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1 Abstrakt

Abstrakt (Deutsch)

Ziel: Nichtinvasive Bildgebungsverfahren wie die Computertomographie (CT) und die
Magnetresonanztomographie (MRT) sind wesentliche Werkzeuge für die Diagnose von
Herzerkrankungen wie z.B. koronare Herzkrankheiten oder Herzfunktionsstörungen. Die
dazugehörigen Rekonstruktionsprobleme sind aus verschiedenen Gründen schlecht gestellt.
Bei niedrigdosierten CT-Scans sind die Daten verrauscht, während diese bei der kardialen
MRT unvollständig sind. Um diagnostische Bilder zu erhalten, werden Regularisierungs-
methoden angewandt. In dieser Arbeit entwickeln und untersuchen wir verschiedene auf
neuronalen Netzen (NN) basierende Methoden zur Bildrekonstruktion in der Herz-CT und
Herz-Cine-MRT.

Methoden: Wir verwendeten verschiedene NN-basierte Methoden zur Rekonstruktion
von niedrig dosierten CT- und unterabgetasteten MR-Bildern. Zuerst führten wir eine Pa-
rameterstudie mit iterativen NN durch. Basierend auf den Ergebnissen und Beobachtungen
haben wir uns für die Entwicklung eines NN-basierten Ansatzes mit dem Namen XT,YT-
Ansatz zur Reduktion von Unterabtastungsartefakten für die 2D-Radial-Herz-Cine-MRT
entschieden. Der Ansatz basiert auf einem NN, das auf räumlich-zeitlichen xt- und yt-
Schichten trainiert wird, die aus den MR-Bildern extrahiert werden können. Der XT,YT-
Ansatz wurde dann in einer verallgemeinerten iterativen Rekonstruktionsmethode mit
NN-Priors angewandt, die wir für 2D Cine-MRT und 3D Niedrigdosis-CT evaluiert haben.

Ergebnisse: Die vorgestellte XT,YT-Methode erzielte ähnliche oder bessere Ergebnisse
als andere NN-basierte Methoden und schnitt besser ab als einige andere iterative Metho-
den. Das Training des NN im räumlich-zeitlichen Bereich hat mehrere Vorteile. Erstens
ist es geeignet für das Training mit beschränkten Datensätzen. Zweitens bietet es die
Möglichkeit, die Anzahl der Trainingsparameter zu reduzieren und somit eine Überanpas-
sung des NN zu verhindern. Drittens ist das NN stabil bezüglich Rotation in der xy-Ebene.
Viertens wird die räumlich-zeitliche Korrelation effizient genutzt, selbst wenn nur 2D Fal-
tungsschichten verwendet werden. Das vorgestellte allgemeine Rekonstruktionsschema mit
NN-Priors übertraf für niedrigdosierte 3D CT und unterabgetastete 2D Herz Cine MR zwei
andere auf Totalvariationminimierung und gelernten Dictionaries basierende iterative Re-
konstruktionsmethoden.

Schlussfolgerung: Obwohl iterative NN den Stand der Technik für Bildrekonstruktions-
probleme darstellen, ist ihre Anwendbarkeit derzeit auf relativ kleine Probleme beschränkt.
Iterative Rekonstruktionsmethoden anhand NN-basierter Priors übertreffen empirisch Stan-
dardmethoden und haben das Potenzial, die Strahlendosisbelastung in der CT zu reduzie-
ren und den Messprozess in der MRT zu beschleunigen.
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1 Abstrakt

Abstract (English)

Objective: Non-invasive medical imaging techniques such as computed tomography (CT)
and magnetic resonance imaging (MRI) are nowadays essential tools for the assessment
of cardiac diseases, e.g. coronary artery disease or cardiac dysfunction. The image recon-
struction problems in these imaging modalities can be ill-posed for different reasons. For
example, in low-dose CT, the measured data is noisy, while in accelerated cardiac MRI,
undersampling in k-space leads to incomplete data. Thus, regularization methods must
be applied to obtain images suitable for diagnostic purposes. In this thesis, we develop,
investigate and evaluate different Neural Networks (NNs)-based methods for image recon-
struction in cardiac CT and cardiac cine MRI.

Methods: We addressed the reconstruction of low-dose CT and accelerated MR-images
using different NNs-based methods. We first performed an ablation study using iterative
networks. Then, based on the obtained results and observations, we opted to develop a
NNs-based approach, named XT,YT-approach, tailored to the reduction of undersampling
artefacts for 2D radial cardiac cine MRI. The approach is based on a NN which is trained
on the xt-and yt-spatio-temporal slices which can be extracted from the cine MR images.
The XT,YT-approach was then applied to a generalized iterative image reconstruction
framework using NN-image priors which we evaluated for 2D radial cine MRI and 3D
low-dose CT.

Results: The presented XT,YT-method achieved competitive or better results compared
to other NNs-based methods and outperformed several other iterative reconstruction meth-
ods. Training the NN in spatio-temporal domain has several advantages. First, it is suit-
able for training on limited datasets. Second, it offers the possibility to highly reduce the
number of trainable parameters and therefore prevent the NN from overfitting. Third, the
NN is naturally stable with respect to rotation in the xy-plane. Fourth, spatio-temporal
correlation is efficiently exploited even by only using 2D convolutional layers. The pro-
posed generalized reconstruction scheme using NN-priors was shown to outperform two
other iterative reconstruction methods based on total variation-minimization and learned
dictionaries for 3D low-dose CT and 2D radial cardiac cine MRI.

Conclusion: Although iterative neural network methods constitute the state-of-the-art
for image reconstruction problems, their applicability is currently still limited to relatively
small problems. Iterative reconstruction methods using NN-based image priors empirically
outperform standard ones and have the potential to reduce the radiation dose exposure in
CT and to accelerate the measurements process in MRI.
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1 Introduction

Medical imaging techniques as computed tomography (CT) or magnetic resonance imaging
(MRI) have become nowadays indispensable tools in the clinical routine for the diagnose
of different diseases, e.g. cardiovascular diseases. For example, coronary CT has been re-
ported to be the most accurate non-invasive imaging technique for coronary artery disease
[32]. Cardiac Cine MRI can be applied for the assessment of the cardiac function as well
as left and right ventricular volumes and left ventricular mass [24].
In every non-invasive imaging technique, the objective is to obtain a visual representa-
tion of the interior of the patient. This representation is typically obtained from a set of
indirect measurements which are different for each imaging modality and depend on the
underlying physics. Therefore, the reconstruction of such a representation corresponds to
solving an inverse problem. In CT, for example, the measurements are given by a set of
X-ray projections from different angles which are measured by a detector array. In MRI,
the measurements correspond to the spatial frequency information of the image. Recon-
structing an image from these measurements is a classical inverse problem which can be
formulated by

y = Ax + z (1)

where A : X → Y denotes a discrete and possibly non-linear forward operator between
finite dimensional Hilbert spaces which models the data-acquisition process, x denotes
the unknown image we want to recover, y denotes the measured data and z is a random
vector which models the noise in the acquisition process. Inverse problems in medical image
reconstruction can be ill-posed for different reasons. For example, in low-dose CT, where
the energy of the emitted photons is reduced to limit the patient’s radiation exposure, the
measured data is corrupted by Poisson-distributed noise. In cardiac cine MRI, where the
measurement process needs to be accelerated in order to be able to scan the patient during
a single breathhold, the measurements are incomplete. Images directly reconstructed from
the measured data, i.e. xini := A†y, where A† denotes some reconstruction operator of A,
contain severe artefacts and/or noise. Therefore, regularization techniques must be used
in order to obtain diagnostic images. A possible way of regularization is to solve a relaxed
version of (1), by imposing the regularization in terms of a penalty term. Then, instead
of solving (1), one minimizes a functional

FD,R,λ,y(x) = D(Ax,y) + λR(x)→ min
x
, (2)

where D denotes a data-discrepancy measure which is appropriately chosen according to
the considered problem, R is a regularization term and λ > 0 controls the contribution of
the regularization.
A possible choice of hand-crafted regularization is given by the L1-norm of the image
transformed by a so-called sparsifying transform. For example, using a first-order deriva-
tive operator G leads to the well-known total variation (TV)-minimization problem which
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has been widely considered in the literature [6], [34]. Further, approaches where the
sparsifying transforms are learned from data, e.g. Dictionary Learning, have also been
considered and applied for the task of image reconstruction in CT and MRI, see e.g. [35],
[7], [38]. While regularization approaches such as TV-minimization come with solid and
well-understood mathematical theory, a drawback of hand-crafted regularizations is that
the properties which are imposed on the solution can be limited and may not reflect the
nature of the images one wants to obtain. Using representations such as learned dictio-
naries circumvents this issue by providing transforms learned on the data. However, the
underlying regularizing concept is still relatively simple by assuming that a signal is sparse
with respect to a dictionary.

1.1 Neural Networks for Medical Image Reconstruction

Recently, Convolutional Neural Networks (CNNs) have been considered for the regulariza-
tion of inverse problems, see e.g. [17], [2], [31], [40], [25], [11], [3], [11], [4], [12], [8]. Given
the nowadays available computational power and relatively large amount of data, the idea
is to parameterize a regularization by some pre-defined fixed mathematical operations,
e.g. convolutions, and let the regularization be fully learned from data. In this section,
we discuss several different approaches to use NNs for medical image reconstruction and
highlight some advantages and limitations of the respective approaches by also outlining
the work of the thesis.

Neural Networks as Post-Processing Methods

Initial works in the research area of inverse problems involving the use of NNs were mainly
concerned with the design and the application of CNNs as post-processing methods, see e.g.
[17]. Thereby, CNNs are used to denoise/remove artefacts from the initial reconstruction
obtained from the measured data, i.e. to generate an image xCNN = fΘ(xini) using some
previously trained CNN fΘ. By doing so, the learned reconstruction scheme takes the
form

A†Θ = fΘ ◦A†. (3)

However, solely post-processing the initial reconstruction xini might result in an image
which lacks data-consistency because the initially measured data y is only used once to
obtain xini. Therefore, after having obtained xCNN, a natural question to ask is how well
xCNN matches the data in the measurements domain by considering D(AxCNN,y). CNNs
which correct the data y in raw-data domain, see e.g. [12], as well as methods which aim to
invert the forward operator A, see e.g. [40], have also been proposed but are not discussed
here due to space limitations.
The most widely used types of CNNs are so-called residual networks which have the form

f̃Θ = id + fΘ, (4)

where id denotes the identity mapping and fΘ a CNN as for example the U-net [29]. The
name residual network reflects the fact that the CNN f̃Θ learns the difference (i.e. the
residual) between the input and the corresponding target label.

Iterative Reconstruction with Neural Networks-based Image Priors

In order to ensure/increase data-consistency of the output of the CNN, the estimate xCNN

has to be corrected to better match the measured data y. This is typically achieved by
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applying the forward operator A to xCNN and updating xCNN in raw-data space, either
by imposing strict data-consistency [33], [16], which is possible only if N (A) 6= {0}, where
N (A) denotes the null-space of A, or by minimizing a functional of the form (2), where
xCNN is integrated in the penalty term R. For example, the functional can be chosen as

FD,xCNN,λ,y(x) = D(Ax,y) + λ ||x− xCNN||22, (5)

which means that the regularization term is given by R(x) = ||x−xCNN||22. The procedure
of removing artefacts/noise and correcting the estimate can be performed only once, see
e.g. [16], [22], or repeated in an iterative manner [15], [8]. If performed only once, it leads
to learned reconstruction schemes of the form

A†Θ = fdc ◦ fΘ ◦A†, (6)

where fdc is a function which ensures/increases data-consistency
The specific form of fdc depends on the considered problem. For example, in MRI, if
A is a Fourier-operator which samples data on a Cartesian grid using a single-coil and
D(Ax,y) = ||Ax − y||22, then fdc computes the minimizer of (5) and has a closed form
solution, see e.g. [31]. In the more general case, where A is not an isometry orN (A) 6= {0},
fdc can be given as any iterative scheme of finite length which is used to minimize (5), see
e.g. [22].
If the procedure of applying the CNN to reduce artefacts or noise and ensuring/increasing
data-consistency is iterated, one obtains reconstruction schemes of the form

A†Θ =
(
fdc ◦ fΘ

)
◦ . . . ◦

(
fdc ◦ fΘ

)
◦A†. (7)

Using the same mapping fΘ during the whole reconstruction requires the CNN fΘ to be
able to perform noise/artefacts reduction at different levels of noise/artefacts, see e.g. [9].

Using different networks f
(i)
Θi

is also possible [26], [8]. However, the overall image recovery

performance largely depends on the performance of each single f
(i)
Θi

. Depending on the

considered problem, the training of all CNNs f
(i)
Θi

can be computationally demanding for
large-scale problems, as each CNN requires the generation of a new training dataset which
involves the application of the physical models.

Iterative Neural Networks

A particularly interesting class of NNs-based algorithms for solving ill-posed inverse prob-
lems are so-called iterative networks, see e.g. [2], [31] [3], [11], where the forward and the
adjoint operators A and AH can be represented as network layers and are integrated in
the network. This means that the network fΘ itself defines a proper end-to-end trainable
reconstruction method as an unrolled iterative scheme of finite length, i.e. fΘ = A†Θ with

fΘ =
(
fdc ◦ fNΘN

)
◦ . . . ◦

(
fdc ◦ f1

Θ1

)
◦A†. (8)

Note that while (7) and (8) have the same form, the key-difference between (7) and (8)

consists in the implementation and in the training process. While in (7), the networks f
(i)
Θi

are trained consecutively, see e.g. [15], the network fΘ in (8) is trained in an end-to-end

manner, which means that all f
(i)
Θi

are jointly trained, see e.g. [31], [25], [4].
Cascaded or iterative networks have been proposed and considered for different imag-
ing modalities and define the state-of-the-art of CNNs-based methods for medical image
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reconstruction. However, the main feature of these methods, i.e. the integration of the
forward and adjoint operators in the CNN architecture, at the same time limits their ap-
plication to realistic large-scale problems. Since the forward and the adjoint operators are
integrated in the CNN architecture, the whole object which the operators are applied to
must be processed by the CNN. For large-scale problems as for example 3D low-dose CT
or non-Cartesian multi-coil MR acquisition protocols this can be challenging.

Contribution of this Thesis

In the following, we discuss the main work of the thesis and put it in the context of the
previously described methods. The thesis is organized as follows. First, we briefly present
and discuss the approach in [21] which served as a preliminary study and provided the
basis for subsequent considerations on the development of the algorithms of choice needed
to tackle the problem of image reconstruction in a realistic clinical setting. Then, we
present a method for post-processing 2D radial cine MR images containing undersampling
artefacts and discuss the main findings and results published in [20]. We finally present
a generalized CNNs-based regularization method which can be used to solve arbitrary
large-scale medical image reconstruction problems [22] and conclude the work with a short
discussion and summary of the thesis.

2 Methods

2.1 A U-Nets Cascade for Sparse View Computed Tomography

This section is based on the following publication [21]:

� Andreas Kofler, Markus Haltmeier, Christoph Kolbitsch, Marc Kachelrieß, and Marc
Dewey. A U-nets Cascade for Sparse View Computed Tomography. In Interna-
tional Workshop on Machine Learning for Medical Image Reconstruction, p. 91–99.
Springer, 2018.

Problem Formulation and Proposed Network Architecture

In the following, we consider the problem of image reconstruction in sparse-view computed
tomography. The inverse problem is given by

RIx = yI , (9)

where x denotes the unknown image to recover. The data-acquisition is modeled by
RI = SI ◦R, where the operator R defines the forward model given by a discrete Radon
transform and SI defines a binary mask which masks the measurements vector y at angular
projections indexed by the indices in I ⊂ J , where J = {1, . . . , d} denotes the full set
of projections. In [21], we have proposed a reconstruction algorithm based on iterative
networks of the form (8), where the CNNs are given by U-nets.
A U-nets cascade uΘ of length N with trainable parameters in the set Θ is given by

uΘ := fNdc ◦ uNΘN ◦ . . . ◦ f
1
dc ◦ u1

Θ1
, (10)

where the k-th data-consistency layer fkdc is given by

fkdc(x
k
CNN,yI , λk) := R†

(
ΛkRxkCNN +

λk
1 + λk

yI
)
, (11)
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Figure 2.1 A U-nets cascade. The cascade uΘ takes the initial reconstruction xI as an input
and alternates between applying a U-net and performing a data-consistency step. The first
U-net is highlighted in order to show the different componenets in more detail.

and R† denotes the filtered back-projection. The parameter λk is treated as trainable
parameter and can therefore vary for each k. Here, Λk = diag(a1,k, . . . , an,k) is a diagonal
matrix of size d× d with entries ai,k = 1 if i 6∈ I and ai,k = 1/(1 + λk) otherwise.
The CNN can be trained end-to-end to minimize the L2-error between its estimate uΘ(xI)
and the corresponding label. An example of a U-nets cascade is shown in Figure 2.1.

Experimental Set-Up and Dataset

In [21], we tested the proposed iterative CNN on a dataset of retrospectively generated
sparse-view cardiac CT images of 52 patients taken from the study in [28]. The input
images were obtained by performing a scan with a full set of Nθ = 512 projections using
a 2D parallel-beam scanner geometry. From the 512 projections, only 32 were used to
obtain the initial reconstructions using the filtered back-projection (FBP), i.e. xI = R†I .
The implementation of the Radon-transform RI and its FBP R†I was done using the
publicly available library ODL [1]. Training was carried out on 40 patients, while 6 patients
were used for validation and the remaining 6 were used for testing.
We performed two different experiments. First, we analysed the effect of replacing of
blocks of fully convolutional layers, as the ones used in [31], with U-nets [17]. Second,
we performed an ablation study to investigate the effect of the length of the cascade on
the achieved reconstruction by keeping the number of trainable parameters approximately
the same for each cascade. To achieve this, we parametrized a U-nets Cascade by the
following hyper-parameters:

� U - the number of U-nets used in the U-nets cascade,

� E - the number of encoding stages of each U-net,

� C - the number of convolutional layers per stage of each U-net,

� K - the number of initially applied filters of each U-net,
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� F - the factor by which the number of used filters is increased after the max-pooling
layers of each U-net.

This allowed us to construct cascades of different lengths in terms of number of alternations
of U-nets and data-consistency layers but having approximately equally expressive network
architectures in terms of trainable parameters.
For each experiment, we trained each model for 20 epochs by minimizing the L2-norm
between the CNN prediction and the corresponding target image. The performance of the
networks was evaluated in terms of achieved peak signal-to-noise ratio (PSNR), normalized
root mean squared error (NRMSE), structural similarity index measure (SSIM) [36] and
Haar wavelet-based perceptual similarity index measure (HPSI) [27].

Results

Figure 2.2 shows results obtained with four different cascades of different lengths for
N = 1, 2, 3, 4. For N = 1 the cascade only consists of one single U-net with no data-
consistency layer. while for N > 1, the alternation is repeated N times. Interestingly,
it can be seen that visually, for N ≥ 2, the results look more appealing as the level of
residual noise is lower than for N = 1. In particular, as it is highlighted by the yellow
arrows, fine diagnostic image details as the right coronary artery are better visible in the
cascades for N ≥ 2 and in general, the edges seem to be sharper. However, the differences
between N = 2, 3, 4 are negligible and barely visible. In terms of quantitative results, no
method clearly surpasses the other, see Table 2.1. In terms of PSNR, NRMSE and SSIM,
increasing N leads to poorer results, while HPSI stays approximately constant.

xfull N = 1 N = 3

xI N = 2 N = 4

Figure 2.2 Results for the single U-net with no data-consistency layer (N = 1) and our
proposed U-nets cascades with 2 ≤ N ≤ 4. The U-nets cascades yield images with sharper
edges and visually better preserve diagnostic image details. The yellow arrows point at the
right coronary artery. Figure adapted from [21].
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Table 2.1 Variation of the length of the U-nets cascade. The measures are averaged over the
test set. Table adapted from [21].

Model U1 E3 C2 K64 F2 U2 E3 C4 K32 F2 U3 E3 C3 K64 U4 E3 C2 K32 F2
PSNR 30.1920 31.1432 30.8460 30.3836
SSIM 0.9532 0.8905 0.8686 0.8559
HPSI 0.7304 0.7659 0.7732 0.7729
NRMSE 0.1832 0.1531 0.1621 0.1732
nparams 1 957 251 1 941 379 1 999 107 1 960 707

u1
Θ1

u2
Θ2

u3
Θ3

u4
Θ4

xI

f1
dc f2

dc f3
dc f4

dc xfull

Figure 2.3 Output of a U-nets cascade of length N = 4 at the different stages. The output
of the i-th U-net is denoted by uiΘi

, the output of the i-th data-consistency layer is denoted

by f idc. xI and xfull show the input of the cascade and the ground truth, respectively. While
the first three cascades seem to reduce the artefacts by smoothing, the last U-net re-enhances
image contrast and sharpens edges.

Figure 2.3 shows the intermediate results obtained with a cascade of length N = 4. As
we can see, the first three U-nets seem all to perform the task of removing the artefacts
from the input mainly by smoothing. Interestingly, the fourth U-net is the one which
re-enhances some of the edges and makes fine diagnostic details visible again. These
observations indicate that some redundancy is present in the U-nets cascade. Further,
the small difference between the cascades of different lengths suggests that for large-scale
problems, where cascaded CNNs cannot be applied due to hardware constraints, using one
single CNN to generate an image prior to be used in a subsequent iterative reconstruction
might suffice.
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2.2 Spatio-Temporal Artefacts Reduction in Accelerated 2D Radial Cine MRI

This section is based on the following publication [20]:

� Andreas Kofler, Marc Dewey, Tobias Schaeffter, Christian Wald, and Christoph
Kolbitsch. Spatio-Temporal Deep Learning-based Undersampling Artefact Reduction
for 2D Radial Cine MRI with Limited Training Data. In IEEE Transactions on
Medical Imaging, 39(3), p. 703–717, 2020.

Based on the observations stated in Section 2.1, we now focus on the design of a Deep
Learning-based method for obtaining an image prior which can be used within the regu-
larization of a subsequent iterative reconstruction.

Problem Formulation and Motivation

We consider the problem

EIx + e = yI , (12)

where x ∈ CNx×Ny×Nt denotes the unknown 2D cine MR image, EI denotes a Fourier-
encoding operator which for each time point kt ∈ {1, . . . , Nt} samples the k-space data
along radial trajectories indexed by a set It with ∪Ntt=1It = I ⊂ J , where J denotes the
”full” set of radial lines needed to satisfy the Nyquist limit. The vector yI ∈ Cmrad denotes
the measured k-space data and e denotes a random noise vector. The radial trajectories
are chosen according to the golden-angle method [37].
As already outlined, the idea is to tackle the image reconstruction problem for realistic
large-scale problems by means of an iterative reconstruction using a CNN-generated im-
age prior as regularization. Thereby, the image prior should be as close as possible to the
(unknown) ground truth image for which the measured data yI is given. Put in other
words, the network fΘ should be robust and reliably provide a ”good” image prior xCNN

to be further used in the reconstruction. Therefore, increasing the number of trainable
parameters of the CNN to a maximum before experiencing overfitting seems to be a vi-
able strategy for obtaining such a prior. In fact, increasing the model’s capacity as well
as applying more sophisticated approaches, e.g. using generative adversarial networks, is
common practice for the design of CNN architectures as post-processing methods. How-
ever, in medical imaging applications, it is rarely the case to have access to a large number
of training samples. For example, in cardiac cine MRI, obtaining ground truth data is
challenging due to the fact that patients are scanned during a single breathhold which
is difficult for patients with limited breathing capabilities. Training a CNN on a dataset
only consisting of healthy volunteers is a possible option but does not give insights in the
applicability of the method for diagnostic purposes.

Intuition of the Proposed Method

In order to be independent of a large amount of data for training, we adopt an approach
which is based on a change of perspective on the data. Given problem (12), the object
of interest x is a sequence of 2D images which vary over time and show the cardiac
movement. Therefore, the nature of the problem offers the possibility to exploit the high
correlation among adjacent image frames and has been considered in different methods
in the literature, for example using spatio-temporal total variation-based constraints [6],
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regularization methods based on spatio-temporal dictionary learning [7], [35] or spatio-
temporal CNNs [31], [30], [25], [14].
The main idea behind our method is to decompose an undersampled 2D cine MR image
with artefacts into spatio-temporal slices and to train a CNN to map them to their corre-
sponding ground-truth spatio-temporal slices. The immediate advantage is to have direct
access to a large number of training samples since for each 2D cine MR image one can
extract Nx yt-slices and Ny xt-slices. Figure 2.4 shows different CNN-based approaches
for mapping an initial reconstruction xI to its corresponding ground-truth image. Figure
2.4 A, Figure 2.4 B and Figure 2.4 C show the approaches presented in [17], [30] and [14],
respectively, while Figure 2.4 D illustrates our proposed XT,YT approach [20].

A B

C D

Figure 2.4 Different 2D and 3D CNNs-based approaches for post-processing images with
undersampling artefacts. A: 2D CNN using a frame by frame approach [17], B: 2D CNN
using an image sequence to image-sequence approach where the cardiac phases are aligned as
channels [30], C: 3D CNN using an image sequence to image sequence mapping with three-
dimensional convolutional kernels [14], D: our proposed method using 2D spatio-temporal
slices [20]. Figure taken from [20].

The intuition behind choosing the just described decomposition of a 2D cine MR image is
to facilitate the learning of a mapping between an undersampled image and a ground truth
image. The set of spatio-temporal xt- and yt-slices consists of images containing mostly
horizontal lines except for regions where the cardiac movement is visible. Furthermore,
the content of these spatio-temporal slices is rather independent of the specific subject one
is considering. Therefore, intuitively speaking, samples across different subjects are more
indistinguishable from the xt- and yt-perspective compared to the xy-perspective and a
small number of subjects is expected to already contain the needed information to allow
for the proper training of a CNN.
To show that the set of 2D spatio-temporal slices has indeed a simpler structure than the
2D image frames, we analysed our dataset using Persistent Homology analysis, a tool for
assessing the topological complexity of datasets. The results of the analysis confirmed
that the manifold of the ground-truth spatio-temporal slices in xt- and yt-direction has
a lower topological complexity than the manifold of the ground truth images in the xy-
plane. Further, for both manifolds in the xt, yt- and xy-domain, the ground-truth images
have a lower topological complexity than their corresponding residual manifolds. For the
interested reader, we refer to [20] for more details on the persistent homology analysis.
Based on these results, the CNN used in the XT,YT approach is constructed in such
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a way that the network learns to map the spatio-temporal slices of the initial NUFFT-
reconstructions to their corresponding ground-truth spatio-temporal slices. For the XT,YT
approach, we adopted a U-net as in [17] which has the usual form

ũΘ = id + uΘ. (13)

Since (13) is a residual network, only uΘ contains trainable parameters. Therefore, pushing
ũΘ to learn the ground-truth image manifold is achieved by using the residuals rI := xI−xf

as target labels instead of the ground truth images xf . By doing so, the CNN learns the
manifold of the ground-truth images up to a change of sign. If not otherwise stated, the
used U-net was the one parameterized by E3C4K64 following the notation introduced in
Subsection 2.1. For more details, please see [20].

Experimental Set-up

For the following experiments, we used a dataset of different 2D cine MR images of n = 19
subjects (4 patients + 15 healthy volunteers). The images were obtained with a bSSFP
sequence on a 1.5 T MR scanner during a 10 s breathhold. For all healthy volunteers
and for two patients, Nz = 12 different orientations of 2D cine MR images were used,
while for two patients, only Nz = 6 slices were available due to limited breathing capabil-
ities. Therefore, the dataset D consisted of 216 2D cine MR images. The images which
served as target ground-truth images were obtained by reconstructing the k-space data
acquired along Nθ = 3400 radial lines using kt-SENSE [18]. Each cine image has a shape
of Nx×Ny×Nt = 320×320×30 with an in-plane resolution of 2 mm and a slice thickness
of 8 mm. The input images for the CNN were given by the direct reconstruction from
the measured data using a non-uniform inverse Fourier transform (NUFFT). Note that
sampling the k-space data along 3400 radial spokes already corresponds to an acceleration
factor of approximately ∼ 3 which is needed to perform the scan during a single breath-
hold. Therefore, only acquiring 1130 radial trajectories corresponds to an acceleration
factor of approximately ∼ 9 and reduces the required scan time to 3-4 seconds. We split
the dataset D in 12/3/4 subjects used for training, validation and testing. All experiments
were performed using a 4-fold cross validation. This means the reported performance of
the networks corresponds to the average performance over the different folds. For one
fold, we used only patients’ images as test data in order to have the possibility to investi-
gate clinically relevant features. All the images shown in this section are images of patients.

In [20], we performed the following experiments:

1. Training with limited data: To show that the proposed XT,YT is applicable when
only limited training data is available, we trained the network on different datasets
where we restricted the number of subjects n whose images were included in the
training dataset. We trained on n = 1, 2, 4, 8, 12 subjects and tested the network
on the remaining 4 subjects and compared our proposed approach to the spatially
trained U-net [17].

2. Comparison with other CNNs: We compared our proposed XT,YT method to the
spatially trained 2D U-net [17], the spatio-temporal 2D U-net [30] and the com-
putationally heavier 3D U-net [14] which we abbreviate by XY, XY,T and XYT,
respectively.

3. Comparison with other iterative reconstruction methods: In this experiment, we com-
pared our method to kt-FOCUSS [18], kt-SENSE [10], a TV-minimization approach
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[6] and a dictionary learning + TV-based approach [35], [7].

4. Comparison with state-of-the-art cascaded networks: For the sake of completeness,
we further compared our method to the two cascaded networks [25] and [31].

5. Deep vs more shallow CNNs: Here, we showed that the change of perspective on the
data allows our XT,YT method to highly reduce the number of trainable parameters
needed by the CNN. The performance of deeper U-nets is compared to the one of
more shallow CNNs.

6. Rotation equivariance: Here, we showed that our method naturally achieves the
property of being stable with respect to image rotations we and compared it to XY.
For the experiment, we tested the pre-trained CNNs on images of the training set
which were rotated by the angles ±66◦, ±33◦, ±90◦ and 180◦. By doing so, we were
able to evaluate the effect of the rotations on the performance of the CNNs.

The XT,YT CNN was trained by minimizing the L2-error between input and the target
label using stochastic gradient descent with a linearly decreasing learning rate from 10−6

to 10−8 and a mini-batch of 44. All CNNs were trained by performing 5 · 104 back-
propagations.
Again, the performance of the methods was evaluated in terms of average PSNR, NRMSE,
SIMM and HPSI achieved on the test set.

Main Results

1) Training with limited amount of data:
In this experiment, the XY and the proposed XT,YT method were compared in terms
of achieved performance when trained on a restricted dataset. First, while observing the
training and the validation error-curves in Figure 2.5, we see that successfully training with
XY is only possible for n = 8, 12, as for lower n overfitting occurs immediately. In contrast,
using our XT,YT method, even for n = 1, no overfitting is visible. Also, the training
and validation error-curves are comparable among all n which shows that the network is
properly trainable even on one single subject. Further, a small validation error is already
achieved at early stages of training which suggests that removing artefacts from the xt-
and yt-perspective is a particularly easily learnable task for the CNN. Note that the CNNs
used in the experiments for XY and XT,YT have exactly the same number of trainable
parameters but the training and validation error trends clearly differ from each other. This
also suggests that the mapping to be learned by the CNN in the XT,YT perspective is
particularly simple and is consistent with the results of the persistent homology analysis
[20]. Figure 2.6 shows results obtained with our proposed XT,YT approach (A-D), the
2D frame-to-frame approach [17] trained on 12 subjects (E) and the ground truth kt-
SENSE reconstruction with Nθ = 3400 radial lines (F). As we can see, the obtained
results are comparable for all n. This suggests that using the proposed XT,YT approach,
the network is already able to properly generalize when being trained on only one single
subject. Further, we see that the network using the XT,YT approach already visually
outperforms the spatially trained U-net [17] even when trained on only one subject.
Table 2.2 lists the average measures achieved by the network on the testset when trained
on a dataset only including n subjects. We see that even in terms of quantitative measures,
the achieved performance is comparable among all experiments with different n.
Note that the curves shown in 2.5 as well as the results obtained in Figure 2.6 and Table 2.2
correspond the case that the CNNs are trained to learn the ground-truth image manifolds
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as described above. We also performed the experiment for the case of residual learning
and obtained similar results. However, for the sake of conciseness, we omit the results and
their discussion here and refer the interested reader to [20].
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Figure 2.5 Loss behavior during training of the XY- and our proposed XT,YT-approach.
Observing the training losses (solid lines) and validation losses (dashed lines) for different n,
we see that overfitting is visible for XY for n = 1, 2, 4. For our XT,YT method, almost no
gap is visible between the training and the validation error for all n which indicates that the
network is able to properly generalize even when trained on only one subject. Figure adapted
from [20].

Table 2.2 Estimated images and their corresponding point-wise errors when the number of
subjects whose images were included in the training set is varied. Table taken from [20].

n = 1 n = 2 n = 4 n = 8 n = 12

PSNR 37.25 37.79 37.66 37.84 37.83

SSIM 0.93 0.93 0.93 0.93 0.93

HPSI 0.99 0.99 0.99 0.99 0.99

NRMSE 0.11 0.11 0.11 0.11 0.11

2) Comparison with other CNNs:
Here, we compare our proposed XT,YT approach to other CNNs-based post-processing
methods. More precisely, we implemented the approaches illustrated in Figure 2.4. Figure
2.7 shows results obtained with the methods XY [17] , XY,T [30], XYT [14] and our pro-
posed XT,YT method [20]. We see that the method which delivered the poorest results is
the spatio-temporal U-net XY,T, followed by the spatially trained U-net XY. The reason
for the poor performance of XY,T most probably lies in the fact that the network is forced
to learn the residual as proposed in the original work [30] for which the considered input
images were zero-filled reconstructions opposed to our NUFFT-reconstructions. Forcing
XY,T to learn the ground-truth images turned out to properly reduce the artefacts but
also smoothing the cardiac movement. The method XY achieved decent results, however
it does not exploit any temporal correlation of adjacent frames and therefore resulted in a
less accurate reduction of the artefacts. The 3D approach XYT and our approach XT,YT
performed comparably well. However, our method has considerably fewer parameters.
Further, due to memory limits, for XYT, one has to decompose the initial reconstruction
into patches, apply the 3D U-net to the patches and properly re-assemble the processed
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A B C

D E F

Figure 2.6 Results obtained by XT,YT and XY when the number of subjects in the training
data is varied and the corresponding point-wise error-images. Note that no data-augmentation
was used. Proposed XT,YT method for n = 1 (A), n = 2 (B), n = 8 (C), n = 12 (D), the
spatial U-net for n = 12 (E) and the kt-SENSE reconstruction with 3400 radial lines (F). The
point-wise error images were magnified by a factor of ×3. Figure adapted from [20].

patches to obtain the estimated output. Using our XT,YT approach, the initial recon-
struction can be processed in approximately 1.2 s even if the CNN has to process Nx +Ny

spatio-temporal slices. Table 2.3 shows the average performance of the just described
CNNs in terms of PSNR, NRMSE, SSIM and HPSI which also quantitatively reflects the
visually deduced performances. Note that our method XT,YT yielded results comparable
to the ones obtained with XYT even when trained on only n = 1 subject.

3) and 4) Comparison with iterative reconstruction methods and Comparison with state-
of-the-art cascaded networks:
We further compared our proposed method to kt-FOCUSS [18], kt-SENSE [10], a spatio-
temporal TV-minimization approach [6], a dictionary learning + TV-based regularization
method [7] and two cascaded networks [31], [25]. Our proposed approach outperformed
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A B C

D E F

Figure 2.7 Results and point-wise error-images for the comparison with different Deep
Learning-based post-processing methods. A: NUFFT reconstruction with Nθ = 1130 radial
lines, B: 2D spatial U-net [17], C: 2D spatio-temporal U-net [30], D: 3D spatio-temporal U-net
[14], E: proposed approach 2D XT,YT spatio-temporal U-net [20], F: ground truth kt-SENSE
reconstruction. The point-wise error images were magnified by a factor of ×3. Figure adapted
from [20].

Table 2.3 Comparison of different Deep Learning-based post-processing approaches. Table
taken from [20].

NN Model XY XY,T XYT XT,YT

PSNR 34.82 33.53 37.83 37.93

SSIM 0.91 0.87 0.94 0.93

HPSI 0.99 0.98 0.99 0.99

NRMSE 0.14 0.17 0.11 0.10

16



2 Manteltext

all non-CNN-based methods and achieved competitive results compared to the cascaded
CNNs, see [20].

5) Deep vs more shallow CNNs:
Since the main idea of the work was to exploit the lower topological complexity of the
spatio-temporal slices which can be extracted from the cine images, we investigated if
simpler CNNs (in terms of fewer layers and a lower number of trainable parameters)
were able to reduce the undersampling artefacts comparably well. For this purpose, we
trained different CNNs according to our XT,YT approach. More precisely, by following
the parametrization of a U-net as described in Subsection 2.1, we further trained and
tested the networks E1 C8 K64 E4 C4 K64 and E5 C2 K64.

A B C D

Figure 2.8 Results and point-wise error-images obtained with different CNNs of differ-
ent depth following our proposed XT,YT aproach. A: initial NUFFT-reconstruction, B:
E1 C8 K64, C: E5 C2 K64 and D: kt-SENSE reconstruction with Nθ = 3400 radial lines. We see
that the network E1 C8 K64, which only consists of 8 convolutional layers, performed equally
well compared to E5 C2 K64 which consists of 18 convolutional layers. Figure adapted from
[20].

Figure 2.8 shows an example of results obtained with the just mentioned networks and
the comparision with the ground truth image given by the kt-SENSE reconstruction using
Nθ = 3400 radial lines. As we can see, the three networks visually performed compara-
bly well. In particular, the network E1 C8 K64 only consists of eight convolutional layers
but still achieved similar results as E5 C2 K64 which in contrast has 18 convolutional lay-
ers. The network E1 C8 K64 contains nparams = 223 492 trainable parameters, while for
E5 C2 K64, nparams = 25 087 168. This suggests that the change to the XT,YT perspec-
tive indeed leads to a simplification of the artefacts-reduction problem and facilitates the
learning of the CNN. By being able to use more shallow CNNs and still achieve good
performance, the phenomenon of overfitting can be efficiently prevented.
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6) Rotation equivariance: Finally, our XT,YT approach was shown to be naturally robust
with respect to rotation. The results are omitted here due to space limits. We refer the
interested reader to [20].

2.3 Neural Networks-based Regularization of Large-Scale Problems in
Medical Image Reconstruction

The following content is based on the following publication [22]:

� Andreas Kofler, Markus Haltmeier, Tobias Schaeffter, Marc Kachelrieß, Marc Dewey,
Christian Wald, and Christoph Kolbitsch. Neural Networks-Based Regularization
for Large-Scale Medical Image Reconstruction. In Physics in Medicine & Biology,
65(13):135003, 2020.

Here, we consider ill-posed large-scale inverse problems of the form (1) which we aim to
solve via a Tikhonov-regularization by minimizing (5). In the following, we assume to have
access to a properly trained CNN. The CNN is used to obtain an appropriate estimate of
the unknown ground-truth image and is used as an image-prior when solving (5) with an
iterative method.

Proposed Approach

Given an initial reconstruction xini = A†y, for large-scale problems, we obtain the image
prior xCNN using a composite-function which decomposes the initial reconstruction xini

into patches/slices, processes them with the CNN and recomposes the patches to obtain
the image prior, i.e. xCNN := fΘ(xini). The function fΘ is needed because of the large
scale of the considered problems where the complete object cannot be processed at once.
Consider an image/volume x and its decomposition in Np,s (in general overlapping)
patches

x = Wp,s

Np,s∑
j=1

(Rp,s
j )T Rp,s

j x, (14)

where the operators Rp,s
j and (Rp,s

j )T extract and re-position the patches at the origi-
nal position, respectively. The diagonal operator Wp,s accounts for proper weighting of
overlapping regions. The tuples p and s define the size of the used patches and strides in
each dimension and therefore implicitly determine the number of patches Np,s which are
extracted from a single image or volume.
Using the introduced notation, the CNN-image prior is obtained using fΘ by

xCNN := fΘ(xini) = Wp,s

Np,s∑
j

(Rp,s
j )T(uΘ(Rp,s

j (xini))). (15)

Since xCNN is fixed, the subsequent minimization of (5) is independent of the CNN and
can be achieved by means of any classical iterative scheme. The choice of the iterative
scheme depends on the specific application and on the data-discrepancy term used in (5).
For example, in MRI, a typical choice for the data-discrepancy measure D in (5) is the L2-
norm and therefore, the pre-conditioned conjugate gradient (PCG) method is a suitable
iterative method. In low-dose CT, the Kullback Leibler-divergence is usually used as data-
discrepancy measure as it corresponds to the log-likelihood for Poisson-distributed noise
in the measured data and therefore, a simple Landweber iteration can be used.
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Finally, for ill-posed large-scale image reconstruction problems, one can use a three-steps
reconstruction scheme of the form described in Algorithm 1.

Algorithm 1 Proposed CNNs-based large-scale image reconstruction algorithm.

Data: pre-trained CNN uΘ, composite function fΘ, noisy or incomplete measured data
y, regularization parameter λ > 0
Output: reconstruction xREC

1) xini ← A†y
2) xCNN ← fΘ(xini)
3) xREC ← arg minxD(Ax,y) + λ‖x− xCNN‖22
Return xREC

In [22], we tested the applicability of the proposed three-steps reconstruction scheme for
2D radial cine MRI and 3D low-dose CT and compared the results to the well-known
TV-minimization and dictionary learning-based approaches [6], [7], [35].

Experimental Set-Up for 2D Radial Cine MRI

Here, we tested the reconstruction scheme in Algorithm 1 for 2D radial cine MRI. The
used image dataset is the same as in Section 2.2. For these experiments, we retrospectively
generated undersampled radial k-space data with a radial encoding operator EI usingNθ =
1130 spokes. From the generated k-space data, we reconstructed initial reconstructions
using the adjoint NUFFT-operator EH

I . The NUFFT-reconstructions and the ground
truth images were used as training dataset for a CNN which served to generate an image
prior for a subsequent iterative reconstruction. We trained the CNN according to our
proposed XT,YT-approach [20]. Since in [20], the CNN was trained only on magnitude
images as a post-processing method, we extended the XT,YT approach to be applicable
on complex-valued images. For this, we trained one real-valued CNN to map the real and
imaginary parts of the xt- and yt-spatio-temporal slices of the NUFFT-reconstruction xI
to their corresponding ground-truth spatio-temporal slices. Therefore, the CNN image
prior was obtained by

xCNN = fΘ(xI) (16)

=
1

2

[∑
j

(Rxt
j )T

(
uΘ(Rxt

j (Re xI))
)

+ (Ryt
j )T

(
uΘ(Ryt

j (Re xI))
)

+i
(

(Rxt
j )T

(
uΘ(Rxt

j (Im xI))
))

+ i
(

(Ryt
j )T

(
uΘ(Ryt

j (Im xI))
))]

,

where the operators Rxt
j and Ryt

j extract the j-th spatio-temporal slices in xt- and yt-

direction, respectively. The operators (Rxt
j )T and (Ryt

j )T denote their corresponding ad-
joint operators which reposition the slices at their original positions. Note that our XT,YT
method discussed in Section 2.2 represents a special case of the decomposition (15). Using
the XT,YT approach, the initial reconstruction xini is decomposed in its disjoint xt- and
yt-spatio-temporal slices. As in [20], we split the available data in 12/3/4 subjects for
training, validation and testing and performed a 4-fold cross-validation. The CNN uΘ was
trained for 12 epochs using ADAM [19] with a learning rate of 10−5.
Then, using the same notation as in the previous sections, functional (5) is given by

FxCNN,λ,yI (x) = ||Ex− yI ||+ λ ||xCNN − x||22. (17)
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It can be easily seen that minimizing (17) corresponds to solving the system Hx = b,
where

H = EH
I EI + λ I,

b = xI + λxCNN. (18)

Since H is symmetric, we used the PCG method for minimizing (17). Note that because of
strong convexity, (17) has a unique solution which can be approximated using any iterative
scheme. For the experiments, we set λ = 0.1 and performed nPCG = 16 iterations to
approximate the solution of (17).

Results for 2D Radial Cine MRI

Figure 2.9 shows the intermediate reconstructions obtained with the proposed three-steps
reconstruction scheme as well as their point-wise errors. Figure 2.9 A shows the initial
NUFFT-reconstruction directly obtained from the measured data. Figure 2.9 B shows the
NUFFT-reconstruction after the processing with the previously trained CNN. In Figure
2.9 C, the final result of the proposed scheme can be seen which was obtained after the
iterative reconstruction using the previously generated CNN-image prior. Figure 2.9 D
shows the ground truth images obtained with kt-SENSE using Nθ = 3400 radial spokes.
We see that the CNN successfully removed a large portion of undersampling artefacts.
However, applying the CNN also smoothed out temporal information as pointed out by
the yellow arrow in Figure 2.9 B. Minimizing (17) yielded a solution with increased data-
consistency. Interestingly, the previously smoothed out image details are visible again, see
Figure 2.9 C and D.

A B C D

Figure 2.9 Intermediate results and point-wise error-images of our three-steps approach.
A: Initial NUFFT-reconstruction xI , B: artefact-corrected image xCNN using the XT,YT
method, C: CNNs-based regularized solution xREC, D: ground truth image reconstruction
with kt-SENSE and Nθ = 3400 radial lines. The point-wise error images were magnified by
a factor of ×3. The yellow arrows show details which were smoothed out in the CNN-prior
xCNN but are visible again in the final reconstruction xREC. Figure adapted from [22].

Table 2.4 shows the performance of our reconstruction scheme compared to the TV-
minimization method and the dictionary learning-based method (DIC) in terms of PSNR,
NRMSE, SSIM and HPSI. The measures were obtained as averages over the four dif-
ferent folds. We see that our proposed CNN-based regularized iterative reconstruction
consistently yielded the best results with respect to all reported measures. Only applying
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the CNN yielded results which are superior to TV but not to DIC. However, after the
subsequent iterations, the final result outperforms DIC with respect to all measures. In
addition, obtaining the CNN-image prior using the pre-trained CNN is faster than DIC
by several orders of magnitude since we do not need to solve the sparse-coding problem
for each image patch. For more details, we refer to [22].
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Figure 2.10 Results and point-wise error images for the comparison with other reconstruction
methods. A: Initial NUFFT-reconstruction xI using Nθ = 1130 radial trajectories, B: TV-
minimization solution, C: dictionary learning-based solution DIC, D: CNN-regularized solution
xREC, E: ground truth image obtained by kt-SENSE using Nθ = 3400 radial lines. The point-
wise error images were magnified by a factor of ×5. The point-wise error is the lowest for the
reconstruction xREC. Figure taken from [22].

Experimental Set-Up for 3D Low-Dose CT

Here, we tested the proposed reconstruction scheme for 3D low-dose CT. We used a dataset
of n = 16 patients from the randomized DISCHARGE trial [23]. We cropped each volume
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Table 2.4 Quantitative measures for the 2D radial cine MRI example. The measures are
obtained as averages over the four different folds. Table taken from [22].

NUFFT xCNN xREC TV DIC

PSNR 36.8023 42.5647 48.7752 41.6968 45.4743

NRMSE 0.1228 0.0612 0.0302 0.0693 0.0442

SSIM 0.6649 0.7876 0.952 0.8635 0.9175

HPSI 0.9679 0.9910 0.9985 0.9878 0.9959

to a fixed size of Nx×Ny×Nz = 512× 512× 128. From these volumes, we generated low-
dose sinograms by simulating a low-dose CT scan acquisition using a cone beam geometry.
The retrospective data generation was performed according to [2], i.e. by using the forward
model

yη = Tx + η = p exp{−µRx}+ η, (19)

where µ denotes the linear attenuation coefficient of water which was chosen as µ = 0.02
and p is the number of photons per voxel. The operator R corresponds to a discrete
version of the ray-transform and η denotes Poisson-distributed noise which was used to
contaminate the measured data in order to simulate a low-dose scanning protocol. In this
experiment, the operator R was discretized by Nψ = 1000 angles with a detector array
of shape Nrx × Nry = 320 × 800. The reconstruction spaces were discretized according
to the pixel-spacing found in the respective DICOM files. The initial reconstruction was
obtained as xη = R†

(
−µ−1 ln(p−1yeta)

)
with R† being the filtered back-projection using

a Ram-Lak filter. The operators R and R† were implemented using the publicly available
Operator Discretization Library ODL [1]. For this experiment, we chose the network to be
a 3D U-net as the one given in [14]. Since the volumes have a shape of 512 × 512 × 128
but only volumes of 128× 128× 16 fit the GPU with 12 GB of memory, the image prior
xCNN was obtained as described in (15) where we used a patch-size of p = (128, 128, 16)
and strides of s = (16, 6, 8), respectively.
We split the dataset in 12/2/2 patients for training, validation and testing and performed
a seven-fold cross-validation. For each fold, we trained the 3D U-net for 115 epochs, where
we used the L2-norm between CNN prediction and target image as loss function during
training.
After having obtained the CNN-image prior xCNN, we considered the functional

Fyη ,xCNN,λ(x) = DKL(Tx,yη) + λ‖x− xCNN‖22 → min, (20)

where DKL denotes the Kullback Leibler-divergence. Problem (20) was solved by per-
forming niter = 4 iterations of the Landweber method. Since the measured data yη was
contaminated by noise, the number of iterations is on purpose chosen to be relatively
small in order to avoid the semi-convergence behavior of the Landweber method. The
regularization parameter was set to λ = 1 for all experiments.

Results for 3D Low-Dose CT

Figure 2.11 shows the intermediate results of the proposed three-steps reconstruction, their
corresponding point-wise errors and the ground truth image. In Figure 2.11 A, we see the
initial FBP-reconstruction affected by the noise of the simulated low-dose scan. The
volume which was patch-wise processed by the previously trained CNN is visible in Figure
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2.11 B which shows that most of the noise was successfully removed. However, visually, the
result is relatively smooth. Minimizing functional (20) led to the final reconstruction which
can be seen in Figure 2.11 C. As expected, some noise was re-introduced in the obtained
image due to the fact that the noisy data yη was used in the Landweber iteration. However,
the level of noise is relatively low and lends the final image the characteristic texture of
CT images. Fine diagnostic image details as the right coronary artery which is highlighted
by the yellow arrows are clearly visible in all processed images. Figure 2.11 D shows the
ground truth image.

A B C D

Figure 2.11 Intermediate steps of the proposed three-steps approach and corresponding
error-images. A: Low-dose FBP-reconstruction xη, B: denoised image xCNN, C: CNNs-based
regularized solution xREC, D: ground truth image. Diagnostic details are well visible in the
prior xCNN as welll as in xREC. The yellow arrow points at the right coronary artery. The
images are windowed and displayed on the scale with C = 0 HU, W = 850 HU. Figure adapted
from [22].

Table 2.5 Quantitative measures for the 3D low-dose CT example. The measures are obtained
as averages over the seven different folds. Table take from [22].

FBP xCNN xREC TV DIC

PSNR 30.0052 40.3546 39.6264 33.946 34.7807
NRMSE 0.1657 0.0498 0.0538 0.1051 0.0938
SSIM 0.425 0.5755 0.5813 0.4985 0.5465
HPSI 0.9394 0.9821 0.9819 0.9503 0.9581

Table 2.5 lists the quantitative measures obtained for the experiments averaged over the
seven different folds. As can be seen, the largest improvement in our approach is given
by the application of the CNN to the initial FBP-reconstruction. Minimizing the CNN-
regularized functional only slightly further improved SSIM. PSNR and NRMSE decreased
as expected due to the use of the noisy measurements yη. HPSI remained approximately
the same.
Table 2.5 also shows the comparison of our proposed approach to TV and DIC which were
clearly outperformed with respect to all reported measures. These quantitative results are
also well-reflected in Figure 2.12 which shows the initial FBP-reconstruction (A), the TV-
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Figure 2.12 Results and point-wise error images of two patients obtained with the different
reconstruction methods. A: Low-dose FBP-reconstruction xη, B: TV, C: DIC, D: proposed
CNN-based reconstruction xREC, E: ground-truth image. The images are windowed and
displayed on the same scale with C = 0 HU, W = 800 HU. Figure taken from [22].

reconstruction (B), the DIC-reconstruction (C), the solution using our proposed scheme
(D) and the ground truth image (E). From the point-wise error-images as well as from the
appearance of the reconstructed images, we see the superiority of the CNN-based method
compared to TV and DIC.
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3 Discussion

In this thesis, we have addressed and investigated the applicability of NNs-based regular-
ization of large-scale ill-posed inverse problems occurring in medical image reconstruction.
In particular, we have posed our focus on cardiac imaging and more precisely, on 3D
low-dose CT and 2D radial cine MRI, although some of the concepts, considerations and
results are most probably applicable to general image reconstruction problems as well.
In Section 2.1, we have performed an ablation study for the task of image reconstruction
in sparse view CT, where we tackled the reconstruction problem using a novel end-to-end
trainable cascade of U-nets [21]. The U-nets cascade is an iterative network which alter-
nates between processing the images with U-nets and data-consistency (DC) layers. We
investigated the reconstruction performance of the cascaded network for different lengths
of the cascade, i.e. number of alternations between CNNs and DC layers, while keeping
the number of trainable parameters approximately fixed. By doing so, we were able to
isolate the effect of multiple interceptions of the U-nets by DC layers. This is of interest as
cascaded networks represent the state-of-the-art in medical image reconstruction but are
currently only applicable to either small-scale problems (e.g. 2D scanner geometries for
CT) or problems where the forward and adjoint operators A and AH are computationally
cheap (e.g. Cartesian single-coil acquisition protocols in MRI). The results in [21] suggest
that even if increasing the number of iterations seems to have a visually positive impact
on the reconstruction quality, the results in terms of quantitative measures were some-
what all comparable. Further, using more sophisticated CNNs as the U-net, turned out
to be favorable over using simple blocks of CNNs. Therefore, for large-scale image recon-
struction problems where the construction of cascaded/iterative CNNs is computationally
prohibitive, using a single CNN to obtain an image prior which is used in a subsequent
iterative reconstruction seems to be a valid alternative, at least given the nowadays avail-
able hardware.
In Section 2.2, we have dedicated ourselves to the construction of a CNN for obtaining
such an image prior for 2D radial cine MRI. Given the fact that the performance of a
CNN is always linked to the number of available training samples and that in medical
imaging applications, large datasets are rarely available, we have put our attention on
the development of a robust and reliable approach which overcomes the data-availability
problem. In contrast to the observable tendency in the Deep Learning research commu-
nity to include more and more sophisticated blocks, e.g. perceptual losses and generative
adversarial approaches [39], we adopted a different strategy based on the simplification of
the problem to be solved. Our XT,YT approach uses a simple yet efficient idea. Instead
of learning the mapping from the manifold of the undersampled images to the one of the
ground-truth images (3D to 3D), it learns to map the corresponding 2D spatio-temporal
slices which can be extracted in xt- and yt-direction from the 2D image sequences. For a
single pair of undersampled and ground truth 2D cine MR images of shape Nx ×Ny ×Nt

(i.e. 2D + time), one immediately has access to Nx +Ny training pairs. In addition, the
topological complexity of the manifold of the xt- and yt-spatio temporal slices was re-
ported to be lower than the one of images in the xy-plane and thus facilitates the learning
of the mapping.
Our XT,YT approach only uses 2D convolutional layers in contrast to the 3D U-net [14]
but still is able to exploit spatio-temporal correlation of adjacent time frames. Using only
2D convolutional layers further reduces the number of trainable parameters and prevents
the network from overfitting. A possible limitation could be a too strong smoothing of
temporal information which, however, was not observed in the experiments. As shown in
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[20], our XT,YT approach outperformed classical iterative reconstruction schemes based
on kt-FOCUSS [18], kt-SENSE [10], TV-minimization [6] and dictionary learning + TV
[7], [35] in terms of all reported measures. Further, it achieved competitive results with
state-of-the-art methods based on cascaded networks presented in [31] and [25]. In ad-
dition, as shown in Figure 2.8, using the XT,YT approach, it is possible to obtain com-
petitive results even with relatively shallow CNNs which can prevent the network from
overfitting. Using more shallow CNNs, also offers the possibility to integrate the XT,YT
method as a building block in cascaded networks. Last, we showed that due to the change
of perspective on the data, the method naturally achieves the property of almost being
rotation-equivariant. Thus, the method is robust with respect to rotations without the
need to explicitly incorporate rotation-equivariant operations in the CNN. Even though
the method was presented for 2D radial cine MRI, we expect the method to be applicable
to general inverse problems where temporal correlation can be exploited.
In Section 2.3, we have tackled the problem of realistic large-scale ill-posed image re-
construction problems using CNNs-based regularization within a Tikhonov regularization
framework. Based on the results presented in Section 2.1 and discussed in more detail in
[21], we opted for a reconstruction scheme which involves the following steps: First, the
initial reconstruction is obtained by directly reconstructing the image from the measured
data. As a second step, the initial reconstruction is processed by a CNN which in general
operates on sub-portions of the images due to the relatively large dimensionality of the
considered problems. Last, the obtained output of the CNN is used as an image prior
for the formulation of a Tikhonov-regularized functional which is subsequently minimized.
Since this functional only depends on the image, its minimization can be achieved by
means of any iterative solver. We have applied and evaluated the proposed approach to
2D radial cine MRI and 3D low-dose CT and have compared the proposed three-steps
method for the well known total variation (TV)-minimization approach and a method
using dictionary learning-based regularization (DIC). The proposed method outperformed
both TV and DIC in terms of all reported measures and further accelerated the regulariza-
tion step by several orders of magnitude compared to DIC. A limitation of the three-steps
reconstruction method compared to cascaded/iterative networks is the need to choose the
regularization parameter λ which controls the strength of the contribution of the regular-
ization. In contrast, in cascaded/iterative networks, the parameter λ can be treated as a
trainable parameter and can be learned as well. While in [22] we have chosen λ empirically,
there exists a large variety of methods on how to more appropriately choose λ.
Note that the applicability of cascaded/iterative networks is limited to relatively small-
scale problems. Only recently, large-scale problems have been addressed as well using
iterative networks, see e.g. [13] for volumetric low-dose CT reconstruction. However, the
considered volume size is still relatively small being 168× 168× 168 and using a scanner
geometry which measures projections for only Nθ = 60 angles. Therefore, the three-steps
reconstruction approach still represents a viable option for realistic large-scale problems.
An assessment of the achieved image quality with respect to clinical tasks, e.g. the assess-
ment of the coronary artery calcium scoring in low-dose CT, is already planned as future
work in collaboration with clinicians.
Neural networks-based methods for image reconstruction empirically seem to outperform
classical methods, potentially allowing for more accurate, faster (MRI) and safer (CT)
imaging protocols. However, the research area is still in its infancy and, as recently re-
ported, these methods can be highly unstable with respect to tiny perturbations in image
and sampling domain [5]. In particular, fully learned inversion methods as presented in
[40] seem to be more susceptible to instability problems compared to CNNs which contain
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the physical models as [31]. This suggests that restricting the CNNs to only playing the
role of learned regularizers in the reconstruction process is favorable. Unless a clear the-
oretical understanding of what neural networks exactly do is available, caution is advised
for their integration in practice, especially in a sensible field as medical imaging.

4 Conclusion

In the last years, medical image reconstruction has experienced a paradigm shift due to
the re-emergence of Neural Networks (NNs) thanks to publicly available Deep Learning
software. Convolutional NNs (CNNs), in particular, have been applied in many different
ways within the task of image reconstruction and inverse problems. Although end-to-end
trainable iterative networks represent the state-of-the-art for medical image reconstruc-
tion, their applicability still remains limited to a class of relatively small-scale problems
with the nowadays available hardware. In [21], we observed that for cascading networks
with approximately the same number of trainable parameters but different numbers of
interceptions of data-consistency layers and CNNs, the results are somewhat compara-
ble. This suggests that for large-scale inverse problems in medical imaging, where the
forward models and the reconstruction operators are computationally heavy to apply and
the construction of cascaded networks is computationally prohibitive, generating an im-
age prior using a CNN and subsequently ensuring/increasing data-consistency might be
an efficient and viable option. In [22], we have presented a simple yet efficient generalized
approach for solving large-scale image reconstruction problems in medical imaging. In
contrast to iterative networks which repeatedly employ the forward and the adjoint oper-
ators within the network architecture, we only generate one single image prior using an
pre-trained CNN which is then used in a subsequent generalized Tikhonov-regularization
framework. By doing so, the step of ensuring/increasing data-consistency of the solution
with the measured data is separated from the regularization and therefore, more powerful
and sophisticated network architectures can be applied as the ones conventionally used in
iterative neural networks. Further, in [20] we have developed an approach specifically de-
signed for the task of artefacts-reduction in 2D radial cine MRI, named XT,YT approach.
The XT,YT method was designed to be particularly suitable for situations where only
limited training data is available. We have demonstrated that the latter can be applied
as a post-processing method to generate an image prior to be used in the reconstruction
scheme presented in [22]. Further, since it is computationally light, it could also be easily
integrated into cascaded networks which will be subject of future work.
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5 Ausführliche Anteilserklärung an den
erfolgten Publikationen

Publikation:

� Andreas Kofler, Marc Dewey, Tobias Schaeffter, Christian Wald, and Christoph Kol-
bitsch. Spatio-Temporal Deep Learning-based Undersampling Artefact Reduction for
2D Radial Cine MRI with Limited Training Data. In IEEE Transactions on Medical
Imaging, 39(3), p. 703–717, 2020.

Beitrag im Einzelnen:

- Thema, Idee, Konzeption (Kofler, Kolbitsch, Dewey)

- Bereitstellung der MR Daten (Koblitsch)

- Datenaufbereitung (Kofler, Kolbitsch, Wald)

- Entwicklung der Hypothesen zur Persistent Homology Analysis (Kofler)

- Persistent Homology Analysis (Wald)

- Methoden- und Algorithmenentwicklung: Alle auf Neuronalen Netzen basierenden
Post-Processing Methoden (Kofler)

- Methoden- und Algorithmenentwicklung: Implementierung der Methode Dictiona-
ry Learning + Total Variation sowie Anpassung der Netzwerkkaskade DnCn3DDS
(Kofler)

- Anpassung der Netzwerkkaskade CRNN (Wald)

- Bereitstellung der Vergleichsmethoden kt-FOCUSS, kt-SENSE sowie TVT (Kol-
bitsch)

- Quantitative und statistische Auswertung der Ergebnisse - sämtliche Tabellen (Kof-
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Spatio-Temporal Deep Learning-Based
Undersampling Artefact Reduction

for 2D Radial Cine MRI With
Limited Training Data

Andreas Kofler , Marc Dewey, Tobias Schaeffter, Christian Wald, and Christoph Kolbitsch

Abstract— In this work we reduce undersampling
artefacts in two-dimensional (2D) golden-angle radial cine
cardiac MRI by applying a modified version of the U-
net. The network is trained on 2D spatio-temporal slices
which are previously extracted from the image sequences.
We compare our approach to two 2D and a 3D deep
learning-based post processing methods, three iterative
reconstruction methods and two recently proposed meth-
ods for dynamic cardiac MRI based on 2D and 3D cascaded
networks. Our method outperforms the 2D spatially trained
U-net and the 2D spatio-temporal U-net. Compared to the
3D spatio-temporal U-net, our method delivers comparable
results, but requiring shorter training times and less training
data. Compared to the compressed sensing-based methods
kt-FOCUSS and a total variation regularized reconstruc-
tion approach, our method improves image quality with
respect to all reported metrics. Further, it achieves compet-
itive results when compared to the iterative reconstruction
method based on adaptive regularization with dictionary
learning and total variation and when compared to the
methods based on cascaded networks, while only requiring
a small fraction of the computational and training time.
A persistent homology analysis demonstrates that the data
manifold of the spatio-temporal domain has a lower com-
plexity than the one of the spatial domain and therefore,
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the learning of a projection-like mapping is facilitated.
Even when trained on only one single subject without data-
augmentation, our approach yields results which are similar
to the ones obtained on a large training dataset. This makes
the method particularly suitable for training a network on
limited training data. Finally, in contrast to the spatial
2D U-net, our proposed method is shown to be naturally
robust with respect to image rotation in image space and
almost achieves rotation-equivariance where neither data-
augmentation nor a particular network design are required.

Index Terms— Deep learning, neural networks, dynamic
MRI, image processing, compressed sensing, persistent
homology analysis.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is a widely
used non-invasive imaging modality in clinical practice.

Especially for cardiac applications, MRI does not only provide
anatomical imaging with excellent soft tissue contrast but
also allows for functional assessment by using 2D cine MRI.
Such images show the heart anatomy for different phases of
the cardiac cycle providing valuable information of the heart
function [1], [2].

However, MRI suffers from long data-acquisition which
determines the achievable spatial and temporal resolution.
In order to shorten scan times, ensure sufficiently large spatial
coverage and high spatial and temporal resolution, a wide
range of undersampling and reconstruction techniques have
been proposed, ranging from Parallel Imaging to Compressed
Sensing (CS) and Dictionary Learning [3], [4]. Cine MRI pro-
vides a temporal sequence of images and therefore offers
the possibility to exploit the temporal correlation of adja-
cent frames in order to reduce undersampling artefacts. The
movement of the heart during the cardiac cycle is mainly
smooth and continuous. Ensuring that undersampling artefacts
along time are incoherent and using a sparsifying transform
along time such as Fourier transform [3], Principal Component
Analysis [5], [6], Wavelet transform [7] or a transform learned
from data [8], [9] combined with a L1-norm minimization
approach can strongly reduce undersampling artefacts. The
main challenges of these techniques are to ensure that the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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sparsifying transform really leads to a sparse signal and long
reconstruction times due to the iterative reconstruction.

Recently, Neural Networks (NNs) have been applied to
inverse problems as image reconstruction in MRI [10], [11],
[12], [13] and computed tomography (CT) [10], [14], [15].
Autoencoders, and in particular the U-net [16], a convolutional
NN (CNN) which was first introduced for biomedical image
segmentation, and different derivations of it [17], [18], have
been widely used for removing undersampling artefacts in
different medical imaging modalities.

In initial works, the images were most commonly recon-
structed or processed frame by frame, see e.g. [10]. In the
case of dynamic MRI, however, the temporal correlation of
2D MRI sequences can be exploited by aligning frames along
the channel axis. Thus, 2D CNNs can be trained to map
whole undersampled image sequences to their correspond-
ing fully sampled image sequences [19], [20]. Further, also
CNNs employing 3D-convolutions were shown to be trainable
on entire image sequences, either as post-processing meth-
ods [21] or as unrolled iterative reconstruction schemes [19].
However, in general, due to the resulting high dimensionality
of the considered problem, either a large dataset or the
application of data-augmentation techniques are indispensable
to obtain satisfactory results, see e.g. [19], [21].

Nowadays it is common practice to learn the filters of
the convolutional layers by considering the images in the
spatial domain. In this work, we propose to apply CNNs
to two-dimensional slices extracted from the spatio-temporal
dimension in order to remove undersampling artefacts from a
2D cine MR scan obtained with a 2D Golden radial sampling
scheme [22]. A persistent homology analysis shows that the
manifold of the spatio-temporal slices has a lower topological
complexity than the manifold of the two-dimensional spatial
image frames and suggests that the learning process of the
network can therefore be facilitated. We compare our pro-
posed approach to a 2D U-net trained frame-by-frame [10],
a 2D U-net trained image sequence-wise [20] and a
3D U-net [21] in terms of image quality, amount of required
training data and stability with respect to rotation of the
images. The latter is important because 2D cine MRI is
commonly obtained in oblique planes which are adapted to
the patients anatomy. Our spatio-temporal approach method
is also compared to three CS-based approaches for image
reconstruction of cine MRI: kt-FOCUSS [23], a total variation
minimization-based method [4] and a Dictionary Learning-
and total variation-based reconstruction method [9]. Further,
we compare our method to two methods for cine MRI based
on cascaded networks [19], [24].

The paper is organized as follows. In Section II, we shortly
discuss how NNs have been integrated within the problem
of image reconstruction in MRI so far. Section III introduces
our proposed method by discussing an a priori performed
persistent homology analysis of the data which is needed to
derive the approach as well as the network’s architecture.
We then show results of In-Vivo experiments and compare
our method to other Deep Learning- and CS-based methods
in Section IV and finish with a discussion and conclusion
in Section V.

II. PROBLEM FORMULATION

In dynamic MRI, the image reconstruction problem is given
by finding a solution of the inverse problem

Fx = y, (1)

where x ∈ CN denotes the complex-valued image sequence
with N = Nx Ny Nt , F denotes the Fourier encoding matrix and
y corresponds to the measured data in k-space. As the data-
acquisition process in MRI is slow, undersampling schemes
are applied to fasten the measurement process. Therefore,
the inverse problem one encounters in applications is of the
form

FI x = yI , (2)

where FI = SI F and SI ∈ CM×N denotes a binary under-
sampling operator with M � N which sets non-measured
values in k-space to zero. Thereby, I ⊂ J = {1, . . . , N}
corresponds to the set of indices of the measured Fourier
coefficients. Since M � N , the problem in (2) is under-
determined and therefore ill-posed. Hence, a direct solution
is not possible and usually regularization approaches have
to be applied in order to constrain the sought solution. Two
widely used regularization techniques are based on Dictionary
Learning [8], [9] and total-variation (TV) minimization [4],
[25]. However, since the methods employ the regularization
within an iterative reconstruction, solving the problem in (2)
is time consuming and NNs have been considered as a valid
and powerful alternative, see e.g. [10]–[12], [19], [21].

Most commonly, the networks are trained by considering the
images in the spatial domain. By doing so, the network learns
to distinguish between diagnostic content of the image and the
artefacts by exploiting the natural correlation of neighbouring
pixel values in spatial domain. Given a dynamic process, one
can further make use of the correlation of temporal slices
amongst each other. In [20], the work of [10] is extended
in the sense that a U-net is trained to directly map whole
2D image sequences of undersampled image reconstructions
to 2D image sequences of ground truth images. In [19],
the temporal dimension of the sequence is taken into account
in the same manner, where furthermore, a weighted data-
sharing and a data-consistency approach further improve the
quality of the reconstruction. For the 2D networks, frames
corresponding to different cardiac phases are aligned along the
channel axis. As shown in [19] and [21], CNNs employing 3D
convolutional layers can also be applied for the task of remov-
ing undersampling artefacts in dynamic sequences. Note that,
for a network employing 2D convolutional layers and assum-
ing the channel’s dimension to be the one along which feature
maps are combined by linear combination, aligning temporal
frames along the channel’s axis only slightly increases the
computational complexity of the CNN. In this case, the filters
size only increases for the first and the last convolutional
layers. Employing 3D convolutional layers, in contrast, adds
further non-negligible computational cost as well as hardware
requirements, increases training time, the number of trainable
parameters and therefore the number of samples required to
successfully train a network without experiencing overfitting.
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In the aforementioned methods, the resulting number of avail-
able training samples reduces to the number of 2D image
sequences. Since NNs are well known to require a large
number of training samples and as the collection of proper
data can be challenging, using these approaches, one usually
has to heavily rely on the use of data-augmentation techniques,
see e.g. [19], have access to a large dataset [21] or both in
order to obtain a good representation of the data manifold.
However, data-augmentation might also be non-trivial, time
consuming or not possible to be performed on the fly. In the
case of image reconstruction, the dataset is obtained by a prior
data-acquisition process. In a simulation-based framework, one
can for example apply arbitrary transformations to a ground
truth image, e.g. elastic transformations, and then simulate the
data-acquisition process. Also, using different undersampling
masks to obtain zero-filled reconstructions can further enrich
the data, see for example [19], [20]. However, assuming a
fixed dataset of pairs of undersampled image reconstructions
and ground truth images, transformations would have to be
applied to each pair, possibly altering the structure of the
undersampling artefacts in the input images.

The same holds true for including rotated versions of
training pairs into the dataset. As CNNs are not necessar-
ily rotation-invariant or rotation-equivariant, these properties
are usually achieved by properly augmenting the dataset
[26]. In contrast, other approaches explicitly incorporate
mathematical operations in the design of the network archi-
tectures and therewith attempt to reach rotation-invariance or -
equivariance [27], [28]. High quality images in cardiac MRI
are usually reconstructed by applying iterative methods. Thus,
obtaining realistic versions of images rotated by a non-trivial
rotation, i.e. by a rotation of θ �∈ { kπ

2 : k ∈ {0, 1, 2, 3}},
is computationally demanding, as the k-space data has to be
rotated and the iterative reconstruction has to be performed on
the rotated data. Therefore, rotation-equivariance, in this case,
can either be achieved by means of the network architecture
design or by a possibly time consuming data-augmentation
process.

III. PROPOSED APPROACH

In medical imaging, the number of available training sam-
ples is usually very small compared to the underlying math-
ematical dimension of the data, i.e. the number of pixels
of an image. Therefore, we are particularly interested in the
question of whether or not it is possible to train a CNN on a
highly limited dataset by making best use of the given data.
We propose to train a CNN employing 2D convolutional layers
on 2D spatio-temporal slices which can be extracted from
the cine image sequences over the cardiac cycle. Once the
network is trained, the image sequences can be reconstructed
by properly reassembling the spatio-temporal slices. Later,
we demonstrate that with our proposed approach, already a
small number of 2D cine MRI datasets suffices to success-
fully train a network. Furthermore, robustness with respect to
rotation in the spatial domain is achieved in a natural way by
the change of perspective on the given dataset and our method
is therefore almost rotation-equivariant.

Fig. 1. Different 2D and 3D Deep Learning-based approaches for under-
sampling artefacts reduction. 2D network for frame-wise mapping (a),
2D network for image sequence-wise mapping with cardiac phases
aligned as channels (b), 3D network for image sequence-wise mapping
with three-dimensional convolutional kernels (c), 2D network for our
proposed approach on two-dimensional spatio-temporal slices (d).

TABLE I
DIFFERENT DEEP LEARNING-BASED APPROACHES WITH THEIR

CORRESPONDING NUMBER OF AVAILABLE TRAINING SAMPLES

Consider a dataset of 2D cine MR images D of n subjects,
each with Nz slices of size Nx × Ny and Nt cardiac phases.
Figure 1 shows different possible Deep Learning-based meth-
ods for removing undersampling artefacts in dynamic MRI
sequences. In the first case, the artefacts are removed by train-
ing a network f� to map frames to frames, see Figure 1 (a).
Given the temporal correlation of adjacent frames, one could
also align temporal frames along the channel’s axis and apply
a network which is trained to map whole image sequences to
image sequences, see Figure 1 (b). The same approach can
be extended to map image sequences to image sequences but
with the network employing three-dimensional convolutional
filters, see Figure 1 (c). Our approach exploits spatio-temporal
correlation but employs 2D convolutional filters which are
trained on the spatio-temporal slices of the image sequences,
see Figure 1 (d). Table I lists the number of immediately
available training samples, i.e. without data augmentation,
for the different approaches. Note that with our proposed
approach, the number is by far the highest.

A. Persistent Homology Analysis

As a trained denoising autoencoder can geometrically be
interpreted to perform a projection-like mapping onto a mani-
fold [29], the study of topological features of the manifold of
the input and output images might be of interest for the design
of the network architecture, [14], [30]. Persistent homology is
a mathematical tool that can be used for analysing datasets
X ⊂ Rn [31]. For a two-classes classification problem,
singular homology has been used as a complexity measure of
the positively labelled submanifold of the input space and a
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Fig. 2. Procedure of the persistent homology analysis. The image shows
an example for six randomly extracted patches of an image in the spatial
domain and its corresponding barcode.

relation between this complexity and the depth of the networks
was proven in [32]. This and experimental evidence using
persistent homology [14], [30], motivates that it might be
beneficial to investigate the persistent homology of datasets
since it might explain the superiority of specific approaches
to others. For a concise introduction to persistent homology
see [33], Chapter 1. In general, persistent homology H∗
assigns a family of persistence modules {Hi(X) : i ∈ N} over
some field F to a set X ⊂ Rn , see [33], Chapter 2. We will
only use H0 which has a much simpler interpretation as
follows, see Figure 2. Let X ⊂ Rn be a finite set and let r ≥ 0.
Then, we can define a graph Gr (X) with vertices Vr (X) = X
and edges

Er (X) =
{
(x, y) ∈ X2 : x �= y and �x − y�2 ≤ r

}
.

This graph is the Rips complex restricted to simplices of
dimension at most 1 [31], Chapter 1.3. Let �(Gr (X)) be the
set of connected components of Gr (X). Then, we can define

H r
0 =

⊕
i∈�(Gr (X))

F2

where F2 is the field with two elements. For 0 ≤ r < r 

we have a map �(Gr (X)) → �(Gr 
(X)) which induces a
map H r

0 → H r 

0 . The family of these maps is called the 0-th

persistent homology of X . A good visualization of persistent
homology is the persistent barcode, see Figure 2. For a real
number r > 0, the number of connected components of Gr (X)
is equal the number of intersections of the vertical line at x = r
with the barcodes, see Figure 2. This is also the 0-th Betti
number β0 of Gr (X) which is a measure of complexity
for Gr (X), see [31], Chapter 2.3. Hence, the faster the
persistent barcode of a dataset X decreases, the less complex
the dataset is.

By xI , x and rI := xI − x we denote the vector repre-
sentations of direct reconstruction from undersampled radially
acquired data using a non-uniform fast Fourier transform
approach (NUFFT), the ground truth reconstruction and the
residual, respectively. Since our network reduces artefacts
arising from the NUFFT reconstruction as a post-processing
step similar to denoising, we operate on the real-valued
magnitude images. However, the method can also be applied
to complex-valued images by treating real- and imaginary part
separately. Note that, in order to keep notation as simple as

possible, by abuse of notation, we do not explicitly distin-
guish between a spatio-temporal slice and a 2D frame, but
the meaning of the symbols should easily emerge from the
context. Therefore, in the spatio-temporal training scenario,
xI denotes a spatio-temporal slice extracted from an under-
sampled NUFFT reconstruction, x its corresponding artefact-
free spatio-temporal slice and rI its spatio-temporal residual.
In the spatial training scenario, xI , x and rI denote 2D
frames. In the following, we compare the complexity of the
manifolds given by the set of the ground truth images and
their residuals in the spatial as well as in the spatio-temporal
domain and denote them by Mimg

xy , Mres
xy and Mimg

xt,yt , Mres
xt,yt .

Note that, in contrast to [14], we find ourselves in the situation
where spatio-temporal slices and spatial images do not have
the same mathematical dimension, and therefore, to be able
to compare the manifolds, we restrict our considerations to
image patches of the same shape. We performed a persistent
homology analysis of the manifold to be learned by using
GUDHI [34], [35]. We randomly selected 1400 patches of
size 18 × 18, obtaining a set X ⊂ R182

for which we
computed its persistent homology. To be able to compare
the persistent barcodes at the same scale, we normalized
the patches by the maximal pairwise L2-distance of points
in X . The persistent homology analysis was performed for
all patches extracted from the spatio-temporal slices and from
spatial image frames by repeating the experiment ten times
and averaging the obtained number of connected components
for each r ≥ 0 over the experiments. The corresponding
barcode diagrams in Figure 3 (a) and (b) clearly show that in
the spatio-temporal domain as well as in the spatial domain,
the residual manifolds are more complex than the manifolds
of the ground truth images, i.e. the connected components
merge at larger scales r . Figure 3 (c) also shows that for the
ground truth images, the spatial manifold is more complex than
the spatio-temporal manifold which is intuitively clear, as the
spatial-temporal slices exhibit the temporal correlation of the
sequence. This suggests that a network should achieve the best
performance when trained to learn the ground truth spatio-
temporal manifold. Furthermore, we see that in the case of
the spatio-temporal domain, the topological complexity tends
to be independent of the number of subjects whose patches
are extracted to perform the analysis, see Figure 3 (c) and (d).
In contrast, in the spatial domain, a higher number of subjects
used to extract the patches slightly reduces the topological
complexity of the data. Therefore, we conclude that a small
number of 2D image sequences may already contain a good
representation of all possible two-dimensional spatio-temporal
slices and thus, the number of 2D image sequences needed
to successfully train a network in the spatio-temporal domain
should be lower than for training the network in the spatial
domain.

B. Network Architecture

In the following, we always refer to � as the set of
trainable parameters of a network and denote a U-net by u�.
Figure 4 shows the single components of a U-net without
residual connection, similar as originally proposed in [16].
The network consists of five stages, where each stage is a
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Fig. 3. The number of connected components β0 of Gr (X) for different
datasets X at different r. Pairwise comparison of the persistent barcodes
forMres

xt,yt andMimg
xt,yt (a), forMres

xy andMimg
xy (b), forMimg

xy andMimg
xt,yt

(c) and for Mres
xy and Mres

xt,yt (d). Persistent codes of Mimg
xy and Mimg

xt,yt
for different n, (e) and (f). For the sake of visibility, in (e) and (f), only the
endpoints of the bars are displayed.

block of four convolutional layers with 2D filters of shape
3×3, followed by batch-normalization [36] and a component-
wise ReLU as activation function. The stages are intercepted
by 2 × 1-max-pooling layers in the encoding phase and by
bilinear interpolation layers followed by 3 × 3 convolutional
layers with no activation function in the decoding phase.
The initial number of feature maps extracted from the first
convolutional layer is set to 64 and is doubled in each block
in the encoding phase. The network’s output is given by
a 1×1-convolutional layer which corresponds to a linear com-
bination of the last extracted feature maps. The replacement of
the original 2 × 2-max-pooling by a contraction solely along
the spatial dimension empirically turned out to deliver superior
results. The black arrows in Figure 4 denote concatenations
between the last and the first layer of the corresponding
encoding and decoding phases.

Recall from Figure 3 in Section III-A that the manifolds of
the ground truth images have a lower topological complexity
compared to the manifolds of their corresponding residuals.
Therefore, according to [14] and [30], one should train the
network to learn the features of the artefact-free images. Note
that, if the U-net employs a residual connection as in [10],
the output is of the form ũ�(xI ) = xI + u�(xI ). If x is used
as a label, ũ� is trained to learn the residual up to a change of
sign, as u� is the only part of the network containing trainable
parameters. Therefore, being consistent with [14], [30], [37],

Fig. 4. The U-net with three encoding stages and four convolutional
layers per stage, no residual connection and batch-normalization (BN).
In the case we train on the spatial domain, max-pooling is performed in
both spatial dimensions, whereas in our proposed approach max-pooling
is solely performed along the spatial dimension without contracting the
data along the temporal dimension.

Fig. 5. Residual and Image Learning: For a NN ũΘ with residual
connection, learning the residuals is achieved by using the ground truth
images x as labels (left). Learning the ground truth images x is achieved
by using the residuals rI as labels (right).

in order to exploit the simpler topological complexity of the
ground truth images and still be able to benefit from the
residual connection as in [10], we propose to train a U-net
with residual connection to estimate the image residuals rI

of the spatio-temporal slices. More precisely, if by ũ� we
denote a U-net with residual connection which is trained to
map xI to the ground truth residuals rI , and rcnn = ũ�(xI ) =
xI + u�(xI ) = xI − xcnn, then the estimates of the images are
obtained by xI − rcnn = xI − (xI − xcnn) = xcnn ≈ x.

Figure 5 shows different approaches for training a U-net to
remove undersampling artefacts by training on spatio-temporal
slices. Note that, using x as labels for training a U-net with
residual connection and using the residuals rI as labels for
training a U-net without residual connection is equivalent in
the sense that the trainable parameters are fitted to learn the
residuals rI . On the other hand, if we want the network to
learn the artefact-free images, we can either use the x as labels
and not employ a residual connection or use the residuals rI

as labels and employ a residual connection. This holds for
training the network on two-dimensional frames as well as on
two-dimensional spatio-temporal slices.

By ures
xy and uimg

xy we denote spatial U-net models when
trained to learn the spatial residual manifold Mres

xy and the

spatial ground truth image manifold Mimg
xy , respectively. Anal-

ogously, we identify ures
xt,yt and uimg

xt,yt as spatio-temporally
trained U-nets trained to learn the spatio-temporal manifolds
Mres

xt,yt and Mimg
xt,yt , respectively.

C. Loss Function

Dependent on what we want the network to learn, we train
the network architecture to minimize different loss functions.
Let Dres

xy ,D
img
xy and Dres

xt,yt,D
img
xt,yt denote the set of available

training samples, i.e. the pairs (xI , rI ) or (xI , x), depending
on the domain the data is considered in and on which labels
are used for training. By Nxy and Nxt,yt we denote their
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corresponding cardinality. Recall that we use the U-net ũ�
to estimate the residual rI = xI − x and therefore, the image
estimate is given by xcnn = xI − ũ�(xI ). Therefore, in order to
define the loss function for a network with residual connection
to learn the ground truth images, we use the residuals as
labels and vice versa. The models ures

xy and uimg
xy are trained

by minimizing the L2-errors between the predicted 2D frames
and their corresponding labels which are given by

Lres
xy (�) = 1

Nxy

∑

(xI ,x)∈Dimg
xy

�ũ�(xI )− x�2
2,

Limg
xy (�) = 1

Nxy

∑
(xI ,rI )∈Dres

xy

�ũ�(xI )− rI �2
2, (3)

respectively. In the spatio-temporal case, the models ures
xt,yt and

uimg
xt,yt are analogously trained by minimizing the loss functions

Lres
xt,yt(�) = 1

Nxt,yt

∑

(xI ,x)∈Dimg
xt,yt

�ũ�(xI )− x�2
2,

Limg
xt,yt(�) = 1

Nxt,yt

∑
(xI ,rI )∈Dres

xt,yt

�ũ�(xI )− rI �2
2. (4)

IV. IN-VIVO EXPERIMENTS

A. Data Acquisition

In the following experiments we evaluate the proposed
approach on 2D Golden radial cine MRI images of 19 subjects
(15 healthy volunteers + 4 patients) obtained with a bSSFP
sequence on a 1.5T MR scanner (Achieva, Philips Healthcare,
Best, The Netherlands) during a 10 s breathhold (TR/TE =
3.0/1.5 ms, FA 60◦). The spatial dimensions are Nx × Ny =
320 × 320 with an in plane resolution of 2 mm and 8 mm
slice thickness. The number of cardiac phases which were
reconstructed based on ECG signal is Nt = 30. Coil sensitivity
information was used to combine the image data of each
coil after NUFFT-reconstruction. No further normalization was
applied to the image data. The reference images used as
ground truth images in the data were reconstructed with kt-
SENSE [3] using Nθ = 3400 spokes, which already corre-
sponds to an undersampling factor of ∼ 3 in each cine image.
In addition, dynamic images with Nθ = 1130 (3.4 s scan time)
were reconstructed using standard gridding (NUFFT), leading
to an undersampling factor of ∼ 9. For each of the 15 healthy
volunteers and two patients, Nz = 12 slices were acquired
while for two patients, only Nz = 6 slices were obtained due
to limited breathhold capabilities. Note that, in contrast to the
healthy volunteers, the patients data contains images where the
heart movement dysfunction can be diagnosed provided that
the temporal information is enough accurate.

B. Evaluation Metrics

The performance of our method was evaluated in terms of
peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [38] and Haar-Wavelet based perceptual similarity
index measure (HPSI) [39] as similarity measures and nor-
malized root mean squared error (NRMSE) as error-measure.

Note that HPSI has been reported to achieve higher correlation
with human opinion scores on different benchmark databases
than SSIM [39]. The quantitative measures are reported for
the two-dimensional frames as well as for the two-dimensional
spatio-temporal slices after the image sequences were cropped
to 160 × 160 × 30 in order to compute the statistics over the
regions of interest of the images.

C. Training Set-Up

Due to our relatively small dataset, all the following
experiments were performed in a four-fold cross-validation
setting. We split our dataset in portions of 12/3/4 subjects for
training/validation/test data, where for one of these configu-
rations, the test data corresponds to the image data coming
from patients with heart movement dysfunction. Obviously,
the resulting number of training samples in the spatio-temporal
domain is much higher than in the spatial case and therefore,
for a fair comparison of the methods, we train the networks
by keeping the number of backpropagations fixed. Dependent
on the perspective on the dataset, this results in a different
number of epochs the networks are trained for. For data-
balance reasons, we crop the image sequences using a cut-
off of 50 pixels in x- and y direction. Therefore, the spatial
dimensions per frame reduce to 220 × 220. Due to the
relatively small number of temporal frames and the large
receptive field of the U-net, we also conducted experiments
evaluating the performance of the networks trained on spatio-
temporal slices by mirroring the boundaries. However, as we
did not experience any increase or decrease of performance in
explicitly handling the boundary conditions, we conducted all
experiments on spatio-temporal slices of shape 220 × 30. The
convolutional layers use zero-padding in order to maintain the
spatial shape of the samples constant over each stage. Given
a U-net as displayed in Figure 4, we are able to use a mini-
batch size of 44 when training in the spatio-temporal domain.
Thus, we set the mini-batch size in the spatial training case
to 6 in order to have a constant number of pixels which the
networks are fed with per forward pass, i.e. 44 · 220 · 30 =
290 400 = 6 · 220 · 220. The networks are trained for 5 · 104

backpropagations by stochastic gradient descent (SGD) using
a learning rate which was gradually decreased from 10−5 to
10−7 and from 10−6 to 10−8 for the training in the spatio-
temporal domain and in the spatial domain, respectively. The
learning rates were chosen in a prior parameter study on the
validation set.

D. Residual Vs. Image Learning

Here we compare the performance of the spatial U-net
models ures

xy and uimg
xy and our spatio-temporal approaches

ures
xt,yt and uimg

xy . The models were trained by minimizing the
loss functions defined in (3) and (4), respectively. Figure 6
shows qualitative results for different possibilities of train-
ing illustrated in Figure 5. We see that in both domains,
consistent with the previously shown persistent homology
analysis, the networks removed the artefacts at their best
when they were trained to learn the artefact-free images.
From Figure 6 we also already see the superiority of our
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Fig. 6. Comparison of different training approaches for U-nets with
residual connection. NUFFT reconstruction with Nθ = 1130 radial
lines (a), spatially trained U-nets ures

xy (b) and uimg
xy (c), proposed spatio-

temporal approaches ures
xt,yt (d) and uimg

xt,yt (e), ground truth (f). The
point-wise error images are magnified by a factor of ×3. All images are
displayed on the same scale.

approach, see (d) and (e), compared to the spatially trained
U-net which slightly tends to smooth out image details and
less accurately removed artefacts in spatio-temporal domain,
see (b) and (c). Table II shows the results obtained for the
spatial U-nets ures

xy and uimg
xy and the spatio-temporal U-nets

ures
xt,yt and uimg

xt,yt for n = 12, which confirms the heuristics

TABLE II
PERFORMANCE FOR THE SPATIAL AND OUR SPATIO-TEMPORAL

APPROACHES DEPENDENT ON THE USED ARCHITECTURES

given in Section III-A. Note that for the experiment, no data-
augmentation was used and therefore, the results differ from
the ones reported in Table IV. As a result, we conclude that
for the task of removing undersampling artefacts or image
denoising, the relation between the topological complexity of
the residuals and the fully-sampled image reconstructions can
be used to determine which labels to train the network on
as well as how to design the network architecture. Since the
radial acquisition is designed to be incoherent along the tem-
poral dimension, in all our following experiments we use the
U-net architecture as shown in Figure 4 where we make use
of the residuals as labels and employ a residual connection as
shown in Figure 5 for the case of image learning. In the next
Subsection, we also see how learning the manifold Mimg

xt,yt
can reduce the training time as convergence of the training
and validation errors is achieved faster.

E. Training With Limited Amount of Data

Here we demonstrate the performance of our proposed
approach when we restrict the number of available training
samples. For this purpose, we trained the same network
on different datasets where we fixed a different number of
subjects n whose images we included in the training dataset.
We show that with our proposed approach we are able to obtain
comparable results even with a small number of subjects.
Note how in the spatial training scenario, the given training
data is naturally constrained by the fact that for a fixed slice,
different time frames of the ground truth images exhibit a
high similarity. Therefore, regardless of the fact that in the
spatial domain the ground truth image manifold has a lower
complexity than the residual manifold, a network which is
trained to learn the ground truth images should be expected
to suffer from the limited variability of the data. In contrast,
due to the temporal incoherence of the undersampling pattern,
this issue should be overcome when learning the residuals.
In the spatio-temporal domain, the availability of the data is
not an issue as we have n Nz(Nx + Ny) � n Nz Nt samples.
Therefore, one would expect the performance of the network to
be to some extent independent of the number of subjects n the
samples are extracted from. Also, according to the performed
persistent homology analysis, the training of the network



710 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 3, MARCH 2020

Fig. 7. Results on the test set for Nθ = 1130 radial lines when the number of subjects whose spatio-temporal slices are extracted was varied.
Note that no data-augmentation was used. Proposed method for n = 1 (a), n = 2 (b), n = 8 (c), n = 12 (d), the spatial U-net for n = 12 (e) and
the kt-SENSE reconstruction with 3400 radial lines (f). The point-wise error images are magnified by a factor of ×3. All images are displayed on the
same scale.

Fig. 8. Loss behaviour during training with Nθ = 1130 for different
number of volunteers n contained in the dataset. Training loss (solid)
and validation loss (dashed) for the spatial and spatio-temporal U-nets.
Spatial residual learning (a), spatial image learning (b), spatio-temporal
residual learning (c), spatio-temporal image learning (d). Note that the
scales differ due to the different losses and the different domains in which
the networks are trained.

should be facilitated when trained to learn the manifold of
the ground truth images.

Figure 8 shows the behaviour of the loss decay for the
spatial approach ((a) and (b)), the spatio-temporal training
approach ((c) and (d)), and in both cases, for the situation
where the residuals are learned ((a) and (c)) and where the
ground truth images are learned ((b) and (d)). We see that
for the spatial U-net, for the residual learning and the image
learning, increasing the number of subjects n leads to a
decrease of the gap between training and validation error.
Further, we see that the gaps are larger in the case where
the ground truth images are learned which can be related to
the low variability of the dataset. In both cases, for n = 12
the gap is small enough to assume that the networks have
been properly trained and generalize well. For n = 1 and
for n = 1, 2, 4, the spatially trained U-nets ures

xy and uimg
xy

poorly generalize in both training scenarios, as the networks
almost immediately start to overfit the data, see (a) and (b).
Spatial training of the networks without data-augmentation
is possible for n = 2, 4, 8, 13 for the residual learning and

for n = 8, 13 for the image learning. However, our method
outperforms the spatially trained U-net as it better maintains
diagnostic details in spatial and spatio-temporal domain, see
Figure 7 for the case n = 12. For the spatio-temporal
approaches, the gaps between training and validation error are
smaller compared to the ones for the spatial approaches. This
holds for the residual learning as well as the image learning
scenario. Further, when the network is trained to learn the
ground truth images, the errors converge faster than in the
residual training approach, compare Figure 8 (c) and (d). Also,
the convergence rate is highly independent on the number of
subjects n. From these experiments, we first conclude that our
proposed method is well suited for training a network on a
limited number of subjects. Second, forcing the network to
learn the manifold given by the ground truth images Mimg

xt,yt
facilitates the training, which leads to a faster convergence of
the errors and therefore to lower training times. Figure 7 shows
a slice of the output of an image in the test set which was
obtained with our proposed method. For all n, the artefacts
have been successfully removed. We also see that even for
n = 1, the dataset is already rich enough in order to allow
for a good depiction of cardiac contraction and expansion
during the heart cycle. Table III shows the achieved average
of the quantitative measures. Even if in terms of quantitative
measures the network performs better the larger the training
data, the differences are marginal and hardly perceivable by
the human eye, see Figure 7. Therefore, we conclude that since
the data has a particularly simple structure, little data is already
sufficient for a successful training.

F. Rotation Equivariance

CNNs are well known to be able to achieve properties as
translation-invariance and -equivariance [40]. However, they
are not naturally invariant or equivariant with respect to
rotation and one of the still most used methods to achieve
these properties is to appropriately augment the dataset, [26],
[41]. In contrast, other approaches [27], [28], [42] explicitly
incorporate invariant/equivariant convolutional operations in
the networks which comes at the cost of a more complex net-
work design. As a rotation in image space, i.e. due to a rotation
of the field of view in order to adapt the scan to the geometry
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TABLE III
RESULTS ON THE TEST WHEN THE NUMBER OF SUBJECTS WHOSE

IMAGES WERE INCLUDED IN THE TRAINING SET IS VARIED

of the patient’s heart, might easily be encountered, we are
interested in achieving rotation-equivariance, i.e. f�(ψ(xI )) =
ψ( f�(xI )) for an already trained network f� and rotation ψ
in the xy-plane. For the following experiment, we generated
new different test sets Dψθ

xy and Dψθ
xt,yt by applying rotations

ψθ with rotation-angle θ and tested the networks which were
previously trained on the non-rotated images on the different
test sets. By doing so, we were able to isolate and measure
the direct effect of the sole rotation in image space on the
performance of the network.

We rotated the measured data in k-space and reconstructed
the training set for different angles θ . Note that the process
is time consuming since the images were reconstructed with
kt-SENSE. Therefore, we only reconstructed rotated images
for θ = ±66◦,±33◦ and for each θ we further rotated
the frames by ±90◦ and 180◦, obtaining an overall number
of 19 rotated test sets. Figure 9 compares our approach
to the 2D spatially trained U-net in terms of quantitative
measures calculated over the 2D frames of the different test
sets with different rotation angles. For θ = 0, the measures
indicate the average measure achieved on the training set.
First, we see again that the spatio-temporal training approach
clearly outperforms the spatial training approach in terms of all
quantitative measures. Further, while rotating the 2D frames
yields a noticeable decrease of performance of the network
trained in the spatial domain, the network trained on the spatio-
temporal slices performs similarly well on the different rotated
test sets and is therefore almost rotation-equivariant.

G. Experiments With Shallower Networks

Even if we used the network architecture shown
in Figure 4 for all experiments, the strength of the method
lies in the change of perspective on the data. To demonstrate
this, we applied different network architectures following our
suggested approach. More precisely, we tested different types
of CNNs which can be seen as special cases of the U-net.
If by E and C we denote the numbers of encoding stages and
convolutional layers per stage of a U-net, E3 C4 corresponds
to the network displayed in Figure 4. E1 C8, on the other hand,
denotes a single-scale fully CNN with eight convolutional
layers and no max-pooling. Figure 10 shows results obtained
with different network architectures parametrized by E and
C. We see that the networks E1 C8 and E4 C4 which differ

Fig. 9. Performance of the networks when tested on rotated copies
of the images contained in the training set. While the network trained in
the spatio-temporal domain is robust with respect to rotation, the network
trained on images in the spatial domain loses generalization power when
tested on rotated copies of the images it was trained on. The dashed lines
correspond to the corresponding measure achieved on the training set.

Fig. 10. Results obtained with different CNNs following our proposed
aproach uimg

xt,yt. E1C8 (a), E4C4 (b) and E5C2 (c), kt-SENSE reconstruc-
tion with Nθ = 3400 radial lines (d). Our approach therefore offers the
possibility to further reduce the network complexity as well as training
times.

in terms of number of trainable parameters by approximately
a factor of 10, achieve similar performance. This suggests
that the number of trainable parameters and consequently, also
training times, could further be reduced without significantly
losing performance. Figure 10 shows results obtained by
E1 C8 (a), E4 C4 (b) and E5 C2 (d), where the networks were
trained for 3 · 104 backpropagations. The training of E1 C8,
for example, see Figure 10 (a), amounted to only 40 minutes.

H. Comparison With Other Deep Learning-Based
Methods

Here we compare our approach to other methods based on
post-processing with deep NNs. Since we only have access
to a limited dataset, for the following experiments, we made
use of data-augmentation by using all our rotated images,
flipping, shifting the images along the channel axis and
adding random constant values to the whole image sequences.
By doing so, we created a potentially infinite training set.
Note that we did not include elastic deformations as a data-
augmentation technique, as the data-acquisition process is not
simulated and elastic deformations might alter the structure
of the undersampling artefacts in the input data. The first
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TABLE IV
COMPARISON OF DIFFERENT DEEP LEARNING-BASED

POST-PROCESSING APPROACHES

method of comparison is the already discussed spatially trained
U-net uimg

xy . It is trained to map frames to frames and corre-
sponds to the method discussed in [10] and [14]. The second
method of comparison is a natural extension of the first and
corresponds to the 2D U-net approach shown in Figure 1 (b)
which we refer to as uxy,t . The net is trained to map whole
image sequences to whole image sequences by aligning the
cardiac phases along the channel’s axis and was presented
in [20]. Further, we compare our method to the 3D U-net
approach uxyt presented in [21], see Figure 1 (c). While
for the 2D NNs, we cropped the images to 220 × 220 and
220 × 220 × 30 in order to let the networks focus on the
diagnostic content of the images, for the 3D U-net, the images
used for training needed to be cropped to 128 × 128 × 20,
as the network is computationally more expensive. The shape
was the one used in [21]. In order to obtain image sequences
of 320×320×30, the outputs of the networks were treated as
patches and the image sequences were reconstructed from the
patches by properly averaging over regions with overlapping
patches. In contrast to the models employing 2D convolutional
layers, which were trained using SGD, the 3D U-net uxyt

was trained in the same setting as suggested in [21] using
ADAM [43]. Figure 11 and Table IV show and summarize
the obtained results with the described networks. For more
detailed information about the reassembling of the image
sequences from the patches, see Section IV-K.

The spatially trained U-net uimg
xy correctly removed the

undersampling artefacts in the spatial domain. However,
the reduction of the artefacts is less accurate than for uimg

xt,yt , see
Figure 11 (b) and (e). Although we report a successful training
in terms of consistent decrease of training as well as validation
error, the model uxy,t poorly removed the artefacts. Intuitively,
the temporal incoherence of the radial undersampling pattern
which differs from the one in [20] hinders the learning of the
residual manifold and the network is therefore not suitable for
our used undersampling scheme. Further, in [20], a zero-filled
reconstruction is used as input of the network and therefore,
the relation between the manifolds of the residuals and the
ground truth images might differ as well from our case.
In contrast, learning the manifold of ground truth sequences is
highly facilitated by the temporal correlation of the 2D frames.
In fact, already a network with one single convolutional
layer with Nt channels and 64 filters accurately removed all

Fig. 11. Comparison with different Deep Learning-based post-
processing methods. NUFFT reconstruction with Nθ = 1130 radial lines
(a), uimg

xy (b), uxy,t (c), uxyt (d), proposed approach uimg
xy (e), ground truth

kt-SENSE reconstruction (f). The point-wise error images are magnified
by a factor of ×3. All images are displayed on the same scale.

the artefacts from the image sequence. However, temporal
information is lost and we point out we were not able to obtain
satisfactory results by the application of deeper networks.
The 3D U-net uxyt and our proposed method uimg

xt,yt perform
comparably well. Both correctly removed the undersampling
artefacts in spatial as well in spatio-temporal domain and
led to a good preservation of the heart movement. In terms
of the image-error-based PSNR and NRMSE measures, our
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Fig. 12. Quantitative measures for all discussed Deep Learning-based
post-processing methods when trained on datasets including different
number of subjects n. Missing values for some n denote that the network
was not properly trainable on the restricted dataset.

method performs slightly better than the 3D U-net uxyt which,
on the other hand, yields slightly better results in terms
of SSIM and HPSI. However, the differences are marginal
and barely visible. Further, note how our proposed method
achieves similar results as the 3D U-net uxyt even when
trained on one single patient, see Table III. Figure 12 shows
the statistics calculated on the 2D frames for all different
discussed Deep Learning-based post-processing approaches
where the number of subjects n contained in the training
dataset was varied. The case n = ∞ corresponds to n = 12
with all previously mentioned data-augmentation techniques.
Clearly, our proposed method of training on the 2D spatio-
temporal slices is the most suitable for obtaining satisfactory
results when training a network on a highly limited dataset.
The models uimg

xt,yt and ures
xt,yt are the only ones to allow the

successful training of a network on data extracted from one
single subject. For uimg

xy and ures
xy , the results obtained for

n = 2 and n = 4 were obtained by early stopping due
to early overfitting. The models uxy,t and uxyt are properly
trainable starting from n = 8. The 3D U-net uxyt and our
method uimg

xt,yt achieve comparable performance in terms of
the reported measures for n = ∞.

I. Comparison With State-of-the-Art Iterative
Reconstruction Methods

Here, we compare our proposed approach to established
state-of-the-art iterative reconstruction methods for cine car-
diac MRI. Since iterative reconstruction methods are time
consuming, we only reconstructed images from the patients’
data which corresponds to one training/validation/testing set-
ting of our four-fold cross-validation set-up. For comparison,
images were reconstructed with kt-FOCUSS, a CS-based
approach [7], an iterative reconstruction approach using spatial
and temporal total variation (TV+TVT) for regularization [4]
and a method employing regularization based on learned
spatio-temporal dictionaries as well as spatial and total

TABLE V
COMPARISON WITH DIFFERENT ITERATIVE

RECONSTRUCTION METHODS

variation minimization (DL+TV) [38]. The latter method was
extended by combining the approach proposed in [38] with [8]
by learning the dictionaries jointly from the real and imaginary
part of the image data. Further, we extended the method to be
applicable to multi-coil datasets. We implemented the method
using the operator discretization library (ODL) [44] for all
needed operators.

Figure 13 shows examples of the results obtained on the
patients’ data for the mentioned iterative reconstruction meth-
ods and our proposed model uimg

xt,yt . Although our method was
trained on healthy volunteers, pathological heart wall motion
(septal flash in Figure 13 (a)-(e) and hypo-kinetic anterior
and posterior wall with strongly reduced ejection fraction in
Figure 13 (f) - (j)) is clearly visible with the proposed method.
Also small features, such as the chordae tendinae connecting
the valves and the papillary muscles, are well preserved, see
Figure 13 (i). Table V shows the obtained results with the
iterative reconstruction methods as well as with our proposed
network uimg

xt,yt . We see that our method clearly outperforms
the methods kt-FOCUSS and TV+TVT with respect to all
reported quantitative measures. The most significant increase
of performance is achieved against kt-FOCUSS, where, on the
2D frames, our method yields an increase of approximately
6 dB, 4.9% and 2% in terms of PSNR, SSIM and HPSI.
Further, our proposed method’s NRMSE is approximately half
of the one of kt-FOCUSS. TV+TVT surpasses kt-FOCUSS
in terms of all reported measures. Even if DL+TV surpasses
TV+TVT with respect to all reported measures but HPSI,
DL+TV tends to slightly smooth image details, possibly
caused by a too strong regularization as well as the smoothing
effect of the average of the reconstruction from patches.
Further, note that the complex-valued patches were obtained
by a disjoint sparse coding of the real and imaginary part of
the patches as in [8]. Our method uimg

xt,yt outperforms DL+TV
with respect to all reported measures except for SSIM on the
spatio-temporal slices. Note that the reconstruction time for
DL+TV is higher than for our method by several orders of
magnitude, see Section IV-K.

J. Comparison With State-of-the-Art
Cascaded Networks

For the sake of completeness, we compare our method
to the two state-of-the-art methods for 2D cine MRI based
on cascaded networks presented in [19] and [24]. Cascaded
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Fig. 13. Comparison with different state-of-the-art iterative reconstruction methods. kt-FOCUSS (a) and (f), TV+TVT (b) and (g), DL+TV (c) and
(h), proposed method (d) and (i), kt-SENSE reconstruction with Nθ = 3400 radial lines. The point-wise error images are magnified by a factor of ×3.
All images are displayed on the same scale.

networks combine iterative reconstruction methods and NNs
in the sense that they can be interpreted as unrolled iterative
schemes where the networks play the role of regularizers
learned from data [12], [45]–[47]. While the NNs remove
the artefacts from the undersampled image reconstructions,
the data-consistency (DC) layers ensure that the outputs
provided by the single networks match the measured data
in k-space domain. In [19], the used NNs are 3D CNNs,
while in [24], the 3D CNNs are replaced by 2D recurrent
CNNs. For the comparison, we used the codes available
in [19] and [24]. Note that the main underlying assumption for
cascaded networks is that the forward and adjoint operators
can be integrated in the network architecture. For our data,
the forward operator is given by a NUFFT encoding operator
which measures k-space data from nc = 12 coils. Since
building a deep cascade of CNNs is not possible by including
our operator in the DC layers, we trained the networks on
the image and k-space data for each coil separately. The
final image estimates were then obtained by combining the
images from the single coils using coil sensitivity information.
Table VI summarizes the results of the cascaded networks.
The 3D CNN cascade approach yields slightly better image
quality metrics compared to our approach, most probably
due to the integration of the forward and adjoint operators
in the DC layers. Note that for this experiment, the input
images xI were retrospectively simulated from the kt-SENSE

TABLE VI
COMPARISON WITH DIFFERENT CASCADED CNNS

reconstructions x and therefore, the statistics for our approach
differ from the ones reported in Tables IV and V, where
the images are reconstructed from real k-space data obtained
from the scanner. Further, we report that, even if we did not
observe overfitting, for the fold where the test set consists of
patient data, the cascaded networks show a significant decrease
in performance. This might indicate that the networks are
more susceptible to possible significant differences between
the training and test set data. Figure 14 shows qualitative
results for the comparison of the two cascaded networks and
our approach. The statistics in Table VI were obtained by
averaging the results on the test set for each fold. On each
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Fig. 14. Comparison with different cascaded CNNs: 2D CRNN Cascade
(a), 3D CNN-Cascade (b), proposed (c) and the reference kt-SENSE
reconstruction (d). The Figure show results for the fold where only
patient’s data is included in the test set. Qualitatively, all the three
methods perform similarly.

test set, the measures were obtained by testing the networks
for which the trainable parameters led to the smallest average
error on the whole validation set. The results for the different
folds can be found in the supplementary materials which are
available in the multimedia tab.

K. Reconstruction Times

We report the reconstruction times needed for the recon-
struction of the images with the different previously discussed
methods. First, we note that the methods employing iterative
reconstruction are the most demanding in terms of compu-
tational times. kt-FOCUSS, kt-SENSE and TV+TVT are in
the same range, where the reconstruction times per slice vary
from approximately 110 s to approximately 180 s. The DL+TV
method is by far the most computationally expensive method,
as the regularized inverse problem has to be solved for each
coil separately. Therefore, the average overall reconstruction
time per slice amounts to roughly 13 000 s, where nearly
1 500 s are needed by ITKrM [48] which replaced the compu-
tationally heavier K -SVD [49], 7 800 s by the sparse coding
with orthogonal matching pursuit, 310 s for the reconstruction
from the sparsely approximated patches and 2 058 s for the
preconditioned conjugate gradient (PCG) method.

TABLE VII
COMPARISON OF THE RECONSTRUCTION TIMES SLICE

Note that we trained all the 2D U-nets on image sequences
which were previously cropped to 220 × 220 × 30. Also, due
to memory limits, the shape of the image sequences which are
processed by the 3D U-net was 128×128×20. Therefore, for
the methods uxy , uxy,t and uxyt , the 320 × 320 × 30 image-
sequences were reconstructed from patches. In particular,
we used strides of size 25 × 25 for the spatial and spatio-
temporal 2D U-nets and strides of 32 × 32 × 5 for the
3D U-net, resulting in 5 · 5 · 30 = 750, 5 · 5 = 25 and
7 · 7 · 3 = 147 samples to be processed for the reconstruction
of a single slice. For our method uimg

xt,yt , the strides are 50
(in x- and y direction), resulting in 3·(220+220) samples to be
processed per slice. Processing one sample on a Titan Xp GPU
takes on average 0.0093 s for uimg

xy and ures
xy , 0.0236 s for uxy,t ,

0.0340 s for uxyt and 0.0034 s for our proposed approaches
uimg

xt,yt and ures
xt,yt . Table VII summarizes the reconstruction

times for a slice of size 320 × 320 × 30 for all the reported
methods with the aforementioned strides. The times needed
to denoise a slice obviously heavily depend on the number of
patches the sequence is reconstructed from and could be easily
reduced by using larger strides. For the 2D methods, one could
also obtain the 320 × 320 × 30 image sequences by directly
applying the networks to the 320 × 320 × 30 samples. Note
that for the 3D U-net this not possible because of memory
limits. The training times needed for the 2D CRNN cascade
and the 3D CNN cascade amounted to approximately 1 day
and 3 days and 14 hours while processing a single slice and all
cardiac phases takes about 16.8 s and 8.8 s, respectively,. Note
that the reconstruction of one slice involves the processing of
the images of all nc = 12 coils.

V. DISCUSSION AND CONCLUSION

In this work, we have presented a new approach for the task
of undersampling artefacts reduction in 2D cine MRI. Even if
the employed U-net is a widely used network architecture for
various inverse problems, to the best of our knowledge, this
is the first work in which the U-net is applied to 2D spatio-
temporal slices. We have investigated and demonstrated several
advantages of the approach compared to the training in the
spatial domain. Consistent with [14], [30], [37], the performed
persistent homology analysis confirms the motivation that the
superiority of the proposed approach can be attributed to
the simpler topological complexity of the two-dimensional
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spatio-temporal slices. Further, the analysis suggests that the
architecture should be chosen such that the network is trained
to learn the ground truth images rather than the residuals.
Note that our analysis is consistent with the results presented
in [10] and [14], where streaking artefacts resulting from
a sparse view CT acquisition are most efficiently removed
when U-net learns the residual manifold, which was shown
to have a lower complexity than the one of the ground truth
images [14]. This is related to the fact that the undersampling
pattern in sparse view CT is regular. Conversely, in CS MRI,
where the undersampling schemes, e.g. golden-angle radial
undersampling, are designed to be incoherent with the assumed
sparsifying basis [50], one would expect the residual manifolds
to have a more complex topological structure and therefore,
the network’s architecture should be chosen appropriately.
Further investigation of the relation between the topological
complexity of the residuals and the artefact-free images in dif-
ferent imaging modalities and the performance of the trained
networks will be investigated in the future.

Our approach allows to successfully train a U-net on highly
limited data, overcoming the problem of unavailability of large
datasets or the need to rely on data-augmentation. We demon-
strated that our method already outperforms the spatially
trained U-net when trained on one single healthy volunteer
in terms of all quantitative measures. When trained on a small
number of volunteers, our network is already able to accurately
preserve the heart movement and delivers results which are
similar to the ones obtained when training on 12 subjects.
In contrast to the spatial training approach, the proposed
method naturally almost achieves rotation-equivariance by
the sole change of perspective on the data. The network
does therefore neither require changes in the architecture, nor
data-augmentation based on rotation to achieve this property.
Clearly, the reason lies in how a rotation in image space
results in a transformation similar to a translation in the spatio-
temporal domain, and therefore, since the network consists of
convolutional and max-pooling layers, it is stable with respect
to rotation in image space. Even if the reconstruction of a
single slice and all its cardiac phases requires the evaluation
of a large number of samples, reconstruction is fast and can
be achieved in approximately 4.4 s on a Titan Xp GPU.

As discussed in [17] and [18], the U-net tends to smooth
out image details when trained in the spatial domain. In the
proposed approach, however, image details in the spatial
domain are well preserved. Our method, on the other hand,
well preserves image details and further outperforms all other
tested 2D CNNs with respect to all reported measures and
achieves results comparable to the 3D U-net even when trained
only on two subjects. Due to the small size of the data when
considered in spatio-temporal domain, training times could be
shortened to 3 hours compared to 6 hours for the 3D U-net.
Further, since the spatio-temporal manifold Mimg

xt,yt has a
particularly simple structure, the reducing the artefacts reduces
to a simpler task than in the spatial domain and training times
could be further reduced by earlier stopping the training.

As for all Deep Learning-based post-processing methods,
the main limitation of our proposed method is the possible
lack of data-consistency. Even if our method is based on

post-processing of the magnitude images, the method could
be easily extended to process the real and imaginary part
of the spatio-temporal slices separately. Therefore, handling
complex-valued data does not represent a limitation and data-
consistency could be enforced by for example performing
several iterations of PCG for minimizing a properly chosen
functional including a data-consistency and regularization term
based on the output of our method, see for example [51].

We have compared our proposed method to several state-
of-the-art methods for iterative reconstruction in dynamic
MRI. Our method outperforms kt-FOCUSS and TV+TVT
with respect to all reported measures and achieves similar
results as the dictionary learning- and total variation-based
method DL+TV. However, our method is faster than DL+TV
by several orders of magnitude as it performs a one-step
regularization based on an initial NUFFT reconstruction. The
iterative reconstruction methods kt-FOCUSS, TV+TVT and
DL+TV used for comparison require the tuning of several
parameters which were kept fixed for all patients. Therefore,
further patient-specific parameter tuning might further improve
the image quality in Figure 13 (a), (b), (c), (f), (g) and (h).
In particular, DL+TV makes specific parameter tuning diffi-
cult due to its prohibitive reconstruction times.

Further, we have compared our method with two state-of-
the-art methods based on cascaded CNNs [19], [24] trained
on retrospectively simulated data. Although the 3D cascaded
network’s performance is slightly superior to our method,
note that for the cascades the input images are zero-filled
reconstructions using a Cartesian mask whose support is given
by the indices of the k-space coefficients which were inter-
polated from the radially acquired k-space data. Therefore,
the input images for the cascades contain artefacts which are
inherently different from the ones obtained by our NUFFT
reconstruction using nc = 12 coils and Nθ = 1130 spokes.
Also, even if our method only performs subsequent post-
processing, the obtained results are qualitatively competitive
with the ones obtained by the cascaded networks and we point
out that our approach could also be easily extended to be
integrated in cascaded networks. This will be subject of future
work.

In this work, we used kt-SENSE to obtain the ground truth
samples from a 10 s breathhold. Although this yielded high
image quality, residual undersampling artefacts which might
impair the trained U-net might still be visible. Also, kt-SENSE
already makes assumptions about the temporal smoothness of
the image data. Therefore, further improvement of our method
might be achieved by increasing the duration of the breathhold
scan to achieve higher ground truth-image quality.
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