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v

Abstract

Let X be a separated scheme of finite type over k with k being a perfect field of positive characteristic
p. In this thesis we define a complex Kn,X,log via Grothendieck’s duality theory of coherent sheaves
following [Kat87] and build up a quasi-isomorphism from the Kato-Moser complex of logarithmic de
Rham-Witt sheaves ν̃n,X to Kn,X,log for the étale topology, and also for the Zariski topology under the

extra assumption k = k. Combined with Zhong’s quasi-isomorphism from Bloch’s cycle complex ZcX
to ν̃n,X [Zho14, 2.16], we deduce certain vanishing, étale descent properties as well as invariance under
rational resolutions for higher Chow groups of 0-cycles with Z/pn-coefficients.

Zusammenfassung

Sei k ein vollkommener Körper der Charakteristik p > 0. SeiX ein separiertes k-Schema vom endlichen
Typ. In dieser Doktorarbeit definieren wir ein Komplex Kn,X,log über Grothendiecks Dualitätstheorie
kohärenter Garben nach [Kat87] und ein Quasiisomorphismus von dem Kato-Moser-Komplex der loga-
rithmischen de Rham-Witt Garben ν̃n,X nach Kn,X,log für die étale Topologie und auch für die Zariski

Topologie unter der zusätzlichen Annahme k = k. In Kombination mit Zhongs Quasiisomorphismus
vom Blochs Zykelkomplex ZcX nach ν̃n,X [Zho14, 2.16], leiten wir bestimmte Eigenschaften für Höhere
Chowgruppen von 0-Zyklen mit Z/pn-Koeffizienten ab.
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Introduction

In this work, we show that Bloch’s cycle complex of zero cycles mod pn is quasi-isomorphic to the
Cartier operator fixed part of a certain dualizing complex. From this we obtain new vanishing results
for the higher Chow groups of zero cycles with mod pn coefficients for singular varieties.

Let X be a separated scheme of finite type over k of dimension d with k being a perfect field of
positive characteristic p. Bloch introduced his cycle complex ZcX(m) in [Blo86] as the first candidate
for a motivic complex under the framework of Beilinson-Lichtenbaum. Let m, i be integers, and ∆i =
Spec k[T0, . . . , Ti]/(

∑
Tj − 1). Here ZcX(m) := zm(−,− •−2m) is a complex of sheaves in the Zariski or

the ’etale topology. The global sections of its degree (−i− 2m)-term zm(X, i) is the free abelian group
generated by dimension (m+ i)-cycles in X ×∆i intersecting all faces properly and the differentials are
the alternating sums of the cycle-theoretic intersection of the cycle with each face (cf. Section 2). In
this article we define a complex Kn,X,log via Grothendieck’s duality theory of coherent sheaves following
the idea in [Kat87] and build up a quasi-isomorphism from the Kato-Moser complex of logarithmic de
Rham-Witt sheaves ν̃n,X (namely the Gersten complex of logarithmic de Rham-Witt sheaves, which is
introduced and studied in [Kat86a, §1][Mos99, (1.3)-(1.5)]) to Kn,X,log for the étale topology and also for

the Zariski topology under the extra assumption k = k. Combined with Zhong’s quasi-isomorphism from
Bloch’s cycle complex ZcX := ZcX(0) to ν̃n,X [Zho14, 2.16], we deduce certain vanishing and finiteness
properties as well as invariance under rational resolutions for higher Chow groups of 0-cycles with Z/pn-
coefficients. The proofs in this article are self-contained in respect to Kato’s work [Kat87].

Let us briefly recall Kato’s work in [Kat87] and introduce our main object of studies: Kn,X,log.
Let π : X → Spec k be the structure morphism of X. Let WnX := (|X|,WnOX), where |X| is the
underlying topological space of X, and WnOX is the sheaf of length n truncated Witt vectors. Let
Wnπ : WnX → SpecWnk be the morphism induced from π via functoriality. According to Grothendieck’s
duality theory, there exists an explicit Zariski complex Kn,X of quasi-coherent sheaves representing
(Wnπ)!Wnk (such a complex Kn,X is called a residual complex, cf. [Har66, VI 3.1]. We will collect
some related facts in Section 1.1.). There is a natural Cartier operator C ′ : Kn,X → Kn,X , which is
compatible with the classical Cartier operator C : WnΩdX → WnΩdX in the smooth case via Ekedahl’s
quasi-isomorphism (see Theorem 1.17). Here WnΩdX denotes the degree d := dimX part of the de
Rham-Witt complex. We define the complex Kn,X,log to be the mapping cone of C ′ − 1. What Kato
did in [Kat87] is the FRP counterpart, where FRP is the ”flat and relatively perfect” topology (this is a
topology with étale coverings and with the underlying category lying in between the small and the big
étale site). Kato then showed that Kn,X,log in the topology FRP acts as a dualizing complex in a rather
big triangulated subcategory of the derived category of Z/pn-sheaves, containing all coherent sheaves
and sheaves like logarithmic de Rham-Witt sheaves [Kat87, 0.1]. Kato also showed that in the smooth
setting, Kn,X,log is concentrated in one degree and this only nonzero cohomology sheaf is the top degree
logarithmic de Rham-Witt sheaf [Kat87, 3.4]. For the latter, an analogy on the small étale site naturally
holds. Rülling later observed that with a trick from p−1-linear algebra, [Kat87, 3.4] can be done on
the Zariski site as well, as long as one assumes k = k (cf. Proposition 1.24). Comparing this with the
Kato-Moser complex ν̃n,X , which is precisely the Gersten resolution of the logarithmic de Rham-Witt
sheaf in the smooth setting, one gets an identification in the smooth setting ν̃n,X ' Kn,X,log on the
Zariski topology. Similar as in [Kat87, 4.2] (cf. Proposition 1.32), Rülling also built up the localization
sequence for Kn,X,log on the Zariski site in his unpublished notes (cf. Proposition 1.33). Compared with
the localization sequence for ZcX [Blo94, 1.1] and for ν̃n,X (which trivially holds in the Zariski topology),
it is reasonable to expect a chain map relating these objects in general.

The aim of this article is to build a quasi-isomorphism ζlog : ν̃n,X
'−→ Kn,X,log in the singular setting,

such that when pre-composed with Zhong’s quasi-isomorphism ψ : ZcX → ν̃n,X [Zho14, 2.16], it gives
another perspective of Bloch’s cycle complex with Z/pn-coefficients in terms of Grothendieck’s coherent
duality theory. More precisely, we prove the following result.

Theorem 0.1 (Theorem 5.10, Theorem 6.4). Let X be a separated scheme of finite type over k with k
being a perfect field of positive characteristic p. Then there exists a chain map

ζlog,ét : ν̃n,X,ét
'−→ Kn,X,log,ét,

and when k = k, a chain map

ζlog,Zar : ν̃n,X,Zar
'−→ Kn,X,log,Zar

which are quasi-isomorphisms.
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Composed with Zhong’s quasi-isomorphism ψ, we have the following composition of chain maps

ζlog,ét ◦ ψét : ZcX,ét/p
n '−→ Kn,X,log,ét

and when k = k, the composition of chain maps

ζlog,Zar ◦ ψZar : ZcX,Zar/p
n '−→ Kn,X,log,Zar

which are quasi-isomorphisms.

We explain more on the motivation behind the definition of Kn,X,log. In the smooth setting, the
logarithmic de Rham-Witt sheaves can be defined in two ways: either as the subsheaves of WnΩdX
generated by log forms, or as the invariant part under the Cartier operator C. In the singular case, these
two perspectives give two different (complexes of) sheaves. The first definition can also be done in the
singular case, and this was studied by Morrow [Mor15]. For the second definition one has to replace
WnΩdX by a dualizing complex on WnX: for this Grothendieck’s duality theory yields a canonical and
explicit choice, and this is what we have denoted by Kn,X . And then this method leads naturally to
Kato’s and also our construction of Kn,X,log. Now with our main theorem one knows that ZcX/pn sits
in a distinguished triangle

ZcX/pn → Kn,X
C′−1−−−→ Kn,X

+1−−→
in the derived category Db(X,Z/pn), in either the étale topology, or the Zariski topology with k = k
assumption. In particular, when X is Cohen-Macaulay of pure dimension d, then the triangle above
becomes

ZcX/pn →WnωX [d]
C′−1−−−→WnωX [d]

+1−−→ .

where WnωX is the only non-vanishing cohomology sheaf of Kn,X (when n = 1, W1ωX = ωX is the
usual dualizing sheaf on X), and ZcX/pn is concentrated at degree −d (cf. Proposition 8.1). This is a
generalization of the top degree case of [GL00, 8.3], which in particular implies the above triangle in the
smooth case.

As corollaries, we arrive at some properties of the higher Chow groups of 0-cycles with p-primary
torsion coefficients. (The versions stated here are not necessarily the most general ones. See the main
text for more general statements.)

Corollary 0.2 (Proposition 8.2, Corollary 8.3, Corollary 8.7, Corollary 8.11). Let X be a separated
scheme of finite type over k with k = k.

(1) (Cartier invariance)

CH0(X, q;Z/pn) = H−q(WnX,Kn,X,Zar)
C′Zar−1.

(2) (Affine vanishing) Suppose X is affine and Cohen-Macaulay of pure dimension d. Then

CH0(X, q,Z/pn) = 0

for q 6= d.
(3) (Étale descent) Suppose X is affine and Cohen-Macaulay of pure dimension d. Then

Riε∗(ZcX,ét/p
n) = Riε∗ν̃n,X,ét = 0, i 6= −d.

(4) (Invariance under rational resolution) For a rational resolution of singularities f : X̃ → X
(cf. Definition 8.8) of an integral k-scheme X of pure dimension, the trace map induces an
isomorphism

CH0(X̃, q;Z/pn)
'−→ CH0(X, q;Z/pn)

for each q.

Now we give a more detailed description of the structure of this article.
In Part 1, we review the basic properties of the chain complexes to appear. Section 1 is devoted

to the properties of the complex Kn,X,log, the most important object of our studies. Section 1.1 is a
preliminary subsection on residual complexes and Grothendieck’s duality theory. After this, we study the
Zariski version in Section 1.2-Section 1.5. Following the idea in [Kat87], we define the Cartier operator
C ′ for the residual complex Kn,X , and then define the complex Kn,X,log to be the mapping cone of
C ′ − 1 in Section 1.2. We compare our C ′ with the classical definition of the Cartier operator C for top
degree de Rham-Witt sheaves in Section 1.3. To avoid interruption of a smooth reading we collect the
calculation in the next two subsections (Section 1.3.2-Section 1.3.3). The localization sequence appears
in Section 1.4. In these subsections, the most important ingredients are a surjectivity result of C ′ − 1
(cf. Proposition 1.24. See also Section A for a short discussion on σ-linear algebra), the trace map of a
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nilpotent thickening (cf. Proposition 1.32), and the localization sequence (cf. Proposition 1.33). They
are observed already by Rülling and are only re-presented here by the author. After a short discussion
on functoriality in Section 1.5, we move to the étale case in Section 1.6. Most of the properties hold
true in a similar manner, except that the surjectivity of Cét − 1 : WnΩdX,ét → WnΩdX,ét over a smooth

k-scheme X holds true without any extra assumption of the base field (except perfectness, which is
already needed in defining the Cartier operator). This enables us to build the quasi-isomorphism ζlog,ét

without assuming k being algebraically closed in the next part. The rest of the sections in Part 1 are
introductory treatments of Bloch’s cycle complex ZcX(m), Kato’s complex of Milnor K-theory CMX,t(m)

and the Kato-Moser complex of logarithmic de Rham Witt sheaves ν̃n,X,t(m), respectively.

In Part 2 we construct the quasi-isomorphism ζlog : ν̃n,X
'−→ Kn,X,log and study its properties in

Section 5. We first build a chain map ζ : CMX → Kn,X and then we show that it induces a chain map

ζlog : CMX → Kn,X,log. This map actually factors through a chain map ζlog : ν̃n,X → Kn,X,log via the

Bloch-Gabber-Kato isomorphism [BK86, 2.8]. We prove that ζlog is a quasi-isomorphism for t = ét, and

also for t = Zar with an extra k = k assumption. In Section 6, we review the main results of [Zho14, §2]
and compose Zhong’s quasi-isomorphism ψ : ZcX/pn → ν̃n,X with our ζlog. This composite map enables
us to use tools from the coherent duality theory in calculation of certain higher Chow groups of 0-cycles.

In Part 3 we discuss the applications. Section 7 mainly serves as a preparation section for Section 8.
In Section 8 we arrive at several results for higher Chow groups of 0-cycles with p-primary torsion
coefficients: affine vanishing, finiteness (reproof of a theorem of Geisser), étale descent, and invariance
under rational resolutions.

Notations and conventions

(1) Basic settings. k will always be a perfect field of characteristic p > 0. k-schemes will be assumed
to be separated schemes of finite type over k, unless otherwise stated. (In particular, in subsection
Section 1.1 we shall allow more general schemes.) Let X be a k-scheme. Let π : X → k be the
structure morphism of X. Let WnX := (|X|,WnOX), where |X| is the underlying topological
space of X, and WnOX is the sheaf of truncated Witt vectors, and let Wnπ : WnX → Wnk be
the morphism induced from π via functoriality. FX denotes the absolute Frobenius map of X,
WnFX is the map induced from FX via functoriality. When X = SpecA is affine, we also write
FA (resp. WnFA) for FSpecA (resp. WnFSpecA).

(2) Topologies. XZar, Xét denote the small Zariski site and the small étale site, respectively (we will
use a subscript t when the topology t is unspecified). Their structure sheaves are denoted by
OX and OX,ét. Let ε∗ be the restriction functor from the category of étale abelian sheaves to
the category of Zariski abelian sheaves. Denote by Rε∗ the right derived functor of ε∗. The
functor ε∗ can be restricted to a functor from the category of OX,Zar-modules to the category of
OX,ét-modules, and let ε∗ be the left adjoint of this restricted functor. Then one has ε∗ ◦ ε∗ = id.
The functor ε∗ (resp. ε∗) can be restricted to the category of quasi-coherent sheaves on XZar

(resp. Xét), and the pair (ε∗, ε
∗) induces a categorical equivalence between quasi-coherent étale

sheaves and quasi-coherent Zariski sheaves by étale descent. We follow [Stacks, Tag 01BE] for
the notion of quasi-coherence on the small étale site (see also [Stacks, Tag 03DX]).

We clarify a possible ambiguity here. Fix n ∈ N>0. Let G be an étale Z/n-sheaf. Let

fZar : (Zariski Z/n-sheaves)→ (Zariski abelian sheaves)

fét : (étale Z/n-sheaves)→ (étale abelian sheaves)

be the forgetful functors, which are clearly seen to be fully faithful. Let

ε′∗ : (étale Z/n-sheaves)→ (Zariski Z/n-sheaves)

be the restriction functor. The functor fZar and fét are clearly exact, and fét sends injective
étale Z/n-sheaves to ε∗-acyclic objects (this is because Riε∗G is the sheaf associated to presheaf
U 7→ Hi(Uét,G); and injective étale Z/n-sheaves are flasque by [SGA4-2, Exposé V 4.10(2)] and
thus Čech acyclic for any Čech cover [SGA4-2, Exposé V 4.5] which is equivalent to Γ(Uét,−)-
acyclic for all U ∈ Xét [Mil80, III 2.12]). Then the Leray spectral sequence implies that

Rε∗ ◦ fét(G) = R(ε∗ ◦ fét)(G) = R(fZar ◦ ε′∗)(G) = fZar ◦Rε′∗(G)

This means the i-th cohomology sheaves of ε∗ and ε′∗ are the same for étale Z/n-modules.
Denote by Db(Xt,Z/n) the derived category of Z/n-modules in the topology t with bounded

cohomologies. The forgetful functor ft induces a triangulated functor ft : Db(Xt,Z/n) ↪→
Db(Xt,Z) for both t = Zar and t = ét, which is exact and faithful (the faithfulness can be seen

https://stacks.math.columbia.edu/tag/01BE
https://stacks.math.columbia.edu/tag/03DX
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from the description via homotopy category [Har66, I.4.7]: whenever two chain maps between
complexes of Z/n-modules are Z-linearly chain homotopic, they are naturally Z/n-linearly chain
homotopic). As a functor between derived categories, ft is compatible with the derived restriction
functors Rε∗, Rε

′
∗ as explained above.

The subscript t will be omitted when t = Zar. We will also omit this subscript t occasionally
for maps between étale sheaves, when it is clear from the context. (These rules do not apply to
the introduction, where we have deliberately cut down symbols to avoid heavy notations).

(3) De Rham-Witt theory. Let X be a k-scheme. Denote by WnΩ•X or WnΩ•X/k the de Rham-Witt

complex on X as defined in [Ill79]. Since k is a perfect field of positive characteristic p, Illusie’s de
Rham-Witt complex agrees with the relative version of Langer-Zink in [LZ04] (we will only use
this relative version in Lemma 1.21), thus our notations shall cause no confusion. When n = 1,
WnΩ•X is also denoted by Ω•X or Ω•X/k, which is the same as the complex of Kähler differentials. In

particular, we have the following four maps according to [Ill79, I] and an observation of Hesselholt-
Madsen that the V -filtration equals the R-filtration in general [HM03, 3.2.4] (see also [Mor15,
§2.3]. By V -filtration of WnΩmX we mean the decreasing filtration {V iWn−iΩ

m
X+dV iWn−iΩ

m−1
X }i

of WnΩmX indexed by i): the restriction map

R : WnΩmX → R∗Wn−1ΩmX ,

the lift-and-multiplication-by-p map

p : R∗Wn−1ΩmX →WnΩmX ,

the Verschiebung map

V : R∗(Wn−1FX)∗Wn−1ΩmX →WnΩmX ,

and the Frobenius map

F : WnΩmX → R∗(Wn−1FX)∗Wn−1ΩmX .

Here by abuse of notation we denote by R : Wn−1X ↪→ WnX the closed immersion induced
by the restriction map R : WnOX → Wn−1OX on structure sheaves. All the four maps stated
above are WnOX -linear. We will denote by WnΩ′iX the abelian sheaf F (Wn+1ΩiX) regarded as
a WnOX -submodule of (WnFX)∗WnΩiX . We sometimes erase the subscript X when there’s no
confusion.

When we write an element in WnΩmX in terms of a product with respect to an totally ordered
index set, we make the following assumptions: when an index set is empty, the respective factor
of the product does not occur; when an index set is non-empty, the factors of the product are
ordered such that the indices are increasing. With these assumptions we avoid any confusion
concerning signs.

(4) Coherent duality theory. We follow [Har66][Con00] for the Grothendieck duality theory, and
in particular we adopt the sign conventions from [Con00]. We will be working with residual
complexes as defined in [Con00, §3.2]. When X is a k-scheme, X is equipped with a canonical
residual complex Kn,X for every n ≥ 1 (see Section 1 below). For f : X → Y being a morphism
of finite type between k-schemes, we use f4 instead of f ! to denote the extraordinary inverse
image functor for residual complexes as in [Har66, VI 3.1]. An introduction to the functor f4

and some related facts of the Grothendieck duality theory are collected in Section 1.1. When X
is Cohen-Macaulay of pure dimension d, Kn,X is concentrated in degree −d [Con00, 3.5.1]. This
only non-vanishing cohomology sheaf is denoted by WnωX . When n = 1, this is denoted by ωX
(ωX is the usual dualizing sheaf for coherent sheaves on X).

(5) Local cohomology. Let Y = SpecB be an affine scheme and Z ⊂ Y be a closed subscheme of
pure codimension c. Suppose Z is defined by a sequence t = {t1, . . . , tc} ⊂ B. Define the Koszul
complex associated to sequence t

c∧
Bc

dc−→
c−1∧

Bc → . . .
d3−→

2∧
Bc

d2−→ Bc
d1−→ B

with K−q(t) = Kq(t) =
∧q

Bc for q = 0, . . . , c. Denote by {e1, . . . , ec} the standard basis of Bc,
and ei1,...,iq := ei1 ∧ · · · ∧ eiq ∈ Kq(t). Then the differential is given by

d−qK•(ei1,...,iq ) = dK•q (ei1,...,iq ) =

q∑
j=1

(−1)j+1tijei1,...,̂ij ,...,iq
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(This is consistent with the conventions in [Con00, p.17].) When t is a regular sequence, K•(t)
is a free resolution of B/(t) as B-modules, where (t) denotes the ideal (t1, . . . , tc) ⊂ B.

Let M be a B-module. Define

K•(t,M) := HomB(K−•(t),M).

Its differential is therefore given by

dqK•(t,M)(g)(ei1,...,iq+1) =

q+1∑
j=1

(−1)j+1tijg(ei1,...,̂ij ,...,iq+1
)

with g ∈ HomB(K−q(t),M). The map g 7→ g(e1,...,c) thus induces an isomorphism

Hc(K•(t,M)) 'M/(t)M.

When t is a regular sequence, this is the only non-vanishing cohomology of the complex K•(t,M)
by [EGAIII-1, Ch. III (1.1.4)].

Denote by tN the sequence tN1 , . . . , t
N
c . Let M̃ be the associated quasi-coherent sheaf of M on

Y . Then by [SGA2, Exposé II Prop. 5], there is an natural isomorphism

colimN H
c(K•(tN ,M)) ' Hc

Z(Y, M̃).

We denote by

[
m
t

]
the image of m ∈M under the composition

M → HomB(

c∧
Bc,M)→ Hc(K•(t,M))→ Hc

Z(Y, M̃),

where the first map is associating m ∈M the B-linear homomorphism [e1,...,c 7→ m]. Notice that
this composition restricted to (t)M is the zero map.

Our convention for

[
m
t

]
is consistent with the definitions in [CR11, §A][CR12], but differs

from the definition in [BER12, (4.1.2)] by a sign when t is a regular sequence.

Part 1. The complexes

1. Kato’s complex Kn,X,log,t

Let X be a separated scheme of finite type over k of dimension d. In this section, we aim to define
and analyse a complex Kn,X,log,t for t = Zar and t = ét over a separated scheme X of finite type over
k. The original idea of this complex comes from [Kat87, §3], except that Kato is working in a different
topology. Our treatment here is self-contained, but the influence of Kato’s work [Kat87] on this work is
definitely inevitable. We will be working in t = Zar exclusively in Section 1.2-Section 1.5, and will omit
the subscript t = Zar in these subsections. Then we will be working in the étale topology in Section 1.6.
But before all these, we review Grothendieck’s duality theory for coherent sheaves with an emphasis on
residual complexes and the functor f4 in Section 1.1.

1.1. Preliminaries: Residual complexes and Grothendieck’s duality theory. Grothendieck’s
duality theory aims to generalize the Serre duality for coherent sheaves from the smooth case to the
singular case. More substantially, one needs a well-formulated functor f ! in the derived category and a
trace map Trf : Rf∗ ◦ f ! → id for a proper morphism f . To overcome the difficulty of gluing objects in
the derived category, Grothendieck defined the notion of residual complexes, which are certain objects
in the category of complexes of quasi-coherent sheaves with coherent cohomology sheaves, to serve as
a “concrete” substitution for dualizing complexes. f ! (denoted by f4 in this case) and Trf could now
be defined locally for residual complexes, and then one has the respective global maps by gluing these
local maps. In this subsection we collect some basic facts for Grothendieck’s duality with an emphasis
on residual complexes and the functor f4. The general references for this topic are [Har66][Con00]. The
topology will be the Zariski topology throughout this subsection.

Notation 1.1. All schemes in this subsection Section 1.1 will be assumed to be noetherian with finite
Krull dimension (the finite Krull dimension condition is a necessary condition for a scheme to admit
a dualizing complex, cf Remark 1.3(2)). D(X) denotes the derived category of OX -modules. Dqc(X)
(resp. Dc(X)) denotes the full subcategory of D(X) consisting of complexes whose cohomology sheaves
are quasi-coherent (resp. coherent) OX -modules. D+(X) (resp. D−(X), Db(X)) denotes the full
subcategory of D(X) consisting of complexes that are cohomologically bounded below (resp. bounded
above, bounded). Combinations of these notations might also appear, like Db

qc(X), Db
c(X), etc.
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According to [Har66, I 4.8], the natural inclusion functor from the category of quasi-coherent OX -
modules to the category of OX -modules induces a categorical equivalence from the full subcategory of
the derived category of quasi-coherent OX -modules consisting of complexes cohomologically bounded
below to D+

qc(X).

1.1.1. Dualizing complexes and residual complexes. The general references for this part are [Har66, V,
VI], [Con00, §3.1, §3.2].

Definition 1.2 (Dualizing complex). (1) ([Con00, p.118]) A dualizing complex on a scheme X is a
complex R ∈ Db

c(X) such that
• R has finite injective dimension (i.e. R is isomorphic in D(X) to a bounded complex of

injective OX -modules), and
• the natural map

ηR : id→ RHomOX (RHomOX (−, R), R)

is an isomorphism in the derived category Dc(X).
(2) ([Con00, p.123]) For any dualizing complex R on a scheme X and any x ∈ X, there exists an

unique integer d = dR(x) such that H−d(RHomSpecOX,x(k(x), Rx)) 6= 0 (cf. [Har66, V.3.4 and
V.7.1]). We call dR the codimension function on X associated to R, and define the associated
filtration Z•(R) of X by

Zp(R) = {x ∈ X | dR(x) ≥ p}.

We remark that a complex in D+
qc(X) is of finite injective dimension if and only if it is quasi-isomorphic

to a bounded complex of quasi-coherent injective OX -modules (cf. [Har66, I.7.6(i) and p.83 Def.]).
For this one only needs to show the “only if” part. In fact, such a complex is isomorphic in D(X)
to a cohomologically bounded complex of quasi-coherent OX -modules by the categorical equivalence
[Har66, I.4.8], and by applying the canonical truncation functor one can assume this complex is bounded.
This bounded complex of quasi-coherent OX -modules is again isomorphic in D(X) to a bounded below
complex of quasi-coherent injective OX -modules by [Har66, II 7.18] and the Cartan-Eilenberg resolution.
Applying the canonical truncation functor again we get a bounded complex of quasi-coherent injective
OX -modules. In the end one notices that every morphism in D+(X) with an injective target can actually
be represented by a chain map [Wei94, 10.4.7].

Remark 1.3. (1) Connection with pointwise analogs. In [Con00, p.120], Conrad defined the notion
of weak (resp. strong) pointwise dualizing complexes) on a locally noetherian scheme. In general
one has dualizing implies strongly pointwise dualizing implies weakly pointwise dualizing. Note
that under our assumption Notation 1.1, these three notions coincide (cf. [Con00, p.120], [Har66,
V 8.2]).

(2) Existence and examples [Har66, V §10][Con00, p.133].
(a) A scheme X is said to be Gorenstein if every local ring of X is a Gorenstein local ring [Har66,

p.296]. One of the equivalent definitions of a Gorenstein local ring is a noetherian local ring
admitting a finite injective resolution [Har66, V 9.1]. Examples of Gorenstein rings include
Z, fields, regular rings, Wnk. When a scheme X is Gorenstein, OX [0] is a dualizing complex
[Har66, V §10 p.299 1.]. In particular, any regular scheme has a dualizing complex OX [0].

(b) If f : X → Y is a morphism of finite type and Y admits a dualizing complex R, then f !R
(as defined in [Con00, (3.3.6)]) is a dualizing complex on X. In particular,

(i) any scheme of finite type over a Gorenstein ring (of finite Krull dimension) admits a
dualizing complex;

(ii) when X is smooth of pure dimension d over a Gorenstein ring A (with finite Krull
dimension), then ωX/A[d] := ΩdX/A[d] is a dualizing complex on X.

To mention a necessary condition: If a scheme admits a dualizing complex then it must be
catenary and have finite Krull dimension. ([Har66, p.300 1.2.])

(3) Uniqueness, [Har66, V 3.1][Con00, p.123-p.124]. Let X be a scheme and with dualizing complexes
R,R′. Then there exists a unique locally constant Z-valued function n = n(R,R′) on X (n is
just an integer when X is connected), and a unique line bundle L = L(R,R′), such that there is
an isomorphism

βR,R′ : R′ ' L[n]⊗L R.
From the construction in [Har66, V 3.1], L(R,R′) is defined to be H−n(RHomOX (R,R′)).

(4) Connection with the ring-theoretic version. For a noetherian ring A (to fit in our general as-
sumption we also assume A has finite Krull dimension), one can likewise define the notion of
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a dualizing complex. Then the notions of a dualizing complex on A and on SpecA coincide.
([Con00, 3.1.4])

Definition 1.4 (Residual complex). (1) ([Con00, p.125]) A residual complex on a scheme X is a
complex K such that
• K is bounded as a complex,
• all the terms of K are quasi-coherent and injective OX -modules,
• the cohomology sheaves are coherent, and
• there is an isomorphism of OX -modules⊕

q∈Z
Kq '

⊕
x∈X

ix∗J(x),

where ix : SpecOX,x → X is the canonical map and J(x) is the quasi-coherent sheaf on
SpecOX,x associated to an injective hull of k(x) over OX,x (i.e. the unique injective OX,x-
module up to non-unique isomorphisms which contains k(x) as a submodule and such that,
for any 0 6= a ∈ J(x), there exists an element b ∈ OX,x with 0 6= ba ∈ k(x). For a discussion
on injective hulls, see [Lam99, §3D and §3J]). J(x) as a sheaf on SpecOX,x is supported on

the closed point, therefore ix∗J(x) as a sheaf on X is supported on {x}.
Unlike dualizing complexes, residual complexes are regarded as objects in the category of com-
plexes of OX -modules instead of the derived category.

(2) ([Con00, p.125]) Given a residual complex K on X and a point x ∈ X, there is a unique integer
dK(x), such that ix∗J(x) is a direct summand of Kq, i.e.,

Kq '
⊕

dK(x)=q

ix∗J(x).

The assignment x 7→ dK(x) is called the codimension function on X associated to K (cf. [Har66,
IV, 1.1(a)]). We define the associated filtration

Z•(K) = {x ∈ X | dK(x) ≥ p}.

As a first property, residual complexes can be regarded as dualizing complexes via the natural functor

Q : (complexes of OX -modules)→ D(X),

according to [Har66, chapter VI, 1.1 a)] and Remark 1.3(1).

Next we want to define a functor EZ• relating dualizing and residual complexes. First of all we need
make some proper assumptions on the filtration Z• involved.

Definition 1.5 ([Har66, p.240][Con00, p.105]). Let X be a scheme and let Z• = {Zp} be a decreasing
filtration of X by subsets Zp such that

• it is compatible with specialization, i.e., each Zp is stable under specialization, and each x ∈
Zp − Zp+1 is not a specialization of any other point of Zp, and

• it is stationary on above and separated, i.e., X = Zp for some sufficiently negative p and
⋂
Zp =

∅, so X is disjoint union of Zp − Zp+1 over p ∈ Z.

If Z• is such a filtration, we denote by Z•[n] the filtration with Z•[n]p = Zp+n.

According to the first item, the intuition for such a filtration should be that Zp consists precisely of
those points in the closure of the points in Zp − Zp+1, i.e.,

Zp =
⋃

x∈Zp−Zp+1

{x}

where {x} denotes the closure of the point x in X, and this relation is strict in the sense that

Zp )
⋃

x∈Zp−Zp+1−{x0}

{x}

for any x0 ∈ Zp \ Zp+1.

Example 1.6. Recall that the (co)dimension of a point x ∈ X is defined to be the (co)dimension of its

closure {x} as a topological space.
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(1) The dimension filtration

Zp = {x ∈ X | dim {x} ≤ −p}
of X and its shifts

Z•[n]p = {x ∈ X | dim {x} ≤ n− p}
are examples of filtrations satisfying Definition 1.5.

(2) A more standard example of Definition 1.5 is the codimension filtration

Zp = {x ∈ X | dimOX,x ≥ p}
of X and its shifts

Z•[n]p = {x ∈ X | dimOX,x ≥ p+ n}.
On each irreducible component of X, the dimension filtration is clearly a shift of the codimension
filtration, which is a descending filtration in a more natural way. The terminology of the dimension
filtration is actually non-standard, we include it here just for convenience reasons.

Now review some terminology from local cohomology ([SGA2, Exposé I], see also [Har66, IV][Har67]).
Let Z be a locally closed subset of X. Then there exists an open subset V of X containing Z as a closed
subset (e.g. V = X \ (Z \Z) where Z denotes the closure of Z). Let F be an abelian sheaf on X. Define
the following subgroup of F(V )

ΓZ(F) := ΓZ(F|V ) := {s ∈ F(V ) | any x with germ sx 6= 0 lies in Z}.
One can check that this definition of ΓZ(F) is independent of the choice of V : indeed, one has

ΓZ(F|V ) = Ker(Γ(V,F)→ Γ(V − Z,F))

and for any open subset V ′ ⊃ V such that V ′ contains Z as a closed subset, the restriction map induces
an isomorphism ΓZ(F|V ′) ' ΓZ(F|V ). The functor ΓZ(−) is easily seen to be left exact, and its q-th
derived functor will be denoted by Hq

Z(−).
Define ΓZ to be the functor which assigns to any abelian sheaf F on X the sheaf

U 7→ ΓU∩Z(F|U )

on X. ΓZ(F) is not necessarily a subsheaf of F . Clearly,

Supp ΓZ(F) := {x ∈ X | ΓZ(F)x 6= 0} ⊂ Z.
The functor ΓZ(−) is left exact, and its q-th derived functor will be denoted by HqZ(−).

For any open subset W of Z, there exists an open subset V of X such that W = Z ∩ V where Z
is the closure of Z in X (e.g. V = W ′ ∩ (X \ (Z \ Z)) where W ′ is any open subset of X such that
W = W ′ ∩ Z). This means that W is closed in V , and thus locally closed in X. Let

i : Z ↪→ X

be a canonical immersion of the locally closed subset Z of X with any possible structure sheaf on Z (i.e.,
only the underlying topological space of Z matters). Define i!F to be the sheaf

W 7→ ΓW (F)

on Z. This is a subsheaf of i−1F on Z: for each open W ⊂ Z, let V be an open subset of X such that
W = Z ∩ V (and thus W = Z ∩ V ). Then the composition

ΓW (F) := ΓW (F|V ) ↪→ Γ(V,F)→ Γ(V ∩ Z, i−1F) = Γ(W, i−1F)

is injective: for any s ∈ ΓW (F|V ) having zero image in Γ(W, i−1F), by definition of the inverse image
functor we have s = 0 in Γ(V ′,F) for an open subset V ′ of X with V ′ ⊃ W . But we also have s = 0
in Γ(V −W,F), and thus s = 0 in Γ(V,F). The functor i! is left exact, and its q-th derived functor is
denoted by Rqi!. Note that for an immersion i : Z ↪→ X between separated k-schemes of finite type,
the symbol i! is not the same as the extraordinary inverse image functor between derived categories
from duality theory (cf. [Con00, (3.3.6)]). In particular, i! applied to an OX -module does not give out
an OX -module in general. Under either interpretation, the symbol (−)! in this paper serves only for
heuristic purposes, and thus shall not cause any confusion for understanding the main part of this paper.

For a given sheaf F on X, the sheaf ΓZ(F) on X and the sheaf i!F on Z are related by

ΓZ(F) = i∗i
!F .

Thus one has identification of stalks for any point z ∈ Z:

(ΓZ(F))z = (i!F)z.
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The right hand side is due to the facts that an immersion can always be decomposed into a closed
immersion and an open immersion, and that the pushforward via either such a closed immersion or an
open immersion preserves stalks over points in Z. This identification of stalks implies an identification
of sheaves on Z

i!F = i−1ΓZ(F).

Since the functor i−1 is exact, one has an identification of the derived functors

Rqi!F = i−1HqZ(F).

In particular:

• When Z is closed, denote by j : U = X \ Z ↪→ X its open complement. Then we have

ΓZ(F) = Ker(F → j∗j
−1F).

In this case we have a canonical injective map

ΓZ(F) ↪→ F .

• When Z is open, one easily sees

i!F = i−1F and ΓZ(F) = Γ(Z,F).

Thus we have an isomorphism of sheaves

ΓZ(F) = i∗i
−1F

and a canonical homomorphism of sheaves

F → ΓZ(F)

given by the adjunction. One can also canonically interpret the local cohomology groups in this
case as

Hq
Z(F) = Hq(Z, i−1F) and HqZ(F) = Rqi∗(i

−1F).

Consider a set Z which is stable under specialization. One notices that sets Zp from Definition 1.5,
and in particular, the sets from the codimension filtration, i.e., Zp = {x ∈ X | dimOX,x ≥ p} for some p,
are typical examples of such a Z. These sets are far away from being locally closed in general. Following
[Har66, IV §1, Var. 1 Motif D and p223 5.], define the abelian sheaf

ΓZ(F) := colimA ΓA(F)

where A runs over all closed subsets of X of codimension ≥ p. Note that the set of all such A is a
well-defined family of supports as defined in [Har66, IV §1 Var. 1], and all these abelian sheaves ΓA(F)
together with the connecting homomorphisms

ΓA(F) ↪→ ΓA′(F)

for all A ⊂ A′ (induced by the natural injective map ΓA(F) ↪→ ΓA′(F)) form an inductive system.
Suppose from now on that Z• is a descending filtration as in Definition 1.5. Denote

ΓZp/Zp+1(F) := ΓZp(F)/ΓZp+1(F).

The functor ΓZp/Zp+1 is in general not left exact. But since the category of abelian sheaves has enough

injectives, one can still define the derived functor RΓZp/Zp+1 : D+(X)→ D(X) using injective resolutions

(note that the construction of the derived functor does not rely on any one-sided exactness, cf. [Har66,
I 5.1]), and therefore can define

HiZp/Zp+1(F•) := Hi(RΓZp/Zp+1(F•))

for a bounded below complex F• of OX -modules. Note that with this definition of HiZp/Zp+1 , one only

has an injection ΓZp/Zp+1(F) ↪→ H0
Zp/Zp+1(F) for a general sheaf F . When F is flasque, this injection

is an isomorphism.
The functors ΓZp/Zp+1 and HiZp/Zp+1 are closely related to another functor Γx with x being a point

in X. For x ∈ X, F a OX -module, define the abelian group (cf. [Har66, §1 Var. 8])

Γx(F) := colimU3x Γ{x}∩U (F|U ),

where U runs through all open neighborhoods of x. Naturally Γx(F) ⊂ Fx. Since a filtered colimit
preserves exactness in the category of abelian sheaves, Γx is left-exact and the derived functor RΓx and
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cohomology groups Hi
x(F) are thereby defined. Due to the compatibility of the colimit with taking

cohomologies, one has an identification of OX,x-modules

Hi
x(F) = (Hi{x}(F))x.

Moreover, one has a canonical functorial isomorphism [Har66, p.226][Con00, (3.1.4)]

(1.1.1) HiZp/Zp+1(F•) '−→
⊕

x∈Zp−Zp+1

ix∗(H
i
x(F•)),

where ix : SpecOX,x → X is the canonical map and by slight abuse of notations we use Hi
x(F•) to denote

the quasi-coherent sheaf on SpecOX,x associated to the OX,x-module Hi
x(F•). Hi

x(F•) as a sheaf on
SpecOX,x is supported on the closed point if it is nonzero.

Definition 1.7 (Cousin functor EZ•). Let Z• be as in Definition 1.5. For any bounded below complex
F•, choose a bounded below injective resolution I• of F•. Then one has a natural decreasing exhaustive
filtration by subcomplexes of I•:

· · · ⊃ ΓZp(I•) ⊃ ΓZp+1(I•) ⊃ . . . .

This filtration is stalkwise bounded below. Now consider the E1-spectral sequence associated to this
filtration

Ep,q1 ⇒ Hp+q(F•).
The Cousin complex ([Con00, p.105]) EZ•(F•) associated to F• is defined to be the 0-th line of the
E1-page, namely

EZ•(F•) := (Ep,01 = HpZp/Zp+1(F), dp,01 ).

We will also use the shortened notation E for EZ• when the filtration Z• is clear from the context.

In the end, we recall below the categorical equivalence between dualizing complexes and residual
complexes.

Proposition 1.8 ([Con00, 3.2.1]). Let X be a scheme and Z• be a filtration on X which is a shift of the
codimension filtration on each irreducible component of X. Suppose X admits a residual complex. Then
EZ• and Q induce quasi-inverses(

dualizing complexes whose
associated filtration is Z•

)
Q

←−−−−−−−−→
EZ•

(
residual complexes whose
associated filtration is Z•

)
.

1.1.2. The functor f4. Let f : X → Y be a finite type morphism between noetherian schemes of finite
Krull dimension and let K be a residual complex on Y with associated filtration Z• := Z•(K) and
codimension function dK . Define the function df4K on X to be ([Con00, (3.2.4)])

df4K(x) := dK(f(x))− trdeg(k(x)/k(f(x))

(so far the subscript f4K is simply regarded as a formal symbol), and define f4Z• accordingly

f4Z• = {x ∈ X | df4K(x) ≥ p}.

Notice that when f has constant fiber dimension r, f4Z• is simply f−1Z•[r].
Following [Har66, VI, 3.1], [Con00, 3.2.2], we list some properties of the functor f4 below.

Proposition 1.9. There exists a functor

f4 :

(
residual complexes on Y

with filtration Z•

)
→
(

residual complexes on X
with filtration f4Z•

)
having the following properties (we assume all schemes are noetherian schemes of finite Krull dimension,
and all morphisms are of finite type).

(1) If f is finite, there is an isomorphism of complexes ([Har66, VI 3.1])

ψf : f4K
'−→ Ef−1Z•(f

∗
RHomOY (f∗OX ,K)) ' f∗HomOY (f∗OX ,K),

where f
∗

:= f−1(−)⊗f−1f∗OX OX is the pullback functor associated to the map of ringed spaces

f : (X,OX)→ (Y, f∗OX). Since f is flat, the pullback functor f
∗

is exact. The last isomorphism

is due to the fact that f
∗HomOY (f∗OX ,K) is a residual complex with respect to filtration f−1Z•

(see [Har66, VI, 4.1], [Con00, (3.4.5)]).
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(2) If f is smooth and separated of relative dimension r, there is an isomorphism of complexes
([Har66, VI 3.1])

ϕf : f4K
'−→ Ef−1Z•[r](Ω

r
X/Y [r]⊗LOX Lf

∗K) = Ef−1Z•[r](Ω
r
X/Y [r]⊗OX f∗K).

The last equality is due to the flatness of f and local freeness of ΩrX/Y .

When f is étale (or more generally residually stable, see (5) below), this becomes

ϕf : f4K
'−→ Ef−1Z•(f

∗K) ' f∗K.
The last isomorphism is due to [Har66, VI 5.3]. In particular, when f = j : X ↪→ Y is an open
immersion, j4K = j∗K is a residual complex with respect to filtration X ∩Z• ([Con00, p.128]).

(3) When f is finite étale, the chain maps ψf , ϕf are compatible. Namely, for a given residual

complex K on Y , there exists an isomorphism of complexes f
∗HomOY (f∗OX ,K)

'−→ f∗K as
defined in [Con00, (2.7.9)], such that the following diagram of complexes commutes

f
∗HomOY (f∗OX ,K)

'

��

f4(K)
'

ψf
66

'
ϕf ((

f∗K.

(4) (Composition) If f : X → Y and g : Y → Z are two such morphisms, there is an natural
isomorphism of functors ([Con00, (3.2.3)])

cf,g : (gf)4
'−→ f4g4.

(5) (Residually stable base change) Following [Con00, p.132], we say a (not necessarily locally finite
type) morphism f : X → Y between locally noetherian schemes is residually stable if
• f is flat,
• the fibers of f are discrete and for all x ∈ X, the extension k(x)/k(f(x)) is algebraic, and
• the fibers of f are Gorenstein schemes.

As an example, an étale morphism is residually stable. For more properties of residually stable
morphisms, see [Har66, VI, §5]. Let f be a morphism of finite type, and u be a residually stable
morphism. Let

(1.1.2) X ′

f ′

��

u′ // X

f

��
Y ′

u
// Y

be a cartesian diagram. Then there is an natural transformation between functors ([Har66, VI
5.5])

du,f : f ′4u∗
'−→ u′∗f4.

(6) f4 is compatible with translation and tensoring with an invertible sheaf. More precisely, for
an invertible sheaf L on Y and a locally constant Z-valued function n on Y , one has canonical
isomorphisms of complexes [Con00, (3.3.9)]

f4(L[n]⊗K) ' (f∗K)[n]⊗ f4K ' (f∗L ⊗ f4K)[n].

More properties and compatibility diagrams can be found in [Con00, §3.3] and [Har66, VI, §3, §5].

1.1.3. Trace map for residual complexes.

Proposition 1.10. Let f : X → Y be a proper morphism between noetherian schemes of finite Krull
dimensions and let K be a residual complex on Y . Then there exists a map of complexes

Trf : f∗f
4K → K,

such that the following properties hold ([Con00, §3.4]).

(1) When f is finite, Trf at a given residual complex K agrees with the following composite as a
map of complexes ([Con00, (3.4.8)]):

(1.1.3) Trf : f∗f
4K

ψf−−→
'
HomOY (f∗OX ,K)

ev. at 1−−−−−→ K.
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(2) When f : Pd
Y → Y is the natural projection, then the trace map Trf at K, as a map in the

derived category Db
c(Y ), agrees with the following composite ([Con00, p.151])

f∗f
4K

ϕf−−→
'

Rf∗(Ω
n
PnX/X

[n])⊗OY K −→ K.

The first map is induced from ϕf followed by the projection formula ([Con00, (2.1.10)]), and
the second map is induced by base change from the following isomorphism of groups([Con00,
(2.3.3)])

Z '−→ Hd(Pd
Z,Ω

d
PdZ/Z

) = Ȟd(U,ΩdPdZ/Z
), 1 7→ (−1)

d(d+1)
2

dt1 ∧ · · · ∧ dtd
t1 . . . td

,

where U = {U0, ..., Ud} is the standard covering of Pd
Z and the ti’s are the coordinate functions

on U0.
(3) (Functoriality, [Con00, 3.4.1(1)]) Trf is functorial with respect to residual complexes with the

same associated filtration.
(4) (Composition, [Con00, 3.4.1(2)]) If g : Y → Z is another proper morphism, then

Trgf = Trg ◦g∗(Trf ) ◦ (gf)∗cf,g.

(5) (Residually stable base change, [Har66, VI 5.6]) Notations are the same as in diagram (1.1.2),
and we assume f proper and u residually stable. Then the diagram

u∗Rf∗f
4 u∗ Trf //

'
��

u∗

Rf ′∗u
′∗f4 '

Rf ′∗(du,f ) // Rf ′∗f
′4u∗

Trf′

OO

commutes.
(6) Trf is compatible with translation and tensoring with an invertible sheaf ([Con00, p.148]).
(7) (Grothendieck-Serre duality, [Con00, 3.4.4]) If f : X → Y is proper, then for any F ∈ D−qc(X),

the composition

Rf∗RHomX(F , f4K)→ RHomY (Rf∗F , Rf∗f4K)
Trf−−→ RHomY (Rf∗F ,K)

is an isomorphism in D+
qc(Y ).

More properties and compatibility diagrams can be found in [Con00, §3.4] and [Har66, VI, §4-5, VII,
§2].

1.2. Definition of Kn,X,log. Let Wnk be the ring of Witt vectors of length n of k. Notice that Wnk is
an injective Wnk-module, which means SpecWnk is a Gorenstein scheme by [Har66, V. 9.1(ii)], and its
structure sheaf placed at degree 0 is a residual complex (with codimension function being the zero function
and the associated filtration being Z•(Wnk) = {Z0(Wnk)}, where Z0(Wnk) is the set of the unique point
in SpecWnk) by [Har66, p299 1.] and the categorical equivalence Proposition 1.8 (note that in this case
the Cousin functor EZ•(Wnk) applied to Wnk is still Wnk). This justifies the symbol (WnFk)4 to appear.
To avoid possible confusion we will distinguish the source and target of the absolute Frobenius by using
the symbols k1 = k2 = k. Absolute Frobenius is then written as Fk : (Spec k1, k1) → (Spec k2, k2), and
the n-th Witt lift is written as WnFk : (SpecWnk1,Wnk1) → (SpecWnk2,Wnk2). There is a natural
isomorphism of Wnk1-modules (the last isomorphism is given by Proposition 1.9(1))

Wnk1
'−→WnFk

∗
HomWnk2((WnFk)∗(Wnk1),Wnk2) ' (WnFk)4(Wnk2),(1.2.1)

a 7→ a ⊗ [(WnFk)∗1 7→ 1] (= [(WnFk)∗a 7→ 1]),

where WnFk : (SpecWnk1,Wnk1)→ (SpecWnk2, (WnFk)∗(Wnk1)) is the natural map of ringed spaces,
and the Hom set is given the (WnFk)∗(Wnk1)-module structure via the first place. In fact, it is clearly
a bijection: identify the target with Wnk2 via the evaluate-at-1 map, then one can see that the map
(1.2.1) is identified with a 7→ (WnFk)−1(a).

Let X be a separated scheme of finite type over k with structure map π : X → k. Recall that
WnX := (|X|,WnOX), where |X| is the underlying topological space of X, and WnOX is the sheaf of
length n truncated Witt vectors. Wnπ : WnX →Wnk is the morphism induced from π via functoriality.
Since Wnk is a Gorenstein scheme as we recalled in the last paragraph,

Kn,X := (Wnπ)4Wnk
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is a residual complex on WnX, associated to the codimension function dKn,X with

dKn,X (x) = −dim {x},
and the filtration Z•(Kn,X) = {Zp(Kn,X)} with

Zp(Kn,X) = {x ∈ X | dim {x} ≤ −p}
(cf. Proposition 1.9). That is, the filtration Z•(Kn,X) is precisely the dimension filtration in the
sense of Example 1.6(1), which is a shift of the codimension filtration on each irreducible component.
In particular, Kn,X is a bounded complex of injective quasi-coherent WnOX -modules with coherent
cohomologies sitting in degrees

[−d, 0].

When n = 1, we set KX := K1,X . Now we turn to the definition of C ′. We denote the level n Witt lift
of the absolute Frobenius FX by WnFX : (WnX1,WnOX1)→ (WnX2,WnOX2). The structure maps of
WnX1,WnX2 are Wnπ1,Wnπ2 respectively. These schemes fit into a commutative diagram

WnX1

Wnπ1

��

WnFX // WnX2

Wnπ2

��
SpecWnk1

WnFk // SpecWnk2.

Denote
Kn,Xi := (Wnπi)

4(Wnki), i = 1, 2.

Via functoriality, one has a WnOX1 -linear map

Kn,X1
= (Wnπ1)4(Wnk1)

(Wnπ1)4(1.2.1)−−−−−−−−−−→
'

(Wnπ1)4(WnFk)4(Wnk2)(1.2.2)

' (WnFX)4(Wnπ2)4(Wnk2) ' (WnFX)4Kn,X2 .

Here the isomorphism at the beginning of the second line is given by Proposition 1.9(4). Then via the
adjunction with respect to the morphism WnFX , one has a WnOX2

-linear map

C ′ := C ′n : (WnFX)∗Kn,X1

(WnFX)∗(1.2.2)−−−−−−−−−−→
'

(WnFX)∗(WnFX)4Kn,X2

TrWnFX−−−−−→ Kn,X2
,(1.2.3)

where the last trace map is Proposition 1.10. We call it the (level n) Cartier operator for residual
complexes. We sometimes omit the (WnFX)∗-module structure of the source and write simply as C ′ :
Kn,X → Kn,X .

Now we come to the construction of Kn,X,log (cf. [Kat87, §3]). Define

(1.2.4) Kn,X,log := Cone(Kn,X
C′−1−−−→ Kn,X)[−1].

This is a complex of abelian sheaves sitting in degrees

[−d, 1].

When n = 1, we set KX,log := K1,X,log. Writing more explicitly, Kn,X,log is the following complex

(K−dn,X ⊕ 0)→ (K−d+1
n,X ⊕K−dn,X)→ . . .→ (K0

n,X ⊕K−1
n,X)→ (0⊕K0

n,X).

The differential of Kn,X,log at degree i is given by

dlog = dn,log : Ki
n,X,log → Ki+1

n,X,log

(Ki
n,X ⊕Ki−1

n,X)→ (Ki+1
n,X ⊕K

i
n,X)

(a, b) 7→ (d(a),−(C ′ − 1)(a)− d(b)),

where d is the differential in Kn,X . The sign conventions we adopt here for shifted complexes and the
cone construction are the same as in [Con00, p6, p8]. And naturally, one has a distinguished triangle

(1.2.5) Kn,X,log −→ Kn,X
C′−1−−−→ Kn,X

+1−−→ Kn,X,log[1].

Explicitly, the first map is in degree i given by

Ki
n,X,log = Ki

n,X ⊕Ki−1
n,X −→ Ki

n,X ,

(a, b) 7→ a.

The ”+1” map is given by

Ki
n,X −→ (Kn,X,log[1])i = Ki+1

n,X,log = (Ki+1
n,X ⊕K

i
n,X),
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b 7→ (0, b).

Both maps are indeed maps of chain complexes.

1.3. Comparison of WnΩdX,log with Kn,X,log. Recall the following result from classical Grothendieck

duality theory [Har66, IV, 3.4][Con00, 3.1.3] and Ekedahl [Eke84, §1] (see also [CR12, proof of 1.10.3
and Rmk. 1.10.4]).

Proposition 1.11 (Ekedahl). When X is smooth and of pure dimension d over k, then there is a
canonical quasi-isomorphism

WnΩdX [d]
'−→ Kn,X .

Remark 1.12. Suppose X is a separated scheme of finite type over k of dimension d. Denote by U the
smooth locus of X, and suppose that the complement Z of U is of dimension e. Suppose moreover that
U is non-empty and equidimensional (it is satisfied for example, when X is integral). Then Ekedahl’s
quasi-isomorphism Proposition 1.11 gives a quasi-isomorphism of dualizing complexes

(1.3.1) WnΩdU [d]
'−→ Kn,U .

Note that by the very definition, the associated filtrations of quasi-isomorphic dualizing complexes are the
same (cf. [Har66, 3.4]). As explained above, the associated filtration of Kn,U is its dimension filtration.
Let Z• be the codimension filtration of U (cf. Example 1.6). Since U is of pure dimension d, we know that
its dimension filtration is just a shift of the codimension filtration, i.e., Z•[d]. Apply the Cousin functor
associated to the shifted codimension filtration Z•[d] (cf. Definition 1.7) to the quasi-isomorphism (1.3.1)
between dualizing complexes, we have an isomorphism of residual complexes

EZ•[d](WnΩdU [d])
'−→ Kn,U

with the same filtration Z•[d] (cf. Proposition 1.8). Since Wnj is an open immersion, we can canonically
identify the residual complexes (Wnj)

∗Kn,X ' Kn,U by Proposition 1.9(2). Since Kn,X is a residual
complex and in particular is a Cousin complex (cf. [Con00, p. 105]), the adjunction map Kn,X →
(Wnj)∗(Wnj)

∗Kn,X ' (Wnj)∗Kn,U is an isomorphism at degrees [−d,−e− 1]. Thus the induced chain
map

Kn,X → (Wnj)∗EZ•[d](WnΩdU [d])

is an isomorphism at degrees [−d,−e− 1].

1.3.1. Compatibility of C ′ with the classical Cartier operator C. We review the absolute Cartier operator
in classical literature (see e.g. [BK05, Chapter 1 §3], [Ill79, §0.2], [Katz70, 7.2], [IR83, III §1]). Let X
be a k-scheme. The (absolute) inverse Cartier operator γX of degree i on a scheme X is affine locally,
say, on SpecA ⊂ X, given additively by the following expression (Hi(−) denotes the cohomology sheaf
of the complex)

γA : ΩiA/k −→ Hi(FA,∗Ω•A/k)(1.3.2)

ada1 . . . dai 7→ apap−1
1 da1 . . . a

p−1
i dai,

where a, a1, . . . ai ∈ A. Here Hi(FA,∗Ω•A/k) denotes the A-module structure on Hi(Ω•A/k) via the absolute

Frobenius FA : A→ A, a 7→ ap (note that FA,∗Ω
•
A/k is a complex of A-modules in positive characteristic).

For each degree i, γA thus defined is an A-linear map. These local maps patch together and give rise to
a map of sheaves

(1.3.3) γX : ΩiX −→ Hi(FX,∗Ω•X)

which is OX -linear. When X is smooth of dimension d, γX is a isomorphism of OX -modules, which is
called the (absolute) Cartier isomorphism. See [BK05, 1.3.4] for a proof (note that although the authors
there assumed the base field to be algebraically closed, the proof of this theorem works for any perfect
field k of positive characteristic).

This can be generalized to the de Rham-Witt case.

Lemma 1.13 (cf. [Kat86b, 4.1.3]). Denote by WnΩ′iX the abelian sheaf F (Wn+1ΩiX) regarded as a
WnOX-submodule of (WnFX)∗WnΩiX . When X is smooth of dimension d, the map

F : WnΩiX →WnΩ′iX/dV
n−1Ωi−1

X

induced by Frobenius F : Wn+1ΩiX → R∗(WnFX)∗WnΩiX is an isomorphism of WnOX-modules.
In particular, when i = d,

F : WnΩdX → (WnFX)∗WnΩdX/dV
n−1Ωd−1

X
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is an isomorphism of WnOX-modules.

Proof. Since

Ker(R : Wn+1Ωi →WnΩi) = V nΩi + dV nΩi−1,

FV nΩi = 0 and FdV nΩi−1 = dV n−1Ωi−1, F : Wn+1Ωi →WnΩi reduces to

F : WnΩi →WnΩi/dV n−1.

Surjectivity is clear. We show injectivity. Suppose x ∈ Wn+1Ωi, y ∈ Ωi−1, such that F (x) = dV n−1y.
Then F (x− dV ny) = 0, which implies by [Ill79, I (3.21.1.2)] that x− dV ny ∈ V nΩi.

The second claim follows from the fact that F : Wn+1Ωd → R∗(WnFX)∗WnΩd is surjective on top
degree d [Ill79, I (3.21.1.1)], and therefore WnΩ′d = (WnFX)∗WnΩd as WnOX -modules. �

Definition 1.14 ((absolute) Cartier operator). Let X be a smooth scheme of dimension d over k.

(1) The composition

C := CX :Zi(FX,∗Ω
•
X)→ Hi(FX,∗Ω•X)

(γX)−1

−−−−−→ ΩiX(1.3.4) (
with Zi(FX,∗Ω

•
X) := Ker(FX,∗Ω

i
X

d−→ FX,∗Ω
i+1
X )

)
is called the (absolute) Cartier operator of degree i, denoted by C or CX .

(2) (cf. [Kat86b, 4.1.2, 4.1.4]) More generally, for n ≥ 1, define the (absolute) Cartier operator
Cn := Cn,X of level n to be the composite

(1.3.5) Cn : WnΩ′iX �WnΩ′iX/dV
n−1Ωi−1

X
F
−1

−−−→
'

WnΩiX ,

where F : WnΩiX
'−→ WnΩ′iX/dV

n−1Ωi−1
X is the map in Lemma 1.13. When i = d is the top

degree we obtain the WnOX -linear map

(1.3.6) Cn : (WnFX)∗WnΩdX � (WnFX)∗WnΩdX/dV
n−1Ωd−1

X
F
−1

−−−→WnΩdX .

Remark 1.15. (1) According to the explicit formula for F , we have C = C1 [Ill79, I 3.3].
(2) Cn (for all n) are compatible with étale pullbacks. Actually any de Rham-Witt system (e.g.

(WnΩ•X , F, V,R, p, d)) is compatible with étale base change [CR12, 1.3.2].
(3) The n-th power of Frobenius F induces a map

F
n

: WnΩiX
'−→ Hi((WnFX)n∗WnΩ•X),

which is the same as [IR83, III (1.4.1)].
(4) Notice that on SpecWnk, Cn : Wnk →Wnk is simply the map (WnFk)−1, because F : Wn+1k →

Wnk equals R ◦Wn+1Fk in characteristic p.
Some notational remarks following classical literature:

a) We sometimes omit ”(WnFX)∗” in the source. But one should always keep that in mind and be
careful with the module structure.

b) We will simply write C for Cn sometimes. This shall not cause any confusion according to (1).

Before we move on, we state a remark on étale schemes over WnX.

Remark 1.16. (1) Notice that every étale WnX-scheme is of the form Wng : WnU →WnX, where
g : U → X is an étale X-scheme. In fact, there are two functors

F : {étale WnX-schemes}� {étale X-schemes} : G

V 7→ V ×WnX X

WnU ← [ U

The functor F is a categorical equivalence according to [EGAIV-4, Ch. IV, 18.1.2]. The functor
G is well-defined (i.e. produces étale WnX-schemes) and is a right inverse of F by [Hes15, Thm.
1.25]. We want to show that there is a natural isomorphism GF ' id, and this is the consequence
of the following purely categorical statement.

Categorically, if F : A → B and G : B → A are two functors satisfying both F being a
categorical equivalence and FG ' id, then G is a quasi-inverse of F , i.e., there exists a canonical
natural isomorphism GF ' id.

To show this, one first notices that G is fully faithful and essentially surjective. Indeed,
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• Fully faithfulness: for any U1, U2 ∈ B,

HomB(U1, U2)
G−→ HomA(G(U1), G(U2))

F−→
'
HomB(FG(U1), FG(U2)) ' HomB(U1, U2)

The last ' is induced by the natural isomorphism FG ' id. Thus the composition is the
identity map, and therefore the first map G : HomB(U1, U2) → HomA(G(U1), G(U2)) is an
isomorphism of sets.

• Essential surjectivity: for any V ∈ A, we want to show that there is a functorial isomorphism
GF (V ) ' V . Since FG ' id, we know that there is a functorial isomorphism FGF (V ) '
F (V ). The fully faithfulness of F then gives a canonical choice of a map GF (V ) → V ,
which must be an isomorphism again by the fully faithfulness of F .

As a result, G admits a quasi-inverse functor H : A → B. Now

GF ' GF ◦GH ' G ◦ (FG) ◦H ' GH ' id.
(2) The square

WnU

Wng

��

WnFU // WnU

Wng

��
WnX

WnFX // WnX.

is a cartesian square. For this, consider the following cartesian diagram

WnU
WnFU/X

((

WnFU

''

Wng

((

WnX ×WnFX ,WnX WnU

pr1

��

pr2 // WnU

Wng

��
WnX

WnFX // WnX.

WnFU/X is an isomorphism, since FU/X is [Fu15, 10.3.1].

We shall now state the main result in this subsection, which seems to be an old folklore (cf. proof
of [Kat87, 3.4]). To eliminate possible sign inconsistency of the Cartier operator with the Grothendieck
trace map calculated via residue symbols [Con00, Appendix A], we reproduce the proof by explicit
calculations (see Section 1.3.2-Section 1.3.3). And at the same time, this result justifies our notation for
C ′: The classical Cartier operator C is simply the (−d)-th cohomology of our C ′.

Theorem 1.17 (Compatibility of C ′ with C). Suppose that X is a smooth scheme of dimension d over
a perfect field k of characteristic p > 0. Then the top degree classical Cartier operator

C : (WnFX)∗WnΩdX/k →WnΩdX/k

as defined in Definition 1.14, agrees with the (−d)-th cohomology of the Cartier operator for residual
complexes

C ′ : (WnFX)∗WnΩdX/k →WnΩdX/k

as defined in (1.2.3) via Ekedahl’s quasi-isomorphism Proposition 1.11.

Proof. The Cartier operator is stable under étale base change, i.e., for any étale morphism Wng : WnX →
WnY (which must be of this form according to Remark 1.16(1)), we have

CX ' (Wng)∗CY : (WnFX)∗WnΩdX →WnΩdX .

We claim that the map C ′ defined in (1.2.3) is also compatible with étale base change. That is, whenever
we have an étale morphism Wng : WnX →WnY , there is a canonical isomorphism

C ′X ' (Wng)∗C ′Y : (WnFX)∗Kn,X → Kn,X .

First of all, the Grothendieck trace map TrWnFX for residual complexes is compatible with étale base
change by Proposition 1.10(5), i.e.,

TrWnFX ' g∗TrWnFY : (WnFX)∗(WnFX)4Kn,X → Kn,X .

Secondly, because of the cartesian square in Remark 1.16(2) and the flat base change theorem

(Wng)∗(WnFX)∗ ' (WnFX)∗(Wng)∗,
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we are reduced to show that (1.2.2) is compatible with étale base change. And this is true, because we
have

(Wng)∗ ' (Wng)4

by Proposition 1.9(2), and the compatibility of (−)4 with composition by Proposition 1.9(4). This
finishes the claim.

Note that the question is local on WnX. Thus to prove the statement for smooth k-schemes X, using
the compatibility of C and C ′ with respect to étale base change, it suffices to prove for X = Ad

k. That
is, we need to check that the expression given in Lemma 1.23 for C ′ agrees with the expression for C
given in Lemma 1.19. This is apparent. �

1.3.2. Proof of Theorem 1.17: C for the top Witt differentials on the affine space. Let k be a perfect
field of positive characteristic p. The aim of this subsection is to provide the formula for the Cartier
operator on the top degree de Rham-Witt sheaf over the affine space (Lemma 1.19). But before this, we
first show a lemma which will be used in the calculation of Lemma 1.19.

Lemma 1.18 (cf. [Kat86b, 4.1.2]). Let X be a smooth k-scheme. Then

V = p ◦ Cn : R∗WnΩ′iX →Wn+1ΩiX ,

where WnΩ′qX denotes the abelian sheaf F (Wn+1ΩiX) regarded as a WnOX-submodule of (WnFX)∗WnΩiX .

Proof. Consider the following diagram

Wn+1ΩiX

p

**
F // //

R
����

WnΩ′iX

pr
����

V //

Cn

$$

Wn+1ΩiX .

WnΩiX

id

77
F

'
// WnΩ′iX
dV n−1Ωi−1

X

F
−1

'
// WnΩiX

, �
p

::

Notice that F : WnΩi → WnΩ′i/dV n−1Ωi−1 is an isomorphism by Lemma 1.13, and therefore we can
take the inverse. All the small parts commute by definition (among these one notices that the top part
commutes because X is of characteristic p), except the triangle on the right. Moreover one has the outer
diagram commutes, due to the definition of p [Ill79, I 3.4]. Since F : Wn+1ΩdX → WnΩ′dX is surjective,
commutativity of the right triangle follows from the known commutativities. �

Lemma 1.19 (Cn on Ad). Let X = Ad
k. Then the Cartier operator (cf. Definition 1.14)

C := Cn : WnΩdX →WnΩdX

is given by the following formula:

C

(
α
( ∏
i∈I,vp(ji)≥1

[Xji−1
i ]nd[Xi]n

)
·
( ∏
i∈I,vp(ji)=0

[Xji−1
i ]nd[Xi]n

)

·
( ∏
i/∈I,si 6=n−1

dV si([Xji
i ]n−si)

)
·
( ∏
i/∈I,si=n−1

dV si([Xji
i ]n−si)

))

= (WnFk)−1(α)
( ∏
i∈I,vp(ji)≥1

[X
ji/p−1
i ]nd[Xi]n

)
·
( ∏
i∈I,vp(ji)=0

1

ji
dV ([Xji

i ]n−1)
)

·
( ∏
i/∈I,si 6=n−1

dV si+1([Xji
i ]n−si−1)

)
·
( ∏
i/∈I,si=n−1

0
)
,

where α ∈Wnk.

We remind the reader of our assumptions. When we write an element in some de Rham-Witt sheaf
in terms of a product with respect to an totally ordered index set, we make the following assumptions:
when an index set is empty, the respective factor of the product does not occur; when an index set
is non-empty, the factors of the product are ordered such that the indices are increasing. With these
assumptions we avoid any confusion concerning signs.
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Proof. Write X = {X1, . . . , Xd−1} (empty when d = 1) and S = Xd. According to [HM04, (4.2.1)], any
element in WnΩdk[X,S] is uniquely written as

(1.3.7)
∑
j≥1

b
(n)
0,j [Sj−1]nd[S]n +

n−1∑
s=1

∑
p-j

dV s(b
(n−s)
s,j [Sj ]n−s),

where b
(n)
0,j ∈ WnΩd−1

k[X], and for s ∈ [1, n − 1], b
(n−s)
s,j ∈ Wn−sΩ

d−1
k[X]. (Here we have used WnΩdk[X] = 0

and Wn−sΩ
d
k[X] = 0.)

Now compute

F : Wn+1Ωdk[X,S] →WnΩdk[X,S],

b
(n+1)
0,j [Sj−1]n+1d[S]n+1 7→ F (b

(n+1)
0,j )[Spj−1]nd[S]n;(1.3.8)

dV s(b
(n+1−s)
s,j [Sj ]n+1−s) 7→ dV s−1(b

(n+1−s)
s,j [Sj ]n+1−s);(1.3.9)

and

V : WnΩdk[X,S] →Wn+1Ωdk[X,S],

b
(n)
0,j [Sj−1]nd[S]n 7→ (−1)d−1 p

j
dV (b

(n)
0,j [Sj ]n) when vp(j) = 0.(1.3.10)

In the last equation we used db
(n)
0,j ∈WnΩdk[X] = 0.

Therefore, according to

(1) p = p ◦R where p is injective, by [Ill79, I 3.4],
(2) V = p ◦ Cn, by Lemma 1.18, and
(3) Cn ◦ F = R (because of (1)(2)),
(4) F : Wn+1Ωdk[X,S] →WnΩdk[X,S] is surjective,

one gets

Cn : WnΩdk[X,S] →WnΩdk[X,S](1.3.11)

b
(n)
0,j [Sj−1]nd[S]n

(j ≥ 1)

7→

{
Cn(b

(n)
0,j )[Sj/p−1]nd[S]n, vp(j) 6= 0; (by (1.3.8)

(−1)d−1

j dV (R(b
(n)
0,j )[Sj ]n−1), vp(j) = 0. (by (1.3.10))

dV s(b
(n−s)
s,j [Sj ]n−s)

(s ∈ [1, n− 1], p - j)
7→

{
dV s+1(R(b

(n−s)
s,j )[Sj ]n−s−1), 1 ≤ s ≤ n− 2; (by (1.3.9))

0, s = n− 1. (by Cn = F
−1 ◦ pr)

Note that Cn(b
(n)
0,j ) is computed via the induction on d: when d = 1,

Cn(b
(n)
0,j ) = (WnFk)−1(b

(n)
0,j ) ∈Wnk

because F = R ◦WnFk : Wnk →Wn−1k (note that chark = p).

Since b
(n)
0,j ∈WnΩd−1

k[X] could also be written in expression (1.3.7), we could further write (1.3.11) out.

That is to say, every element in WnΩd
Ad
k

is uniquely written as a sum of expressions of the form

(1.3.12) α
(∏
i∈I

[Xji−1
i ]nd[Xi]n

)( ∏
i∈[1,d]\I

dV si([Xji
i ]n−si)

)
,

where α ∈ Wnk, I ⊂ [1, d] an index subset (I is the set of indices taken the form [Xji−1
i ]d[Xi] and the

rest indices takes the form dV si([Xji
i ]n−si)), and

{ji}i∈[1,d], {si}i∈[1,d]\I

some integers, satisfying

• ji ≥ 1, when i ∈ I, and
• vp(ji) = 0 and si ∈ [1, n− 1] when i ∈ [1, d] \ I.

Cn maps each of the factors of (1.3.12) in the following way:

α 7→Wn(Fk)−1(α), α ∈Wnk,

[Xji−1
i ]nd[Xi]n 7→

{
[X

ji/p−1
i ]nd[Xi]n, vp(ji) ≥ 1;

1
ji
dV ([Xji

i ]n−1), vp(ji) = 0.
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dV si([Xji
i ]n−si) 7→

{
dV si+1([Xji

i ]n−si−1), si 6= n− 1;
0, si = n− 1.

�

1.3.3. Proof of Theorem 1.17: C ′ for the top Witt differentials on the affine space. The aim of Sec-
tion 1.3.3 is to calculate C ′ for top de Rham-Witt sheaves on the affine space (Lemma 1.23). To do this,
one needs to first calculate the trace map of the canonical lift of the absolute Frobenius.

1.3.3.1. Trace map of the canonical lift F̃X̃ of absolute Frobenius FX . Let k be a perfect field of positive

characteristic p. Let X = Ad
k, and let X̃ := SpecWn(k)[X1, . . . , Xd] be the canonical smooth lift of X

over Wn(k). To make explicit the module structures, we distinguish the source and the target of the
absolute Frobenius of Spec k and write it as

Fk : Spec k1 → Spec k2

Similarly, write the absolute Frobenius on X as

FX : X = Spec k1[X1, . . . , Xd]→ Y = Spec k2[X1, . . . , Xd].

There is a canonical lift F̃X̃ of FX over X̃, and we write it as

F̃X̃ : X̃ = SpecWn(k1)[X1, . . . , Xd]→ Ỹ := SpecWn(k2)[Y1, . . . , Yd].

F̃X̃ is given by

F̃ ∗
X̃

: Γ(Ỹ ,OỸ ) = Wn(k2)[Y1, . . . , Yd]→Wn(k1)[X1, . . . , Xd] = Γ(X̃,OX̃),

Wnk2 3 α 7→Wn(Fk)(α),

Yi 7→ Xp
i .

on the level of global sections. Clearly F̃X̃ restricts to FX on X. Let

πX : X → Spec k1, πY : Y → Spec k2, πX̃ : X̃ →Wnk1, πỸ : Ỹ →Wnk2

be the structure maps. The composition F̃X̃ ◦ πỸ : X̃ → SpecWnk2 gives X̃ a Wnk2-scheme structure,

and the map F̃X̃ is then a map of Wnk2-schemes. Therefore the trace map

TrF̃
X̃

: F̃X̃,∗F̃
4
X̃
KỸ → KỸ

makes sense. Consider the following map of complexes

F̃X̃,∗KX̃ ' F̃X̃,∗π
4
X̃
Wnk1

F̃
X̃,∗π

4
X̃

(1.2.1)
−−−−−−−−−→

∼
F̃X̃,∗π

4
X̃
WnF

4
k Wnk2 '

F̃X̃,∗F̃
4
X̃
π4
Ỹ
Wnk2 ' F̃X̃,∗F̃

4
X̃
KỸ

TrF̃
X̃−−−→ KỸ .

Taking the (−d)-th cohomology, it induces a map

(1.3.13) F̃X,∗Ω
d
X̃/Wnk1

→ Ωd
Ỹ /Wnk2

In the following lemma we will compute this map.

Lemma 1.20. The notations are the same as above. The map (1.3.13) has the following expression:

Ωd
X̃/Wnk1

(1.3.13)−−−−−→ Ωd
Ỹ /Wnk2

(1.3.14)

αXλ+pµdX 7→
{

(WnFk)−1(α)Y µdY , when λi = p− 1 for all i;
0, when λi 6= p− 1 for some i.

Here λ = {λ1, . . . , λd}, µ = {µ1, . . . , µd} are multi-indices, and Xλ := Xλ1
1 . . . Xλd

d (similar for Y µ,

Xλ+pµ, etc.), dX := dX1 . . . dXd (similar for dY , etc.).

Proof. Construct a regular immersion of X̃ into P̃ = Ad
Ỹ

associated to the following homomorphism of
rings:

Γ(P̃ ,OP̃ ) = Wn(k2)[Y1, . . . , Yd, T1, . . . , Td]→Wn(k1)[X1, . . . , Xd] = Γ(X̃,OX̃),

α 7→ (WnFk)(α), α ∈Wn(k2),

Yi 7→ Xp
i , i = 1, . . . , d,

Ti 7→ Xi, i = 1, . . . , d.
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Its kernel is

I = (T p1 − Y1, . . . , T
p
d − Yd).

Denote

ti = T pi − Yi, i = 1, . . . , d.

Obviously the ti’s form a regular sequence in Γ(P̃ ,OP̃ ). Denote by i the associated closed immersion.

Then one has a factorization of F̃X̃ :

(1.3.15) X̃ = SpecWn(k1)[X1, . . . , Xd]

F̃
X̃ ++

� � i // P̃ = SpecWn(k2)[Y1, . . . , Yd, T1, . . . , Td]

π

��
Ỹ = SpecWn(k2)[Y1, . . . , Yd].

Regarding X̃ as a Wnk2-scheme via the composite map F̃X̃ ◦ πỸ , the diagram (1.3.15) is then a diagram
in the category of Wnk2-schemes.

A general element in Γ(X̃,Ωd
X̃/Wnk1

) is a sum of expressions of the form

(1.3.16) αXλ+pµdX, α ∈Wnk1,λ ∈ [0, p− 1]d,µ ∈ Nd.

The element (1.3.16) in Γ(X̃,Ωd
X̃/Wnk1

) corresponds to

(1.3.17) (WnFk)−1(α)Xλ+pµdX, α ∈Wnk2,λ ∈ [0, p− 1]d,µ ∈ Nd,

in Γ(X̃,Ωd
X̃/Wnk2

) under (−d)-th cohomology of the map F̃X̃,∗π
4
X̃

(1.2.1), and

(WnFk)−1(α)TλY µdT , α ∈Wnk2,λ ∈ [0, p− 1]d,µ ∈ Nd

is a lift of (1.3.17) to Γ(P̃ ,Ωd
P̃/Wnk2

). Write

β : = dtd . . . dt1 · (WnFk)−1(α)TλY µdT

= (−1)ddYd . . . dY1 · (WnFk)−1(α)TλY µdT

in Γ(P̃ , ωP̃ /Wnk2
) (ωP̃ /Wnk2

denotes the dualizing sheaf with respect to the smooth morphism P̃ →
Wnk2). One can write out the image of β under map [Con00, p.30 (a)], i.e.,

ωP̃ /Wnk2
' ωP̃ /Ỹ ⊗OP̃ π

∗ωỸ /Wnk2
,

β 7→ (−1)
d(3d+1)

2 (WnFk)−1(α)TλdT ⊗ π∗Y µdY .

where ωP̃ /Ỹ and ωỸ /Wnk2
denote the dualizing sheaf with respect to the smooth morphisms π : P̃ → Ỹ

and Ỹ → Wnk2. It’s easily seen that F̃X̃ is a finite flat morphism between smooth Wnk2-schemes.
Applying [CR11, Lemma A.3.3], one has

TrF̃
X̃

((WnFk)−1(α)Xλ+pµdX) = (WnFk)−1(α) ResP̃ /Ỹ

[
TλdT
t1, . . . , td

]
Y µdY ,

where ResP̃ /Ỹ

[
TλdT
t1, . . . , td

]
∈ Γ(Ỹ ,OỸ ) is the residue symbol defined in [Con00, (A.1.4)], and TrF̃

X̃
is

the trace map on top differentials [Con00, (2.7.36)].
We consider the following cases (in the following (RN) with N ∈ [1, 10] being a positive integer means

the corresponding property from [Con00, §A]):

• When (λ1, . . . , λn) 6= (p− 1, . . . , p− 1), TλdT = dη for some η ∈ Ωd−1

P̃ /Ỹ
. Suppose without loss of

generality that λ1 6= p− 1. Then we can take

η =
1

λ1 + 1
Tλ1+1

1 Tλ2
2 . . . Tλdd dT2 . . . dTd.

Noticing that

dti = d(T pi − Yi) = pT p−1
i dTi

in ΩP̃ /Ỹ , and that λ1 + mp + 1 (m ∈ Z>0) is not divisible by p when λ1 + 1 is so. Now we

calculate

ResP̃ /Ỹ

[
TλdT
t1, . . . , tn

]
=

1

λ1 + 1
ResP̃ /Ỹ

[
d(Tλ1+1

1 Tλ2
2 . . . Tλdd dT2 . . . dTd)
t1, t2, . . . , tn

]
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=
p

λ1 + 1
ResP̃ /Ỹ

[
Tλ1+p

1 Tλ2
2 . . . Tλdd dT1dT2 . . . dTd
t21, t2, . . . , tn

]
(by (R9))

=
p

(λ1 + 1)(λ1 + p+ 1)
ResP̃ /Ỹ

[
d(Tλ1+p+1

1 Tλ2
2 . . . Tλdd dT2 . . . dTd)
t21, t2, . . . , tn

]
=

2p2

(λ1 + 1)(λ1 + p+ 1)
ResP̃ /Ỹ

[
Tλ1+2p

1 Tλ2
2 . . . Tλdd dT1dT2 . . . dTd
t31, t2, . . . , tn

]
(by (R9))

=
2p2∏2

i=0(λ1 + ip+ 1)
ResP̃ /Ỹ

[
d(Tλ1+2p+1

1 Tλ2
2 . . . Tλdd dT2 . . . dTd)

t31, t2, . . . , tn

]
=

6p3∏2
i=0(λ1 + ip+ 1)

ResP̃ /Ỹ

[
Tλ1+3p

1 Tλ2
2 . . . Tλdd dT1dT2 . . . dTd
t41, t2, . . . , tn

]
(by (R9))

= . . .

=
(
∏n
i=1 i) · pn∏n−1

i=0 (λ1 + ip+ 1)
ResP̃ /Ỹ

[
Tλ1+np

1 Tλ2
2 . . . Tλdd dT1dT2 . . . dTd
tn+1
1 , t2, . . . , tn

]
(by (R9))

= 0.

The last step is because pn = 0 in Γ(Ỹ ,OỸ ).
• When (λ1, . . . , λn) = (p− 1, . . . , p− 1), consider

(1.3.18) X ′ := Spec
Z[Y ′1 ,...,Y

′
d ,T
′
1,...,T

′
d]

(T ′1
p−Y ′1 ,...,T ′d

p−Y ′d)

f
++

� � // SpecZ[Y ′1 , . . . , Y
′
d , T

′
1, . . . , T

′
d] =: P ′

��
SpecZ[Y ′1 , . . . , Y

′
d ] =: Y ′.

f is given by f∗(Y ′i ) = Y ′i = T ′i
p

in Γ(X ′,OX′). This is a finite locally free morphism of rank pd.
Consider the map

h : Γ(Y ′,OY ′) = Z[Y ′1 , . . . , Y
′
d ]→Wn(k2)[Y1, . . . , Yd] = Γ(Ỹ ,OỸ ),

Y ′i 7→ Yi for all i,

that relates the two diagrams (1.3.18) and (1.3.15). In Γ(Y ′,OY ′), we have

pd · ResP ′/Y ′

[
T ′1
p−1

. . . T ′d
p−1

dT ′1 . . . dT
′
d

T ′1
p − Y ′1 , . . . , T ′d

p − Y ′d

]
= ResP ′/Y ′

[
d(T ′1

p − Y ′1) . . . d(T ′d
p − Y ′d)

T ′1
p − Y ′1 , . . . , T ′d

p − Y ′d

]
(R6)
= TrX′/Y ′(1)

= pd.

The symbol TrX′/Y ′ denotes the classical trace map associated to the finite locally free ring
extension Γ(Y ′,OY ′) → Γ(X ′,OX′). (We are following [Con00] for this notation. The meaning
of this symbol is hidden in [Con00, (R6)] and its proof.) As for the last equality, TrX′/Y ′(1) = pd

because f is a finite locally free map of rank pd. Since pd is a non-zerodivisor in Γ(Y ′,OY ′), one
deduces

ResP ′/Y ′

[
T ′1
p−1

. . . T ′d
p−1

dT ′1 . . . dT
′
d

T ′1
p − Y ′1 , . . . , T ′d

p − Y ′d

]
= 1.

Set
T p−1 = T p−1

1 . . . T p−1
d ,

which is the canonical lift of Xλ via the map i : X̃ ↪→ P̃ in our current case. Pulling back to

Γ(Ỹ ,OỸ ) via h, one has

ResP̃ /Ỹ

[
T p−1dT
t1, . . . , td

]
(R5)
= h∗ResP ′/Y ′

[
T ′1
p−1

. . . T ′d
p−1

dT ′1 . . . dT
′
d

T ′1
p − Y ′1 , . . . , T ′d

p − Y ′d

]
= 1.(1.3.19)

Altogether, we know that the map (1.3.13) takes the following expression

Ωd
X̃/Wnk1

→ Ωd
Ỹ /Wnk2

αXλ+pµdX 7→
{

(WnFk)−1(α)Y µdY , when λi = p− 1 for all i;
0, when λi 6= p− 1 for some i.

�
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1.3.3.2. C ′ for top Witt differentials. Now we turn to the Wn-version. The aim of this subsection is to
calculate C ′ for top Witt differentials on Ad

k (Lemma 1.23).
Let k be a perfect field of positive characteristic p. Let Spec k be the base scheme and f : X → Y a

finite morphism between smooth, separated and equidimensional k-schemes, which both have dimension
d. Same as in the main text, we denote by πX : X → k and πY : Y → k the respective structure maps.
Kn,X := (WnπX)4Wnk,Kn,Y = (WnπY )4Wnk are residual complexes on X and Y . Then we define the
trace map

(1.3.20) TrWnf : (Wnf)∗(WnΩdX)→WnΩdY

to be the (−d)-th cohomology map of the composition

(1.3.21) TrWnf : (Wnf)∗Kn,X ' HomWnOY ((Wnf)∗WnOX ,Kn,Y )
ev. at 1−−−−−→ Kn,Y

via Ekedahl’s isomorphism WnΩdX ' H−d(Kn,X) [Eke84, §I].
Computation of the trace map is a local problem on Y . Thus by possibly shrinking Y we could assume

that Y and therefore also X is affine. In this case, there exist smooth affine Wnk-schemes X̃ and Ỹ

which lift X and Y . Denote the structure morphisms of X̃, Ỹ by πX̃ and πỸ , respectively. We claim that

there exists a finite Wnk-morphism f̃ : X̃ → Ỹ lifting f : X → Y . In fact, by the formal smoothness

property of Ỹ ,

Ỹ

πỸ

��

Y
* 


ĩY

88

X

f

99

� � ĩX // X̃

f̃

@@

π
X̃ // Wnk,

we know there exists a morphism (not unique in general) f̃ : X̃ → Ỹ lifting f : X → Y . Any such lift f̃

is proper and quasi-finite, because its reduced morphism f is. Thus f̃ is finite. This proves the claim.
Consider the map of abelian sheaves [Eke84, I (2.3)]

%∗Y : WnOY
ϑY−−→
'
H0(Ω•

Ỹ /Wnk
) ↪→ OỸ ,(1.3.22)

n−1∑
i=0

V i([ai]) 7→ ãp
n

0 + pãp
n−1

1 + · · ·+ pn−1ãpn−1,

where ai ∈ OY , and ãi ∈ OỸ being arbitrary liftings of ai. The map ϑY appearing above is the i = 0
case of the canonical isomorphism defined in [IR83, III. 1.5]

ϑY : WnΩiY
'−→ Hi(Ω•

Ỹ /Wnk
).(1.3.23)

In the following lemma we will use WnΩ•
Ỹ /Wnk

to denote the relative de Rham-Witt complex defined

by [LZ04].

Lemma 1.21. Notations are the same as above.

(1) (Ekedahl) %∗Y : WnOY → OỸ is a morphism of sheaves of rings. And it induces a finite morphism

%Y : WnY → Ỹ .
(2) ([BER12, 8.4(ii)]) There is a commutative diagram

Wn+1Ωq
Ỹ /Wnk

Fn //

��

Zq(Ω•
Ỹ /Wnk

)

��
WnΩqY

ϑY // Hq(Ω•
Ỹ /Wnk

).

In particular,

(1.3.24) ϑY (

n−1∑
i=0

dV i([ai])) =

n−1∑
i=0

FndV i([ãi]) = ãp
n−1

0 dã0 + ãp
n−1−1

1 dã1 + · · ·+ ãp−1
n−1dãn−1.
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Proof. (1) Let ãi ∈ OỸ be any lift of ai ∈ OY for 0 ≤ i ≤ n− 1. ãn is an arbitrary element in OỸ .
Since pnãn = 0 in OỸ , one has the equality

%∗Y (

n−1∑
i=0

V i([ai])) = ghn(ã0, . . . , ãn),

where ghn is the n-th component of the ghost map [Ill79, 0 (1.1.3)]

gh : Wn+1OỸ → (O⊕(n+1)

Ỹ
,+, ∗),

(ã0, . . . , ãn) 7→ (ã0, ã
p
0 + pã1, . . . ,

n∑
i=0

piãp
n−i

i ).

The ghost map is a ring map, where (O⊕(n+1)

Ỹ
,+, ∗) denotes O⊕(n+1)

Ỹ
equipped with the ring

structure of the termwise addition and multiplication. Therefore %∗Y is a ring map. The second
statement on finiteness is proven in [Eke84, I, paragraph after (2.4)].

(2) One just need to check for q = 0: for higher q, both ϑY and Fn are generated by the q = 0

case as morphisms of differential graded algebras. Take
∑n−1
i=0 V

i([ai]n−i) ∈ WnOY . Then∑n
i=0 V

i([ãi]n+1−i) ∈ Wn+1OỸ is a lift. Fn(
∑n
i=0 V

i([ãi]n+1−i)) =
∑n
i=0 p

iFn−i([ãi]n+1−i) =∑n
i=0 p

iãp
n−i

i . We are done with the relation pnãn = 0 in OỸ .
�

With the help of Lemma 1.21(1), we have the following commutative diagram of schemes (cf. [Eke84,
I. (2.4)])

X̃

f̃

��

%X // WnX

Wnf

��

X

f

��

. �

ĩX

==

X

f

��

. �

iX

<<

Ỹ

πỸ

��

%Y // WnY

WnπY

��

Y

πY

��

. �

ĩY

==

Y

πY

��

. �

iY

<<

Wnk
'

Wn(Fnk )
// Wnk.

k
. �

<<

'
Fnk

// k
- 


<<

Lemma 1.22. Notations are the same as in Lemma 1.21. Set KX̃ = π4
X̃
Wnk, and KỸ = π4

Ỹ
Wnk. The

(−d)-th cohomology of the map Trf̃ : f̃∗KX̃ → KỸ gives a map f̃∗Ω
d
X̃
→ Ωd

Ỹ
, which we again denote by

Trf̃ . Then by passing to quotients, this map Trf̃ induces a well-defined map

τf̃ : Hd(f̃∗Ω•X̃)→ Hd(Ω•
Ỹ

).

Moreover, the map τf̃ is compatible with TrWnf defined in (1.3.21) :

(Wnf)∗WnΩdX
TrWnf //

(Wnf)∗ϑX '
��

WnΩdY

ϑY '

��
(%Y f̃)∗Hd(Ω•X̃)

(%Y )∗τf̃ // (%Y )∗Hd(Ω•Ỹ )

Proof. We do it the other way around, namely we define the map τf̃ : Hd(f̃∗Ω•X̃) → Hd(Ω̃•
Ỹ

) via

TrWnf : (Wnf)∗WnΩdX →WnΩdY , and then show that this is the reduction of Trf̃ : f̃∗Ω
d
X̃
→ Ωd

Ỹ
.
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First of all, via isomorphisms ϑX , ϑY , the map TrWnf : (Wnf)∗WnΩdX → WnΩdY defined in (1.3.21

induces a well-defined map τf̃ : Hd(f̃∗Ω•X̃) → Hd(Ω•
Ỹ

). To show compatibility with Trf̃ , one needs an

observation of Ekedahl: Ekedahl observed that the composite

tY : (%Y )∗Ω
d
Ỹ /Wnk

[d]
'−→ (%Y )∗KỸ ' (%Y )∗π

4
Ỹ
Wnk

(%Y )∗π
4
Ỹ

(1.2.1)n

−−−−−−−−−−−→
'

(%Y )∗π
4
Ỹ

(WnF
n
k )4Wnk ' (%Y )∗(%Y )4(WnπY )4Wnk

Tr%Y−−−→ Kn,Y

factors through tY : (%Y )∗Hd(Ω•Ỹ /Wnk
)[d] → Kn,Y (cf. [Eke84, §1 (2.6)]). Then he defined the map

WnΩdY [d]→ Kn,Y to be the composite

(1.3.25) sY : WnΩdY [d]
ϑY−−→
'
Hd(Ω•

Ỹ /Wnk
)[d]

tY−→ Kn,Y .

Now consider the following diagram of complexes of sheaves

(Wnf)∗Kn,X

TrWnf // Kn,Y

(Wnf)∗WnΩdX [d]

(Wnf)∗sX
66

TrWnf //

(Wnf)∗ϑX '

��

WnΩdY [d]

sY

66

ϑY '

��

(%Y f̃)∗Ω
d
X̃

[d]

ww

(Wnf)∗tX

OO

(%Y )∗ Tr
f̃ // (%Y )∗Ω

d
Ỹ

[d].

ww

tY

OO

(%Y f̃)∗Hd(Ω•X̃)[d]
(%Y )∗τf̃ //

(Wnf)∗tX

EE

(%Y )∗Hd(Ω•Ỹ )[d]

tY

FF

The unlabeled arrows are given by the natural quotient maps. The front commutes by the definition of τf̃ .

The top commutes by the definition of TrWnf : (Wnf)∗WnΩdX →WnΩdY . The triangles in the right (resp.
the left) side commute due to the definition of tY and sY (resp. tX and sX). The back square commutes,
because the trace map Trf̃ is functorial with respect to maps residual complexes with the same associated

filtration by Proposition 1.10(3). We want to show that the bottom square commutes. To this end, it

suffices to show (%Y )∗ Trf̃ : (%Y f̃)∗Ω
d
X̃
→ (%Y )∗Ω

d
Ỹ

is compatible with TrWnf : (Wnf)∗WnΩdX → WnΩdY
via ϑX and ϑY . Because the map TrWnf : (Wnf)∗WnΩdX → WnΩdY is determined by the degree −d
part of the map TrWnf : (Wnf)∗Kn,X → Kn,Y , we are reduced to show compatibility of (%Y )∗ Trf̃ :

(%Y f̃)∗Ω
d
X̃
→ (%Y )∗Ω

d
Ỹ

with TrWnf : (Wnf)∗Kn,X → Kn,Y via (Wnf)∗(sX ◦ ϑ−1
X ) and sY ◦ ϑ−1

Y . By

commutativity of the left and right squares, this is reduced to the commutativity of the square on the
back, which is known. Therefore the bottom square commutes as a result. �

τf̃ is just a temporary notation for the lemma above. Later we will denote τf̃ by Trf̃ .

Lemma 1.23. Let X = Ad
k. Let

C ′ = C ′n : WnΩdX →WnΩdX .

be the map given by the −d-th cohomology of the level n Cartier operator for residual complexes (cf.
(1.2.3)). Then C ′ is given by the following formula:

C ′

(
α
( ∏
i∈I,vp(ji)≥1

[Xji−1
i ]nd[Xi]n

)( ∏
i∈I,vp(ji)=0

[Xji−1
i ]nd[Xi]n

)
( ∏
i/∈I,si 6=n−1

dV si([Xji
i ]n−si)

)( ∏
i/∈I,si=n−1

dV si([Xji
i ]n−si)

))

= (WnFk)−1(α)
( ∏
i∈I,vp(ji)≥1

[X
ji/p−1
i ]nd[Xi]n

)( ∏
i∈I,vp(ji)=0

1

ji
dV ([Xji

i ]n−1)
)



26 ( ∏
i/∈I,si 6=n−1

dV si+1([Xji
i ]n−si−1)

)( ∏
i/∈I,si=n−1

0
)
,

where α ∈Wnk.

Proof. Consider the map WnFX : WnX → WnX with X := Ad
k. It is not a map of Wnk-schemes a

priori, but after labeling the source by WnX := WnAd
k1

and the target by WnY := WnAd
k2

, one can
realize WnFX as a map of Wnk2-schemes (the Wnk2-scheme structure of WnX is given by WnFX ◦WnπY ,
where πY : Y → k2 denotes the structure morphism of the scheme Y ). Write

X̃ = Ad
Wnk1

= SpecWnk1[X1, . . . , Xd] (resp. Ỹ = Ad
Wnk2

= SpecWnk2[X1, . . . , Xd]),

and take the canonical lift F̃X̃ of FX as in example Lemma 1.20. Consider
(1.3.26)

(WnFX)∗WnΩdX/k1

(WnFX)∗(1.2.2)

'
//

(WnFX)∗ϑX

��

(WnFX)∗WnΩdX/k2

TrWnFX //

(WnFX)∗ϑX

��

WnΩdY/k2

ϑY

��
(%Y F̃X̃)∗Hd(Ω•X̃/Wnk1

)
(%Y F̃X̃)∗π

4
X̃

(1.2.1)

'
// (%Y F̃X̃)∗Hd(Ω•X̃/Wnk2

)
(%Y )∗(TrF̃

X̃
)

// (%Y )∗Hd(Ω•Ỹ /Wnk2
).

The composite map of the top row is C ′ (cf. (1.2.3) and Ekedahl’s quasi-isomorphism Proposition 1.11).
The composite of the bottom row is induced from %Y,∗(1.3.13). The right side commutes due to
Lemma 1.22. The left side commutes by naturality.

Given an index set I ⊂ [1, d] and integers {ji}i∈[1,d], {si}i∈[1,d]\I satisfying

• ji ≥ 1, when i ∈ I, and
• vp(ji) = 0 and si ∈ [1, n− 1] when i ∈ [1, d] \ I,

recall that a general element in WnΩdX/k1
is the sum of expressions of the following form (cf. (1.3.12))

(1.3.27) α
(∏
i∈I

[Xji−1
i ]nd[Xi]n

)(∏
i/∈I

dV si([Xji
i ]n−si)

)
,

where α ∈Wnk1. One can also write this expression (1.3.27) in terms of finer index sets:

α
( ∏
i∈I,vp(ji)≥1

[Xji−1
i ]nd[Xi]n

)( ∏
i∈I,vp(ji)=0

[Xji−1
i ]nd[Xi]n

)
( ∏
i/∈I,si 6=n−1

dV si([Xji
i ]n−si)

)( ∏
i/∈I,si=n−1

dV si([Xji
i ]n−si)

)
.

where α ∈ Wnk1 (which might differ from the α in (1.3.27) by a sign because we might have changed
the order of the factors in the (non-commutative) product). As we explained after diagram (1.3.26), we
can decompose C ′ in the following way:

C ′ = ϑ−1
Y ◦ (1.3.13) ◦ ϑX : WnΩdX/k1

→WnΩdY/k2
.

According to the explicit formula (1.3.14) for the map (1.3.13), and the explicit formula (1.3.24) for the
maps ϑX , ϑY , one could perform the following calculations:

C ′

(
α
( ∏
i∈I,vp(ji)≥1

[Xji−1
i ]nd[Xi]n

)( ∏
i∈I,vp(ji)=0

[Xji−1
i ]nd[Xi]n

)
( ∏
i/∈I,si 6=n−1

dV si([Xji
i ]n−si)

)( ∏
i/∈I,si=n−1

dV si([Xji
i ]n−si)

))

= (ϑ−1
Y ◦ (1.3.13))

(
Wn(Fk)n(α)

( ∏
i∈I,vp(ji)≥1

Xpnji−1
i dXi

)( ∏
i∈I,vp(ji)=0

Xpnji−1
i dXi

)
( ∏
i/∈I,si 6=n−1

jiX
pn−si ji−1
i dXi

)( ∏
i/∈I,si=n−1

jiX
pn−si ji−1
i dXi

))

= ϑ−1
Y

(
Wn(Fk)n−1(α)

( ∏
i∈I,vp(ji)≥1

Xpn−1ji−1
i dXi

)( ∏
i∈I,vp(ji)=0

Xpn−1ji−1
i dXi

)
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( ∏
i/∈I,si 6=n−1

jiX
pn−si−1ji−1
i dXi

)( ∏
i/∈I,si=n−1

jiX
pn−si−1ji−1
i dXi

))

= (WnFk)−1(α)
( ∏
i∈I,vp(ji)≥1

[X
ji/p−1
i ]nd[Xi]n

)( ∏
i∈I,vp(ji)=0

1

ji
dV ([Xji

i ]n−1)
)

( ∏
i/∈I,si 6=n−1

dV si+1([Xji
i ]n−si−1)

)( ∏
i/∈I,si=n−1

0
)
.

�

1.3.4. Criterion for surjectivity of C ′ − 1. The following proposition is proven in the smooth case by
Illusie-Raynaud-Suwa [Suw95, 2.1]. The proof presented here is due to Rülling.

Proposition 1.24 (Raynaud-Illusie-Suwa). Let k = k be an algebraically closed field of characteristic
p > 0. X is a separated scheme of finite type over k. Then for every i, C ′ − 1 induces a surjective map
on global cohomology groups

Hi(WnX,Kn,X) := Hi(RΓ(WnX,Kn,X))
C′−1−−−→ Hi(WnX,Kn,X).

Proof. Take a Nagata compactification of X, i.e., an open immersion

j : X ↪→ X

such that X is proper over k. The boundary X \ X is a closed subscheme in X. By blowing up in X
one could assume X \X is the closed subscheme associated to an effective Cartier divisor D on X. We
could thus assume j is an affine morphism. Therefore

Wnj : WnX ↪→WnX

is also an affine morphism.
For any quasi-coherent sheaf M on WnX, the difference between M and (Wnj)∗(Wnj)

∗M are pre-
cisely those sections that have poles (of any order) at SuppD = WnX \WnX. Suppose that the effective
Cartier divisor D is represented by (Ui, fi)i, where {Ui}i is an affine cover of X, and fi ∈ Γ(Ui,OX).
Recall that OX(mD) denotes the line bundle on X which is the inverse (as line bundles) of the m-th

power of the ideal sheaf of X \X ↪→ X. Locally, one has an isomorphism

OX(mD) |Ui' OUi ·
1

fmi

for each i. Denote by WnOX(mD) the line bundle on WnX such that

WnOX(mD) |Ui'WnOUi ·
1

[fi]m
,

where [−] = [−]n denotes the Teichmüller lift. Denote

M(mD) :=M⊗WnOX WnOX(mD).

The natural map

(1.3.28) M(∗D) := colimmM(mD)
'−→ (Wnj)∗(Wnj)

∗(M(mD)) = (Wnj)∗(Wnj)
∗M

is an isomorphism of sheaves. Here the inductive system on the left hand side is given by the natural
map

M(mD) :=M⊗WnOX WnOX(mD)→M⊗WnOX WnOX((m+ 1)D)

induced from the inclusion WnOX(mD) ↪→ WnOX((m + 1)D), i.e., locally on Ui, this inclusion is the
map

WnOX(mD) |Ui ↪→WnOX((m+ 1)D) |Ui
a

[fi]m
7→ a[fi]

[fi]m+1
.

where a ∈WnOUi . As a result,

Hi(WnX, (Wnj)
∗M) = Hi(RΓ(WnX,R(Wnj)∗(Wnj)

∗M))

= Hi(RΓ(WnX, (Wnj)∗(Wnj)
∗M)) (Wnj is affine)

= Hi(RΓ(WnX, colimmM(mD)) (1.3.28)

= colimmH
i(WnX,M(mD)).
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Apply this to the bounded complex Kn,X of injective quasi-coherent WnOX -modules. (1.3.28) imme-
diately gives an isomorphism of complexes

(1.3.29) Kn,X(∗D) := colimmKn,X(mD)
'−→ (Wnj)∗Kn,X ,

and an isomorphism of Wnk-modules

colimmH
i(WnX,Kn,X(mD)) = Hi(WnX,Kn,X).

Via the projection formula and tensoring

C ′ : (WnFX)∗Kn,X → Kn,X

with WnOX(mD), one gets a map

(WnFX)∗(Kn,X ⊗WnOX WnOX(pmD)) ' (WnFX)∗(Kn,X ⊗WnOX F
∗
XWnOX(mD))

' (WnFX)∗(Kn,X)⊗WnOX WnOX(mD)
C′⊗idWnOX (mD)

−−−−−−−−−−−→ Kn,X ⊗WnOX WnOX(mD).

Pre-composing with the natural map

(WnFX)∗(Kn,X ⊗WnOX WnOX(mD))→ (WnFX)∗(Kn,X ⊗WnOX WnOX(pmD)),

and taking global section cohomologies, one gets

C ′ : Hi(WnX,Kn,X(mD))→ Hi(WnX,Kn,X(mD)).

To show surjectivity of

C ′ − 1 : Hi(WnX,Kn,X) −→ Hi(WnX,Kn,X),

it suffices to show surjectivity for

C ′ − 1 : Hi(WnX,Kn,X(mD))→ Hi(WnX,Kn,X(mD)).

Because Hq(Kn,X) are coherent sheaves for all q, Hq(Kn,X ⊗WnOX WnOX(mD)) = Hq(Kn,X) ⊗WnOX
WnOX(mD) are also coherent, therefore the local-to-global spectral sequence implies that

M := Hi(WnX,Kn,X(mD))

is a finite Wnk-module. Now M is equipped with an endomorphism C ′ which acts p−1-linearly (cf.
Definition A.14). The proposition is then a direct consequence of the following Lemma 1.25.

�

Lemma 1.25. Let k be a separably closed field of characteristic p and M be a finite Wnk-module. Let
T be a p±1-linear map on M . Then

T − 1 : M →M

is surjective.

This lemma is adapted from [SGA7-II, Exposé XXII], where it is stated in p-linearity version and for
a k-vector space. We remark that for a perfect field to be separably closed, it is equivalent for it to be
algebraically closed. For its proof, see Appendix Section A, Proposition A.15 and Remark A.13.

The following proposition is a corollary of [Suw95, Lemma 2.1]. We restate it here as a convenient
reference.

Proposition 1.26 (Raynaud-Illusie-Suwa). Assume k = k. When X is separated smooth over k of pure
dimension d,

C − 1 : WnΩdX →WnΩdX
is surjective.

Proof. Apply affine locally theH−d-case of Proposition 1.24. Then Ekedahl’s quasi-isomorphismWnΩdX [d] '
Kn,X from Proposition 1.11 together with compatibility of C ′ and C from Theorem 1.17 gives the
claim. �

Remark 1.27. When X is Cohen-Macaulay of pure dimension d, WnX is also Cohen-Macaulay of pure
dimension d, and thus Kn,X,t is concentrated at degree −d for all n [Con00, 3.5.1]. Denote by WnωX
the only nonzero cohomology sheaf of Kn,X in this case. Then the same reasoning as in Proposition 1.26

shows that when k = k and X is Cohen-Macaulay over k of pure dimension, the map

C ′ − 1 : WnωX →WnωX

is surjective.
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1.3.5. Comparison between WnΩdX,log and Kn,X,log. Let X be a k-scheme. Denote by d log the following
map of abelian étale sheaves

d log : (O∗X,ét)
⊗q →WnΩqX,ét,

a1 ⊗ · · · ⊗ aq 7→ d log[a1]n . . . d log[aq]n,

where a1, . . . , aq ∈ O∗X,ét, [−]n : OX,ét → WnOX,ét denotes the Teichmüller lift, and d log[ai]n := d[ai]n
[ai]n

.

We will denote its sheaf theoretic image by WnΩqX,log,ét and call it the étale sheaf of log forms. We

denote by WnΩqX,log := WnΩqX,log,Zar := ε∗WnΩqX,log,ét, and call it the Zariski sheaf of log forms.

Lemma 1.28 ([CSS83, lemme 2], [GS88a, 1.6(ii)]). Let X be a smooth k-scheme. Then we have the
following left exact sequences

(1.3.30) 0→WnΩqX,log →WnΩqX
1−F−−−→WnΩqX/dV

n−1,

(1.3.31) 0→WnΩqX,log →WnΩ′qX
C−1−−−→WnΩqX ,

where WnΩ′qX := F (Wn+1ΩqX). The last maps are also surjective when t = ét.

Still we assume X to be a smooth k scheme of pure dimension d. Use shortened notation

Dn := Cone(WnΩdX [d]
Cn−1−−−−→WnΩdX [d])[−1].

We have a map of distinguished triangles in general

(1.3.32) Kn,X,log
// Kn,X

C′n−1 // Kn,X
+1 //

Dn

OO

// WnΩdX [d]

OO

Cn−1 // WnΩdX [d]

OO

+1 // .

Its commutativity is guaranteed by Theorem 1.17.
The following proposition collects what we have done so far.

Proposition 1.29 (cf. [Kat87, Prop. 4.2]). X is smooth of pure dimension d over a perfect field k.
Then

(1) The natural map Dn → Kn,X,log is a quasi-isomorphism. Moreover,

H−d(Kn,X,log) = WnΩdX,log,

H−d+1(Kn,X,log) = Coker(WnΩdX
Cn−1−−−−→WnΩdX),

Hi(Kn,X,log) = 0, for all i 6= −d,−d+ 1.

(2) When k = k, the natural map

WnΩdX,log[d] −→ Kn,X,log

is a quasi-isomorphism of complexes of abelian sheaves (equivalently, one has H−d+1(Kn,X,log) =
0).

Proof. (1) The map Dn → Kn,X,log is a quasi-isomorphism by the five lemma and WnΩdX [d]
'−→ Kn,X

by Proposition 1.11. We have H−d(Dn) = WnΩdX,log by the exact sequence (1.3.31).

(2) Proposition 1.26+(1) above.
�

1.4. Localization triangle associated to Kn,X,log.

1.4.1. Definition of TrWnf,log.

Proposition 1.30 (Proper pushforward, cf. [Kat87, (3.2.3)]). Let f : X → Y be a proper map between
separated schemes of finite type over k. Then so is Wnf : WnX →WnY , and we have a map

TrWnf,log : (Wnf)∗Kn,X,log → Kn,Y,log
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of complexes that fits into the following commutative diagram of complexes, where the two rows are
distinguished triangles in Db(WnX,Z/pn)

(Wnf)∗Kn,X,log
//

TrWnf,log

��

(Wnf)∗Kn,X
C′−1 //

TrWnf

��

(Wnf)∗Kn,X
//

TrWnf

��
Kn,Y,log

// Kn,Y
C′−1 // Kn,Y

// .

Moreover TrWnf,log is compatible with composition and open restriction.

This is the covariant functoriality of Kn,X,log with respect to proper morphisms. Thus we also denote
TrWnf,log by f∗.

Proof. It suffices to show the following diagrams commute.

(WnFY )∗(Wnf)∗Kn,X '
(WnFY )∗(Wnf)∗(1.2.2)//

(WnFY )∗ TrWnf

��

(WnFY )∗(Wnf)∗(WnFX)4Kn,X

(WnFY )∗ TrWnf

��
(WnFY )∗Kn,Y '

(WnFY )∗(1.2.2) // (WnFY )∗(WnFY )4Kn,Y ,

(WnFY )∗(Wnf)∗(WnFX)4Kn,X

(WnFY )∗ TrWnf

��

' // (Wnf)∗(WnFX)∗(WnFX)4Kn,X

(Wnf)∗ TrWnFX // (Wnf)∗Kn,X

TrWnf

��
(WnFY )∗(WnFY )4Kn,Y

TrWnFY // Kn,Y ,

where TrWnf on the right of the first diagram and the left of the second diagram denotes the trace map
of residual complex (WnFY )4Kn,Y :

TrWnf : (Wnf)∗(WnFX)4Kn,X ' (Wnf)∗(Wnf)4(WnFY )4Kn,Y → (WnFY )4Kn,Y .

Commutativity of the first diagram is due to functoriality of the trace map with respect to residual
complexes with the same associated filtration Proposition 1.10(3). Commutativity of the second is
because of compatibility of the trace map with composition of morphisms Proposition 1.10(4). �

1.4.2. TrWnf,log in the case of a nilpotent immersion. Before stating the main result of this section, we
state a lemma on compatibilities.

Lemma 1.31. (1) The following diagram is commutative for any finite morphism f : X → Y of
k-schemes

(Wnf)∗Kn,X

TrWnf

��

' // HomWnOY ((Wnf)∗(WnOX),Kn,Y )

((Wnf)∗)∨

��
ev1

ss
Kn,Y '

// HomWnOY (WnOY ,Kn,Y ).

Here ev1 denotes the evaluation-at-1 map, and the map on top is Proposition 1.9(1) associated
to the finite map Wnf .

Similarly, for any finite morphism f : X → Y of Wnk-schemes, write KX := π4XWnk and

KY := π4Y Wnk, where πX , πY are the structure maps of X and Y . Then the following diagram
commutes

f∗KX

Trf

��

' // HomOY (f∗OX ,KY )

(f∗)∨

��
ev1

uu
KY '

// HomOY (OY ,KY ),

where the map on top is Proposition 1.9(1) associated to the finite map f .
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(2) The Cartier operator C ′ : (WnFX)∗Kn,X1
→ Kn,X2

. for residual complexes can be decomposed
in the following way: i.e. the following diagram commutes

(WnFX)∗Kn,X

(1.2.2)'

��

' // (WnFX)∗HomWnOX (WnOX ,Kn,X)

��
HomWnOX ((WnFX)∗WnOX , (WnFX)∗Kn,X)

(WnFX)∗(1.2.2)◦'
��

HomWnOX ((WnFX)∗WnOX , (WnFX)∗(WnFX)4Kn,X)

TrWnFX ◦
��

(WnFX)∗(WnFX)4Kn,X

TrWnFX

��

' // HomWnOX ((WnFX)∗(WnOX),Kn,X)

((WnFX)∗)∨

��
Kn,X '

// HomWnOX (WnOX ,Kn,X).

Here the composite of the two left vertical arrows is C ′, and the horizontal arrow in the middle
is Proposition 1.9(1) associated to the finite map WnFX .

Proof. (1) One only need to note that the trace map for finite morphisms between residual complexes
is given by evaluate-at-1 map by Proposition 1.10(1). Both of the claims are then direct.

(2) For the second part, we only need to prove the commutativity of the top square. One notices
that we can alter the order of the maps in the second column. Then the commutativity of the
following diagram gives the claim.

(WnFX)∗Kn,X

(1.2.2)'

��

' // (WnFX)∗HomWnOX (WnOX ,Kn,X)

(1.2.2)◦
��

(WnFX)∗HomWnOX (WnOX , (WnFX)4Kn,X)

��ev1

��

HomWnOX ((WnFX)∗WnOX , (WnFX)∗(WnFX)4Kn,X)

TrWnFX ◦
��

(WnFX)∗(WnFX)4Kn,X
' // HomWnOX ((WnFX)∗(WnOX),Kn,X).

�

The proof of the proposition presented below is due to Rülling.

Proposition 1.32 (cf. [Kat87, 4.2]). Let i : X0 ↪→ X be a nilpotent immersion (thus so is Wni :
Wn(X0)→WnX). Then the natural map

TrWni,log : (Wni)∗Kn,X0,log → Kn,X,log

is a quasi-isomorphism.

Proof. Put In := Ker(WnOX → (Wni)∗WnOX0). ApplyHomWnOX (−,Kn,X) to the sequence of WnOX -
modules

(1.4.1) 0→ In →WnOX → (Wni)∗WnOX0
→ 0,

we get again a short exact sequence of complexes of WnOX -modules

0→ (Wni)∗Kn,X0

TrWni−−−−→ Kn,X → Qn := HomWnOX (In,Kn,X)→ 0.

We know the first map is TrWni, because of Lemma 1.31(1). The restriction of the map (WnFX)∗ :
WnOX → (WnFX)∗WnOX to In gives a map

(WnFX)∗ |In : In → (WnFX)∗In,
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n−1∑
i=0

V ([ai]) 7→
n−1∑
i=0

V ([api ]).

Define

C ′In : (WnFX)∗Qn = (WnFX)∗HomWnOX (In,Kn,X)(1.4.2)

→ HomWnOX ((WnFX)∗In, (WnFX)∗Kn,X)

(WnFX)∗(1.2.2)◦−−−−−−−−−−−→
'

HomWnOX ((WnFX)∗In, (WnFX)∗(WnFX)4Kn,X)

TrWnFX ◦−−−−−−→ HomWnOX ((WnFX)∗In,Kn,X)

((WnF
∗
X)|In )∨−−−−−−−−−→ HomWnOX (In,Kn,X) = Qn.

According to Lemma 1.31(2), C ′ is compatible with C ′In , and thus one has the following commutative
diagram

0 // (WnFX)∗(Wni)∗Kn,X0

(WnFX)∗ TrWni//

C′

��

(WnFX)∗Kn,X
//

C′

��

(WnFX)∗Qn //

C′In
��

0

0 // (Wni)∗Kn,X0

TrWni // Kn,X
// Qn // 0.

Replace C ′ by C ′ − 1, and C ′In by C ′In − 1, we arrive at the two lower rows of the following diagram.
Denote

Qn,log := Cone(Qn
C′In−1
−−−−→ Qn)[−1].

Taking into account the shifted cones of C ′−1 and C ′In −1, we get the first row of the following diagram
which is naturally a short exact sequence. Now we have the whole commutative diagram of complexes,
where all the three rows are exact, and all the three columns are distinguished triangles in the derived
category:

0 // (Wni)∗Kn,X0,log

TrWni,log //

��

Kn,X,log

��

// Qn,log

��

// 0

0 // (Wni)∗Kn,X0

C′−1

��

TrWni // Kn,X

C′−1

��

// Qn

C′In−1

��

// 0

0 // (Wni)∗Kn,X0

+1

��

TrWni // Kn,X

+1

��

// Qn

+1

��

// 0.

We want to show that TrWni,log is a quasi-isomorphism. By the exactness of the first row, it suffices
to show Qn,log is an acyclic complex. Because the right column is a distinguished triangle, it suffices to
show C ′In − 1 : Qn → Qn is a quasi-isomorphism. Actually it’s even an isomorphism of complexes: since
(WnFX)∗ |In : In → (WnFX)∗In is nilpotent (because I1 = Ker(OX → i∗OX0) is a finitely generated
nilpotent ideal of OX), C ′In : Qn → Qn is therefore nilpotent (because one can alter the order of the three
labeled maps in (1.4.2) in the obvious sense), and C ′In − 1 is therefore an isomorphism of complexes. �

1.4.3. Localization triangles associated to Kn,X,log. Let i : Z ↪→ X be a closed immersion with j : U ↪→ X
its open complement. Recall (cf. Section 1.1.1)

(1.4.3) ΓZ(F) := Ker(F → j∗j
−1F)

for any abelian sheaf F . Denote its i-th derived functor by HiZ(F). Notice that

• ΓZ′(F) = ΓZ(F) for any nilpotent thickening Z ′ of Z (e.g. Z ′ = WnZ),
• F → j∗j

−1F is surjective whenever F is flasque, and
• flasque sheaves are ΓZ-acyclic ([Har67, 1.10]) and f∗-acyclic for any morphism f .

Therefore, for any complex of flasque sheaves F• of Z/pn-modules on WnX,

0→ ΓZ(F•)→ F• → (Wnj)∗(F•|WnU )→ 0



33

is a short exact sequence of complexes. Thus the induced triangle

(1.4.4) ΓZ(F•)→ F• → (Wnj)∗(F•|WnU )
+1−−→

is a distinguished triangle in Db(WnX,Z/pn), whenever F• is a flasque complex with bounded cohomolo-
gies. In particular, since Kn,X,log is a bounded complex of flasque sheaves, this is true for F• = Kn,X,log.

The following proposition is proven in the smooth case by Gros-Milne-Suwa [Suw95, 2.6]. The proof
presented here is due to Rülling.

Proposition 1.33 (Rülling). Let i : Z ↪→ X be a closed immersion with j : U ↪→ X its open complement.
Then

(1) The map

(Wni)∗Kn,Z,log = ΓZ((Wni)∗Kn,Z,log)
TrWni,log−−−−−−→ ΓZ(Kn,X,log)

is a quasi-isomorphism of complexes of sheaves.
(2) (Localization triangle) The following

(1.4.5) (Wni)∗Kn,Z,log
TrWni,log−−−−−−→ Kn,X,log → (Wnj)∗Kn,U,log

+1−−→
is a distinguished triangle in Db(WnX,Z/pn).

Note that we are working on the Zariski site and abelian sheaves on WnX can be identified with abelian
sheaves on X canonically. Thus we can replace (Wni)∗Kn,Z,log by i∗Kn,Z,log, and (Wnj)∗Kn,U,log by
j∗Kn,U,log freely.

Proof. (1) Let In be the ideal sheaf associated to the closed immersion Wni : WnZ ↪→ WnX, and
let Zn,m be the closed subscheme of WnX determined by m-th power ideal Imn . In particular,
Zn,1 = WnZ. Denote by in,m : Zn,m ↪→WnX and by jn,m : WnZ ↪→ Zn,m the associated closed
immersions. In this way one has a series of decomposition of Wni as maps of Wnk-schemes
indexed by m:

WnZ
� � jn,m //

WnπZ

++

Zn,m
� � in,m //

πZn,m

((

WnX

WnπX

��
Wnk.

Denote KZn,m := (πZn,m)4(Wnk), where πZn,m : Zn,m → Wnk is the structure morphism.
We have a canonical isomorphism

(1.4.6) in,m,∗Hi(KZn,m) ' ExtiWnOX (in,m,∗OZn,m ,Kn,X)

by Proposition 1.9(4) and Proposition 1.9(1) associated to the closed immersion in,m. The trace
maps associated to the closed immersions

Zn,m ↪→ Zn,m+1

for different m make the left hand side of (1.4.6) an inductive system. The right hand side also
lies in an inductive system when m varies: the canonical surjections

in,m+1,∗OZn,m+1
→ in,m,∗OZn,m

induce the maps

(1.4.7) HomWnOX (in,m,∗OZn,m ,Kn,X)→ HomWnOX (in,m+1,∗OZn,m+1
,Kn,X)

whose i-th cohomologies are the connecting homomorphisms of the inductive system. According
to the second part of Lemma 1.31(1), the map (1.4.7) is the trace map associated to the closed
immersion Zn,m ↪→ Zn,m+1, and thus is compatible with the inductive system on the left hand
side of (1.4.6).

Consider the trace map associated to the closed immersion in,m : Zn,m ↪→ WnX, i.e., the
evaluation-at-1 map

HomWnOX (in,m,∗OZn,m ,Kn,X)→ Kn,X .

Its image naturally lies in ΓWnZ(Kn,X). After taking colimit on m, it is an isomorphism

colimm ExtiWnOX (in,m,∗OZn,m ,Kn,X)
ev1−−→
'
HiZ(Kn,X)

by [Har66, V 4.3].
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Now we consider

colimm in,m,∗Hi(KZn,m) ' colimm ExtiWnOX (in,m,∗OZn,m ,Kn,X)(1.4.8)
ev1−−→
'
HiZ(Kn,X).

The composite map of (1.4.8) is colimm Trin,m . On the other hand, consider the log trace
associated to the closed immersion in,m (cf. Proposition 1.30)

Trin,m,log : Hi(in,m,∗KZn,m,log) = Hi(ΓZ(in,m,∗KZn,m,log))(1.4.9)

−→ Hi(ΓZ(Kn,X,log)) = HiZ(Kn,X,log).

The maps (1.4.8), (1.4.9) give the vertical maps in the following diagram (due to formatting
reason we omit in,m,∗ from every term of the first row) which are automatically compatible by
Proposition 1.30:

Hi−1(KZn,m)
C′−1 //

Trin,m
��

Hi−1(KZn,m) //

Trin,m
��

Hi(KZn,m,log) //

Trin,m,log

��

Hi(KZn,m)
C′−1 //

Trin,m

��

Hi(KZn,m)

Trin,m

��
Hi−1
Z (Kn,X)

C′−1 // Hi−1
Z (Kn,X) // HiZ(Kn,X,log) // HiZ(Kn,X)

C′−1 // HiZ(Kn,X).

Taking the colimit with respect to m, the five lemma immediately gives that colimm Trin,m,log is
an isomorphism. Then TrWni,log, which is the composition of

(Wni)∗Hi(Kn,Z,log)
colimm Trjn,m,log−−−−−−−−−−−−→
Proposition 1.32,'

colimm in,m,∗Hi(KZn,m,log)
colimm Trin,m,log−−−−−−−−−−−→

'
HiZ(Kn,X,log),

is an isomorphism. This proves the statement.

(2) Since ΓZ(Kn,X,log) → Kn,X,log → (Wnj)∗Kn,U,log
+1−−→ is a distinguished triangle, the second

part follows from the first part.
�

1.5. Functoriality. The push-forward functoriality of Kn,X,log has been done in Proposition 1.30 for
proper f . Now we define the pullback map for an étale morphism f . Since Wnf is then also étale,
we have an isomorphism of functors (Wnf)∗ ' (Wnf)4 by Proposition 1.9(2). Define a chain map of
complexes of WnOY -modules

(1.5.1) f∗ : Kn,Y
adj−−→ (Wnf)∗(Wnf)∗Kn,Y ' (Wnf)∗(Wnf)4Kn,Y ' (Wnf)∗Kn,X .

Here adj stands for the adjunction map of the identity map of (Wnf)∗Kn,Y .

Proposition 1.34 (Étale pullback). Suppose f : X → Y is an étale morphism. Then

f∗ : Kn,Y,log → (Wnf)∗Kn,X,log,

defined by termwise applying (1.5.1), is a chain map between complexes of abelian sheaves.

Proof. It suffices to prove that C ′ is compatible with f∗ defined above. Consider the following diagram
in the category of complexes of WnOY -modules

(WnFY )∗Kn,Y

a)adj

��

(1.2.2)

'
// (WnFY )∗(WnFY )4Kn,Y

d)adj

��

TrWnFY // Kn,Y

adj

��
(Wnf)∗(Wnf)∗(WnFY )∗Kn,Y

b)

(1.2.2)

'
//

'α

��

(Wnf)∗(Wnf)∗(WnFY )∗(WnFY )4Kn,Y

e)

TrWnFY //

'β

��

(Wnf)∗(Wnf)∗Kn,Y

'

��

(Wnf)∗(WnFX)∗(Wnf)∗Kn,Y

c)'
��

(1.2.2)

'
// (Wnf)∗(WnFX)∗(Wnf)∗(WnFY )4Kn,Y

'
��

(Wnf)∗(WnFX)∗Kn,X
(1.2.2)

'
// (Wnf)∗(WnFX)∗(WnFX)4Kn,X

TrWnFX // (Wnf)∗Kn,X .

In this diagram we use shortened notations for the maps due to formatting reasons, e.g. we write (1.2.2)
instead of (Wnf)∗(WnFX)∗(1.2.2), etc.. The maps labelled α and β are base change maps, and they
are isomorphisms because Wnf is flat (actually Wnf is étale because f is étale) [Har66, II 5.12]. The
composite of the maps on the very left and very right are (WnFY )∗(f

∗) and f∗ (where f∗ is as defined in
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(1.5.1)). The composite of the maps on the very top and very bottom are C ′Y and (Wnf)∗C
′
X . Diagrams

a), b), c), d) commute due to naturality. Diagram e) commutes, because we have a cartesian square

WnX
WnFX //

Wnf

��

WnX

Wnf

��
WnY

WnFY // WnY

by Remark 1.16(2), and then the base change formula of the Grothendieck trace map as given in Propo-
sition 1.10(5) gives the result. �

Lemma 1.35. Consider the following cartesian diagram

W

g′

��

f ′ // Z

g

��
X

f // Y

with g being proper, and f being étale. Then we have a commutative diagram of residual complexes

(Wng)∗Kn,Z
f ′∗//

TrWng

��

(Wng)∗(Wnf)∗Kn,W
' // (Wnf)∗(Wng)∗Kn,W

TrWng′

��
Kn,Y

f∗ // (Wnf)∗Kn,X .

Proof. We decompose the diagram into the following two diagrams and show their commutativity one
by one.

(Wng)∗Kn,Z
adj //

TrWng

��

(Wng)∗(Wnf
′)∗(Wnf

′)∗Kn,Z

'

��
(Wnf)∗(Wng

′)∗(Wnf
′)∗(Wng)4Kn,Y

(Wnf)∗(Wnf)∗(Wng)∗(Wng)4Kn,Y

TrWng

��

' α

OO

Kn,Y
adj // (Wnf)∗(Wnf)∗Kn,Y .

Here α denotes the base change map, it is an isomorphism because Wnf is flat [Har66, II 5.12]. This
diagram commutes by naturality. Next consider

(Wng)∗(Wnf
′)∗(Wnf

′)∗Kn,Z

'
��

' // (Wng)∗(Wnf
′)∗Kn,W

'
��

(Wnf)∗(Wng
′)∗(Wnf

′)∗(Wng)4Kn,Y
' // (Wnf)∗(Wng

′)∗Kn,W

TrWng′

��

(Wnf)∗(Wnf)∗(Wng)∗(Wng)4Kn,Y

TrWng

��

' α

OO

(Wnf)∗(Wnf)∗Kn,Y
' // (Wnf)∗Kn,X .

The top part commutes by naturality. The bottom part commutes by the base change formula of the
Grothendieck trace maps with respect to étale morphisms Proposition 1.10(5). �

Since both f∗ for log complexes in Proposition 1.34 and g∗ := TrWng,log are defined termwise, we
arrive immediately the following compatibility as a consequence of Lemma 1.35.
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Proposition 1.36. Notations are the same as Lemma 1.35. One has a commutative diagram of com-
plexes

(Wng)∗Kn,Z,log
f ′∗//

g∗

��

(Wng)∗(Wnf)∗Kn,W,log
' // (Wnf)∗(Wng)∗Kn,W,log

g′∗
��

Kn,Y,log
f∗ // (Wnf)∗Kn,X,log.

1.6. Étale counterpart Kn,X,log,ét. Let X be a separated scheme of finite type over k of dimension d.
In this subsection we will use t = Zar, ét to distinguish objects, morphisms on different sites. When t is
omitted, it means t = Zar unless otherwise stated.

Denote the structure sheaf on the small étale site (WnX)ét by WnOX,ét. Denote

(ε∗, ε
∗) : ((WnX)ét,WnOX,ét)→ ((WnX)Zar,WnOX)

the module-theoretic functors. Recall that every étale WnX-scheme is of the form Wng : WnU →WnX,
where g : U → X is an étale X-scheme by Remark 1.16(1). Now let F be a WnOX,ét-module on (WnX)ét.
Consider the following map (cf. [Kat87, p. 264])

(1.6.1) τ : (WnFX)∗F −→ F ,
which is defined to be

((WnFX)∗F)(WnU
Wng−−−→WnX) = F(WnX ×WnFX ,WnX WnU

pr1−−→WnX)

WnF
∗
U/X−−−−−−→
'

F(WnU
Wng−−−→WnX)

for any étale map Wng : WnU → WnX (here we use pr1 to denote the first projection map of the fiber
product). This is an automorphism of F as an abelian étale sheaf, but changes the WnOX,ét-module
structure of F .

Lemma 1.37. (1) The map τ is a map of WnOX,ét-modules. That is, suppose α, β are the maps
defining WnOX,ét-module structure on F and (WnFX)∗F respectively, the following diagram
commutes

WnOX,ét × (WnFX)∗F
WnF

∗
X×τ //

β

��

WnOX,ét ×F

α

��
(WnFX)∗F

τ // F .

(2) Given an étale sheaf F of WnOX,ét-modules, the restriction of (WnFX)∗F
τ−→
'
F to the Zariski

open subsets WnX is simply the identity map on the underlying complex of abelian sheaves.
(3) τ is functorial with respect to F in the category of WnOX,ét-modules. I.e. for any homomorphism

f : F → G of WnOX,ét-modules, the following diagram of abelian étale sheaves on (WnX)ét

(WnFX)∗F
τ //

(WnFX)∗f

��

F

f

��
(WnFX)∗G

τ // G.

is commutative.

Proof. (1) In fact, suppose F is equipped with the WnOX,ét-module structure

α : WnOX,ét ×F → F .
Namely, on an étale section Wng : WnU →WnX, we have a map

αWng : Γ(WnOU )×F(WnU
Wng−−−→WnX)→ F(WnU

Wng−−−→WnX).

Then (WnFX)∗F is equipped with the following WnOX,ét-module structure

β : WnOX,ét × (WnFX)∗F
WnF

∗
X×id−−−−−−−→ (WnFX)∗WnOX,ét × (WnFX)∗F

(WnFX)∗α−−−−−−−→ (WnFX)∗F .
Namely, on an étale section Wng : WnU →WnX,

βWng : Γ(WnOU )×F(WnX ×WnFX ,WnX WnU
pr1−−→WnX)

(1⊗idΓ(WnOX ))×id−−−−−−−−−−−−→
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Γ(WnOX)⊗WnFX ,Γ(WnOX) Γ(WnOU )×F(WnX ×WnFX ,WnX WnU
pr1−−→WnX)

(WnFX)∗(αWng)−−−−−−−−−−−→ F(WnX ×WnFX ,WnX WnU
pr1−−→WnX).

From the explicit expressions of α and β, one deduces that the following diagram commutes

Γ(WnOU )×F(WnX ×WnFX ,WnX WnU
pr1−−→WnX)

WnF
∗
X×WnF

∗
U/X //

βWng

��

Γ(WnOU )×F(WnU
Wng−−−→WnX)

αWng
��

F(WnX ×WnFX ,WnX WnU
pr1−−→WnX)

WnF
∗
U/X

'
// F(WnU

Wng−−−→WnX).

(2) This is because of the definition of the small Zariski site XZar: the morphism set of two open
subsets of XZar can either be the empty set or a one element set consisting of an open immersion.
In particular, WnX ×WnFX ,WnX WnU is an Zariski open subset of WnX via identification with
WnU through WnFU/X . This explains our claim.

(3) This is direct, because the restriction maps of étale sheaves F ,G induced by WnFU/X are com-
patible:

F(WnX ×WnFX ,WnX WnU
pr1−−→WnX)

WnF
∗
U/X

'
//

f

��

F(WnU
Wng−−−→WnX)

f
��

G(WnX ×WnFX ,WnX WnU
pr1−−→WnX)

WnF
∗
U/X

'
// G(WnU

Wng−−−→WnX).

�

Define

Kn,X,ét := ε∗Kn,X

to be the complex of étale WnOX,ét-modules associated to the Zariski complex Kn,X of WnOX -modules.
This is still a complex of quasi-coherent sheaves with coherent cohomologies. For a proper map f : X → Y
of k-schemes, define

TrWnf,ét : (Wnf)∗Kn,X,ét = ε∗((Wnf)∗Kn,X)
ε∗ TrWnf−−−−−−→ Kn,Y,ét

to be the étale map of WnOY,ét-modules associated to the Zariski map TrWnf : Kn,X → Kn,X of
WnOX -modules. Define the Cartier operator C ′ét for étale complexes to be the composite

C ′ét : Kn,X,ét
τ−1

−−→
'

(WnFX)∗Kn,X,ét = ε∗((WnFX)∗Kn,X)
ε∗(1.2.3)−−−−−→ Kn,X,ét.

Define

Kn,X,log,ét := Cone(Kn,X,ét
C′ét−1−−−−→ Kn,X,ét)[−1].

We also have the sheaf-level Cartier operator. Let X be a smooth k-scheme. Recall that by definition,
Cét is the composition of the inverse of transfer-of-module-structure (1.6.1) with the module-theoretic
etalization of the WnOX -linear map (1.3.6):

Cét : WnΩdX,ét
τ−1

−−→
'

(WnFX)∗WnΩdX,ét = ε∗((WnFX)∗WnΩdX)
ε∗(1.3.6)−−−−−→WnΩdX,ét.

This is precisely the same as the classical definition that appeared in Lemma 1.28 before, because τ is
the identity map when restricted to (Ét/X)Zar by Lemma 1.37(2). (Here (Ét/X)Zar denotes the site with
the underlying category being the category of all étale X-schemes and coverings being Zariski coverings.)

Proposition 1.38 (cf. Theorem 1.17). C ′ét is the natural extension of C ′ to the small étale site, i.e.,

ε∗C
′
ét = C ′ : Kn,X → Kn,X .

When X is smooth, Cét is the natural extension of C to the small étale site

ε∗Cét = C : WnΩdX →WnΩdX .

And one has compatibility

Cét = H−d(C ′ét).

Proof. The first two claims are direct from Lemma 1.37(2). The last one comes from Lemma 1.37(2)
and the compatibility of C and C ′ in the Zariski case Theorem 1.17. �
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Proposition 1.39 (cf. Proposition 1.24). Let X be a separated scheme of finite type over k with k = k.
Then

Hi(WnX,Kn,X,ét) := Hi(RΓ((WnX)t,Kn,X,ét))
C′ét−1−−−−→ Hi(WnX,Kn,X,ét)

is surjective for every i.

Proof. One notices the following identifications

Hi(WnX,Kn,X,ét) : = Hi(RΓ((WnX)ét,Kn,X,ét)) = Hi(RΓ((WnX)ét, ε
∗Kn,X,Zar))

= Hi(RΓ((WnX)Zar,Kn,X,Zar)) =: Hi(WnX,Kn,X,Zar).

The first equality of the second row is due to the exactness of ε∗ and the fact that ε∗ maps injective
quasi-coherent Zariski sheaves to injective quasi-coherent étale sheaves. The surjectivity then follows
from the compatibility of C ′ and C ′ét Proposition 1.38 and the Zariski case Proposition 1.24. �

In the étale topology and for any perfect field k, the surjectivity of

Cét − 1 : WnΩdX,ét →WnΩdX,ét

is known without the need of Proposition 1.39 (cf. Lemma 1.28). For the same reasoning as in Proposi-
tion 1.29, we have

Proposition 1.40 (cf. Proposition 1.29). Assume X is smooth of pure dimension d over a perfect field
k. Then the natural map

WnΩdX,log,ét[d] −→ Kn,X,log,ét

is a quasi-isomorphism of complexes of abelian sheaves.

We go back to the general non-smooth case. The proper pushforward property in the étale setting is
very similar to the Zariski case.

Proposition 1.41 (Proper pushforward, cf. Proposition 1.30). For f : X → Y proper, we have a
well-defined map of complexes of étale sheaves

(1.6.2) TrWnf,log,ét : (Wnf)∗Kn,X,log,ét → Kn,X,log,ét

given by applying TrWnf,ét termwise.

Proof. In fact, because τ−1 is functorial Lemma 1.37(3), we have the following commutative diagram of
complexes of abelian étale sheaves

(Wnf)∗Kn,X,ét
τ−1

'
//

TrWnf,ét

��

(Wnf)∗(WnFX)∗Kn,X,ét

(WnFY )∗ TrWnf,ét

��
Kn,Y,ét

τ−1

'
// (WnFY )∗Kn,Y,ét.

The rest of the proof goes exactly as in Proposition 1.30. �

Proposition 1.42 (cf. Proposition 1.32). Let i : X0 ↪→ X be a nilpotent immersion. Then the natural
map

TrWni,log,ét : (Wni)∗Kn,X0,log,ét → Kn,X,log,ét

is a quasi-isomorphism.

Proof. We adopt the same notations as in the proof of Proposition 1.32. Almost all steps of the proof
go through directly, except that the map

C ′In,ét : Qn,ét = HomWnOX,ét
(In,ét,Kn,X,ét)

τ−1

−−→
'

(WnFX)∗HomWnOX,ét
(In,ét,Kn,X,ét)

→ HomWnOX,ét
((WnFX)∗In,ét, (WnFX)∗Kn,X,ét)

(WnFX)∗(1.2.2)◦−−−−−−−−−−−→
'

HomWnOX,ét
((WnFX)∗In,ét, (WnFX)∗(WnFX)4Kn,X,ét)

TrWnFX ◦−−−−−−→ HomWnOX,ét
((WnFX)∗In,ét,Kn,X,ét)

((WnF
∗
X)|In,ét

)∨

−−−−−−−−−−−→ HomWnOX,ét
(In,ét,Kn,X,ét) = Qn,ét
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is nilpotent. To this end, it suffices to show τ−1 commutes with all the maps appearing in the above
composition, e.g.,

HomWnOX,ét
((WnFX)∗In,ét,Kn,X,ét)

((WnF
∗
X)|In,ét

)∨

//

τ−1

��

HomWnOX,ét
(In,ét,Kn,X,ét)

τ−1

��
(WnFX)∗HomWnOX,ét

((WnFX)∗In,ét,Kn,X,ét)
(WnFX)∗((WnF

∗
X)|In,ét

)∨

// (WnFX)∗HomWnOX,ét
(In,ét,Kn,X,ét).

And these diagrams are commutative due to Lemma 1.37(3). �

Let i : Z ↪→ X be a closed immersion with j : U ↪→ X being the open complement as before. Define

ΓZ(F) := Ker(F → j∗j
−1F)

for any étale abelian sheaf F on X, just as in the Zariski case (cf. (1.4.3)). Replacing Z (resp. X) by a
nilpotent thickening will define the same functor as ΓZ(−), because the étale site of any scheme is the
same as the étale site of its reduced scheme [EGAIV-4, Ch. IV, 18.1.2]. Recall that when F = I is an
injective Z/pn-sheaf,

0→ ΓZ(I)→ I → j∗j
−1I → 0

is exact. In fact, because j!Z/pn is a subsheaf of the constant sheaf Z/pn on X, we have that the
map HomX(Z/pn, I) → HomX(j!Z/pn, I) is surjective. Thus HomX(Z/pn, I) → HomU (Z/pn, j−1I) =
HomX(Z/pn, j∗j−1I) is surjective. This implies that for any complex F• of étale Z/pn-sheaves with
bounded cohomologies,

(1.6.3) RΓZ(F•)→ F• → j∗j
−1F• +1−−→

is a distinguished triangle in Db(X,Z/pn) (cf. (1.4.4)).

Proposition 1.43 (Localization triangle, cf. Proposition 1.33). Let i : Z ↪→ X be a closed immersion
with j : U ↪→ X being the open complement as before. Then

(1) We can identify canonically the functors

(Wni)∗ = RΓZ ◦ (Wni)∗ : Db((WnZ)ét,Z/pn)→ Db((WnX)ét,Z/pn).

The composition of this canonical identification with the trace map

(Wni)∗Kn,Z,log,ét = RΓZ((Wni)∗Kn,Z,log,ét)
TrWni,log,ét−−−−−−−−→ RΓZ(Kn,X,log,ét)

is a quasi-isomorphism of complexes of étale Z/pn-sheaves.
(2)

(Wni)∗Kn,Z,log,ét
TrWni,log,ét−−−−−−−−→ Kn,X,log,ét −→ (Wnj)∗Kn,U,log,ét

+1−−→
is a distinguished triangle in Db((WnX)ét,Z/pn).

Proof. (1) One only needs to show that (Wni)∗ = RΓZ ◦ (Wni)∗, and then the rest of the proof
is the same as in Proposition 1.33(1). Let I be an injective étale Z/pn-sheaf on WnZ. Since
HomWnX(−, (Wni)∗I) = HomWnZ((Wni)

−1(−), I) and (Wni)
−1 is exact, we know (Wni)∗I is

an injective abelian sheaf on (WnX)ét. This implies that R(ΓZ ◦ (Wni)∗) = RΓZ ◦ (Wni)∗ by the
Leray spectral sequence, and thus (Wni)∗ = R(Wni)∗ = R(ΓZ ◦ (Wni)∗) = RΓZ ◦ (Wni)∗.

(2) One only need to note that (Wnj)∗Kn,U,log,ét = R(Wnj)∗Kn,U,log,ét. In fact, the terms of
Kn,U,log,ét are quasi-coherent WnOX,ét-modules which are (Wnj)∗-acyclic in the étale topology
(because Rif∗(ε

∗F) = ε∗(Rif∗F) for any quasi-coherent Zariski sheaf F and any quasi-compact
quasi-separated morphism f [Stacks, Tag 071N].). Now the first part and the distinguished
triangle (1.6.3) imply the claim.

�

2. Bloch’s cycle complex ZcX,t(m)

Let X be a separated scheme of finite type over k of dimension d. Let

∆i = Spec k[T0, . . . , Ti]/(
∑

Tj − 1).

Define zm(X, i) to be the free abelian group generated by closed integral subschemes Z ⊂ X ×∆i that
intersect all faces properly and

dimZ = m+ i.

https://stacks.math.columbia.edu/tag/071N
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We say two closed subschemes Z1, Z2 of a scheme Y intersect properly if for every irreducible component
W of the schematic intersection Z1 ∩ Z2 := Z1 ×Y Z2, one has

(2.0.1) dimW ≤ dimZ1 + dimZ2 − dimY

(cf. [Gei05, A.1]). A subvariety of X ×∆i is called a face if it is determined by some Tj1 = Tj2 = · · · =
Tjs = 0 (0 ≤ j1 < · · · < js ≤ i). Note that a face is Zariski locally determined by a regular sequence
of X ×∆i. Therefore the given inequality condition in dimension (2.0.1) in the definition of zm(X, i) is
equivalent to the equality condition [Gei05, (53)].

The above definition defines a sheaf zm(−, i) in both the Zariski and the étale topology on X ([Gei04,
Lemma 3.1]). Notice that zm(−, i) is not a flasque sheaf even on the Zariski site, because cycles meeting
faces properly on U ×∆i can have closures in X ×∆i that do not. Define the complex of sheaves

→ zm(−, i) d−→ zm(−, i− 1)→ . . . zm(−, 0)→ 0

with differential map

d(Z) =
∑
j

(−1)j [Z ∩ V (Tj)].

Here we mean by V (Tj) the closed integral subscheme determined by Tj and by [Z ∩ V (Tj)] the linear
combination of the reduced irreducible components of the scheme theoretic intersection Z ∩ V (Tj) with
coefficients being intersection multiplicities. zm(X, •) is then a homological complex concentrated in
degree [max{0,−m},∞). By a shift of degree and labeling cohomologically, following the notation in
[Gei10] we set

ZcX(m)i = zm(−,−i− 2m).

This complex is nonzero in degrees
(−∞,min{−2m,−m}].

We write ZcX := ZcX(0).
Define the higher Chow group

CHm(X, i) := Hi(zm(X, •)) = H−i−2m(ZcX(m)(X))

for any i and any m.

Proposition 2.1 (Bloch, Zariski descent). Suppose X has equidimension d over k. Then

CHm(X, i) = R−i−2mΓ(XZar,ZcX(m)).

Proof. Let Z ↪→ X be a closed immersion. The restriction map

zm(X, •)/zm(Z, •)→ zm(X − Z, •)
is a quasi-isomorphism of complexes of abelian groups by the moving lemma (it was claimed in [Blo86,
3.3] and later proved in [Blo94, 0.1]), and it induces a quasi-isomorphism of complexes of abelian Zariski
sheaves

F• '−→ ZcX(m),

where F i(U) := zm(X,−i−2m)/zm(X−U,−i−2m) with U being a Zariski open in X. The Zariski sheaf
F i defined in this way is flasque for each i [Blo86, 3.4]. Therefore, we have R−i−2mΓ(XZar,ZcX(m)) =
H−i−2m(F•(X)) = Hi(zm(X, •)). �

Higher Chow groups are indeed a generalization of the Chow group, as

CHm(X, 0) = zm(X, 0)/dzm(X, 1) = CHm(X)

agrees with the classical definition of a Chow group (cf. [Ful98, §1.3]). The higher Chow groups with
coefficients in an abelian group A will be denoted

CHm(X, i;A) := H−i−2m(ZcX(m)(X)⊗Z A).

Proposition 2.2 (Functoriality, [Blo86, Prop. 1.3]. See also [Lev98, Part I, Ch. 2, Rmk. 2.1.7(i)]). The
complex ZcX,t(m), either t = Zar or t = ét, is covariant for proper morphisms, and contravariant for flat
morphisms. More precisely, for proper f : X → Y , we have a well-defined chain map of complexes of
abelian sheaves

f∗ : f∗ZcX,t(m)→ ZcY,t(m)

by pushforward of cycles, and for flat f : X → Y of equidimension c (i.e. fiber at each point of Y is
either empty or of dimension c), we have a well-defined chain map of complexes of abelian sheaves

f∗ : ZcY,t(m− c)[2c]→ f∗ZcX,t(m)

by pullback of cycles.
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3. Kato’s complex of Milnor K-theory CMX,t(m)

Recall that given a field L, the q-th Milnor K-group KM
q (L) of L is defined to be the q-th graded

piece of the non-commutative graded ring⊕
q≥0

KM
q (L) =

⊕
q≥0(L∗)⊗q

(a⊗ (1− a) | a, 1− a ∈ L∗)
,

where (a ⊗ (1 − a) | a, 1 − a ∈ L∗) denotes the two-sided ideal of the non-commutative graded ring⊕
q≥0(L∗)⊗q generated by elements of the form a⊗ (1− a) with a, 1− a ∈ L∗. The image of an element

a1 ⊗ · · · ⊗ aq ∈ (L∗)⊗q in KM
q (L) is denoted by {a1, . . . , aq}.

Let X be a separated scheme of finite type over k of dimension d. We denote by

KM
q (x) := KM

q (k(x))

the q-th Milnor K-group of the field k(x), and we have KM
q (x) = 0 when q < 0. Kato defined in [Kat86c]

a Gersten complex of Milnor K-groups⊕
x∈X(d)

KM
d−m(x)

dM−−→ . . .
dM−−→

⊕
x∈X(1)

KM
1−m(x)

dM−−→
⊕

x∈X(0)

KM
−m(x).

Here the superscript M stands for Milnor, and the notation X(q) denotes the set of dimension q points
of X. We briefly review its sheafified constructions in this section. Our sign conventions are the same as
in [Ros96].

We firstly make clear the definition of a Milnor K-sheaf on a point X = SpecL, where L is a field.
Then KMSpecL,q,Zar is the constant sheaf associated to the abelian group KM

q (L) (without the assumption

that L is an infinite field, cf. [Ker10, Prop. 10(4)]), and KMSpecL,q,ét is the étale sheaf associated to the
presheaf

L′ 7→ KM
q (L′); L′/L finite separable.

Choose a separable closure Lsep of L. Then the geometric stalk at the geometric point SpecLsep over
SpecL is colimL⊂L′⊂Lsep KM

q (L′), which is equal to KM
q (Lsep) because the filtered colimit commutes

with the tensor product and the quotient. Now by Galois descent of the étale sheaf condition, the sheaf
KMSpecL,q,ét is precisely

L′ 7→ KM
q (Lsep)Gal(Lsep/L′); L′/L finite separable.

Here the Galois action is given on each factor, according to the very definition of the étale presheaf

KM,pre
X,q,ét.
Now with the topology t = Zar or t = ét, we have the corresponding Gersten complex of Milnor

K-theory, denote by CMX,t(m) (the differentials dM will be introduced below):

(3.0.1)
⊕

x∈X(d)

ιx∗KMx,d−m,t
dM−−→ . . .

dM−−→
⊕

x∈X(1)

ιx∗KMx,1−m,t
dM−−→

⊕
x∈X(0)

ιx∗KMx,−m,t,

where ιx : Spec k(x) ↪→ X the natural inclusion map. As part of the convention,

CMX,t(m)i =
⊕

x∈X(−i−m)

ιx,∗KMx,−i−2m,t.

In other words, (3.0.1) sits in degrees

[−d−m,min{−m,−2m}].
We set CMX,t = CMX,t(0). It remains to introduce the differential maps.

When t = Zar, the differential map dM in (3.0.1) is defined in the following way. Let x ∈ X(q) be a

dimension q point, and ρ : X ′ → {x} be the normalization of {x} with generic point x′. Define

(dM )xy : KM
q−m(x) = KM

q−m(x′)

∑
∂x
′
y′−−−−→
⊕
y′|y

KM
q−m−1(y′)

∑
Nmy′/y−−−−−−→ KM

q−m−1(y).

Here the notation y′|y means that y′ ∈ X ′(1)
is in the fiber of y,

(3.0.2) ∂x
′

y′ : KM
q−m(x′)→ KM

q−m−1(y′)

is the Milnor tame symbol defined by y′, and

(3.0.3) Nmy′/y : KM
q−m−1(y′)→ KM

q−m−1(y)
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is the Milnor norm map of the finite field extension k(y) ↪→ k(y′). The differential dM of this complex is
given by

dM :=
∑

x∈X(q)

∑
y∈X(q−1)∩{x}

(dM )xy :
⊕

x∈X(q)

KM
q−m(x)→

⊕
y∈X(q−1)

KM
q−m−1(y).

There are different sign conventions concerning the tame symbol in the literature. Here we clarify

the sign convention we adopt. Following [Ros96, p.328], we define the tame symbol ∂SpecL
Spec k(v) := ∂v :

KM
n (L) → KM

n−1(k(v)) for a field L, a normalized discrete valuation v on L and k(v) the residue field
with respect to v, via

(3.0.4) ∂v({πv, u1, . . . , un−1}) = {u1, . . . , un−1}.
Here πv is a local parameter with respect to v, u1, . . . un−1 are units in the valuation ring of v, and
u1, . . . , un−1 are the images of u1, . . . un−1 in the residue field k(v).

When t = ét, set x ∈ X(q), y ∈ X(q−1) ∩ {x}. Denote by ρ : X ′ → {x} the normalization map and

denote by x′ the generic point of X ′. One can canonically identify the étale abelian sheaves KMx,q−m,ét

and ρ∗KMx′,q−m,ét on {x}, and thus identify ιx,∗KMx,q−m,ét and ιx,∗ρ∗KMx′,q−m,ét on X. Let y′ ∈ X ′(1) such

that ρ(y′) = y. Then the componentwise differential map

(dM )xy : ιx,∗KMx,q−m,ét → ιy,∗KMy,q−m−1,ét

is defined to be the composition

(dM )xy = ιy,∗(Nm) ◦ ρ∗(∂).

Here ∂ :=
∑
y′∈X′(1)∩ρ−1(y) ∂

x′

y′ , where

(3.0.5) ∂x
′

y′ : ιx′,∗KMx′,q−m,ét → ιy′,∗KMy′,q−m−1,ét

on X ′ is defined to be the sheafification of the tame symbol on the presheaf level. Indeed, the tame
symbol is a map of étale presheaves by [Ros96, R3a]. And Nm :=

∑
y′∈X′(1)∩ρ−1(y) Nmy′/y, where

(3.0.6) Nmy′/y : ρ∗KMy′,q−m−1,ét → KMy,q−m−1,ét

on y is defined to be the sheafification of the norm map on the presheaf level. The norm map is a map
of étale presheaves by [Ros96, R1c].

Proposition 3.1 (Functoriality, [Ros96, (4.6)(1)(2)]). The complex CMX,t(m), either t = Zar or t = ét, is
covariant for proper morphisms and contravariant for flat equidimensional morphisms. More precisely,
for proper f : X → Y , we have a well-defined chain map of complexes of abelian sheaves

f∗ : f∗C
M
X,t(m)→ CMY,t(m)

induced by the norm map of Milnor K-theory. When f : X → Y is flat and of equidimension c (i.e.
the fiber at each point of Y is either empty or of dimension c), we have a well-defined chain map of
complexes of abelian sheaves

f∗ : CMY,t(m− c)[2c]→ f∗C
M
X,t(m),

by the natural pullback maps of Milnor K-sheaves on fields.

Proof. The case t = Zar is given in [Ros96, (4.6)(1)(2)]. As for t = ét, f∗ is a well-defined map of étale
presheaves at each term [Ros96, R1c], thus induces a chain map of étale presheaves, and then induces
a chain map of étale sheaves. And f∗ is a map of étale sheaves on each term, therefore induces a chain
map of étale sheaves. �

4. Kato-Moser’s complex of logarithmic de Rham-Witt sheaves ν̃n,X,t(m)

Let X be a separated scheme of finite type over k of dimension d. Kato first defined the Gersten
complex of the logarithmic de Rham-Witt sheaves in [Kat86a, §1]. Moser in [Mos99, (1.3)-(1.5)] sheafified
Kato’s construction on the étale site and studied its dualizing properties. We will adopt here the sign
conventions in [Ros96].

Let Y be a k-scheme. Let q ∈ N be an integer. Recall that in Section 1.3.5, we have defined WnΩqY,log,t,

with either t = Zar or t = ét, to be the abelian subsheaf of WnΩqY,t étale locally generated by log forms.

Lemma 4.1 (Bloch-Gabber-Kato isomorphism, [BK86, 2.8])). Let L be a field of characteristic p. The
d log map induces an isomorphism of sheaves for both t = Zar and t = ét over SpecL:

d log : KMSpecL,q,t/p
n '−→WnΩqSpecL,log,t.
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Proof. The original Bloch-Gabber-Kato isomorphism states that

d log : KM
q (L)/pn

'−→ Γ(SpecL,WnΩqSpecL,log,ét)

is an isomorphism of abelian groups. This is precisely the statement for the sheaf theoretic version for
t = Zar, because

Γ(SpecL,KMSpecL,q,Zar) = KM
q (L)

and

Γ(SpecL,WnΩqSpecL,log,Zar) = Γ(SpecL, ε∗WnΩqSpecL,log,ét) = Γ(SpecL,WnΩqSpecL,log,ét),

where ε∗ is the restriction functor from the category of étale abelian sheaves to the category of Zariski
abelian sheaves. As for t = ét, the lemma follows directly from the definition of the étale sheaf
WnΩqSpecL,log,ét, which says it is the sheaf theoretic image of the d log map (cf. Section 1.3.5). �

We will freely use WnΩqL,log,t for WnΩqSpecL,log,t below. Since the étale sheaf WnΩqSpecL,log,ét is pre-

cisely the association H 7→WnΩqSpecH,log,ét(H) for any finite separable extension H over L, our notation

WnΩqL,log,t shall make no confusion.
Now let X be a separated scheme of finite type over k of dimension d. Define the Gersten complex

ν̃n,X,t(m), in the topology t = Zar or ét, to be the complex of t-sheaves isomorphic to CMX,t(m)/pn via
the Bloch-Gabber-Kato isomorphism:

(4.0.1) 0→
⊕

x∈X(d)

ιx,∗WnΩd−mk(x),log,t → . . .→
⊕

x∈X(1)

ιx∗WnΩ1−m
k(x),log →

⊕
x∈X(0)

ιx,∗WnΩ−mk(x),log,t → 0.

Here ιx : Spec k(x) → X is the natural map. We will still denote by ∂ the reduction of the tame
symbol ∂ mod pn (cf. (3.0.2)(3.0.5)), but denote by tr the reduction of Milnor’s norm Nm mod pn (cf.
(3.0.3)(3.0.6)). The reason for the later notation will be clear from Lemma 5.3. As part of the convention,

ν̃n,X,t(m)i =
⊕

x∈X(−i−m)

ιx∗WnΩ−i−2m
k(x),log,t,

i.e. ν̃n,X(m) is concentrated in degrees
[−d−m,−2m].

Notice that ν̃n,X,t(m) is the zero complex when m < 0. Set ν̃n,X,t := ν̃n,X,t(0).

Proposition 4.2. Let i : Z ↪→ X be a closed immersion with j : U ↪→ X its open complement. We have
the following short exact sequence for t = Zar:

0 // i∗ν̃n,Z,Zar(m) // ν̃n,X,Zar(m) // j∗ν̃n,U,Zar(m) // 0.

For t = ét, when m = 0, one has the localization triangle

i∗ν̃n,Z,ét → ν̃n,X,ét → Rj∗ν̃n,U,ét
+1−−→ .

Proof. ν̃n,X,Zar(m) is a complex of flasque sheaves (therefore Rj∗(ν̃n,X,Zar(m)) = j∗ν̃n,X,Zar(m)), and
one has the sequence being short exact in this case. When t = ét, the purity theorem holds for m = 0

[Mos99, Corollary on p.130], i.e., i∗ν̃n,Z,ét = ΓZ(ν̃n,X,ét)
'−→ RΓZ(ν̃n,X,ét). We are done with the help of

the distinguished triangle (1.6.3) in the étale topology. �

Remark 4.3. As pointed out by [Gro85, p.45 Remarque] and [Mil86, Rmk. 2.4], the purity theorem
does not hold for general m (i.e., i∗ν̃n,Z,ét(m) = ΓZ(ν̃n,X,ét(m)) −→ RΓZ(ν̃n,X,ét(m)) is not a quasi-
isomorphism for general m) even in the smooth case.

Functoriality of ν̃n,X,t(m) is the same as that of CMX,t(m) via d log. We omit the statement.

Part 2. The maps

5. Construction of the chain map ζn,X,log,t : CMX,t −→ Kn,X,log,t

5.1. Construction of the chain map ζn,X,t : CMX,t −→ Kn,X,t. Let x ∈ X(q) be a dimension q point.

ιx : Spec k(x)→ X is the canonical map and ix : {x} ↪→ X the closed immersion. At degree i = −q, and
over a point x, we define the degree i map to be ζin,X,t :=

∑
x∈X(q)

ζin,x,t, with

ζin,x,t : (Wnιx)∗KMx,q,t
d log−−−→ (Wnιx)∗WnΩqk(x),log,t ⊂ (Wnιx)∗WnΩqk(x),t(5.1.1)

= (Wnix)∗K
i
n,{x},t

(−1)i TrWnix−−−−−−−−−→ Ki
n,X,t.
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We will use freely the notation ζin,X,t with some of its subscript or superscript dropped.
It’s worth noticing that all the maps of étale sheaves involved here are given by the sheafification of

the respective Zariski maps on the étale presheaf level. So to check commutativity of a composition of
such maps between étale sheaves, it suffices to check on the t = Zar level. Keeping the convention as
before, we usually omit the subscript Zar when we are working over the Zariski topology.

Proposition 5.1. Let X be a separated scheme of finite type over k with k being a perfect field. For
t = Zar and t = ét, the map

ζn,X,t : CMX,t −→ Kn,X,t,

as defined termwise in (5.1.1), is a chain map of complexes of sheaves on the site (WnX)t.

Note that we have a canonical identification (WnX)t = Xt for both t = Zar and t = ét. We use
(WnX)t just for the convenience of describing the WnOX -structure of residual complexes appearing
later.

Proof. To check ζn,X,t is a map of complexes, it suffices to check that the diagram

(CMX,t)
i

dMX //

ζin,X,t

��

(CMX,t)
i+1

ζi+1
n,X,t

��
(Kn,X,t)

i dX // (Ki+1
n,X,t)

i+1

commutes for t = Zar. To this end, it suffices to show: for each x ∈ X(q), and y ∈ X(q−1) which is a
specialization of x, the diagram

(5.1.2) (Wnιx)∗KMx,q
(dMX )xy //

ζn,x

��

(Wnιy)∗KMy,q−1

ζn,y

��
(Wniy,x)∗K

−q+1

n,{y}

−TrWniy,x

��
K−q
n,{x}

d{x} // K−q+1

n,{x}

commutes (iy,x : {y} ↪→ {x} denotes the canonical closed immersion).
Since the definition of the differential maps in CMX involves normalization, consider the normalization

ρ : X ′ → {x} of {x}, and form the cartesian square

{y} ×{x} X
′

��

� � // X ′ = {x′}

ρ

��
{y} �
� iy,x // {x}.

Denote the generic point of X ′ by x′. Suppose y′ is one of the generic points of the irreducible components
of {y} ×{x} X

′, and denote by Y ′ the irreducible component corresponding to y′. In particular, y′ is a

codimension 1 point in the normal scheme X ′, thus is regular. Because the base field k is perfect, y′ is
also a smooth point in X ′. According to Remark 1.12, the degree [−q,−q+ 1] terms of Kn,X′ are of the
form

(Wnιx′)∗H
0
x′(WnΩqX′)

δ−→
⊕

y′∈X′
(q−1)

(Wnιy′)∗H
1
y′(WnΩqX′) −→ . . . ,

where δ denotes the differential map of the Cousin complex Kn,X . Notice that δ can be calculated via
the boundary map of the localization sequence of local cohomologies, because of smoothness around y′

(cf. [CR11, A.1.2]). After localizing at a single y′ ∈ X ′(1) in the Zariski sense, one gets

(Wnιx′)∗H
0
x′(WnΩqX′)

δy′−−→ (Wnιy′)∗H
1
y′(WnΩqX′) −→ . . . .
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Consider the following diagrams. Write ιx′ : Spec k(x′) ↪→ X ′, ιy′ : Spec k(y′) ↪→ X ′ the inclusions,

iy′,x′ : Y ′ = {y′} ↪→ X ′ the closed immersion,

(5.1.3) (Wnιx′)∗KMx′,q
∂x
′
y′ //

d log

��

(Wnιy′)∗KMy′,q−1

d log

��
(Wnιx′)∗WnΩqk(x′)

δy′

))

(Wnιy′)∗WnΩq−1
k(y′)

−TrWn(i
y′,x′ )

��
(Wnιy′)∗H

1
y′(WnΩqX′).

For any y′ ∈ ρ−1(y) ⊂ X ′(1),

(5.1.4) (Wnρ)∗KMy′,q−1

Nmy′/y //

d log

��

KMy,q−1

d log

��
(Wnρ)∗WnΩq−1

k(y′)

TrWnρ // WnΩq−1
k(y).

And write iy′,x′ : Y ′ = {y′} ↪→ X ′, iy,x : {y} ↪→ {x},

(5.1.5) (Wnρ)∗(Wnιy′)∗WnΩq−1
k(y′)

TrWnρ //

TrWn(i
y′,x′ )

��

(Wnιy)∗WnΩq−1
k(y)

TrWn(iy,x)

��
(Wnρ)∗(Wnιy′)∗H

1
y′(WnΩqX′)

TrWnρ // K−(q−1)

n,{x}
,

(5.1.6) (Wnιx′)∗WnΩqk(x′)

dX′=
∑
δy′ //

TrWnρ '
��

⊕
y′∈ρ−1(y)(Wnιy′)∗H

1
y′(WnΩq−1

X′ )

TrWnρ

��
K−q
n,{x}

d{x} // K−(q−1)

n,{x}
.

All the trace maps above are trace maps of residual complexes at a certain degree. (5.1.5) is the degree
q − 1 part of the diagram

(Wnρ)∗(Wniy′,x′)∗Kn,Y ′
TrWnρ //

TrWn(i
y′,x′ )

��

(Wniy,x)∗Kn,{y}

TrWn(iy,x)

��
(Wnρ)∗Kn,X′

TrWnρ // K
n,{x}

(the trace map on top is the trace map of the restriction of Wnρ to WnY
′), and thus is commutative

by the functoriality of the Grothendieck trace map with respect to composition of morphisms (Proposi-
tion 1.10(4)). (5.1.6) is simply the degree −q to −q + 1 part of the trace map TrWnρ : (Wnρ)∗Kn,X′ →
K
n,{x}, thus is also commutative. It remains to check the commutativity of (5.1.3) and (5.1.4). And

they follow from Lemma 5.2 and Lemma 5.3.
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One notices that diagram (5.1.2) decomposes into the four diagrams (5.1.3)-(5.1.6):

(Wnρ)∗(Wnιx′)∗KMx′,q
⊕
y′|y ∂

x′
y′ //

d log

��

⊕
y′|y(Wnρ)∗(Wnιy′)∗KMy′,q−1

d log

��

∑
y′/y Nmy′/y// (Wnιy)∗KMy,q−1

d log

��
(Wnρ)∗(Wnιx′)∗WnΩqk(x′)

TrWnρ

��

(5.1.3)

⊕
y′|y δy′

++

⊕
y′|y(Wnρ)∗(Wnιy′)∗WnΩq−1

k(y′)⊕
y′|y −TrWn(i

y′,x′ )

��

TrWnρ //

(5.1.4)

(Wnιy)∗WnΩq−1
k(y)

−TrWn(iy,x)

��⊕
y′|y(Wnρ)∗(Wnιy′)∗H

1
y′(WnΩqX′)

TrWnρ //

(5.1.5)

K
−(q−1)

n,{x}

K−q
n,{x}

d{x} //

(5.1.6)

K
−(q−1)

n,{x}

Here by symbol y′|y we mean that y′ ∈ ρ−1(y). Notice that we have added a minus sign to both vertical
arrows of (5.1.5) in the corresponding square above, but this does not affect its commutativity. Since
one can canonically identify

(Wnρ)∗(Wnιx′)∗KMx′,q with (Wnιx)∗KMx,q,

to show the commutativity of the diagram (5.1.2), it only remains to show Lemma 5.2 and Lemma 5.3. �

Lemma 5.2. For an integral normal scheme X ′, with x′ ∈ X ′ being the generic point and y′ ∈ X ′(1)

being a codimension 1 point, the diagram (5.1.3) is commutative.

Proof. Given a y′ ∈ X ′(1) lying over y, KM
q (x′) is generated by

{π′, u1, . . . , uq−1} and {v1, . . . , vq−1, vq}

as an abelian group, where u1, . . . , uq−1, v1, . . . , vq−1, vq ∈ O∗X′,y′ , and π′ is a chosen uniformizer of the
dvr OX′,y′ . Thus it suffices to check the commutativity for these generators. We will use our convention
(5) at the beginning of this paper for the computation of local cohomologies.

In the first case, the left-bottom composition gives

(δy′ ◦ d log)({π′, u1, . . . , uq−1}) = δy′(d log[π′]nd log[u1]n . . . d log[uq−1]n)

=

[
d[π′]nd log[u1]n . . . d log[uq−1]n

[π′]n

]
.

The last equality above is given by the boundary map of the localization sequence of local cohomologies
[CR11, A.1.2]. Here we have used the fact that [π′] is a regular element in WnX

′, since π′ is regular in
X ′. The top-right composition gives

(−TrWn(iy′,x′ )
◦d log ◦∂x

′

y′ )({π′, u1, . . . , uq−1})
= (−TrWn(iy′,x′ )

◦d log){u1, . . . , uq−1}
= −TrWn(iy′,x′ )

(d log[u1]n . . . d log[uq−1]n)

=

[
d[π′]nd log[u1]n . . . d log[uq−1]n

[π′]n

]
.

The last equality is given by [CR12, 2.4.1]. So the diagram (5.1.3) is commutative in this case.

In the second case, since ∂x
′

y′ ({v1, . . . , vq}) = 0, we need to check the left-bottom composite also gives
zero. In fact,

(δy′ ◦ d log)({v1, . . . , vq}) = δy′(d log[v1]n . . . d log[vq]n)

=

[
[π′]n · d log[v1]n . . . d log[vq]n

[π′]n

]
= 0.

The second equality is due to [CR11, A.1.2]. The last equality is because [π′]n · d log[v1]n . . . d log[vq]n
lies in the submodule ([π′]n)WnΩqk(x′) ⊂WnΩqk(x′). �
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Lemma 5.3 (Compatibility of Milnor norm and Grothendieck trace). Let F/E be a finite field extension
with both fields E and F being of transcendence degree q−1 over k. Suppose there exists a finite morphism
g between integral finite type k-schemes, such that F is the function field of the source of g and E is the
function field of the target of g, and the field extension F/E is induced via the map g. Then the following
diagram commutes

KM
q−1(F )

NmF/E //

d log

��

KM
q−1(E)

d log

��
WnΩq−1

F

TrWng // WnΩq−1
E .

Here the norm map NmF/E denotes the norm map from Milnor K-theory, and TrWng denotes the
Grothendieck trace map associated to the finite morphism g.

Remark 5.4. (1) Apparently Lemma 5.3 implies the commutativity of the diagram (5.1.4) (i.e.,
take F = k(y′) and E = k(y), and g to be the restriction of the normalization map ρ to a
neighborhood of y′. In fact, whenever E is essentially of finite type over k, then F as a finite
extension of E is also essentially of finite type over k, and there exists such a finite morphism g
satisfying the assumptions in the lemma.)

(2) The localized trace map TrWng at the generic point of the source of g does not depend on the
choice of g inducing the same field extension E ⊂ F . In fact, since the function field extension
E ⊂ F is given, the birational class of g is fixed.

(3) The compatibility of the trace map with the norm and the pushforward of cycles in various
settings has been a folklore, and many definitions/properties of the trace map in the literature
reflect this viewpoint. To list a few,
• Kato defined a trace map between Kähler differentials via the Milnor norm map (cf. [GO08,

§2.2.3, ii.]).
• Rülling defined a trace map for generalized de Rham-Witt complex for finite field extensions

in the odd characteristic in [Rül07, 2.6], and showed its compatibility with Milnor norm map
as a consequence of [NS89, 4.7] and [Rül07, 3.18(iii)] (using the same notations as in [Rül07,
§3], one notices that there is a natural map CHn(k, n)→ CHn+1(Ak(m), n) induced by the
inclusion of the point 1: Spec k ' Spec k[T ]/(T − 1) ↪→ Spec k[T ] = A1

k). This restriction
on the characteristic is removed later in the appendix of [KPR20].
• Along the line of the second item, Krishna and Park extended the trace in [Rül07, 2.6] to

the case of finite extensions of regular semi-local k-algebras essentially of finite type for an
arbitrary field k, and also to the case of finite extensions of regular k-algebras essentially of
finite type for a perfect field k [KPR20, 7.8, 7.9].

But since we have not found a proof of the compatibility of the Milnor norm with the trace map
defined via the Grothendieck duality theory, we include a proof here.

Proof. We start the proof by some reductions. Since both NmF/E and TrF/E are independent of the
choice of towers of simple field extensions, without loss of generality, one could suppose F is a finite simple

field extension over E. Now F = E(a) = E[T ]
f(T ) for some monic irreducible polynomial f(T ) ∈ E[T ] with

a ∈ F being one of its roots. This realizes SpecF as an F -valued point P of P1
E , namely,

SpecF = P �
� iP //

g
&&

P1
E

π

��
SpecE.

All the three morphisms on above are morphisms of finite type (although not between schemes of finite
type over k), so it makes sense to talk about the associated trace maps for residual complexes (cf.
Proposition 1.9). But for the particular residual complexes we are interested in, we need to enlarge the
schemes involved to schemes of finite type over k, while preserving the morphism classes (e.g., closed
immersion, smooth morphism, etc) of the morphisms between them.

To this end, take Y to be any separated smooth connected scheme of finite type over k with E
being the function field. Since P1

E is the generic fiber of Y ×k P1
k, by possibly shrinking Y to an affine

neighborhood SpecB of pr1(P ) (here pr1 : Y ×k P1
k → Y is the first projection map) one can extend the
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above diagram to the following:

SpecF ∈W �
� iW //

g

))

P1
Y

π

��
Y = SpecB 3 SpecE.

Here W := {P}
P1
Y

is the closure of the point P in P1
Y . This is a commutative diagram of finite type

k-schemes. In particular, it makes sense to talk about the residual complexes Kn,Y ,Kn,W and Kn,P1
Y

.
Now it remains to show the commutativity of the following diagram

(5.1.7) KM
q−1(E(a))

NmE(a)/E //

d log

��

KM
q−1(E)

d log

��
WnΩq−1

E(a)

TrWng // WnΩq−1
E ,

where TrWng denotes the trace map for residual complexes TrWng : (Wng)∗Kn,W → Kn,Y at degree
−(q − 1).

We do induction on [E(a) : E]. When [E(a) : E] = 1, then both the Grothendieck trace TrWng :

WnΩq−1
E(a)/k →WnΩq−1

E/k and the norm map NmE(a)/E : KM
q−1(E(a))→ KM

q−1(E) are the identity, therefore

the claim holds. Now the induction step. Suppose the diagram (5.1.7) commutes for [E(a) : E] ≤ r − 1.
We will need to prove the commutativity for [E(a) : E] = r.

First note that TrWng : (Wng)∗Kn,W → Kn,Y naturally decomposes into

(5.1.8) (Wng)∗Kn,W

(Wnπ)∗ TrWniPW−−−−−−−−−−−−→ (Wnπ)∗Kn,P1
Y

TrWnπ−−−−→ Kn,Y .

by Proposition 1.10(4). H1
P (WnΩq

P1
Y

) is a direct summand of the degree −(q − 1) part of Kn,P1
Y

. We

claim that one can canonically identify

(5.1.9) H1
P (WnΩq

P1
Y

) = H1
P (WnΩq

P1
E

),

via pulling back along the natural map P1
E ↪→ P1

Y . In fact, it suffices to show H1
P (WnΩq

A1
Y

) =

H1
P (WnΩq

A1
E

), with a choice of A1
E containing P . Notice that A1

E = SpecE ×Y A1
Y = SpecS−1(B[T ])

where S is a multiplicatively closed subset consisting of nonzero elements in B (notice that B is an inte-
gral domain by the assumption). Let p ⊂ E[T ] be the prime ideal corresponding to the point P . Notice
that S = B \ 0 ⊂ B[T ] \ p. Indeed, since p is a principal ideal, it is generated by a non-constant poly-
nomial with coefficients in field E. Thus the inclusion holds. Now H1

P (WnΩq
A1
Y

) = S−1H1
P (WnΩq

A1
Y

) =

H1
P (S−1WnΩq

A1
Y

) = H1
P (WnΩq

A1
E

), where the last equality is due to the compatibility of localization and

the de Rham-Witt sheaves. So the claim holds. Thus on degree −(q − 1) and at the point P , the map
(5.1.8) is canonically identified with

WnΩq−1
E(a)

TrWniPW−−−−−−→ H1
P (WnΩq

P1
E

)
TrWnπ−−−−→WnΩq−1

E .

Consider

KM
q (E(T ))

(−1)

∂P //

d log

��

KM
q−1(E(a))

NmE(a)/E //

d log

��

KM
q−1(E)

d log

��

WnΩq−1
E(a)

TrWniPW

��

TrWng

''
WnΩqE(T )

δP // H1
P (WnΩq

P1
E

)
TrWnπ // WnΩq−1

E .

We have used the identification (5.1.9) in this diagram. We have seen that the left square is commutative
up to sign −1, as a special case of Lemma 5.2 (i.e. take normal scheme X ′ = P1

E and y′ := P = SpecF ).
Since ∂P is surjective, to show the commutativity of the trapezoid on the right, it suffices to show that
the composite square is commutative up to −1. For any element

s := {s1, . . . , sq−1} ∈ KM
q−1(E(a)),
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one can always find a lift

s̃ := {f, s̃1, . . . , s̃q−1} ∈ KM
q (E(T )),

such that each of the si = si(T ) is a polynomial of degree ≤ r − 1 (e.g. decompose E(a) as a r-

dimensional E-vector space E(a) =
⊕r−1

j=0 Ea
j and suppose si =

∑r−1
j=0 bi,ja

j with bi,j ∈ E, then s̃i =

s̃i(T ) =
∑r−1
j=0 bi,jT

j satisfies the condition), and ∂P (s̃) = s. Denote by

yi,1, . . . , yi,ai (1 ≤ i ≤ q − 1)

the closed points of P1
E corresponding to the irreducible factors of the polynomials s̃1, . . . , s̃q−1. Note that

the local section s̃i,l cutting out yi,l is by definition an irreducible factor of s̃i, and therefore deg s̃i,l < r
for all i and all l.

We claim that

(5.1.10)
∑

y∈(P1
E)(0)

(TrWnπ)y ◦ δy = 0 : WnΩqE(T )/k →WnΩq−1
E/k.

In fact,

(5.1.11) 0→WnΩq
P1
E
→WnΩqE(T ) →

⊕
y∈(P1

E)(0)

(Wnιy)∗H
1
y (WnΩq

P1
E

)→ 0

is an exact sequence [CR12, 1.5.9], where ιy : y ↪→ P1
E is the natural inclusion of the point y. Taking

the long exact sequence with respect to the global section functor, one arrives at the following diagram
with the row being a complex

WnΩqE(T )

δ //⊕
y∈(P1

E)(0)
H1
y (WnΩq

P1
E

) //

∑
y(TrWnπ)y ))

H1(P1
E ,WnΩq

P1
E

)

TrWnπ

��
WnΩq−1

E/k.

The trace maps on the skewed arrow of the above are induced from the degree 0 part of TrWnπ :
(Wnπ)∗Kn,P1

Y
→ Kn,Y . The trace map on the vertical arrow of the above is induced also by TrWnπ :

(Wnπ)∗Kn,P1
Y
→ Kn,Y , while the global cohomology group is calculated via (5.1.11), i.e., one uses the last

two terms of (5.1.11) as an injective resolution of the sheaf WnΩq
P1
E

, and then TrWnπ : (Wnπ)∗Kn,P1
Y
→

Kn,Y induces the map of complexes on global sections (placing at degrees [−1, 0]), and then the map

of cohomologies on degree 0 gives our trace map H1(P1
E ,WnΩqE) → WnΩq−1

E on the right. From the
construction of these trace maps, the diagram above is by definition commutative. Therefore (5.1.10)
holds.

One notices that δy ◦ d log(s̃) = 0 unless y ∈ {p, y1,1, . . . , yq−1,aq−1
,∞}. Now calculate

(TrWng ◦ d log)(s)

= (TrWng ◦d log ◦∂P )(s̃)

= −((TrWnπ)P ◦ δP ◦ d log)(s̃) (Lemma 5.2)

=
∑

y∈{y1,1,...,yq−1,aq−1
,∞}

((TrWnπ)y ◦ δy ◦ d log)(s̃) (5.1.10)

= −
∑

y∈{y1,1,...,yq−1,aq−1
,∞}

(d log ◦NmE(k(y))/E ◦∂y)(s̃)

(induction hypothesis)

= (d log ◦NmE(a)/E ◦∂P )(s̃) ([Ros96, 2.2 (RC)])

= (d log ◦NmE(a)/E)(s).

This finishes the induction. �

5.2. Functoriality of ζn,X,t : CMX,t → Kn,X,t. Let k denote a perfect field of positive characteristic p.
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Proposition 5.5 (Proper pushforward). ζ is compatible with proper pushforward. I.e., for f : X → Y
a proper map, the following diagram is commutative

(Wnf)∗C
M
X,t

f∗

��

ζn,X,t // (Wnf)∗Kn,X,t

f∗

��
CMY,t

ζn,Y,t // Kn,Y,t.

Here f∗ on the left denotes the pushforward map for Kato’s complex of Milnor K-theory (cf. Proposi-
tion 3.1), and f∗ on the right denotes the Grothendieck trace map TrWnf,t for residual complexes.

Proof. We only need to prove the proposition for t = Zar and for degree i ∈ [−d, 0]. Then by the very
definition of the ζ map and the compatibility of the trace map with morphism compositions (Proposi-
tion 1.10(4)), it suffices to check the commutativity at points x ∈ X(q), y ∈ Y(q), where q = −i:

KM
q (x)

d log //

f∗

��

WnΩqk(x)

f∗

��
KM
q (y)

d log // WnΩqk(y).

(1) When y 6= f(x), both pushforward maps are zero maps, therefore we have the desired commu-
tativity.

(2) When y = f(x), by definition of ζ and the pushforward maps, we need to show commutativity
of the following diagram for finite field extension k(y) ⊂ k(x)

KM
q (x)

d log //

Nmk(x)/k(y)

��

WnΩqk(x)

TrWnf

��
KM
q (y)

d log // WnΩqk(y).

This is precisely Lemma 5.3.

�

Proposition 5.6 (Étale pullback). ζ is compatible with étale pullbacks. I.e., for f : X → Y an étale
morphism, the following diagram is commutative

CMY,t

f∗

��

ζn,Y,t // Kn,Y,t

f∗

��
(Wnf)∗C

M
X,t

ζn,X,t // (Wnf)∗Kn,X,t.

Here f∗ on the left denotes the pullback map for Kato’s complex of Milnor K-theory (cf. Proposition 3.1),
and f∗ on the right denotes the pullback map for residual complexes (1.5.1).

Proof. It suffices to prove the proposition for t = Zar. Take y ∈ Y(q). Consider the cartesian diagram

X ×Y {y} =: W
f |W //

� _

iW

��

{y}� _
iy

��
X

f // Y.

Then the desired diagram at point y decomposes in the following way at degree −q:

KM
q (y)

d log //

f∗

��

WnΩqk(y) = K−q
n,{y}

(f |W )∗

��

TrWniy // K−qn,Y

f∗

��⊕
x∈W(q)

KM
q (x)

d log //⊕
x∈W(q)

WnΩqk(x) = K−qn,W
TrWniW // K−qn,X .
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The right square commutes due to Lemma 1.35. As for the left, it follows from the fact that both f∗

and (f |W )∗ are induced by the natural map f∗ : OY → f∗OX . �

5.3. Extend to Kn,X,log,t. Recall the complex Kn,X,log,t := Cone(Kn,X,t
C′t−1−−−→ Kn,X,t)[−1], i.e.

Ki
n,X,log,t = Ki

n,X,t ⊕Ki−1
n,X,t.

The differential Ki
n,X,log,t → Ki+1

n,X,log,t is given by

dlog : Ki
n,X,t ⊕Ki−1

n,X,t → Ki+1
n,X,t ⊕K

i
n,X,t

(a, b) 7→ (d(a),−(C ′ − 1)(a)− d(b)).

Notice that

(5.3.1) Kn,X,t → Kn,X,log,t, a 7→ (a, 0)

is not a chain map. Nevertheless,

Proposition 5.7. We keep the same assumptions as in Proposition 5.1. The chain map ζn,X,t : CMX,t −→
Kn,X,t composed with (5.3.1) gives a chain map

ζn,X,log,t := (5.3.1) ◦ ζn,X,t : CMX,t −→ Kn,X,log,t

of complexes of abelian sheaves on (WnX)t.

We will also use the shortened notation ζlog,t for ζn,X,log,t. When t = Zar, the subscript Zar will also
be omitted.

Proof. Given x ∈ X(q), we prove commutativity of the following diagram

ιx∗KMx,q,t
d log // ιx∗WnΩqk(x),log,t� _

��

TrWnix,t // K−qn,X,t
C′X,t−1

// K−qn,X,t

ιx∗KMx,q,t
d log // ιx∗WnΩqk(x),t

C′{x},t−1
// (ix,∗Kn,{x},t)

−q TrWnix,t // K−qn,X,t.

The left square naturally commutes. The right square also commutes, because C ′ is compatible with the
Grothendieck trace map TrWnix . (The proofs of Proposition 1.30 and Proposition 1.41 give the case for
t = Zar and t = ét, respectively). Now because C ′

{x},t
− 1 : WnΩqk(x),t → WnΩqk(x),t, which is identified

with C{x},t−1 as a result of Theorem 1.17 and Proposition 1.38, annihilates WnΩqk(x),log,t, the composite

of the second row is zero. Thus the composite of the first row is zero. This yields a unique chain map

ζn,X,log,t : CMX,t → Kn,X,log,t,

which on degree i = −q writes

ζin,X,log,t : (CMX,t)
i = KMx,q,t → Ki

n,X,log,t = Ki
n,X,t ⊕Ki−1

n,X,t,

s = {s1 . . . , sq} 7→ (ζin,X,t(s), 0).

�

As a direct corollary of Proposition 5.5 and Proposition 5.6, one has the following proposition.

Proposition 5.8 (Functoriality). (1) ζlog,t is compatible with proper pushforward. I.e., for f : X →
Y a proper map, the following diagram of complexes is commutative

(Wnf)∗C
M
X,t

f∗

��

ζn,X,log,t // (Wnf)∗Kn,X,log,t

f∗

��
CMY,t

ζn,Y,log,t // Kn,Y,log,t.

Here f∗ on the left denotes the pushforward map for Kato’s complex of Milnor K-theory (cf.
Proposition 3.1), and f∗ on the right denotes TrWnf,log,t as defined in Proposition 1.30 and
Proposition 1.41.
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(2) ζlog,t is compatible with étale pullbacks. I.e., for f : X → Y an étale morphism, the following
diagram of complexes is commutative

CMY,t

f∗

��

ζn,Y,log,t // Kn,Y,log,t

f∗

��
(Wnf)∗C

M
X,t

ζn,X,log,t // (Wnf)∗Kn,X,log,t.

Here f∗ on the left denotes the pullback map for Kato’s complex of Milnor K-theory (cf. Propo-
sition 3.1), and f∗ on the right denotes the pullback map defined in Proposition 1.34.

5.4. ζn,X,log,t : CMX,t/p
n ' ν̃n,X,t −→ Kn,X,log,t is a quasi-isomorphism. Let X be a separated scheme

of finite type over a perfect field k of positive characteristic p. Since ζn,X,t is termwise defined via the
d log map, it annihilates pnCMX,t. Therefore ζn,X,log,t annihilates pnCMX,t as well, and induces a chain map

ζn,X,log,t : CMX,t/p
n → Kn,X,log,t.

Since the d log map induces an isomorphism of complexes CMX,t/p
n ' ν̃n,X,t, to show ζn,X,log,t is a

quasi-isomorphism, it is equivalent to show

ζn,X,log,t : ν̃n,X,t → Kn,X,log,t

is a quasi-isomorphism.

Lemma 5.9. Suppose X is separated smooth over the perfect field k. Then for any level n the following
chain maps

ζn,X,log,ét : ν̃n,X,ét −→ Kn,X,log,ét;

ζn,X,log,Zar : ν̃n,X,Zar −→ Kn,X,log,Zar, when k = k;

are quasi-isomorphisms.

Proof. This is a local problem, thus it suffices to prove the statement for each connected component of X.
Therefore we assume X is of pure dimension d over k. Then for any level n, we have a quasi-isomorphism
([GS88b, Cor 1.6])

WnΩdX,log,t[d]
'−→ ν̃n,X,t.

We also have

WnΩdX,log,ét[d]
'−→ Kn,X,log,ét (by Proposition 1.40),

WnΩdX,log,Zar[d]
'−→ Kn,X,log,Zar when k = k (by Proposition 1.29).

On degree −d, we have a diagram

ν̃−dn,X,t =
⊕

x∈X(0)

(Wnιx)∗WnΩdk(x),log,t

ζ
−d
n,x,log,t // K−dn,X,log,t =

⊕
x∈X(0)

(Wnιx)∗H
0
x(WnΩdX,t)

WnΩdX,log,t
(−1)d //

OO

WnΩdX,log,t

OO

which is naturally commutative, due to the definition of ζn,X,log,t. It induces quasi-isomorphisms as
stated in the lemma. �

Theorem 5.10. Let X be a separated scheme of finite type over k with k being a perfect field. Then the
chain maps

ζn,X,log,ét : ν̃n,X,ét −→ Kn,X,log,ét;

ζn,X,log,Zar : ν̃n,X,Zar −→ Kn,X,log,Zar, when k = k;

are quasi-isomorphisms.

Proof. One can assume that X is reduced. In fact, the complex ν̃n,X,t is defined to be the same complex

as ν̃n,Xred,t (see (4.0.1)), and we have a quasi-isomorphism Kn,Xred,log,t
'−→ Kn,X,log,t given by the trace

map, according to Proposition 1.32 and Proposition 1.42. One notices that ζn,Xred,log,t
is compatible with
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ζn,X,log,t because of the functoriality of the map ζlog,t with respect to proper maps Proposition 5.8(1).
As long as we have a quasi-isomorphism

ζn,Xred,log,t
: ν̃n,Xred,t −→ Kn,Xred,log,

we get automatically that

ζn,X,log,t : ν̃n,Xred,t = ν̃n,X,t
ζn,Xred,log,t−−−−−−−−→ Kn,Xred,log

'−→ Kn,X,log,t

is a quasi-isomorphism.
Now we do induction on the dimension of the reduced scheme X. Suppose X is of dimension d, and

suppose ζn,Y,log,t is a quasi-isomorphism for schemes of dimension ≤ d− 1. Now decompose X into the
singular part Z and the smooth part U

U
j
↪−→ X

i←−↩ Z.

Then Z has dimension ≤ d− 1. Consider the following diagram in the derived category of complexes of
Z/pn-modules

(5.4.1) i∗ν̃n,Z,t //

i∗ζn,Z,log,t

��

ν̃n,X,t //

ζn,X,log,t

��

Rj∗ν̃n,U,t

Rj∗ζn,U,log,t

��

+1 // i∗ν̃n,Z,t[1]

i∗ζn,Z,log,t[1]

��
i∗Kn,Z,log,t

TrWni,log // Kn,X,log,t
// Rj∗Kn,U,log,t

+1 // i∗Kn,Z,log,t[1],

where the two rows are distinguished triangles coming from Proposition 1.33, Proposition 1.43 and
Proposition 4.2. We show that the three squares in (5.4.1) are commutative in the derived category. The
left square is commutative because of Proposition 5.8(1). The middle square of (5.4.1) is induced from
the diagram

(5.4.2) ν̃n,X,t //

ζn,X,log,t

��

j∗ν̃n,U,t

j∗ζn,U,log,t

��
Kn,X,log,t

// j∗Kn,U,log,t

of chain complexes. Let x ∈ X(q). When x ∈ X(q) ∩ U , both ν̃n,X,t → j∗ν̃n,U,t and Kn,X,log,t →
j∗Kn,U,log,t give identity maps at x, therefore the square (5.4.2) commutes in this case. When x ∈ X(q)∩Z,
both of these give the zero map at x, therefore the square (5.4.2) is also commutative. The right square
of (5.4.1) can be decomposed in the following way (cf. (1.4.4) and (1.6.3)):

Rj∗ν̃n,U,t

Rj∗ζn,U,log,t

��

+1 // RΓZ(ν̃n,X,t)[1]

RΓZ(ζn,X,log,t)[1]

��

i∗ν̃n,Z,t[1]
i∗

'
oo

i∗ζn,Z,log,t[1]

��
Rj∗Kn,U,log,t

+1 // RΓZ(Kn,X,log,t)[1] i∗Kn,Z,log,t[1].
i∗

'
oo

The map i∗ on the first row is induced by the norm map of Milnor K-theory Proposition 3.1. It is clearly
an isomorphism of complexes when t = Zar. It is a quasi-isomorphism when t = ét due to the purity
theorem [Mos99, p.130 Cor.]. The map i∗ on the second row is induced from TrWni,log,t as defined in
Proposition 1.30 and Proposition 1.41, and it is an isomorphism due to Proposition 1.33(1) when t = Zar,
and Proposition 1.43 when t = ét. The first square commutes by naturality of the +1 map. The second
commutes because of the compatibility of ζlog,t with the proper pushforward Proposition 5.8(1). We thus
deduce that the right square of (5.4.1) commutes.

Now consider over any perfect field k for either of the two cases:

(1) t = ét and k a perfect field, or
(2) t = Zar and k = k.

The left vertical arrow of (5.4.1) is a quasi-isomorphism because of the induction hypothesis. The third
one counting from the left is also a quasi-isomorphism because of Lemma 5.9. Thus so is the second
one. �
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6. Combine ψX,t(m) : ZcX,t(m)→ CMX,t(m) with ζn,X,log,t : CMX,t −→ Kn,X,log,t

6.1. The map ψX,t(m) : ZcX,t(m)→ CMX,t(m). In [Zho14, 2.14], the author constructed a map of abelian

groups ψX,t(m) : ZcX(m)(X) → CMX,Zar(m)(X) based on the Nesterenko-Suslin-Totaro isomorphism

[NS89, Thm. 4.9][Tot92]. First we briefly recall his construction and make sure his results pass to the
sheaf-theoretic case.

Let k be a perfect field of characteristic p, and X be a separated scheme of finite type over k of
dimension d. Since the t = Zar case is written in [Zho14, 2.14], we write only t = ét below. Define a
map of complexes of étale sheaves

ψ := ψX,ét(m) : ZcX,ét(m)→ CMX,ét(m)

in the following way. Let i be a given degree, and U ∈ Xét be a section. We denote by Ux = x×X U the
fiber above x. Define

zm(U,−i− 2m)→
⊕

x∈X(−i−m)

KM
x,−i−2m,t(Ux) =

⊕
x∈X(−i−m)

⊕
u∈Ux

KM
−i−2m(k(x)sep)Gal(k(u)).

Let Z ∈ zm(U,−i− 2m) be a prime cycle.

• When i ∈ [−d−m,min{−2m,−m}] and dim pU (Z) = −i−m, Z, as a cycle of dimension −i−m
in U ×∆−i−2m, is dominant over some u(Z) ∈ U(−i−m) under projection pU : U ×∆−i−2m → U .
Since U → X is of relative dimension 0, we have u(Z) ∈ Ux for some x ∈ X(−i−m). By
slight abuse of notation, we denote by T0, . . . , T−i−2m ∈ k(Z) the pullbacks of the corresponding
coordinates via Z ↪→ U ×∆−i−2m. Since Z intersects all faces properly, T0, . . . , T−i−2m ∈ k(Z)∗.

Thus { −T0

T−i−2m
, . . . , −T−i−2m−1

T−i−2m
} ∈ KM

−i−2m(k(Z)) is well-defined. Then one applies the norm map

Nmk(Z)/k(u(Z)) : KM
−i−2m(k(Z))→ KM

−i−2m(k(u(Z))) and the natural map KM
−i−2m(k(u(Z)))→

KM
−i−2m(k(x)sep)Gal(k(u(Z))). Denote this composite map again by Nmk(Z)/k(u(Z)). Define

ψ(Z) := Nmk(Z)/k(u(Z)){
−T0

T−i−2m
, . . . ,

−T−i−2m−1

T−i−2m
}

∈ KM
−i−2m(k(x)sep)Gal(k(u(Z))).

• When i /∈ [−d−m,min{−2m,−m}] or dim pU (Z) 6= −i−m, define ψ(Z) := 0.

Remark 6.1. One can define a similar map as ψ in terms of the cubical description of the cycle complex
[Lev09, §1.1-1.2], cf. [RS18, §3.1]. But we shall not need this.

Proposition 6.2. ψX,t(m) is a well-defined map of complexes of sheaves for t = Zar and t = ét.

Proof. t = Zar case is clear from [Zho14, 2.15], thus it suffices to show the claim for t = ét.
We first claim that ψX,ét(m) is a well-defined map of étale sheaves on each term. To this end, take

g : V → U an étale map over X. Fix a point x ∈ X(−i−m), and take Z ∈ zm(U,−i− 2m) a prime cycle
with generic point z. We need to check commutativity of the following diagram

zm(V,−i− 2m)
ψV //⊕

x∈X(−i−m)

⊕
v∈Vx K

M
−i−2m(k(x)sep)Gal(k(v))

zm(U,−i− 2m)

g∗

OO

ψU //⊕
x∈X(−i−m)

⊕
u∈Ux K

M
−i−2m(k(x)sep)Gal(k(u)),

g∗

OO

where g∗ on the two vertical maps denote the restrictions in the respective étale sheaves. Denote by
g × id : V × ∆−i−2m → U × ∆−i−2m the product morphism, and by pU : U × ∆−i−2m → U , pV :
V ×∆−i−2m → V the natural projections. Firstly, note that dim pV ((g× id)−1Z) ≤ dim pU (Z), because
the image of pV ((g × id)−1Z) under the map g lies in pU (Z). So it remains to check the following three
cases:

(1) dim pU (Z) 6= −i−m and dim pV ((g × id)−1Z) 6= −i−m. In this case we have both composite
maps map Z to zero.

(2) dim pU (Z) = −i−m and dim pV ((g×id)−1Z) 6= −i−m. This can only happen when (g×id)−1Z =
∅: otherwise there will be a generic point, say z′, of (g × id)−1Z mapping to the generic point z
of Z via g× id. But pU (z) would be the generic point of pU (Z) and is a dimension −i−m point,
and pV (z′) would be a generic point of pV ((g × id)−1Z) and is a point of dimension strictly
smaller than −i − m. But g(pV (z′)) = pU (z). This contradicts the fact that g is of relative
dimension 0.

This tells us ψV (g∗(Z)) = 0. We need to show g∗(ψU (Z)) = 0 as well. Fix u ∈ Ux.
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(a) If u 6= pU (z), then ψU (Z) = 0 at u.
(b) If u = pU (z) then g−1(u) = g−1(pU (z)) = ∅. Because otherwise p−1

V (g−1(u)) would be non-

empty due to the surjectivity of pV , and (g× id)−1(z) lies in the intersection p−1
V (g−1(u))∩

(g × id)−1Z. This contradicts (g × id)−1Z = ∅. Now we’ve proved g∗(ψU (Z)) = 0 at u.
(3) dim pU (Z) = dim pV ((g × id)−1Z) = −i−m. Fix u ∈ Ux, v ∈ Vx, with g(v) = u.

(a) When u = pU (z), each point in p−1
V (v) will be the generic point of some irreducible com-

ponent Zi of (g × id)−1Z. Note that g is étale. The classical commutativity from Milnor
K-theory [Ros96, R1c],⊕

Zi
KM
−i−2m(k(Zi))

∑
v(Zi)=v

Nmk(Zi)/k(v)
// KM
−i−2m(k(v))

KM
−i−2m(k(Z))

OO

Nmk(Z)/k(u(Z)) // KM
−i−2m(k(u)),

OO

implies the commutativity of the required diagram, with the down-right composition equals
g∗(ψU (Z)), and the left-top composition equals ψV (g∗(Z)).

(b) When u 6= pU (z) then we must have v 6= pV (z′) for any generic point z′ of (g × id)−1Z. In
this case both composite maps Z to zero, and we still have the desired commutativity.

ψX,t(m) is also a well-defined map of complexes. For t = ét, it suffices to check this on the presheaf
level, which is equivalent to check for t = Zar. This is done already in [Zho14, 2.14]. �

6.2. Functoriality. Zhong in [Zho14, 2.15] proved that ψX,t(m) is covariant with respect to proper
morphisms, and contravariant with respect to quasi-finite flat morphisms. We improve his contravariant
statement from quasi-finite flat morphisms to flat morphisms.

Proposition 6.3. Let X,Y be separated schemes of finite type over k. d := dimX.

(1) [Zho14, 2.15] For proper f : X → Y , the following diagram is commutative:

f∗ZcX,t(m)

f∗

��

ψX,t(m) // f∗CMX,t(m)

f∗

��
ZcY,t(m)

ψY,t(m) // CMY,t(m).

(2) For flat f : X → Y of equidimension c, the following diagram is commutative:

ZcY,t(m− c)[2c]

f∗

��

ψY,t(m−c)[2c] // CMY,t(m− c)[2c]

f∗

��
f∗ZcX,t(m)

ψX,t(m) // f∗CMX,t(m).

Proof. It suffices to prove the t = Zar case. Covariant functoriality is proved by Zhong. It remains to
check contravariant functoriality for flat f : X → Y of equidimension c (therefore 0 ≤ c ≤ d). Notice
firstly that

• ZcX,t(m) is concentrated in degrees (−∞,min{−2m,−m}],
• ZcY,t(m− c)[2c] is concentrated in degrees (−∞,min{−2m,−m− c}],
• CMX,t(m) is concentrated in degrees [−d−m,min{−2m,−m}], and

• CMY,t(m− c)[2c] is concentrated in degrees [−d−m,min{−2m,−m− c}].
We discuss commutativity of the following diagram

zm−c(Y,−i− 2m)

f∗

��

ψY //⊕
Y(−i−m−c)

KM
−i−2m(y)

f∗

��
zm(X,−i− 2m)

ψX //⊕
X(−i−m)

KM
−i−2m(x).

Let Z ∈ zm−c(Y,−i − 2m) be a (−i −m − c)-dimensional cycle in Y ×∆−i−2m. f∗ sends Z to the
cycle-theoretic pullback

[(f × 1)−1(Z)] =
∑

multZ′ · Z ′ ∈ zm(X,−i− 2m),
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where Z ′ are the irreducible components of (f × 1)−1(Z) with reduced schematic structure, multZ′ :=
lgthO(f×1)−1(Z),Z′

(O(f×1)−1(Z),Z′) is the multiplicity of Z ′ (lgth denotes the length). Each Z ′ is of pure

dimension −i−m.

• When i ∈ [−d−m,min{−2m,−m}], ψX sends the cycle [(f × 1)−1(Z)] to

(6.2.1)
∑
Z′

multZ′ ·Nmk(Z′)/k(x(Z′)){
−T0

T−i−2m
, . . . ,

−T−i−2m−1

T−i−2m
} ∈

⊕
X(−i−m)

KM
−i−2m(x(Z ′)).

Here Z ′ runs over all irreducible components of (f×1)−1(Z) such that dim pX(Z ′) = −i−m, but
is equipped with the reduced schematic structure; and for each norm symbol, x(Z ′) ∈ X(−i−m)

denotes the point that is dominated by Z ′ via pX . (6.2.1) is simply zero when there’s no such
Z ′ satisfying the dimension condition, according to convention.

• When i /∈ [−d−m,min{−2m,−m}], ψX sends the cycle [(f × 1)−1(Z)] to zero.
• When i ∈ [−d−m,min{−2m,−m−c}] and dim pY (Z) = −i−m−c, denote by y(Z) ∈ Y(−i−m−c)

the point dominated by Z via projection pY , ψY sends Z to

Nmk(Z)/k(y(Z)){
−T0

T−i−2m
, . . . ,

−T−i−2m−1

T−i−2m
} ∈ KM

−i−2m(y(Z)).

• When i /∈ [−d−m,min{−2m,−m− c}] or dim pY (Z) 6= −i−m− c, ψY (Z) = 0.

So altogether we need to check commutativity in the following cases:

a) when i ∈ [−d−m,min{−2m,−m− c}], consider the following diagram⊕
Z′ K

M
−i−2m(k(Z ′))

∑
multZ′ ·Nmk(Z′)/k(x(Z′))//⊕

x(Z′)K
M
−i−2m(k(x(Z ′)))

KM
−i−2m(k(Z))

Nmk(Z)/k(y(Z)) //

(f×1)∗

OO

KM
−i−2m(k(y(Z))).

f∗

OO

Here Z ′ runs over all irreducible components of (f × 1)−1Z with reduced schematic structure.
Z ′ is automatically of dimension −i−m. And x(Z ′) runs over all the dimension −i−m points
of X which is dominated by some Z ′. This is commutative because of [Ros96, R1c]. In this case,
f∗(ψY (Z)) equals the image of

(6.2.2) { −T0

T−i−2m
, . . . ,

−T−i−2m−1

T−i−2m
}

under the bottom-right composite, and ψX([(f × 1)−1(Z)]) equals the image of same element
(6.2.2) under the left-top composite, and thus they are equal.

b) When i /∈ [−d−m,min{−2m,−m− c}], both maps send Z to zero. The commutativity trivially
holds.

�

6.3. ζn,X,log,t ◦ ψX,t : ZcX,t/pn
'−→ Kn,X,log,t is a quasi-isomorphism. In [Zho14, 2.16] Zhong proved:

The map ψX,ét(m) defined above is a map of complexes, and combined with the Bloch-Gabber-Kato
isomorphism, it induces a quasi-isomorphism of complexes by modding out pn in the étale topology for
all m (note that when m > d, both complexes are zero complexes):

ψX,ét(m) : ZcX,ét/p
n(m)

'−→ ν̃n,X,ét(m).

In the proof, Zhong actually showed that these two complexes of sheaves on each section of the big
Zariski site over X are quasi-isomorphic. Therefore by restriction to the Zariski site, we have

ψX,Zar(m) : ZcX,Zar/p
n(m)

'−→ ν̃n,X,Zar(m).

Set m = 0 and combine with the result in last section Theorem 5.10:

Theorem 6.4. Let X be a separated scheme of finite type over k with k being a perfect field of positive
characteristic p. Then the following composition of chain maps

ζn,X,log,ét ◦ ψX,ét : ZcX,ét/p
n '−→ Kn,X,log,ét,

and when k = k, the following composition of chain maps

ζn,X,log,Zar ◦ ψX,Zar : ZcX,Zar/p
n '−→ Kn,X,log,Zar,

are quasi-isomorphisms.
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Remark 6.5. From the construction of the maps ζn,X,log,t and ψX,t, we can describe explicitly their
composite map. We write here only the Zariski case, and the étale case is just given by the Zariski
version on the small étale site and then doing the étale sheafification.

Let U be a Zariski open subset of X. Let Z ∈ (ZcX,Zar)
i(U) = z0(U,−i) be a prime cycle.

• When i ∈ [−d, 0] and dim pU (Z) = −i, set q = −i. Then Z as a cycle of dimension q in
U × ∆q, is dominant over some u = u(Z) ∈ U(q) under projection pU : U × ∆q → U . By
slight abuse of notation, we denote by T0, . . . , Tq ∈ k(Z) the pullbacks of the corresponding
coordinates via Z ↪→ U × ∆q. Since Z intersects all faces properly, T0, . . . , Tq ∈ k(Z)∗. Thus

{−T0

Tq
, . . . ,

−Tq−1

Tq
} ∈ KM

q (k(Z)) is well-defined. Take the Zariski closure of Spec k(Z) in U ×∆q,

and denote it by Z ′. Then pU maps Z ′ to {u}
U

= {u}
X
∩ U . Denote by iu : {u}

X
↪→ X the

closed immersion, and denote the composition

Z ′
pU−−→ {u}

U
↪→ {u}

X iu
↪−→ X

by h. h is clearly generically finite, then there exists an open neighborhood V of u in X such
that the restriction h : h−1(V ) → V is finite. Then Wnh : Wn(h−1(V )) → WnV is also finite.
Therefore it makes sense to consider the trace map TrWnh near the generic point of Z ′. Similarly,
it makes sense to consider the trace map TrWnpU near the generic point of Z ′. Then we calculate

ζlog(ψ(Z)) = (−1)i TrWniu(d log(Nmk(Z)/k(u(Z)){
−T0

Tq
, . . . ,

−Tq−1

Tq
}))

= (−1)i TrWniu(TrWnpU d log{−T0

Tq
, . . . ,

−Tq−1

Tq
}) (Lemma 5.3)

= (−1)i TrWnh(
TqdT0 − T0dTq

T0Tq
· · · TqdTq−1 − Tq−1dTq

Tq−1Tq
)

Here in the last step we have used the functoriality of the trace map with respect to composition
of morphisms Proposition 1.10(4).

• When i /∈ [−d, 0] or dim pU (Z) 6= −i, we have ζlog(ψ(Z)) = 0.

Combining Proposition 6.3 and Proposition 5.8, one arrives at the following proposition.

Proposition 6.6 (Functoriality). The composition ζn,X,log,t ◦ ψX,t : ZcX,t/pn
'−→ Kn,X,log,t is covariant

with respect to proper morphisms, and contravariant with respect to étale morphisms for both t = Zar
and t = ét.

Part 3. Applications

7. De Rham-Witt analysis of ν̃n,X,t and Kn,X,log,t

Let X be a separated scheme of finite type over k of dimension d. In this section we will use termi-
nologies as defined in [CR12, §1], such as Witt residual complexes, etc.

Recall that Ekedahl defined a map of complexes of WnOX -modules (cf. [CR12, Def. 1.8.3])

p := p{Kn,X}n
: R∗Kn−1,X,t → Kn,X,t.

Recall that by abuse of notation, we denote by R : Wn−1X ↪→ WnX the closed immersion induced by
the restriction map on the structure sheaves R : WnOX →Wn−1OX .

Lemma 7.1. The map p : R∗Kn−1,X,t → Kn,X,t induces a map of complexes of abelian sheaves

(7.0.1) p : Kn−1,X,log,t → Kn,X,log,t

by applying p on each summand.

Proof. It suffices to show that C ′t : Kn,X,t → Kn,X,t commutes with p for both t = ét and t = Zar. For

t = ét, C ′ét is the composition of τ−1 : Kn,X,ét → (WnFX)∗Kn,X,ét and ε∗(C ′Zar) : (WnFX)∗Kn,X,ét →
Kn,X,ét. With the help of Lemma 1.37(3), we know that

R∗Kn−1,X,ét
τ−1
//

p

��

(WnFX)∗R∗Kn−1,X,ét

p

��
Kn,X,ét

τ−1
// (WnFX)∗Kn,X,ét
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is commutative, thus it suffices to prove the proposition for t = Zar. That is, it suffices to show the
diagrams (7.0.2) and (7.0.3) commute:

(7.0.2) R∗Kn−1,X '
R∗(1.2.2) //

p

��

R∗(Wn−1FX)4Kn−1,X

p
{(WnFX )4Kn,X}n

��
Kn,X '

(1.2.2) // (WnFX)4Kn,X ,

(7.0.3)

(WnFX)∗R∗(Wn−1FX)4Kn−1,X
' //

(WnFX)∗p{(WnFX )4Kn,X}n
��

R∗(Wn−1FX)∗(Wn−1FX)4Kn−1,X

R∗ TrWn−1FX// R∗Kn−1,X

p

��
(WnFX)∗(WnFX)4Kn,X

TrWnFX // Kn,X .

Here p := p{Kn,X}n
is the lift-and-multiplication-by-p map associated to the Witt residual complex

{Kn,X}n, while p{(WnFX)4Kn,X}n
denotes the one associated to Witt residual system {(WnFX)4Kn,X}n

(cf. [CR12, 1.8.7]). By definition,

p{(WnFX)4Kn,X}n
: R∗(Wn−1FX)4Kn−1,X → (WnFX)4Kn,X

is given by the adjunction map of

(Wn−1FX)4Kn−1,X

(Wn−1FX)4(ap)
−−−−−−−−−−−→

'
(Wn−1FX)4R4Kn,X ' R4(WnFX)4Kn,X ,

where ap is the adjunction of p for residual complexes (cf. [CR12, Def. 1.8.3]). The second diagram
(7.0.3) commutes because the trace map TrWnFX induces a well-defined map between the Witt residual
complexes [CR12, Lemma 1.8.9].

It remains to show the commutativity of the diagram (7.0.2). According to the definition of p
(WnFX)4Kn,X

in [CR12, 1.8.7], we are reduced to show the adjunction square commutes:

R4Kn,X

R4(1.2.2) // R4(WnFX)4Kn,X
' // (Wn−1FX)4R4Kn,X

Kn−1,X

ap

OO

(1.2.2) // (Wn−1FX)4Kn−1,X .

(Wn−1FX)4(ap)

OO

And this is (Wn−1π)4 applied to the following diagram

R4Wnk
R4(1.2.1) // R4(WnFk)4Wnk

' // (Wn−1Fk)4R4Wnk

Wn−1k

ap

OO

(1.2.1) // (Wn−1Fk)4Wn−1k.

(Wn−1Fk)4(ap)

OO

We are reduced to show its commutativity. Notice that this diagram is over SpecWn−1k, where the only
possible filtration is the one-element set consisting of the unique point of SpecWn−1k. This means that
the Cousin functor associated to this filtration sends any dualizing complex to itself, and the map ap in
the sense of a map either between residual complexes [CR12, Def. 1.8.3] or between dualizing complexes
[CR12, Def. 1.6.3] actually agree.

Now we start the computation. Formulas for (1.2.1) and for ap (in the sense of a map between
dualizing complexes) are explicitly given in Section 1.2 and [CR12, 1.6.4(1)], respectively. To make
things clear, we label the source and target of WnFk by SpecWnk1 and Spec k2 respectively, as we
did in the beginning of Section 1.2. Take a ∈ Wn−1k1. Denote WnFk : (SpecWnk1,Wnk1) →
(SpecWnk2, (WnFk)∗(Wnk1)), and R : (SpecWn−1ki,Wn−1ki) → (SpecWnki, R∗Wn−1ki) (i = 1, 2)
the natural maps of ringed spaces. Now the down-right composition ((Wn−1Fk)4(ap)) ◦ (1.2.1) equals
to the Cousin functor E(Wn−1Fk)4R4Z•(Wnk) applied to the following composition

Wn−1k1
(1.2.1)−−−−→
'

Wn−1Fk
∗

HomWn−1k2
((Wn−1Fk)∗(Wn−1k1),Wn−1k2)
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ap
−→
'

Wn−1Fk
∗

HomWn−1k2
((Wn−1Fk)∗(Wn−1k1), R

∗
HomWnk2

(R∗Wn−1k2,Wnk2)),

a 7→ [(Wn−1Fk)∗1 7→ (Wn−1Fk)−1(a)]

7→ [(Wn−1Fk)∗1 7→ [R∗1 7→ p(Wn−1Fk)−1(a)]].

And R4(1.2.1) ◦ (ap) equals to the Cousin functor E(Wn−1Fk)4R4Z•(Wnk) applied the following compo-
sition

Wn−1k1

ap
−→
'

R
∗

HomWnk1
(R∗Wn−1k1,Wnk1)

(1.2.1)−−−−→ R
∗

HomWnk1
(R∗Wn−1k1,WnFk

∗
HomWnk2

((WnFk)∗(Wnk1),Wnk2)),

a 7→ [R∗1 7→ p(a)]

7→ [R∗1 7→ [(WnFk)∗1 7→ (WnFk)−1p(a)]].

It remains to identify p((Wn−1Fk)−1a) and (WnFk)−1p(a). And this is straightforward: write a =∑n−2
i=0 V

i[ai] ∈Wn−1k1,

(WnFk)−1p(a) =

n−2∑
i=0

(WnFk)−1p(V i[ai]) =

n−2∑
i=0

(WnFk)−1(V i+1[api ])(7.0.4)

=

n−2∑
i=0

(V i+1[ai]) = p

n−2∑
i=0

(V i[a
1/p
i ]) = p((Wn−1Fk)−1a).

Hence we finish the proof. �

However we don’t naturally have a restriction map R between residual complexes. Nevertheless, we

could use the quasi-isomorphism ζn,X,log,t : ν̃n,X,t
'−→ Kn,X,log,t to build up a map

(7.0.5) R : Kn,X,log,t → Kn−1,X,log,t

in the derived category Db(X,Z/pn). For this we will need to show that p and R induce chain maps for
ν̃n,X,t. This should be well-known to experts, we add here again due to a lack of reference.

Lemma 7.2.
p : ν̃n,X,t → ν̃n+1,X,t, R : ν̃n+1,X,t → ν̃n,X,t

given by p and R termwise, are well defined maps of complexes for both t = Zar and t = ét.

Proof. It suffices to prove for t = Zar. Let x ∈ X(q) be a point of dimension q. Let ρ : X ′ → {x} be the

normalization of {x}. Let x′ be the generic point of X ′ and y′ ∈ X ′(1) be a codimension 1 point. Denote
y := ρ(y′). It suffices to check the commutativity of the following diagrams in (1) and (2).

(1) Firstly,

WnΩqx′,log
∂ //

p

��

WnΩq−1
y′,log

p

��
Wn+1Ωqx′,log

∂ // Wn+1Ωq−1
y′,log,

Wn+1Ωqx′,log
∂ //

R

��

Wn+1Ωq−1
y′,log

R

��
WnΩqx′,log

∂ // WnΩq−1
y′,log.

Notice that p = p ◦R. Suppose π′ is a uniformizer of the dvr OX′,y′ and u1, . . . , uq are invertible
elements in OX′,y′ . Calculate

p(∂(d log[π′]nd log[u2]n . . . d log[uq]n))

= p(d log[u2]n . . . d log[uq]n)

= p(d log[u2]n+1 . . . d log[uq]n+1)

= p(∂(d log[π′]n+1d log[u2]n+1 . . . d log[uq]n+1))

= ∂(p(d log[π′]n+1d log[u2]n+1 . . . d log[uq]n+1))

= ∂(p(d log[π′]nd log[u2]n . . . d log[uq]n)),

and

p(∂(d log[u1]nd log[u2]n . . . d log[uq]n))

= 0
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= p(∂(d log[u1]n+1d log[u2]n+1 . . . d log[uq]n+1))

= ∂(p(d log[u1]n+1d log[u2]n+1 . . . d log[uq]n+1))

= ∂(p(d log[u1]nd log[u2]n . . . d log[uq]n)).

This proves the first diagram. Now we prove the commutativity of the second.

R(∂(d log[π′]n+1d log[u2]n+1 . . . d log[uq]n+1))

= R(d log[u2]n+1 . . . d log[uq]n+1)

= d log[u2]n . . . d log[uq]n

= ∂(d log[π′]nd log V [u2]n . . . d log V [uq]n)

= ∂(R(d log[π′]n+1d log[u2]n+1 . . . d log[uq]n+1)),

and

R(∂(d log[u1]n+1d log[u2]n+1 . . . d log[uq]n+1))

= 0

= ∂(d log[u1]nd log[u2]n . . . d log[uq]n)

= ∂(R(d log[u1]n+1d log[u2]n+1 . . . d log[uq]n+1)).

(2) Secondly,

WnΩq−1
y′,log

tr //

p

��

WnΩq−1
y,log

p

��
Wn+1Ωq−1

y′,log
tr // Wn+1Ωq−1

y,log,

Wn+1Ωq−1
y′,log

tr //

R

��

Wn+1Ωq−1
y,log

R

��
WnΩq−1

y′,log
tr // WnΩq−1

y,log.

Notice that ρ : X ′ → {x}
X

can be restricted to a map from {y′}
X′

to {y}
X

({x}
X

denotes the

closure of x in X, and similarly for {y′}
X′

, {y}
X

). Furthermore, y′ (resp. y) belongs to the

smooth locus of {y′}
X′

(resp. {y}
X

), and there p and R come from the restriction of the p and
R on the respective smooth locus. The map tr, induced by Milnor’s norm map, agrees with
the Grothendieck trace map TrWnρ due to Lemma 5.3. And according to compatibility of the
Grothendieck trace map with the Witt system structure (i.e. de Rham-Witt structure with zero
differential) on canonical sheaves [CR12, 4.1.4(6)], we arrive at the desired commutativity.

�

Lemma 7.3. Assume either

• t = Zar and k = k, or
• t = ét.

Then we have the following short exact sequence

(7.0.6) 0→ ν̃i,X,t
pj

−→ ν̃i+j,X,t
Ri−−→ ν̃j,X,t → 0

and distinguished triangles

(7.0.7) Ki,X,log,t

pj

−→ Ki+j,X,log,t
Ri−−→ Kj,X,log,t

+1−−→

in the derived category Db(Xt,Z/pn).

Proof. (1) Because of Lemma 7.2, it suffices to show

0→WiΩ
q
x,log,t

pj

−→Wi+jΩ
q
x,log,t

Ri−−→WjΩ
q
x,log,t → 0

is short exact for any given point x ∈ X(q). And this is true for t = ét because of [CSS83, Lemme

3]. And for t = Zar, one further needs R1ε∗WnΩqx,log,ét = 0 for any x ∈ X(q) when k = k, which

is proved in [Suw95, Cor. 2.3].
(2) Now it suffices to show that p and R for the system {Kn,X,log,t}n are compatible with p and R

of the system {ν̃n,X,t}n, via the quasi-isomorphism ζn,X,log,t. The compatibility for R is clear

by definition. It remains to check the compatibility for p. Because ζn,X,log,t = (5.3.1) ◦ ζn,X,t, it
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suffices to check compatibility of p : ν̃n−1,X,t → ν̃n,X,t with p : Kn−1,X,t → Kn,X,t via ζn,X,t. At

a given degree −q and given point x ∈ X(q), the map ζn,X,t : ν̃n,X,t → Kn,X,t factors as

(Wnιx)∗WnΩqx,log,t −→ (Wnix)∗WnΩqx,t = (Wnix)∗K
q

n,{x},t
(−1)q TrWnix,t−−−−−−−−−−→ Kq

n,X,t.

The first arrow is the inclusion map. And compatibility of the p via the trace map is given in
[CR12, Lemma 1.8.9].

�

8. Higher Chow groups of zero cycles

Let X be a separated scheme of finite type over k of dimension d.

8.1. Vanishing and finiteness results.

Proposition 8.1. There is a distinguished triangle

ZcX,ét/p
n → Kn,X,ét

C′ét−1−−−−→ Kn,X,ét
+1−−→

in the derived category Db(Xét,Z/pn). When k = k, one also has the Zariski counterpart. Namely, we
have a distinguished triangle

(8.1.1) ZcX/pn → Kn,X
C′−1−−−→ Kn,X

+1−−→

in the derived category Db(X,Z/pn).
In particular, when k = k and X is Cohen-Macaulay of pure dimension d, then ZcX/pn is concentrated

at degree −d, and the triangle (8.1.1) becomes

ZcX/pn →WnωX [d]
C′−1−−−→WnωX [d]

+1−−→

in this case. Here WnωX is the only non-vanishing cohomology sheaf of Kn,X (when n = 1, W1ωX = ωX
is the usual dualizing sheaf on X).

Proof. This is direct from the main result Theorem 6.4 and Remark 1.27. �

Proposition 8.2. Assume k = k. Then higher Chow groups of zero cycles equals the C ′-invariant part
of the cohomology groups of Grothendieck’s coherent dualizing complex, i.e.,

CH0(X, q;Z/pn) = H−q(WnX,Kn,X)C
′−1,

R−qΓ(Xét,ZcX/pn) = H−q(WnX,Kn,X,ét)
C′ét−1.

Proof. This follows directly from the Proposition 1.24 and Proposition 1.39 and the main result Theo-
rem 6.4. �

Corollary 8.3 (Vanishing). Suppose X is affine and Cohen-Macaulay of pure dimension d. Then

(1) When t = Zar and k = k,

CH0(X, q,Z/pn) = 0

for q 6= d.
(2) When t = ét,

R−qΓ(Xét,ZcX/pn) = 0

for q 6= d, d− 1. If we assume furthermore k = k or smoothness, then we also have

R−d+1Γ(Xét,ZcX/pn) = 0.

Proof. When X is Cohen-Macaulay of pure dimension d, WnX is also Cohen-Macaulay of pure dimension
d, and Kn,X,t is concentrated at degree −d for all n [Con00, 3.5.1]. Now Serre’s affine vanishing theorem
implies H−q(WnX,Kn,X,t) = 0 for q 6= d. This implies that R−qΓ(WnX,Kn,X,log,t) = 0 unless q = d, d−
1. With the given assumptions, Theorem 6.4 implies that CH0(X, q,Z/pn) = R−qΓ(Xét,ZcX/pn) = 0

unless q = d, d− 1. If one also assumes k = k, Proposition 8.2 gives the vanishing result for q = d− 1.
When X is smooth, Cét − 1 : WnΩdX,ét →WnΩdX,ét is surjective by [GS88a, 1.6(ii)] (see (1.3.31)). By

compatibility of Cét and C ′ét Proposition 1.38, one deduces that C ′ − 1 : H−d(Kn,X,ét)→ H−d(Kn,X,ét)
is surjective. �
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Generalizing Bass’s finiteness conjecture for K-groups (cf. [Wei13, IV 6.8]), the finiteness of higher
Chow groups in various arithmetic settings has been a ”folklore conjecture” in literature (expression
taken from [KS12, §9]). The following result was first proved by Geisser [Gei10, §5, eq. (12)] using the
finiteness result from étale cohomology theory, and here we deduce it as a corollary of our main theorem,
which essentially relies on the finiteness of coherent cohomologies on a proper scheme. We remark that
Geisser’s result is more general than ours in that he allows arbitrary torsion coefficients.

Corollary 8.4 (Finiteness, Geisser). Assume k = k. Let X be proper over k. Then for any q,

CH0(X, q;Z/pn) and R−qΓ(Xét,ZcX,ét/p
n)

are finite Z/pn-modules.

Proof. According to Theorem 6.4, R−qΓ(Xt,ZcX,t/pn) = R−qΓ(Xt,Kn,X,log,t) for t = Zar and t = ét.

Thus it suffices to show that for every i, RiΓ(Xt,Kn,X,log,t) is a finite Z/pn-module. First of all, since
RiΓ(Xt,Kn,X,log,t) is the C ′t-invariant part of RiΓ(Xt,Kn,X,t) by Proposition 1.24 and Proposition 1.39,

RiΓ(Xt,Kn,X,log,t) is a module over the invariant ring (Wnk)1−WnF
−1
X = Z/pn. Because X is proper,

RiΓ(Xt,Kn,X,t) is a finite Wnk-module by the local-to-global spectral sequence. Then Proposition A.16
gives us the result.

Alternatively, we can also do induction on n. In the n = 1 case, because RiΓ(Xt,KX,log,t) is the
C ′t-invariant part of the finite dimensional k-vector space Hi(X,KX,t) again by Proposition 1.24 and
Proposition 1.39, it is a finite Fp-module by p−1-linear algebra Proposition A.12. The desired result
then follows from the long exact sequence associated to (7.0.7) by induction on n. �

8.2. Étale descent. The results Proposition 8.5, Proposition 8.6 in this subsection are well-known to
experts.

Proposition 8.5 (Gros-Suwa). Assume k = k. Then one has a canonical isomorphism

ν̃n,X,Zar = ε∗ν̃n,X,ét
'−→ Rε∗ν̃n,X,ét

in the derived category Db(X,Z/pn).

Proof. When k = k, terms of the étale complex ν̃n,X,ét are ε∗-acyclic according to [GS88a, 3.16]. �

The étale descent of Bloch’s cycle complex with Z-coefficients is shown in [Gei10, Thm 3.1], assuming
the Beilinson-Lichtenbaum conjecture. Looking into the proof one sees that the mod pn version holds
conjecture-free, and is a corollary of [GL00, 8.4] (we thank Geisser for pointing this out) via an argument
of Thomason [Tho85, 2.8]. But one could also deduce this as a corollary of Proposition 8.5 via Zhong’s
quasi-isomorphism in Section 6.3 (which is again dependent on the main result of Geisser-Levine [GL00,
1.1]).

Proposition 8.6 (Geisser-Levine). Assume k = k. Then one has a canonical isomorphism

ZcX,Zar/p
n = ε∗ZcX,ét/p

n '−→ Rε∗ZcX,ét/p
n.

in the derived category Db(X,Z/pn).

Proof. Clearly, we have the compatibility

ZcX,Zar/p
n

ψX,Zar

��

' // Rε∗ZcX,ét/p
n

Rε∗ψX,ét

��
ν̃n,X,Zar

' // Rε∗ν̃n,X,ét.

Thus ZcX,Zar/p
n

ψX,Zar−−−−→
'

ν̃n,X,Zar = ε∗ν̃n,X,ét
Proposition 8.5−−−−−−−−−−→

'
Rε∗ν̃n,X,ét

Rε∗ψX,ét−−−−−−→
'

Rε∗ZcX,ét/p
n. �

Corollary 8.7. Assume k = k. Suppose X is affine and Cohen-Macaulay of pure dimension d. Then

Riε∗(ZcX,ét/p
n) = Riε∗ν̃n,X,ét = 0, i 6= −d.

Proof. This is a direct consequence of Proposition 8.6, Proposition 8.5 and Corollary 8.3. �
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8.3. Birational geometry and rational singularities. Recall the following definition of resolution-
rational singularities, which are more often called rational singularities before in the literature, but here
we follow the terminology from [Kov17] (see also Remark 8.10(1)).

Definition 8.8 (cf. [Kov17, p. 9.1]). An integral k-scheme X is said to have resolution-rational singu-
larities, if

(1) there exists a birational proper morphism f : X̃ → X with X̃ smooth (such a f is called a
resolution of singularities or simply a resolution of X), and

(2) Rif∗OX̃ = Rif∗ωX̃ = 0 for i ≥ 1. And f∗OX̃ = OX .

Such a map f : X̃ → X is called a rational resolution of X.

Note that the cohomological condition (2) is equivalent to the following condition

(2’) OX ' Rf∗OX̃ , f∗ωX̃ ' Rf∗ωX̃ in the derived category of abelian Zariski sheaves.

A necessary condition for an integral scheme to have such singularities is being Cohen-Macaulay. This
is well-known, but we write it again here for the convenience of the reader.

Lemma 8.9 (cf. [KM98, 5.10, 5.12]). Let X be an integral k-scheme of pure dimension d admitting a

Macaulayfication f : X̃ → X (i.e., a proper birational morphism with its source being Cohen-Macaulay,
[Kov17, 4.2]). Suppose cohomological condition (2) holds for f . Then X is Cohen-Macaulay, and

f∗ωX̃ ' ωX .

If we further assume that X̃ is normal, then X is also normal.
In particular, an integral equidimensional k-scheme with rational singularities is Cohen-Macaulay.

Proof. Consider the following diagram

Rf∗KX̃

Trf

��

Rf∗RHomO
X̃

(OX̃ ,KX̃)
' //

'
ev1oo Rf∗RHomO

X̃
(OX̃ , f

4KX) //

'
++

RHomOX (f∗OX̃ , Rf∗f
4KX)

Trf

��
RHom(f∗OX̃ ,KX)

' (f∗)∨

��
KX RHomOX (OX ,KX).'

ev1oo

For the triangle on the top right corner, the skewed arrow is defined to be the composite of the horizontal
and the vertical arrows, and it is by definition the duality morphism and is an isomorphism in the derived
category (cf. Proposition 1.10(7)). The map (f∗)∨ : RHom(f∗OX̃ ,KX)→ RHom(OX ,KX) is given by

applying the dualizing functor RHomOX (−,KX) ' HomOX (−,KX) to the given isomorphism OX
f∗−→
'

f∗OX̃ . Note that we have used the cohomological condition that f∗OX̃ ' Rf∗OX̃ in this diagram. The
whole diagram is commutative, because if we start from α ∈ HomO

X̃
(OX̃ ,KX̃) ' RHomO

X̃
(OX̃ ,KX̃),

we arrive at Trf (α(1)) ∈ KX under both composite maps along the clockwise and the counterclockwise
directions.

This being done, we know that the top-right-down composition

Rf∗KX̃ ' Rf∗RHomOX̃ (OX̃ ,KX̃) ' Rf∗RHomO
X̃

(OX̃ , f
4KX)

'−→ RHomOX (Rf∗OX̃ ,KX)

' HomOX (f∗OX̃ ,KX)
(f∗)∨−−−−→
'
HomOX (OX ,KX) ' KX .

is the same as the map on the left, i.e., the trace map Trf , in the derived category. This implies

that Trf is an isomorphism in the derived category. Since X̃ is Cohen-Macaulay of pure dimension d,

ωX̃ [d] ' KX̃ , thus Rf∗ωX̃ [d] ' Rf∗KX̃

Trf−−→
'

KX . Together with the given condition f∗ωX̃ ' Rf∗ωX̃ , we

have f∗ωX̃ [d] ' KX via Trf . The Cohen-Macaulay part of the lemma then follows from [Con00, 3.5.1].
The normality part of the lemma follows simply from the factorization of f via the normalization

morphism of X. �

Remark 8.10. (1) According to this lemma, we know that on integral k-schemes of pure dimension,
our definitions for resolution-rational singularities and for rational resolutions are the same as
the ones in [Kov17, 9.1].

(2) A Macaulayfication of a scheme separated and of finite type over k always exists, cf, [Kov17,
4.3].
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(3) According to [Kov17, 9.6], resolution-rational singularities are pseudo-rational. By definition
[Kov17, 1.2], a k-scheme X is said to have pseudo-rational singularities, if it is normal Cohen-
Macaulay, and for every normal scheme X ′, every projective birational morphism f : X ′ → X,

the composition f∗ωX′ → Rf∗ωX′
Trf−−→ ωX is an isomorphism.

Corollary 8.11. Let X and Y be integral k-schemes of pure dimensions which have pseudo-rational
singularities and are properly birational, i.e., there are proper birational k-morphisms Z → X and
Z → Y with Z being some integral scheme. Then we have

R−qΓ(Xét,ZcX̃,ét
/pn) = R−qΓ(Yét,ZcY,ét/p

n)

for all q and all n ≥ 1. If we assume furthermore k = k, we also have

CH0(X, q,Z/pn) = CH0(Y, q,Z/pn)

for all q and all n ≥ 1.

In particular, since for any rational resolution of singularities f : X̃ → X, X̃ and X are properly

birational as k-schemes (i.e., take Z to be X̃), one can compute the higher Chow groups of zero cycles

of X via those of X̃.

Proof. Using Chow’s Lemma [Kov17, 4.1], we know that there exist projective birational morphisms

f ′ : Z1 → Z and g′ : Z2 → Z such that the compositions Z1
f ′−→ Z

f−→ X and Z2
g′−→ Z

g−→ Y are also
birational and projective. Let U ⊂ Z be an open dense subset such that f ′ and g′ restricted to the
preimage of U are isomorphisms. Take Z ′ be the Zariski closure of the image of the diagonal of U in
Z1 ×Z Z2 with the reduced scheme structure. Then the two projections Z ′ → Z1 and Z ′ → Z2 are also
projective and birational. This means that by replacing Z ′ with Z, f with Z ′ → X and g with Z ′ → Y ,
we can assume our f : Z → X, g : Z → Y to be projective birational and our Z to be integral. Using
Macaulayfication [Kov17, 4.3, 4.4] we can additionally assume that Z is Cohen-Macaulay. This implies
that f and g are pseudo-rational modifications by [Kov17, 9.7].

Suppose that X is of pure dimension d. Then so is Z. Now [Kov17, 8.6] implies that the trace map
of f induces an isomorphism

Trf : Rf∗ωZ,t[d]
'−→ ωX,t[d]

in Db(Xt,Z/p). Thus

Trf,log : Rf∗KZ,log,t
'−→ KX,log,t

is also an isomorphism in Db(Xt,Z/p). Consider the diagram

(8.3.1) f∗KZ,log,t

pn−1

//

Trf,log

��

f∗Kn,Z,log,t
R //

TrWnf,log

��

f∗Kn−1,Z,log,t
+1 //

TrWn−1f,log

��

f∗KZ,log,t[1]

Trf,log[1]

��
KX,log,t

pn−1

// Kn,X,log,t
R // Kn−1,X,log,t

+1 // KX,log,t[1]

in Db(Xt,Z/p). The first row is Rf∗ applied to the triangle (7.0.7) on Z. The second row is the triangle
(7.0.7) on X. The left square commutes on the level of complexes by compatibility of the trace map
with p [CR12, 1.8.9]. To prove commutativity of the middle square in the derived category, it suffices to
show the square

f∗ν̃n,Z,t
R //

f∗

��

f∗ν̃n−1,Z,t

f∗

��
ν̃n,X,t

R // ν̃n−1,X,t

commutes on the level of complexes. Since the vertical maps f∗ for Kato-Moser complexes are tr (cf.
§4), which are by definition the reduction of the norm maps for Milnor K-theory, they agree with the
Grothendieck trace maps TrWnf , TrWn−1f by Lemma 5.3. And according to the compatibility of R with
the Grothendieck trace maps [CR12, 4.1.4(6)], we arrive at the desired commutativity. The right square
in (8.3.1) commutes by naturality of the ”+1” map. With all these commutativities we conclude that
the vertical maps in (8.3.1) define a map of triangles. By induction on n we deduce that

TrWnf,log : Rf∗Kn,Z,log,t
'−→ Kn,X,log,t
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is an isomorphism in Db(Xt,Z/pn) for every n. The main result Theorem 6.4 thus implies

R−qΓ(Zét,ZcX̃,ét
/pn) = R−qΓ(Xét,ZcX,ét/p

n)

for all q and n. When k = k, the same theorem also implies that

CH0(Z, q,Z/pn) = CH0(X, q,Z/pn)

for all q and n.
Now replacing f with g everywhere in the above argument and we get the result.

�

Appendix

A. σ-linear algebra

The author thanks Yun Hao for his notes and careful discussion on this topic.

Definition A.1. Let k be a field, and V a finite dimensional k-vector space. Let σ ∈ End(k) be a field
endomorphism of k (therefore σ being surjective is equivalent to being an automorphism). A σ-linear
operator or a σ-linear map on V is a map T : V → V , such that

T (v + w) = T (v) + T (w), T (cv) = σ(c)T (v), v, w ∈ V, c ∈ k.
Notice that this is equivalent to a k-linear map V → σ∗V .

Notation A.2. Through out this appendix, we will keep these notations k, σ, T, V without further
notice. We don’t consider the 0-vector space therefore assume dimV > 0.

In particular, when k is of characteristic p and σ is the p-th power Frobenius Fk, T is called p-linear,
and when furthermore k is perfect and σ is the map F−1

k of taking p-th roots, then T is called p−1-linear.
Similarly, one could define pn-linear for n ∈ Z (when n = 0, T is simply k-linear by assumption).

Remark A.3. Let σ ∈ End(k). For any σ-linear map T ,

(1) the kernel
Ker(T ) := {v ∈ V | Tv = 0}

of T is always a k-vector subspace. But

Im(T ) := {v ∈ V | Tw = v for some w ∈ V }
may not be a k-vector subspace. We denote by 〈Im(T )〉 the k-vector subspace generated by
Im(T ). When σ is surjective (i.e. σ ∈ Aut(k) is a field automorphism), then Im(T ) is a k-vector
subspace.

(2) Denote by
κ := k1−σ = {c ∈ k | σ(c) = c}

the set of fixed points of k by field endomorphism σ. Then κ is a nonzero subfield of k. The
fixed points of T

V 1−T := {v ∈ V | T (v) = v}
is naturally a κ-vector space. An element in V 1−T are also called a T -invariant vector.

Im(1− T ), Coker(1− T )

are also naturally κ-vector spaces.

Definition A.4. A σ-linear map T : V → V is

(1) semi-simple, if 〈ImT 〉 = V . When σ is surjective, this is equivalent to T being surjective.
(2) nilpotent if V = Ker(TN ) for some N ∈ N.

Consider chains of k-vector subspaces

KerT ⊂ KerT 2 ⊂ · · · ⊂ KerTn ⊂ . . . ,
〈ImT 〉 ⊃ 〈ImT 2〉 ⊃ · · · ⊃ 〈ImTn〉 ⊃ . . . .

Since V is finite dimensional, both of them become stationary for some large N ∈ N. Define

Vnil :=
⋃
n≥1

Ker(Tn) = Ker(TN ) = Ker(TN+1) = . . . ,

Vss :=
⋂
n≥1

〈Im(Tn)〉 = 〈Im(TN )〉 = 〈Im(TN+1)〉 = . . . .
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Obviously,

(1) Vnil and Vss are k-vector subspaces of V that is stable under T .
(2) T is nilpotent on Vnil. T is injective if and only if Vnil = 0. 1 − T is invertible on Vnil, with

inverse 1 + T + · · ·+ TN−1 where N is the smallest number with TN = 0 on Vnil.
(3) T is semi-stable on Vss: because 〈T (Vss)〉 = 〈T (〈Im(TN )〉)〉 = 〈T (Im(TN ))〉 = 〈Im(TN+1)〉 = Vss.
(4) V 1−T ⊂ Vss.

Lemma A.5. Vnil ∩ Vss = 0.
In particular, T is always injective on Vss.

Proof. Since ImT 2N generates Vss as a k-vector space, one can find a k-basis of Vss consisting of elements
in ImT 2N . Suppose

T 2N (v1), . . . , T 2N (vr)

is such a basis (r = dimVss), with v1, . . . , vr ∈ V . Obviously,

TN (v1), . . . , TN (vr)

are k-linearly independent: otherwise applying TN to their linear relation will give a linear relation
for T 2N (v1), . . . , T 2N (vr) (notice that σ as a field endomorphism is always injective). Now take v =∑
aiT

N (vi) ∈ Vss, with ai ∈ k. If v ∈ Vnil, then 0 = TN (v) =
∑
σN (ai)T

2N (vi) implies σN (ai) = 0 for
all i, which implies ai = 0 for all i (again because σ is injective). That is, v = 0. �

Proposition A.6 (Fitting decomposition). Suppose σ ∈ Aut(k). Then V admits a decomposition of
k-vector spaces

V = Vnil ⊕ Vss,

such that

(1) the k-vector subspaces Vnil and Vss are stable under T .
(2) T is nilpotent on Vnil, and semi-simple and bijective on Vss.

Proof. Because σ is surjective, one has ImTn = 〈ImTn〉. As in the discussion above, the k-vector
subspaces Vnil and Vss satisfy both conditions. (In this case Vss = Im(TN ) = Im(TN+1) = . . . and
therefore T is surjective on Vss.) Together with Lemma A.5, it remains to show V = Vnil + Vss.

Take v ∈ V . Then TN (v) ∈ ImTN = ImT 2N = Vss. So there is some w such that TN (v) = T 2N (w), i.e.
TN (v−TN (w)) = 0. So v−TN (w) ∈ KerTN = Vnil. In other words, v = (v−TN (w))+TN (w) ∈ Vnil+Vss.
This implies V = Vnil + Vss. �

Proposition A.7 (Change of basis). Let (e1, . . . , ed) be a k-basis for V . Let (e′1, . . . , e
′
d) be another

basis, such that
(e′1, . . . , e

′
d) = (e1, . . . , ed) ·P

with P ∈ GLd(k) is an invertible matrix. If T has matrix representation T with respect to (ei), i.e.

T (e1, . . . , ed) = (e1, . . . , ed) ·T,
then the matrix representation T′ of T with respect to (e′i) is

T′ = P−1TPσ,

where Pσ is the matrix obtained by applying σ to each entry of P.

Proof. This is direct:

T (e′1, . . . , e
′
d) = T ((e1, . . . , ed) ·P) = (e1, . . . , ed) ·TPσ = (e′1, . . . , e

′
d) ·P−1TPσ.

�

Lemma A.8. Notations k, σ, T, V as above (in particular σ ∈ End(k)). Suppose

(1) T is not nilpotent on the whole of V (i.e. V \ Vnil 6= ∅), and
(2) for any n ∈ N, any sequence b0, . . . bn ∈ k with at least one bj 6= 0, there exists a nonzero x ∈ k

such that

(A.0.1) x =

n∑
i=0

σi+1(x)σi(bn−i).

Then for any e ∈ V \ Vnil, the k-vector space

Ve := 〈e, Te, T 2e, . . . 〉
generated by the sequence e, Te, T 2e, . . . , contains a nonzero T -invariant vector v.
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Remark A.9. When T is p±1-linear, any x ∈ k satisfying (A.0.1) is separable over k. Indeed, when T is
p-linear then (A.0.1) is a polynomial. By taking derivation with respect to x one sees that (A.0.1) is an
separable polynomial with indeterminant x. When T is p−1-linear, solutions of (A.0.1) are the same as
that of the polynomial obtained by taking iterated p-th power. And the smallest such power of (A.0.1)
is clearly a separable polynomial in x.

Therefore if moreover T is semisimple and k is separably closed, we know there is a nonzero T -invariant
vector in V .

Proof. Take arbitrary e ∈ V \ Vnil. Consider a sequence of vectors

e, Te, T 2e, . . . .

Let n be the biggest integer such that e, Te, T 2e, ..., Tne are k-linearly independent. Then 0 ≤ n ≤ d :=
dimk V , and Ve = 〈e, Te, . . . , Tne〉. Therefore Tn+1e ∈ Ve has expression

Tn+1e =

n∑
i=0

biT
ie

for some bi ∈ k. Since Tn+1e 6= 0 (because e ∈ V \ Vnil), at least one bj is nonzero, for 0 ≤ j ≤ n.
Consider a vector v =

∑n
i=0 aiT

ie ∈ Ve. v is nonzero if and only if some ai, (0 ≤ i ≤ n) is nonzero,
and it is T -invariant if and only if the ai’s satisfy

0 =

n∑
i=0

σ(ai)T
i+1e−

n∑
i=0

aiT
ie

= (σ(an)b0 − a0)e+

n∑
i=1

(σ(ai−1) + σ(an)bi − ai)T ie.

And these both happen if and only if the following system of equations with indeterminants a0, . . . , an
has a nonzero solution in k:

a0 = σ(an)b0,

a1 = σ(a0) + σ(an)b1 = σ2(an)σ(b0) + σ(an)b1,

a2 = σ(a1) + σ(an)b2 = σ3(an)σ2(b0) + σ2(an)σ(b1) + σ(an)b2,

. . .

an−1 = σ(an−2) + σ(an)bn−1 =

n−1∑
i=0

σi+1(an)σi(bn−1−i),

an = σ(an−1) + σ(an)bn =

n∑
i=0

σi+1(an)σi(bn−i).

The last equation involves only one unknown an, and the rest of the ai’s (0 ≤ i ≤ n−1) are expressed in
terms of an. And apparently, when an = 0 all the other ai’s are zero. Therefore this system of equations
have a nonzero solution in k if and only if the last equation in an has a nonzero solution in k. And this
is guaranteed by assumption because at least one of the bj ’s is nonzero. �

Proposition A.10 (Existence of T -invariant basis). Notations k, σ, T, V as before. Suppose

(1’) T is semisimple on V ,
(2) Same as (2) in Lemma A.8, i.e., for any n ∈ N, any sequence b0, . . . bn ∈ k with at least one

bj 6= 0, there exists a nonzero x ∈ k such that

x =

n∑
i=0

σi+1(x)σi(bn−i);

(3) for any c ∈ k, there exists a y ∈ k such that

(A.0.2) σ(y)− y + c = 0.

Then

(a) there exists a k-basis of V consisting of T -invariant elements. In other words,

V ' V 1−T ⊗κ k.

(b) 1− T is surjective on V = Vss.
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Remark A.11. When T is p±1-linear, similar as we explained in the last remark, any element satisfying
(A.0.2) is separable over k. Therefore if moreover T is semisimple and k is separably closed, we have
results (a)(b).

Proof. (a) Do induction on the dimV .
When dimV = 1, then according to Lemma A.8 we have a nonzero T -invariant vector v1, and

any nonzero vector is a k-basis of V . We are done in this case.
Now suppose the proposition is true for dimV ≤ d − 1. We prove for dimV = d. According

to Lemma A.8, there exists a nonzero T -invariant vector v1 ∈ V . Passing T to the quotient

T : V := V/〈v1〉 → V/〈v1〉, w + 〈v1〉 7→ T (w) + 〈v1〉.
This is clearly a well-defined σ-linear map and semisimple. By induction hypothesis, we can find
a T -invariant basis of V/〈v1〉: (v2, . . . , vd). Take v′i ∈ V to be any lift of vi ∈ V/〈v1〉. Then for
each 2 ≤ i ≤ d, we have

Tv′i − v′i = civ1, for some ci ∈ k.

According to assumption (3), we can find ai such that σ(ai)− ai + ci = 0, 2 ≤ i ≤ d. Then

T (v′i + aiv1) = v′i + aiv1, 2 ≤ i ≤ d.
Define vi := v′i + aiv1, 2 ≤ i ≤ d. (v1, v2, . . . , vd) are k-linearly independent because (v2, . . . , vd)
are k-linearly independent in V/〈v1〉. Therefore they form a T -invariant basis of V , or in other
words,

V ' 〈v1, v2, . . . vd〉κ ⊗κ k = V 1−T ⊗κ k.
(b) By (a) we have T -invariant basis (v1, . . . , vd) for V . Now for any v :=

∑
bivi ∈ V with bi ∈ k,

there exists ai, 1 ≤ i ≤ d satisfies

(1− T )(
∑

aivi) = v

if and only if ai satisfy ai − σ(ai) = bi for each i ∈ [1, d]. Assumption (3) guarantees that such
ai’s exist. Therefore 1− T is surjective on V .

�

Proposition A.12. Suppose σ ∈ Aut(k), and the pair (k, σ) satisfies assumption (2)(3) in Proposi-
tion A.10. T , V as before (in particular, V is a finite dimensional k-vector space). Then

1− T : V → V

is surjective. And
Vss ' V 1−T ⊗κ k,

which in particular means V 1−T is a finite dimensional κ-vector space with dimκ V
1−T = dimk Vss.

Remark A.13. When T is p±1-linear and k is separably closed, (2)(3) are satisfied by the remarks
above, therefore we have 1− T being surjective.

Proof. The second claim is direct from V 1−T ⊂ Vss and Proposition A.10. Now we prove the first.
Notice the 1−T is invertible on Vnil (2), assumption (2)(3) and Proposition A.10 applied to Vss implies

that 1− T is surjective on Vss. Use Fitting decomposition Proposition A.6 and consider

0 // Vss
//

1−T
����

V

1−T
��

// Vnil

1−T'
��

// 0

0 // Vss
// V // Vnil

// 0.

The snake lemma (for abelian groups, note that 1 − T is not linear) immediately gives the desired
result. �

We generalize the definition of a σ-linear map.

Definition A.14. Let R be a ring, and M be a finitely generated R-module. Let σ ∈ End(R) be a ring
endomorphism of R. A σ-linear operator or a σ-linear map on M is a map T : M →M , such that

T (v + w) = T (v) + T (w), T (cv) = σ(c)T (v), v, w ∈M, c ∈ R.
Notice that this is equivalent to a R-linear map M → σ∗M .

In particular, when R = Wnk with k being a characteristic p field and σ = WnFk (Fk is the p-th power
Frobenius), T is called p-linear. When k is furthermore perfect and σ = WnF

−1
k , T is called p−1-linear.

Similarly, one could define pn-linear for n ∈ Z (when n = 0, T is simply R-linear by assumption).
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Proposition A.15. Let (R, (p)) be a local ring of pn-torsion with some n ∈ N>0, and M be a finite
R-module. Let σ ∈ End(R) be a ring endomorphism of R and T be a σ-linear map. Then σ : R → R
has a well-defined reduction σ : k := R/p → k by modding out ideal (p). Suppose that σ ∈ Aut(k), and
that the pair (k, σ) satisfies assumption (2)(3) in Proposition A.10 (cf. Remark A.13). Then

1− T : M →M

is surjective.

Proof. Take v ∈ M . Because M is finite as a R-module, M/pM is a finite dimensional k-vector space.
Then Proposition A.12 implies that there exists a w ∈M , such that (1−T )(w)−v ∈ pM . That is, there
exists a v1 ∈M such that

(1− T )(w) = v + pv1.

Do the same process with v1 instead of v, one gets a w1 ∈M and a v2 ∈M such that

(1− T )(w1) = v1 + pv2.

Thus
(1− T )(w − pw1) = v − p2v2.

Repeat this process. After finitely many times, because pn = 0 in R,

(1− T )(w − pw1 + · · ·+ (−1)n−1pn−1wn−1) = v.

�

Proposition A.16. Let (R, (p)), k, σ,M, T satisfy the same assumptions as in Proposition A.15 (so in
particular we have 1− T : M →M being surjective). Suppose furthermore that the natural map

R1−σ → (R/p)1−σ

is surjective. Then M1−T is a finite R1−σ-module.

Proof. Since R is of pn-torsion for some n > 0, we know that pmM = 0 for some m ≤ n. Do induction
on the smallest number m such that pmM = 0. When m = 1, M = M/pM is a finite R/p-module,
thus by Proposition A.12 we know that M1−T is a finite dimensional (R/p)1−σ-vector space. Since
R1−σ → (R/p)1−σ is surjective, M1−T is a finite R1−σ-module.

Now we assume m > 1. Note that T induces a σ-linear map on pM and pM is a finite R-module, so
by Proposition A.15 the map 1− T : pM → pM is surjective. Now we have the two rows on the bottom
of the following diagram being exact:

0 0 0

0 // M1−T /(pM)1−T

OO

// M/p

OO

1−T // M/p

OO

// 0

0 // M1−T

OO

// M

OO

1−T // M

OO

// 0

0 // (pM)1−T

OO

// pM

OO

1−T // pM

OO

// 0.

0

OO

0

OO

0

OO

The vertical maps between the last two rows are natural inclusions, and the first row is the coker-
nels of these inclusion maps. The snake lemma implies that the first row is exact, which means that
M1−T /(pM)1−T = (M/p)1−T . This is a finite R1−σ-module by the case m = 1, because M/p is a finite
R-module with p ·M/p = 0. On the other hand, since pm−1 · pM = 0, the induction hypothesis applied
to the R-module pM gives (pM)1−T is a finite R1−σ-module. Now the vertical exact sequence on the
left gives that M1−T is a finite R1−σ-module. �

Remark A.17. When R = Wnk for a perfect field k of positive characteristic p and σ = (WnFX)±1, it
satisfies the assumption for ringR in Proposition A.15 and Proposition A.16. In fact, one has (Wnk)1−σ =
Z/pn in this case.
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[RS18] K. Rülling and S. Saito. “Higher Chow groups with modulus and relative Milnor K-theory”.
In: Trans. Amer. Math. Soc. 370.2 (2018), pp. 987–1043. issn: 0002-9947. doi: 10.1090/
tran/7018. url: https://doi.org/10.1090/tran/7018 (cit. on p. 54).
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