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Abstract  

Background 

Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple 

independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline 

and facilitate programming could leverage these innovations. 

 

Objectives 

We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-

feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-

blind study in two German DBS centers. 

 

Methods 

For 23 Parkinson’s Disease patients with clinically effective DBS, new algorithm-guided DBS-settings 

were determined and compared to previously established standard-of-care DBS-settings using 

UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were 

analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. 

Six different versions of the algorithm were evaluated during the study and 10 subjects programmed 

with uniform algorithm-version were analyzed as a subgroup. 

https://content.iospress.com/openurl?genre=article&id=doi:10.3233/JPD-202480
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Results 

Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared 

to off-stimulation-state.  UPDRS-III scores were reduced significantly more with standard-of-care 

settings as compared to algorithm-guided programming with heterogenous algorithm versions in the 

entire cohort. A subgroup with the latest algorithm version showed no significant differences in 

UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care 

and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were 

farther away from a literature-based optimal stimulation target. 

 

Conclusions 

Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable 

less trained health-professionals to achieve satisfactory DBS-programming results, or potentially 

reduce time needed for programming. Larger studies and further improvements of algorithm-guided 

programming are needed to confirm these results.    
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Introduction 

Deep brain stimulation (DBS) has become a standard treatment option for advanced Parkinson’s 

disease (PD)[1,2]. With stimulation of the subthalamic nucleus (STN) as one of the most widely used 

target, about 50-60% improvement in motor symptoms can be achieved[3,4]. A recent review found 

the optimal target region to be central to dorsolateral within the STN[5]. Usual clinical assessment 

after DBS-implant includes a so-called monopolar review to test each contact on the lead for clinical 

effect and side effects. The development of directional DBS leads with segmented (i.e., directional), 

tripartite contacts offers the option to preferentially stimulate regions in a particular direction 

perpendicular to the lead’s axis[6]. The main aim of this technical innovation is to optimize treatment 

when lead placement has been suboptimal, i.e., rendering the current towards the optimal target-

region such as the dorsolateral/motor STN in PD while avoiding regions related to side effects[6,7]. 

Recent studies indicate an enlarged therapeutic window[7,8] and reduced side effects[9,10] for 

directional leads. However, in clinical practice, the tremendous increase in possible contact 

configurations is an unsolved problem that makes it virtually impossible to cover every possibility in a 

monopolar review[6], which currently requires a highly trained person[11–14] and still remains the 

first crucial step in management of DBS-patients. Therefore, strategies are needed to replace the full 

monopolar review by a semi-automated procedure to identify optimal contact configurations for the 

further DBS-optimization process. Motor symptom assessment by wearable sensors is increasingly 

used as a relatively objective, examiner-independent measure and is even discussed to potentially 

replace clinical evaluation as a gold standard in the future [2,11,15,16]. This study evaluates a semi-

automatic iterative-loop algorithm using motion-sensor feedback to determine optimal contact 

selection and stimulation amplitude in patients treated with STN-DBS. 

 

Subjects and Methods  

Study design  

CLOVER-DBS is a prospective and multicenter study with a randomized, crossover and double-blind 

design. Because of the exploratory nature of the study, no primary endpoint was defined. The clinically 

most important exploratory endpoint of the study is DBS-induced improvements in full UPDRS-III 

scores yielded by computer-algorithm-guided DBS-programming (AgP) compared to standard-of-care 

(SoC) DBS-settings. During the study visits always the full UPDRS-III was recorded during the 

assessments. Some analyses in this manuscript required a hemibody UPDRS-III, which is specified in 

the respective text passage. Further exploratory per-protocol endpoints of the study compare 

bradykinesia (assessed by an external finger mounted sensor (Kinesia One™, Great Lakes Neurotech, 
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Cleveland, Ohio)) and rigidity scores (clinical assessment) yielded by AgP and SoC DBS-settings. The 

time and number of steps needed to reach AgP and SoC DBS-settings were intended as an exploratory 

endpoint in the study protocol. Additional exploratory endpoints added in the final analysis were: a) 

identification of relevant influencing factors for AgP effectiveness by a mixed-effects model; b) location 

analysis in Montreal Neurological Institute (MNI) space comparing active contacts selected in AgP and 

SoC DBS-setting. The study is registered as NCT03037398 at ClinicalTrials.gov. 

 

Study subjects 

Parkinson’s Disease (PD) patients were recruited at two German centers (Charité - University Medicine 

Berlin n = 20 and University Medical Center Hamburg-Eppendorf n = 3). Both centers obtained ethics 

committee approval for the study and written informed consent was obtained from all subjects prior 

to study inclusion. Subjects had undergone on-label bilateral STN-DBS (Boston Scientific, Valencia, 

California; 8-ring (n = 3) or directional (n = 20) leads) for treatment of advanced PD at least 6 months 

before enrollment. DBS-programming was carried out according to standard clinical procedures in 

both centers prior to recruitment for the study. For inclusion in this study, subjects’ pre-operative 

UPDRS-III score had to be ≥ 25 points in off-medication-state including bradykinetic-rigid symptoms. 

Subjects with tremor-dominant PD-phenotype were not included as tremor was judged to be 

potentially less reliable compared to bradykinesia and rigidity. Furthermore, SoC DBS-settings had to 

be stable for at lead 4 weeks prior to enrollment, and yield ≥ 30% reduction in UPDRS-III scores in the 

off-medication-state. Finally, study candidates were excluded if their optimal stimulation settings 

included multiple frequencies or stimulation on non-adjacent contacts. All tests were performed in the 

off-medication-state, i.e., after ≥ 12 hours of withdrawal of antiparkinsonian medication. 

 

Study protocol 

The study protocol is summarized in Fig. 1A. The Kinesia One™ sensor system rates the subitems speed, 

amplitude and rhythmicity of the task on a UPDRS-III-like scale from 0 to 4 by a proprietary signal 

processing software [17]. The median of all battery subitems was used for analysis.   

First DBS was switched off for ≥ 30 minutes for baseline assessment, which included full UPDRS-III and 

a sensor-based test battery (finger taps, hand grasps, resting tremor, all bilateral). DBS was then 

programmed to a unilateral test stimulation suggested by the algorithm. After 30 seconds wash-in 

time, bradykinesia was assessed by sensor measurement and rigidity by clinical rating on the 

contralateral side. Either speed or amplitude were used as input for the algorithm. The choice 

depended on results from previous subjects and (if available for the respective subject) change of the 
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respective subitem (speed/amplitude) in baseline testing (off-stimulation-state vs. on-stimulation-

state). Results were entered in the algorithm user interface and a next suggestion was calculated based 

on all previous results.  

This loop was continued until predefined criteria for sufficiently effective algorithm-guided settings 

were achieved (see also Fig. 1C). After repeating the algorithm-cycle for the contralateral side, AgP and 

SoC DBS-settings were evaluated in randomized order by full UPDRS-III and the sensor-based test 

battery (see also Fig. 1D). For each of the tested DBS-settings, a 30 minutes wash-in time was allowed 

and both, the subject and the physician, were blinded to the DBS-settings being evaluated. Subjects 

and physician then consented the go-home DBS-setting (AgP or SoC). Time consumption for SoC 

programming was estimated retrospectively from charts and a focused medical history during the 

study visit.  

 

Generation of DBS-Setting-Suggestions by the Algorithm  

The algorithm is a standalone software that explores the clinical effect of different stimulation settings 

in an iterative loop by representing them in two-dimensional spaces (Fig. 2). Each point in the two-

dimensional space represents defined stimulation settings (i.e., contact configuration and stimulation 

amplitude). Dimensions are stimulation amplitude vs. one spatial dimension, which can be either the 

vertical position of the activated contacts for ring-mode or the angle of the activated contacts for 

directional mode stimulation. The algorithm explores these two-dimensional spaces based on a 

weighting method, whose weights were adjusted manually to improve its performance based on the 

results of study visits of previous subjects. The weighting method uses sensor-rated scores (e.g., finger 

tapping speed) yielded by each explored point as input to generate (or update) a score prediction map 

in the two-dimensional space.  

The algorithm keeps frequency at 130 Hz and pulse width at 60 µs. Six versions of the algorithm were 

evaluated during the study to optimize the number of iterations and identify the most suitable target 

symptom to be used as feedback signal. Different algorithm versions were compared against each 

other by applying them in consecutive visits. After deciding on a most promising algorithm version, this 

version was used in all further study visits (subj. S0672G017 and subjects enrolled later, see Table 1). 

A subgroup of 10 subjects with this uniform algorithm version was analyzed separately. 

To suggest new points (i.e., new stimulation settings) to explore in the two-dimensional space, the 

weighting method in the algorithm needs a minimum number of existing data points (see also starting 

point in Fig. 1E). To generate the number of data points required, a number of three to six (depending 
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on the algorithm version) stimulation settings, scattered over the parameter-space, were chosen as 

predefined settings to be explored first at each algorithm-guided testing session.  

Once the predefined settings (i.e., points on the two-dimensional spaces) are explored, the weighting 

method determines the next point to explore based on the score prediction map and distances 

between the explored points. First, the optimal vertical level is determined and afterwards, the 

algorithm explores radial steering on this vertical level. For every suggestion received, the DBS-settings 

were first evaluated for side-effects by the clinician. If the stimulation amplitude suggested by AgP led 

to side effects, the highest amplitude possible without side effects was chosen. After a wash-in time 

of at least 30 seconds, bradykinesia was assessed by a single motion-sensor task, and rigidity by a 

physician. Only the sensor-rated score was used as feedback for the algorithm. 

Finally, the exploration method stops when predefined criteria for optimal setting are fulfilled. This is 

the case if the algorithm has exhausted the points in the two-dimensional space that could potentially 

lead to a score improvement, i.e., distance between explored and suggested points is below a 

predefined value.  

 

Statistics 

Full UPDRS-III and Kinesia One™ sensor scores were compared by median/interquartile range and 

programming time by mean/standard deviation. Wilcoxon signed-rank test was used to test for 

differences in UPDRS-III and sensor-based scores. Due to the exploratory nature of the study, no 

correction for multiple comparisons was performed. To explore potential factors that influence the 

effectiveness of AgP (measured as reduction of hemibody UPDRS-III by AgP compared to baseline/off-

stimulation-state) a mixed-effects (random intercept) model was used. Predictors tested in the mixed-

effects model can be found in the supplementary methods. SPSS® was used for the mixed model, 

Matlab® for all other analyses. 

Lead localization and active contact analysis 

Lead localizations were performed with the Lead-DBS toolbox (see also suppl. methods) [18]. Active 

contacts of AgP and SoC DBS-settings were compared with regards to their relative anatomical location 

to the STN, as well as to a literature-reported stimulation target [19]. The proximity of active contacts 

to this target coordinate has previously been shown to strongly correlate with clinical outcome [18], 

suggesting it could be an additional criterion for optimal contact selection. To validate this clinical-

anatomical relationship in our dataset, distances between active contacts for both conditions (SoC and 

AgP) and literature-reported stimulation target were first correlated with the relative changes in 

UPDRS-III hemibody scores, before comparing the distances between the conditions using a paired t-
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test. Of note, if multiple contacts were activated, a weighted mean distance was calculated according 

to the current distribution between the respective contacts. In order to determine whether activated 

contacts for each condition were closer to the literature-reported stimulation target than solely by 

chance, we applied a permutation approach [20] and calculated distances of randomly activated 

contacts (10,000 permutations for each condition) to the stimulation target.  To retain the number of 

active contacts per lead and distribution of electrical current in the permuted data, active contacts 

were first permuted within each lead and then randomly assigned to different leads. Furthermore, 

permutations with non-adjacent active contact configurations were discarded, since they do not fulfill 

inclusion criteria of SoC as well as the restrictions of AgP settings. This way only the contact selection 

was randomized while other possible features, specific for each condition, were kept constant. Two-

sided t-tests were then performed between each permutation and the original sample in order to 

calculate median p-values for each condition. Finally, mean distances to the target were calculated 

across all permutations for each condition. 

 

Results 

In this study, 23 PD patients (4 female, mean age 61.9 years) who underwent STN-DBS were included 

(hereinafter referred to as “entire cohort”). One subject did not complete the study due to fatigue. In 

three subjects protocol deviations occurred (wrong programming of settings in one hemisphere (n = 2), 

reprogramming in one hemisphere due to side effects during blinded evaluation of AgP settings 

(n = 1)). Therefore, these three subjects had to be excluded from the analyses using full UPDRS-III as 

the outcome parameter. In analyses using hemibody UPDRS-III as the outcome parameter, only the 

hemispheres (n=3) affected by the protocol deviation were excluded. Two of the aforementioned 

subjects were in the subgroup with uniform algorithm version, thus 2 subjects (2 hemispheres) had to 

be excluded from analysis across subjects (hemispheres). Subjects’ demographics and clinical data are 

shown in Table 1. SoC DBS-settings are shown in suppl. Table 1. 

 

Global clinical outcomes 

We found a statistically significant and clinically meaningful median improvement in full UPDRS-III 

scores for both, SoC (median 49%, interquartile range 36 – 61%) and AgP (37%, interquartile range 18 

- 54) DBS-settings compared to off-stimulation-state in the entire cohort (both p < 0.0002). The median 

motion sensor score used for feedback was also significantly improved for SoC by 30% (interquartile 

range 16 - 45) and for AgP by 38% (interquartile range 17 - 48) (both p < 0.003). When considering the 

entire cohort, a significant difference between SoC and AgP in full UPDRS-III (n = 19, median 
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(interquartile range) SoC: 21 (15.8 - 25.0), AgP: 25 (20.8 - 33.5)) and hemibody UPDRS-III (n = 41) scores 

was found (p = 0.02 in favor of SoC) but not for the sensor-based test battery (p = 0.42; Table 2).  

In the analysis of the subgroup of subjects using only the latest and more advanced version of the 

algorithm, no significant differences were found between SoC and AgP for full UPDRS-III scores (n = 8, 

median (interquartile range) SoC: 23 (14.0 - 27.5), AgP: 25 (18 - 34.5)) or sensor-based test battery. 

However, a significant difference in hemibody UPDRS-III scores (n = 18) remained between AgP and 

SoC (p = 0.05 in favor of SoC, Table 2). 

Programming time for the AgP-loop (Fig. 1E) was 1.9 ± 0.4 hours and estimated programming time for 

SoC was 4.1 ± 1.6 hours in the entire cohort. Similar results were found for the subgroup (SoC: 4.0 ± 

1.4h, AgP 1.8 ± 0.3h). Due to very different workflows in SoC and AgP, no significance testing was 

performed between the two programming modalities for time consumption. A mean number of 17.9 

± 5.9 steps (i.e., algorithm cycles in Fig. 1, min. 7, max. 30 steps) per hemisphere was needed to reach 

the predefined stop criteria for AgP. As no reliable estimation of SoC-steps was possible, a comparison 

of steps needed for AgP and SoC as an exploratory endpoint was discarded. Side effects of AgP during 

blinded evaluation phase occurred in two subjects (delayed onset of dyskinesia and capsular 

stimulation). In three subjects the AgP-settings were chosen as Go-Home-Settings and one of those 

patients reported to have a sustained benefit from AgP-settings. 

 

 

Exploration of relevant factors for AgP 

A mixed-effects model for the complete dataset (n = 41 hemispheres) showed four significant 

predictors for the effectiveness of AgP: a) range (difference between best and worst sensor-score 

obtained during the AgP-loop) of target-sensor-score (estimated regression coefficient β = 0.11 ± 0.04, 

p = 0.02) b) difference in stimulation amplitude between SoC and AgP (β = 0.07 ± 0.02, p = 0.001) c+d) 

an interaction term containing hemibody UPDRS-III reduction by SoC and preoperative Levodopa-

response (β = 0.91 ± 0.18, p < 0.001). The relative model quality was considerably increased by 

backwards elimination and adding the interaction term (Akaike information criterion: all variables 7.6 

/ sensor-range and amplitude difference only 0.8 / with interaction term added -16.9). Amplitude 

difference and the interaction term remained significant predictors with regression coefficients in a 

similar range when the model was applied to the subgroup of subjects with uniform algorithm version 

(amplitude difference β = 0.06 ± 0.02, p = 0.009; interaction term β = 0.84 ± 0.25, p = 0.007). The range 

of the target sensor-score did not reach statistical significance in the subgroup but remained as a trend 
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(β = 0.13 ± 0.07, p = 0.074). Stepwise increase of relative model quality was observed in the manner 

described for the full dataset (Akaike information criterion: 5.9 / 4.8 / -3.0). 

 

Lead localizations 

On average, 2.6 ± 1.0 and 2.8 ± 1.4 contacts were activated per lead in SoC and AgP DBS-settings, 

respectively (see also DBS-settings in suppl. table 1). No statistically significant differences were found 

with regard to stimulation amplitude (SoC: 3.0 ± 1.1 mA; AgP: 2.6 ± 1.1 mA). While 54% of all contacts 

were identically selected as active or inactive in both settings, some differences in contact selections 

were observed. Directional settings were selected by SoC in 36% of the cases, whereas AgP selected 

this kind of settings for 53% of the cases. From the contacts activated by SoC, 89% were located within 

or at the border of the STN, while for contacts activated by AgP, this percentage decreased to 70%. 

Upper-level contacts were activated more often in AgP. This led to a difference in active contact 

locations compared to SoC (p < 0.001), with AgP active contacts being located on average 0.2 mm 

lateral, 0.4 mm anterior and 0.8 mm dorsal to SoC active contacts (Fig. 4). Dispersion of active contacts 

was smaller in SoC than in AgP (mean distance between active contacts 3.1 ± 0.8 mm vs 3.9 ± 1.1 mm, 

p < 0.00001). The distances between active contacts for all analyzed DBS-settings (i.e., SoC and AgP 

DBS-settings) and a literature-reported stimulation target were correlated to clinical improvements 

(Pearson r = 0.30, p < 0.01, Fig. 4). In SoC DBS-settings, active contacts were located closer to the target 

than randomly activated contacts (Permuted mean distance: 2.3 ± 1.4 mm, SoC: 1.8 ± 1.0mm with 

p < 0.001). Active AgP contacts showed a trend towards being located closer to the stimulation target 

than contacts of permuted settings (Permuted mean distance: 2.3 ± 1.4 mm, AgP: 2.0 ± 1.3 mm with 

p = 0.07). SoC active contacts were not located significantly closer to the stimulation target compared 

to AgP contacts (p = 0.11).  Comparable results were obtained, when analyzing the subgroup of 

subjects with uniform algorithm version (see suppl. results). 

 

Discussion 

There is broad consensus that the complexity of DBS-programming with directional leads requires new 

approaches to successfully use the full range of settings available and reduce programming-burden for 

clinicians. Major strategies include feedback by wearable sensors, imaging-based selection of 

stimulation parameters, neurophysiological or even neurochemical monitoring[2,5,21–24]. 

In our two-center study we investigated the new approach to replace the traditional monopolar review 

by a largely automated algorithm-guided testing strategy for stimulation settings with segmented 
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leads in a randomized, crossover, double-blind setting. Both SoC and AgP DBS-settings resulted in 

clinically relevant improvement of motor symptoms compared to off-stimulation-state as measured 

by full UPDRS-III and motion sensor tasks. Considering the entire cohort, in whom different versions of 

the algorithm were tested, a statistically significant difference in UPDRS-III scores was found in favor 

of SoC. There was a difference of 4 points (12%) in median UPDRS-III, which may just reach clinical 

relevance. Usually, a difference of 5 points or more is regarded as clinically relevant on a group level 

[25]. 

 With the latest and most advanced version of the algorithm, outcomes did not differ significantly 

between SoC and AgP but could not be formally tested for non-inferiority. In this vein, the small sample 

size in this subgroup as well as a difference of 2 points (14%) in median UPDRS-III in favor of SoC has 

to be considered and needs further evaluation in larger cohorts. Contacts activated in AgP DBS-settings 

showed a slightly larger average distance to the literature-reported stimulation target used in this 

work, and a greater spatial dispersion with a tendency to select upper contacts, compared to the 

contacts activated in SoC.  

Previous studies using the same motion sensor system used in this study state a better test-retest 

reliability and sensitivity to changes in bradykinesia in DBS-patients compared to clinical rating [26,27], 

which has been a rationale for using sensor measurements as main feedback for algorithmic 

programming. The model derived from our dataset suggests that AgP is mostly effective in patients, 

who show strong clinical treatment effects. One of the significant predictors for finding effective AgP-

settings in terms of UPDRS-III improvement describes the effect magnitude of DBS on the sensor-

measure used for feedback (larger range between best and worst score during AgP-loop leads to more 

effective AgP-settings). The other significant predictors describe the general treatment effect in a 

regular clinical setting (good effect of SoC-settings or Levodopa). This suggests that even though 

sensors are technically capable of capturing very small differences, in this study setting a quick and 

sufficiently strong clinical response is required to distinguish the effect of one specific DBS-setting from 

another setting or noise in behavioral data.  

Furthermore, amplitudes were lower in AgP compared to SoC on average and the intraindividual 

stimulation amplitude difference between AgP and SoC partially explained the effectiveness of AgP. As 

active contact analysis showed AgP-contacts to be farther away from the stimulation target, one might 

hypothesize, that in AgP-contacts side effects might occur at lower amplitudes compared to SoC-

contacts as AgP-contacts might be closer to adjacent anatomical structures causing side effects. This 

might hamper increasing the amplitude to an optimally effective level in AgP and lead to the observed 

effect of amplitude difference on AgP effectiveness. 
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Up to now, there are only few studies investigating sensor-based DBS optimization. Recently, results 

from a cohort of patients with STN-DBS and linear 8-contact leads using the same algorithm as this 

study was published [28]. Similar to our study, SoC and AgP yielded significant improvements in UPDRS-

III scores compared to off-stimulation-state and no significant differences were found between the 

two programming modalities. A significant reduction in steps needed to achieve the final DBS settings 

was also observed and in contrast to our study SoC programming was performed the same day as the 

study visit, thus allowing for a direct comparison. However, as only linear leads were investigated, the 

results only partially apply to our cohort. In directional leads both SoC and AgP most likely require 

more time and steps. 

One study by Haddock et al. shows that AgP performed at least equally to SoC when only tremor rating 

is assessed [29]. In another study, Heldman et al. achieved a similar algorithm-guided improvement of 

35.7% in tremor and bradykinesia but investigated a much smaller parameter-space due to 

conventional 4-ring-leads with only monopolar configurations [30].  In contrast, the parameter space 

of directional leads combined with multiple independent current sources in our study is far more 

complex (although in our study the algorithm only suggested cathodic stimulation settings on adjacent 

contacts). Furthermore, due to just unilateral testing in the study of Heldman et al., no comparison 

with standard of care settings or a control group was made [30]. In a similar study setting that used 

measurements of the same motion-sensor as feedback signal, AgP outperformed a clinical monopolar 

review in terms of DBS-effect on tremor and bradykinesia measured by the sensor system. However, 

the effect was mainly attributed to higher voltages chosen in AgP, and no blinded evaluation nor 

comparison in motor UPDRS scores was performed [31]. Importantly, in our cohort, stimulation-

amplitudes were non-significantly lower for AgP.  

As PD symptoms show considerable interindividual differences, the signal used for feedback is a crucial 

factor for AgP. The clinically relevant DBS-effect may differ between patients (e.g., bradykinesia, 

tremor, gait disorder) and a sensor-based feedback system must be capable of measuring the symptom 

relevant to the individual patient or ideally, an individually weighted set of symptoms. One limitation 

of our study was that only a single motion-sensor measurement was used for feedback. Future designs 

should include a broader range of symptoms being measurable by sensors or physicians in order to 

continuously adapt stimulation specifically to a patient’s individual symptom spectrum. Here, an 

advantage of sensor-based approaches, compared to imaging-guided strategies, is the potential to 

provide a continuous monitoring of symptoms and continuous adaption of PD therapy, including 

evaluation of different DBS-settings in a long-term outpatient context [32].  

Several other approaches for guided programming, especially, image-guided approaches based on 

atlases [20,33], tractography [5,34] or resting-state MRI [35,36], together with simulation of electrical 



12/27 

fields or volume of activated tissue, can provide a high level of automation in the programming 

process. A recent study compared this method with traditional programming in PD patients with 

conventional 8-ring contact leads, three days after DBS-surgery. Based on unblinded patient judgment 

and blinded physician rating, results revealed that imaging-guided programming needed less 

programming time, but clinical effects were slightly inferior to traditional programming [37]. This is 

comparable to our results, where AgP and SoC were almost equal in terms of standardized ratings, but 

in most of the subjects, advantages of SoC were noticeable for the blinded physician (e.g., global 

impression in gait assessment, small but visible differences in bradykinesia), that did not lead to a 

change in the respective UPDRS-III item according to rating criteria. This clinical observation is 

supported by results of our imaging data, which shows a difference in location of the activated contacts 

for AgP and SoC with regards to the z-axis on the lead, a smaller dispersion of active contacts for SoC, 

and a higher portion of contacts inside the STN for SoC. The combination of imaging-guided approaches 

and sensor-feedback-based adjustment could improve AgP strategies in the future.  

Several limitations need to be considered when interpreting the results of our study. Because of the 

exploratory nature of the study, the algorithm was adapted several times, so the subgroup of subjects 

with a uniform version of the algorithm is small, which did not allow non-inferiority testing. Another 

limitation is the feedback to the algorithm using only a single sensor-based parameter. This might 

account for the fact, that while the sensor-based parameter was efficiently optimized by the algorithm, 

advantages for SoC were noticeable for subjects and the blinded physician. Using multiple symptoms 

for sensor-based feedback and reducing the parameter space based on imaging could improve AgP 

approaches in the future. Finally, SoC time consumption was solely based on the physician’s estimation 

and medical history. Therefore, it is not possible to make a valid, direct comparison between SoC and 

AgP in terms of time consumption. However, considering clinical experience the usual programming 

time in clinical routine exceeds 2 h per patient and our results support that future development of 

effective AgP may help to reduce the programming burden for clinicians. 

In summary, we provide evidence for feasibility of algorithm-guided programming in a prospective, 

randomized, double-blind trial applying motion-sensor-guided programming in directional leads. 

Although not providing evidence for non-inferiority of algorithm-guidance in long-term clinical 

application, our results may guide future development in the field of algorithm-guided programming.
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Suppl. Methods: 

Mixed-effects model 

Potential predictors were 1) reduction of hemibody UPDRS-III by SoC settings in blinded evaluation 

phase,  2,3) reduction of sensor-based test battery hemibody scores by SoC settings and AgP in 

blinded evaluation-phase, 4) range (maximum-minimum, excluding outliers, i.e., 1.5  interquartile 

range above third quartile) of target sensor-based score (used for algorithm feedback during AgP),  

5,6,7) physician-assessed rigidity and sensor-based subitems speed and amplitude for final AgP 

settings compared to median of other settings tested during AgP iterations (difference between 

results for final settings and median), 8) algorithm software version 9) number of iterations to 

determine AgP settings, 10) minimum distance between lead and a literature-reported stimulation 

target[19], 11) UPDRS-III reduction in preoperative L-Dopa challenge, 12) Stimulation amplitude 

differences between SoC and AgP. Variables were then subsequently selected by backwards 

elimination (repeated exclusion of variable with highest non-significant p-value). Interaction terms 

for clinically reasonable interactions in the model were tested. Improvement of relative model 

quality during variable selection was checked by Akaike information criterion. 

Lead localization  

All leads were localized in Montreal Neurological Institute (MNI) space (2009b, nonlinear, asymmetric) 

according to the pipeline implemented in Lead-DBS Matlab™ toolbox[18]. In one of the study centers 

(Charité) lead localizations are routinely performed after DBS-implant and occasionally used as a 

programming aid. Rotation of directional leads was determined by the “DiODe” algorithm[38,39]. Left-

hemispheric leads were flipped nonlinearly to the contralateral side. All steps were visually inspected 

and manually corrected, if necessary, to ensure data quality. The stimulation target has been 

previously defined in a meta-analysis[19] and transformed to  Montreal Neurological Institute space in 

probabilistic fashion[40]. 

 

Suppl. Results: 

Similar results to the entire cohort were obtained, when analyzing the subset of subjects with uniform 

algorithm version:  

On average 2.7 ± 1.3 and 3.3 ± 1.6 contacts were activated per lead in SoC and AgP settings, 

respectively. No statistically significant differences were found with regard to stimulation amplitude 

(SoC: 3.3 ± 1.2 mA; AgP: 2.7 ± 1.3 mA). While 43% of all contacts were identically selected as active or 

inactive in both settings, some differences in contact selections were observed. In SoC directional 
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settings were selected in 44% of cases opposed to 28% in AgP. Contacts were located within or at the 

border of STN in 93% of active SoC contacts but only in 72% for AgP settings. Upper contact levels were 

selected more often in AgP. This led to a difference in active contact locations compared to SoC 

(p = 0.047) with average AgP contacts being located 0.2 mm lateral, 0.4 mm anterior and 0.6 mm 

dorsal to SoC contacts (Fig. 4). The dispersion of active contacts was smaller in SoC than in AgP (mean 

distance between active contacts 3.1 mm ± 0.9 vs 4.0 mm ± 1.4, p < 0.01). The distances between 

active contacts and a literature-derived stimulation target[19,40] were correlated to clinical 

improvements (Pearson r = 0.34, p = 0.044,  Fig. 4). In SoC settings active contacts were located closer 

to the target than randomly selected contacts (Permuted mean distance: 2.3 ± 1.4mm, SoC: 

1.8 ± 1.2 mm with p = 0.02). Active contacts in AgP settings were not located closer to the stimulation 

target (Permuted mean distance: 2.3 ± 1.4mm, AgP: 2.2 ± 1.7 mm with p = 0.60).  A trend towards SoC 

contacts being located closer to the stimulation target compared to AgP contacts was found (p = 0.14).   
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Figure 1 
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Fig. 1. Visual representation of the study design and the algorithm-guided programming-loop. 

A: Overview of the study workflow. The bold, grey arrows indicate the panels showing a detailed 

description of this section of the study protocol. B: Screening Visit. After informed consent, SoC DBS-

settings were recorded. SoC DBS-settings are defined as the settings established by clinical routine 

prior to enrollment in the study. Subjects were instructed for an overnight withdrawal of dopaminergic 

medication. C: Programming visit. After switching off DBS for at least 30 minutes, baseline UPDRS-III 

and Kinesia sensor test battery were performed. Then AgP DBS-settings were obtained by an iterative 

sensor-feedback-loop (panel E) for left hemisphere first, and then for right hemisphere. D: Subjects 

were then randomized into one of two study arms that differed in the order by which settings (SoC vs. 

AgP) were being tested. “DBS-settings A” here refers to the settings tested first and “DBS-settings B” 

to the ones tested second. After double-blind evaluation, physician and subject agreed on go-home-

settings, which could be either SoC or AgP. E: Illustration of the AgP-loop. The exact position of the 

AgP-loop in the whole study workflow is shown by the arrow in panel C. For a detailed description of 

the AgP loop see “Methods”-section.  
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Figure 2 

 

 

Fig. 2. Two-dimensional representation of clinical DBS effects of different stimulation settings in a 

single subject. Each stimulation setting consists of a contact configuration and a stimulation amplitude. 

A: Cartesian representation of clinical effects for ring mode stimulation settings. The y-axis 

corresponds to the four contact levels of the Boston Scientific directional lead. The x-axis corresponds 

to the stimulation amplitude. B: Polar representation of clinical effects for directional mode 

stimulation settings. Each of the slices on the plot corresponds to a 30° angle. The labels (e.g. E2/5) 

indicate the radial orientation of the tripartite contacts in Boston Scientific directional leads, each 

spanning 120°. The radius of the slices corresponds to the stimulation amplitude.  

For both representations, each plotted point (white circles) represents the motion sensor score of a 

previously suggested and tested stimulation. The color-coding of the areas in between the tested 

stimulation settings (white circles) represents the score predicted by the algorithm. Green colors 

represent a lower (favorable) value of the predicted score, whereas darker colors represent a higher 

value. 

The blue diamond represents the current suggestion of the algorithm for the next stimulation setting 

to be tested. In panel A this blue diamond refers to a ring mode stimulation setting with a total 

amplitude of 2.1mA (upper tripartite contacts, labeled 5, 6 and 7 with 30% and uppermost ring contact, 

labeled 8 with 10% of total current). In panel B the blue diamond refers to a directional stimulation 

setting with a total amplitude of 1 mA. The radial current steering is directed to the right-posterior 

segments of the tripartite contacts (contact 7 with 70% and contact 8 with 30% of total current). 
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Figure 3 

 

 

Fig. 3. Outcome measures of double-blind evaluation (SoC vs. AgP) in randomized order. The bold black 

line shows median values with interquartile range. A: Full UPDRS-III scores, entire cohort. B: UPDRS-

III-items related to bradykinesia and rigidity, entire cohort. Note the different scaling of the y-axis 

compared to panel A. C: Median score of motion-sensor full test battery (rest tremor, finger taps, hand 

grasps, all bilateral), entire cohort. Symptom severity in every task is rated by a proprietary algorithm 

of the manufacturer on a scale from 0 (best) to 4 (worst) D-F: same data for subjects in the subgroup 

with uniform algorithm version. 
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Figure 4 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A-B: Reconstructed lead localizations in the STN (orange) by Lead-DBS Matlab toolbox of the full 

study cohort (left) or the subgroup with uniform algorithm version (right). Red: AgP-contacts, blue: 

SoC-contacts, purple: shared contacts. Note the dorsally located clustering of red (AgP) contacts. C-D: 

Correlation plots for the full cohort (left) and subgroup (right) between distance of active contact to a 

literature reported stimulation target and clinical improvement (hemibody UPDRS-III score, percent 

improvement compared to baseline, i.e., off-medication-state, off-stimulation-state). 
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Table 1 

 

 

 

  

  

Age Gender

Age at disease 

onset

Disease 

duration at 

surgery (years)

Months since 

surgery

UPDRS Meds 

Off pre surgery

Improvement 

Percentage 

Levodopa 

challenge

Improvement 

Percentage SoC-

DBS (Meds Off 

state)

S0672G001 58 Male 37 18 33 39 69,2 32,4

S0672G002 51 Male 42 5 43 37 37,8 60,4

S0672G003
b

54 Male 38 14 20 27 85,2 52,2

S0672G004 74 Male 64 9 12 40 42,5 40

S0672G005 49 Male 41 8 7 69 49,3 80

S0672G006 60 Male 52 8 7 29 79,3 50

S0672G007 55 Male 43 11 6 44 61,4 65,7

S0672G008 64 Male 50 13 8 52 57,7 48,8

S0672G010 63 Male 46 16 10 61 60,7 47,4

S0672G011
a,b

70 Female 51 18 6 35 57,1 58,1

S0672G012a
62 Male 50 11 12 49 59,2 21,1

S0672G013 66 Male 55 10 6 78 39,7 22,2

S0672G014
a

71 Male 59 11 12 32 50 24,2

S0672G015 63 Male 49 14 6 53 66 53,3

S0672G016 68 Female 50 18 9 59 22 36,8

S0672G017
a

67 Male 42 23 15 64 43,8 40,4

S0672G018a
65 Male 56 8 8 48 54,2 65,5

S0672G019a
57 Male 38 18 6 37 37,8 61,5

S0672G020
a

59 Female 45 13 7 60 81,7 70

S0309G002
a,b

63 Male 46 17 7 25 56 35,9

S0309G003
a

63 Male 48 15 8 40 55 53,2

S0309G004a
59 Female 46 11 17 36 58,3 35,1

mean full 

cohort

n=22

61,9 4 female 47,6 13,1 12,0 42,0 56,6 49,4

subgroup

n=10
63,6 3 female 48,1 14,5 9,8 38,5 55,5 46,8

Demographics

Table 1: Demographic data of study subjects. The column "Improvement Levodopa challenge" relates to preoperative Levodopa challenge for DBS-

evaluation. a) Subgroup with uniform algorithm version, b) subjects with one hemisphere excluded from hemisphere-wise analysis. Subject S0672G009 

did not complete the study due to fatigue and was excluded from any analysis.
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