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1  | INTRODUC TION

Permafrost, defined as ground with temperatures below 0°C for at 
least two consecutive years (Harris et al., 1988), covers about 22–25% 
of the Northern Hemisphere land area and about 80% of Alaska's sur-
face (Jorgenson et al., 2001; Chasmer et al., 2014; Grosse et al., 2016). 

It is a critical part of the global climate system, as it stores nearly twice 
as much carbon as the atmosphere (Vaughan et al., 2013). Permafrost 
stability is, however, highly affected by climatic change because its 
conditions and extent are coupled to surface energy and gas fluxes in 
the form of surface–atmosphere interactions (Vaughan et al., 2013). 
The intervening surface layers of these interactions are the snow 
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Abstract
Questions: Is it possible to map floristic gradients in heterogeneous boreal vegeta-
tion by using remote-sensing data? Does a continuous vegetation map enable the 
creation of a spatially continuous map of seasonal permafrost soil thaw depth?
Location: Bonanza Creek LTER, Fairbanks, Alaska, USA.
Methods: Vegetation records are subjected to an ordination to extract the predomi-
nant floristic gradient. The ordination scores are then extrapolated using Sentinel 
2 imagery and a digital elevation model (DEM). As the relation between vegetation 
pattern and seasonal thaw depth was confirmed in this study, the spatial distribution 
of ordination scores is then used to predict seasonal thaw depth over the same area.
Results: The first dimension of the ordination space separates species corresponding 
to moist and cold soil conditions from species associated with well-drained soils. This 
floristic gradient was successfully mapped within the sampled plant communities. 
The extrapolated thaw depths follow the typical distribution along a topographical 
and geomorphological gradient for this region. Besides vegetation information also 
DEM derivatives show high contributions to the thaw depth modeling.
Conclusion: We demonstrate that floristic gradient mapping in boreal vegetation is possible. 
The accuracy of the thaw depth prediction model is comparable to that in previous analyses 
but uses a more parsimonious set of predictors, underlining the efficacy of this approach.
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cover, vegetation, and the active layer (Romanovsky & Osterkamp, 
1995).

The active layer is the top layer of the ground that is subject to 
annual thawing and freezing and underlain by permafrost (Harris 
et al., 1988). Active layer thickness (ALT) undergoes temporal vari-
ations, which characterize areas of permafrost aggradation or deg-
radation (Romanovsky & Osterkamp, 1995). The annual maximum 
thaw depth varies with topography (Harris et al., 1988), snow cover, 
soil organic layer, thermal properties of the soil (Riseborough et al., 
2008), and vegetation (Fisher et al., 2016).

ALT possesses a high climate forcing potential due to its reg-
ulative effect on methane and carbon emissions (Anisimov, 2007; 
McCalley et al., 2014; Schuur et al., 2015). Most hydrological, bio-
logical, and biochemical processes take place in this layer (Jorgenson 
et al., 2001; Hinkel and Nelson, 2003; Gangodagamage et al., 2014; 
Luo et al., 2016). A deepening of the ALT causes changes in subsur-
face and surface hydrology, geomorphology in the form of landslides, 
ground subsidence and channel development, microtopography, 
rooting zones and vegetation composition (Jorgenson et al., 2001; 
Christensen et al., 2004; Osterkamp et al., 2009; Gangodagamage 
et al., 2014; Grosse et al., 2016).

ALT, especially in discontinuous permafrost zones, is a critical 
but still uncertain parameter of climate projections, climate change 
impact assessment and adaptation measures (Vaughan et al., 2013; 
Schuur et al., 2015; Grosse et al., 2016; Chadburn et al., 2017). 
Currently, measurements of ALT are restricted to the point scale 
and to a few main sites (CALM, 2018) due to the difficult accessibil-
ity of high-latitude regions as well as time and financial resources. 
Approaches on modeling the spatial distribution of ALT based on 
correlations with air temperature exist solely for large-scale areas, 
which do not account for the high spatial variability of ALT (Hinkel 
and Nelson, 2003).

Remote sensing provides techniques to monitor the spatial het-
erogeneities of ALT efficiently over larger areas with a high spatial 
and temporal resolution. When using remote sensing for ALT estima-
tion, indicators such as prevailing vegetation patterns are necessary 
(Panda et al., 2012). Several studies report interactions such as in-
sulation, nutrient supply and soil moisture control between vegeta-
tion communities and ALT. These interactions lead to characteristic 
vegetation patterns along an ALT gradient (e.g. Viereck et al., 1993; 
Jorgenson et al., 2001; Finger et al., 2016).

Areas with bare soil or new alluvial gravel plains absorb most of the 
incoming solar radiation resulting in a deeper ALT and a deep rooting 
zone permitting a lateral percolation of precipitation. These warm and 
well-drained soils are preferred conditions by Salix spp., Picea glauca 
(white spruce), Populus balsamifera and Betula papyrifera. The mostly 
deciduous forests with high crown coverage create with their litter an 
insulating organic layer, which promotes the growth of mosses and 
lowers the soil temperature. With shallower ALT, trees are limited 
in their growth and regeneration so that the cold-soil-adapted spe-
cies Picea mariana (black spruce) and Larix laricina occupy these sites 
(Chapin III et al., 2006). The low soil temperatures and the presence 
of coniferous needles decelerate the decomposition rate, forming 

cold and acidic conditions. This leads to a thickening of the organic 
layer and further insulation of the soil (Benninghoff, 1952). As a result, 
tree growth and density decrease whereas lichen and moss growth 
increases, conserving shallow ALT and fixing available nitrogen. The 
increased light availability favors tundra plants like Ledum groenlandi-
cum, Vaccinium uliginosum or Eriophorum spp. (Bonan & Shugart, 1989). 
Jorgenson et al. (2001) showed that the thawing and refreezing pro-
cess leads to a conversion of tree- and shrub-dominated birch forests 
to herb- and sedge-dominated fen and bog.

The interactions between ALT and vegetation can be used to 
infer permafrost soil properties from remotely sensed data depicting 
the vegetation and land cover. This information could be successfully 
applied to map the presence and absence of near-surface perma-
frost with high accuracy and high spatial resolution in boreal set-
tings (Nguyen et al., 2009; Kremer et al., 2011; Panda et al., 2012). 
However, no information on gradual changes of ALT is provided.

ALT degradation can be assessed via land cover characteristics 
such as bog landforms, wooded fens, lakes, and vegetation in bo-
real regions (Halsey et al., 1995; Beck et al., 2015). ALT thickness 
of different vegetation types was quantified but not used to assess 
the spatial distribution of ALT. The combination of remotely sensed 
land cover maps with further information such as topography or 
temperature showed high potential to map the spatial distribution 
of ALT in boreal and tundra regions (Peddle & Franklin, 1993; Nelson 
et al., 1997; Pastick et al., 2013). In tundra environments, the results 
are promising (Nelson et al., 1997; Gangodagamage et al., 2014). 
Nevertheless, the coarse resolution of 300  m  ×  300  m (Nelson 
et al., 1997) does not account for the influence of features smaller 
than 1  km2 such as lakes or topographical features. Additionally, 
the transferability of the approach to non-tundraic regions is not 
yet confirmed. Peddle and Franklin (1993) derive only ALT classes 
within a mountainous boreal site. Pastick et al. (2013) derived high-
resolution continuous ALT map in a boreal region from Landsat data 
and a classified land cover map. The authors report, however, uncer-
tainties in their predictions due to inaccuracies of the input data set 
such as the land cover map.

To our best knowledge, all studies including vegetation cover in 
their permafrost or ALT analysis are based on classification methods 
and neglect the gradual spatial changes in both vegetation and per-
mafrost properties.

A different approach of vegetation mapping that preserves the 
continuous properties of the vegetation distribution is floristic gra-
dient mapping. This approach is based on the ordination of a plot-
by-species table that describes the main gradual transitions in plant 
species composition. In a subsequent analysis, each pixel is assigned 
a position in the ordination space that is treated as indicator of its 
plant species composition. This ordination-based approach is op-
timized toward preserving the fuzzy and gradually changing char-
acteristics in the plant species composition of the vegetation and 
presents a more realistic description of the vegetation continuum 
than hard classification (Schmidtlein et al., 2007).

Floristic gradient mapping has not been previously conducted in 
a continental boreal zone. This approach can reveal information on 
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fine-scale and transitional processes between vegetation commu-
nities avoiding uncertainties in ALT estimates due to misclassifica-
tions. In the present study, we thus address the following research 
questions: (a) is it possible to map floristic gradients in a heteroge-
neous boreal vegetation setting? (b) Does continuous vegetation 
mapping also enable the derivation of spatially continuous maps of 
the seasonal thaw depth?

2  | METHODS

2.1 | Study site

The study was implemented at four sites of the Bonanza Creek LTER 
network in interior Alaska (Figure 1), where long-term ALT and back-
ground environmental data are available. The areas are located in 
the discontinuous permafrost zone and are characterized by a con-
tinental climate including extreme temperature amplitudes, rapid 
inter-seasonal changes and convective rainfall in summer (Wendler 
& Shulski, 2009). The 30-year mean (1981–2010) of annual precipi-
tation amounts to 276 mm, the mean annual temperature is −2.2°C 
with a minimum and maximum monthly air temperature of −21.9°C 
and 17.2°C, respectively (Lawrimore et al., 2011). Climate records 
since 1948 reveal an increase of mean annual temperature by 1.4°C 
between 1948 and 2006 (Wendler & Shulski, 2009).

The vegetation composition varies per site corresponding to 
topographic gradients, exposure to sun, fire history and permafrost 

conditions. At the Bonanza Creek Experimental forest (BC) veg-
etation ranges from mixed to broad-leaved forest on uplands and 
south-facing slopes over Picea glauca- and Picea mariana-dominated 
foothills and north-facing slopes to Picea mariana-dominated wood-
lands in the floodplain (Viereck et al., 1993). The woodland is in-
terrupted by several thermokarst collapse scar bogs and fens that 
developed over centuries. Dryer hummocky terrain covered by 
sparse woodland re-established on areas where prior thaw occurred 
(Finger et al., 2016). The alluvial plain has been affected by three 
fires in 1983, 2001 and 2018 (Alaska Interagency Coordination 
Center, 2018).

The North Campus of the University of Alaska, Fairbanks (UAF) 
is characterized by Picea mariana-dominated woodlands and tus-
sock grass in its understorey in the flat basin center. A ridge cross-
ing this center is covered by mixed forests. Toward the edges of 
the basin, the terrain becomes more hummocky and dense Picea 
mariana and Picea glauca forests take over. As elevation increases, 
deciduous forests become predominant on south-facing slopes. 
South of Smith Lake degraded pleistocene ice-wedges (Osterkamp 
et al., 2000) resulted in a broad-leaverd–white spruce cover, 
whereas eastern north slopes are covered by black and white 
spruce forests.

In the Caribou–Poker Creeks Research Watershed (CPCRW), de-
ciduous forests are prominent on the southern slopes, as well, while 
Picea mariana stands dominate the northern slopes and the tus-
socky valley bottoms. Along the rivers Salix spp. and Alnus tenuifolia 
are prevalent. The north slopes consist of large rocks covered by a 

F I G U R E  1   Test site overview. (a) Permafrost extent within Alaska (Data: Brown et al., 2002); (b) general location of test sites; (c) detailed 
study sites with plot locations and wildfire (Data: Alaska Interagency Coordination Center, 2018) for Bonanza Creek experimental forest 
(BC), Caribou–Poker Creeks Research Watershed (CPRW), University of Alaska Fairbanks North Campus (UAF) and Cushman Creek (CC). 
Background data: RGB composite of Sentinel 2 (2018-09-30)
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20–40 cm thick lichen and moss layer. At a 2004 burn scar, Betula 
neoalaskana is now established.

The prominent slopes of the Cushman Creek (CC) site are cov-
ered by a thick layer of mosses and litter. Picea mariana extends over 
the slope and basin area, while broad-leaved forest predominates on 
ridges. A severe fire event in 1971 was managed by the construction 
of a firebreak that involved the removal of the organic layer beyond 
the fire perimeter (Viereck & Dyrness, 1979). Woody shrubs, mainly 
Ledum groenlandicum, Betula nana and Alnus fruticosa, with scattered 
Picea mariana trees predominate the burned areas. The different soil 
conditions at the fire line provide the conditions for higher-growing 
shrubs, mostly Salix spp. and Alnus fruticosa.

2.2 | Data

2.2.1 | Field data

In the following, we use the term seasonal thaw depth (TD) instead 
of ALT, because the recording of a maximum thaw depth could not 
be ensured during data collection. TD and species composition data 
were collected in June and July 2018. The main restriction for field 
data sampling was the access to the study site. Therefore, the plot 
location follows a clustered sampling approach. Main nodes corre-
spond to areas where annual TD measurements are available and 
where summer fieldwork of other groups took place. The further 
placement of the plots had to fulfill the following two requirements: 
(a) a distribution along an assumed ALT gradient to assess the com-
plete species variability associated with ALT changes, and (b) a mini-
mum separation distance of 100 m to mitigate spatial clumping.

We sampled 67 plots in total. Based on field observations of 
vegetation structure and composition, we chose a plot size of 
10 m × 10 m for tree species cover estimation. Within each plot, a 
randomly placed subplot of 5 m × 5 m was used to estimate the cover 
of shrubs taller than 0.5 m. Shrubs smaller than 0.5 m were sampled 
together with herbaceous species in an additional randomly placed 
1 m × 1 m subplot, as it was difficult to estimate the species cover of 
shrubs smaller than 0.5 m in the 5 × 5 m area.

The coverage of all vascular species was estimated as cover frac-
tion. For vertically overlapping species, only the coverage of the 
topmost species was recorded. Lichens and mosses were included 
in the estimate without further species differentiation within the 
1 m × 1 m area. The estimates were aided by a frame used to de-
lineate the plot area and performed by one observer to keep the 
observer bias homogeneous. GPS coordinates and elevation (m a.s.l.) 
were recorded with an average accuracy of 2.45 m in the center of 
the main plot.

The averaged TD per plot was measured using a steel probe 
at ten randomly located sites within each main vegetation plot. In 
hummock or tussock terrain, TD was measured equally on the top 
of hummocks and tussocks and in the hollows in between. When 
gravel or stones impeded the probe, measurements were marked 
and excluded.

2.2.2 | Remote sensing and topographical data

A time series of multispectral Sentinel-2 imagery was used as predic-
tor data set. ESA’s Sentinel-2 mission, consisting of two satellites 2A 
and 2B, provides a total of 13 spectral bands and offers a revisit time 
of less than five days. The spatial resolution varies with band, rang-
ing from 10 m × 10 m for the blue, green, red and broad near infrared 
(NIR) band to 20 m × 20 m for the additional narrow RedEdge, NIR 
and shortwave infrared (SWIR) bands. The data were processed to 
top-of-atmosphere reflectance and resampled with a bilinear func-
tion to a uniform 10 m × 10 m resolution.

We selected cloud-free images over the study sites acquired on 
20 Jun 2018, 22 Jul 2018 and 30 Sep 2018. The chosen dates aim 
for covering the most prominent phenological stages such as canopy 
growth, peak canopy development and senescence of the vegeta-
tion in our study sites. In addition to the spectral reflectance values, 
we calculated 19 spectral vegetation indexes and six texture param-
eters (Haralick et al., 1973) using band 8 (NIR) as additional predic-
tor variables. These additional parameters highlight stand-specific 
biochemical and structural traits. The spectral indexes and texture 
parameters are listed in Appendix S1.

Since topography influences the permafrost distribution 
(Etzelmüller et al., 2001) we included a digital elevation model (DEM) 
in the predictor data set. We used the 5 m × 5 m pixel size Arctic DEM 
(Porter et al., 2018) product from Polar Geospatial Center at University 
of Minnesota. The Arctic DEM has missing coverage in parts of the BC 
site, so we used the IFSAR Alaska DEM (U.S.Geological Survey, 2013), 
which has also a 5 m × 5 m resolution, to fill the gaps. DEM derivatives 
such as roughness, slope, topographic position index, terrain rugged-
ness index and flow direction were derived from the DEM and added 
to the list of predictor variables.

2.3 | Analysis

2.3.1 | Floristic gradient extraction

We extracted the gradients inherent in the species composition of 
all areas by applying isometric feature mapping (isomap, Tenenbaum 
et al., 2000) to the Bray–Curtis distance matrix of the vegetation 
data. Isomap is considered an extension of classical multidimen-
sional scaling (MDS), combining the computing advantages of the 
MDS with the flexibility to project non-linear manifold within the 
data set in a lower-dimensional space. The basis for re-mapping 
intrinsic structures is given by geodesic instead of linear distance 
metrics (Tenenbaum et al., 2000). When creating geodetic distances 
within a data set, it is essential to determine the nearest neighbors 
of a sample. We specified a radius ε, which defines the maximum 
Bray–Curtis distance between the samples to be considered nearest 
neighbors. The optimum value of ε was chosen iteratively. For ease 
of interpretation of the isomap ordination space, we used the isopam 
cluster algorithm (Schmidtlein et al., 2010) to identify characteristic 
species along the gradients.
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2.3.2 | Regression modeling

To map the isomap space (i.e., to assign to each pixel in the study 
area a predicted position in the ordination space), the isomap axis 
scores to the field plots were regressed against the corresponding 
remotely sensed and topographic predictor values (Figure 2).

This spatial extrapolation was performed using Partial Least 
Squares Regression (PLSR; Wold et al., 2001). PLSR is able to deal 
with the high level of inter-correlation of the spectral data and topo-
graphic parameters. To improve the predictor variable selection, a 
jackknifing procedure was applied (Schmidtlein et al., 2012; autopls 
manual). By applying an iterative backward selection only input vari-
ables that are stable in validation, i.e., predictors of small variation 
during tenfold cross-validation, are considered to have a robust re-
lationship to the dependent variable (Martens & Martens, 2000). A 
measure of this robustness is the significance ranging from 0 to 1. In 
this application a significance level p < 0.1 served as threshold. The 
tuned model was evaluated using the tenfold cross-validation results 
of RMSE and R2.

The resulting regression model was applied pixel-wise on the 
raster data of the predictors to achieve a mapped prediction of the 
ordination space position per pixel.

For the subsequent modeling and mapping of TD, predictors se-
lected in the PLSR model for the ordination scores were excluded 
from the input data set. Instead, the mapped ordination scores 
served as additional predictor, building a new model following the 
afore-mentioned optimization and evaluation approach. Thereby, 
we used the modeled instead of the original ordination axis scores to 
include the variable's uncertainty in the model.

This second model was likewise applied pixel-wise on the area of 
interest. In order to avoid predictions in areas for which the model 
was not calibrated, water bodies and roads were masked out.

All analyses were conducted in the R statistical environment using 
the packages vegan, isopam, autopls, raster, rgdal, gdalUtils and glcm.

3  | RESULTS

For the isomap ordination, the explained variance per ε as presented 
in Figure 3 reveals that ε < 0.6 leads to disconnections of the nearest-
neighbor net, indicating a non-homogeneous data distribution. The 
best transfer of the information contained in the original data set to 
lower dimensions was achieved with an ε = 0.8. With this setting, the 
first dimension explained 65% of the variation inherent to the initial 
vegetation data set. The second and third axis added only minor ex-
planatory value. A correlation with measured TD was highest with 
the first axis (R2 = 0.49), as indicated by the arrow in Figure 3. The 
direction of the arrow highlights the direction of increasing TD val-
ues in the ordination diagram. Based on these results, only the first 
dimension was considered for further analysis.

The results indicate a transition from moist woodlands charac-
terized by Rubus chamaemorus, Betula nana, Eriophorum vaginatum, 
Chamaedaphne calyculata, Larix laricina and Oxycoccus microcarpus 
with positive axis scores to Picea mariana forests with negative 
scores. Sites with scores ~0 are occupied by coniferous forests.

With increasing axis scores, broad-leaved-dominated sites with 
Populus balsamifera, Betula neoalaskana, Populus tremuloides and 
Picea glauca in the canopy, Viburnum edule, Shepherdia canadensis 
and Rosa acicularis in the shrub and Galium boreale, Linnaea borealis 
and Moehringia lateriflora in the herbaceous layer take over.

The PLSR model for the isomap axis gained a fit of R2 = 0.87 in 
validation by including four latent vectors (Figure 4a). The algorithm 
selected four predictors of the input data set (see Appendix S1) that 
are all based on the red to NIR spectral regions of the early season 
(Figure 4b). An outlier is present at an axis score of 0.45, highly un-
derestimating the corresponding plot's position on the isomap axis.

PLSR model fits for TD mapping are displayed in Figure 4c. The 
TD model included 13 predictors in five latent vectors, leading to 
RMSEv = 13.4 cm and R2

v = 0.68 (Figure 4d). The importance of the 
isomap axis scores is prominent. In addition to early and mid-season 
indexes, texture and DEM features are considered in the model. 
Despite a high R2 of 0.68 in cross-validation, the model for TD map-
ping shows a slight overestimation of shallow and underestimation 
of deep TD, as depicted in Figure  4c. Especially sites covered by 
dense mature coniferous forests with high moss and lichen cover on 
the ground tend to be highly underestimated.

The resulting mapped distribution of TD is displayed in Figure 5. 
A color gradient from blue to red indicates shallow to deep TD, re-
spectively. The TD ranges from 15 cm to 120 cm, with thin TD in the 
basins of the study sites and deep TD on slopes and ridges. Patches 
of deeper TD intersect areas of shallow TD. Close to rivers and lakes, 
TD is deeper than in surrounding areas, which is clearly visible along 
the active floodplain of Tanana River at BC. At the points bars, deep 
TD occurs in larger areas and at a greater distance from the river bed 
than at cut banks.F I G U R E  2   Workflow of thaw depth modeling
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4  | DISCUSSION

The results of the isomap analysis support the hypothesis that the 
main diversity in vegetation composition in our data set is driven by 
a TD gradient. The overall goal was to represent ALT rather than the 
full vegetation composition. Therefore, the representation of varia-
tion within the multidimensional vegetation data set by the first axis 
isomap scores is considered sufficient.

An advantage of isomap is its flexibility to find the optimal 
mapping for any data distribution by heuristically determining 

the parameters used to define nearest neighbors. In our data set, 
two vegetation clusters existed which could not be connected by 
an isomap ε  <  0.62. Distances of this range are present between 
coniferous-dominated and broad-leaved-dominated forests 
(Figure 3a), revealing an unequal sampling of the transition between 
these vegetation compositions.

The floristic gradient extracted by the isomap ranges from cold 
and moist open woodlands to deciduous and mixed forest on well-
drained and deep soils in high axis scores. We found that especially 
deciduous trees and shrubs such as Populus tremuloides, Populus 

F I G U R E  3   (a) First two axes of the 
isomap ordination space with delineated 
areas showing the distribution of major 
vegetation types. (b) Explained variance 
(EV) of the original data set with varying ε
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balsamifera, Rosa acicularis and Viburnum edule and herbaceous 
species Galium boreale and Linnaea borealis populate sites of deep 
TD. This is in accordance with the observations on vegetation com-
munities and the corresponding soil characteristics described by 
Viereck et al. (1983). The authors describe that especially deep and 
warm soils favor poplar-dominated forests. Our analysis further-
more describes an increasing coverage of Picea glauca with deeper 
TD, which is also supported in a former analysis (Viereck et al., 
1983).

For moist sites with shallow ALT, here indicated by negative axes 
scores, we report Chamaedaphne calyculata, Oxycoccus microcarpus 
and Rubus chamaemorus as characteristic species. Hollingsworth 
et al. (2006) found the same species by analyzing Picea mariana com-
munities along a soil moisture gradient. We also found Larix laricina, 
Betula. nana and Eriophorum vaginatum as characteristic species for 
sites with very shallow TD. These species are also associated to low-
est TD (Jorgenson et al., 2001).

We find shallowest TD at open woodlands, medium TD at ev-
ergreen forests and maximum values at mixed and deciduous for-
ests. Using a vegetation classification approach, Pastick et al. (2013) 
showed that areas of evergreen forests are characterized by deeper 
ALT than mixed forests. Nevertheless, the trend in our survey is in 
accordance with the ALT measured in the different forest types by 
Panda et al. (2010).

The most prominent pattern in our spatial extrapolation of TD 
is the deep TD at hill ridges and shallow TD in valley bottoms. In 
the surrounds of Fairbanks, a high number of inversion days lead to 
higher temperatures of the hill ridges compared to the cooler valley 
bottoms (Hinzman et al., 2006). The predicted deeper TD on south-
facing slopes can be explained with the higher solar radiation input. 
This leads to deeper ALT in these areas, while the colder shadowed 
northern slopes feature shallower ALT (Hinzman et al., 2006).

Areas of alluvial erosion and deposition in BC are predicted with 
shallower and deeper TD, respectively. At point bars permafrost de-
velops on higher accumulation terraces when vegetation succession 
reaches white spruce forests. On cut bars instead developed perma-
frost gets eroded (e.g. Van Cleve and Viereck, 1981), leading to the 
observed pattern in our analysis.

The lowland areas and valley bottoms are characterized by a com-
plex permafrost distribution and associated processes (Jorgenson 
et al., 2001). The complete diversity of TD and processes in the 
lowland area of BC cannot be assessed due to lack of ground truth 
data at these sites. Kremer et al. (2011) highlight this dependency of 
model accuracy on fieldwork intensity, which is also the case when 
using a gradient mapping approach (Feilhauer et al., 2014) and can be 
clearly seen in the shallow TD values within the not-sampled vegeta-
tion communities such as sedge–moss bog meadows, fen meadows 
in the collapse scar and fen areas of BC. We assume that modeled 

F I G U R E  5   Modeled thaw depth maps 
of (a) Bonanza Creek Experimental Forest, 
(b) Caribou–Poker Creeks Research 
Watershed, (c) UAF North Campus and 
(d) Cushman Creek

(a)

(c)

(d)

(b)
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TDs with values <15 cm are actually areas of permafrost degrada-
tion, where TDs > 100 cm occur. This assumption is supported by 
TD measurements in 2018 at fens and bogs by C. Dielemann and D. 
Rupp (pers. comm. 26 July 2018). The reason behind the shallow TD 
prediction is the assumed continuity of the floristic gradient toward 
more open and moister areas with more negative axis scores corre-
sponding to decreasing TD. Jorgenson et al. (2001) observed that 
exactly these vegetation communities are associated with unfrozen 
ground. Wright et al. (2009) furthermore underline the enhanced 
thaw of permafrost with increasing soil moisture. Consequently, TD 
response along our vegetation scores without sampling of fen areas 
would be non-linear.

Another factor impacting our TD mapping accuracy is wildfire 
burn scars. In previously burned areas, predicted TD in this survey 
are shallower, indicating that the model confuses the sparse shrub-
covered area with tundra vegetation associated to shallow TD areas. 
TD measurements in 2014 showed that deeper TD is still present at 
burned compared to unburned sites of the Rosie Creek fire (1983, 
BC; Minsley et al., 2016). The uncertain areas coincide with low or 
no samples at corresponding vegetation communities and TD areas, 
confirming the need of and dependency on intensive fieldwork 
(Kremer et al., 2011).

We further observed an underestimation of deep TD contrasted 
by an overestimation of shallow TD, a common phenomenon for 
predictions based on linear models. Pastick et al. (2015) report the 
same problem of underestimation of deep TD. According to their in-
terpretation, such uncertainties are due to a weaker TD–vegetation 
interaction. Still, other studies show high accuracy in mapping near-
surface permafrost distribution based on an even deeper TD thresh-
old (Nguyen et al., 2009; Panda et al., 2010; Kremer et al., 2011). 
Hence, the problem is likely to rely on the calibration data for the 
model. Input data are restricted to a maximum TD of 100 cm but 
include sites of TD deeper than 100 cm. In case of a correlation of 
a latent vector to TD, a steady increase or decrease should lead to 
deeper or shallower TD. This is not possible, when setting a thresh-
old to the model.

Our survey highlights the importance of vegetation information 
for modeling TD. The PLSR model for TD includes several texture 
metrics and spectral vegetation indices besides the modeled first 
isomap axis. Texture metrics have frequently been used to assess 
forest structures with remote sensing (St-Onge & Cavayas, 1997; 
Kim et al., 2009). They add vegetation characteristics to the model 
that are not comprehensively represented in the species composi-
tional data. Input variables from early and midsummer contribute 
most to the model. Early and midsummer images are character-
ized by high contrast within deciduous forests, coniferous forests 
and open tundra vegetation (Liu et al., 2002). With increasing se-
nescence spectral properties of tundra and deciduous forests are 
harder to distinguish (Nagler et al., 2000) due to increases of red 
reflectance (Laidler & Treitz, 2003). The importance of pigmentation 
is underlined by the high contribution of the TCARI2 (Transformed 
Chlorophyll Absorption in Reflectance Index) composed of bands 
of the early season in the model. Further roughness and slope are 

important predictors in the PLSR model. Slopes control erosion and 
deposition processes. Especially depositional processes favor per-
mafrost and thus shallower ALT at valley bottoms (Jorgenson et al., 
1999).

Prior to this study, Panda et al. (2010) and Nguyen et al. (2009) 
successfully mapped the distribution of near-surface permafrost 
(within <1.6 m and 3 m drilling depth, respectively) using categor-
ical vegetation maps and topographical parameters. Their results 
provide an overview of areas with near-surface permafrost. Still, 
no further information about the transition between the two bi-
nary classes ‘near-surface permafrost present’ and ‘near-surface 
permafrost absent’ can be derived. Our approach offers this infor-
mation and thus enables a better insight in the gradual transitions 
between these binary conditions. The most prominent transitions 
in our results (Figure 5) concern the transition toward shallower TD 
with increasing distance to the cut bank and point bars as well as 
increasing TD with increasing elevation. Our results make theoret-
ical assumptions of a gradually changing TD (e.g., Chapin III et al., 
2006) visible. We are further able to depict changes of TD within 
dominant land cover classes. The latter is prominent within broad-
leaved-covered areas at hill ridge and upper slope areas. TD ranges 
from 86 cm up to more than 110 cm. Together with the informa-
tion of the associated vegetation type, this offers the possibility to 
detect areas prone to degradation such as the thermokarst areas 
and their surroundings and monitoring of hydrological or gas flux 
changes at small scales.

The accuracies produced here are of the same range as previous 
model approaches for TD in a boreal setting (Pastick et al., 2013; 
Pastick et al., 2015) without using external data sets such as surficial 
geology, land surface temperature or biomass, for example (Pastick 
et al., 2013). Our approach decreases the dependencies on other 
surveys and furthermore decreases errors due to coarse vegetation 
classes or wrong assignment to vegetation classes.

Modeling of TD in tundra systems lead to higher accuracies 
when considering the RMSE (Nelson et al., 1997; Gangodagamage 
et al., 2014). Gangodagamage et al. (2014) used very high-resolution 
spectral and LiDAR data to create a piece-wise regression model for 
micro-topographical subclasses. The inclusion of micro-topography 
is harder to assess in boreal forests, as dense tree cover precludes 
high-resolution DEM creation. Furthermore, TD along micro-
topography shows different slope relations to macro-topography, as 
a comparison of Panda et al. (2010) and Gangodagamage et al. (2014) 
reveals.

Michaelides et al. (2018) apply a remotely sensed active layer 
thickness algorithm (ReSALT) which is based on the interferometric 
synthetic aperture radar technique to measure surface subsidence 
associated with the freezing and thawing of the active layer. This 
approach also leads to uncertainties up to 100 cm in former wildfire 
areas and lower R2 when comparing ReSALT TD values to ground-
penetrating radar measurements. Analyses based on the freeze and 
thaw cycle and its associated subsidence behavior are best applied 
on moderately to sparsely vegetated areas (Du et al., 2019). The 
transferability of this approach to densely covered areas such as 
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boreal interior Alaska is questionable, since dense vegetation cover 
affects the performance of the approach. The approach presented 
in this study uses the vegetation composition as indicator of perma-
frost properties and enables insights into TD distribution at areas 
covered by dense forest. As forest structure and vegetation compo-
sition are still important drivers of TD conditions (e.g. Benninghoff, 
1952), both LiDAR and SAR may contribute additional important in-
formation to the model (e.g. Townsend, 2002). A data fusion of radar 
and optical remote-sensing data could thus be a next step in more 
accurate TD prediction.

5  | CONCLUSION

We successfully mapped small-scale variations in TD in a boreal setting 
in interior Alaska by making use of a continuous vegetation-mapping 
approach. The results reveal the importance of the combined informa-
tion on vegetation composition, vegetation structure and topography 
for model creation. The benefit of our approach is substantiated by the 
underlying parsimonious predictor data set leading to similar accura-
cies as previous studies. It also allows the observation of transition 
between shallow and deep TD areas including the associated vegeta-
tion composition change as an indicator. This bears special importance 
for infrastructure planning and adaptation and climate change-related 
studies such as the analysis of hydrological processes or gas fluxes.
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