
Suppose from now on that Z° is a descending filtration as in Definition 1.5. Denote
EZP/Zerl(]:) =L 70(F)/L zp41 (F).

The functor 'y, /7,11 is in general not left exact. But since the category of abelian sheaves has enough
injectives, one can still define the derived functor RL 7, /71 : D (X) — D(X) using injective resolutions
(note that the construction of the derived functor does not rely on any one-sided exactness, cf. [Har66,
I5.1]), and therefore can define

Hyo jgoe1 (F*) i= H'(RL 20 701 (F*))

for a bounded below complex F* of Ox-modules. Note that with this definition of Hin/ZpH, one only
has an injection L'z, /7541 (F) < ”HOZ,,/ZPH(]:) for a general sheaf F. When F is flasque, this injection
is an isomorphism.

The functors I, Jzv 1 and Hin Jzp+1 Are closely related to another functor I', with = being a point

in X. For z € X, F a Ox-module, define the abelian group (cf. [Har66, §1 Var. 8])
FJ(]:) = COthBw meU(]:h]),

where U runs through all open neighborhoods of . Naturally T',(F) C F,. Since a filtered colimit
preserves exactness in the category of abelian sheaves, I', is left-exact and the derived functor RI', and
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cohomology groups H:(F) are thereby defined. Due to the compatibility of the colimit with taking
cohomologies, one has an identification of Ox ;-modules

HL(F) = (e ().
Moreover, one has a canonical functorial isomorphism [Har66, p.226][Con00, (3.1.4)]
(LL1L) ooz (F) = D inn(HUF?)),
weZP—Zr+1

where i, : Spec Ox,, — X is the canonical map and by slight abuse of notations we use HZ(F*®) to denote
the quasi-coherent sheaf on Spec Oy, associated to the Ox ,-module H:(F®). H.(F*) as a sheaf on
Spec Ox . is supported on the closed point if it is nonzero.

Definition 1.7 (Cousin functor Ez.). Let Z*® be as in Definition 1.5. For any bounded below complex
F*, choose a bounded below injective resolution Z*® of F°. Then one has a natural decreasing exhaustive
filtration by subcomplexes of Z°:

DT DLy (%) D ...

This filtration is stalkwise bounded below. Now consider the FEi-spectral sequence associated to this
filtration
EPY = HPTI(F®).
The Cousin complez ([Con00, p.105]) Eze(F*) associated to F* is defined to be the 0-th line of the
FE;-page, namely
Eze(F®) = (EY® = HYy s (F), d7°).
We will also use the shortened notation E for Eze when the filtration Z° is clear from the context.

In the end, we recall below the categorical equivalence between dualizing complexes and residual
complexes.

Proposition 1.8 ([Con00, 3.2.1)). Let X be a scheme and Z* be a filtration on X which is a shift of the
codimension filtration on each irreducible component of X. Suppose X admits a residual complex. Then
Eze and Q induce quasi-inverses

—
Ege

dualizing complexes whose Q restdual complexes whose
associated filtration is Z*® associated filtration is Z°® | °

1.1.2. The functor f©. Let f: X — Y be a finite type morphism between noetherian schemes of finite
Krull dimension and let K be a residual complex on Y with associated filtration Z*® := Z*(K) and
codimension function dg. Define the function dsa  on X to be ([Con00, (3.2.4)])

dyo g (v) = dr (f(x)) — trdeg(k(z)/k(f(x))
(so far the subscript f© K is simply regarded as a formal symbol), and define f©Z* accordingly
270 ={z € X | dsag(z) > p}.

Notice that when f has constant fiber dimension r, fZ* is simply f~'Z°[r].
Following [Har66, VI, 3.1], [Con00, 3.2.2], we list some properties of the functor f* below.

Proposition 1.9. There ezists a functor

2y residual complexes on'Y residual complexes on X
' with filtration Z° with filtration f~Z°
having the following properties (we assume all schemes are noetherian schemes of finite Krull dimension,
and all morphisms are of finite type).
(1) If f is finite, there is an isomorphism of complexes ([Har66, VI 3.1])

Vi fAK = Ej-1ze (7" RHomo, (f.0x,K)) ~  Homo, (f.Ox, K),

where ?* = f1(-) ®f-11,0x Ox is the pullback functor associated to the map of ringed spaces
T:(X,0x) = (Y, f.Ox). Since J is flat, the pullback functor f is ezact. The last isomorphism
is due to the fact that ?*’Homoy (f«Ox, K) is a residual complex with respect to filtration f~1Z°
(see [Har66, VI, 4.1], [Con00, (3.4.5)]).
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(2) If f is smooth and separated of relative dimension r, there is an isomorphism of complezes
([Har66, VI 3.1])

01 fOK = Epoage(Qx )y 1 @6, LK) = Epoi g0 (Qxy [r] @0 [7K).

The last equality is due to the flatness of f and local freeness of QTX/Y.
When f is étale (or more generally residually stable, see (5) below), this becomes

¢r: fPK = Epage(ffK) ~ f°K.
The last isomorphism is due to [Har66, VI 5.3]. In particular, when f =j: X <Y is an open
immersion, j°K = j*K is a residual complex with respect to filtration X N Z* ([Con00, p.128]).
(3) When f is finite étale, the chain maps 7,y are compatible. Namely, for a given residual
compler K on Y, there exists an isomorphism of complezres ?*’Homoy (f«Ox,K) = f*K as
defined in [Con00, (2.7.9)], such that the following diagram of complexes commutes

T Homo, (f.0x, K)

K.

(4) (Composition) If f : X = Y and g : Y — Z are two such morphisms, there is an natural
isomorphism of functors ([Con00, (3.2.3)])

crg (9f)® = 292
(5) (Residually stable base change) Following [Con00, p.132], we say a (not necessarily locally finite
type) morphism [ : X — 'Y between locally noetherian schemes is residually stable if
e f s flat,
o the fibers of f are discrete and for all x € X, the extension k(z)/k(f(x)) is algebraic, and
e the fibers of f are Gorenstein schemes.
As an example, an étale morphism is residually stable. For more properties of residually stable

morphisms, see [Har66, VI, §5]. Let f be a morphism of finite type, and u be a residually stable
morphism. Let

(1.1.2) X Yo x

f 'J{ J{f
YV'—Y
be a cartesian diagram. Then there is an natural transformation between functors ([Har66, VI

5.5])
du,f . f/Au* i) u'*fA.
(6) % is compatible with translation and tensoring with an invertible sheaf. More precisely, for
an invertible sheaf L on'Y and a locally constant Z-valued function n on'Y, one has canonical
isomorphisms of complexes [Con00, (3.3.9)]

FALR @ K) = (fK)n© f2K ~ (f'L® f2K)n).
More properties and compatibility diagrams can be found in [Con00, §3.3] and [Har66, VI, §3, §5].

1.1.3. Trace map for residual complezes.

Proposition 1.10. Let f : X — Y be a proper morphism between noetherian schemes of finite Krull
dimensions and let K be a residual complex on Y. Then there exists a map of complezxes

Try: fuf°K — K,

such that the following properties hold ([Con00, §3.4]).

(1) When f is finite, Try at a given residual complex K agrees with the following composite as a
map of complezes ([Con00, (5.4.8)]):

(1.1.3) Try : fof2K 2L Homoy (f.0x, K) <2 K.
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(2) When f : Pf, — Y s the natural projection, then the trace map Try at K, as a map in the
derived category DE(Y'), agrees with the following composite ([Con00, p.151])

ffAK “‘;—f> Rfu(Qpy x[n) @0y K = K.

The first map is induced from @y followed by the projection formula ([Con00, (2.1.10)]), and
the second map is induced by base change from the following isomorphism of groups([Con00,

(2.3.3)])

Z = HY(PE, 04, ) = HY(U,Q%, ), 1+ (1)

@+ dty A - Adty
Pl/z PY/2 T —

t1...tq

)

where 4 = {Uy, ..., Uy} is the standard covering of P% and the t;’s are the coordinate functions
on Uy.

(3) (Functoriality, [Con00, 3.4.1(1)]) Try is functorial with respect to residual complexes with the
same associated filtration.

(4) (Composition, [Con00, 3.4.1(2)]) If g : Y — Z is another proper morphism, then

Tryr = Try09.(Try) o (gf)«cCsg-

(5) (Residually stable base change, [Har66, VI 5.6]) Notations are the same as in diagram (1.1.2),
and we assume f proper and u residually stable. Then the diagram

w*Rf, f5 vt u*
lN Trf/T
Rfl(d.
Rfu & LD Ry

commauytes.

(6) Try is compatible with translation and tensoring with an invertible sheaf ([Con00, p.148]).

(7) (Grothendieck-Serre duality, [Con00, 3.4.4]) If f : X —Y is proper, then for any F € Dg.(X),
the composition

Rf.RHomx (F, [2K) — RHomy (Rf.F, Rf. A K) —Ls RHomy (Rf.F, K)
is an isomorphism in D} (Y').

More properties and compatibility diagrams can be found in [Con00, §3.4] and [Har66, VI, §4-5, VII,
§2].

1.2. Definition of K, x,,4. Let W,k be the ring of Witt vectors of length n of k. Notice that W,k is
an injective W, k-module, which means Spec W,k is a Gorenstein scheme by [Har66, V. 9.1(ii)], and its
structure sheaf placed at degree 0 is a residual complex (with codimension function being the zero function
and the associated filtration being Z* (W, k) = {Z°(W,k)}, where Z°(W, k) is the set of the unique point
in Spec W,,k) by [Har66, p299 1.] and the categorical equivalence Proposition 1.8 (note that in this case
the Cousin functor Eze(w, ») applied to W,k is still W, k). This justifies the symbol (W,,F)* to appear.
To avoid possible confusion we will distinguish the source and target of the absolute Frobenius by using
the symbols k1 = ko = k. Absolute Frobenius is then written as Fj, : (Spec ki, k1) — (Spec ks, ko), and
the n-th Witt lift is written as W, Fy, : (Spec Wy, k1, W, k1) — (Spec Wy, ko, W, ko). There is a natural
isomorphism of W, ki-modules (the last isomorphism is given by Proposition 1.9(1))

(1.2.1) Wk = W, Fy - Homy, i, (Wi Fi )« Wik ), Wiks) = (Wi Fi) 2 (Wiks),
arra®[(W,Fg)l = 1] (= [(W,Fg)ea— 1]),

where W, Fy, : (Spec W, k1, Wy, k1) — (Spec Wy ko, (W, Fi)«(Wyk1)) is the natural map of ringed spaces,
and the Hom set is given the (W,, F}).(W,,k1)-module structure via the first place. In fact, it is clearly
a bijection: identify the target with W, ke via the evaluate-at-1 map, then one can see that the map
(1.2.1) is identified with a — (W, F}) ! (a).

Let X be a separated scheme of finite type over k with structure map m : X — k. Recall that
WoX = (|X|,W,Ox), where |X| is the underlying topological space of X, and W,,Ox is the sheaf of
length n truncated Witt vectors. W, : W, X — W,k is the morphism induced from 7 via functoriality.
Since W,k is a Gorenstein scheme as we recalled in the last paragraph,

K,x = (Wom)2 W,k



14

is a residual complex on W, X, associated to the codimension function dg, , with
dr, x () = — dim {z},
and the filtration Z°*(K,, x) = {ZP(K,, x)} with
ZP(K, x) ={z € X | dim{z} < —p}

(cf. Proposition 1.9). That is, the filtration Z°®(K,, x) is precisely the dimension filtration in the
sense of Example 1.6(1), which is a shift of the codimension filtration on each irreducible component.
In particular, K, x is a bounded complex of injective quasi-coherent W, Ox-modules with coherent
cohomologies sitting in degrees
[—d,0].

When n =1, we set Ky := K; x. Now we turn to the definition of C’. We denote the level n Witt lift
of the absolute Frobenius Fx by W, Fx : (W, X1, W, Ox,) = (W, X5, W,,Ox,). The structure maps of
WnX1, W, Xo are W, w1, W, mo respectively. These schemes fit into a commutative diagram

W, X, — X WX,

Wnﬂ‘li \LWnWZ

Spec Wi, k1 Wnf Spec W, k.
Denote
K"»Xi = (Wnﬂz)A(Wnkz), 1=1,2.
Via functoriality, one has a W,,Ox, -linear map

(Wam1)?(1.2.1)
—_—

(1.2.2) Knx, = (Wom)®(Wyki) (W) 2 (W Fi )2 (Wi ko)

~ (W, Fx)= (W)™ (Whks) ~ (W, Fx)“ K, x,.
Here the isomorphism at the beginning of the second line is given by Proposition 1.9(4). Then via the
adjunction with respect to the morphism W, Fx, one has a W, Ox,-linear map

(WnFx)«(1.2.2) Trw,, Fy
%

(123) Cl = C;, . (WnFX)*K'n7X1 (WnFX)*(WnFX)AK’n,XQ KTL,XQa

where the last trace map is Proposition 1.10. We call it the (level n) Cartier operator for residual
complexes. We sometimes omit the (W, Fx).-module structure of the source and write simply as C’ :
K, x — Ky x.

Now we come to the construction of K, x 04 (cf. [Kat87, §3]). Define
(1.2.4) K x10g 1= Cone(K, x <=5 K, x)[~1].
This is a complex of abelian sheaves sitting in degrees

[—d,1].
When n =1, we set Kx 109 := K1 x,10g- Writing more explicitly, K, x 104 is the following complex
(K, %@0) = (K, "o K %) = ... > (KL x oK, ) = (0&KJ x).
The differential of K, x 104 at degree i is given by
diog = dn,log : KZ,X,log - K::_)l(,log
(K} x ® K:L_)%) — (K;f)l( & Kril,x)
(a,b) = (d(a), =(C" = 1)(a) — d(b)),

where d is the differential in K, x. The sign conventions we adopt here for shifted complexes and the
cone construction are the same as in [Con00, p6, p8]. And naturally, one has a distinguished triangle

Cc'—1 +1
(1.2.5) Ky, X 1og = Kn,x — Kn,x = Ky X 10g[1]-
Explicitly, the first map is in degree i given by
KﬁL,X,log = iL,X D K:’Lj}% - 'fL,Xv
(a,b) — a.

The ”+1” map is given by

K, x = (Kn X 100[1])" = KZL-:’_)I(,ZOQ = (K:L+)1( oK, x),
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b— (0,b).
Both maps are indeed maps of chain complexes.

1.3. Comparison of Wnﬁg{,log with K, x 104- Recall the following result from classical Grothendieck
duality theory [Har66, IV, 3.4][Con00, 3.1.3] and Ekedahl [Eke84, §1] (see also [CR12, proof of 1.10.3
and Rmk. 1.10.4]).

Proposition 1.11 (Ekedahl). When X is smooth and of pure dimension d over k, then there is a
canonical quasi-isomorphism
W,Q%[d = K, x.

Remark 1.12. Suppose X is a separated scheme of finite type over k of dimension d. Denote by U the
smooth locus of X, and suppose that the complement Z of U is of dimension e. Suppose moreover that
U is non-empty and equidimensional (it is satisfied for example, when X is integral). Then Ekedahl’s
quasi-isomorphism Proposition 1.11 gives a quasi-isomorphism of dualizing complexes

(1.3.1) W,Q%[d] = Knu.

Note that by the very definition, the associated filtrations of quasi-isomorphic dualizing complexes are the
same (cf. [Har66, 3.4]). As explained above, the associated filtration of K, iy is its dimension filtration.
Let Z* be the codimension filtration of U (cf. Example 1.6). Since U is of pure dimension d, we know that
its dimension filtration is just a shift of the codimension filtration, i.e., Z*[d]. Apply the Cousin functor

associated to the shifted codimension filtration Z°[d] (cf. Definition 1.7) to the quasi-isomorphism (1.3.1)
between dualizing complexes, we have an isomorphism of residual complexes
Ezeq(W,Q4[d]) = K, u

with the same filtration Z*[d] (cf. Proposition 1.8). Since W,,j is an open immersion, we can canonically
identify the residual complexes (W,j)*K,, x ~ K, y by Proposition 1.9(2). Since K, x is a residual
complex and in particular is a Cousin complex (cf. [Con00, p. 105]), the adjunction map K, x —
(Wni)e Woi)* Kp x =~ (Wpj)«Ky,u is an isomorphism at degrees [—d, —e — 1]. Thus the induced chain
map

Knx = (Wni)wEzeq)(Wa Q2 1d])
is an isomorphism at degrees [—d, —e — 1].
1.3.1. Compatibility of C' with the classical Cartier operator C'. We review the absolute Cartier operator
in classical literature (see e.g. [BK05, Chapter 1 §3], [Il179, §0.2], [Katz70, 7.2], [IR83, IIT §1]). Let X
be a k-scheme. The (absolute) inverse Cartier operator vx of degree ¢ on a scheme X is affine locally,
say, on Spec A C X, given additively by the following expression (H!(—) denotes the cohomology sheaf
of the complex)

(1.3.2) VA Qi - H'(Fa % )

aday ...da; — apaf_ldal .. af_ldai,
where a,a1,...a; € A. Here ?{i(FA,*Q;l/k) denotes the A-module structure on Hi(QA/k) via the absolute
Frobenius Fy : A — A, a — aP (note that FA,*Q;‘/,c is a complex of A-modules in positive characteristic).
For each degree i, 4 thus defined is an A-linear map. These local maps patch together and give rise to
a map of sheaves
(1.3.3) x Q% — H (Fx.0%)

which is Ox-linear. When X is smooth of dimension d, vy is a isomorphism of Ox-modules, which is
called the (absolute) Cartier isomorphism. See [BKO05, 1.3.4] for a proof (note that although the authors
there assumed the base field to be algebraically closed, the proof of this theorem works for any perfect
field & of positive characteristic).

This can be generalized to the de Rham-Witt case.

Lemma 1.13 (cf. [Kat86b, 4.1.3]). Denote by W, Q% the abelian sheaf F(W,11QY%) regarded as a
W, Ox -submodule of (W, Fx )W, Q4. When X is smooth of dimension d, the map

F:W, Q% — W, Q% /dav—toict
induced by Frobenius F : Wn+1Q§( — R, (WnFX)*WnQ’X is an isomorphism of W, O x -modules.
In particular, when i = d,
F: W, 0% — (W,Fx).W,Q% /avr—1Qdt
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is an isomorphism of W,,Ox -modules.

Proof. Since
Ker(R: W, 19" — W,Q%) = V"Q! 4 dVQ—h
FV"Q! =0 and FdV"Q'~! = dVn Q1 F 2 W, 198 — W, Q¢ reduces to
F:W,Q — W,Q¢/dv"—t,

Surjectivity is clear. We show injectivity. Suppose z € W,,11Q% y € Q71 such that F(x) = dV"1y.
Then F(z — dV"™y) = 0, which implies by [1179, T (3.21.1.2)] that z — dV"y € V" Q"

The second claim follows from the fact that F : W, 110 — R, (W, Fx).W,Q¢ is surjective on top
degree d [I1179, T (3.21.1.1)], and therefore W,,Q'¢ = (W,,Fx )W, Q¢ as W,,0x-modules. O

Definition 1.14 ((absolute) Cartier operator). Let X be a smooth scheme of dimension d over k.
(1) The composition

; . —1 )
(1.3.4) C:=Cy :ZZ(FX,*Q_.X) N ,Hz(Fx,*er) (vx) Q7X
(with Z'(Fx,.Q%) = Ker(Fx.Qy 5 Fx.Q")

is called the (absolute) Cartier operator of degree i, denoted by C or Cx.
(2) (cf. [Kat86b, 4.1.2, 4.1.4]) More generally, for n > 1, define the (absolute) Cartier operator
Cy, = Cy x of level n to be the composite

. 71 .
1.35 C, s W Qe = W, % /dvr—1oi-t £ w ot
X X X T2 X

where F : W, Q% — W, Q% /dV"1Q% " is the map in Lemma 1.13. When i = d is the top
degree we obtain the W, O x-linear map

=-1
(1.3.6) Cr : (WnFx ) W% — (W, Fx) W, Q& av 104 £y w, 0%

Remark 1.15. (1) According to the explicit formula for F, we have C' = C [III79, I 3.3].

(2) Cp (for all n) are compatible with étale pullbacks. Actually any de Rham-Witt system (e.g.
(W, Q%, F,V,R,p,d)) is compatible with étale base change [CR12, 1.3.2].

(3) The n-th power of Frobenius F' induces a map

F' o Wo Qi = HA(WaFx )P Wa%),

which is the same as [IR83, III (1.4.1)].

(4) Notice that on Spec W, k, C,, : W,k — W,k is simply the map (W, F},) ™!, because F : Wy, 1k —
W,k equals R o W, 1 F} in characteristic p.

Some notational remarks following classical literature:

»

a) We sometimes omit ” (W, Fx).” in the source. But one should always keep that in mind and be
careful with the module structure.
b) We will simply write C' for C,, sometimes. This shall not cause any confusion according to (1).

Before we move on, we state a remark on étale schemes over W, X.

Remark 1.16. (1) Notice that every étale W,, X-scheme is of the form W, g : W,,U — W,, X, where
g : U — X is an étale X-scheme. In fact, there are two functors

F : {étale W, X-schemes} = {étale X-schemes} : G
ViV XW, X X
WU <~ U

The functor F is a categorical equivalence according to [EGAIV-4, Ch. IV, 18.1.2]. The functor
G is well-defined (i.e. produces étale W,, X-schemes) and is a right inverse of F' by [Hes15, Thm.
1.25]. We want to show that there is a natural isomorphism GF' ~ id, and this is the consequence
of the following purely categorical statement.

Categorically, if FF : A — B and G : B — A are two functors satisfying both F' being a
categorical equivalence and F'G =~ id, then G is a quasi-inverse of F', i.e., there exists a canonical
natural isomorphism GF ~ id.

To show this, one first notices that G is fully faithful and essentially surjective. Indeed,
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e Fully faithfulness: for any Uy, Us € B,
Hompg (U, Uz) %+ Homu(G(U1), G(Uz)) > Homp(FG(U1), FG(Uz)) =~ Homp(Uy, U)

The last ~ is induced by the natural isomorphism F'G =~ id. Thus the composition is the
identity map, and therefore the first map G : Homp(Uy, U2) — Hom 4(G(U;), G(Us)) is an
isomorphism of sets.

e Essential surjectivity: for any V' € A, we want to show that there is a functorial isomorphism
GF(V) ~ V. Since FG ~ id, we know that there is a functorial isomorphism FGF(V) ~
F(V). The fully faithfulness of F' then gives a canonical choice of a map GF(V) — V|,
which must be an isomorphism again by the fully faithfulness of F'.

As a result, G admits a quasi-inverse functor H : A — B. Now

GF ~GFoGH ~Go(FG)o H~GH ~id.
(2) The square

w, U P g

anl ang
W, Fx

W, X —W,X.
is a cartesian square. For this, consider the following cartesian diagram

WhU -

Wi Fu

T WaFy x

pr2

.
WoX Xw, ry wox WU — W, U

lprl iwng
w,F

WX —>X W, X.
Wy Iy x is an isomorphism, since Fyy/x is [Ful5, 10.3.1].
We shall now state the main result in this subsection, which seems to be an old folklore (cf. proof
of [Kat87, 3.4]). To eliminate possible sign inconsistency of the Cartier operator with the Grothendieck
trace map calculated via residue symbols [Con00, Appendix A], we reproduce the proof by explicit

calculations (see Section 1.3.2-Section 1.3.3). And at the same time, this result justifies our notation for
C': The classical Cartier operator C' is simply the (—d)-th cohomology of our C".

Theorem 1.17 (Compatibility of C’ with C). Suppose that X is a smooth scheme of dimension d over
a perfect field k of characteristic p > 0. Then the top degree classical Cartier operator

C: (WnFx)WnQ% ), = WaQ% 4

as defined in Definition 1.14, agrees with the (—d)-th cohomology of the Cartier operator for residual
complezes

C': (WnFx) Wn Q% = W% i
as defined in (1.2.3) via Ekedahl’s quasi-isomorphism Proposition 1.11.

Proof. The Cartier operator is stable under étale base change, i.e., for any étale morphism W, g : W,, X —
W, Y (which must be of this form according to Remark 1.16(1)), we have

Cx ~ (Wn9)*Cy : (W, Fx) . W,Q% — W, Q%.

We claim that the map C’ defined in (1.2.3) is also compatible with étale base change. That is, whenever
we have an étale morphism W, g : W,, X — W, Y there is a canonical isomorphism

CS( = (an)*CX’ : (WnFX)*Kn,X — Kn,X'

First of all, the Grothendieck trace map Try, g, for residual complexes is compatible with étale base
change by Proposition 1.10(5), i.e.,

Trw,rx ~ g" Trw, py + (WaFx)e(WnFx)* K x = Kn x.
Secondly, because of the cartesian square in Remark 1.16(2) and the flat base change theorem

(Wng)* (Wi Fx)s = (WnFx)"(Wng)-,
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we are reduced to show that (1.2.2) is compatible with étale base change. And this is true, because we
have

(Wng)" = (Wog)®
by Proposition 1.9(2), and the compatibility of (=) with composition by Proposition 1.9(4). This
finishes the claim.

Note that the question is local on W, X. Thus to prove the statement for smooth k-schemes X, using
the compatibility of C' and C” with respect to étale base change, it suffices to prove for X = Az. That
is, we need to check that the expression given in Lemma 1.23 for C’ agrees with the expression for C
given in Lemma 1.19. This is apparent. ([

1.3.2. Proof of Theorem 1.17: C for the top Witt differentials on the affine space. Let k be a perfect
field of positive characteristic p. The aim of this subsection is to provide the formula for the Cartier
operator on the top degree de Rham-Witt sheaf over the affine space (Lemma 1.19). But before this, we
first show a lemma which will be used in the calculation of Lemma 1.19.

Lemma 1.18 (cf. [Kat86b, 4.1.2]). Let X be a smooth k-scheme. Then
=poCy: R*WnQ’}( — Wn“QfX,
where W, 0§ ' denotes the abelian sheaf F( W,19Q%) regarded as a W,,Ox -submodule of (W, Fx )W, Q.

Proof. Consider the following diagram

p

Wn+1Q *» W Q/Z n+1Q
Rl \ /
W, —— dVVf 1“5;: P W0k

id

Notice that F : W, Q" — W, /dV"*~1Q¢"1 is an isomorphism by Lemma 1.13, and therefore we can
take the inverse. All the small parts commute by definition (among these one notices that the top part
commutes because X is of characteristic p), except the triangle on the right. Moreover one has the outer
diagram commutes, due to the definition of p [11179, T 3.4]. Since F : W,,11Q% — W, Q¢ is surjective,
commutativity of the right triangle follows from the known commutativities. O

Lemma 1.19 (C,, on A?). Let X = A{. Then the Cartier operator (cf. Definition 1.14)
C:=0C, : W, 0% — W, 0%

is given by the following formula:

c<a( T o taed) (T haixi,)

i€lv,(5:)>1 i€l,v,(5:)=0
[T avxis)-( 11 dVSi<[X3i1nSi>)>
i¢l,s;#n—1 i¢l,s;=n—1
=m0 [T ) (T Savxite)
i€, (5i)>1 i€I,vp(j;)=0 Ji
H dehLl([Xz-j-i]n—sifl)) . ( H 0)’
i¢l,s;#n—1 i¢l,s,=n—1

where o € W, k.

We remind the reader of our assumptions. When we write an element in some de Rham-Witt sheaf
in terms of a product with respect to an totally ordered index set, we make the following assumptions:
when an index set is empty, the respective factor of the product does not occur; when an index set
is non-empty, the factors of the product are ordered such that the indices are increasing. With these
assumptions we avoid any confusion concerning signs.
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Proof. Write X = {X1,...,X4-1} (empty when d =1) and S = X4. According to [HMO04, (4.2.1)], any
element in Wan[ X, is uniquely written as

(1.3.7) S B, +ZZdV "89] 0s),

jz1 s=1 p{j
where b(()nj) e w, QZ[;], and for s € [1,n — 1], bgf;s) € Wn,st[}é]. (Here we have used Wan[X] =0
and W,,_ 5Q,€[X} 0.)
Now compute
F . Wn+1QZ[X,S] — Wan[X’S],
(1.3.8) by 18 i1 d[Slar = F(5 )™ ud[ S
(1.3.9) AV (S AV O T (8 )
and
v o Wan[Xﬁ] — Wn—‘,—lQZ[X,S]a
(1.3.10) b5 187 ]S (—1)d*1§dV(b(gf’j?[Sj]n) when v, (j) = 0.
In the last equation we used db(() ]) e W, Qk[X] =0.
Therefore, according to

(1) p=po R where p is injective, by [I1179, I 3.4],

(2) V =poCy, by Lemma 1.18, and

(3) Cp o F' = R (because of (1)(2)),

(4) F: WnHQz[x,s] — Wan[X’S] is surjective,
one gets
(13.11) Cn = Waix g = Waliix g

(n)\rqj/p—1 . .
b(()”j) [S]—l]nd[s]n { ? 1()3 )[S (Lr)ld[s]na 'Up(j.) 75 0, (by (138)
RV V(RIS n1), vp() =0 (by (1:3.10))
dvs(b(” s) [SJ} ) — { dVSJrl(R(bSl] é))[S]]n s-1), 1<s<n-2; (by (1391))
n—s =

Note that Cn(bétlj)) is computed via the induction on d: when d =1,
CnlbG)) = (WaFe) ™ (b)) € Wk

because F = Ro W, Fy, : W,k — W,,_1k (note that chark = p).
Since bé,]) € W, Q¢ could also be written in expression (1.3.7), we could further write (1.3.11) out.

k[X]
That is to say, every element in VVnQdAz is uniquely written as a sum of expressions of the form
(1.3.12) o [T adixidn) (T v (X7 -s)),
i€l ie[1,d)\I

where o € Wik, I C [1,d] an index subset (I is the set of indices taken the form (X7~ 1d[X;] and the
rest indices takes the form dV* ([X7]'],,_s,)), and

{Jitiep,ap  {sitiepans

some integers, satisfying

e j; > 1, when i€ I, and

e v,(j;) =0and s; € [1,n— 1] when i € [1,d] \ I.
C,, maps each of the factors of (1.3.12) in the following way:

a = Wo(F) Ha), acW,k,

XM pd[Xns 0p(2)
Lav (X Ta1)  opli)

i

1
0.

v

[Xz‘jiil]nd[Xi]n = {
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AVSHY( X ) eo1), si #n—1;

07 Si:n—l.

AV (X)) o {
[}

1.3.3. Proof of Theorem 1.17: C' for the top Witt differentials on the affine space. The aim of Sec-
tion 1.3.3 is to calculate C” for top de Rham-Witt sheaves on the affine space (Lemma 1.23). To do this,
one needs to first calculate the trace map of the canonical lift of the absolute Frobenius.

1.3.3.1. Trace map of the canonical lift ﬁ)? of absolute Frobenius Fx. Let k be a perfect field of positive

characteristic p. Let X = A%, and let X = Spec W, (k)[X1, ..., Xq4] be the canonical smooth lift of X
over W, (k). To make explicit the module structures, we distinguish the source and the target of the
absolute Frobenius of Spec k and write it as

Fy. : Speck; — Spec ks
Similarly, write the absolute Frobenius on X as
Fx : X =Specki[X1,...,Xq] = Y = Specka[ X1, ..., X4].
There is a canonical lift F s of Fix over X , and we write it as
Fg: X = Spec Wy (k1)[X1, ..., Xa] = Y := Spec W, (k2)[V1,. .., Yal.
ﬁ)? is given by
Fe: T(Y,05) =Wa(k)[Y1,...,Ya) = Wa(k1)[X1, ..., Xa] = (X, 03),
Wika 3 a— W, (Fi)(a),
Y, — XP.
on the level of global sections. Clearly F 's restricts to Fix on X. Let
nx : X — Specky, my:Y — Specks, mg: X - Wyky, 75 : Y — W, ka
be the Structufe maps. The composition F T O Ty X — Spec Wy, ko gives X a W, ka-scheme structure,
and the map Fg is then a map of W, ka-schemes. Therefore the trace map

I~ A
ﬁ)? : F)?’*FXK? *)K{,

makes sense. Consider the following map of complexes

Tr

Fy n2(1.2.1) -
Xk X A AN
F)‘27*7T)~( WnE, Wyko ~

I A
F)?,*K)? >~ F)?7*7T)~(Wnk1

TI-N
= OEA_A = mA %
F)?,*F)? 7T}~/, Wnkg ~ F)a*F)? K{, —X> K);.
Taking the (—d)-th cohomology, it induces a map

(1.3.13) Fx.Q -0l

d
X /Whky Y /Wiks
In the following lemma we will compute this map.

Lemma 1.20. The notations are the same as above. The map (1.3.13) has the following expression:

d (1.3.13) d
(1.3.14) ST L
Atpp (WoFy) Y a)YRdY, when \; =p—1 for all i;
X X { 0, when \; # p — 1 for some 1.

Here X = {\1,..., \a}, p = {pu1,...,pa} are multi-indices, and X> := X' ... X )¢ (similar for Y*,
XAMPE ete.), dX :=dX;...dX4 (similar for dY , etc.).

Proof. Construct a regular immersion of X into P = A;il associated to the following homomorphism of
rings:
[(P,05) = Wy(ko)[Yi, ..., Ya, Th, .., Ta) = Wy (k)[X1, ..., X4 = D(X, 0%),
a— (WpFp)(a), o€ W,(ks),
Yi— XP, i=1,....d,
T,— X;, i=1,...,d.
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Its kernel is
I=(T —Y,...,TH - Yy).
Denote
ti=T-Y;,i=1,...,d.
Obviously the t;’s form a regular sequence in F(ﬁ, Op). Denote by i the associated closed immersion.
Then one has a factorization of ﬁ‘)}:

(1.3.15) X = Spec W, (k1) [X1, ..., Xg)—> P = Spec W, (k2)[V1, ..., Y4, T4, ..., T4]

Fx

Y = Spec W, (k2)[Y1, . .., Y.

Regarding X asa W, ka-scheme via the composite map ﬁ;( o7y, the diagram (1.3.15) is then a diagram
in the category of W, ka-schemes.

A general element in I'(X, Q4 ) is a sum of expressions of the form

X/ Wk
(1.3.16) aX PraX o€ Wik, A€ [0,p—1]%, pu e N
The element (1.3.16) in I’()},Q;%/W ., ) corresponds to
(1.3.17) (W F) " Ha) XAMPRAX o€ Woka, A € [0,p — 1%, pu € N
in F()Z', Q%/W . ) under (—d)-th cohomology of the map ﬁ}? *71')%(1.2.1), and

(W Fi) " Ha)TAY AT, o € Wyko, A € [0,p —1]¢, u € N?

. . o d .
is a lift of (1.3.17) to T'(P, Qﬁ/WnkQ)' Write

B:=dtq...dt; - (W,Fp) ()T YHdT
= (-=1)%Yy...dYy - (W, Fy) " Ya)T Y *dT

in F(};,wﬁ/w ks) (wI;/W r, denotes the dualizing sheaf with respect to the smooth morphism P -
Wpks2). One can write out the image of 8 under map [Con00, p.30 (a)], i.e.,
wﬁ/WnkQ = wﬁ/? ®O}5 Tr*w?/wnk27
d(3d+1) 1 N "
B (=1)" =z WpkFy) (a)TNT @ "Y' HdY .
where wz e and wg Wik denote the dualizing sheaf with respect to the smooth morphisms 7 : PY

and Y — Whyke. It’s easily seen that F 's is a finite flat morphism between smooth W, ko-schemes.
Applying [CR11, Lemma A.3.3], one has

T>dT

Trﬁ)?((Wan)—l(a)X)\+Pl‘dX) = (Wan)il(Oé) Reslg/;, |: oty

] YHAY,
T T
t, ..t

the trace map on top differentials [Con00, (2.7.36)].
We consider the following cases (in the following (RN) with N € [1, 10] being a positive integer means
the corresponding property from [Con00, §A]):

e When (A1,..., ) # (p—1,...,p—1), TXdT = dn for some n € QL L. Suppose without loss of

where Resp /3 [ ] eT(Y, Oy ) is the residue symbol defined in [Con00, (A.1.4)], and Trz_ is
X

P/Y’
generality that Ay # p — 1. Then we can take
1
n=5 1T31+1T;2 L T)dTy ... dTy.

Noticing that
dt; = d(T? = Y;) = pTP~dT;
in Qp 5, and that Ay +mp + 1 (m € Zso) is not divisible by p when A; + 1 is so. Now we

calculate
Res— - | TXT ] _ 1 o [T Ty dTy)
P/Y t1,...,tn A +1 P/Y t1,t2,...,tn
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_ [ rhtrTe AT dTy . AT,
N1 Resp 5 [ 2. t0r .t (by (R9))
- p AT TP | TMATy .. dTy)
eSP/Y 2
M+ +p+1) 2t oty
2p” TM“?”TAz TMdATydTs ... dT,
= Ress d 1012 d by (R9
ST e Rl IR s (b (R9)
_ 2p2 Res |: d T/\1+2p+1T)\2 Td)\ddTZ o de) :|
M, +ip+ 1) oY TR
_ 6p” Res, | TV VI IMATAT, Ty ] ey
M +ip+1) Y ot oty
mog) e pn A1+nprds Ad
= (1:[1 1 Z) p esp v Tl TQ n+1 Td dT1dT2 e de (by (Rg))
[T M +ip+1) / O

=0.

The last step is because p™ = 0 in F(f/, Oy).
e When (A1,...,A\n) =(p—1,...,p— 1), consider

(1.3.18) X' := Spec (ZTE{}: Y,Yd 7;,;; {,‘é])( SpecZ[Y{,...,Y;,T{,...,Tj)] =: P’

T |

SpecZ[Y{,..., Y]] =Y".

fis given by f*(Y/) =Y/ =T/ in T'(X’,Ox-). This is a finite locally free morphism of rank p.
Consider the map
h:D(Y',Oy) = Z[Y{,..., Y]] = Wa(k2)[Y1,..., Y = T(Y,05),
Y/ —Y; for all i,
that relates the two diagrams (1.3.18) and (1.3.15). In I'(Y”, Oy+), we have
-1 1p—1 gy ’ /P / 1P /
" AL Ao s N A A(TIP —YY).. . d(TIP —Y))
ProRespyye| S Dyt Dyt | TRSeve| ey by
(R6)
= TrX’/Y’ (1)
= p .
The symbol Trx/,y: denotes the classical trace map associated to the finite locally free ring
extension I'(Y’,Oy/) — T'(X’,Ox-). (We are following [Con00] for this notation. The meaning
of this symbol is hidden in [Con00, (R6)] and its proof.) As for the last equality, Try/ /(1) = p?
because f is a finite locally free map of rank p?. Since p? is a non-zerodivisor in I'(Y”, Oy ), one
deduces ) )
TP~ TP T ... dT

RGSP//Y/ |: %Tl/p_yl/’d7T0/i%7_Ydld :| =1.

Set
TPt =Pt TPt

which is the canonical lift of X A via the map i : X < P in our current case. Pulling back to
I'(Y,Oy) via h, one has

TP=1dT | 85) , . TPt ATy
(1319) Rebp/y |: 17 ..,td :l h RGSP//Y/ |: Tllp—Yll77TC/lp—Yd/ =1.
Altogether, we know that the map (1.3.13) takes the following expression
d d
QX/W o QY/W ko
App (W, Fp) Y (a)YHdY, when \; =p— 1 for all i;
aX dX = { 0, when \; # p — 1 for some 1.
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1.3.3.2. C" for top Witt differentials. Now we turn to the W,-version. The aim of this subsection is to
calculate C’ for top Witt differentials on A¢ (Lemma 1.23).

Let k be a perfect field of positive characteristic p. Let Speck be the base scheme and f: X — Y a
finite morphism between smooth, separated and equidimensional k-schemes, which both have dimension
d. Same as in the main text, we denote by mx : X — k and my : Y — k the respective structure maps.
K, x = (Womx )2 Wk, Ky = (W, my )2 W,k are residual complexes on X and Y. Then we define the
trace map

(1.3.20) Trw, ; : (W f)e(WnQ%) — W, Q8
to be the (—d)-th cohomology map of the composition

(1321) Tran : (an)*Kn,X ~ HomWnOY((an)*WnOX7Kn,Y) —‘_>ev. at 1 Kn v

via Ekedahl’s isomorphism W,,Q% ~ H~4(K,, x) [Eke84, §I].

Computation of the trace map is a local problem on Y. Thus by possibly shrinking Y we could assume
that Y and therefore also X is affine. In this case, there exist smooth affine W,,k-schemes X and Y
which lift X and Y. Denote the structure morphisms of X , Y by m% and 7, respectively. We claim that
there exists a finite W, k-morphism f: XY lifting f : X — Y. In fact, by the formal smoothness
property of 377

x> x " _wk

we know there exists a morphism (not unique in general) f: XY lifting f : X — Y. Any such lift f
is proper and quasi-finite, because its reduced morphism f is. Thus f is finite. This proves the claim.
Consider the map of abelian sheaves [Eke84, I (2.3)]

* Iy ()
(1.3.22) ot W,Oy ? HO(QY/W L) = Oy,
n—1
S Vi(ad) @ pd e,
1=0

where a; € Oy, and a; € Oy being arbitrary liftings of a;. The map ¥y appearing above is the i = 0
case of the canonical isomorphism defined in [IR83, III. 1.5]

(1.3.23) W S HIQS ).

In the following lemma we will use W, Q% to denote the relative de Rham-Witt complex defined

by [LZ04].

Y/ W,k

Lemma 1.21. Notations are the same as above.
(1) (Ekedahl) 03 : Wy,Oy — Oy is a morphism of sheaves of rings. And it induces a finite morphism

oy W, Y Y.
(2) ([BER12, 8.4(ii)]) There is a commutative diagram

F" °
”“QY/Wnk Zq(ﬂ?/wnk)
o
WnQ(}I/ - Hq(Qf//Wnk)
In particular,
n—1
(1.3.24) Iy dvi(la)) = S Fravi(al)) = af “'dag+ @ day + -+ @) dag

=0
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Proof. (1) Let a; € Og be any lift of a; € Oy for 0 <7 <n —1. a, is an arbitrary element in Og.
Since p™a, = 0 in Oy, one has the equality

n—1
oy (O V'([ai])) = gh,, (Go, - - -, @n),
i=0
where gh,, is the n-th component of the ghost map [I1179, 0 (1.1.3)]

gh : Wn+10f/ — (O;!i(n+1)a =+, *)a
n .
(@o, - - @n) > (do, af + pa, ..., »_pal ).
1=0

The ghost map is a ring map, where (Og(nﬂ), +, %) denotes equipped with the ring
structure of the termwise addition and multiplication. Therefore o} is a ring map. The second
statement on finiteness is proven in [Eke84, I, paragraph after (2.4)].

(2) One just need to check for ¢ = 0: for higher ¢, both ¥y and F™ are generated by the ¢ = 0
case as morphisms of differential graded algebras. Take Z;:OI Vi([ai]n—i) € W,Oy. Then
Yico Villailns1-:) € Wa1Og s alift. F™(300 Vi([ailnr1-4)) = 3o 0" F"  ([@ilnt1-:) =
S piﬁfn_l. We are done with the relation p"a, =0 in Og.

®(n+1)
Oy

O

With the help of Lemma 1.21(1), we have the following commutative diagram of schemes (cf. [Eke84,

I (2.4)))

X WX
ix %
X f X W f
f f
Y o W,Y
iy /
Y Ty Y Wamy
Ty Yy
Wk = Wk
/ W, (F}) /
k = k

Fp
Lemma 1.22. Notations are the same as in Lemma 1.21. Set K g = W)%Wnk‘, and K¢ = ﬂéWnk‘. The

(=d)-th cohomology of the map Trf~: fZKg — K¢ gives a map J?*Q;l? — Q‘;;, which we again denote by
Trf~. Then by passing to quotients, this map Trf~ induces a well-defined map

T HY(fQ%) = HUQY).
Moreover, the map TF is compatible with Try, ; defined in (1.3.21) :

Trw, s

(Wi f) W, 0% W,0L

(an)*ﬂxi" ﬂyl:
~ (ov)s«T7

(ov ) H(Q%) — (ov) HAQY)

Proof. We do it the other way around, namely we define the map 7 : ’Hd(f*Q;?) — Hd(§;7) via
Try, f - (an)*Wan( — Wnﬂg,, and then show that this is the reduction of Trf: ﬁQ% — Q%.
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First of all, via isomorphisms ¥x, ¥y, the map Try, ¢ : (an)*Wnﬂg( — WnQdy defined in (1.3.21
induces a well-defined map 75 : /Hd(f*Q;?) — ’Hd(Q;,). To show compatibility with Trz, one needs an
observation of Ekedahl: Ekedahl observed that the composite

. N A (ev)erS (2.0
ty : (QY)*Q}N’/Wnk[d] — (QY)*K}'? = (QY)*TFY, Wik

~

Troy
()2 (Wo FE) AWk = (0v)4(0v) ™ (Wamy )2 Wk —25 K,y

factors through ty : (gy)*’Hd(Q%/W Jldl = Ky (cf. [Eke84, §1 (2.6)]). Then he defined the map

W,Q4% [d) — K,y to be the composite

9 . t
(1.3.25) sy : W% [d] - Hd(Q?/Wnk)[d] = Kny.

Now consider the following diagram of complexes of sheaves

’I‘r n
(an)*Kn,X et Kn,Y
Trw,,
(W) W2 ] - W04 [d]
_ (Wn f)atx B ty
(Wnf)tx ty
Wy f)e¥x | = Dy |~
~ (ov )« Trf~

(ov oL 1 (o). 02 [d).

(ev )Ty

(ov F)-HA(Q3)[d] (ov)H(Q2)[d]

The unlabeled arrows are given by the natural quotient maps. The front commutes by the definition of Uz

The top commutes by the definition of Tryy, 5 : (W, f)WnQ% — W, Q%. The triangles in the right (resp.
the left) side commute due to the definition of ty- and sy (resp. tx and sx). The back square commutes,
because the trace map Tr 7 is functorial with respect to maps residual complexes with the same associated
filtration by Proposition 1.10(3). We want to show that the bottom square commutes. To this end, it
suffices to show (oy )« Trf (gyf)*Q;% — (0v)«0% is compatible with Trw,, ; : (Wi f). W Q% — W04
via Jx and ¥y. Because the map Try, s : (an)*Wnﬂg( — W,Jl?, is determined by the degree —d
part of the map Try, s : (W, f)«Knx — Kpy, we are reduced to show compatibility of (gy )« Trf :
(ov )% = (0v).QL with Tryy, ; : (W f)uKnx = Kny via (Wnf).(sx 0 9x') and sy o 95" By
commutativity of the left and right squares, this is reduced to the commutativity of the square on the
back, which is known. Therefore the bottom square commutes as a result. (I

TF is just a temporary notation for the lemma above. Later we will denote TF by Tr 7

Lemma 1.23. Let X = Ag. Let
C' = W,0% — W,0%.

be the map given by the —d-th cohomology of the level n Cartier operator for residual complexes (cf.
(1.2.3)). Then C' is given by the following formula:

c’ (a( H [Xijrl}nd[Xi]n)( H [Xijiil]nd[Xi}n)

i€l,v,(ji)>1 i€l,v,(ji)=0
(I = @xe-0)( 11 dvsw[Xzi]n_s,;)))
i¢l,s;#n—1 i¢l,s;=n—1

om0 ) (T v )

i€1,0,(j:)>1 ie0,(j1)=0"7"



26
I et (xe-wn)( I1 o)
i¢l,s;#n—1 igl,s;=n—1
where o € W, k.

Proof. Consider the map W, Fx : W, X — W, X with X := AZ. It is not a map of W, k-schemes a
priori, but after labeling the source by W, X := W,A{ and the target by W, Y := W, A{ . one can
realize W,, Fx as a map of W, ko-schemes (the W, ko-scheme structure of W, X is given by W, Fx oW, 7y,
where 7y : Y — ko denotes the structure morphism of the scheme Y'). Write

X = A?,Vnkl = Spec Wyki[X1, ..., Xq] (resp. Y = A%anm = Spec Wy, ka[ X1, ..., X4]),

and take the canonical lift F 's of Fx as in example Lemma, 1.20. Consider

(1.3.26)
(WnFx)«(1.2.2) Trw, F
(WoFx ) Wo 2% 1, = (W Fx ) W% 1, o W04,
\L(WnFX)*ﬁX \L(WnFX)*ﬂX lﬁy
- (oy Fg)um2(1.2.1) ~ (ev)«(Trz_)
(QYFX)*Hd(Q;?/Wn/ﬁ) ,._\,X (QYF)})*HCI(Q;?/WHRQ) o (QY)*Hd<Q;~//Wnk2)

The composite map of the top row is C’ (cf. (1.2.3) and Ekedahl’s quasi-isomorphism Proposition 1.11).
The composite of the bottom row is induced from py(1.3.13). The right side commutes due to
Lemma 1.22. The left side commutes by naturality.
Given an index set I C [1,d] and integers {j;}icp1,a), {Si}iep a7 satisfying

e j; > 1, when i€ I, and

e v,(j;) =0and s; € [I,n—1] when ¢ € [1,d] \ I,
recall that a general element in W, Q% /k, is the sum of expressions of the following form (cf. (1.3.12))
(1.3.27) o T ndixida ) ( TTaV* (X7 T-s) ).

icl il

where ao € Wy, k1. One can also write this expression (1.3.27) in terms of finer index sets:

0‘( 11 [Xfi’l]nd[Xi]n)( 1T [Xiji’l]nd[Xi]n)

1€l,v,(5;)>1 1€1,v,(j;)=0
(I o @XM e-0) (I v xde-n)):
i¢l,s;#n—1 i¢l,s;=n—1

where o € Wy,k; (which might differ from the « in (1.3.27) by a sign because we might have changed
the order of the factors in the (non-commutative) product). As we explained after diagram (1.3.26), we
can decompose C’ in the following way:

C' =931 0 (1.3.13) 0 dx : Wl i, = W5y,

According to the explicit formula (1.3.14) for the map (1.3.13), and the explicit formula (1.3.24) for the
maps ¥x, ¥y, one could perform the following calculations:

0’(@( [I o axid)( I &7 edixil,)

i€l,v,(ji)>1 i€1,vp(5:)=0
(I o xe-0)( 11 dVSi([Xzﬂn_Si)))
i¢l,s;#n—1 i¢l,s;=n—1
(19{,1o(1.3.13))<Wn(Fk)"(a)( II anji’ldXi)( I1 anji’ldXi)
i€q,vp(5:)>1 i€1,vp(5:)=0
( H jqufnisiji_ldXO( H jz‘anSiji_ldXO)
i¢l,s;#n—1 i¢l,s;=n—1

=19y1<Wn(Fk)”‘1(a)( [T xotax)( JI x99 ax)

i€l,vp(ji) 21 i€l,0p(j:)=0
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(I )T o)

i¢l,s;#n—1 i¢l,s;=n—1
= (W F) ™ ) ) (O TT Favxde)
i€lvp(ji) 1 il (i)=0""
[T v (X a-0)( IT o)
i¢l,s;#n—1 i¢l,s;=n—1

O

1.3.4. Criterion for surjectivity of C' — 1. The following proposition is proven in the smooth case by
Nlusie-Raynaud-Suwa [Suw95, 2.1]. The proof presented here is due to Riilling.

Proposition 1.24 (Raynaud-Illusie-Suwa). Let k = k be an algebraically closed field of characteristic
p > 0. X is a separated scheme of finite type over k. Then for every i, C' — 1 induces a surjective map
on global cohomology groups

H{(W, X, K, x) = H (RD(W, X, K, x)) <% H/(W, X, Ky, x)-
Proof. Take a Nagata compactification of X, i.e., an open immersion
jiX =X
such that X is proper over k. The boundary X \ X is a closed subscheme in X. By blowing up in X

one could assume X \ X is the closed subscheme associated to an effective Cartier divisor D on X. We
could thus assume j is an affine morphism. Therefore
Wi : WX — W, X

is also an affine morphism. o

For any quasi-coherent sheaf M on W, X, the difference between M and (Wni)«(Wp5)* M are pre-
cisely those sections that have poles (of any order) at SuppD = W,, X \ W, X. S@pose that the effective
Cartier divisor D is represented by (Ui, fi)i, WhGIE{Ui}i is an affine cover of X, and f; € T'(U;, Ox).
Recall that Ox(mD) denotes the line bundle on X which is the inverse (as line bundles) of the m-th
power of the ideal sheaf of X \ X < X. Locally, one has an isomorphism

Ox(mD) |u,~ Oy, - f;“
for each i. Denote by W,,O«(mD) the line bundle on W, X such that
W,Oxc(mD) [0, W0, - fil}m,
where [—] = [—],, denotes the Teichmiiller lift. Denote

M(mD) := M @w, 0 W,Ox(mD).

The natural map
(1.3.28) M(xD) := colim,, M(mD) = (Wy,j)«(Wnj)*(M(mD)) = (Wpnj)s(Wpnj)*M
is an isomorphism of sheaves. Here the inductive system on the left hand side is given by the natural
ma

g M(mD) := M Ow,, 05 WnOy(mD) - M W, 05 WnOy((m +1)D)
induced from the inclusion W,,Ox(mD) — W,Ox((m + 1)D), i.e., locally on Uj;, this inclusion is the
map

W, O(mD)

v, = WpOx(m+1)D)

a alfi]
[fi]™ ~ [fi]m+L”

U;

where a € W,,Op,. As a result,
H (Wo X, (Wnj)" M) = H (RD(W, X, R(Wnj)s(Wnj)* M)
= HY(RT(W, X, Wy3j)s(Wyj)*M)) (W,.j is affine)
H'(RT(W,, X, colim,, M(mD)) (1.3.28)
= colim,, H'(W, X, M(mD)).
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Apply this to the bounded complex K,  of injective quasi-coherent W,,Ox-modules. (1.3.28) imme-
diately gives an isomorphism of complexes

(1.3.29) K, (D) := colim,, K,, x(mD) = (Wpnj)«Kn x,
and an isomorphism of W, k-modules
colimy, H'(W,, X, K, x(mD)) = H' (W, X, K, x).
Via the projection formula and tensoring
C': (WoFx).K

nx K%
with W,,Ox(mD), one gets a map
(WnFx)« (K, ¥ @w, 05 WnOx(pmD)) = (WyFx ). (K, x @w, 05 FxWnOx(mD))

C’'Qidyw,, O (mD)

~ (W"FX)*(K”MY) OwW,, 0% WnOy(mD)
Pre-composing with the natural map
(WnFx ). (K, x @w, 05 WnOx(mD)) = (WnFx ).« (K, ¥ ®w,0x WnOx(pmD)),
and taking global section cohomologies, one gets

C': H'(W, X, K, x(mD)) = H' (W, X, K, x(mD)).

Kn,? QOw, 0% W"OY(mD)

To show surjectivity of _ _
C'—1:H(W,X,K,x)— H(W,X,K, x),
it suffices to show surjectivity for
C'—1: H'(W,X,K, x(mD)) = H (W, X, K, x(mD)).
Because H(K, x) are coherent sheaves for all ¢, H(K,, ¥ ®w, 0, WnOx(mD)) = H1(K, %) ®w, 0

’ n
W,,Ox(mD) are also coherent, therefore the local-to-global spectral sequence implies that

M := H (W, X, K, x(mD))

is a finite W, k-module. Now M is equipped with an endomorphism C’ which acts p~!-linearly (cf.
Definition A.14). The proposition is then a direct consequence of the following Lemma 1.25.
O

Lemma 1.25. Let k be a separably closed field of characteristic p and M be a finite Wy k-module. Let
T be a p*'-linear map on M. Then
T—-1:M—->M

is surjective.

This lemma is adapted from [SGAT7-II, Exposé XXII|, where it is stated in p-linearity version and for
a k-vector space. We remark that for a perfect field to be separably closed, it is equivalent for it to be
algebraically closed. For its proof, see Appendix Section A, Proposition A.15 and Remark A.13.

The following proposition is a corollary of [Suw95, Lemma 2.1]. We restate it here as a convenient
reference.

Proposition 1.26 (Raynaud-Illusie-Suwa). Assume k = k. When X is separated smooth over k of pure
dimension d,
C—1:W,0% - w,0%

s surjective.

Proof. Apply affine locally the H~%-case of Proposition 1.24. Then Ekedahl’s quasi-isomorphism Wnﬂg( [d] ~
K, x from Proposition 1.11 together with compatibility of ¢’ and C from Theorem 1.17 gives the
claim. O

Remark 1.27. When X is Cohen-Macaulay of pure dimension d, W, X is also Cohen-Macaulay of pure
dimension d, and thus K, x; is concentrated at degree —d for all n [Con00, 3.5.1]. Denote by W,wx
the only nonzero cohomology sheaf of K, x in this case. Then the same reasoning as in Proposition 1.26
shows that when k = k and X is Cohen-Macaulay over k of pure dimension, the map

C'—1:Whwx = Whwx

is surjective.
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1.3.5. Comparison between WnQdX,log and Ky, x,10g- Let X be a k-scheme. Denote by dlog the following
map of abelian étale sheaves

dlog : (O% )% — Wa% s
a1 Q- ® aq — dloglai], . . . dloglag]n,

where a1, ...,aq € (’)}7&, [—]n : Ox.e = W,Ox s denotes the Teichmiiller lift, and dlog[a;], := d[%]".

We will denote its sheaf theoretic image by Wan(.log,ét and call it the étale sheaf of log forms. We
denote by W'ﬂQqX,log = Wan(’log,Zar = E*Wan(,zog,étv and call it the Zariski sheaf of log forms.

Lemma 1.28 ([CSS83, lemme 2], [GS88a, 1.6(ii)]). Let X be a smooth k-scheme. Then we have the
following left exact sequences

(1.3.30) 0= WoQ% . — W% =5 w08 /avnt,
(1.3.31) 0 = WnQ% 1o, — Wald S5 W,0%,

where WnQI)‘é = F(W,41Q%). The last maps are also surjective when t = ét.
Still we assume X to be a smooth k scheme of pure dimension d. Use shortened notation
D, := Cone(W,Q% [d] <»=% W, 0% [d))[-1].

We have a map of distinguished triangles in general

(1.3.32) Kpxjog—Kpnx ——— Ky x ——
Dy ———= W, Q- [d] <2 W0 [d) P

Its commutativity is guaranteed by Theorem 1.17.
The following proposition collects what we have done so far.

Proposition 1.29 (cf. [Kat87, Prop. 4.2]). X is smooth of pure dimension d over a perfect field k.
Then

(1) The natural map D,, = K, x 10 IS a quasi-isomorphism. Moreover,
H K x10g) = WnQ% 10g:
H (K, X 10g) = Coker(W, Q% L4 w,04),
H (K x10g) =0, foralli# —d,—d+1.
(2) When k = k, the natural map
Wi togld] = Ko X log

is a quasi-isomorphism of complexes of abelian sheaves (equivalently, one has ’H*d“(Kn,X,log) =

0).

Proof. (1) The map D,, — Ky, x,10g iS a quasi-isomorphism by the five lemma and W, Q% [d] = K, x
by Proposition 1.11. We have H~4(D,,) = WnQdX,log by the exact sequence (1.3.31).
(2) Proposition 1.26+(1) above.

1.4. Localization triangle associated to K, x ;o4-

1.4.1. Definition of Trw,, f10g-

Proposition 1.30 (Proper pushforward, cf. [Kat87, (3.2.3)]). Let f: X — Y be a proper map between
separated schemes of finite type over k. Then so is W, f : W, X — W,.Y, and we have a map

Tran,log : (an)*Kn,X,log — Kn,Y,log
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of complexes that fits into the following commutative diagram of complexes, where the two rows are
distinguished triangles in D*(W, X,Z/p™)

(o=
(W f)s K X t0g —= (Wi f)s Kn.x ——> (Wi f)uEKn.x —

lTranJOQ lTran \L’I‘rwnf
!

c’'—1
Kn,Y,log Kn,Y Kn,Y —

Moreover Tryw,, 104 15 compatible with composition and open restriction.

This is the covariant functoriality of K, x 04 With respect to proper morphisms. Thus we also denote
Trw, 109 by [

Proof. Tt suffices to show the following diagrams commute.

WiaFy)e Wy f)«(1.2.2
(W By ) (W ) F O D2 (30 By ) (Wi ) (Wi )2 Ko x
l(WnFY)*’I‘ran \L(WnFy)* Trw,, f
(WnFy).(1.2.2)
(W'ILFY)*KH,Y u ~ (WnFY)*(WnFY)AKn,Ya

(W f)s« Trw, ry

(WnFY)*(an)*(WnFX)AKn,X (an)*(WnFX)*(WnFX)AKn,X - = (an)*Kn,X

J{(WnFY)* Trw,, s lﬂwn.f

Trw,, Fy

(W Fy ) (W Fy )2 K,y Kny,

where Tryy, ¢ on the right of the first diagram and the left of the second diagram denotes the trace map
of residual complex (WnFy)AKmyZ

Trw, : (Waf)s(WnFx)2Kpx = (Wof)e(Wof)2(WaFy )2 Kny — (WoFy)2 K,y

Commutativity of the first diagram is due to functoriality of the trace map with respect to residual
complexes with the same associated filtration Proposition 1.10(3). Commutativity of the second is
because of compatibility of the trace map with composition of morphisms Proposition 1.10(4). O

1.4.2. Trw, f.109 in the case of a nilpotent immersion. Before stating the main result of this section, we
state a lemma on compatibilities.

Lemma 1.31. (1) The following diagram is commutative for any finite morphism f : X =Y of
k-schemes

(an)*Kn,X HomWn(’)y((an)*(WnOX)7Kn,Y)
Tranl ov1 i((wnf)*)v
Kn,Y Homwnoy (WnOy, Kn,y).

~

Here evy denotes the evaluation-at-1 map, and the map on top is Proposition 1.9(1) associated
to the finite map W, f.

Similarly, for any finite morphism f : X — Y of W, k-schemes, write Kx := W)A(Wnk and
Ky = WéWnk, where mx, Ty are the structure maps of X and Y. Then the following diagram
commutes

~

[+ Kx Homo, (f«Ox, Ky)

ml / J/(f*)v

Ky ’Homoy (Oy,Ky),

~

where the map on top is Proposition 1.9(1) associated to the finite map f.
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(2) The Cartier operator C' : (W, Fx). Ky x, = Kn x,. for residual complexes can be decomposed
in the following way: i.e. the following diagram commutes

~

(WnFX)*Kn,X — (WnFX)*HomWnOX (WnOXvKn,X)

HOmWnOX ((WnFX)*WnOXa (WnFX)*Kn,X)

1

(1.2.2) ~ | (WnFx).(1.2.2)0

HomWnox ((WnFX)*WnOXa (WnFX)*(WnFX)AKn,X)

Trw,, ry ©
(WoFx)«(WnFx)* Ky x Homw, 0x (WnFx)e(W,Ox), Kp x)
Trwn rx (W Fx)*)Y
Ky x Homw, 0, WnOx, K, x).

~

Here the composite of the two left vertical arrows is C', and the horizontal arrow in the middle
is Proposition 1.9(1) associated to the finite map W, Fx.

Proof. (1) One only need to note that the trace map for finite morphisms between residual complexes
is given by evaluate-at-1 map by Proposition 1.10(1). Both of the claims are then direct.
(2) For the second part, we only need to prove the commutativity of the top square. One notices
that we can alter the order of the maps in the second column. Then the commutativity of the
following diagram gives the claim.

(Wan)*KmX = (Wan)*HomWnoX (WnOX;Kn,X)
(1.2.2)0

(WnFx) Homw, 0 (WaOx, (W, Fx)> K, x)

~(1.2.2) vy
Homw, o0y (WnFx)WnOx, (Wi Fx ) (WnFx)2 Ky x)
Trw,, Fy ©
(W Fx) (W, Fx )2 Ky x ————— Homw, 0 (WnFx)«(WnOx), Ky x).

The proof of the proposition presented below is due to Riilling.

Proposition 1.32 (cf. [Kat87, 4.2]). Let i : Xo — X be a nilpotent immersion (thus so is Wyi :
W (Xo) = W, X ). Then the natural map

TrWni,log : (Wni)*Kn,Xo,log — Kn,X,log
is a quasi-isomorphism.

Proof. Put I, :== Ker(W,,0x — (Wyi).W,,Ox,). Apply Homw, o, (—, K, x) to the sequence of W,,Ox-
modules

(1.4.1) 0— I, = W,0x — (W,1).W,O0x, — 0,

we get again a short exact sequence of complexes of W,,Ox-modules

Tr Wni

0= (Wni)u Ky x, — Kn x — Qn :=Homw, o0y (In, Kn x) — 0.

We know the first map is Try, ;, because of Lemma 1.31(1). The restriction of the map (W,Fx)* :
W,0x — (W, Fx).W,Ox to I, gives a map

(VVnFX)>k

I,: In — (WnFX)*In7
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SV ((ad) 3 V(i)
i=0 =0

Define

(142) C}n : (Wan)*Qn = (Wan)*HomWnox (Iann,X)
- HomWnOx ((WTLFX)*Im (WnFX)*Kn,X)

W,Fx)«(1.2.2)o
% ’HOmWnox ((WnFX)*In7 (WnFX)*(WnFX)AKn,X)

~

Trw, Fy ©

HomWnOX ((WnFX)*ITLa Kn,X)

AWV FON) s 3 om0 (I, Kon,x) = Qn.

According to Lemma 1.31(2), C" is compatible with C] , and thus one has the following commutative
diagram

(WnFx )« Trw,,q

0 (WnFX)*(Wnl)*Kn,XO —_— (WnFX)*Kn,X (WnFX)*Qn ——0
; T
. Trw,,:
0——m— (Wnl)*Kn,Xg Kn,X Qn 0.

Replace C" by C" — 1, and C} by C} — 1, we arrive at the two lower rows of the following diagram.
Denote

Qn,log = Cone(Qn % Qn)[_l]

Taking into account the shifted cones of C’ —1 and C}n — 1, we get the first row of the following diagram
which is naturally a short exact sequence. Now we have the whole commutative diagram of complexes,
where all the three rows are exact, and all the three columns are distinguished triangles in the derived
category:

Trw,,,109

0—— (Wni)*Kn,Xo,log — fn Xlog Qn,log 0
. Trw, i
0 ——— (W) Ky x, K x Q@n 0
c'—1 c'—1 Cr,—1
X Trw,,:
00— (an)*Kn,Xo Kn,X Qn 0.
+1 +1 +1

We want to show that Tryy, ;104 is a quasi-isomorphism. By the exactness of the first row, it suffices
to show Q10 is an acyclic complex. Because the right column is a distinguished triangle, it suffices to
show C}n —1:Q, — @, is a quasi-isomorphism. Actually it’s even an isomorphism of complexes: since
(WnFx)* |1,: In = (W, Fx).I, is nilpotent (because I; = Ker(Ox — i.0x,) is a finitely generated
nilpotent ideal of Ox), C7 : Qn — @, is therefore nilpotent (because one can alter the order of the three
labeled maps in (1.4.2) in the obvious sense), and C; — 1 is therefore an isomorphism of complexes. [

1.4.3. Localization triangles associated to K, x jog.- Leti: Z — X be a closed immersion with j : U — X
its open complement. Recall (cf. Section 1.1.1)

(1.4.3) L, (F) :=Ker(F — j.j ' F)

for any abelian sheaf F. Denote its i-th derived functor by H% (F). Notice that

e I'z/(F) =Tz(F) for any nilpotent thickening Z’ of Z (e.g. Z' = W, Z),
o F — j.j 1F is surjective whenever F is flasque, and
e flasque sheaves are I ,-acyclic ([Har67, 1.10]) and f.-acyclic for any morphism f.

Therefore, for any complex of flasque sheaves F* of Z/p"-modules on W, X

0—=>TL,(F%) = F = (Woi)«(Flw,u) = 0
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is a short exact sequence of complexes. Thus the induced triangle

(1.4.4) L (F*) = F* = (W)« (F*lw,v) —

is a distinguished triangle in D*(W,, X, Z/p"), whenever F* is a flasque complex with bounded cohomolo-
gies. In particular, since K, x ;04 is @ bounded complex of flasque sheaves, this is true for 7* = K, x,i0g-

The following proposition is proven in the smooth case by Gros-Milne-Suwa [Suw95, 2.6]. The proof
presented here is due to Riilling.

Proposition 1.33 (Riilling). Leti: Z < X be a closed immersion with j : U — X its open complement.
Then

(1) The map

. . Trw,i.log
(an)*Kn,Z,log = EZ((WnZ)*Kn,Z,Zog) L> EZ(Kn,X,log)

18 a quasi-isomorphism of complexes of sheaves.
(2) (Localization triangle) The following

(1.4.5) (Wni)*Knszog
is a distinguished triangle in D*(W,, X, Z/p").

+1

Trw,,i,i09 .
—_— Kn,X,log — (an)*Kn,U,log —

Note that we are working on the Zariski site and abelian sheaves on W,, X can be identified with abelian
sheaves on X canonically. Thus we can replace (Wpi)«Kp 7109 bY ixKn 2109, and (Wpj)Kn 109 by
J«HKn U109 freely.

Proof. (1) Let I,, be the ideal sheaf associated to the closed immersion W, i : W, Z — W, X, and
let Z,, ,, be the closed subscheme of W, X determined by m-th power ideal I]*. In particular,
Zn1 = Wy,Z. Denote by inm : Znm — WpX and by jn.m : W, Z — Z,, , the associated closed
immersions. In this way one has a series of decomposition of W,i as maps of W, k-schemes
indexed by m:

Jn,m in,m

WihZC ' Zm |£9.¢

M lerx
Wyk.
Denote Kz, . = (nz,,.)>(Wyk), where mz,  : Zym — Wyk is the structure morphism.
We have a canonical isomorphism
(1.4.6) bnma M (Kz, ) = Extly o (inm Oz, . Kn x)

by Proposition 1.9(4) and Proposition 1.9(1) associated to the closed immersion 4, ,,,. The trace
maps associated to the closed immersions

Zn,m — Zn,m+l
for different m make the left hand side of (1.4.6) an inductive system. The right hand side also
lies in an inductive system when m varies: the canonical surjections
in7m+l,*OZn,m+1 — imm,*OZn,m

induce the maps

(1.4.7) Homw, 0 (in,m Oz, > Knx) = Homw, 0y (inm11,+02, irr Kn,x)
whose i-th cohomologies are the connecting homomorphisms of the inductive system. According
to the second part of Lemma 1.31(1), the map (1.4.7) is the trace map associated to the closed
immersion Z,, ,,, < Zp m+1, and thus is compatible with the inductive system on the left hand
side of (1.4.6).
Consider the trace map associated to the closed immersion ¢y m @ Zpm — WpX, ie., the
evaluation-at-1 map

Kn,X) — Kn,X'

Its image naturally lies in T'yy, z (K, x ). After taking colimit on m, it is an isomorphism

HomWn Ox (in,m,* OZ

n,m?

colim,, Sa:t%,[,ﬂox (in,mx Oz s K x) WTI> Hiy (K x)

by [Har66, V 4.3].
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Now we consider
(1.4.8) colimyy, in,mH(Kz, ) = colimy, Extly o (inm Oz, s K x)

— My (Kn x).

~

The composite map of (1.4.8) is colim,, Tr;, ,,. On the other hand, consider the log trace
associated to the closed immersion i, ., (cf. Proposition 1.30)

(1.4.9) Tri, t0g Hi(imm,*KZn,m,log) = Hi(Ez(in,m,*KZn,mJOg))
- Hi(Ez(Kn,X,log)) = ,HiZ(KmXJOg)-
The maps (1.4.8), (1.4.9) give the vertical maps in the following diagram (due to formatting
reason we omit 4, ,, . from every term of the first row) which are automatically compatible by
Proposition 1.30:

HYKy,,) S WKy, ) —= H (K, 10g) —= Hi(K 7, ) S Hi(K 5, )

Trip,m i Trip m J/ Trip m.log l Trip m i Triy m l
!

i c'—1 i ; ; c'-1 ..

Hy (Ko, x) = Hy (K, x) —> Hiy(Kn X 10g) —> Hy (Kn,x) —— Hy (K x).
Taking the colimit with respect to m, the five lemma immediately gives that colim,, Tr;, ,. 104 18
an isomorphism. Then Tryy, ; 104, Which is the composition of

colim,, Trjn,m’log colimpy, Try,, , log

(Wni)*Hi(Kn,Z,log)

. , i i
colimyy, b m «H' (Kz, ., l0g Hy (Kn, X log)s

Proposition 1.32,~ ~
is an isomorphism. This proves the statement.
(2) Since L'z (Kn x,10g) = Kn,x,109 = (Wni)«Kn, Uiog s a distinguished triangle, the second
part follows from the first part.
O

1.5. Functoriality. The push-forward functoriality of K, x o, has been done in Proposition 1.30 for
proper f. Now we define the pullback map for an étale morphism f. Since W, f is then also étale,
we have an isomorphism of functors (W, f)* ~ (W, f)* by Proposition 1.9(2). Define a chain map of
complexes of W, Oy-modules

(15.1) £ Ky 2 (W f)e (W) Ky = (W) (Wi )2 Ky = (Wi f)o Ko x.

Here adj stands for the adjunction map of the identity map of (W, f)*K,, y.
Proposition 1.34 (Etale pullback). Suppose f: X — Y is an étale morphism. Then
f* : Kn,Y,log — (an)*Kn,X,logp
defined by termwise applying (1.5.1), is a chain map between complexes of abelian sheaves.

Proof. Tt suffices to prove that C’ is compatible with f* defined above. Consider the following diagram
in the category of complexes of W,,Oy-modules

(1.2.2) Trw,, Fy

(WnFY)*Kn,Y ~ (W'nFY)*(WnFY)AK'n,Y K?L,Y

adj a) adj d) adj

(1.2.2) Wi, Fy

|~ b) B~
N (1.2.2) "
(an)*(WnFX)*(an) Kn,Y ? (an)*(WnFX)*(an) (WHFY)AKn,Y e) =~
~ c) ~
(1.2.2) A Trw,, Fy
(an)*(WnFX)*Kn,X ~ (an)*(WnFX)*(WnFX) Kn,X (an)*Kn,X

In this diagram we use shortened notations for the maps due to formatting reasons, e.g. we write (1.2.2)
instead of (W, f).(W,Fx)«(1.2.2), etc.. The maps labelled a and § are base change maps, and they
are isomorphisms because W, f is flat (actually W, f is étale because f is étale) [Har66, II 5.12]. The
composite of the maps on the very left and very right are (W,, Fy ).(f*) and f* (where f* is as defined in
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(1.5.1)). The composite of the maps on the very top and very bottom are Cy- and (W, f).C’%. Diagrams
a),b),c),d) commute due to naturality. Diagram e) commutes, because we have a cartesian square

WnX%WnX

anJ/ lwﬂ,f
w,Y % w,Y

by Remark 1.16(2), and then the base change formula of the Grothendieck trace map as given in Propo-
sition 1.10(5) gives the result. O

Lemma 1.35. Consider the following cartesian diagram

f/

W —s
lg/ ig
f
X—Y

with g being proper, and f being étale. Then we have a commutative diagram of residual complexes

1%

lTLran lTran/
1
Kn,Y (an)*Kn,X

Proof. We decompose the diagram into the following two diagrams and show their commutativity one
by one.

(W9 Kz~ (Woag) e (Wi f)o (Wi f') Koz
(an)*(wng/)*(wnf/)*(WnQ)AKn,Y
Trw,, ¢ ~la
(an)*(an)*(an)*(an)AKnY
Trw,, ¢
KMY = (an)*(an)*Kn,Y

Here « denotes the base change map, it is an isomorphism because W, f is flat [Har66, II 5.12]. This
diagram commutes by naturality. Next consider

(Wng)«(Waf')s (Wi f')* Kn 2

~ ~

(Wng)s (W f)« Knw

(W f)sWng )s (Wi f)) (Wig) 2 Ky ——= (Wnf)«(Wng ) Kpnw

(W f)e(Wa f)* (Wig)« (Wng) > Kny Tryp, o
Trw,, g
(Waf)(Wi )" Kn,y = (W f)eKn x-
The top part commutes by naturality. The bottom part commutes by the base change formula of the
Grothendieck trace maps with respect to étale morphisms Proposition 1.10(5). O
Since both f* for log complexes in Proposition 1.34 and g. := Trw, g0 are defined termwise, we

arrive immediately the following compatibility as a consequence of Lemma 1.35.
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Proposition 1.36. Notations are the same as Lemma 1.85. One has a commutative diagram of com-
plexes

1%

f ~
(Wn )*Kn,Z,log —_— (an)*(wnf)*Kn,W,log — (an)*(wng)*Kn,W,log

ig* lgi
-

s 1,t0g9 [Ea)
Kn Y,lo (an)*Kn X,log-

1.6. Etale counterpart K, x oq.6t- Let X be a separated scheme of finite type over k of dimension d.
In this subsection we will use t = Zar, ét to distinguish objects, morphisms on different sites. When ¢ is
omitted, it means t = Zar unless otherwise stated.

Denote the structure sheaf on the small étale site (W,, X )¢ by W,,Ox ¢. Denote

(6*76*) : ((WnX)étaWnOX,ét> — ((WnX)ZaraWnoX)

the module-theoretic functors. Recall that every étale W, X-scheme is of the form W, g : W,U — W, X,
where g : U — X is an étale X-scheme by Remark 1.16(1). Now let F be a W,,Ox ¢-module on (W, X ).
Consider the following map (cf. [Kat87, p. 264])

(1.6.1) 7 (WaFx ) F — F,
which is defined to be

(Wi Fx ) o F) (WU 222 W, X) = F(WoX xw, rev, x WalU 225 W, X)

W, F;:
U, FWU 2 W, X)

for any étale map W,g : W,,U — W, X (here we use pr; to denote the first projection map of the fiber
product). This is an automorphism of F as an abelian étale sheaf, but changes the W,,Ox ¢-module
structure of F.

Lemma 1.37. (1) The map T is a map of W, Ox g-modules. That is, suppose o, 3 are the maps
defining W,,Ox ¢-module structure on F and (W, Fx).F respectively, the following diagram
commutes

Wi Fy% Xt

WnoX,ét X (WnFX)*]: WnOX7ét x F

| ok
(Wi Fx )« F F.

(2) Given an étale sheaf F of W, Ox ¢-modules, the restriction of (W, Fx).F %) F to the Zariski

open subsets W, X is simply the identity map on the underlying complex of abelian sheaves.
(3) T is functorial with respect to F in the category of W, Ox ¢,-modules. Le. for any homomorphism
f:F =G of W, Ox gt -modules, the following diagram of abelian étale sheaves on (W, X )at

(WoFx).F ——=F

(Wan)*fi if

(WnFx).Gg ——G.
18 commutative.
Proof. (1) In fact, suppose F is equipped with the W, Ox ¢-module structure
a: WyOx e X F — F.
Namely, on an étale section W, g : W,,U — W, X, we have a map
aw, g D(W,0p) x FW,U 225 W, X) — FW,U 222 W, X).
Then (W, Fx).F is equipped with the following W,,Ox ¢-module structure

W, Fi xid (WnFx).ea
- _—

6 : WnOX,ét X (WnFX)*]: (WnFX)*WnOX,ét X (WnFX)*]:
Namely, on an étale section Wy, g : W,,U — W, X,

(W, Fx ). F.

- 1@idrw, id
Bw,g : T(WnOu) x FWnX Xw, pxw,x Wal = W, X) (8w o)X
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T(W,0x) ®w, ry r(wnox) LWaOv) x FWnX Xw, e, w, x Wal 25 W, X)

L)y F(W X s, e wx Wall 225 W, X).

From the explicit expressions of a and 3, one deduces that the following diagram commutes

o Wi F xWn Ffs Wig
NW,0u) x FWoX Xw, ry . w,x WoU — W, X) r(w,0uy) x FIW, U —= W, X)

lﬁwng iawvzg

. W, Fy
FWoX xw, my . x WU 225 W, X) ox FW,U 222w, X).

~

(2) This is because of the definition of the small Zariski site Xz,,: the morphism set of two open
subsets of Xyz,, can either be the empty set or a one element set consisting of an open immersion.
In particular, W, X Xw, py.w, x WU is an Zariski open subset of W,, X via identification with
W, U through W, Fy;/x. This explains our claim.

(3) This is direct, because the restriction maps of étale sheaves F,G induced by W, Fy;,x are com-

patible:
pri WnFlj/X Wng
FWaX X, i wax Wall 225 W, X) —25 Fow,U 229w, x)
J{f if
pri W"F;}/X Wng
Q(WnX XW,Fx WnX WnU — WnX) = Q(WnU —_— WnX)
U
Define

*
K, xe& =€ K, x

to be the complex of étale W, Ox ¢-modules associated to the Zariski complex K, x of W, Ox-modules.
This is still a complex of quasi-coherent sheaves with coherent cohomologies. For a propermap f : X — Y
of k-schemes, define

e Trw,, f

Trw, ret : Waf)iKn xe0 = € (Wi f)iKn, x) —= Kp vt
to be the étale map of W, Oy ¢-modules associated to the Zariski map Try, ; : K, x — Ky x of
W, Ox-modules. Define the Cartier operator C%, for étale complexes to be the composite

1 . *(1.2.3
Cl Kn xst - (Wi Fx) o Kn x 6t = € (WnFx) K x) a2y, Ky x 6t

Define
Cl—1
Ky X 1og,et = Cone(K,, x s — Kp x.6)[—1].
We also have the sheaf-level Cartier operator. Let X be a smooth k-scheme. Recall that by definition,

Cet is the composition of the inverse of transfer-of-module-structure (1.6.1) with the module-theoretic
etalization of the W, Ox-linear map (1.3.6):

1.3.6

Cor s Wk 0 s (W Fx ) W% o = (W Fx ) W,0%) <20 w04 ..

This is precisely the same as the classical definition that appeared in Lemma 1.28 before, because 7 is
the identity map when restricted to (Et/X)za, by Lemma 1.37(2). (Here (Et/X)za, denotes the site with
the underlying category being the category of all étale X-schemes and coverings being Zariski coverings.)

Proposition 1.38 (cf. Theorem 1.17). CY, is the natural extension of C' to the small étale site, i.e.,
eCl=C: K, x = K, x.
When X is smooth, Cg is the natural extension of C to the small étale site
€.C¢p = C: W, 0% — W, 0%.
And one has compatibility
Cey = H_d(cét)-

Proof. The first two claims are direct from Lemma 1.37(2). The last one comes from Lemma 1.37(2)
and the compatibility of C and C’ in the Zariski case Theorem 1.17. O
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Proposition 1.39 (cf. Proposition 1.24). Let X be a separated scheme of finite type over k with k = k.
Then

H' (W, X, Ky xe) = H (RT(WyX)i, Kn x.6t)) Gl H' (W, X, Ky x.6t)
is surjective for every i.
Proof. One notices the following identifications
H' (W, X, Ky xet) : = H(RD(WnX)et, Kn,x.60)) = H(RT(WnX)et, € Ko x Zar))
= H'(RT((W0 X)zar, Kn X 7ar)) = H' (W, X, Ky, X 7ar)-

The first equality of the second row is due to the exactness of € and the fact that ¢ maps injective
quasi-coherent Zariski sheaves to injective quasi-coherent étale sheaves. The surjectivity then follows
from the compatibility of C’ and CY, Proposition 1.38 and the Zariski case Proposition 1.24. O

In the étale topology and for any perfect field k, the surjectivity of
Cao — 1: W% o = W% &

is known without the need of Proposition 1.39 (cf. Lemma 1.28). For the same reasoning as in Proposi-
tion 1.29, we have

Proposition 1.40 (cf. Proposition 1.29). Assume X is smooth of pure dimension d over a perfect field
k. Then the natural map

d
WnQX,log,ét[d} — K X log.ét

is a quasi-isomorphism of complezxes of abelian sheaves.

We go back to the general non-smooth case. The proper pushforward property in the étale setting is
very similar to the Zariski case.

Proposition 1.41 (Proper pushforward, cf. Proposition 1.30). For f : X — Y proper, we have a
well-defined map of complexes of étale sheaves

(162) Tran,log,ét : (an)*Kn,X,log,ét — Kn,X,log,ét
given by applying Tryy, e termwise.

Proof. In fact, because 77! is functorial Lemma 1.37(3), we have the following commutative diagram of
complexes of abelian étale sheaves

.
(an)*Kn,X,ét = (an)*(WnFX)*Kn,X,ét

J/Trwnf,cc i(WnFY)* Trw,, f,6t
7_71
Kn,Y,ét - = (WnFY)*Kn,Y,ét-
The rest of the proof goes exactly as in Proposition 1.30. (I

Proposition 1.42 (cf. Proposition 1.32). Let i : Xg < X be a nilpotent immersion. Then the natural
map

TrWni,log,ét : (Wni)*Kn,Xo,log,ét — Kn,X,log,ét
is a quasi-isomorphism.

Proof. We adopt the same notations as in the proof of Proposition 1.32. Almost all steps of the proof
go through directly, except that the map

Cr 6 Qnat = Homw, 0y o (Inst, Kn x 6t)
—1
—— (WoFx)Homw, ox o (Inet, Kn x 6t)

— HomWnOX,ét((WnFX)*In,étv (WnFX)*KmX}ét)

W, Fx)s(1.2.2)0
o o). (1:22)0, Homw, 0x e (W Fx)sIn et (WnFx ) (W Fx )2 Ky x6t)

~

Homw, 0x o (Wi Fx)eln et Kn x 6t)

((WnF;‘)lIH.ét)v
~_'.%

T‘I‘WTL Fx

Homw, 0x o (In,etr Kn,x,60) = Qn.st
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1

is nilpotent. To this end, it suffices to show 77! commutes with all the maps appearing in the above

composition, e.g.,

((WnF)*()‘In,ét)v

Homw, 0x oo (Wi Fx)sIn e, Kn x 6t) Homw, 0x.o. (Inst, Kn,x 6t)
i Wi Fx) e (WnF3) 1, 60) J’
(Wi Fx)sHomw, 0x o (WnFx)sln, et Kn x 6t) (Wi Fx)sHomw, 0x o (In.ét, Kn,x ¢t)-
And these diagrams are commutative due to Lemma 1.37(3). ]

Let i : Z < X be a closed immersion with j : U < X being the open complement as before. Define
L, (F) :=Ker(F — j.j ' F)

for any étale abelian sheaf F on X, just as in the Zariski case (cf. (1.4.3)). Replacing Z (resp. X) by a
nilpotent thickening will define the same functor as I',(—), because the étale site of any scheme is the
same as the étale site of its reduced scheme [EGAIV-4, Ch. IV, 18.1.2]. Recall that when F = Z is an
injective Z/p™-sheat,
0T, T —jj 'T—0

is exact. In fact, because jiZ/p" is a subsheaf of the constant sheaf Z/p™ on X, we have that the
map Homx (Z/p"™,Z) — Homy (j1Z/p", I) is surjective. Thus Homy (Z/p",Z) — Homy (Z/p",j~ 1) =
Homy (Z/p", j.j 'T) is surjective. This implies that for any complex F*® of étale Z/p"-sheaves with
bounded cohomologies,

(1.6.3) RL,(F*) = F* = jj ' F* 55
is a distinguished triangle in D*(X,Z/p") (cf. (1.4.4)).

Proposition 1.43 (Localization triangle, cf. Proposition 1.33). Let i : Z < X be a closed immersion
with j : U — X being the open complement as before. Then

(1) We can identify canonically the functors
(Wyi)« = RL; o (Wyi)s : DP(WnZ)s, Z/p™) — DP(WnX)er, Z/p").
The composition of this canonical identification with the trace map

Trw,, i,10g,6t

(Wni)*Kn,Z,log,ét - REZ((Wni)*Kn,Z,log,ét) —_— REZ(Kn,X,log,ét)

is a quasi-isomorphism of complezes of étale Z/p™-sheaves.

(2)
. . +1
(Wnl)*Kn,Z,log,ét Kn,X,log,ét — (an)*Kn,U,lo%ét —

is a distinguished triangle in D*(W,, X)st, Z/p™).

Proof. (1) One only needs to show that (Wpi), = RL, o (Wyi)., and then the rest of the proof
is the same as in Proposition 1.33(1). Let Z be an injective étale Z/p™-sheaf on W,,Z. Since
Homyy, x (—, (Wyi).Z) = Homy, z((W,i)~1(—),Z) and (W,i)~! is exact, we know (W,i).Z is
an injective abelian sheaf on (W, X )¢. This implies that R(I', o (Wyi).) = RL, 0 (Wyi). by the
Leray spectral sequence, and thus (W,i). = R(Wyi). = R(L; o (Wyi).) = RL, o (Wpi)..

(2) One only need to note that (Wpnj)«Kn viog,et = R(Wnj)«Kn voge- In fact, the terms of
K, U 10g.¢t are quasi-coherent W, Ox ¢-modules which are (W,,j).-acyclic in the étale topology
(because R f.(e*F) = ¢*(R' f.F) for any quasi-coherent Zariski sheaf F and any quasi-compact
quasi-separated morphism f [Stacks, Tag 071N].). Now the first part and the distinguished
triangle (1.6.3) imply the claim.

Trw,, i,109,6t
%

O

2. BLOCH’S CYCLE COMPLEX Z§ ,(m)
Let X be a separated scheme of finite type over k of dimension d. Let
A" = Speck(Ty, ..., T.]/(>_T; — 1).

Define z,,(X,4) to be the free abelian group generated by closed integral subschemes Z C X x A’ that
intersect all faces properly and
dim Z = m + .


https://stacks.math.columbia.edu/tag/071N
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We say two closed subschemes Z7, Z5 of a scheme Y intersect properly if for every irreducible component
W of the schematic intersection Zy N Zy := Z1 Xy Zs, one has

(2.0.1) dim W < dim Z; + dim Z; — dimY

(cf. [Gei05, A.1]). A subvariety of X x A’ is called a face if it is determined by some Tj, =T}, = -+ - =
T;, =0 (0 < j1 < -+ < js <1). Note that a face is Zariski locally determined by a regular sequence
of X x A", Therefore the given inequality condition in dimension (2.0.1) in the definition of z,,(X,1) is
equivalent to the equality condition [Gei05, (53)].

The above definition defines a sheaf z,,(—,7) in both the Zariski and the étale topology on X ([Gei04,
Lemma 3.1]). Notice that z,,(—, %) is not a flasque sheaf even on the Zariski site, because cycles meeting
faces properly on U x A? can have closures in X x A’ that do not. Define the complex of sheaves

= zn(—8) B (=i = 1) = oz (—,0) 5 0
with differential map
d(Z) =Y (~1Y[ZnV(Ty)).
J
Here we mean by V(Tj) the closed integral subscheme determined by 7T and by [Z N V(T})] the linear
combination of the reduced irreducible components of the scheme theoretic intersection Z NV (T}) with
coefficients being intersection multiplicities. z,,(X,e) is then a homological complex concentrated in
degree [max{0, —m},c0). By a shift of degree and labeling cohomologically, following the notation in
[Geil0] we set A
25 (m)" = zm(—, —i — 2m).
This complex is nonzero in degrees
(—o0, min{—2m, —m}].
We write Z% := Z5%(0).
Define the higher Chow group
CHyn (X, 1) == H;(2m (X, 8)) = H™'2™(L% (m)(X))
for any ¢ and any m.
Proposition 2.1 (Bloch, Zariski descent). Suppose X has equidimension d over k. Then
CH,,,(X,i) = R™"7*"T(Xzar, Z5 (m)).
Proof. Let Z — X be a closed immersion. The restriction map
2m(X,0)/2m(Z,0) = 20 (X — Z, o)
is a quasi-isomorphism of complexes of abelian groups by the moving lemma (it was claimed in [Blo86,
3.3] and later proved in [Blo94, 0.1]), and it induces a quasi-isomorphism of complexes of abelian Zariski
sheaves N
F* = Z5%(m),
where F(U) := 2, (X, —i—2m) /2, (X —U, —i—2m) with U being a Zariski open in X. The Zariski sheaf
F' defined in this way is flasque for each i [Blo86, 3.4]. Therefore, we have R™"?"TI'(Xzar, Z5 (m)) =
H™=72(F*(X)) = Hi(2m (X, 0)). O
Higher Chow groups are indeed a generalization of the Chow group, as
CH,,(X,0) = 2,,(X,0)/dz, (X, 1) = CH,,(X)

agrees with the classical definition of a Chow group (cf. [Ful98, §1.3]). The higher Chow groups with
coeflicients in an abelian group A will be denoted
CH,,(X,i; A) :== H™72™(Z% (m)(X) @z A).

Proposition 2.2 (Functoriality, [Blo86, Prop. 1.3]. See also [Lev98, Part I, Ch. 2, Rmk. 2.1.7(i)]). The
complex Z})t(m), either t = Zar or t = ét, is covariant for proper morphisms, and contravariant for flat
morphisms. More precisely, for proper f : X — Y, we have a well-defined chain map of complexes of
abelian sheaves

fe f*ngt(m) - Zg’,t(m)
by pushforward of cycles, and for flat f : X — Y of equidimension c (i.e. fiber at each point of Y s
either empty or of dimension c), we have a well-defined chain map of complexes of abelian sheaves
o Z%t(m —c)[2] = f*Z,cXt(m)
by pullback of cycles.
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3. KATO’S COMPLEX OF MILNOR K-THEORY C¥/,(m)

Recall that given a field L, the g-th Milnor K-group K é‘/[ (L) of L is defined to be the g-th graded
piece of the non-commutative graded ring

D) - Beall)

a®(1—a)|a,1—a€L*)

b

q>0
where (a ® (1 —a) | a,1 —a € L*) denotes the two-sided ideal of the non-commutative graded ring
@D ,>0(L*)®? generated by elements of the form a ® (1 — a) with a,1 —a € L*. The image of an element
a1 ® - ®ag € (L*)® in K}M(L) is denoted by {ay, ..., a4}
Let X be a separated scheme of finite type over k of dimension d. We denote by
M\ ._ oM

the g-th Milnor K-group of the field k(z), and we have K}/ () = 0 when ¢ < 0. Kato defined in [Kat86c]
a Gersten complex of Milnor K —groups

D K@ = D K@ DY,
zeX(d) IEX(l) QIGX(O)

Here the superscript M stands for Milnor, and the notation X, denotes the set of dimension ¢ points
of X. We briefly review its sheafified constructions in this sectlon Our sign conventions are the same as
in [Ros96].

We firstly make clear the definition of a Milnor K-sheaf on a point X = Spec L, where L is a field.
Then Ké\/éec L.q.zar 18 the constant sheaf associated to the abelian group K, 5\4 (L) (without the assumption

that L is an infinite field, cf. [Ker10, Prop. 10(4)]), and K&/

Spec L.q.ét 1S the étale sheaf associated to the
presheaf

L'+ K)(L'); L'/L finite separable.
Choose a separable closure L*°P of L. Then the geometric stalk at the geometric point Spec L*P over
Spec L is colimpcpcpser K} (L'), which is equal to K (L%P) because the filtered colimit commutes
with the tensor product and the quotient. Now by Galois descent of the étale sheaf condition, the sheaf
K& e 1.q.c0 is Precisely
L' KM (L2eP)GAMLTP /LY. [/ /T, finite separable.
Here the Galois action is given on each factor, according to the very definition of the étale presheaf
M,
Xt
Now with the topology ¢t = Zar or ¢ = ét, we have the corresponding Gersten complex of Milnor
K-theory, denote by C)I(\f{t(m) (the differentials d™ will be introduced below):

d]\l M
(3.0.1) @ LHIde ot —> L — LMICw 1—m.t 4, @ Lw*’C%_m7t,
r€X(a) z€X (1) E€X (o)

where ¢, : Spec k(z) < X the natural inclusion map. As part of the convention,

C%t(m)i = @ Lx,*lci,{z;zm,t-

meX(f’i*T?‘L)
In other words, (3.0.1) sits in degrees
[-d — m, min{—m, —2m}].

We set O, = C¥,(0). It remains to introduce the differential maps.

When t = Zar, the differential map d™ in (3.0.1) is defined in the following way. Let = € X(q) be a
dimension ¢ point, and p: X’ — m be the normalization of m with generic point z’. Define

—m—

28 ’ ZNm ’/
(@) s Kyl (@) = K)o (2') =5 @@ K i () = K1 ()
y'ly
Here the notation 3’|y means that y' € X'M is in the fiber of y,
(3.0.2) 9y KL (ah) = KoL 1 ()
is the Milnor tame symbol defined by 3, and
(3.0.3) Nmy’/y : K{?{m—l(y ) — Kéwm 1(v)
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is the Milnor norm map of the finite field extension k(y) < k(y’). The differential d™ of this complex is

given by
S OY @ @ KLeo @ Kl
2€X(q) yeX(q_1)N{a} €X(q) YEX(g-1)
There are different sign conventions concerning the tame symbol in the literature. Here we clarify
the sign convention we adopt. Following [Ros96, p.328], we define the tame symbol 855525(1) = 0,

KM(L) — KM | (k(v)) for a field L, a normalized discrete valuation v on L and k(v) the residue field
with respect to v, via

(304) Bv({wv,ul,...,un,l}) :{ﬂl,...,ﬂnfl}.
Here 7, is a local parameter with respect to v, uq,...u,_1 are units in the valuation ring of v, and
Uy, ...,Un—1 are the images of uq,...u,—1 in the residue field k(v).

When t = ét, set © € X(,), y € X(4-1) N {z}. Denote by p : X’ — {z} the normalization map and
denote by z’ the generic point of X’. One can canonically identify the étale abelian sheaves K -t

and p, KM g—m.ét OL {m}7 and thus identify Lz,*IC%q_m ¢ and 1y p KM conX. Lety € X'M such

that p(y') = y. Then the componentwise differential map

z',q—m,é

Mz . M M
(d ) . LI,*ICm, —m,ét — Lyy*lc ,q—m—1,ét
Y q Y,q

is defined to be the composition
(@) = 1, (Nm) 0 . (9).

Here 0:= )", /cxi)m,—1 L(y) ay,, where

’

(3.0.5) A%+ 1 KM

Y z’,q—m,é

M
t 7 Ly'a*’cy/,q—m—l,ét

on X' is defined to be the sheafification of the tame symbol on the presheaf level. Indeed, the tame

symbol is a map of étale presheaves by [Ros96, R3a]. And Nm := Zy'eX’(lan 1(y) Ny, where

(3.0.6) Nmy/, : Kl

on y is defined to be the sheafification of the norm map on the presheaf level. The norm map is a map
of étale presheaves by [Ros96, Rlc].

t—>IC

y',q—m—1,6 y,q—m—1,6t

Proposition 3.1 (Functoriality, [Ros96, (4.6)(1)(2)]). The complex C¥',(m), either t = Zar ort = ét, is
covariant for proper morphisms and contravariant for flat equidimensional morphisms. More precisely,
for proper f: X — Y, we have a well-defined chain map of complexes of abelian sheaves

fe: f*Cé\(/It(m) — C}]y,[t(m)
induced by the norm map of Milnor K-theory. When f : X — Y is flat and of equidimension c (i.e.

the fiber at each point of Y is either empty or of dimension c), we have a well-defined chain map of
complezes of abelian sheaves

e C}I}/’It(m —c)[2¢] = f*C%t(m)v
by the natural pullback maps of Milnor K -sheaves on fields.

Proof. The case t = Zar is given in [Ros96, (4.6)(1)(2)]. As for t = ét, f. is a well-defined map of étale
presheaves at each term [Ros96, Rlc], thus induces a chain map of étale presheaves, and then induces
a chain map of étale sheaves. And f* is a map of étale sheaves on each term, therefore induces a chain
map of étale sheaves. O

4. KATO-MOSER’S COMPLEX OF LOGARITHMIC DE RHAM-WITT SHEAVES %,X,t(m)

Let X be a separated scheme of finite type over k of dimension d. Kato first defined the Gersten
complex of the logarithmic de Rham-Witt sheaves in [Kat86a, §1]. Moser in [Mos99, (1.3)-(1.5)] sheafified
Kato’s construction on the étale site and studied its dualizing properties. We will adopt here the sign
conventions in [Ros96].

Let Y be a k-scheme. Let ¢ € N be an integer. Recall that in Section 1.3.5, we have defined W"QqY,log,t’

with either ¢ = Zar or ¢t = ét, to be the abelian subsheaf of Wnﬁgﬂ’t étale locally generated by log forms.

Lemma 4.1 (Bloch-Gabber-Kato isomorphism, [BK86, 2.8])). Let L be a field of characteristic p. The
dlog map induces an isomorphism of sheaves for both t = Zar and t = ét over Spec L:

leg KSpecht/p _>WQ

Spec L,log,t*
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Proof. The original Bloch-Gabber-Kato isomorphism states that
dlog : Kéw( )/p" = I'(Spec L, W, QspeCL log, &)

is an isomorphism of abelian groups. This is precisely the statement for the sheaf theoretic version for
t = Zar, because
M M
F(Spec L7 K:Spec L,q,Zar) =K, (L)
and
T(Spec L, Wi Q4 e 110g.2ar) = L(SPeC Ly €. Wi Q4o 1 10g.61) = L(Spec L, W, Q4

where ¢, is the restriction functor from the category of étale abelian sheaves to the category of Zariski
abelian sheaves. As for ¢t = ét, the lemma follows directly from the definition of the étale sheaf
W08 which says it is the sheaf theoretic image of the dlog map (cf. Section 1.3.5). O

Spec L loq,et)

Spec L,log,ét?

We will freely use W, Q% log.t for W,, QspeCL log,t Delow. Since the étale sheaf W, QspecL log.ét
cisely the association H — W, qucc H.lo g,ct( ) for any finite separable extension H over L, our notation
Wnﬂ%,log,t shall make no confusion.

Now let X be a separated scheme of finite type over k of dimension d. Define the Gersten complex
Up x,1(m), in the topology ¢ = Zar or ét, to be the complex of ¢-sheaves isomorphic to C’é\(/{t (m)/p" via
the Bloch-Gabber-Kato isomorphism:

d—m 1-m —-m
(40.0) 0= P waWa T 1gs == B W S0y = D e Wa2 2 10y = 0-
z€X (a) zeX (1) TE€X (o)

is pre-

Here ¢, : Speck(x) — X is the natural map. We will still denote by O the reduction of the tame
symbol 9 mod p™ (cf. (3.0.2)(3.0.5)), but denote by tr the reduction of Milnor’s norm Nm mod p™ (cf.
(3.0.3)(3.0.6)). The reason for the later notation will be clear from Lemma 5.3. As part of the convention,

~ i i—2m
Un, Xt (m) = @ LaxWn Q k(x),log,t’
QJEX(_i_m)

ie. Up x(m) is concentrated in degrees
[-d — m,—2m)].
Notice that 7, x (m) is the zero complex when m < 0. Set Uy, x 1 = Up x,:(0).

Proposition 4.2. Leti: Z — X be a closed immersion with j : U — X 1its open complement. We have
the following short exact sequence for t = Zar:

O > i*gn,Z,Zar(m) > ;n,X,Zar(m) > j*;n,U,Zar(m) > 0
For t = ét, when m = 0, one has the localization triangle
.~ ~ .~ 41
14V, Z.60 = Un, X6t — Rjslnue — .

Proof. Upn, x zar(m) is a complex of flasque sheaves (therefore Rj. (Vi x zar(M)) = juln,x zar(m)), and
one has the sequence being short exact in this case. When ¢ = ét, the purity theorem holds for m = 0
[Mos99, Corollary on p.130], i.e., ixVn zst = Lz (Vn,x,6t) = RT (U, x,6t). We are done with the help of
the distinguished triangle (1.6.3) in the étale topology. O

Remark 4.3. As pointed out by [Gro85, p.45 Remarque] and [Mil86, Rmk. 2.4], the purity theorem
does not hold for general m (i.e., i.¥y zet(Mm) = Tz(Vn, xet(m)) — RL, (U x6(m)) is not a quasi-
isomorphism for general m) even in the smooth case.

Functoriality of 7, x(m) is the same as that of C%t(m) via dlog. We omit the statement.

Part 2. The maps

5. CONSTRUCTION OF THE CHAIN MAP (p X log,t Cﬁ?t — K X l0g,t

5.1. Construction of the chain map ¢, x; : C’;‘(/{t — Kp xt Let © € X(4) be a dimension ¢ point.

te : Speck(z) — X is the canonical map and i, : {x} < X the closed immersion. At degree i = —¢q, and
over a point x, we define the degree ¢ map to be C;’X,t = erx(q) € o With

dlo
(5.1.1) st Wta) K3l o =2 (Wote) W Q) 100y © Wit W0

. i (1) Trw,, i, i
= (Waia)u K o, S0 K
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We will use freely the notation C;, x,¢ With some of its subscript or superscript dropped.

It’s worth noticing that all the maps of étale sheaves involved here are given by the sheafification of
the respective Zariski maps on the étale presheaf level. So to check commutativity of a composition of
such maps between étale sheaves, it suffices to check on the ¢ = Zar level. Keeping the convention as
before, we usually omit the subscript Zar when we are working over the Zariski topology.

Proposition 5.1. Let X be a separated scheme of finite type over k with k being a perfect field. For
t = Zar and t = ét, the map

.M
Cn,X,t . CX,t — Kn,X,ta

as defined termwise in (5.1.1), is a chain map of complexes of sheaves on the site (W, X);.

Note that we have a canonical identification (W, X); = X; for both ¢t = Zar and t = ét. We use
(W, X): just for the convenience of describing the W,,Ox-structure of residual complexes appearing
later.

Proof. To check (,, x + is a map of complexes, it suffices to check that the diagram

i M i+l
(Cx.) (Cx,)
lc:;‘x,t lcx
. d . .
(Knx) —= (Kt !

commutes for ¢ = Zar. To this end, it suffices to show: for each x € X(;), and y € X(,_1) which is a
specialization of x, the diagram

@
(5.1.2) (Wnbz)*lci\{q - (WnLy)*ICZ]J\,{I—l
lgn,y
. —q+1
- (W) K252
i— Trwy iy, »
—q dzy oot

nv{x} "vm

commutes (i, 5 : {y} — {z} denotes the canonical closed immersion).
Since the definition of the differential maps in C¥ involves normalization, consider the normalization
p: X' —= {z} of {z}, and form the cartesian square

] gy X X' = )

i |

Denote the generic point of X’ by 2’. Suppose 3’ is one of the generic points of the irreducible components
of {y} Xy X ' and denote by Y’ the irreducible component corresponding to y’. In particular, ' is a
codimension 1 point in the normal scheme X', thus is regular. Because the base field k is perfect, 3’ is
also a smooth point in X’. According to Remark 1.12, the degree [—q, —q + 1] terms of K,, x- are of the
form

5
(Wata ) HO (W Q%) S @D (Waty)oHy (WaQ%,) — ..,

!’
YEX)

where ¢ denotes the differential map of the Cousin complex K, x. Notice that § can be calculated via
the boundary map of the localization sequence of local cohomologies, because of smoothness around y’
(cf. [CR11, A.1.2]). After localizing at a single ¢’ € X'(}) in the Zariski sense, one gets

[
(Wata )« H (Wn %) =5 (Waty ) Hy (W Q%)) — .
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Consider the following diagrams. Write ¢, : Speck(a’) < X', 1 : Speck(y’) — X’ the inclusions,
ty o 0 Y = {y'} — X' the closed immersion,

’
aT

(5.1.3) (Wit ) KM, ———— Wty ) KM
ldlog \Ldlog
-1
(Wnbx’)*WnQZ(w/) (WnLy’)*WnQZ(y/)
5 !
Yy J/Trw""(iy/,z’)

Wty ) HL (W, 0%, ).

For any ' € p~*(y) ¢ X'1)]

Nmy/,,,

(5.1.4) (Wap) Kyl o Ky
idlog idlog

1 Trw,, p —1
(Wap) WaSh ) ————= Wal().

And write iy 40 Y = {y'} = X' iy, {y} = {2},

_ Trw,, _
(5.1.5) (Woap)e Wity ) Wa Q) ‘ (Wty) W)

TrWn(iy/,m/)l \LTrWn(iy,z)

Trwn, ~(a—1)

n{z}

(Wap)s (Waty ) HY (W Q%)

(5.1.6) (Wt )W Bycpr () Wty ) HL (W Q%)
Trw,, lf\/ lTrWn,,
— Iy (a1
n,{z} n{z} °

All the trace maps above are trace maps of residual complexes at a certain degree. (5.1.5) is the degree
q — 1 part of the diagram

Trw,, p

(Wnp)*(Wniy/,z’)*Kn,Y’ - (any,w)*Kn’m

Trw, Gy o) l

(Wn )*Kn,X’

i“wnuy,u

Trw,, p

n,{z}

(the trace map on top is the trace map of the restriction of W, p to W,,Y”’), and thus is commutative
by the functoriality of the Grothendieck trace map with respect to composition of morphisms (Proposi-
tion 1.10(4)). (5.1.6) is simply the degree —q to —g + 1 part of the trace map Tryw, , : (Wpp)« Kn x» —
K, oy thus is also commutative. It remains to check the commutativity of (5.1.3) and (5.1.4). And
they follow from Lemma 5.2 and Lemma 5.3.
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One notices that diagram (5.1.2) decomposes into the four diagrams (5.1.3)-(5.1.6):

’
=
D,y Oy 2oyt sy Nmyr

(Wap)s Whta)KY | ———— @y,‘y(Wnp)*(WnLy/)*IC%q_l S (W)oK
i (5.1.4) i
dlog (5.1.3) dlog dlog
_ Trw,, , B
D1y 0w 5.1.5
Tr i
Trwnp Bty (Wap)(Waty ) HY (W Q%)) ——> K ({117}1)
(5.1.6)
d—
K14 {=} K_(qi_l)
n,{z} nTo]

Here by symbol y/|y we mean that y’ € p~!(y). Notice that we have added a minus sign to both vertical
arrows of (5.1.5) in the corresponding square above, but this does not affect its commutativity. Since
one can canonically identify

(Wnp)*(Wnam/)*lCiV{q with  (Wyte) M

,q?

to show the commutativity of the diagram (5.1.2), it only remains to show Lemma 5.2 and Lemma 5.3. O

Lemma 5.2. For an integral normal scheme X', with ' € X' being the generic point and y' € X'
being a codimension 1 point, the diagram (5.1.3) is commutative.

Proof. Given a 3y’ € X'(M lying over 7, Ké‘/[(x’) is generated by

{7’ u1,...,ug—1} and {v1,..., 041,04}

as an abelian group, where uy, ..., uq—1,01,...,09-1,04 € O}’,y” and 7’ is a chosen uniformizer of the
dvr Ox 4. Thus it suffices to check the commutativity for these generators. We will use our convention
(5) at the beginning of this paper for the computation of local cohomologies.

In the first case, the left-bottom composition gives

(8 o dlog) ({7, u1,. .., uq—1}) = 0y (dlog[r'],dloglur]y, . .. dloglug—1]n)

d[r']ndlog[uily, . . . dlog[ug—1]n
[m']n
The last equality above is given by the boundary map of the localization sequence of local cohomologies

[CR11, A.1.2]. Here we have used the fact that [7'] is a regular element in W,, X', since 7’ is regular in
X'’. The top-right composition gives
(— Trw, (i, ) odlog 08;”;)({7T’, UlyenyUg—1})
= (— T‘I‘Wn(iy/,z/) Oleg){ﬂl, ce ;ﬂq—l}

= — TrWn(iy/,w')(d log[ﬂl]n R dlog[ﬂq_l]n)

— | d[r']ndlogt], . .. dlog[tig—1]n|
(']
The last equality is given by [CR12, 2.4.1]. So the diagram (5.1.3) is commutative in this case.

In the second case, since 8;/' ({v1,...,v4}) = 0, we need to check the left-bottom composite also gives
zero. In fact,

(04 o dlog)({v1,...,v4}) = 6y (dlog[vi]y, . . . dloglvg]n)

_ | [7']n - dlog[v1] . . . dloglvg]n
|
=0.
The second equality is due to [CR11, A.1.2]. The last equality is because [r'],, - dlog[vi], ... dlog[vg],

lies in the submodule ([7],) W, Qi .y € Wa (. U
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Lemma 5.3 (Compatibility of Milnor norm and Grothendieck trace). Let F/E be a finite field extension
with both fields E and F being of transcendence degree q—1 over k. Suppose there exists a finite morphism
g between integral finite type k-schemes, such that F is the function field of the source of g and E is the
function field of the target of g, and the field extension F/E is induced via the map g. Then the following
diagram commutes

Nmp/ g

KM, (F) KM, (E)
\Ldlog J{dlog

-1 Trw, -1

W, Q% - W00

Here the norm map Nmp,p denotes the morm map from Milnor K-theory, and Try,, denotes the
Grothendieck trace map associated to the finite morphism g.

Remark 5.4. (1) Apparently Lemma 5.3 implies the commutativity of the diagram (5.1.4) (i.e.,
take F' = k(y') and E = k(y), and g to be the restriction of the normalization map p to a
neighborhood of 3. In fact, whenever E is essentially of finite type over k, then F as a finite
extension of F is also essentially of finite type over k, and there exists such a finite morphism g
satisfying the assumptions in the lemma.)

(2) The localized trace map Tryy, 4 at the generic point of the source of g does not depend on the
choice of g inducing the same field extension E C F. In fact, since the function field extension
FE C F is given, the birational class of g is fixed.

(3) The compatibility of the trace map with the norm and the pushforward of cycles in various
settings has been a folklore, and many definitions/properties of the trace map in the literature
reflect this viewpoint. To list a few,

e Kato defined a trace map between Kéahler differentials via the Milnor norm map (cf. [GOO0S,
§2.2.3, ii.]).

e Riilling defined a trace map for generalized de Rham-Witt complex for finite field extensions
in the odd characteristic in [Riil07, 2.6], and showed its compatibility with Milnor norm map
as a consequence of [NS89, 4.7] and [Riil07, 3.18(iii)] (using the same notations as in [Riil07,
§3], one notices that there is a natural map CH"(k,n) — CH""!(A(m),n) induced by the
inclusion of the point 1: Speck ~ Speck[T']/(T — 1) < Speck[T] = Aj}). This restriction
on the characteristic is removed later in the appendix of [KPR20].

e Along the line of the second item, Krishna and Park extended the trace in [Ril07, 2.6] to
the case of finite extensions of regular semi-local k-algebras essentially of finite type for an
arbitrary field k, and also to the case of finite extensions of regular k-algebras essentially of
finite type for a perfect field k£ [KPR20, 7.8, 7.9].

But since we have not found a proof of the compatibility of the Milnor norm with the trace map
defined via the Grothendieck duality theory, we include a proof here.

Proof. We start the proof by some reductions. Since both Nmp,p and Trg/p are independent of the
choice of towers of simple field extensions, without loss of generality, one could suppose F' is a finite simple

field extension over E. Now F = E(a) = % for some monic irreducible polynomial f(7T) € E[T] with

a € F being one of its roots. This realizes Spec F' as an F-valued point P of PL, namely,

Spec F' = PCLP}E

g

Spec E.

All the three morphisms on above are morphisms of finite type (although not between schemes of finite
type over k), so it makes sense to talk about the associated trace maps for residual complexes (cf.
Proposition 1.9). But for the particular residual complexes we are interested in, we need to enlarge the
schemes involved to schemes of finite type over k, while preserving the morphism classes (e.g., closed
immersion, smooth morphism, etc) of the morphisms between them.

To this end, take Y to be any separated smooth connected scheme of finite type over k with F
being the function field. Since P} is the generic fiber of Y xj P}, by possibly shrinking Y to an affine
neighborhood Spec B of pry(P) (here pry : Y x, P — Y is the first projection map) one can extend the
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above diagram to the following;:

Spec F' € W¢ W Pl

; |-
Y = Spec B 3 Spec E.
—__pt!
Here W := {P} 7 is the closure of the point P in Pi.. This is a commutative diagram of finite type

k-schemes. In particular, it makes sense to talk about the residual complexes K, y, K, w and Kn,P{, .
Now it remains to show the commutativity of the following diagram

Nmg)/ B
(5.1.7) KM, (E(a)) K1 (E)
ldlog ldk’g
1 Trw,,g -1
W W05,

where Tryy, , denotes the trace map for residual complexes Try, 4 : (Wog)«Knw — K,y at degree
—(¢—-1).

We do induction on [E(a) : E]. When [E(a) : E] = 1, then both the Grothendieck trace Try, g4 :
WnQ(II;(;)/k — WnQ'g/i and the norm map Nmgq), 5 : K}, (E(a)) = K}, (E) are the identity, therefore
the claim holds. Now the induction step. Suppose the diagram (5.1.7) commutes for [E(a) : E] <r — 1.
We will need to prove the commutativity for [E(a) : E] =r.

First note that Try, ¢ : (W,9)+«Kn,w — K, y naturally decomposes into

Trw,, ~

(Wam)e Trw,ipw
(Wnﬂ-)*Kn,P%/ ? Kn,Y-

(518) (Wn )*Kn,W

by Proposition 1.10(4). H},(Wnﬁg,ly) is a direct summand of the degree —(¢ — 1) part of K, p1. We
claim that one can canonically identify

(5.1.9) H}(WanP%V) = H};(WHQ;‘,}E ),

via pulling back along the natural map P} — Pi.. In fact, it suffices to show H};(WanAl) =
Y
H}_—,(WanA}E), with a choice of AL containing P. Notice that AL = Spec E xy A3, = Spec S™(B[T])
where S is a multiplicatively closed subset consisting of nonzero elements in B (notice that B is an inte-
gral domain by the assumption). Let p C E[T] be the prime ideal corresponding to the point P. Notice
that S = B\ 0 C B[T] \ p. Indeed, since p is a principal ideal, it is generated by a non-constant poly-
nomial with coefficients in field E. Thus the inclusion holds. Now HAH(W,Q%,) = ST HL(W,Q%, ) =
Y Y
Hp(ST'W,Q%, ) = Hp(W,Q}, ), where the last equality is due to the compatibility of localization and
Y E
the de Rham-Witt sheaves. So the claim holds. Thus on degree —(¢ — 1) and at the point P, the map
(5.1.8) is canonically identified with

_1 Trw,: Trw,, ~ _
W Q% ) it Hp(WaQ, ) — T W00t
Consider
bo) Nmpg@)/ e
KJNB(T) ——— K}, (E(a)) K1\ (E)
ldlog
dlog (-1) WanEzi) dlog
J(Trwnw
) Trw,, ~ _
W Q% ) T Hp(Wal2, ) W04

We have used the identification (5.1.9) in this diagram. We have seen that the left square is commutative
up to sign —1, as a special case of Lemma 5.2 (i.e. take normal scheme X’ = PL and y’ := P = Spec F).
Since Jp is surjective, to show the commutativity of the trapezoid on the right, it suffices to show that
the composite square is commutative up to —1. For any element

5:={81,...,84-1} € Ké‘fl(E(a)),
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one can always find a lift

§:={f,51,...,541} € K} (E(T)),
such that each of the s; = s;(T) is a polynomial of degree < r — 1 (e.g. decompose F(a) as a r-
dimensional E-vector space E(a) = @;;é Ea’ and suppose s; = Z;;é b;ja’ with b; ; € E, then 3; =
5:(T) = Z;:(l) b; ;T7 satisfies the condition), and dp(3) = s. Denote by

y’i,17"'ayi,ai (lgléqi]‘)

the closed points of P, corresponding to the irreducible factors of the polynomials 31, . .., 3,_1. Note that
the local section s;; cutting out y;; is by definition an irreducible factor of s;, and therefore degs;; < r
for all ¢ and all .

We claim that

(5.1.10) Y. (Tw,r)yody =0: Walhq = Wallp .
y€(P L))
In fact,
(5.1.11) 0— WanP}E — WnQ?g(T) — @ (Wnby)*H;<Wan)}E) -0
y€(PE)(0)

is an exact sequence [CR12, 1.5.9], where ¢, : y — P is the natural inclusion of the point y. Taking
the long exact sequence with respect to the global section functor, one arrives at the following diagram
with the row being a complex

§
Wl ) = Bye(ph ) Hy (Wapy ) —— H' (P, Wallf, )

Tr Wnm
Em\ \L

-1
W, Q%1

The trace maps on the skewed arrow of the above are induced from the degree 0 part of Try, » :
(Wnﬂ')*Kn7P%/ — K, y. The trace map on the vertical arrow of the above is induced also by Try,  :
(Wnﬂ)*KmP}/ — K, y, while the global cohomology group is calculated via (5.1.11), i.e., one uses the last
two terms of (5.1.11) as an injective resolution of the sheaf WanplE, and then Trw, » : (Wom) K, pr —
K,y induces the map of complexes on global sections (placing at degrees [—1,0]), and then the map
of cohomologies on degree 0 gives our trace map H!(PL, W,0Q%L) — WnQ%_l on the right. From the
construction of these trace maps, the diagram above is by definition commutative. Therefore (5.1.10)
holds.
One notices that 6, o dlog(s) = 0 unless y € {p,y1.1,..-,¥Yg-1,a,_,,00}. Now calculate

(Trw, g o dlog)(s)
= (Trw, 4 odlog 00p)(3)
—((Trw, »)podpodlog)(3) (Lemma 5.2)

= Z ((Trw, )y © 6, 0 dlog)(3) (5.1.10)

ye{y1,1,--Yg-1.a, 1,0}

ye{y1.17-~,yq71,aq,1 700}

(induction hypothesis)
= (dlog o Nmp(a)/ 5 00p)(3) ([Ros96, 2.2 (RC)])
= (dlogoNmp(4)/r)(s).
This finishes the induction. O

5.2. Functoriality of ¢, x : C)A(/{t — K, x+. Let k denote a perfect field of positive characteristic p.
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Proposition 5.5 (Proper pushforward). ¢ is compatible with proper pushforward. ILe., for f : X —Y
a proper map, the following diagram is commutative

Cn, Xt

(an)*cé\({t —_— (an)*Kn,X,t

lf* :

M Cn,Y,t
Cyi Ky

Here f, on the left denotes the pushforward map for Kato’s complex of Milnor K-theory (cf. Proposi-
tion 3.1), and f. on the right denotes the Grothendieck trace map Tryw, s+ for residual complezes.

Proof. We only need to prove the proposition for ¢ = Zar and for degree i € [—d,0]. Then by the very
definition of the ¢ map and the compatibility of the trace map with morphism compositions (Proposi-
tion 1.10(4)), it suffices to check the commutativity at points » € X(4), ¥ € Y{g), where ¢ = —i:

dlog

KM(z) — WnQZ(m)
f*l |

M dlog q
K (y) — Wan(y).

(1) When y # f(z), both pushforward maps are zero maps, therefore we have the desired commu-
tativity.

(2) When y = f(z), by definition of ¢ and the pushforward maps, we need to show commutativity
of the following diagram for finite field extension k(y) C k()

M dlog
K, (x) —= WnQZ(a;)

Nmk<w>/k<y>l lTran

dlog
Ké\/[(y) — Wan(y).

This is precisely Lemma 5.3.
O

Proposition 5.6 (Etale pullback). ¢ is compatible with étale pullbacks. Le., for f : X — Y an étale
morphism, the following diagram is commutative

Cn,v,t
C%t ut Kn,Y,t
if* lf*
M Cn, Xt
(an)*cx,t (an)*Kn,Xi'

Here f* on the left denotes the pullback map for Kato’s complex of Milnor K -theory (cf. Proposition 3.1),
and f* on the right denotes the pullback map for residual complexes (1.5.1).

Proof. Tt suffices to prove the proposition for ¢t = Zar. Take y € Y,). Consider the cartesian diagram

XXym:ZW Tl @

-]

X——Y.

Then the desired diagram at point y decomposes in the following way at degree —¢:

dlog _ Trw,, iy —
KM(y) Wl = K 1 K
f* l(fw)* lf*

KM dlog 0! _ Ka Trw,, iy K
Dcw,, Kq (@) Decw,, Wnliw) = Knw —— K. k-
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The right square commutes due to Lemma 1.35. As for the left, it follows from the fact that both f*

and (f |w)* are induced by the natural map f*: Oy — f.Ox. O
cl-
5.3. Extend to K, x o9+ Recall the complex K, x 09+ 1= Cone(K, x '—1> K, x.)[—1], ie.
K;,X,log,t = Kfz,X,t D K:;)%t

The differential K;,X,log,t

— Kf:}’low is given by
diog : K:L,X,t D Kff)%t — K:r)l(t D KTiz,X,t
(a,0) = (d(a), =(C" = 1)(a) — d(b)).
Notice that
(5.3.1) Ky xt = Kn x,logt, @ (a,0)

is not a chain map. Nevertheless,

Proposition 5.7. We keep the same assumptions as in Proposition 5.1. The chain map Cn x ¢ : C’%t —
K, x composed with (5.3.1) gives a chain map

Cn,X,log,t = (531) © Cn,X,t : Cg\(/{t — Kn,X,log,t
of complezes of abelian sheaves on (W, X);.

We will also use the shortened notation (og.+ for ¢n, x,i0g,.. When ¢ = Zar, the subscript Zar will also
be omitted.

Proof. Given z € X(,), we prove commutativity of the following diagram

/

dlog Trwy, izt — Cx =1 _
M q nie, q : q
Lg;*lcx,%t LJ;*Wan(x),lo%t - Kn,X,t - K'thvt
cL_ —1
dlog TT,t . Trw,iq.t _
M q _ iz, q
[%*IC%QJ Lw*W"Qk(J;),t (Zwa*Kn,{:r},t) I Kn,X,t'

The left square naturally commutes. The right square also commutes, because C’ is compatible with the
Grothendieck trace map Try, ;.. (The proofs of Proposition 1.30 and Proposition 1.41 give the case for

t = Zar and t = ét, respectively). Now because Cﬁt —1: WnQZ(z) ;= WnQZ(m) ;» which is identified
with C’m ,— 1 as aresult of Theorem 1.17 and Proposition 1.38, annihilates WnQZ (2),log,t” the composite

of the second row is zero. Thus the composite of the first row is zero. This yields a unique chain map
Cn,X,log,t : Cé\(/{t — Kn,X,log,t7
which on degree i = —q writes
C’;L;,,X,logﬂf : (C)Aéf,t)i = ’C%q; — Kfz,x,zog,t = KvihX,t D Kij}%,tv

s={s1...,8¢} (C;,X,t(s)vo)'

As a direct corollary of Proposition 5.5 and Proposition 5.6, one has the following proposition.

Proposition 5.8 (Functoriality). (1) Ciog,t is compatible with proper pushforward. Le., for f : X —
Y a proper map, the following diagram of complexes is commutative

Cn, X ,log,t

(an)*cé\(/[,t (an)*Kn,X,log,t

P I

M Cn,Y,log,t
Cy7t Kn,Y,log,t~

Here f. on the left denotes the pushforward map for Kato’s complex of Milnor K -theory (cf.
Proposition 8.1), and f. on the right denotes Trw, ri0g: as defined in Proposition 1.30 and
Proposition 1.41.
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(2) Clog,t is compatible with étale pullbacks. ILe., for f : X — Y an étale morphism, the following
diagram of complexes is commutative

M Cn,Y,log,t
CY,t Kn,Y7log7t

; :
Cn, X log,t
(an)*cﬁft (an)*Kn,X,log,t-

Here f* on the left denotes the pullback map for Kato’s complex of Milnor K -theory (cf. Propo-
sition 3.1), and f* on the right denotes the pullback map defined in Proposition 1.34.

5.4. ZmX’log’t : C’%t/p" ~ Un xt = Kn X,logt 1S @ quasi-isomorphism. Let X be a separated scheme
of finite type over a perfect field £ of positive characteristic p. Since (,,x + is termwise defined via the
dlog map, it annihilates p"C’% ;- Therefore (,, x,104,+ annihilates p"C’% , as well, and induces a chain map

-~ . M n
Cn,X,log,t . C(X,t/p — Kn,X,log,t-

Since the dlog map induces an isomorphism of complexes C)A(/{t/p" >~ Up xt, t0 Show () x 100+ 15 @
quasi-isomorphism, it is equivalent to show

Cn,X,log,t Un Xt 7 Kn,X,log,t
is a quasi-isomorphism.

Lemma 5.9. Suppose X is separated smooth over the perfect field k. Then for any level n the following
chain maps

Cn, X log,ét * Vn, X6t = Kn X logét;

Cn,X,log,Zar : Vn,X,Zar — Kn,X’log’Zah When k = k,'

are quasi-isomorphisms.

Proof. This is a local problem, thus it suffices to prove the statement for each connected component of X.
Therefore we assume X is of pure dimension d over k. Then for any level n, we have a quasi-isomorphism
([GS88b, Cor 1.6])

W% 1og.e[d] = T x -
We also have
Wnﬂgf,log’ét [d] = Ky x,10g,6c  (by Proposition 1.40),
W% 10g.zaxld] = K X 10g.zax  When k =k (by Proposition 1.29).
On degree —d, we have a diagram

=—d
Cnwlog,t

~—d d —d 0 d
Ttk = D Wt Walli g — Ko = D (Wt HAW, 0% )
ze X (0) ze X (0)
% Ql Sl % Ql
n X log,t n X log,t

which is naturally commutative, due to the definition of Zn X,log,t- 1t induces quasi-isomorphisms as
stated in the lemma. O

Theorem 5.10. Let X be a separated scheme of finite type over k with k being a perfect field. Then the
chain maps

Cn,X,log,ét : En,X,ét — Kn,X7log7ét;
Zn,X,log,Zar : gn,X,Zar — Ky X log, Zar when k = E{
are quasi-isomorphisms.
Proof. One can assume that X is reduced. In fact, the complex v,, x; is defined to be the same complex

as Un, x,.q,t (see (4.0.1)), and we have a quasi-isomorphism K, x,.,109,t — Kn,x,l0g,t given by the trace

map, according to Proposition 1.32 and Proposition 1.42. One notices that Zn,XredJog’t is compatible with
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Cn, X,l0g,t Decause of the functoriality of the map (jo,r With respect to proper maps Proposition 5.8(1).
As long as we have a quasi-isomorphism

Cn,chd,log,t " Un,Xreait Kn,Xer,log;

we get automatically that

2l

~ ~ n, X eq log,t
Cn X log,t * Vn, Xeast = Vn, X t

Kn7Xred7lOg — Kn,X,log,t
is a quasi-isomorphism.
Now we do induction on the dimension of the reduced scheme X. Suppose X is of dimension d, and

suppose Zn’mog’t is a quasi-isomorphism for schemes of dimension < d — 1. Now decompose X into the
singular part Z and the smooth part U

U x iz

Then Z has dimension < d — 1. Consider the following diagram in the derived category of complexes of
Z/p™-modules

o~ ~ o~ +1 -
(5.4.1) i4Un 7.t Un, Xt Rjulnut ————>=ixUn, 2, [1]

li*Cn,Z,log,t lCn,X,log,t \LRj*Cn,U,log,t J{i*gn,Z,Log,t[l]

. Trw,i,log . +1 .
Z*Kn,Z,log,t > Kn,X,log,t > R]*Kn,U,log,t > Z>|<I<n,Z,log,t[]-}7

where the two rows are distinguished triangles coming from Proposition 1.33, Proposition 1.43 and
Proposition 4.2. We show that the three squares in (5.4.1) are commutative in the derived category. The
left square is commutative because of Proposition 5.8(1). The middle square of (5.4.1) is induced from
the diagram

(5.4.2) Un, Xt —> JxVn,Ust

iCn,X,log,t ij*Cn,U,log,t

Kn,X,log,t > j*Kn,U,log,t

of chain complexes. Let z € X(,). When z € X,y NU, both v, x ¢ — Jjulnus and Ky x 109 —
J+Kn,Ulog,¢ give identity maps at x, therefore the square (5.4.2) commutes in this case. When z € X(yNZ,
both of these give the zero map at x, therefore the square (5.4.2) is also commutative. The right square
of (5.4.1) can be decomposed in the following way (cf. (1.4.4) and (1.6.3)):

+1 ~ T .~
RL 7 (Vn,x ) [1] == iun, 2,1 [1]

Rj*l/n,U,t

iRj*Cn,U,log,t J{RFZ(Cn,X,Zog,t)[l] \Li*Cn,Z,log,t[l]

. +1 . .
Rj*Kn,U,log,t - REZ (Kn,X,log,t)[l] ﬁ Z*I{n,Z,log,t[l]~

The map i, on the first row is induced by the norm map of Milnor K-theory Proposition 3.1. It is clearly
an isomorphism of complexes when t = Zar. It is a quasi-isomorphism when ¢t = ét due to the purity
theorem [Mos99, p.130 Cor.]. The map 7, on the second row is induced from Trw, i10g,+ as defined in
Proposition 1.30 and Proposition 1.41, and it is an isomorphism due to Proposition 1.33(1) when ¢ = Zar,
and Proposition 1.43 when ¢ = ét. The first square commutes by naturality of the +1 map. The second
commutes because of the compatibility of (joq,; with the proper pushforward Proposition 5.8(1). We thus
deduce that the right square of (5.4.1) commutes.
Now consider over any perfect field k for either of the two cases:

(1) t = ét and k a perfect field, or
(2) t=7Zar and k = k.
The left vertical arrow of (5.4.1) is a quasi-isomorphism because of the induction hypothesis. The third

one counting from the left is also a quasi-isomorphism because of Lemma 5.9. Thus so is the second
one. O
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6. COMBINE tx ;(mn) : Z ,(m) = C¥',(m) WITH (. x 109, : CX'y = K X l0g,t

6.1. The map ¢x +(m) : Z% ,(m) — C¥',(m). In [Zhol4, 2.14], the author constructed a map of abelian
groups ¥x(m) : Z5(m)(X) — C%Zar(m)(X) based on the Nesterenko-Suslin-Totaro isomorphism
[NS89, Thm. 4.9][Tot92]. First we briefly recall his construction and make sure his results pass to the
sheaf-theoretic case.

Let k& be a perfect field of characteristic p, and X be a separated scheme of finite type over k of
dimension d. Since the ¢ = Zar case is written in [Zhol4, 2.14], we write only ¢ = ét below. Define a
map of complexes of étale sheaves

¥ = 1hxe(m) : Z g (m) = Cx g (m)

in the following way. Let ¢ be a given degree, and U € Xy be a section. We denote by U, = x X x U the
fiber above x. Define

am(U—i—2m) = @ KM U)= @ P KV o, (k(x)er) k),
TEX(_i—m) TEX (_i—m) u€U,
Let Z € 2, (U, —i — 2m) be a prime cycle.
e When i € [-d—m, min{—2m, —m}] and dim py(Z) = —i —m, Z, as a cycle of dimension —i —m
in U x A=%=2™ is dominant over some u(Z) € U(—i—m) under projection py : U x AT L,
Since U — X is of relative dimension 0, we have u(Z) € U, for some z € X(_;_,,). By
slight abuse of notation, we denote by Tp,...,T—;—om € k(Z) the pullbacks of the corresponding

coordinates via Z — U x A~*=2m_ Since Z intersects all faces properly, To, ..., T—;i_om € k(Z)*.
Thus {T:E;m e 77;:1';22’:;1 }e KM, (k(Z)) is well-defined. Then one applies the norm map
Nmy,(z) /k(u(z)) : KM, (k(Z)) — KM _, (k(u(Z))) and the natural map K™ _, (k(u(Z))) —
KM, (k(x)%P)Galk(w(Z) Denote this composite map again by Nmy(z) /k(u(z))- Define
—Ty —T_i—om—1
Z):=N .
¥(Z) mk(Z)/k(u(Z)){T_i_Qma S
c K%ﬁQm(k(x)sep)Gal(k(u(Z)))'

e When i ¢ [—d — m, min{—2m, —m}] or dim py(Z) # —i — m, define ¥(Z) := 0.

Remark 6.1. One can define a similar map as 1 in terms of the cubical description of the cycle complex
[Lev09, §1.1-1.2], cf. [RS18, §3.1]. But we shall not need this.

Proposition 6.2. ¢x (m) is a well-defined map of complexes of sheaves for t = Zar and t = ét.

Proof. t = Zar case is clear from [Zhol4, 2.15], thus it suffices to show the claim for ¢t = ét.

We first claim that ¥x ¢ (m) is a well-defined map of étale sheaves on each term. To this end, take
g:V — U an étale map over X. Fix a point x € X(_;_,), and take Z € z2m (U, —i — 2m) a prime cycle
with generic point z. We need to check commutativity of the following diagram

; ¥ se al(k(v
Zm(u -t = 2m) 4‘/) @xeX(,i,m) @vEVI K%72m(k(x) p)G 1k(v))

g Tg*
Zm(U7 —i- 2m) ﬂ) ®I€X(—i—m) @uGUm K%_2m(k(x)sep)Gal(k(u))7
where g* on the two vertical maps denote the restrictions in the respective étale sheaves. Denote by
gxid:V x A772m 4 [T x A7"=2™ the product morphism, and by py : U x A™72" 5 U, py :
V x A7 =2m 5 V the natural projections. Firstly, note that dimpy ((g x id)~!1Z) < dim py(Z), because
the image of py ((g x id)~1Z) under the map g lies in pyy(Z). So it remains to check the following three
cases:
(1) dimpy(Z) # —i —m and dimpy ((g x id)~*Z) # —i — m. In this case we have both composite
maps map Z to zero.
(2) dimpy(Z) = —i—m and dim py ((gxid)~'Z) # —i—m. This can only happen when (gxid)~'Z =
(): otherwise there will be a generic point, say 2/, of (g x id)~!Z mapping to the generic point z
of Z via g x id. But py(z) would be the generic point of pyy(Z) and is a dimension —i —m point,
and py(2') would be a generic point of py((g x id)~*Z) and is a point of dimension strictly
smaller than —i — m. But g(py(%’)) = pu(z). This contradicts the fact that g is of relative
dimension 0.
This tells us ¥y (¢*(Z)) = 0. We need to show ¢*(¢Yy(Z)) =0 as well. Fix u € U,.



55

(a) If u # py(z), then Yy (Z) =0 at u.

(b) If u = py(z) then g~ (u) = g (pr(2)) = 0. Because otherwise p;;' (¢~ *(u)) would be non-
empty due to the surjectivity of py, and (g x id)~*(2) lies in the intersection py,* (g7 (u)) N
(g9 x id)~1Z. This contradicts (g x id)~'Z = ). Now we’ve proved g* (¢ (Z)) = 0 at u.

(3) dimpy(Z) = dimpy ((g x id)"*Z) = —i — m. Fix u € U,,v € V,, with g(v) = u.

(a) When u = py(2), each point in py,'(v) will be the generic point of some irreducible com-
ponent Z; of (g x id)"1Z. Note that g is étale. The classical commutativity from Milnor
K-theory [Ros96, Rlc],

Zu(z=e NME(z,) /50y
D, KN, (k(Z) —————= KM _,, (k(v))

T |

Nmy(z)/k(u(2))

KXo (k(2)) KXo (k(w),

implies the commutativity of the required diagram, with the down-right composition equals
9*(Yy(Z)), and the left-top composition equals ¥y (¢*(Z)).
(b) When u # py(z) then we must have v # py (2') for any generic point 2’ of (g x id)~1Z. In
this case both composite maps Z to zero, and we still have the desired commutativity.
¥x,(m) is also a well-defined map of complexes. For ¢ = ét, it suffices to check this on the presheaf
level, which is equivalent to check for ¢ = Zar. This is done already in [Zhol4, 2.14]. O

6.2. Functoriality. Zhong in [Zhol4, 2.15] proved that ¥ x (m) is covariant with respect to proper
morphisms, and contravariant with respect to quasi-finite flat morphisms. We improve his contravariant
statement from quasi-finite flat morphisms to flat morphisms.

Proposition 6.3. Let X,Y be separated schemes of finite type over k. d := dim X.
(1) [Zhol}, 2.15] For proper f : X — Y, the following diagram is commutative:

px,t(m

f.Z5,(m) L 1O, (m)

lf* lf*
. Wy (m)
L5y (m) —————— Cy(m).
(2) For flat f: X =Y of equidimension c, the following diagram is commutative:

. Wy (m—c)[2¢]
25, (m — ¢)[2d] — Cyl(m — c)[2c]

if* |
Px,t(m)
f*ZCX,t(m) f*C%t(m)
Proof. Tt suffices to prove the t = Zar case. Covariant functoriality is proved by Zhong. It remains to
check contravariant functoriality for flat f : X — Y of equidimension ¢ (therefore 0 < ¢ < d). Notice
firstly that
Z% +(m) is concentrated in degrees (—oo, min{—2m, —m}|,
Z5, (m — c)[2¢] is concentrated in degrees (—oo, min{—2m, —m — c}],

C¥',(m) is concentrated in degrees [—d — m, min{—2m, —m}], and

C%t(m — ¢)[2¢] is concentrated in degrees [—d — m, min{—2m, —m — c}].
We discuss commutativity of the following diagram

. P
Zm—c(Y, —i —2m) — @Y(,i,m,c) K%—2m(y)

£ if*

. P
Zm(Xa -1 — 2m) - @X(_ %727”(33).

i—m)

Let Z € zp_o(Y,—i — 2m) be a (—i — m — ¢)-dimensional cycle in Y x A==2"™_ f* sends Z to the
cycle-theoretic pullback

(fxD)™HZ)] =D multy - Z' € 2, (X, —i — 2m),
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where Z’ are the irreducible components of (f x 1)~%(Z) with reduced schematic structure, multy :=
1gtho(f><1)—1(z),z’ (O(fx1)-1(2),z’) is the multiplicity of Z’ (lgth denotes the length). Each Z’ is of pure
dimension —i — m.

e When i € [—~d — m, min{—2m, —m}], ¥x sends the cycle [(f x 1)71(Z)] to

—To T i _om—1 M
(6.2.1) ;mu“z/'Nmk(Z')/k(x(Z')){Tii oo te p KY.,.(2(2).

—om T_i—om
X(—icm)

Here Z’ runs over all irreducible components of (f x 1)~1(Z) such that dim px(Z’) = —i—m, but
is equipped with the reduced schematic structure; and for each norm symbol, 2(Z’) € X(_;_,
denotes the point that is dominated by Z’ via px. (6.2.1) is simply zero when there’s no such
7' satisfying the dimension condition, according to convention.

e When i ¢ [—d — m, min{—2m, —m}], ¥x sends the cycle [(f x 1)71(Z)] to zero.

e When i € [~d—m, min{—2m, —m—c}| and dimpy (Z) = —i—m—c, denote by y(Z) € Y(_;i_p—)
the point dominated by Z via projection py, ¥y sends Z to

—To —T_i—2m—1
Nz wwzn{g— = ) € KXi5,(4(2)).
—i—2m

—i—2m

e When i ¢ [—d — m, min{—2m, —m — c}] or dimpy (Z) # —i —m — ¢, Yy (Z) = 0.
So altogether we need to check commutativity in the following cases:
a) when i € [—d — m, min{—2m, —m — c}], consider the following diagram

mult 5/ -Nmy 21y /1 (2(27)
D2 K%72m(l€(z/)§ @x(Z/) KM, (k(z(Z)))

(le)*T f*T

Nmy,(z)/k(u(2))
KX 5 (k(2)) KX o (k(y(2))).
Here Z' runs over all irreducible components of (f x 1)~'Z with reduced schematic structure.
Z' is automatically of dimension —i — m. And z(Z’) runs over all the dimension —i — m points

of X which is dominated by some Z’. This is commutative because of [Ros96, Rlc|. In this case,
[*(¥y(Z)) equals the image of

—To —Ti—om—1 )
T icom’ —~~ T-i—om
under the bottom-right composite, and ¥x ([(f x 1)71(Z)]) equals the image of same element
(6.2.2) under the left-top composite, and thus they are equal.

b) When i ¢ [—d —m, min{—2m, —m — c}], both maps send Z to zero. The commutativity trivially
holds.

(6.2.2)

O

6.3. me,w%t O@X,t : Zg(’t/p” = K x,l0g,t is @ quasi-isomorphism. In [Zhol4, 2.16] Zhong proved:
The map 1x ¢t (m) defined above is a map of complexes, and combined with the Bloch-Gabber-Kato
isomorphism, it induces a quasi-isomorphism of complexes by modding out p™ in the étale topology for
all m (note that when m > d, both complexes are zero complexes):

EX,ét(m) : S{,ét/pn(m) - ;n,X,ét(m)'
In the proof, Zhong actually showed that these two complexes of sheaves on each section of the big
Zariski site over X are quasi-isomorphic. Therefore by restriction to the Zariski site, we have

EX,Zar(m) : Z%,Zar/pn(m) E—> lfjmxvzar(m)'
Set m = 0 and combine with the result in last section Theorem 5.10:

Theorem 6.4. Let X be a separated scheme of finite type over k with k being a perfect field of positive
characteristic p. Then the following composition of chain maps

-~ ol . 7cC n =
Cn,X,log,ét o ’(/}X,ét . ZX,ét/p — Kn,X,log,éty
and when k = k, the following composition of chain maps

- A . 7cC n =~
Cn,X,log,Zar © wX,Zar . ZX7Zar/p — K?L,X,log,Zar,

are quasi-isomorphisms.
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Remark 6.5. From the construction of the maps Zn’X)log,t and EX,“ we can describe explicitly their

composite map. We write here only the Zariski case, and the étale case is just given by the Zariski
version on the small étale site and then doing the étale sheafification.

Let U be a Zariski open subset of X. Let Z € (2% z,,)" (U) = 20(U, —i) be a prime cycle.

e When ¢ € [—d,0] and dimpy(Z) = —i, set ¢ = —i. Then Z as a cycle of dimension ¢ in

U x A1, is dominant over some u = u(Z) € Uy under projection py : U x A? — U. By

slight abuse of notation, we denote by Tp,...,T; € k(Z) the pullbacks of the corresponding

coordinates via Z — U x A?. Since Z intersects all faces properly, Tp,...,T; € k(Z)*. Thus

{*Tf" oo %‘2’1} € KM (k(Z)) is well-defined. Take the Zariski closure of Speck(Z) in U x A4,

. —U —X . — X
and denote it by Z’. Then py maps Z’ to {u} = {u} NU. Denote by i, : {u} — X the
closed immersion, and denote the composition

—U =X i
7' ) = fuy S X
by h. h is clearly generically finite, then there exists an open neighborhood V of w in X such
that the restriction h : h=*(V) — V is finite. Then W,h : W, (h=1(V)) — W,V is also finite.

Therefore it makes sense to consider the trace map Tryy, , near the generic point of Z’. Similarly,

it makes sense to consider the trace map Try, ,,, near the generic point of Z’. Then we calculate

i —Ti —T,_
Gog(¥(2)) = (1) Tran‘u(dlog(Nmk(Z)/k(u(z)){TO,-~-, 13 1)
q q
) —T —Ty_
= (—1) Trw,, i, (Trw, py dlog{—2,..., —211)  (Lemma 5.3)
T(I Tq

T,dTy — TodT,  Todly—1— Tq_lqu)
ToT, To—1Ty
Here in the last step we have used the functoriality of the trace map with respect to composition

of morphisms Proposition 1.10(4).
o When ¢ ¢ [—d,0] or dimpy(Z) # —i, we have (joq(¢¥(Z)) = 0.

= (=1)" Trw, u(

Combining Proposition 6.3 and Proposition 5.8, one arrives at the following proposition.

Proposition 6.6 (Functoriality). The composition (,, x 100 ° Ux.¢ : L.4/P" = K X.log.t 15 covariant
with respect to proper morphisms, and contravariant with respect to étale morphisms for both t = Zar
and t = ét.

Part 3. Applications
7. DE RHAM-WITT ANALYSIS OF Uy, xt AND Ky, x 10g.t

Let X be a separated scheme of finite type over k of dimension d. In this section we will use termi-
nologies as defined in [CR12, §1], such as Witt residual complexes, etc.

Recall that Ekedahl defined a map of complexes of W,,Ox-modules (cf. [CR12, Def. 1.8.3])
B = B{anx}n : R*Kn—l,X,t — K7L,X,t~

Recall that by abuse of notation, we denote by R : W,,_1 X — W, X the closed immersion induced by
the restriction map on the structure sheaves R : W,,0x — W,,_10x.

Lemma 7.1. The map p: R K1 x ¢+ — Kn xt induces a map of complexes of abelian sheaves
(701) p: Kn—l,X,log,t — Kn,X,log,t
by applying p on each summand.

Proof. It suffices to show that C} : K,, x,; — K, x commutes with p for both t = ét and t = Zar. For
t = ét, CJ, is the composition of 771 : K, x.¢t = (W, Fx)«Kn x¢ and €*(C%,.) + (WnFx)Kn x.6 —
K, x 6. With the help of Lemma 1.37(3), we know that

7_—1
R.Kp_1x6 —> (WpFx)«RiKp_1 x6t

Pk

r
Kn,X,ét (WnFX)*Kn,X,ét




58

is commutative, thus it suffices to prove the proposition for ¢ = Zar. That is, it suffices to show the
diagrams (7.0.2) and (7.0.3) commute:

R.(1.2.2)

~

lp lpuwan)AKn,x}n

(702) R*anl,X R*(anlFX)Aanl,X

Kn,X ~ (WnFX)AKn,Xa
(7.0.3)
A A R. TrwnleX
(WnFX)*R*(anlFX) anl,X R*(anlFX)*(anlFX) anl,X R*anl,X
l(W"FX)*puwan)AKn.x}n lp
Trw,,
(Wi Fx)« (WaFx)“ Ky x e Knx.

is the lift-and-multiplication-by-p map associated to the Witt residual complex

denotes the one associated to Witt residual system {(W,, F' X)AKn, X tn

Here p = B{Knx}n

{Kn,X }n7 while B{(WnFX)AKn,X}n
(cf. [CR12, 1.8.7]). By definition,

Piwnreror, oy, BeWan1 Fx) 2 Koy x = (WaFx) 2 K x

is given by the adjunction map of
Wn— F ANra
(Wo 1 F) K x O gy )2 ROK, x ~ RO (W Fx)® Ko x,

where “p is the adjunction of p for residual complexes (cf. [CR12, Def. 1.8.3]). The second diagram
(7.0.3) commutes because the trace map Tryy, r,, induces a well-defined map between the Witt residual
complexes [CR12, Lemma 1.8.9].

It remains to show the commutativity of the diagram (7.0.2). According to the definition of p (WaFx)2 K

in [CR12, 1.8.7], we are reduced to show the adjunction square commutes:

R*(1.2.2)

RAK, x ———————= RA(W, Fx)? K, x —————— (W,_1Fx)*R*K,, x
apT (WTLIFX)A(QP)T
(1.2.2)
anl,X (anlFX)Aanl,X'

And this is (W,,_m)” applied to the following diagram

A RE(12.1) A A ~ ApA
RAW, & RA (W )2 Wk (W1 F)2 RAW, k
“pT (Wn_le)A(”p)T

W1k S (Wo 1 FR) AWy 1.

We are reduced to show its commutativity. Notice that this diagram is over Spec W,,_1k, where the only
possible filtration is the one-element set consisting of the unique point of Spec W, _1k. This means that
the Cousin functor associated to this filtration sends any dualizing complex to itself, and the map “p in
the sense of a map either between residual complexes [CR12, Def. 1.8.3] or between dualizing complexes
[CR12, Def. 1.6.3] actually agree.

Now we start the computation. Formulas for (1.2.1) and for “p (in the sense of a map between
dualizing complexes) are explicitly given in Section 1.2 and [CR12, 1.6.4(1)], respectively. To make
things clear, we label the source and target of W, Fy by Spec W,k; and Spec ks respectively, as we
did in the beginning of Section 1.2. Take a € W,_1k1. Denote W, Fy : (Spec W ki, W, ki) —
(Spec Wnk‘Q,(Wan)*(Wnkl)), and E : (Spec Wn—lkiywn—lki) — (Speanki,R*Wn_lki) (Z = 1,2)
the natural maps of ringed spaces. Now the down-right composition ((W,,_1Fx)*(?p)) o (1.2.1) equals
to the Cousin functor Eyy, 5,2 pa ze(w, k) applied to the following composition a

1.2.1 F—t
2 W, T F Homw, iy (W1 Fi)e (Wi 1k ), Wi 1ks)

Wh-1k1

n,X
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Wr—1Fr Homyy, oy (Wao1Fi)«(Wo—1k1), R Homyy, o, (R Wi—1ka, Wiks)),

(W )1 (W1 )™ (a)]
[(Wara Fi)o1 o (R o p(Wo i Fi) ™ (@)].

b

a

I 1o

And R4(1.2.1) 0 (“p) equals to the Cousin functor Ey, . p,)a ra ze(w, k) applied the following compo-
sition
Wi 1ky — R Homy, i, (R Wi 1ky, Wakn)

1.2.1
Q2D B Homy g, (R W 1ky, W Fo” Homy g, (Wi Fy )« (Wink1), Winks)),

a— [R.1~ p(a)]
= (Rl = (W Fr)l = (WyFr) ™ 'p(a)]).
It remains to identify p((W,—1F%) 'a) and (W, Fj) 'p(a). And this is straightforward: write a =
Yy Vilai] € Wik,

n—2 n—2
(7.0.4) (WaFr)"'pla) =Y (WaFr) "'p(Vias]) = Y (WaFi) " (VI [a?])
1=0 =0

3
[\

(Vi“[ai]) :Bi(vi[a}/p]) — B((Wn—le)_la).
i=0

(=)

Hence we finish the proof. O

However we don’t naturally have a restriction map R between residual complexes. Nevertheless, we
could use the quasi-isomorphism Cn X,log,t S Un Xt = K1, X l0g,t to build up a map

(705) R: Kn,X,log,t — Kn—l,X,log,t

in the derived category D°(X,Z/p™). For this we will need to show that p and R induce chain maps for
Up, x,t. This should be well-known to experts, we add here again due to a lack of reference.

Lemma 7.2.
p: Un Xt = Unt1,X,6, B Ung1,xt = Un Xt
given by p and R termwise, are well defined maps of complezes for both t = Zar and t = ét.

Proof. Tt suffices to prove for ¢ = Zar. Let = € X4 be a point of dimension ¢. Let p: X’ — m be the
normalization of {z}. Let 2’ be the generic point of X’ and 3’ € X'()) be a codimension 1 point. Denote
y := p(y’). Tt suffices to check the commutativity of the following diagrams in (1) and (2).

(1) Firstly,

17}

q q—1 q o
W0, — s W0 Wl —2 s W00

S T

q 14} -1 q 1%} qg—1
W"+1Qa:’,log - "+1Q ’log? W”Qw’,log — Wy Q y’',log"
Notice that p = po R. Suppose 7’ is a uniformizer of the dvr Ox- s and u,...,u, are invertible

elements in Ox .. Calculate
p(9(dlog[r'],dlog[us]n . . . dloglug]n))
dloglus)y, . . . dloglugly)
dlog[ua]ny - .. dloguglni1)
d(dlog[r']nr1dlogus]ntt - .. dloglug)ni1))
p(dlog[n’]n+1dloguslnyt .. dloglugln+1))
(dlog[n’]ndlog[uz]n . .. dlog[ug]n)),

p(
p(
p(
o
d(p(dlog
and

p(0(dlog[ui],dloglus]y, . . . dloglugl,))
=0
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= p(9(dlog[ui]n1dloglug]ntt ... dlogluglni1))
= 8(p(dlog[ul]n+1dlog[u2]n+1 e leg[uq]n-H))
= J(p(dlog[ui]ndloglusz], . . . dlogug],)).

This proves the first diagram. Now we prove the commutativity of the second.

R(9(dlog[n'],,+1dlog[uz]nt - - - dlog[ug]nt1))
= R(dlog[uz]nt1 - . . dloglug]ni1)
= dloglus]y, . . . d1log[ug]n
= d(dlog[r'],,dlog V[usl, . .. dlog Vugl,)
= O(R(dlog[r"]n+1d1oglus]nt1 - . dloglug]nt1)),

and

R(0(dlog[u]ny1dloglus]pti - .. dlogluglni1))
=0
= 0(dlog[u1]ndlogus], . .. dloglugly,)
= O(R(dlog[u1]nt1dloglus]nit . .. dlogluglni)).
(2) Secondly,

qu — > w,00! W QL tr

’,log y,log y’, log nJFle log

o

q—1 tr qg—1 tr qg—1
Wt Q0 e Wil w0t e w0

y,log”

—X — X' —X ——X
Notice that p: X’ — {} can be restrlcted to a map from {y'}  to {y} ({z} denotes the
closure of z in X, and similarly for {y} {y} ). Furthermore, 3" (resp. y) belongs to the

smooth locus of {y'} } (resp. {y} ), and there p and R come from the restriction of the p and
R on the respective smooth locus. The map tr, induced by Milnor’s norm map, agrees with
the Grothendieck trace map Trw, , due to Lemma 5.3. And according to compatibility of the
Grothendieck trace map with the Witt system structure (i.e. de Rham-Witt structure with zero
differential) on canonical sheaves [CR12, 4.1.4(6)], we arrive at the desired commutativity.

O

Lemma 7.3. Assume either
o t="Zar and k=kF, or
o { = ét.

Then we have the following short exact sequence

~ ro R' ~
(7.0.6) 0= Vixt — Vigjxt —> Vjxt— 0

and distinguished triangles
j

P R? +1
(707) Ki,X,log,t — Ki—i—j,X,log,t — Kj,X,log,t —
in the derived category D®(Xy, 7./p™).

Proof. (1) Because of Lemma 7.2, it suffices to show

j
e _}
0— WQ:E Jlog,t —> WH‘]Qw,logt W; Qw Jlog,t —0

is short exact for any given point z € X (q) And this is true for ¢t = ét because of [CSS83, Lemme
3]. And for t = Zar, one further needs R'e, W, Q¢ =0 for any = € X(4) when k = k, which

is proved in [Suw95, Cor. 2.3].
(2) Now it suffices to show that p and R for the system {K, x,i0g,t}n are compatible with p and R

z,log,ét

of the system {7, x+}n, via the quasi-isomorphism Zn,X,log,t' The compatibility for R is clear
by definition. It remains to check the compatibility for p. Because Zn,X,log,t = (5.3.1) oZmX’t, it
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suffices to check compatibility of p: v, 1 x ¢ = Vn x,¢ With p: K1 x ¢+ — Kpn x¢ Via Zn,X,t' At
a given degree —q and given point = € X(,), the map ZmX’t 1 Un xt — K x ¢ factors as

(=D Trw,, i,
Aait
The first arrow is the inclusion map. And compatibility of the p via the trace map is given in
[CR12, Lemma 1.8.9].

(Wite)s WL o = (W) s W, = (Wiia) K

t
q
x,log,t Kn,X,t'

O

8. HIGHER CHOW GROUPS OF ZERO CYCLES

Let X be a separated scheme of finite type over k of dimension d.

8.1. Vanishing and finiteness results.

Proposition 8.1. There is a distinguished triangle
Cé—1 +1
L ¢ /D" — Knpxt —— Kpx60 —

in the derived category D®(X¢i, Z/p™). When k = k, one also has the Zariski counterpart. Namely, we
have a distinguished triangle

(8.1.1) ZS p" = Knx S5 Kpx -5

in the derived category Dbg(, Z/p"™).
In particular, when k =k and X is Cohen-Macaulay of pure dimension d, then ZS /p™ is concentrated
at degree —d, and the triangle (8.1.1) becomes

< /p = Whwx[d] <=5 Wowy|d] T

in this case. Here Wywx is the only non-vanishing cohomology sheaf of K,, x (whenn =1, Wiwx = wx
is the usual dualizing sheaf on X ).

Proof. This is direct from the main result Theorem 6.4 and Remark 1.27. (|

Proposition 8.2. Assume k = k. Then higher Chow groups of zero cycles equals the C'-invariant part
of the cohomology groups of Grothendieck’s coherent dualizing complex, i.e.,

CHo(X, ¢; Z/p") = H= U (W, X, K, x)° 71,
R (Xey, 2 /p") = H™ I (W X, K x.60) 1.

Proof. This follows directly from the Proposition 1.24 and Proposition 1.39 and the main result Theo-
rem 6.4. (]

Corollary 8.3 (Vanishing). Suppose X is affine and Cohen-Macaulay of pure dimension d. Then
(1) Whent = Zar and k = k,
CHo(X,q,Z/p") =0
for q #d.
(2) When t = ét,
RTT(Xe, L /p") = 0
for q # d,d — 1. If we assume furthermore k = k or smoothness, then we also have

R~ (X, Z5 /p™) = 0.

Proof. When X is Cohen-Macaulay of pure dimension d, W,, X is also Cohen-Macaulay of pure dimension
d, and K, x, is concentrated at degree —d for all n [Con00, 3.5.1]. Now Serre’s affine vanishing theorem
implies H (W, X, K, x,1) = 0 for ¢ # d. This implies that R™T'(W,, X, K}, x 10g,+) = 0 unless ¢ = d,d—
1. With the given assumptions, Theorem 6.4 implies that CHo (X, ¢,Z/p") = R™T'(Xe, Z% /p") = 0
unless ¢ = d,d — 1. If one also assumes k = k, Proposition 8.2 gives the vanishing result for ¢ = d — 1.
When X is smooth, Ce; — 1: W, Q% 5 = WnQ% 4 is surjective by [GS88a, 1.6(ii)] (see (1.3.31)). By
compatibility of Cg and C%, Proposition 1.38, one deduces that C" — 1 : H™4(K,, x.¢t) — H U Kn x.6t)
is surjective. O
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Generalizing Bass’s finiteness conjecture for K-groups (cf. [Weil3, IV 6.8]), the finiteness of higher
Chow groups in various arithmetic settings has been a ”folklore conjecture” in literature (expression
taken from [KS12, §9]). The following result was first proved by Geisser [Geil0, §5, eq. (12)] using the
finiteness result from étale cohomology theory, and here we deduce it as a corollary of our main theorem,
which essentially relies on the finiteness of coherent cohomologies on a proper scheme. We remark that
Geisser’s result is more general than ours in that he allows arbitrary torsion coefficients.

Corollary 8.4 (Finiteness, Geisser). Assume k = k. Let X be proper over k. Then for any q,
CHo(X,q;Z/p") and R T(Xg, L 6/P")

are finite Z/p"™-modules.
Proof. According to Theorem 6.4, R‘qF(XhZS(’t/p") = R™IT(Xy, Ky X l0g,¢) for t = Zar and t = ét.
Thus it suffices to show that for every i, R'T'(Xt, Ky, x 10g,¢) is a finite Z/p"-module. First of all, since
R'T(Xy, Ky X 10g,¢) is the Cj-invariant part of R'T'(X;, K, x,:) by Proposition 1.24 and Proposition 1.39,
RiI‘(Xt,KmX_,log,t) is a module over the invariant ring (I/Vnk)l"’V"FQ1 = Z/p". Because X is proper,
RT(Xy, K, x) is a finite W, k-module by the local-to-global spectral sequence. Then Proposition A.16
gives us the result.

Alternatively, we can also do induction on n. In the n = 1 case, because RiF(XhKXylogyt) is the
C/-invariant part of the finite dimensional k-vector space H*(X, Kx ) again by Proposition 1.24 and

Proposition 1.39, it is a finite F,-module by p~!-linear algebra Proposition A.12. The desired result
then follows from the long exact sequence associated to (7.0.7) by induction on n. (]

8.2. Etale descent. The results Proposition 8.5, Proposition 8.6 in this subsection are well-known to
experts.

Proposition 8.5 (Gros-Suwa). Assume k = k. Then one has a canonical isomorphism
Un X Zar = €xVn X 66 — Reuln x 6t
in the derived category D*(X,7/p").
Proof. When k = k, terms of the étale complex 7, x ¢ are e.-acyclic according to [GS88a, 3.16]. O

The étale descent of Bloch’s cycle complex with Z-coefficients is shown in [Geil0, Thm 3.1], assuming
the Beilinson-Lichtenbaum conjecture. Looking into the proof one sees that the mod p™ version holds
conjecture-free, and is a corollary of [GLO00, 8.4] (we thank Geisser for pointing this out) via an argument
of Thomason [Tho85, 2.8]. But one could also deduce this as a corollary of Proposition 8.5 via Zhong’s
quasi-isomorphism in Section 6.3 (which is again dependent on the main result of Geisser-Levine [GL0O0,
1.1)).

Proposition 8.6 (Geisser-Levine). Assume k = k. Then one has a canonical isomorphism
ZcX,Zar/pn = E*ch,ét/pn = R€*Z§<,ét/pn-
in the derived category D*(X,Z/p").
Proof. Clearly, we have the compatibility
Z.CX,Zar/pn - RG*ZS(,ét/pn
lwm imm,ét
Un. X Zar ———> Re.Un x -

~ RE*EX,c't c n
Re.vp x 60 ———— Re*ZX,ét/p . O

~

EX,Zar ~ ~
Thus ZS(,Zar/pn ” Vn,X,Zar = €xVn X ét

~

Proposition 8.5
%

Corollary 8.7. Assume k = k. Suppose X is affine and Cohen-Macaulay of pure dimension d. Then
Rle(Zs 6 /p") = R'euVn xet =0, i# —d.

Proof. This is a direct consequence of Proposition 8.6, Proposition 8.5 and Corollary 8.3. O
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8.3. Birational geometry and rational singularities. Recall the following definition of resolution-
rational singularities, which are more often called rational singularities before in the literature, but here
we follow the terminology from [Kov17] (see also Remark 8.10(1)).

Definition 8.8 (cf. [Kov17, p. 9.1]). An integral k-scheme X is said to have resolution-rational singu-
larities, if
(1) there exists a birational proper morphism f : X — X with X smooth (such a f is called a

resolution of singularities or simply a resolution of X), and
(2) R f.O% = Rif.wg =0 for i > 1. And f.0; = Ox.

Such a map f : X — X is called a rational resolution of X.
Note that the cohomological condition (2) is equivalent to the following condition
(2') Ox ~ Rf.O%, fiwg ~ Rf.wg in the derived category of abelian Zariski sheaves.

A necessary condition for an integral scheme to have such singularities is being Cohen-Macaulay. This
is well-known, but we write it again here for the convenience of the reader.

Lemma 8.9 (cf. [KM98, 5.10, 5.12]). Let X be an integral k-scheme of pure dimension d admitting a

Macaulayfication f: X — X (i.e., a proper birational morphism with its source being Cohen-Macaulay,
[Kov17, 4.2]). Suppose cohomological condition (2) holds for f. Then X is Cohen-Macaulay, and

fawg ~ wx.

If we further assume that X is normal, then X 1is also normal.
In particular, an integral equidimensional k-scheme with rational singularities is Cohen-Macaulay.

Proof. Consider the following diagram
Rf.Kg <—— Rf.RHomo_(O5,K5) —= Rf.RHomo_(O%, f*Kx) —= RHomo, (f.O, Rf. f* Kx)

\ lTrf

Try RHom(f.O%, Kx)

2l(f*)v

RHomo, (Ox,Kx).

evy

Kx =

For the triangle on the top right corner, the skewed arrow is defined to be the composite of the horizontal
and the vertical arrows, and it is by definition the duality morphism and is an isomorphism in the derived
category (cf. Proposition 1.10(7)). The map (f*)¥ : RHom(f.O%, Kx) = RHom(Ox, Kx) is given by
applying the dualizing functor RHomeo, (—, Kx) = Home, (—, Kx) to the given isomorphism Ox fT>
f+Ox. Note that we have used the cohomological condition that f,Og ~ Rf.O% in this diagram. The
whole diagram is commutative, because if we start from a € Homo_(O%, K5) ~ RHomo_(O%, Kx),
we arrive at Try(a(1)) € Kx under both composite maps along the clockwise and the counterclockwise

directions.

This being done, we know that the top-right-down composition

Rf.Kg ~ Rf.RHomo (O, Kg) ~ Rf.RHomo (O, [*Kx) = RHomo, (Rf.O%, Kx)

f* %
~ Homoy (£.05, Kx) L= Homo, (Ox, Kx) ~ Kx.

is the same as the map on the left, i.e., the trace map Try, in the derived category. This implies
that Try is an isomorphism in the derived category. Since X is Cohen-Macaulay of pure dimension d,
wgld] ~ K¢, thus Rf,wg(d] ~ Rf.K 5 % K x. Together with the given condition fiwg ~ Rfiwg, we
have f,wgld] ~ Kx via Try. The CohenMacaulay part of the lemma then follows from [Con00, 3.5.1].

The normality part of the lemma follows simply from the factorization of f via the normalization
morphism of X. O

Remark 8.10. (1) According to this lemma, we know that on integral k-schemes of pure dimension,
our definitions for resolution-rational singularities and for rational resolutions are the same as
the ones in [Kov17, 9.1].
(2) A Macaulayfication of a scheme separated and of finite type over k always exists, cf, [Kovl7,
4.3].
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(3) According to [Kov17, 9.6], resolution-rational singularities are pseudo-rational. By definition
[Kov17, 1.2], a k-scheme X is said to have pseudo-rational singularities, if it is normal Cohen-
Macaulay, and for every normal scheme X', every projective birational morphism f : X’ — X,

L. Try . . .
the composition f.wx: — Rf.wyx’ — wx is an isomorphism.

Corollary 8.11. Let X and Y be integral k-schemes of pure dimensions which have pseudo-rational
singularities and are properly birational, i.e., there are proper birational k-morphisms Z — X and
7 —'Y with Z being some integral scheme. Then we have

Rin(Xét,Z}yét/pn) = R (Yar, Zy 4 /")
for all ¢ and all n > 1. If we assume furthermore k = k, we also have
CHo(X,q,Z/p") = CHo(Y, q,Z/p")
for all g and all n > 1.

In particular, since for any rational resolution of singularities f : X > X , X and X are properly
birational as k-schemes (i.e., take Z to be X)), one can compute the higher Chow groups of zero cycles
of X via those of X.

Proof. Using Chow’s Lemma [Kov17, 4.1], we know that there exist projective birational morphisms

"7y = Z and ¢’ : Zy — Z such that the compositions Z; T 7L X and Zy L5 Z % Y are also
birational and projective. Let U C Z be an open dense subset such that f’ and ¢’ restricted to the
preimage of U are isomorphisms. Take Z’ be the Zariski closure of the image of the diagonal of U in
Z1 X g Za with the reduced scheme structure. Then the two projections Z’ — Z; and Z' — Z5 are also
projective and birational. This means that by replacing Z’ with Z, f with Z’ — X and ¢ with Z’ — Y,
we can assume our f: Z — X, g: Z — Y to be projective birational and our Z to be integral. Using
Macaulayfication [Kov17, 4.3, 4.4] we can additionally assume that Z is Cohen-Macaulay. This implies
that f and g are pseudo-rational modifications by [Kov17, 9.7].

Suppose that X is of pure dimension d. Then so is Z. Now [Kov17, 8.6] implies that the trace map
of f induces an isomorphism

Try: Rfwwz.[d] = wx [d]
in D*(X;,7Z/p). Thus
Trfi0g : REK Z10gt — KX log.t
is also an isomorphism in D®(Xy,Z/p). Consider the diagram

n—1

p R +1
(8'3'1) f*KZ,log,t > f*Kn,Z,log,t > f*Kn—l,Z,log,t > f*KZ,log,t[l]
lTrf,Log iTran,Log lTrWn_lf,log \LTrf.log[l}
n—1
p R +1
KX,log,t Kn,X,log,t —_— anl,X,log,t —_— KX,log,t[]-]

in D*(X;,Z/p). The first row is Rf, applied to the triangle (7.0.7) on Z. The second row is the triangle
(7.0.7) on X. The left square commutes on the level of complexes by compatibility of the trace map
with p [CR12, 1.8.9]. To prove commutativity of the middle square in the derived category, it suffices to
show the square

~ R ~
f*Vn,Z,t > f*anl,ZJ

lf* if*
~ R ~
Un Xt > Vn—1,X,t

commutes on the level of complexes. Since the vertical maps f,. for Kato-Moser complexes are tr (cf.
§4), which are by definition the reduction of the norm maps for Milnor K-theory, they agree with the
Grothendieck trace maps Tryw, s, Trw, _, y by Lemma 5.3. And according to the compatibility of R with
the Grothendieck trace maps [CR12, 4.1.4(6)], we arrive at the desired commutativity. The right square
in (8.3.1) commutes by naturality of the 741”7 map. With all these commutativities we conclude that
the vertical maps in (8.3.1) define a map of triangles. By induction on n we deduce that

TrWT,,f,log : Rf*Kn,Z,log,t — Kn,X,log,t
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is an isomorphism in D?(X;,Z/p") for every n. The main result Theorem 6.4 thus implies
RTT(Zat, L% /P") = BT (Xet, Zix 60 /P")
for all ¢ and n. When k = k, the same theorem also implies that
CHo(Z,q,Z/p") = CHo(X, ¢, Z/p")

for all ¢ and n.
Now replacing f with g everywhere in the above argument and we get the result.

Appendix
A. 0-LINEAR ALGEBRA
The author thanks Yun Hao for his notes and careful discussion on this topic.

Definition A.1. Let k be a field, and V a finite dimensional k-vector space. Let o € End(k) be a field
endomorphism of k (therefore o being surjective is equivalent to being an automorphism). A o-linear
operator or a o-linear map on V isamap T : V — V, such that

Tw+w)=TwW)+T(w), T(w)=o0(c)T(v), v,weVceEk.
Notice that this is equivalent to a k-linear map V — o, V.

Notation A.2. Through out this appendix, we will keep these notations k,o,T,V without further
notice. We don’t consider the 0-vector space therefore assume dim V' > 0.

In particular, when k is of characteristic p and o is the p-th power Frobenius F}, T is called p-linear,
and when furthermore k is perfect and o is the map F} L of taking p-th roots, then T is called p~!-linear-
Similarly, one could define p™-linear for n € Z (when n = 0, T' is simply k-linear by assumption).

Remark A.3. Let o € End(k). For any o-linear map T,
(1) the kernel
Ker(T) :={v eV |Tv=0}
of T is always a k-vector subspace. But
Im(T) :={v eV | Tw = v for some w € V}

may not be a k-vector subspace. We denote by (Im(7T')) the k-vector subspace generated by
Im(T). When o is surjective (i.e. o € Aut(k) is a field automorphism), then Im(7T) is a k-vector
subspace.
(2) Denote by
ki=k'"7={cck]|olc)=c}
the set of fixed points of k£ by field endomorphism ¢. Then k is a nonzero subfield of k. The
fixed points of T
Vit = {v e V | T(v) = v}
is naturally a k-vector space. An element in V=7 are also called a T-invariant vector.
Im(1—-7T), Coker(l1—-T)
are also naturally s-vector spaces.

Definition A.4. A o-linear map T :V — V is
(1) semi-simple, if (ImT) = V. When ¢ is surjective, this is equivalent to T being surjective.
(2) nilpotent if V = Ker(T") for some N € N.
Consider chains of k-vector subspaces
KerT C KerT? € --- CKerT" C ...,
(ImT) > ImT?) > -+ > ImT™) O ....
Since V is finite dimensional, both of them become stationary for some large N € N. Define
Vil := U Ker(T") = Ker(TN) = Ker(TN'H) =...,
n>1

Vee 1= [ Im(T™)) = (Im(TV)) = (Im(TV*H)) = ...

n>1
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Obviously,

(1) Vi and Vi are k-vector subspaces of V' that is stable under 7.

(2) T is nilpotent on Vy;. T is injective if and only if Vi = 0. 1 — T is invertible on Vi, with
inverse 1 + T + - - + TN~1 where N is the smallest number with 7% = 0 on V.

(3) T is semi-stable on Vi: because (T'(Vys)) = (T(Im(TN)))) = (T(Im(TV))) = (Im(TN*1)) = V.

(4) VT C V.

Lemma A.5. V,;; NV, = 0.
In particular, T is always injective on V.

Proof. Since ImT?" generates Vi, as a k-vector space, one can find a k-basis of Vs consisting of elements
in ImT2V. Suppose

TN (v1),...,T*N (v,)
is such a basis (r = dim V), with vy,...,v,. € V. Obviously,
TN(”l)) s 7TN(U7")

are k-linearly independent: otherwise applying TV to their linear relation will give a linear relation

for TN (vy),...,T?N(v,) (notice that o as a field endomorphism is always injective). Now take v =
S a; TN (v;) € Vs, with a; € k. If v € Vy, then 0 = TV (v) = Y 0™ (a;)T?N (v;) implies oV (a;) = 0 for
all ¢, which implies a; = 0 for all 7 (again because o is injective). That is, v = 0. ]

Proposition A.6 (Fitting decomposition). Suppose o € Aut(k). Then V admits a decomposition of
k-vector spaces
V= Vnil @ ‘/SS?
such that
(1) the k-vector subspaces Vi and Vi are stable under T
(2) T is nilpotent on Vi, and semi-simple and bijective on V.

Proof. Because o is surjective, one has Im7T™ = (Im7™). As in the discussion above, the k-vector
subspaces Vpj and Vg satisfy both conditions. (In this case Vi = Im(TV) = Im(TV*1) = ... and
therefore T is surjective on Vgs.) Together with Lemma A.5, it remains to show V = Vi + V.

Takev € V. Then TV (v) € ImTY = ImT?" = V. So there is some w such that T (v) = T2V (w), i.e.
TN (v—TN(w)) = 0. Sov—TN(w) € Ker TN = V,51. In other words, v = (v—T" (w))+T™ (w) € Vi +Vis.
This implies V' = V1 + V. [l

Proposition A.7 (Change of basis). Let (e1,...,eq) be a k-basis for V. Let (¢},...,€};) be another
basis, such that
(€),...,e)) =(e1,...,eq) - P

with P € GLq4(k) is an invertible matriz. If T has matriz representation T with respect to (e;), i.e.
T(e1,...,eq) = (e1,...,eq) - T,
then the matrixz representation T of T with respect to (e}) is
T = P~ !TP°,
where P? is the matriz obtained by applying o to each entry of P.
Proof. This is direct:
T(ey,....e) =T((er,...,eq) - P) = (e1,...,eq) - TP = (€},...,e)) - P 'TP".

Lemma A.8. Notations k,0,T,V as above (in particular o € End(k)). Suppose

(1) T is not nilpotent on the whole of V' (i.e. V' \ Vi # 0), and
(2) for any n € N, any sequence by, ...b, € k with at least one b; # 0, there exists a nonzero x € k
such that

(A.0.1) T = Z o 2)ot (by_s).

Then for any e € V' \ Vi, the k-vector space
V. :=(e,Te,T?%,...)

generated by the sequence e, Te,T?e, ..., contains a nonzero T-invariant vector v.
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Remark A.9. When T is p™!-linear, any x € k satisfying (A.0.1) is separable over k. Indeed, when T is
p-linear then (A.0.1) is a polynomial. By taking derivation with respect to x one sees that (A.0.1) is an
separable polynomial with indeterminant x. When T is p~!-linear, solutions of (A.0.1) are the same as
that of the polynomial obtained by taking iterated p-th power. And the smallest such power of (A.0.1)
is clearly a separable polynomial in x.

Therefore if moreover T is semisimple and k is separably closed, we know there is a nonzero T-invariant
vector in V.

Proof. Take arbitrary e € V' \ V. Consider a sequence of vectors
e,Te,T?, . ...
Let n be the biggest integer such that e, Te, T?e, ..., T"e are k-linearly independent. Then 0 < n < d :=
dimy V, and V, = (e, Te,...,T"e). Therefore T"*le € V, has expression
n
T e = Z b;T'e
i=0

for some b; € k. Since T" e # 0 (because e € V' \ Vpi1), at least one b; is nonzero, for 0 < j <n
n) is

Consider a vector v = Z?:o a;T'e € V.. v is nonzero if and only if some a;, (0 < i < nonzero,
and it is T-invariant if and only if the a;’s satisfy
n
0= Z o(a;) T e Z a;T'e
i=0
= (o(an)bo — ag e—|—z o(a;_1) + o(an)b; — a;)Te.
And these both happen if and only if the followmg system of equations with indeterminants aq, ..., a,

has a nonzero solution in k:
ag = o(an)bo,
a1 = o(ag) + (an)by = 0*(an)o(by) + o(an)bi,
az = o(a1) + 0(an)bz = 0°(an)o?(bo) + o*(an)a(b1) + o(an)bs,

n—1
an-1 = 0(an—2) + 0(an)bn1 =Y _ " (an)o* (bn-1-4),
=0
an = 0(an—1) + 0(an)by = Y _ 0" (an)o" (bni).
=0

The last equation involves only one unknown a,,, and the rest of the a;’s (0 < i < n—1) are expressed in
terms of a,. And apparently, when a,, = 0 all the other a;’s are zero. Therefore this system of equations
have a nonzero solution in k if and only if the last equation in a,, has a nonzero solution in k. And this
is guaranteed by assumption because at least one of the b;’s is nonzero. O

Proposition A.10 (Existence of T-invariant basis). Notations k,o, T,V as before. Suppose
(1°) T is semisimple on V,
(2) Same as (2) in Lemma A.8, i.e., for any n € N, any sequence by, ...b, € k with at least one
bj # 0, there exists a nonzero x € k such that

z = Z o (z)ot (by_s);
i=0

(8) for any c € k, there exists a y € k such that

(A.0.2) oly) —y+c=0.
Then
(a) there exists a k-basis of V' consisting of T-invariant elements. In other words,
Vvt e, k.

(b) 1 =T is surjective on V = V.
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Remark A.11. When T is p*!-linear, similar as we explained in the last remark, any element satisfying
(A.0.2) is separable over k. Therefore if moreover T is semisimple and k is separably closed, we have
results (a)(b).
Proof. (a) Do induction on the dim V.
When dim V' = 1, then according to Lemma A.8 we have a nonzero T-invariant vector v, and
any nonzero vector is a k-basis of V. We are done in this case.
Now suppose the proposition is true for dimV < d — 1. We prove for dim V' = d. According
to Lemma A.8, there exists a nonzero T-invariant vector vy € V. Passing T to the quotient

T:V:=V/{v1) = V/{v1), w+ (v1) = T(w)+ (v1).

This is clearly a well-defined o-linear map and semisimple. By induction hypothesis, we can find
a T-invariant basis of V/(v1): (Ua,...,7q). Take v} € V to be any lift of v, € V/(v1). Then for
each 2 <1 < d, we have

Tv; — v, = ¢;v1, for some ¢; € k.
According to assumption (3), we can find a; such that o(a;) —a; +¢; =0, 2 <i < d. Then
TV + a;v1) = v + ajv1, 2<i<d.

Define v; := v} + a;v1, 2 <i <d. (v1,va,...,vq) are k-linearly independent because (Ta, ..., Tq)
are k-linearly independent in V/(v1). Therefore they form a T-invariant basis of V, or in other
words,

V >~ (v1,09,...04)k @ k = vi-T @, k.
(b) By (a) we have T-invariant basis (v1,...,vq) for V. Now for any v := > bv; € V with b; € k,
there exists a;,1 < i < d satisfies

1=-7)> av;) =v
if and only if a; satisfy a; — o(a;) = b; for each i € [1,d]. Assumption (3) guarantees that such

a;’s exist. Therefore 1 — T is surjective on V.
O

Proposition A.12. Suppose o € Aut(k), and the pair (k,o) satisfies assumption (2)(3) in Proposi-
tion A.10. T, V as before (in particular, V is a finite dimensional k-vector space). Then
1-T: V>V
is surjective. And
Ve = VI 0.k,
which in particular means V=7 is a finite dimensional k-vector space with dim, V1'~7 = dimy, V.

Remark A.13. When T is pT!-linear and k is separably closed, (2)(3) are satisfied by the remarks
above, therefore we have 1 — T being surjective.

Proof. The second claim is direct from V'~7 C V4 and Proposition A.10. Now we prove the first.
Notice the 1—T is invertible on Vy (2), assumption (2)(3) and Proposition A.10 applied to Vi implies
that 1 — T is surjective on V. Use Fitting decomposition Proposition A.6 and consider

0 Vs 14 Vail 0
il—T \Ll—T :\Ll—T
0 Vs 1% Vil 0.
The snake lemma (for abelian groups, note that 1 — T is not linear) immediately gives the desired
result. (|

We generalize the definition of a o-linear map.

Definition A.14. Let R be a ring, and M be a finitely generated R-module. Let o € End(R) be a ring
endomorphism of R. A o-linear operator or a o-linear map on M is a map T : M — M, such that

Tw+w)=Tw)+T(w), T(w)=o0()T(v), v,we M,c€e€R.
Notice that this is equivalent to a R-linear map M — o, M.
In particular, when R = W,k with k being a characteristic p field and o = W,, Fy, (F} is the p-th power

Frobenius), 7" is called p-linear. When k is furthermore perfect and o = W), F}~ L T is called p~!-linear.
Similarly, one could define p™-linear for n € Z (when n = 0, T is simply R-linear by assumption).
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Proposition A.15. Let (R, (p)) be a local ring of p™-torsion with some n € Nsq, and M be a finite

R-module. Let o € End(R) be a ring endomorphism of R and T be a o-linear map. Then o : R — R

has a well-defined reduction & : k := R/p — k by modding out ideal (p). Suppose that & € Aut(k), and

that the pair (k,7) satisfies assumption (2)(3) in Proposition A.10 (cf. Remark A.13). Then
1-T:M—-M

1S surjective.

Proof. Take v € M. Because M is finite as a R-module, M /pM is a finite dimensional k-vector space.

Then Proposition A.12 implies that there exists a w € M, such that (1 —T)(w)—v € pM. That is, there

exists a v;1 € M such that

(1-T)(w) =v+ pv.
Do the same process with vy instead of v, one gets a wy € M and a vo € M such that
(1 =T)(w1) = v1 + poa.
Thus
(1= T)(w = pwi) = v - p*vs.
Repeat this process. After finitely many times, because p™ = 0 in R,
(1—T)(w—pw; +---+ (=) p"tw, 1) = 0.

O

Proposition A.16. Let (R, (p)), k,o, M, T satisfy the same assumptions as in Proposition A.15 (so in
particular we have 1 —T : M — M being surjective). Suppose furthermore that the natural map

R'™7 = (R/p)'™"
is surjective. Then M'~7T is a finite R*~7-module.

Proof. Since R is of p™-torsion for some n > 0, we know that p™M = 0 for some m < n. Do induction
on the smallest number m such that p™M = 0. When m = 1, M = M/pM is a finite R/p-module,
thus by Proposition A.12 we know that M'~7T is a finite dimensional (R/p)'~7-vector space. Since
R'~7 — (R/p)'~7 is surjective, M'~T is a finite R'~7-module.

Now we assume m > 1. Note that 7" induces a o-linear map on pM and pM is a finite R-module, so
by Proposition A.15 the map 1 —T: pM — pM is surjective. Now we have the two rows on the bottom
of the following diagram being exact:

0 0 0

00— M /(pM)' T —— M/p ——> M/p—=0

0 M-T M-I m 0

0 ——(pM)'~" pM s pMr 0
0 0 0

The vertical maps between the last two rows are natural inclusions, and the first row is the coker-
nels of these inclusion maps. The snake lemma implies that the first row is exact, which means that
M1 /(pM)'=T = (M /p)*~T. This is a finite R'~?-module by the case m = 1, because M /p is a finite
R-module with p- M/p = 0. On the other hand, since p™~! - pM = 0, the induction hypothesis applied
to the R-module pM gives (pM)*~7 is a finite R'~?-module. Now the vertical exact sequence on the
left gives that M'~7 is a finite R'~7-module. (]

Remark A.17. When R = W,k for a perfect field k of positive characteristic p and o = (W, Fx)T!, it
satisfies the assumption for ring R in Proposition A.15 and Proposition A.16. In fact, one has (W, k)1 =7 =
Z/p™ in this case.
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