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Summary

In life, many decision-making problems are complicated because agents - bi-
ological and artificial alike - typically can not directly observe all aspects of
their environments. Moreover, consequences of the agents’ actions in terms
of reward gain typically unfold over time. The aim of this dissertation is
to computationally characterize how humans tackle such problems from two

perspectives.

The first perspective is to identify if decisions are governed in a model-free
or a model-based fashion; while for model-free strategies it is sufficient to have
access to some instantaneous reward-related information or the reward history,
model-based strategies require representations of the statistical regularities
of the environment. The second perspective is to identify if decisions are
governed in a purely exploitative or a combined exploitative-explorative fashion;
while purely exploitative strategies only seek to harness the knowledge about
the environment, combined explorative-exploitative strategies also seek to

accumulate knowledge about the environment.

In Chapter 1 of this dissertation, I present an agent-based modeling frame-
work suitable to decompose correlates of human sequential decision making
under uncertainty with respect to both perspectives. This framework capital-
izes on partially observable Markov decision processes terminology, heuristics,
belief states and dynamic programming, as well as standard statistical infer-
ence approaches to connect models and data. In Chapters 2 and 3, I put the
agent-based modeling framework into use and investigate human participants’
strategies in novel bandit and multistep tasks, respectively. In both tasks, I
provide behavioral evidence for model-based strategies. Further, I demonstrate
that the model-based strategy conforms to a combined explorative-exploitative
agenda in the bandit task. By contrast, I show that in the multistep task,
the model-based strategy conforms to a purely exploitative agenda, which is
neurally enabled by the orchestrated activity in a distributed network of cortical
and subcortical brain regions. In Chapter 4, I embed these findings within
the broader discussion they contribute to, outline how the arbitration between
different strategies could be organized and describe possible extensions of the

agent-based modeling framework.



In summary, by adopting an agent-based modeling framework, this disser-
tation provides evidence for a predominantly model-based nature of human
sequential decision making under uncertainty. In addition, by showing that
exploitation is not always complemented by exploration, this dissertation high-
lights that humans can flexibly adjust their strategies, thereby meeting the

ever-changing demands of life.



Zusammenfassung

Viele Entscheidungsprobleme im Leben sind dadurch kompliziert, dass sowohl
biologische als auch kiinstliche Agenten typischerweise nicht alle Aspekte der
Umgebung unmittelbar observieren kénnen. Zudem entfalten sich die Konse-
quenzen von Aktionen hinsichtlich des Belohnungsgewinns erst im Laufe der
Zeit. Das Ziel dieser Dissertation ist es aus zwei Blickwinkeln komputational

zu erfassen, wie Menschen solche Probleme angehen.

Der erste Blickwinkel versucht zu identifizieren, ob Entscheidungen auf Basis
einer modellfreien oder modellbasierten Art getroffen werden; wahrend es fiir
modellfreie Strategien ausreichend ist Zugang zu momentanen belohnungsbezo-
genen Informationen oder zur Belohnungsgeschichte zu haben, bendtigen modell-
basierte Strategien Reprasentationen von den statistischen Regelméfigkeiten der
Umgebung. Der zweite Blickwinkel versucht zu identifizieren, ob Entscheidun-
gen auf Basis einer rein exploitativen oder kombiniert exploitativ-explorativen
Art getroffen werden; wahrend rein exploitative Strategien nur darauf abzielen,
sich das Wissen tiber die Umgebung zu Nutze zu machen, zielen kombinierte
explorativ-exploitative Strategien auch darauf ab, Wissen {iber die Umgebung

anzusammeln.

In Kapitel 1 dieser Dissertation stelle ich ein agentenbasiertes Modellierungs-
framework vor, das ermoglicht, Korrelate humaner sequentieller Entscheidungs-
findung unter Unsicherheit in Bezug auf beide Blickwinkel zu zerlegen. Dieses
Framework basiert auf der Terminologie partiell-observierbarer Markov Entschei-
dungsprozesse, Heuristiken, Bayes’scher Zustandsreprasentation und dynamis-
cher Programmierung sowie klassischen statistischen Inferenzansétzen um Mod-
elle und Daten zu verkniipfen. In Kapiteln 2 und 3 setze ich das agentenbasierte
Modellierungsframework ein um die Strategien humaner Teilnehmer in neuarti-
gen Bandit- beziehungsweise Mehrschritt-Aufgaben zu untersuchen. In beiden
Aufgaben erbringe ich Nachweise fiir den Einsatz modellbasierte Strategien auf
der Verhaltensebene. Des Weiteren demonstriere ich, dass die modellbasierte
Strategie in der Bandit-Aufgabe einer kombinierten explorativ-exploitativen
Agenda entspricht. Im Gegensatz dazu zeige ich, dass die modellbasierte Strate-
gie in der Mehrschritt-Aufgabe einer rein exploitativen Agenda entspricht, die

neuronal durch die orchestrierte Aktivitat eines verteilten Netzwerks kortikaler



und subkortikaler Hirnregionen unterstiitzt wird. In Kapitel 4 bette ich diese
Ergebnisse in die breitere Diskussion ein, stelle dar, wie eine Auswahl ver-
schiedener Strategien erfolgen konnte und beschreibe mogliche Erweiterungen
des agentenbasierten Modellierungsframeworks.

Zusammenfassend zeigt diese Dissertation durch die Anwendung eines agen-
tenbasierten Modellierungsframeworks, dass die sequentielle Entscheidungsfind-
ung unter Unsicherheit bei Menschen vorwiegend modellbasierter Natur ist.
Durch den Nachweis, dass exploitative Strategien nicht immer durch explo-
rative Strategien ergénzt werden, hebt die Dissertation dariiber hinaus hervor,
dass Menschen ihre Strategien flexibel anpassen konnen, um den sich standig

andernden Anforderungen des Lebens gerecht zu werden.
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1 (General introduction

To reach certain goals in life, we often have to make a sequence of decisions.
Consider, for example, a gambler playing on a slot machine in a casino or a
high school student with an aspiration to become an astrophysicist. In formal
terms, in both examples the goal of the decision-making agent can be described
as trying to choose actions as to maximize its cumulative reward: The gambler
tries to pull the best lever on each turn to win as much money as possible; the
high school student tries to make the best career choice in each situation to
secure their dream job. To pull the best lever or make the best career choice,
both the gambler and the high school student would need to be omniscient
about their environment (e.g., the precise probability with which the pulling
of a lever returns a certain reward or the precise expectations of a college
admission committee). This requisite, however, defeats the purpose of gambling

and is unrealistic when it comes to pursuing a career goal.

As demonstrated by these examples, most sequential decision-making prob-
lems are complicated by uncertainty (Bach & Dolan, 2012; Bach, Hulme,
Penny, & Dolan, 2011; Glimcher & Fehr, 2013; Ma & Jazayeri, 2014; Rao,
2010; Vilares & Kording, 2011; Yoshida & Ishii, 2006). In the face of un-
certainty, two key questions arise (Dayan & Daw, 2008). The first question
concerns the environmental components agents draw on to evaluate actions.
An influential dichotomy in this regard is the model-free versus model-based
distinction (e.g., Collins and Cockburn, 2020; Daw, Niv, and Dayan, 2005;
Fischer, Bourgeois-Gironde, and Ullsperger, 2017; Korn and Bach, 2018; D. A.
Simon and Daw, 2011; Speekenbrink and Konstantinidis, 2015). Broadly put,
model-free decision making assumes that agents directly evaluate actions based
on the reward history or some presently available reward-related information.
In contrast, model-based decision making assumes that action evaluation is
governed by the agents’ own representation of the statistical regularities of
their environment. The second question is whether agents evaluate actions in
a purely exploitative fashion or combine exploitation with exploration (e.g.,
Cohen, McClure, and Yu, 2007; Daw, O’Doherty, Dayan, Seymour, and Dolan,
2006; Schwartenbeck et al., 2019; Wilson, Geana, White, Ludvig, and Cohen,

2014). Exploitative decision making assumes that agents try to maximize their

1



Chapter 1

cumulative reward based on what they know about the environment at the
time of their decision. A combined explorative-exploitative perspective, on the
other hand, assumes that agents also try to improve their knowledge about the
environment and therefore take into account the amount of information they
can gain by choosing a certain action.

In this dissertation, I computationally characterize human sequential de-
cision making under uncertainty along these two questions in two tasks that
share central features with the examples introduced above. Specifically, in
Chapter 2, I study the behavioral strategies human participants employ in a
bandit task, which captures situations similar to the example of the gambler.
In Chapter 3, I investigate the computations human participants perform to
solve a multistep task - which captures situations similar to the example of the
high school student - on behavioral and neural levels.

In this introduction, I conceptually situate these two empirical chapters
within relevant theories. To this end, I follow Marr’s levels of analysis (Marr,
1982) and thereby introduce the agent-based modeling framework (Ostwald,
2020a) which T adopt in the empirical chapters to uncover the computational
underpinnings of the applied sequential decision-making strategies. I conclude
the introduction by giving a brief overview of the remainder of the present

dissertation.

1.1 Marr’s levels of analysis and agent-based mod-
eling

In his work about visual perception, Marr (1982) proposed a conceptual frame-
work consisting of three hierarchical levels to systematically study, understand
and discuss the brain and its functions. Marr’s framework has since been
an inspiration to cognitive scientists and neuroscientists in guiding scientific
inquiry (see, for example, Hauser, Fiore, Moutoussis, and Dolan, 2016; Niv and
Langdon, 2016), and has recently also gained attention in machine learning
research (Hamrick & Mohamed, 2020). According to Marr, on the first ’compu-
tational’ level the problem at hand is to be formally defined. On the second
"algorithmic’ level, alternative solutions as to how the problem can be tackled
are to be described. Finally, on the third 'implementation’ level, plausible ways
for a (neural) system to realize these alternative solutions are to be considered.

Agent-based modeling as outlined by Dirk Ostwald (Ostwald, 2020a) and

adopted in Chapters 2 and 3 offers a formal framework to investigate human



1.1. Marr’s levels of analysis and agent-based modeling

sequential decision making under uncertainty. In its current form, this frame-
work consists of three building blocks that can be readily mapped onto Marr’s
levels of analysis as follows: The first building block is the task model, which
corresponds to a probabilistic formulation of the choice environment. Rooted
in probabilistic optimal control theory, agent-based modeling adopts the ter-
minology of partially observable Markov decision processes in the definition
of the task model (e.g., Biuerle and Rieder, 2011; Bertsekas, 2000; Puterman,
2014). By representing the choice environment and thereby specifying the
problem to be solved, this building block parallels the computational level in
Marr’s framework. The second building block is the set of agent models. These
models capitalize on Bayesian inference, dynamic programming, heuristics and
reinforcement learning to formulate various strategies that can be used to solve
the problem (e.g., Dayan and Daw, 2008; Gigerenzer, Todd, and the ABC
Research Group, 1999; Hassabis, Kumaran, Summerfield, and Botvinick, 2017;
Ma, 2019; Rao, 2010; Russell and Norvig, 2010; Sutton and Barto, 2018; Wayne
et al., 2018; Wiering and van Otterlo, 2014). In essence, the second building
block of agent-based modeling exhausts the requirements of Marr’s algorithmic
level. However, to evaluate the plausibility of the agent models in light of human
participants choice data, the agent models have to be statistically embedded
(e.g., Daunizeau et al., 2010; Farrell and Lewandowsky, 2018). The ensuing
set of behavioral models constitutes the third building block of agent-based
modeling. Although as it currently stands, agent-based modeling does not
directly specify a building block that maps onto Marr’s implementation level,
methods such as model-based general linear modeling (GLM) of functional
magnetic resonance imaging (fMRI) data can be considered for this purpose
(Friston & Dolan, 2010).

In line with Marr’s framework, in the following, I first give a formal descrip-
tion of the sequential decision-making problem under uncertainty by introducing
the general task model architecture in Section 1.2. Here, I also highlight how
this can be tailored to bandit and multistep tasks studied in detail in Chapters
2 and 3, respectively. In Section 1.3, I then introduce the general agent model
architecture and review its variations capturing strategies in terms of the di-
chotomies model-free versus model-based, and exploitation versus exploration.
Additionally, I here also describe the general behavioral model architecture.
Finally, in Section 1.4, I present the model-based GLM for fMRI approach
applied in Chapter 3 to identify the network of brain regions enabling the

realization of algorithmic solutions as formulated by the agent models.



Chapter 1

1.2 The sequential decision-making problem un-

der uncertainty

In 1957, Richard Bellmann introduced the theory of Markov decision processes
(MDPs) suitable to model a wide range of real-world sequential decision-making
problems (Bellman, 1957). Ever since, the theory of MDPs has been paramount
in operations research and extended to accommodate uncertain' conditions
(Béuerle & Rieder, 2011; Bertsekas, 2000; Bertsekas & Tsitsiklis, 1996; Lovejoy,
1991; Puterman, 2014; Sutton & Barto, 2018; Wiering & van Otterlo, 2014).
The ensuing theory of partially observable Markov decision processes (PoMDPs)
offers a formal language to describe the scope of the sequential decision-making
problem under uncertainty as well as a principled way to derive the optimal
solution. In this section, I draw on PoOMDPs theory to introduce the general
task model architecture, detail how this model differs for bandit and multistep
tasks, and - as a prelude to the next section - I lay out the notion of optimal
solution. To this end, I throughout rely on the literature listed in this paragraph

and complement it with further resources wherever appropriate.

1.2.1 The general task model architecture

In general terms, the model of a task formally captures the agent’s choice
environment using mathematical sets and probability distributions.

The first set component of the task model is the set of time points denoting
the epochs at which the agent may interact with the choice environment. In
the standard case and as is assumed throughout this dissertation, this set is
discrete and finite. At each time point, the choice environment has a certain
configuration. The second set component of the task model - the set of states -
represents all possible values of these configurations. Crucially, certain aspects
of the environmental configurations may be overt, constituting the directly
observable part of the state, while others may only be imprecisely signalled,
constituting the not directly observable part of the state. The values the
imprecise signal can take on form the third set component of the task model,

the set of observations.” In each state, the choice environment allows certain

IThe term uncertain has been used to refer to choice environments, in which the dynamics,
such as the state transitions, are stochastic. Yet, it has also been reserved to signify choice
environments, in which some components, such as the state or the reward dynamics, are only
partially observable (e.g., Knight, 1921; Russell and Norvig, 2010). As will become apparent
in the remainder of this section, in this dissertation I adopt this latter conceptualization.

2If the imprecise signalling is due to disturbances in sensory processing (cf. Bach and
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1.2. The sequential decision-making problem under uncertainty

actions to be undertaken by the agent. The set of all actions presents the
fourth set component of the task model. The last essential set of the task model
comprises all numerical rewards the choice environment may generate.

How the elements of these sets relate to each other can be described with
the observation, reward and state transition probability distributions of the task
model. Concretely, the observation probability distribution encapsulates the
dynamics between states and observations by specifying how the former gives
rise to the latter. The reward and state transition probability distributions

specify how state-action pairs lead to rewards and new states, respectively.

1.2.2 Task model variations

This general architecture allows for considerable flexibility to match the specifics
of different tasks. Two classes of tasks that are often used to study sequential

decision making under uncertainty are bandit and multistep tasks.

Bandit tasks

Bandit tasks, which were first systematically discussed by Robbins (1952),
capture choice environments in which actions are not interdependent. More
specifically, in bandit tasks, choosing an action in a given state does not have an
effect on the next state but only on the immediately accrued reward. Such tasks
are thus well suited to model, for example, treatment allocation in clinical trials
or gambling (e.g., Berry and Fristedt, 1985; Brand, Woods, and Sakoda, 1956;
Bubeck and Cesa-Bianchi, 2012; Cohen et al., 2007; Dayan and Daw, 2008;
Gabillon, Ghavamzadeh, and Lazaric, 2012; Speekenbrink and Konstantinidis,
2015; Whittle, 1988). As delineated above, in the case of gambling, the agent
(gambler) chooses from a finite set of actions (pulls one of the levers) and
receives a reward (monetary gain or loss) as dictated by the reward probability
distribution. Then, the agent again faces the same set of actions and the process
gets repeated until the time horizon is reached (game is finished). A crucial and
inherent aspect of bandit tasks is that the reward structure of the environment
is not directly observable. Depending on the bandit task at hand, this can
either be formulated as a part of the state being not directly observable, or as
parameters of the reward probability distribution being not directly observable.

In both cases, the reward returned to the agent conveys noisy information

Dolan, 2012), the set of observations can instead be considered internal to the agent. However,
in the sequential decision-making problems studied in this dissertation no such disturbances
are assumed and I therefore conceive the set of observations as a part of the task model.
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about the not directly observable component of the task model and thus, in
this sense, rewards serve as observations. Of course, to conceptualize rewards
in terms of observations, rewards have to be observable. In life, however, this
may not always be the case. In Chapter 2, I introduce a bandit task suitable
to model choice environments in which the reward is observable only following
certain actions. Given the symmetrical reward structure adopted in this task,
its not directly observable nature is captured by the state, whose value changes
over time. Such switching state bandit tasks require the specification of state

transitions, which - per definition - are independent of actions.

Multistep tasks

In contrast to bandit tasks, multistep tasks capture choice environments in
which actions are interdependent. That is, in multistep tasks, actions do not
only affect the immediate rewards but they also affect the next state and
thereby future rewards (e.g., Daw, Gershman, Seymour, Dayan, and Dolan,
2011; Dayan and Daw, 2008; Korn and Bach, 2018; Lehmann et al., 2019;
Schrittwieser et al., 2020; D. A. Simon and Daw, 2011; Wayne et al., 2018).
The above introduced example of the high school student presents a choice
environment that can be modeled in terms of a multistep task: In a given
state (e.g., at an interview with the college admission committee) the agent
(high school student) chooses an action (e.g., highlights her keen interest in
black holes), receives an immediate reward (e.g., bonus points) according to
the reward probability distribution and enters a new state (e.g., gets accepted
to the program) according to the state transition probability distribution. In
the new state, the agent is presented with a new set of actions to choose from,
each action producing different immediate rewards and new states. Uncertainty
may pervade multistep tasks, for instance, if part of the state is not directly
observable (Bach & Dolan, 2012; Dayan & Daw, 2008; Rao, 2010; Yoshida &
Ishii, 2006). As a specific example, consider the high school student again. At
the interview, the exact expectations of the college admission committee might
only be imprecisely signalled by the members’ subtle reactions. In Chapter 3, I
introduce a multistep task embedded in the spatial domain suitable to model

similar choice environments.



1.2. The sequential decision-making problem under uncertainty

1.2.3 The notion of optimal solution

On the basis of the task model, the theory of PoOMDPs offers a principled way
to identify normative sensible decisions.” The central presumption thereby is
that the ultimate goal of an agent is to maximize the cumulative obtained
reward.

To achieve this goal, agents have to choose the sequence of actions for which
the expected sum of rewards over the time points is maximal. This optimal
action sequence can, in principle, be found by applying dynamic programming,
which capitalizes on the recursive scheme of the Bellman equation (Bellman,
1957). In its standard form, the Bellman equation states that the optimal
action in a given state maximizes the sum of the expected immediate reward
and the optimal value of the expected next state, which corresponds to the
maximum expected sum of rewards that can be obtained starting from the
expected next state.

Even if all aspects of the state are directly observable (i.e, the choice envi-
ronment can be described in terms of MDPs), applying dynamic programming
can be computationally costly, for example, in multistep tasks with large state
spaces and time horizons, such as chess (e.g., Bellman, 1961; Huys et al., 2012;
van Opheusden, Galbiati, Bnaya, Li, and Ma, 2017)." Tt yet becomes even
more computationally costly if some aspects of the state are only imprecisely
signalled by the observations (i.e, the choice environment can be described
in terms of PoOMDPs), as is the case in both the bandit and multistep tasks
studied in detail in Chapters 2 and 3 of this dissertation. This is because under
such circumstances, the optimal action has to be evaluated with respect to the
agent’s subjective uncertainty about the state, i.e., the belief state. In other
words, in the Bellman equation as formulated above, states have to be replaced
by belief states. Fundamental to this replacement is that just like states, belief
states satisfy the Markov property, which prescribes that in the choice envi-
ronment the past is independent of the future given the present. The Markov
property also implies that at a given time point the belief state - formally a

probability distribution over states given past actions and observations - can

3In operations research, some scholars (e.g., Biuerle and Rieder, 2011; Puterman, 2014)
explicitly differentiate between partially observable Markov decision processes and partially
observable Markov decision problems; they apply the former term when specifying a quanti-
tative model of the problem at hand and the latter term when combining this quantitative
model with the optimality criterion.

4This anyways existing difficulty possibly explains why in human decision neuroscience
research the experimental study of multistep tasks has so far largely focused on scenarios
without state uncertainty.
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be computed recursively on the basis of the belief state, action and observation
at the previous time point using Bayes rule (Dayan & Daw, 2008; Kaelbling,
Littman, & Cassandra, 1998; Rao, 2010; Russell & Norvig, 2()1())

Beside the computational load posed by the combination of dynamic pro-
gramming and state inference, it may also easily exhaust the memory space.
Thus, while under certain simplifying conditions optimal solutions can be
attained’, most real-life problems modeled in terms of PoMDPs necessitate
approximations (Berry & Fristedt, 1985; Dayan & Daw, 2008; Rao, 2010;
Russell & Norvig, 2010). Furthermore and most importantly for the purpose
of this dissertation, given the cognitive capacity limits of biological agents,
such approximations present themselves suitable to be adopted by humans
(Gershman, Horvitz, & Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 2015;
H. Simon, 1957).

1.3 Approximate solutions and their behavioral
plausibility

A large variety of algorithmic methods exists to obtain approximate solutions.
Of these, a class of methods inherits from the above outlined normative scheme
and uses concepts from Bayesian inference and dynamic programming (Béuerle
& Rieder, 2011; Bertsekas, 2000; Bertsekas & Tsitsiklis, 1996; Ma, 2019;
Puterman, 2014; Rao, 2010; Sutton & Barto, 2018; Wiering & van Otterlo,
2014; Yoshida & Ishii, 20 ()()). In decision neuroscience research, these methods
are usually referred to as model-based, because they rely upon the defining
probability distributions of the task model. In contrast, for model-free methods
it is sufficient to have knowledge of only the overt set components of the task
model (e.g., Collins and Cockburn, 2020; Daw et al., 2005; Dayan, 2012; Dayan
and Daw, 2008; Korn and Bach, 2018; Speekenbrmk and Konstantinidis, 2015).
These methods come from heuristic decision making (Gigerenzer et al., 1999;
Tversky & Kahneman, 1974) and reinforcement learning (RL; Bertsekas and
Tsitsiklis, 1996; Rao, 2010; Sutton and Barto, 2018; Wiering and van Otterlo,
20141) and operate on the basis of instantaneous information about or previous

experience with rewards.” Another important perspective to classify methods is

5For example, optimal solutions to stationary bandit tasks can be derived for finite
(Bellman, 1956; Berry & Fristedt, 1985) and infinite (Gittins & Jones, 1974) time horizons.
61n artificial intelligence research, approximate methods that borrow from the PoMDPs
theory and therefore necessitate knowledge about the probability distributions of the task
model are sometimes termed model-based RL methods. Correspondingly, the term model-free
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the distinction between exploitation and exploration-exploitation. Exploitative
methods are solely guided by the perspective of reward gain based on the
accumulated knowledge about the choice environment. Explorative-exploitative
methods, conversely, are also guided by the perspective of information gain
to advance their knowledge about the choice environment (Berry & Fristedst,
1985; Bertsekas & Tsitsiklis, 1996; Cohen et al., 2007; Dayan & Daw, 2008;
Schwartenbeck et al., 2019; Sun, Gomez, & Schmidhuber, 2011; Sutton & Barto,
2018; Wiering & van Otterlo, 2014). Despite the apparent differences between
methods, the structural requirements imposed on the agents adopting them
have some key commonalities (Russell & Norvig, 2010). Therefore, in what
follows, I first present the general agent model architecture and then detail
its variations in terms of the dichotomies model-free versus model-based and
exploitation versus exploration. I close this section by describing the general
behavioral model architecture, which formalizes the embedding of the agent

models into a statistical framework.

1.3.1 The general agent model architecture

The word agent originates from the Latin agere, which means to do. Accordingly,
central to agents is that they perceive their environment, on the basis of which
they act as to reach their goal. This suggests that one part of the agent model
has to specify the agent’s representation of the task model. The other part, in
turn, has to specify how the agent draws on this representation to evaluate the
actions and make decisions (Russell & Norvig, 2010).

As discussed in detail below, the agent’s copy of the task model can vary
greatly. Some methods only require the agent to represent the overt set
components of the task model, i.e., time points, directly observable part of
states, observations, actions and rewards. Others also require representations of
the possible values of the not directly observable part of state and the probability
distributions of the task model. Given that the probabilistic representations
are internal to the agent, they are to be conceived as subjective uncertainties,
even if the corresponding probability distributions of the task model are overt
(cf. Ma, 2019).

On the basis of its task representation, the agent evaluates the actions,
which is formalized in terms of the valence function, and makes a decision, which

is formalized in terms of the decision function. Similar to the value function of

is used for RL methods that do not necessitate such knowledge (e.g., Schrittwieser et al.,
2020; Sutton and Barto, 2018; Wiering and van Otterlo, 2014).
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the PoMDPs theory, the valence function assigns a number to each action. This
number is, however, not the optimal value of the action but an approximation
thereof and can therefore be considered as a measure of the action’s subjective
desirability as viewed by the agent. Depending on the valence function, the
agent may need to apply Bayesian inference and form a belief state. Thus, in
this case, the agent model also has to comprise the specification of the agent’s
initial subjective uncertainty about the state. Drawing on the valences, the
decision function adjudicates between actions, implementing either a stochastic

or a deterministic valence maximizing scheme.

1.3.2 Agent model variations

Model-free/model-based and exploitative/explorative methods assume certain
characteristic configurations of the agent’s task representation, valence and

decision functions, and, consequently, the above introduced general architecture.

Model-free versus model-based

Common to model-free methods is that agents do not need knowledge about
the task model beyond the overt set components. Constrained by the simplicity
of such task representations, all model-free methods directly allocate valences
to actions. Yet, an abundance of different ways exists to do this. Inspired
by heuristic decision making, a simple yet often efficient way is to allocate
action valences based on the latest reward-related information, conveyed, for
example, by observations (Dayan, 2012; Gigerenzer & Gaissmaier, 2011; Korn
& Bach, 2018; Robbins, 1952; Wilson & Collins, 2019). Another way was
originally described by the decision neuroscientists Rescorla and Wagner (1972)
and further developed in RL research under the name temporal difference
learning. The key aspect of these model-free methods is that an action’s
valence depends on the associated reward history, where an arbitrary constant
learning rate controls the extent to which the latest experience is taken into
account (Bertsekas & Tsitsiklis, 1996; Glimcher & Fehr, 2013; Wiering &
van Otterlo, 2014; Wilson & Collins, 2019).

In contrast to model-free methods, model-based methods require that the
agent maintains representations of all sets and the probabilistic dependencies
between their elements. Together with the agent’s initial belief state, the
ensuing complete task model is put into use to probabilistically infer the state

and to allocate valences to actions by considering their consequences with

10
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respect to future states, observations and rewards. To this end, model-based
methods employ some combination of Bayesian inference and approximate
dynamic programming. Approximations can, for instance, be implemented by
limiting the time horizon considered or by using a heuristic to evaluate possible
next belief states (Bertsekas & Tsitsiklis, 1996; Geffner & Bonet, 1998; Huys et
al., 2012; Korf, 1990; van Opheusden et al., 2021; Wiering & van Otterlo, 2014).
As exemplified by this latter approach, model-free methods may complement
model-based methods. Applying temporal difference learning in the space of
belief states is another example of such a mixture method (Babayan, Uchida,
& Gershman, 2018; Dayan & Daw, 2008; Rao, 2010; Starkweather, Babayan,
Uchida, & Gershman, 2017).

Exploitation versus exploration

Exact solution to a problem modeled in terms of PoMDPs yields an optimal
balance between exploitation and exploration. To approximate the optimal
balance, model-free as well as model-based methods across the entire spectrum,
from purely exploitative to purely explorative, have been proposed (Bertsekas
& Tsitsiklis, 1996; Cohen et al., 2007; Dayan & Daw, 2008; Schwartenbeck
et al., 2019; Wiering & van Otterlo, 2014).

Purely exploitative methods disregard the perspective of information gain.
Instead, at each time point, they harness the knowledge about the choice
environment acquired through previous interactions and allocate action valences
from the perspective of reward gain. This can be done both in a model-free
way, relying, for example, on a reward-related heuristic, or in a model-based
way, evaluating, for example, the belief state-weighted expected reward (Knox,
Otto, Stone, & Love, 2012; Lee, Zhang, Munro, & Steyvers, 2011; Speekenbrink
& Konstantinidis, 2015). Crucial thereby is that the agent adopts a valence
maximizing deterministic decision function so that the action with the highest
exploitative valence is realized.

Correspondingly, purely explorative methods have to ensure that the action
with the highest explorative valence is realized and they therefore also require
a valence maximizing deterministic decision function. Yet, opposite to purely
exploitative methods, these methods seek to improve their knowledge about the
choice environment and thus allocate action valences from the perspective of
information gain. Two commonly applied measures of information gain are the
frequentist upper confidence bound (Auer, Cesa-Bianchi, & Fischer, 2002) and
the expected Bayesian surprise (Itti & Baldi, 2009; Ostwald et al., 2012; Sun

11
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et al., 2011). The former expresses information gain in a model-free fashion
based on the extensiveness of the action’s associated reward history, whereas
the latter expresses information gain in a model-based fashion based on the
shift in the belief state.

By combining the valences of purely explorative and purely exploitative
methods, explorative-exploitative methods take both information gain and
reward gain into account (Chakroun, Mathar, Wiehler, Ganzer, & Peters,
2020; Gershman, 2018; Navarro, Newell, & Schulze, 2016; Wilson et al., 2014;
Zhang & Yu, 2013). These methods either implement a valence maximizing
deterministic decision function or a stochastic decision function. The rational
behind using a stochastic decision function is that information may also be
gained 'by chance’, i.e., through adding some noise to the action selection
process. This, in turn, suggests that explorative-exploitative methods may also
be formed by taking the valences of a purely exploitative method and using a
stochastic decision function - with constant (e.g., e-greedy (Sutton & Barto,
2018; Wiering & van Otterlo, 2014) or softmax operation (Reverdy & Leonard,
2015)) or belief state-dependent (Thompson sampling’; Thompson, 1933) noise.
While belief state-dependent noise assumes a model-based method, constant
noise can also be added to the exploitative valences allocated by a model-free
method.

In Chapters 2 and 3, I computationally characterize human participants
choice behavior with respect to the dichotomies model-free versus model-based
and exploitation versus exploration in bandit and multistep tasks, respectively.
To this end, I use agent models that implement model-free purely exploitative,
model-based purely exploitative, purely explorative and exploitative-explorative
methods. More specifically, the model-free purely exploitative agents of both
model spaces rely on reward-related heuristics. Their model-based counterparts
evaluate the belief state-weighted expected reward or employ belief state-based
heuristic real-time dynamic programming. In contrast, the model-based purely
explorative agents are guided by the expected Bayesian surprise. Finally, the
model-based exploitative-explorative agents perform linear convex combina-
tions of the valences allocated by the model-based purely exploitative and
purely explorative agents and apply valence maximizing deterministic decision

functions.

"Thompson sampling is traditionally formulated as allocating valences based on random
draws from the belief state and subsequently using a valence maximizing deterministic
decision function.

12
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1.3.3 The general behavioral model architecture

In order to computationally characterize human participants choice behavior
by means of the agent models, for each agent model a corresponding behavioral
model has to be formulated. The behavioral model specifies an embedding
of the agent model into a statistical inference framework (Daunizeau et al.,
2010; Farrell & Lewandowsky, 2018). In Chapters 2 and 3, I follow a standard
procedure to accomplish this and nest the agent’s valence function in a softmax
operation (Reverdy & Leonard, 2015).

To probabilistically translate between the action valences internal to the
agent and the action observable by the experimenter, the exponential softmax
operation evaluates the action valences in relation to one another. Thereby, a
parameter controls the extent to which the probabilities reflect the difference in
the action valences: The lower the parameter value, the higher the probability
that the experimenter observers the action with the higher action valence. As a
consequence, this parameter can be interpreted as post-decision (or observation)
noise.

Of note, as alluded to above, in many decision neuroscience studies the
softmax operation is commonly applied as a stochastic decision function to form
explorative-exploitative agents (e.g., Chakroun et al., 2020; Daw et al., 2006;
Dezza, Angela, Cleeremans, and Alexander, 2017; Glascher, Daw, Dayan, and
O’Doherty, 2010; Hauser et al., 2014; Speekenbrink and Konstantinidis, 2015).
In these studies, behavioral models are usually not additionally formulated
and the parameter of the softmax operation is interpreted as a tendency
for random exploration. In the agent-based modeling framework adopted in
this dissertation, the agent models and behavioral models are throughout
explicitly separated. This is to highlight that in contrast to operations and
artificial intelligence research, in decision neuroscience the agent models are
used to explain experimentally acquired human data - and therefore have to be
statistically embedded.

1.4 Neural implementation of alternative solu-

tions

Beyond evaluating their behavioral plausibility, decision neuroscience seeks
to answer how different agent models might be realized by the neural system
(Dayan & Daw, 2008; Glimcher & Fehr, 2013; Niv & Langdon, 2016; Sutton &
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Barto, 2018). Neural data can stem from different modalities, ranging from
single cell recordings (e.g., Costa and Averbeck, 2020; Schultz, Dayan, and
Montague, 1997; Starkweather et al., 2017) to fMRI (e.g., Chakroun et al.,

2020; Daw et al., 2011; O’Doherty, Dayan, Friston, Critchley, and Dolan,
2003 ), and thus, many approaches linking Marr’s algorithmic level with the
implementation level can be considered. One of the most popular approaches
is to analyze fMRI data obtained from human (or other primate) participants
simultaneously with the behavioral data using model-based GLM (Friston &
Dolan, 2010). In the current section, I describe the model-based GLM for fMRI
approach with an emphasis on ways it can be integrated with the agent models

discussed in the previous section.

1.4.1 Model-based GLM for fMRI

In the analysis of fMRI data, applying the statistical inference framework
of GLM is a standard technique to localize cognitive processes in the brain
(Huettel, Song, & McCarthy, 2009; Ostwald, 2020b). Typically, this analysis
proceeds as follows. First, the spatially logged time-series data acquired from a
single participant are modeled using multiple linear regression design, where
each regressor (of interest) represents a certain type of experimental event.
Then, the parameter estimates are combined with contrast weight vectors and
evaluated on the group-level, using, for example, one-sample t-tests. Every
ensuing statistical parametric map informs about the brain regions specialized
for the cognitive process associated with the respective experimental events.®
To establish the functional anatomy of algorithmic methods, in model-based
GLM for fMRI, the participant-level design matrix additionally comprises
parametric regressors representing sequences of latent quantities produced by
these methods (Friston & Dolan, 2010). Consequently, model-based GLM for
fMRI can readily accommodate agent models implementing model-free/model-
based and exploitative/explorative methods and thereby connect the above
outlined approximate solutions with neural realization.

To form parametric regressors, usually a basis regressor - such as the trial
regressor modeling the events pertaining to the state-observation-action-reward
tetrad per time point - is subjected to agent model-based quantities. A key
latent quantity derived from an agent model on a trial-by-trial basis is the
chosen action valence according to the participant’s previous interactions with

the choice environment (e.g., Chakroun et al., 2020; Daw et al., 2006; Korn

80f course, the exact interpretation depends on the applied contrast weight vector.
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and Bach, 2018; D. A. Simon and Daw, 2011). In several decision neuroscience
studies, this quantity is expressed relative to the valence of the other available
actions, which relates to the notion of choice conflict (e.g., Boorman, Behrens,
Woolrich, and Rushworth, 2009; Shenhav, Straccia, Cohen, and Botvinick,
2014). Another tradition is to derive quantities expressing some difference
between two trials. For instance, in the case of an agent model adopting
temporal difference learning, the so called reward prediction error between the
old and new valences of the chosen action can be considered (e.g., Daw et al.,
2011; Doll, Duncan, Simon, Shohamy, and Daw, 2015; Fischer et al., 2017;
Gléascher et al., 2010; Rao, 2010; D. A. Simon and Daw, 2011). Bayesian surprise
is another such quantity, which is computed as the divergence between the prior
and posterior belief states and provides a readout of a model-based agent’s
state inference (e.g., Fischer et al., 2017; Gijsen, Grundei, Lange, Ostwald, and
Blankenburg, 2020; Itti and Baldi, 2009; O’Reilly, Jbabdi, Rushworth, and
Behrens, 2013; Ostwald et al., 2012; Schwartenbeck, FitzGerald, and Dolan,
2016).

After identifying the agent model best accounting for participants’ choice
data in a multistep task, in Chapter 3, I map the network of brain regions
supporting its architecture. To this end, I analyze the fMRI data collected from
each participant using model-based GLM. Concretely, to evaluate the neural
correlates of the combination of state inference and exploitation by means of
heuristic real-time dynamic programming as implemented by the group-favored
agent model, the latent quantities Bayesian inference and chosen action valence

are employed.

1.5 Overview of the dissertation

In this dissertation, I computationally characterize - on behavioral and neural
levels - how humans make sequential decisions under uncertainty in two tasks
that capture central aspects of daily choice environments. In doing so, I focus
on answering whether the applied strategies reflect model-free or model-based
and exploitaive or exporative-exploitative processes. To accomplish this, I rely
on an agent-based modeling framework capitalizing on PoMDPs terminology,
heuristics, belief states and dynamic programming, as well as standard statistical
inference approaches connecting models and data.

In Chapter 2, human sequential decision making under uncertainty is be-

haviorally studied in an information-selective reversal bandit task. In contrast
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to previous bandit tasks, in the task introduced in this chapter, reward observa-
tions are not available for each action, forcing the decision maker to explicitly
evaluate the benefit of exploration against the benefit of exploitation. The
results show that in such choice environments, humans employ a model-based
exploitative-explorative strategy as captured by an agent model seeking to
maximize a convex combination of the belief state-weighted expected reward
and expected Bayesian surprise.

While investigated theoretically, the empirical study of strategies used in
multistep tasks with partially observable states remains elusive. To address
this, in Chapter 3, behavioral and fMRI data collected from human participants
on a novel spatial search task are analyzed. Similar to the results of Chapter 2,
the behavioral data is best accounted for by a model-based agent implementing
Bayesian inference. The belief state, however, is put into use in a purely
exploitative fashion, as captured by a heuristic real-time dynamic programming
algorithm. The results of model-based GLM for fMRI demonstrate that the
latent quantities Bayesian surprise and chosen action valence underlying this
strategy are represented in a large network of cortical and subcortical brain
regions.

Of note, as also indicated in the List of manuscripts included at the end
of the dissertation, the work presented in both empirical chapters is under
preparation for publication and can be read as self-contained.

Chapter 4 concludes this dissertation by synthesizing the main findings
of Chapters 2 and 3, and discussing them in a broader context. Finally, as
an outlook, I outline theoretical and empirical questions arising from these

findings.
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2 Belief state-based exploration and
exploitation in an information-

selective reversal bandit task

2.1 Introduction

Uncertainty is an inherent part of real-life sequential decision making (Bach
& Dolan, 2012). Humans often face new and changing environments without
being able to directly observe the underlying structure. Consequently, in their
quest to maximize the obtained reward, humans have to alternate between
exploration and exploitation (Cohen, McClure, & Yu, 2007; Dayan & Daw,
2008; Schwartenbeck et al., 2019; Sutton & Barto, 2018). Exploration refers
to action choices that maximize information gain (or, equivalently, minimize
uncertainty), and thus advance the knowledge about the structure of the
environment. Exploitation refers to action choices that maximize reward gain

by harnessing the accumulated knowledge.

A standard testbed to study sequential decision making under uncertainty
is the bandit paradigm (Berry & Fristedt, 1985; Robbins, 1952). Two variants
of the bandit paradigm have been widely adopted to model real-life explore
or exploit problems (Bubeck, Munos, & Stoltz, 2009; Hertwig & Erev, 2009;
Sutton & Barto, 2018; Wulff, Mergenthaler-Canseco, & Hertwig, 2018). In both
variants, in each trial the deciding agent chooses between a finite set of actions
with different expected reward values and observes a reward with a probability
specific to the chosen action. While the actions’ expected reward values are not
directly observable, the agent can estimate them by integrating information
from reward observations. The difference between the two variants stems from
their respective goals. In the first variant, the goal is to maximize the reward in
the final trial. The number of trials preceding the final trial is self-determined
by the agent. In contrast, in the second variant, the goal is to maximize the
cumulative reward across all trials. Crucially, as a result, in the first variant
the reward observation confers information but no reward in all but the final

trial. This variant - termed pure exploration (Bubeck et al., 2009) or sampling
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(Hertwig & Erev, 2009) paradigm - thus raises the question as to the extent of
exploration by means of the number of trials preceding the final trial in which
the accumulated knowledge can be exploited (Ostwald, Starke, & Hertwig,
2015). In the second variant, the reward observation confers both information
and reward in each trial. This variant - termed ezploration-exploitation (Sutton
& Barto, 2018) or partial-feedback (Hertwig & Erev, 2009) paradigm - thus raises
the question of how to strike a balance between exploration and exploitation
in each trial. Numerous tasks exist related to either paradigm. For example,
the ’observe-or-bet’ task (Blanchard & Gershman, 2018; Navarro, Newell, &
Schulze, 2016; Tversky & Edwards, 1966) offers an interesting extension of the
pure-exploration/sampling paradigm. Similar to the pure-exploration/sampling
paradigm, the agent can self-determine the number of pure exploratory actions.
However, in contrast, instead of a single action with economic consequence, the
agent can take as many as they wish and can also switch back to exploration
at any time. To keep exploration and exploitation separated as in the pure-
exploration /sampling paradigm, the reward is not observable in the trials with

an economic consequence.

A plethora of real-life sequential decision-making problems can be mod-
eled with the pure exploration/sampling and exploration-exploitation/partial-
feedback paradigms as well as with related tasks such as the observe or bet
task described above. However, these are not suited to model a class of nat-
uralistic problems, in which each available action yields certain reward, but
only some yield also information. As an example, consider a patient with high
blood pressure. When a new and potentially more effective drug is introduced,
the patient can choose between (1) trying out the new drug under medical
supervision, where the blood pressure is closely monitored or (2) continuing
the old drug without medical supervision. The first option confers both reward
(blood pressure in optimal range or not) and information, while the second
option confers only reward but no information. Even if the old drug was
proven effective in the past, given that the blood pressure can change over
time, it might be beneficial for the patient to choose the first option over
the second. Situations of this type are similar to the ones modeled with the
exploration-exploitation /partial-feedback paradigm in that each action has an
economic consequence. Therefore, to maximize the cumulative reward, humans
have to balance between exploration and exploitation for each decision. Impor-
tantly, however, in these situations information is detached from reward for a

subset of actions, akin to the pure exploration/sampling and observe or bet
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scenarios. Consequently, they arguably pose a more pronounced exploration-
exploitation dilemma, because humans are forced to explicitly evaluate the

benefit of information gain against the benefit of reward gain.

The goal of this work is to characterize human sequential decision making in
such problems. To this end, we introduce a novel information-selective reversal
bandit task, which shares key characteristics with the classical symmetric two-
armed reversal bandit task (e.g., Bartolo and Averbeck, 2020; Costa, Dal Monte,
Lucas, Murray, and Averbeck, 2016; Gléascher, Hampton, and O’Doherty, 2009;
Hauser et al., 2014), but in which information is randomly withheld for either
the action with the high or the low expected reward value. To formalize
different sequential decision-making strategies, we propose a set of agent-based
computational models (Russell & Norvig, 2010). In our modeling initiative,
we capitalize on recent results showing that one way humans balance between
exploration and exploitation is to add an ’information bonus’ to the value
estimate of an action, which reflects the associated uncertainty (e.g., Gershman,
2018, 2019; Lee, Zhang, Munro, and Steyvers, 2011; Wilson, Geana, White,
Ludvig, and Cohen, 2014; Wu, Schulz, Speekenbrink, Nelson, and Meder,
2018). Specifically, we formulate Bayesian agents that represent subjective
uncertainty about the structure of the environment in the form of a belief
state. The Bayesian agents use the belief state to make either exploitative
(i.e., value estimate maximizing actions), explorative (i.e., information bonus
maximizing actions), or hybrid explorative-exploitative (i.e., combined value
estimate and information bonus maximizing) actions. Notably, we adopt a
Bayesian treatment of exploration and quantify the information bonus as
the expected Bayesian surprise (Itti & Baldi, 2009; Ostwald et al., 2012;
Sun, Gomez, & Schmidhuber, 2011). In addition to the Bayesian agents, we
also formulate belief state-free agents that implement simple strategies, such
as the 'win-stay-lose-switch’ strategy (Robbins, 1952). Upon validating our
modeling initiative, we provide empirical evidence for a belief state-based hybrid
explorative-exploitative strategy based on choice data from 24 participants. In
summary, we demonstrate that, in scenarios where every action has an economic
consequence but only some have also an epistemic consequence, humans are
guided by their subjective uncertainty to resolve the exploration-exploitation

dilemma.
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2.2 Methods

2.2.1 Experimental methods

Participants. Young adults were recruited from the Nathan Kline Institute
Rockland Sample (NKI-RS), a community-ascertained and comprehensively
characterized participant sample of more than 1000 individuals between 6 and
85 years of age (Nooner et al., 2012). We initially intended to enroll individuals
from the lower and upper ends of the attention deficit hyperactivity disorder
(ADHD) spectrum because we were interested in the relationship between
ADHD symptoms and behavioral strategies in our task. Yet, the final sample
of 24 individuals (12 female, 23 right-handed, age range: 18-35 years, mean
age: 24.5 years, standard deviation age: 5.5 years) represented the mid-range
of the ADHD spectrum. Moreover, individuals were only invited if they had
no lifetime history of severe neurological or psychiatric disorder. We therefore
treated the group of participants as a healthy sample and did not conduct
analyses to relate ADHD symptoms to task behavior. For additional details
about the recruitment and sample characteristics, please refer to Supplementary
Material A.1.

Procedure. The study consisted of a one-time visit of 3.5 hours to the
Nathan Kline Institute for Psychiatric Research (Orangeburg, NY, US) and
was approved by the local Institutional Review Board. After providing writ-
ten informed consent, participants were first requested to fill out a series of
questionnaires measuring symptoms of ADHD and other mental disorders.
Next, participants received detailed written instructions about the information-
selective reversal bandit task and were encouraged to ask any clarification
questions. Please refer to Supplementary Material A.2 for the instructions
provided to the participants. To familiarize participants with the task they next
completed a test run of the task on a desktop computer. Finally, participants
completed two experimental task runs in a Magnetic Resonance Imaging (MRI)
scanner, while behavioral, eye tracking and functional MRI data was acquired.
Note that in the current work, we only report results from the analysis of
the behavioral data acquired during MR scanning. The visit ended with the

participants receiving a reimbursement of $100 (see below for details).

Experimental design. We developed a symmetric two-armed reversal bandit

task, in which the available actions were not only associated with varying
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expected reward values but also with varying information gains (information-
selective reversal bandit task, Figure 2.1a). More specifically, on each task trial
participants could decide between the actions of choosing a square on the right
of a computer screen versus choosing a triangle on the left of the screen, or,
between the actions of choosing a square on the left versus choosing a triangle
on the right of the screen. Depending on the shape chosen, the action was either
lucrative and returned a reward of 41 with a probability of 0.85 and a reward of
-1 with a probability of 0.15 or detrimental and returned a reward of +1 with a
probability of 0.15 and a reward of -1 with a probability of 0.85. Depending on
the laterality of the shape chosen, the action was also either informative and the
returned reward was revealed to the participant, or it was non-informative and
the returned reward was not revealed to the participant. Specifically, following
an informative action an image of a moneybag was displayed for the reward
of +1 and an image of a crossed-out moneybag was displayed for the reward
of -1. In contrast, following a non-informative action an image of a question
mark moneybag was displayed for both the reward of +1 and -1. Importantly,
while the actions’ lucrativeness was not directly observable and could only be
inferred from the revealed rewards, the actions’ informativeness was directly
observable throughout the experiment. In particular, for half of the participants
the right screen side was associated with the informative action and the left
screen side was associated with the non-informative action. For the other half
of the participants the coupling between screen side and action informativeness
was reversed. As a visual reminder, the informative and non-informative sides
were also indicated by black and grey backgrounds, respectively. Note that we
use the terms informative side and non-informative side in accordance with the
action definitions. Similarly, we will hereinafter also use the terms lucrative

shape and detrimental shape for simplicity.

The experiment consisted of two runs of 80 trials each. In half of the trials
choosing the square was lucrative and choosing the triangle was detrimental. In
the other half, choosing the square was detrimental and choosing the triangle
was lucrative. We pseudo-randomized the sequence of lucrative shapes such
that choosing a certain shape was lucrative for 17-23 consecutive trials upon
which the actions’ lucrativeness reversed. This yielded a total of three shape
lucrativeness reversals (or equivalently, four blocks of trials without a reversal) in
a run (Figure 2.1b). Furthermore, we also pseudo-randomized the trial-by-trial
sequence of choice options (e.g. choice between the square on the informative

side or the triangle on the non-informative side) with two constraints. First, a
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certain choice option combination occurred for a maximum of five consecutive
trials. Second, in 50% of the trials in which the square was lucrative the square
was presented on the informative side (and the triangle on the non-informative
side) while in the other 50% the square was presented on the non-informative
side (and the triangle on the informative side). The same applied to those trials
in which the triangle was lucrative. This way we did not only counterbalance
the shape-side combinations but also ensured that participants faced a choice
between a “lucrative and informative” or “detrimental and non-informative”
action (trial type I, abbreviated as L. N 1T or D N N) in half of the trials.
Accordingly, in the other half of the trials participants faced a choice between
a “lucrative and non-informative” or “detrimental and informative” action (trial
type II, abbreviated as L. N N or D N I; Figure 2.1a). Importantly, for a
consistent experiment history across participants, we generated the sequence of
lucrative shapes and choice options prior to the study and used the identical

trial sequence for all participants.

Participants were encouraged to maximize the cumulative sum of returned
rewards across all trials. As an incentive, participants were informed that
in addition to a standard reimbursement of $70 for partaking in the study,
they would receive a bonus up to $30 depending on their final balance at the
end of the second run of the information-selective reversal bandit task. They
were not further informed about the balance-bonus conversion rate. In effect,
however, all participants were payed the full bonus of $30 as instructed by the

Institutional Review Board.

Trial design. FEach trial started with the presentation of the two available
choice options and participants were given a maximum of 2.5 seconds to indicate
their choice (Figure 2.1c). If they responded within the time window the border
of the chosen shape turned white to signal the recording of their choice. The
duration of this feedback signal depended on the response time such that the
choice options and feedback were presented for a total of 3 seconds. Next, a
post-choice fixation cross was presented for 3-5 seconds. This was followed by
the image representing the respective choice outcome (moneybag, crossed-out
moneybag, question mark moneybag) with a presentation duration of 3 seconds.
Before a new trial commenced, an inter-trial fixation cross was displayed for 3-5
seconds. If participants did not respond within the time window the message
'too slow’ appeared for 0.5 seconds followed by an inter-trial fixation cross,

a reward of -1 was automatically registered to their account and the next
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Figure 2.1. Information-selective reversal bandit task. a Experimental design. The
actions differed in terms of lucrativeness (lucrative (L) or detrimental (D)) and also in terms
if informativeness (informative (I) or non-informative (N)). The former was associated with
shapes (square or triangle) and the latter was associated with sides (black or grey). On a
given trial, the choice options image represented a choice between either a lucrative and
informative or detrimental and non-informative action (trial type I; LN ITor D N N) or a
lucrative and non-informative or detrimental and informative action (trial type II; L N N or
D N I). Note that we here depict the design for those trials in which the square was lucrative
(e.g. the nineteenth trial in the first run, see panel b). b Run design. Every 17 to 23 trials
the reward probabilities associated with the shapes reversed. Here, the reversal times of
the first run are shown. For example, on trial 19 (marked with a purple dot) the square
was lucrative, i.e. choosing the square returned a reward of +1 with a probability of 0.85
and a reward of -1 with a probability of 0.15 and the triangle was detrimental, i.e choosing
the triangle returned a reward of +1 with a probability of 0.15 and a reward of -1 with a
probability of 0.85. This reversed on trial 20 and choosing the triangle became lucrative and
the square became detrimental. A run consisted of 80 trials. ¢ Trial design. Participants
could indicate their choice within 2.5 seconds of the choice options onset. If they chose the
shape on the black side the returned reward was revealed (top). If they chose the shape on
the grey side the returned reward was not revealed (bottom). Assuming that this example
shows the nineteenth trial of the first run, the options represent a choice between L N N
action or D N I action. d Quality assurance: Normalized histogram of the online sampled
rewards. The reward rates of +1 (green bars) and -1 (red bars) are shown as functions of
action. They were consistent with the underlying discrete categorical distributions and only
varied with respect to the actions’ lucrativeness but not informativeness.
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trial commenced. Notably, while the sequences of lucrative shapes and choice
options were generated prior to the experiment, the fixation cross duration
times and the returned rewards were sampled online as participants interacted
with the task. Specifically, the fixation cross duration times were sampled
uniformly from an interval of 3 to 5 seconds. The reward values +1 and -1 were
sampled from discrete categorical distributions with probabilities 0.85 and 0.15
for the lucrative action and with probabilities 0.15 and 0.85 for the detrimental
action, respectively. As shown in 2.1d the rewards returned to the participants

followed the underlying distributions.

2.2.2 Descriptive analyses

We evaluated nine summary choice rates for every participant. In particular,
we first evaluated overall and trial type-specific valid choice rates. These were
defined as the number of valid action choices on all trials, on type I trials
and on type II trials divided by the number of all trials, of type I trials and
of type II trials, respectively. For example, by design there were 80 trials of
type L. If a participant missed to make a valid choice on one of these trials the
trial type I valid choice rate was 79/80. We then evaluated the choice rates of
the lucrative and informative, lucrative and non-informative, detrimental and
informative and detrimental and non-informative actions. These choice rates
were computed by dividing the number of respective actions by the number of
valid choices of the corresponding trial type. Consequently, the action choice
rates of a given trial type were symmetrical, i.e. they summed up to 100%. For
example, if a participant made 79 valid action choices on type I trials of which
65 were lucrative and informative and 14 were detrimental and non-informative
the lucrative and informative action choice rate was 65/79 and the detrimental
and non-informative action choice rate was 14/79. In addition, we evaluated
the choice rates of the lucrative actions and the informative actions. These were
computed by dividing the sum of the number of lucrative and informative and
lucrative and non-informative actions and the sum of the number of lucrative
and informative and detrimental and informative actions by the number of
valid choices on all trials, respectively. For example, if a participant made 65
lucrative and informative and 58 lucrative and non-informative action choices
of the 159 valid choices made on all trials the lucrative action choice rate
was 123/159. The individual summary choice rates were then averaged across
participants to obtain group summary choice rates and the standard error of
the mean (SEM) was evaluated.
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In addition to the summary choice rates, we also evaluated trial-by-trial
choice rates. Specifically, we computed group trial-by-trial lucrative and in-
formative, lucrative and non-informative, detrimental and informative, and
detrimental and non-informative action choice rates. To this end, for every trial
we divided the number of respective actions by the number of valid choices on
the trial over participants. As a given trial belonged to one of the two trial types
it either had lucrative and informative and detrimental and non-informative
action choice rates or lucrative and non-informative and detrimental and in-
formative action choice rates. Consequently, in accordance with the summary
action choice rates, the choice rates of each trial were symmetrical. For example,
by design the first trial of the first run was of type I for every participant.
If on this trial 18 participants chose the lucrative and informative action, 5
chose the detrimental and non-informative action and 1 missed to make a valid
choice, then the lucrative and informative action choice rate of this trial was
18/23 and the detrimental and non-informative action choice rate was 5/23.
Finally, for each trial between two reversals we computed the average group
trial-by-trial lucrative and informative and lucrative and non-informative action
choice rates across the eight blocks. Note however, that as the trial sequence
was pseudo-randomized the average between reversals group trial-by-trial choice
rates of a particular trial were computed based on different number of data
points. For example, of the eight first trials three were of type I and thus had a
group trial-by-trial lucrative and informative action choice rate, while five were
of type II and thus had a group trial-by-trial lucrative and non-informative
action choice rate. In addition, note that as the number of trials between two

reversals varied, there were less than eight 18th to 23rd trials.

2.2.3 Model formulation

Task model To render the task amenable to computational behavioral mod-
elling, we first formulated a model of the task using concepts from the theory of
partially observable Markov decision problems (Bertsekas, 2000). Specifically,

we represent an experimental run by the tuple

Mrasc = (7.8, A, R.0.p ()., f.9) . (2.1)

where

e T denotes the number of trials, indexed by t =1, ..., T.
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e S := Ny x N, denotes the set of states s := (s', s?). The first state component
s encodes the lucrative shape. Specifically, on trial ¢, s} takes on the value 1
if the square is lucrative and takes on the value 2 if the triangle is lucrative.
From the perspective of the agent, s! is not directly observable. The second
state component s? encodes the available actions. Specifically, on trial ¢,
s? takes on the value 1, if the agent can choose between the square on the
informative side or the triangle on the non-informative side. If on trial ¢
the agent can choose between the square on the non-informative side or the
triangle on the informative side, s? takes on the value 2. From the perspective

of the agent, s? is directly observable.

e A:={A;, Ao} denotes the set of state-dependent action sets. Specifically,
depending on the observable state component s? on a given trial ¢ the
available actions are either A; := {1,4} or Ay := {2,3} for s = 1 or
s? = 2, respectively. If the available action set is A;, then the agent can
choose between a = 1, which corresponds to choosing the square on the
informative side or a = 4, which corresponds to choosing the triangle on
the non-informative side. If the available action set is As, then the agent
can choose between a = 2, which corresponds to choosing the square on the
non-informative side or a = 3, which corresponds to choosing the triangle on

the informative side.
e R:={—1,+1} denotes the set of rewards r.

e O := N3 denotes the set of observations 0. 0 = 1 encodes the image of the
crossed-out moneybag, o = 2 encodes the image of the moneybag and o = 3

encodes the image of the question mark moneybag.

o pitat (r) is the state- and action-dependent reward distribution. For each
combination of s' € S! and a € A2, the state- and action-dependent reward
distribution conforms to a discrete categorical distribution over r; with
probability parameters listed in the first panel of Table 2.1. As an example,
consider s' = 1 (square is lucrative) and a = 1 (square on the informative
side chosen). In this case, a reward of -1 is returned with a probability of
0.15 and a reward of +1 is returned with a probability of 0.85. On the other
hand, if s' = 2 (triangle is lucrative) and a = 1 (square on the informative

side chosen), the reward probabilities are reversed.

e f is the state evolution function, which specifies the value the state s; takes
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st 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
at 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
T -1+ -1 + -1 +1 -1 +1 -1 +1 -1 +1 -1 41 -1 +1

poiat (r¢) 0.15 0.85 0.15 0.85 0.85 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.15 0.85 0.15 0.85

aw 1 1 2 2 3 3 4 4
re -1 41 -1 +1 -1 +1 -1 +1
o 1 2 3 3 1 2 3 3
st 1 1 2 2
siq 1 2 1 2

p(stals)) 09625 0.0375 0.0375 0.9625

Table 2.1. Formal task components Upper table shows the state- and action-dependent
1

reward distribution p®-®t (r,), middle table shows the observation function g and lower table

shows the action-independent state transition distribution p (s% 11 |st1)

on at trial ¢,
f:Np = S/t f(t) := s (2.2)

f is defined in a tabular form and corresponds to the sequence of lucrative
shapes and choice options presented to all participants (cf. Supplementary
Material A.3).

e ¢ is the observation function
g:AxX R— O,(a,r)— gla,r) =0 (2.3)

as defined in the second panel of Table 2.1. For the informative actions a = 1
and a = 3, g is injective: The reward r = —1 is mapped onto the observation
o = 1, corresponding to the image of the crossed-out moneybag, while the
reward r = +1 is mapped onto the observation o = 2, corresponding to the
image of the moneybag. For the non-informative actions a = 2 and a = 4,
g is a not injective: Both rewards » = —1 and r = +1 are mapped onto
the observation o = 3, corresponding to the image of the question mark

moneybag.

Agent models. We designed five agent models denoted by A1, A2, A3, C1,
C2 to account for the putative cognitive processes underlying participants’
choices. Before we introduce the individual characteristics of these agents we
first represent the general structure of an agent interacting with an experimental

run. This takes the form of a tuple

MAgent = (Ta Sa A7 Rv Oap (S%) » P (St1+1|8t1) >pat (Otlsi) 7pat (T’AS%)) ) (24)
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where

e T S, A, R and O are defined as the corresponding sets of the task model
MTask-

e p(si) denotes the initial agent belief state, which specifies the agent’s sub-
jective uncertainty over the non-observable state component si at trial ¢ = 1.

p (s1) is defined in terms of the discrete categorical distribution
p(s; =1) = 0.5 and p(s; = 2) = 0.5. (2.5)

As p(s}) is fully parameterized by specifying p(si = 1) we hereinafter also

represent the initial belief state with the scalar by := p(s} = 1).

° D (stl 41 |s%) is the state-state transition distribution, which specifies the agent’s
subjective uncertainty over the non-observable state component s; ; at trial
t+1 given the non-observable state component s! at trial t. More specifically,
for each s' € S, the state-state transition distribution corresponds to a
discrete categorical distribution over s;,; with probability parameters listed
in the third panel of Table 2.1. Note that the trial-by-trial state transitions
are probabilistic because from the perspective of the agent a reversal in
the shapes’ lucrativeness could happen between any two trials. This is in
contrast with the state evolution from the task perspective, which - given
the apriori defined sequence of lucrative shapes - is deterministic (eq. 2.2).
Crucially, participants were informed that a reversal would happen 1-4 times
in a run but they were not further informed about the approximate number
of trials without a reversal. Therefore, we equipped the agent with a constant
reversal probability of 0.0375, which reflects the true reversal frequency in
a run (there were 3 reversals across the 80 trials). For example, if s; = 1
(square is lucrative) the agent allocates the probability of 0.9625 that on
the next trial s;,; again takes on the value 1 (square is lucrative) and the

probability of 0.0375 that its value changes to 2 (triangle is lucrative).

e p® (ry|s}) is the action-dependent state-conditional reward distribution, which
specifies the agent’s subjective uncertainty over the reward r, given the non-
observable state component s! and action a at trial t. More specifically,
for each combination of s' € S' and a € A,2, the action-dependent state-

conditional reward distribution defines a discrete categorical distribution
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over 1, with probability parameters corresponding to
pt=° (rt =r|s} = 31) = ps%zsl"“:“ (re=1). (2.6)

Notice that the only difference between the agent’s action-dependent state-
conditional reward distribution and the task’s state- and action-dependent
reward distribution is that for the former the state is conceived as a random
variable, while for the latter the state is conceived as a parameter. We
equipped the agent with the true reward emission probabilities to reflect
the task instructions. In particular, participants were truthfully informed
that choosing the lucrative shape would return a reward of +1 with a high
probability and a reward of -1 with a low probability and, that choosing the
detrimental shape would return a reward of +1 with a low probability and a

reward of -1 with a high probability.

p™ (0¢|s}) is the action-dependent state-conditional observation distribution,
which specifies the agent’s subjective uncertainty over the observation o,
given the non-observable state component s! and action a at trial . In detail,
for each combination of s € S' and a € A2, the action-dependent state-
conditional observation distribution corresponds to a discrete categorical
distribution over o; with probability parameters resulting from transforming

the distribution of r; by the observation function g. Formally,

P o —olst =s) = Y P (=l =s). (27)
{rlg(a,r)=0}

For the informative actions a € {1, 3}, it thus follows that

P (0p = 1]s; = s') = p™=* (r, = —1|s; = s") (2.8)
and

P (o =2|s; = s') =p™T (1= +1]s; = ') (2.9)
For non-informative actions a € {2,4}, on the other hand, it follows that
P (0p = 3|s; = s') = p»= (ry = —1|s; = ") +p»=" (r, = 1]s; = s') = 1.

(2.10)

As an example, consider the case s' = 1 (square is lucrative) and a = 1

(choose square on the informative side). The agent allocates the same

probabilities to observing either the image of the crossed-out moneybag or
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the image of the moneybag as to obtaining a reward of -1 or +1, respectively.
Alternatively, if for example s' = 1 (square is lucrative) and a = 4 (choose
triangle on the non-informative side) the agent allocates a probability of 1

to observing the image of the question mark moneybag.

Bayesian agents (A1, A2 and A3) The Bayesian agents maintain a belief
state, which subserves their action choice. Specifically, the distributions p (s1),
p (si1lst) and p® (0]s;) of Mgent induce an action-dependent joint probability
distribution p®7-1 (s1.;, 01.7_1). This allows for the recursive evaluation of the
belief state p®:t-1 (s}t o1;_1) on trial ¢ given the history of observations o0y, ;

and actions a;.;_1 as

Zstl 1 D (Stl ‘ngl) pat71 (Otfl |5%,1) pa1:t72 (3t1,1 ‘01:t72)

- PORDIREN (stlsiy) o=t (0r-alsi_y) P22 (s{_1]o1s-2)
(2.11)

with the prior belief state given by p(s{) on trial ¢ = 1. For a derivation of

pr (Stl |01:t71)

eq. 2.11, please refer to Supplementary Material A.4. Intuitively, the Bayesian
agents thus update their belief state in a trial-by-trial fashion based on the
observation made after choosing a shape on either side and by accounting for a
reversal in the shapes’ lucrativeness. In our implementation of the belief state
update we represented the distributions p (s1), p (s{1]st) and p* (o;|s}) with
stochastic matrices and evaluated the belief state using matrix multiplication

in order to optimize computational time (cf. Supplementary Material A.5).

Based on their belief state representation, the Bayesian agents then decide
for an action based on a combination of an action valence function, which
evaluates the desirability of a given action in the light of the agent’s current
belief state, and a decision function, which selects the maximal desirable action

as the action to issue. Specifically, the scalar representation of the belief state
by = ptttt (stl = 1|01;t_1) (2.12)

constitutes the basis for action evaluation by means of an action valence function
v:Ax[0,1] = R, (a,b) — v(a,b). (2.13)

As detailed below, the exact forms of the valence function differ between agents

Al, A2, and A3. However, to realize an action, all Bayesian agents pass the

38



2.2. Methods

evaluated action valences to a maximizing decision rule of the form

d:Rx[0,1] = Age,v(-,b) — d(v(-,b)) := arg maxv(a,b). (2.14)
acA 2
On every trial, the Bayesian agents thus choose the action with the highest

valence.

A1: The belief state-based exploitative agent Agent Al uses its belief
state to maximize the immediate reward gain. To this end, agent Al uses
an action valence function that allocates action valences based on the action-

dependent expected reward under the current belief state,
VA1 (CL, b) = b]Ep“(rtlstlzl) (Tt) + (1 — b) ]Epa(rt|s%:2) (Tt) . (2.15)

The panels of Figure 2.2a visualize the A1 valences for actions a € A;
(choose square on the informative side or triangle on the non-informative side;
left panel) and a € A, (choose square on the non-informative side or triangle
on the informative side; right panel) as functions of the belief state b. The

expected reward is

Eper)s) (1) = 0.85- =140.15-1 = —0.7 (2.16)
for choosing the detrimental shape and

Epe sy (1) =0.85-14+0.15- -1 =0.7 (2.17)

for choosing the lucrative shape. Consequently, the more certain Al is that a
given shape is lucrative (as b gets closer to 0 or 1 from 0.5) the higher the belief
state-weighted expected reward for choosing that shape and accordingly, the
lower it is for choosing the other shape. As the belief state-weighted expected
reward is irrespective of the side of the shape, in the case of both sets of available
actions A1l allocates valences without taking the actions’ informativeness into

account.

A2: The belief state-based explorative agent Agent A2 explores its
belief state to maximize the immediate information gain. To this end, on each

trial ¢ € Ny A2 allocates a valence to each available action a € A, based on
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the expected Bayesian surprise (Itti & Baldi, 2009). Formally,

vaz (@, 0) == oo p™ 1 (0p = 0[014-1) KL (pa“*“a (3t1+1‘01:t717 0) | |pa“*1 (St1|01:t71))7
(2.18)

where
P (ogor—1) = bp® (orlsy = 1) + (1= b) p* (oul s = 2) (2.19)

is the posterior predictive distribution and

KL (50 (shalore 1, 0) |[p (stone1)) = b (%) + (1= b) In (452

(2.20)
is the Kullback-Leibler (KL) divergence. The former specifies the agent’s
subjective uncertainty over the observation o; given action a in trial ¢ and
the history of observations 0;;_; and actions ay., ;. For a derivation of eq.
2.19, please refer to Supplementary Material A.4. For implementational details,
please refer to Supplementary Material A.5. The latter corresponds to the
Bayesian surprise. Specifically, it quantifies the shift between the agent’s belief
state b at trial ¢ and the simulated belief state b6*¢ at trial t4 1 that would result
after action a and observation o in trial ¢t. The panels of Figure 2.2b visualize
the A2 valences for actions a € A; (choose square on the informative side or
triangle on the non-informative side; left panel) and a € As (choose square on
the non-informative side or triangle on the informative side; right panel) as
functions of the belief state b. Choosing the shape on the non-informative side
does not deliver reward information. Therefore, the expected Bayesian surprise-
based A2 valence is always higher for the informative action, irrespective of
the agent’s belief state. Yet, the difference between the informative and non-
informative action valences depends on the belief state. Specifically, in contrast
to A1, the more uncertain A2 is about the lucrative shape (as b gets closer to
0.5 from 1 or 0) the larger the difference between the valences and thus the

stronger the agent’s preference for the informative action.

A3: The belief state-based hybrid explorative-exploitative agent
Agent A3 combines the choice strategies of A1 and A2 and uses its belief
state to maximize the combination of immediate reward gain and information
gain. Formally, in each trial ¢ € Ny for each available action a € A2, A3

evaluates its action valences based on the convex combination of the action
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valences of agents Al and A3
vas(a, b) == Avai(a,b) + (1 — X) vas(a, b), (2.21)

where A € [0, 1] is the weighting parameter.

The panels of Figures 2.2¢ and d visualize the A3 valences for actions a € A;
(choose square on the informative side or triangle on the non-informative side;
left panels) and a € A, (choose square on the non-informative side or triangle
on the informative side; right panels) as functions of the belief state b for A
values 0.5 and 0.25, respectively. For A = 1 the valences of agent A3 correspond
to the valences of Al and for A = 0 they correspond to the valences of A2. For
A values of the interval |0, 1[, the strategy of A3 is a mixture of Al and A2:
For less extreme belief values (b close to 0.5) A3 allocates a higher valence to
choosing the shape on the informative side even if the agent allocates a lower
probability to that shape being lucrative. This shows the contribution of A2.
For more extreme belief state values (b close to 0 or 1) A3 allocates a higher
valence to choosing the shape with the higher probability to be lucrative even
if the action is non-informative. This shows the contribution of A1. Note,
however, that a A value of 0.5 should not be understood as A3 resembling 50%
the strategy of Al and 50% the strategy of A2. The reason for this is that A3
applies a convex combination of A1 and A2 valences and they have different
ranges. Therefore, while for A = 0.5 the valences of A3 primarily reflect the
contribution of Al (Figure 2.2¢), the contribution of A2 becomes evident for
A =0.25(2.2d).

Control agents C1 and C2 The control agents C1 and C2 rely on heuristic
choice strategies. Because C1 and C2 do not represent a belief state, their

action valence function is a function of a only,
v:A—=>Ra—wv(a). (2.22)

To realize an action on trial ¢ € N, both agents use a probabilistic decision
rule. Specifically, C1 and C2 directly translate the action valences into action

and observation history-dependent choice probabilities.

C1: The belief state-free random choice agent C1 is the simplest agent
and may be considered a cognitive null model. This agent does not have

an optimization aim based on which it could differentiate between actions.
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Figure 2.2. Action valences of the Bayesian agents. a Action valences of agent Al as
functions of the belief state. Al allocates action valences based on the belief state-weighted
expected reward. As the expected rewards for choosing the lucrative or detrimental shape
are constant, the more extreme the agent’s belief that a given shape is lucrative the higher
the valence it allocates to choosing the corresponding shape and the lower the valence it
allocates to choosing the other shape. The valences of A1 do not depend on the actions’
informativeness and therefore the two panels are identical. b Action valences of agent A2 as
functions of the belief state. A2 allocates action valences based on the expected Bayesian
surprise, which is higher for the informative action than for the non-informative action and
therefore the two panels are converse. The less extreme the agent’s belief that a given shape
is lucrative the larger the difference. c-d Action valences of agent A3 with A = 0.5 and
A = 0.25 as functions of the belief state. A3 allocates action valences based on the convex
combination Al and A2 action valences. The higher the value of A the more the valences of
A3 resemble the valences of A1l and correspondingly, the lower the value of A the more the
valences of A3 resemble the valences of A2.

Therefore, C1 allocates equal valences to all available actions a € A2,

1
ver (a) = A =0.5. (2.23)

C2: The belief state-free win-stay-lose-switch agent Agent C2 aims
to maximize the immediate reward without a belief state. To this end, C2
adopts a heuristic win-stay-lose-switch strategy (Robbins, 1952). Specifically,
on each trial ¢t € Ny C2 considers which shape to choose based on previous
observations that signal the reward value. This agent does not take the sides
into account when allocating action valences. Formally, on trial ¢ = 1 the

strategy of C2 corresponds to

ey, (@) == 0.5 for all a € A, (2.24)
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Then, on trials t = 2,3, ..., T agent C2 allocates action valences according to

0, ifopy=1anda€ A,_jo0ro_1=2anda¢ A,
Ve, (a) == 1< 1, ifo,1=2anda€ Ay qoro1=1anda¢ A4,
veg, , (@), ifog =3

(2.25)

where A denotes the set of actions of choosing a given shape and thus A := {1, 2}
for the actions choose square and A := {3,4} for the actions choose triangle.
In words, C2 allocates equal initial action valences, because on trial t = 1 no
previous observations are available and therefore the agent can not differentiate
between actions. Then, on trials t = 2,3, ..., T the valences C2 allocates depend
on the observation on trial ¢ — 1. Specifically, if on trial ¢ — 1 the choice of
a shape results in the observation o = 1, i.e. the image of the crossed-out
moneybag, then on trial ¢ the agent allocates a valence of 0 to choosing the
same shape and a valence of 1 to choosing the other shape. In contrast, if on
trial ¢t — 1 the choice of a shape results in the observation o = 2, i.e. the image
of the moneybag, then on trial ¢ the agent allocates a valence of 1 to choosing
the same shape and a valence of 0 to choosing the other shape. Crucially, if
on trial t — 1 the choice of a shape results in the observation o = 3, i.e. the
image of the question mark moneybag, the value of the returned reward is not
signalled to the agent and therefore on trial ¢t C2 relies on its valence allocation
scheme from trial ¢ — 1. That is, the valence C2 allocates to choosing a given
shape on trial ¢ corresponds to the valence the agent allocated to choosing that

shape on trial ¢t — 1.

2.2.4 Model evaluation and validation

Data analysis models To evaluate the agent models in light of the partici-
pants’ data, we first embedded the agent models into a statistical framework
to account for post-decision noise. In particular, for agents Al, A2, A3 and
C2 we formulated the data analysis models by combining the agent-specific
valences with the softmax decision rule (Reverdy & Leonard, 2015). Specifically,
we defined the probability of action a given the history of actions ai.;_; and

observations 0141 as

exp (171w(a, +))
acA, 2 €xXp (T_IU(&7 )) ’

p" (ar = alays—1,014-1) == 5 (2.26)
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where for each agent v(a,-) is substituted with the agent-specific valence
function. Parameter 7 € Ry encodes the level of post-decision noise: The
lower the value of 7 the higher the probability that the action with the higher
valence is realized and thus the lower the post-decision noise. Notably, as
agent C1 allocates equal action valences throughout, for any 7 value the
softmax decision rule would return uniform probabilities. Therefore, for this
agent a softmax decision rule is not necessitated and the data analysis model

corresponds to

p (at = a|@1:t—1, 01:t—1) = p(at = Cl|a1:t—1) = (a) . (2-27)

Parameter estimation We used a maximum log likelihood (ML)-based
approach to estimate the parameters of the data analysis models of A1, A2, A3
and C2 based on the experimentally acquired data. Specifically, we assumed
conditionally independently and identically distributed actions and thus for

each participant defined the log likelihood function of each model as

In:O =R, 00— Iy(0):=1In nglpe (anl@1n—1,01:n-1) = Zf:;l In p? (an|@1:0-1,01:0-1)-
(2.28)

Note that we here replaced t with n and T with N. The reason for this is to
emphasize that we only considered trials with a valid choice and thus n € Ny
denotes the participant’s nth valid trial. For agents A1, A2 and C2 the log
likelihood [ is a function of parameter 7 of the softmax decision rule and thus,
for these agents 6 := 7. For A3, the log likelihood [ is additionally a function
of the weighting parameter A and thus, for this agent 6 := (7, \). For every
agent and participant we estimated the free parameters by maximizing the log
likelihood function [ using Matlab’s constrained nonlinear optimization routine
fmincon (Byrd, Gilbert, & Nocedal, 2000; Byrd, Hribar, & Nocedal, 1999; Waltz,
Morales, Nocedal, & Orban, 2006). We set the boundary constraints to 0.01
and 2.5 for 7 and to 0 and 1 for A\. The initial values were chosen random
from a continuous uniform distribution between the boundary constraints. To
mitigate the risk of finding local instead of global maxima we repeated the
parameter estimation procedure 10-times and recorded the parameter estimates
of the repeat with the highest maximum log likelihood. Note that as the data
analysis model of C1 does not have free parameters, for this agent the log

likelihood function [y is specified directly.
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Model comparison To compare the models, we first computed the Bayesian
Information Criterion (BIC; Schwarz, 1978) for each agent and participant as

BIC = Iy (0) — g In N, (2.29)

where k is the number of free parameters. The BIC scores of all agents and
participants were subsequently entered for random-effects Bayesian model
selection as implemented in the spm_BMS function in the SPM toolbox to
obtain protected exceedance probabilities (www.fil.ion.ucl.ac.uk/spm/; Rigoux,
Stephan, Friston, and Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran,
and Friston, 2009). These indicated the group-level probability that a particular
model was more likely than any other model of the model space. In addition,
we computed a pseudo-r? statistic p (McFadden, 1973) for each participant and
agents Al, A2, A3 and C2 as

0)

lNAgent;éCl (

p=1- (2.30)

lNC1
to express the variance of a participant’s choices explained by a strategy that
differentiates between actions as implemented by agents A1, A2, A3 and C2

compared to a non-differentiating strategy as implemented by agent C1.

Model recovery We conducted model recovery analysis to validate our
modelling initiative and test if we can reliably distinguish the agent-specific
data analysis models from each other. Specifically, for every model we first
generated synthetic data and then evaluated all models based on these data
using ML-based approach as described above. The data corresponded to
the agent-specific actions on 160 trials, with trial sequence identical to the
participants’ trial sequence and agent action-dependent observations as given
by the observation function g and the state- and action-dependent reward
distribution pstl”“ (ry). For agent C1 data were generated directly. For agents
A1, A2, A3 and C2 data were generated with 7 parameter values between 0.05
and 2.5 with an increment of 0.05 to evaluate if we can identify each model
for different levels of post-decision noise across the 7 parameter space used for
estimation. In addition, for A3 data were generated with parameter values
A€ {0.1,0.25,0.3,0.5,0.7,0.9} to probe if it can be distinguished from agents
A1l and A2, for low to high values of the weighting parameter. With each
data generating model and parameter value we simulated 24 data sets, the

same number as the participant sample size. Based on each synthetic data set
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we evaluated the maximum log likelihood of all models and conducted model
comparison analysis as described above. We repeated this procedure 10-times

and computed the average protected exceedance probabilities across repeats.

Parameter recovery To test if we can reliably estimate the free parameters
of the data analysis models of A1, A2, A3 and C2 across the parameter space
as defined by the estimation boundary constraints, we conducted parameter
recovery analysis. To this end, we used the synthetic ML parameter estimates
obtained during model recovery analysis. More precisely, for a given data
generating model and simulation parameter we computed the average ML
parameter estimates of the same model across the group of 24 synthetic data

sets and 10 repeats and compared it with the simulation parameter.

Winning model validation To validate the most plausible model (Wilson
& Collins, 2019), we generated synthetic data sets with it for each participant
using the participant’s ML parameter estimates. Like in the model recovery
analysis, the data corresponded to the agent’s actions on 160 trials, with trial
sequence identical to the participants’ trial sequence and the agent’s action-
dependent observations as given by the observation function g and the state- and
action-dependent reward distribution p% (r¢). We then entered each synthetic
participant data set for descriptive analyses as described above. Specifically,
we computed the same nine summary choice rates as for the participants and
repeated the data generation and summary choice rates evaluation 100-times.
We then computed the averages across simulation repeats and entered them
for synthetic group-summary choice rates evaluation. Furthermore, we also
evaluated synthetic group trial-by-trial choice rates as well as their between

reversals averages based on the simulation repeats-averaged agent actions.

In addition and finally, we performed model and parameter recovery analysis
of the winning model with the participants’” ML parameter estimates to ensure
that the model can reliably account for the empirically acquired data. We
used the same recovery procedures as described above with the exception
that within a single repeat each of the 24 data sets was generated with a
different participant’s ML parameter estimates. Note that to avoid confusion,
we hereinafter use the subscript , to refer to empirical (participant) parameter

estimates.
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2.3 Results

2.3.1 Descriptive results

Participants completed the majority of trials with an overall valid choice
rate of 97.86% + 0.62. There was no difference in the number of missed
choices with respect to trial types: The valid choice rate on type I trials was
97.97% =+ 0.62 and the valid choice rate on type II trials was 97.76% =+ 0.68.
On type I trials, the majority of action choices were lucrative and informative
(87.45%=1.53) while only a few were detrimental and non-informative (12.55%=+
1.53). The difference between the choice rates on type II trials was less
pronounced: 66.01% =+ 2.28 of the action choices were lucrative and non-
informative while 33.99%+2.28 were detrimental and informative. Summed over
informative and non-informative action choices, the lucrative action choice rate
was 76.74%=+1.7, whereas summed over lucrative and detrimental action choices,
the informative action choice rate was 60.74% =+ 0.92. Notably, participants
made significantly more lucrative choices, if the lucrative action was also
informative (and the alternative detrimental and non-informative) compared
to lucrative choices, if the lucrative action was also non-informative (and the
alternative detrimental and informative; two-sided paired sample t-test, ¢(23) =
11.55,p < 0.001). Together, these results suggest that while participants’
choices were primarily guided by the actions’ lucrativeness, participants also

took the action’s informativeness into account.

We next evaluated group trial-by-trial choice rates. As shown in Figure 2.3a,
on the majority of trials the lucrative action choice rates prevailed over the
detrimental action choice rates. This was more pronounced for the trial-by-trial
lucrative and informative action choice rates. Crucially, both the average
lucrative and informative and the average lucrative and non-informative action
choice rates showed an overall increase between two reversals (Figure 2.3b).
This indicates that participants gradually resolved their uncertainty about
the currently lucrative shape. Moreover, although the average lucrative and
informative action choice rate was larger than the average lucrative and non-
informative action choice rate on all trials between two reversals (with the
exception of the 18th trial), their difference decreased slightly between the first
trials after and the last trials before a reversal (2.3c). This suggests that with
decreasing uncertainty about the currently lucrative shape participants took

the actions’ informativeness less into account.
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Figure 2.3. Descriptive results. a Group trial-by-trial lucrative and informative action,
lucrative and non-informative action, detrimental and informative action and detrimental
and non-informative action choice rates. The light grey vertical lines at the annotated trials
represent the trials after which a reversal occurred (in addition, the lines at ¢ = 80 and

= 160 mark the end of the first and second run, respectively). The choice rates marked
by light and dark hues of the same color were symmetrical. On most trials the lucrative
action choice rates prevailed. This was more pronounced for the trial-by-trial lucrative and
informative action choice rates. b Average between reversals group trial-by-trial lucrative
and informative action and lucrative and non-informative action choice rates. Both choice
rates increased over the trials between two reversals. ¢ Average between reversals group
trial-by-trial lucrative and informative action and lucrative and non-informative action choice
rates difference. The difference decreased between the first trials after and the last trials
before a reversal (compare for instance the distinct spikes at trials four and 18). Note that
the acronym GTTCRs in the titles of b and ¢ stands for group trial-by-trial choice rates.
Error bars display the SEM.

2.3.2 Modeling results

Model and parameter recovery results We validated our modeling initia-
tive by conducting recovery analyses of the agent-specific data analysis models
and their free parameters across the entire parameter space. Figure 2.4 summa-
rizes the results of the model recovery analyses. For each data generating model
the corresponding subplot shows the protected exceedance probabilities of each
data evaluation model. For the data generating models of C2, A1, A2 and A3
these probabilities are shown as functions of the post-decision noise parameter
7 used for data generation. As shown in Figure 2.4a for data generated with
C1 the protected exceedance probability was maximal for C1, which indicates
that the data analysis model of C1 is identifiable. For data generated with C2

and Al the protected exceedance probabilities were maximal for C2 and Al,
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respectively, for all values of 7. This indicates that the data analysis models of
C2 and A1l are identifiable for low to high levels of post-decision noise. For data
generated with A2 the protected exceedance probabilities were maximal for A2
for 7 values up to 0.35 and for C1 for larger values of 7. This indicates that
A2 is identifiable for low but not for high levels of post-post-decision noise. For
data generated with A3 with A = 0.25 the protected exceedance probabilities
were maximal for A3 up to 7 = 0.25, after which A1 and then C1 exceeded.
This indicates that, similarly to A2, A3 with A = 0.25 is identifiable for low
but not for high levels of post-decision noise. With increasing noise the data is

better accounted for by Al and eventually by C1.

Notably, for data generated with A3, model recovery depend not only on
the post-decision noise parameter 7 but also on the weighting parameter \. As
shown in Figure 2.4b for A values up to 0.5 the protected exceedance probabilities
were maximal for A3 for small 7 values (0.25,0,2 and 0.1, respectively). Then,
for A = 0.1, A2 and then C1 prevailed, while for A = 0.3 and A = 0.5, Al
and then C1 prevailed. Due to the increasing similarity between the valences
of A3 and Al (cf. Figure 2.2¢-d), for A values larger than 0.5 the protected
exceedance probability profiles shifted towards that of A1. More precisely, for
A= 0.7 and A = 0.9 the protected exceedance probabilities were maximal for
Al up to 7 = 1.9 and 7 = 2.4, respectively, and for C1 for larger 7 values.
Together, consistent with the interpretation of the weighting parameter, these
results imply that the data analysis model of A3 is identifiable for low to
medium A values for low levels of post-decision noise. Otherwise, A3 can not

be distinguished from A1l or A2 and eventually, from C1.

The results of the parameter recovery analyses are visualized in Figure 2.5.
Here, model-specific ML parameter estimates are displayed as functions of the
post-decision noise parameter 7. The recovered ML parameter estimates 7o,
Ta1, Ta2 and T43 were consistent with the simulation parameters 7co = 741 =
Tas = Tagz for small values. Otherwise, the parameters were first over- then
underestimated. As shown in Figure 2.5a this bias was subtle for C2 and Al
and only affected large 7 values (between approximately 1.5 and 2.5) while it
was more pronounced for A2 and A3 (with A = 0.25) and affected medium to
large 7 values (between approximately 0.5 and 2.5). These results are consistent
with the model recovery results: For large post-decision noise, data generated
with any model starts to resemble a random choice strategy and therefore the

recovered parameter estimate for 7 reaches asymptote.

Figure 2.5b shows the parameter recovery results for data generated with
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Figure 2.4. Model recovery results. a Model recovery results for all agents. Each
subplot pertains to a data generating agent and shows the protected exceedance probabilities
of the data analysis models evaluated on datasets of the data generating agent. For data
generated with agent C1, the protected exceedance probability was maximal for C1. For data
generated with agents C2, A1, A2 and A3, the protected exceedance probabilities depend
on the value of the post-decision noise parameter T used for data generation. Agents C2
and Al are recoverable up to high levels of post-decision noise. Agents A2 and A3 (with
A = 0.25) are recoverable for low levels of post-decision noise. b Model recovery results for
agent A3 with different A values. For data generated with agent A3, the protected exceedance
probabilities also depend on the value of the weighting parameter A used for data generation.
Agent A3 is recoverable up to medium A values for low levels of post-decision noise.

A3 with different values of A\. For small values of 7, A was reliably recovered
across the parameter space, with a slight underestimation for A = 0.9. Yet,
for medium to large 7 values the ML parameter estimate A was biased. These
findings are also in line with the model recovery results: First, the deflation
effect for A = 0.9 and small values of 7 shows that for large values of the weight
parameter A3 is indistinguishable from A1 and thus the estimate ) reaches
asymptote. Second, the bias in A for medium to large values of 7 again shows
that with increasing post-decision noise data generated with A3 and any weight

starts to resemble a random choice strategy and thus A can not be reliably
identified.

Model comparison results Upon validating our modeling initiative we
evaluated and compared the agent-based models in light of participants’ data.
For 18 of the 24 participants the BIC score was maximal for agent A3. Ac-
cordingly, the group cumulative BIC score was maximal for this agent showing
that A3 explained participants’ choices the best (Figure 2.0a left panel). More-

over, the group-level protected exceedance probability was larger than 0.99
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Figure 2.5. Parameter recovery results. a Parameter recovery results for all agents
with free parameters. For every agent, the corresponding subplot shows the ML parameter
estimates as functions of the post-decision noise parameter 7 used for data generation. The
post-decision noise parameter of agents C2 and Al is recoverable from small to medium
values. The post-decision noise parameter of agents A2 and A3 (with A = 0.25) is recoverable
for small values. The bias in 7¢g2, Ta1, Ta2 and 743 shows that for a sufficiently high level
of post-decision noise, all agents emulate agent C1, and the estimates consequently reach
asymptote. b Parameter recovery results for agent A3 with different \ values. The weight
parameter \ of agent A3 is recoverable for small 7 values, except for A = 0.9. This shows that
for large A values agent A3 emulates agent Al and, consequently, \ reaches asymptote. For
medium to large values of the post-decision noise parameter, \ is a biased estimate. Error
bars display the average SEM across repeats.

for A3 (Figure 2.6a right panel), which supports the conclusion that the most
frequently applied strategy among the group of participants was the strategy
implemented by A3. In addition, the pseudo-r? statistic returned a considerably
high value for the quality of model fit: On average, A3 explained 56.73% =+ 4.6

of the participants choices.

Winning model validation results To assess the behavioral validity of the
winning A3 model, we generated synthetic data with it with each participant’s
ML parameter estimates ép, 43 and computed the same summary and trial-
by-trial choice rates as for the participants. Consistent with the empirical
results, most synthetic action choices were lucrative and informative with
a rate of 84.98% + 1.29, followed by significantly fewer lucrative and non-
informative synthetic actions with 66.35% =+ 1.96 (two-sided paired sample
t-test, t(23) = 11.59,p < 0.001). Furthermore, as shown in Figure 2.6b the
between reversals trial-by-trial dynamics of the synthetic actions exhibited a

very similar pattern to that of the participants (cf. Figure 2.3b-c). Specifically,
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while both the average lucrative and informative and the average lucrative and
non-informative action choice rates increased between two reversals (left panel),
their difference decreased moderately between the first trials after and the last
trials before a reversal (right panel). Altogether, these results lend a high face
validity to the most plausible A3 model.

As a last step we conducted model and parameter recovery analyses of
the winning A3 model and the participants’ ML parameter estimates ép, A3 to
evaluate the model’s reliability in explaining the experimentally acquired data.
Participants varied moderately with respect to both 7,, 43 and 5\;,, 3. Specifically,
7,43 ranged from 0.035 to 0.377 with an average of 0.124 + 0.014 and A, 43
ranged from 0.044 to 0.622 with an average of 0.274 £+ 0.027. As suggested
by the results of the recovery analyses across the entire model and parameter
space, for comparable 7 and \ values the model of A3 and its free parameters
are reliably recoverable. Indeed, based on data generated with A3 and 6, 43
both the model (Figure 2.6¢) and parameter recovery (Figure 2.6d) analyses
were successful. These results confirm the reliability of the best fitting A3

model.

2.4 Discussion

In this work, we addressed the question of how humans make sequential
decisions if all actions bear economic consequences but only some deliver
also information. By collecting participant choice data on an information-
selective reversal bandit task, we demonstrated that in such situations, humans
balance between exploratory and exploitative actions depending on their level
of uncertainty. To arrive at this conclusion, we applied a comprehensive set
of descriptive and agent-based computational modeling analyses (Russell &
Norvig, 2010), including model evaluation based on relative (i.e., cumulative
BIC score, protected exceedance probability and pseudo-r? statistic) as well as
absolute (similarity between empirical and synthetic choice patterns) measures
(Wilson & Collins, 2019). Formally, the behaviorally most plausible strategy
was captured by a Bayesian agent that assessed the desirability of an action
by applying a convex combination of the expected Bayesian surprise (Itti &
Baldi, 2009) and the expected reward under its belief state. A series of recovery
analyses validated our modeling initiative and established the robustness and
reliability of our results.

We deem the key contributions of this work to be threefold: We introduced
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Figure 2.6. Computational modeling results. a Model comparison results. Both the
group cumulative BIC scores (left panel) and the protected exceedance probabilities (right
panel) were maximal for the agent A3 indicating that this model explained participants’
choice data the best. b Model A3 validation results. Average between reversals group
trial-by-trial lucrative and informative action and lucrative and non-informative action
choice rates (left panel) and their difference (right panel) computed based on synthetic
data sets generated with A3 and ép, As3. The patterns closely resemble those observed in the
participants’ data. ¢ Model recovery result based on data generated with A3 and ép, 43. The
protected exceedance probability was maximal for A3 indicating that the winning model was
identifiable. d Parameter recovery results based on data generated with A3 and 6, a3. Both
the post-decision noise parameter estimates 7, 43 (left panel) and the weighting parameter
estimates 5\p’ A3 (right panel) were reliably recoverable.

a novel information-selective reversal bandit task, we proposed and thoroughly
validated an agent-based modeling framework, and we provided evidence for
uncertainty-guided exploration-exploitation. In the following, each of these

contributions is discussed in turn.

As the first of our contributions, we introduced an information-selective rever-
sal bandit task suitable to model a class of canonical sequential decision-making
problems, in which information about the conferred reward is not available for

every action. As already mentioned in Section 2.1, previous research primar-
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ily employed pure-exploration/sampling and exploration-exploitation/partial-
feedback paradigms to study sequential decision making under uncertainty
(Bubeck et al., 2009; Hertwig & Erev, 2009; Sutton & Barto, 2018; Wulff
et al., 2018). The pure-exploration/sampling paradigm (Bubeck et al., 2009;
Hertwig & Erev, 2009; Ostwald et al., 2015) models sequential decision-making
problems in which an action either confers information or reward. In the
classical variant of this paradigm, an action that confers reward automatically
terminates the task. In an extended variant, referred to as the observe-or-bet
task (Blanchard & Gershman, 2018; Navarro et al., 2016; Tversky & Edwards,
1966), the deciding agent can freely switch between the 'observe’ action that
confers information and the 'bet’ actions that confer reward. Specifically, the
observe action returns information about the expected reward value of the
bet actions, but it does not return reward. The bet actions return rewards
according to their associated reward distributions but no information. Similar
to the bet actions, in our task one of the available actions confers only reward
but no information. However, in our task, the other available action does not
only confer information, as the observe action does, but it also confers reward.
Therefore, while exploration and exploitation are temporally separated in the
observe or bet task, they have to be balanced simultaneously in our task. In
this regard, our task is similar to the exploration-exploitation /partial-feedback
paradigm (Hertwig & Erev, 2009; Sutton & Barto, 2018).

The classical variant of the exploration-exploitation /partial-feedback paradigm
is the multi-armed bandit task (Berry & Fristedt, 1985). In the multi-armed
bandit task, the deciding agent chooses between a set of ’arms’. Akin to our task,
each arm confers reward according to its associated reward distribution, and,
in contrast to our task, each arm confers also information about its expected
reward value. A drawback of this design is that the co-occurrence of reward
and information evokes a confound between an action’s value estimate and
the associated uncertainty: As people tend to favor the action with the higher
value estimate, for that action the associated uncertainty becomes smaller -
simply because for that action more reward observations were made. This
makes it difficult to uncover uncertainty-guided exploration in the standard
multi-armed bandit task (Dezza, Angela, Cleeremans, & Alexander, 2017;
Gershman, 2018; Wilson et al., 2014). Our task circumvents this problem by
adopting a symmetrical reward structure of the actions: The probability of
the positive reward for the lucrative action is identical with the probability of

the negative reward for the detrimental action. Likewise, the probability of
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the negative reward for the lucrative action is identical with the probability of
the positive reward for the detrimental action. This way, each reward observa-
tion following the informative action confers the same amount of information
about the expected reward value of both the lucrative and detrimental action.
Furthermore, as in each trial information is randomly coupled with either the
lucrative or the detrimental action, our task arguably evokes a more marked

exploration-exploitation dilemma than the multi-armed bandit task.

As the second of our contributions, we proposed and thoroughly validated
an agent-based modeling initiative. This initiative consisted of belief state-
based agents formalizing subjective uncertainty-based exploitative, explorative
and hybrid explorative-exploitative strategies as well as belief state-free agents
formalizing simple random choice and win-stay-lose-switch strategies. The
belief state-based agents implement Bayesian update to infer the not directly
observable structure of the task environment, i.e., which is the lucrative and
which is the detrimental action. While optimal Bayesian learning may seem
to be a strong assumption, it has been shown to approximate human learning
reasonably well in comparable non-stationary tasks, such as the two-armed
reversal bandit task (Hampton, Bossaerts, & O’Doherty, 2006) or non-stationary
versions of the observe or bet task (Blanchard & Gershman, 2018; Navarro et al.,
2016) and the multi-armed bandit task (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006; Speekenbrink & Konstantinidis, 2015). In addition, by including
belief state-free agents in our model space, we also accounted for simple
strategies that do not require Bayesian update. Of these, the win-stay-lose-
switch agent adopts a well established effective strategy to approach similar
bandit problems (Robbins, 1952).

The three belief state-based agents implement their respective strategies
by following different optimization aims. In particular, the belief state-based
exploitative agent seeks to maximize the belief state-weighted expected re-
ward. The belief state-based explorative agent seeks to maximize the expected
Bayesian surprise. The belief state-based hybrid explorative-exploitative agent
seeks to maximize the convex combination of these two quantities. Belief state-
weighted expected reward is a natural quantity to formally capture immediate
reward gain and thus myopic exploitation (Sutton & Barto, 2018). Expected
Bayesian surprise is one of many quantities that have been proposed to formally
capture immediate information gain and thus myopic exploration (Schwarten-
beck et al., 2019). As alluded to in Section 2.1, we here opted for Bayesian

surprise due to its putative representation in the human neurocognitive system
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(Gijsen, Grundei, Lange, Ostwald, & Blankenburg, 2020; Itti & Baldi, 2009;
Ostwald et al., 2012).

Importantly, we would like to note that our definition of exploration pertains
to a form of exploration that is generally referred to as 'directed exploration’
(Gershman, 2018, 2019; Wilson et al., 2014). This term is used to distinguish
information gain maximizing exploration from 'random exploration’. Random
exploration is a form of exploration that achieves information gain by imple-
menting a stochastic strategy, i.e. making stochastic choices based on the
actions’ reward value estimate. While there are more principled ways such
as Thompson sampling (Thompson, 1933), random exploration is commonly
accounted for by the softmax decision rule (Reverdy & Leonard, 2015). Notably,
we here did not link the softmax decision rule to random exploration. Instead,
we used it to embed the agents into a statistical framework in order to account
for post-decision noise. This way, we clearly separated the deterministic strate-
gies implemented by the agents and the probabilistic agent-based data analysis
models. In future work, we aim to broaden our model space by considering
agents that adopt random exploration. Crucially, we argue that this step will
require a statistical framework that allows to reliably partition the variability
of choice data into components relating to the agent’s stochastic strategy and

to post-decision noise (cf. Ostwald, Kirilina, Starke, and Blankenburg, 2014).

As the third and final of our contributions, we provided clear evidence
for uncertainty-guided exploration-exploitation in our task: As uncertainty
decreased, participants’ choices were less influenced by the prospect of informa-
tion gain and more influenced by the prospect of reward gain. Our finding is
consistent with the behavior in the observe or bet task. In the first empirical
study using the observe or bet task, Tversky and Edwards (1966) found that
participants explored more, i.e., chose the observe action more frequently, if
they (falsely) believed that the underlying environment was dynamic, i.e., the
lucrative and detrimental bet actions reversed over time. While Tversky and
Edwards (1966) did not relate this result to the notion that dynamic environ-
ments promote uncertainty, which, in turn, promotes exploration, in a recent
study, Navarro et al. (2016) formally tested this hypothesis. By modeling
participants’ choices in both static and dynamic versions of the observe or bet
task, they demonstrated that switches between the exploratory observe action

and the exploitative bet actions were mediated by uncertainty.

Our result is also in line with recent findings from studies employing multi-

armed bandit tasks. Work by several groups showed that when controlling
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for the value estimate-uncertainty confound, behavior in static two-armed
bandit tasks reflects an uncertainty-dependent combination of exploration and
exploitation (Dezza et al., 2017; Gershman, 2018, 2019; Wilson et al., 2014).
Notably, however, consistent with the notion that the value estimate-uncertainty
confound has the potential to mask directed exploration, findings from earlier
studies not accounting for this confounding effect are less conclusive. For
example, Zhang and Yu (2013) also found evidence for a belief state-based
explorative-exploitative strategy in static four-armed bandit tasks. In contrast,
Daw et al. (2006) did not find evidence for such a strategy in analyzing choices
in a dynamic four-armed bandit task with changing action values. While the
finding from Daw et al. (2006) is contrary to our finding, acknowledging that
value estimate and uncertainty are not confounded in our task, these two
findings can be reconciled.

In conclusion, in the current work we introduced a task that models a
subset of real-life sequential decision-making problems that has been neglected
previously: problems, in which information about the conferred reward is
not available for every action. Importantly, this task allows to investigate
a pronounced form of simultaneous exploration and exploitation processes
without introducing the value estimate-uncertainty confound. We proposed an
agent-based modeling framework formalizing various sequential decision-making
strategies in our task and discussed how this framework may be extended in
the future. Together, by analyzing participants’ choices in our task using
descriptive and agent model-based methods, we provide orthogonal evidence for
an uncertainty-guided balance between exploration and exploitation in human

sequential decision making under uncertainty.

2.5 Data and code availability

Data formatted according to the Brain Imaging Data Structure (Gorgolewski
et al., 2016) and code implementing all analyses are hosted on Open Science
Framework (Nosek et al., 2015) and are available at https://osf.io/vdmah /7vie
w__only=ab81d36aa8944464a7a81578b79afa8e.
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3 The neurocomputational mechanisms
of sequential decision making in a
multistep task with partially

observable states

3.1 Introduction

In a class of sequential decision-making tasks, actions of the deciding agent
affect next states of the environment and thereby future rewards (e.g., Bertsekas
(2000), Puterman (2014), and Sutton and Barto (2018)). A central question in
decision neuroscience research is whether humans and other biological deciding
agents plan ahead or resort to model-free decision-making strategies in such
tasks, usually discussed under the name multistep tasks. Both class of strategies
assume that the agent tries to maximize its cumulative reward. However, to
choose between the actions in a given state in light of this goal, planning
strategies mentally simulate the consequences of actions, whereas model-free
decision-making strategies simply rely on some instantaneously available reward-
related information or the reward history (e.g., Collins and Cockburn (2020),
Daw, Niv, and Dayan (2005), Dayan (2012, 2014), Dayan and Daw (2008),
Dickinson and Balleine (2002), Dolan and Dayan (2013), Kaplan, Schuck, and
Doeller (2017), Solway and Botvinick (2012), and Tolman (19418)).

While many studies have demonstrated that humans engage in planning,
these studies examined sequential decision making in multistep tasks where
the environmental states are fully observable (Cushman & Morris, 2015; Daw,
Gershman, Seymour, Dayan, & Dolan, 2011; Doll, Duncan, Simon, Shohamy,
& Daw, 2015; Gléascher, Daw, Dayan, & O’Doherty, 2010; Huys et al.,

Korn & Bach, 2018; Momennejad et al., 2017; Simon & Daw, 2011; Wunderhch,
Smittenaar, & Dolan, 2012). Yet, in many real-life multistep tasks certain
components of the states remain latent and the available observations only
convey ambiguous information about these. To illustrate, consider someone
trying to find their lost ring at the beach. The ring is buried deep in the sand

but a metal detector can help to locate it by signalling at each step the direction
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towards it with some associated noise. Similar to this example, humans have
to navigate various abstract representational spaces, for example, career paths,
financial investment schemes, or maintaining a healthy lifestyle. Across all
these domains, states are often only partially observable and therefore the
decisions are imbued with state uncertainty (Bach & Dolan, 2012; Dayan &
Daw, 2008; Ma & Jazayeri, 2014).

The Bayesian brain hypothesis generally posits that under uncertainty, the
brain uses Bayes rule to probabilistically infer the hidden cause underlying
sensory data. Abundant evidence supports the Bayesian brain hypothesis across

various cognitive domains, such as perception (Harrison, Stephan, Rees, &

Friston, 2007; Ostwald et al., 2012) and reasoning (Konovalov & Krajbich,
2018; Schwartenbeck FitzGerald, & Dolan, 2016; Tenenbaum, Griffiths, &
Kemp, 2006). Applied to sequential decision making under state uncertainty,

the brain is postulated to maintain a Bayes optimal (or near-optimal) belief
state representing its subjective uncertainty about the state given the history
of observations and actions, on the basis of which actions can be evaluated (Ma,

)19; Rao, 2010). Crucially, the combination of this notion with the aforemen-
tioned findings on sequential decision making in multistep tasks suggests that
if the states comprise latent components, humans plan ahead on the basis of
belief states. However, as human sequential decision making in multistep tasks
with partially observable states has so far received little attention in decision

neuroscience research, evidence supporting this hypothesis is elusive.

State uncertainty introduces an additional critical computational dimension
to planning (e.g., Dayan and Daw, 2008): A belief state-based planning agent
may try to maximize its cumulative reward by exploiting its accumulated
knowledge about the state. Alternatively, a belief state-based planning agent
may explore first. That is, it may try to resolve its state uncertainty by choos-
ing the action with the highest associated information gain to enable that
the subsequent exploitative choices yield the maximum attainable cumulative
reward. If and how biological agents alternate between exploration and ex-
ploitation has traditionally been studied using bandit tasks. Bandit tasks are
sequential decision-making tasks with latent reward structures, where actions
of an agent affect immediate rewards but do not have deferred consequences
(Berry & Fristedt, 1985; Robbins, 1952; Sutton & Barto, 2018). Many studies,
including ours as outlined in Chapter 2, have reported that humans combine
the objectives of exploration and exploitation when performing bandit tasks
(Gershman, 2018; Wilson, Geana, White, Ludvig, & Cohen, 2014; Zhang &
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Yu, 2013), while other studies have only found support for exploitation (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; Payzan-LeNestour & Bossaerts,
2011). Given the lack of studies investigating sequential decision making in
multistep tasks with partially observable states, it is unclear if in these tasks

humans adopt an exploitative or a hybrid explorative-exploitative objective.

In this work, we sought to computationally characterize the behavioral and
neural correlates of human sequential decision making in multistep tasks with
partially observable states. Specifically, we addressed the following questions:
(1) Do humans engage in belief state-based planning or do they resort to decision-
making strategies that eschew prospective computations? (2) If humans engage
in belief state-based planning, do they adopt the objective of exploitation
or do they combine exploitation with exploration? (3) Which brain regions
implement the putative cognitive processes underlying behavior? To answer
these questions, we designed a multistep spatial search task similar to the
ring search example introduced above and analyzed 19 participants’ behavioral
and functional magnetic resonance imaging (fMRI) data. Specifically, we
first evaluated a comprehensive set of agent-based computational models in
light of participants’ behavioral data (Russell & Norvig, 2010). This set
included belief state-free agents that implement simple model-free decision-
making strategies as well as belief state-based exploitative, explorative and
hybrid explorative-exploitative agents that implement various belief state-based
planning strategies. We subsequently assessed the neural correlates of the
cognitive processes captured by the behaviourally most plausible agent using a
model-based general linear model (GLM) approach (Friston & Dolan, 2010).

Our behavioral analyses revealed that participants’ actions were best ac-
counted for by a belief state-based agent adopting a purely exploitative objective.
In terms of the neural representation of the constituent cognitive processes
of this strategy, we hypothesized that a distributed network of cortical and
subsortical areas would be involved. In particular, capitalizing on findings from
recent neuroimaging studies (Fischer, Bourgeois-Gironde, & Ullsperger, 2017;
O’Reilly, Jbabdi, Rushworth, & Behrens, 2013), we expected to observe activity
in the frontal and posterior parietal cortices as well as the dorsal striatum
related to belief state maintenance as indexed by the Bayesian surprise, a
quantity commonly used in the Bayesian brain hypothesis framework (Itti
& Baldi, 2009; Ostwald et al., 2012). We further expected that exploitative
planning on the basis of belief states would engage parts of the ventromedial

prefrontal and orbitofrontal cortices. These are key regions of the brain’s
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reward-guided decision-making system (Rushworth, Noonan, Boorman, Walton,
& Behrens, 2011) and have been implicated both in planning (in multistep
tasks with fully observable states; Korn and Bach, 2018; Simon and Daw, 2011)
and in exploitation (in bandit tasks; Chakroun, Mathar, Wiehler, Ganzer, and
Peters, 2020; Daw et al., 2006). Our neural results largely corroborate these
hypotheses. Consequently, in conjunction with our behavioral results, they
provide evidence that in our multistep task with partially observable states,

participants performed belief state-based exploitative planning.

3.2 General methods

3.2.1 Experimental methods

Participants and procedure The experimental data set was acquired at
the Max Planck Institute for Human Development (Berlin, Germany). Behav-
ioral and fMRI data was recorded from a group of 19 participants (10 female,
18 right-handed, 1 male participant both-handed with left hand preference,
mean age: 27.11 years, standard deviation age: 2.92 years) with no reports of
neurological or psychiatric disorders after providing written informed consent.
The study was in line with the human subject guidelines of the Declaration of
Helsinki and was approved by the ethics committee of the German Psychological
Society (Deutsche Gesellschaft fiir Psychologie). Participants completed four
consecutive runs of the experimental task in the Magnetic Resonance Imaging
(MRI) scanner, after having received task instructions (Supplementary Material
B.1) and having completed a training run on a desktop computer. Due to
technical problems and the thus resulting time constraints, two participants
performed only three complete runs in the scanner. Participants were reim-
bursed for their time with 10€ per hour and an additional 0.625€ for each
task they solved.

Experimental design We framed a multistep task with partially observable
states as a spatial search task. In the 'treasure hunt’ task, participants were
instructed to find two hidden ’treasures’ in a 5x5 cell grid-world. Figure 3.1a
shows the grid-world from above with an example task configuration and with
a fictive participant’s attempt decision sequence. A task corresponded to a
specific location combination of the two treasures. Participants were given a

maximum of three attempts to solve a task and secure a monetary reward.
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Importantly, a task was considered to be solved only if both treasures were
collected within a single attempt. In each attempt, participants had a limited
number of steps at their disposal. If, in an attempt, participants failed to visit
both treasure locations before the number of available steps was exhausted,
their position was reset to the start position, which was the upper left cell of the
grid in each attempt of each task. Note that participants were not presented
with the bird’s eye perspective of the grid-world when interacting with a task
(Figure 3.1a) but on each trial were only given the information available from

their current position (Figure 3.1b; please see below for details).

35s Observation bars

3-5s Decision prompt

Fixation cross

3-5s
Time”

Figure 3.1. Treasure hunt task. a Bird’s eye perspective of the 5x5 cell grid-world. In
the example task shown, the treasures were hidden at cells (2,3) corresponding to the second
row third column and (5,5) corresponding to the fifth row fifth column. The dashed line with
full dots at the cells shows a fictive participant’s decision sequence within an attempt of the
task. Here, the participant discovered only the treasure at location (2,3) within the available
number of steps. Therefore, to solve the task in a next attempt, the participant had to
revisit this cell and collect the treasure at location (5,5). b Trial design. This example shows
the stimuli sequence presented to the participant moving from cell (3,2) to (2,2) as shown
by the yellow section of the dashed line in a. Before deciding on a northward movement,
the participant received a signal from the treasure detector in the form of light and dark
grey observation bars towards the neighbouring cells. The values in the upper left corner
denote the number of remaining steps and the number of treasures collected (the value in
parentheses) in the attempt.

For each task, the treasure locations were consecutively sampled online from
a uniform distribution over the cells of the grid with two restrictions. First,
no treasure was assigned to the cell in the upper left corner corresponding
to the start position. Second, the treasures were assigned to different cells.
Participants completed four tasks in each run, which yielded a total of 296 tasks
presented to the participants. As shown in Figure 3.2a, the treasure location
combinations were evenly represented across tasks and a certain combination
occurred no more than five times.

In each attempt, the step limit was randomly determined in order to
prevent participants from using this information to infer the treasure locations.

Specifically, we first evaluated the number of optimal steps required to solve a

67



Chapter 3

task based on the [; distance between the start position and the two treasure
locations. This subsequently served as the expectation of a discrete categorical
distribution over £ 2 steps (with probabilities of £0 = 0.4, £1 = 0.2, +2
= 0.1). As a consequence, the step limit sometimes sufficed and sometimes
did not suffice to collect the two treasures within an attempt. Given the 5x5
grid-world layout, the maximal optimal step limit was 12 and accordingly, there
were a maximum of 14 steps - and thus 14 trials - in an attempt. Figure 3.2b
shows the number of tasks as a function of the optimal step limit. The majority
of the tasks were solvable within 5-8 steps. Figure 3.2¢ shows the number of
attempts as a function of the step limit deviation from optimum. In most

attempts, the step limit corresponded to the optimal step limit.
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Figure 3.2. Task quality assurance. a Number of tasks as a function of treasure location
combinations. In total, the group of participants completed 296 tasks. Of these, there were
a maximum of 5 tasks with identical treasure location combinations. Note: The treasure
locations are indicated with their corresponding node indices, for details please refer to
Section 3.2.2. b Number of tasks as a function of optimal step limit. As given by the layout
of the grid, most treasure location combination constituted problems that were solvable within
5-8 steps. ¢ Number of attempts as a function of the step limit deviation from optimum. In
most attempts, the step limit corresponded to the optimal step limit. Together, the results
visualized in a, b and c validate the online sampling procedure used in the treasure hunt task
by showing that the realized outcomes were consistent with the underlying distributions.

Every attempt ended with the presentation of the final grid position resulting
from the decision on the last trial of the attempt. If participants, in a given
attempt, solved a task, they were subsequently informed that both treasures
were found during a single attempt and a new task was created. If participants
did not solve the task in a given attempt, but one or two more task attempts
remained, participants were informed that their step limit was reached and
their position was being reset. Finally, if participants did not solve the task
upon completing the third attempt, they were informed that both their step
and attempt limits were reached and a new task was created. In each case,
the visual information about the attempt and task outcomes was presented
for a duration uniformly sampled online from an interval of 3 to 5 seconds.

In addition, participants were given a short resting period after every fourth
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attempt. During these resting periods, participants were instructed to look at
a fixation cross for a duration uniformly sampled online from an interval of 6

to 8 seconds.

Trial design Figure 3.1b depicts an exemplary trial as presented to a fictive
participant. On every trial of the task, participants were first shown the cell
of the grid they currently occupied, including its row and column indices. If
participants entered a treasure location, they were additionally shown a treasure
symbol. Next, a collection of light and dark grey ’observation bars’ were
presented towards the adjoining cells. These bars conveyed information about
the treasure locations with certain accuracy and thus could be interpreted as
noisy signals of a 'treasure detector’. Specifically, the detector always returned
a dark grey bar for the direction leading away from the treasures while it
displayed either a light or a dark grey bar in the direction of the treasures. The
detector’s accuracy of correctly returning a light grey bar towards the treasure
locations depended on the participants’ distance to the treasures: Its readout
was completely unreliable at the most distant cell position and parametrically
increased in accuracy as participants moved towards the treasures. It always
signalled the true values in the immediate vicinity of the treasures. Following
the presentation of the observation bars, participants were prompted to choose
one of the available directions by means of pressing one of four buttons with
the index to little finger of their right-hand. They could move to any of the
neighbouring cells. Diagonal steps or steps off the grid were not allowed. The
duration of the grid position, the observation bars and the response time window
were uniformly sampled online from an interval of 3-5 seconds. If participants
indicated their decision within the response time window, they were presented
with a post-decision fixation cross until the response time window elapsed.
Upon the post-decision fixation cross, the next trial commenced with the
presentation of the new grid position. If, on the other hand, participants did
not indicate their decision within the response time window, they maintained
their current position on the next trial and lost one step. To help participants
keep track of the attempt’s evolution, throughout the trial they were visually
informed about the number of remaining steps and the number of treasures

collected.
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3.2.2 Task model

To make the treasure hunt task amenable to agent-based computational mod-
eling, we first represented the square grid-world of dimensionality d = 5 by
a graph (N, E). Here, N := Ngz denotes the set of nodes corresponding to
the cells of the grid and E denotes a set of (unweighted) edges corresponding
to the directions available from each cell (Figures 3.3a-b). Building on this
graph representation, we specified central task components using concepts from
the theory of partially observable Markov decision processes (Bertsekas, 2000).
Specifically, the treasure hunt task on a given attempt can be conceived as a
tuple (S, 0, A, f, g), where for available trials t = 1,2,...,T
e S := Ngp x N x Ngz \ {1} x Ng \ {1,5*} denotes the set of states
s := (s', 5%, 3, s%). The first two state components comprise the directly
observable part of the state, y := (s!, s?). The first variable encodes the
agent’s current grid position. The second variable encodes the treasure
discovery history and takes on the value 0 if no treasure, 1 if the treasure
at the first location and 2 if the treasure at the second location was
collected up to trial t. The second two components encode the location
of the two treasures: s® encodes the location of the first treasure, i.e. the
treasure with the the smaller node index and s* encodes the location
of the second treasure, i.e. the treasure with the the larger node index.
These state components comprise the latent part of the state, z := (s3, s%).

Note that we use the terms first and second treasure only to distinguish

between them.

e O :={0,1}" denotes the observation set. The components of an obser-
vation o := (o',0% 0% 0%) € O encode the observation bars presented
to the agent in the northern, eastern, southern and western directions,
respectively. The value 0 represents a dark grey bar and 1 represents a

light grey bar. The available observations depend on the current position

of the agent. For example, for s' := 1, the available observation set
Oq C O is given by O; = {0,1}* and elements of Oy are of the form
0= (0%0%).

o A:={-5,+1,+5,—1} denotes the action set. The values encode the
northward, eastward, southward and westward movements on the nodes of
the graph representation of the grid, respectively. Like the set of available
observations, the set of available actions Ay C A depends also on the

first state component s'. For example, for s! := 21, Ay = {-5,+1} C A.
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e f denotes the state transition function, which specifies the probability
that the state takes on the value s, at trial £ + 1 given state s and agent
action a at trial ¢. In the treasure hunt task, actions have deterministic
outcomes, i.e., deciding for an available action results in the indicated

position change with certainty. Formally, assuming a € A1,

1, if sy = (Ys, T4

f(s,a,8:) :==p(St41 = S«|st = S, a4 = a) := ( )
0, else

(3.1)

where
yo = (s'+a,1-|st =5 +2 s} =) and 2z, = (s°,s') (3.2)
with the initial state corresponding to
p(si=(1,0,5"5")) =1 (3.3)

in each attempt. Upon every action, the state changes according to Eq.
3.1 until there are steps left or until both treasures are collected within

the attempt.

e Finally, g denotes the observation function, which specifies the probability
of observation o given state s at trial t. This probability implements
the distance-dependent accuracy of the observations and thus takes a
central stance in the specification of the treasure hunt task. Omitting the
restrictions to available observations for ease of exposition, this probability

takes the form

4

g(s,0) :=p(op=o0ls; =s):= Hp (o']s) == HBern (o'smi(s)) . (3.4)

=1

That is, the individual observations o, i € N, are distributed indepen-
dently according to Bernoulli distributions with state-dependent param-
eters m; (s) € [0,1], 7 € Ny. These parameters are defined as follows.
First, the probability of observing a light grey bar in the direction of ¢ is
expressed as an affine function of the [, distance between the agent and a

treasure. The induced probability parameter set corresponds to

Pjk = 60 + Blll (]7 k) 9 (35)
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Figure 3.3. Task model. a and b Graph representation of the grid-world. a Nodes
(circles) and edges (lines) of the graph representation of the 5 x 5 grid-world, numbers
label the nodes. b Adjacency matrix representation of the set of edges visualized in a. ¢ [y
distance set between agent position j and treasure location k. d Observation probability
parameter set as a function of the agent position and treasure location for single treasures.
The probability was set to p;x = 0.5 at the maximum [; distance (yielding a maximally
inaccurate signal) and to p; ; = 1 at the minimum [; distance (yielding a maximally accurate
signal). e and f Combined probability parameter set as function of two treasure locations
for agent positions j = 1 and j = 14, respectively. g and h Bernoulli observation parameter
m3(s) for southern bar observations for a single remaining treasure located at node 22 (5, 2)
and for two treasures located at nodes 10 (2,5) and 22 (5, 2), respectively, as a function of the
agent position. Note: The bottom rows are marked with red because at the corresponding
nodes southern bars are not available.

where [4(j, k) denotes the [; distance between the agent’s position node
7 € Ng2 and the treasure location node [ € Ng. The complete [, distance
set is visualized in Figure 3.3c. [y and p; are real-valued parameters,
which are determined according to the following constraints: First, the
probability of observing a light grey bar is set to certainty (p;;, = 1) if
the agent is a single step away from the treasure, and second, it is set
to full uncertainty (p;, = 0.5) if the agent is at its maximum possible

distance from the treasure, i.e., {1(j, k) = max [1(j, k). These constraints
J€EN ;2
are satisfied for

0.5 and By = — 0.5
max [ (j, k) — 1 YT max (G k) - 1

jeNdQ jeNdZ

Bo =1+ (3.6)

The complete ensuing probability parameter set P = {p; s}, <jh<d? for all
combinations of agent and treasure nodes is visualized in Figure 3.3d. If
5?2 =1 or 82 = 2, the parameter set visualized in Figure 3.3d forms the

basis of 7;(s). However, if s> = 0, i.e., none of the treasures have yet

72



3.2. General methods

been collected, the parameter sets are combined into a single parameter

set according to

pii+ (Pjk — Pig) Piks if pjk > pj,
ik = i+ (D i) Dik . Ik Jl’ (3.7)
Pik + (Pj0 — Pik) Pigs i Pk < pja

where 7 encodes the agent position, and k& and [ encode the treasure
locations (j, k,l € Ng). Figures 3.3e and f show the ensuing parameter
set P for the agent positions 7 = 1 and j = 14, respectively. Based on

the above, the Bernoulli distribution parameters m;(s) are then defined as

Pjkl, if s = (jvoa ka l)
Wi(s) = pj,la if s = (.]7 ]-7 ka l) (38>
pj,]m if s = (]7 27 k? l)

if moving in the direction of ¢ brings the agent closer to at least one of
the treasures (in the case of s> = 0) or to the remaining treasure (in the
case of s* € {1,2}),

L(j+ai,k) <li(j, k) and or Iy (j + a;, 1) <1y (4,1). (3.9)

In any other case,

mi(s) = 0. (3.10)

Figures 3.3g and h visualize the ensuing parameters 73(s) as a function
of s!, for s> = 1, an arbitrary s® and the remaining treasure location

st =22, and for s> =0, s* = 10 and s* = 22, respectively.

3.2.3 Agent models

We designed a set of nine agent-based computational models (Russell & Norvig,

2010) to formally capture different sequential decision-making strategies in the

treasure hunt task. The main differences between the agents can be described

along two dimensions. First, the agents differ in whether or not they make

decisions on the basis of belief states. In general, as introduced above (see

Section 3.1), the term belief state refers to a probabilistic representation of

the state. For simplicity, we here consider the belief state with respect to

the latent state components only. Thus, the belief state corresponds to a

probabilistic map, which for each cell of the grid encompasses the agent’s
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subjective uncertainty that a treasure is hidden there. Consequently, the belief
state-free agents do not assume such a probabilistic map. Instead, to make
decisions, they rely on information immediately available to them, such as the
grid position or the observation bars. In contrast, the belief state-based agents
assume a probabilistic map, which they update in a normative Bayesian fashion
upon moving to a new grid position and being presented with a collection of
observation bars. These agents plan ahead by relying on their evolving belief
state. Second, the agents have different objectives: they are either purely
exploitative, purely explorative or hybrid explorative-exploitative. The purely
exploitative agents try to solve the task, i.e., collect the treasures, by harnessing
their knowledge about the environment. This can be done both in a belief
state-free and a belief state-based way. In contrast, the purely explorative agent
tries to improve its knowledge about the environment, i.e., know where the
treasures are hidden. This requires a belief state that stores the accumulating
knowledge about the treasure locations. The hybrid explorative-exploitative
agents combine these two objectives and try to acquire an accurate knowledge
about the environment based on which the task can be solved, i.e., know where
the treasures are hidden and then collect them. As the hybrid agents assume
exploration, they require a belief state. In addition, we designed a cognitive
null agent, which does not have any objective and thus makes decisions at
random. This agent does not require a belief state. For an overview of the

agent model space, please see the schematic in Figure 3.4.

In what follows, we introduce each agent in detail: First, we describe
the scheme the agent uses to evaluate the actions’ valence, i.e., the actions’
desirability in light of the agent’s objective. We then present a worked example
of this scheme on a trial. To initialize the trial used in the worked example,
consider the following situation: The agent is in the first attempt of a task
and the treasures are hidden at nodes 10 and 16. The agent has not collected
any of the treasures up to trial ¢. On trial ¢, the agent’s grid position is
s; = 11, where it makes the observation o; = (o' =1,0* =0,0*> =0). The
available action set is {—5,+1,+5} and the reachable nodes are 6,12 and 16.
In addition, let us assume that the belief state-based agents have the non-zero

trial-posterior belief state components uﬁl = 0.25, u,ﬁff = 0.15, uiff = 0.2,

ul(tfl) = 0.1 and ,ugill) = 0.3 (the formal notion of belief state is introduced below
in Paragraph Belief state-based agents). We conclude by describing a simulated
action sequence of the agent in the treasure hunt task. In the simulations, the

treasures are also hidden at nodes 10 and 16. The agent is given the standard
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Figure 3.4. Agent models. The belief state-free agents A1l and A2 make decisions
using merely the information available to them on the current trial. Specifically, the belief
state-free cognitive null agent Al implements a random choice strategy. The belief state-
free exploitative agent A2 relies on the task instructions about the treasure detector and
follows the light grey bar. The belief state-based agents A3, A4, A5, A6, A7, A8 and A9
make decisions using a dynamically evolving probabilistic representation of the treasure
locations. Specifically, the belief state-based exploitative agent A3 moves towards the most
probable treasure location. The belief state-based exploitative agent A4 identifies the two
most probable treasure locations and moves towards the closer one. The belief state-based
exploitative agent A5 takes its entire belief state into account and moves towards that part
of the grid where it expects to find a treasure within the fewest steps. The belief state-based
exploitative agent A6 behaves like A5, but, if it encounters an ambiguous decision situation
(i.e., where there is more than one best action), it re-evaluates the actions using the strategy
of A4. The belief state-based explorative agent A7 selects actions as to resolve its uncertainty
about the treasure locations. The belief state-based hybrid explorative-exploitative agent A8
uses a constant combination of the strategies of A3 and A7. The belief state-based hybrid
explorative-exploitative agent A9 uses a state uncertainty-dependent combination of the
strategies of A4 and AT.

configurations, meaning that it has a maximum of three attempts to solve the
task and in every attempt it has nine steps, which is the optimal step limit in the
task. It is important to point out that while we conceive the belief state-based
agents deterministic by assuming valence maximizing action selections, in these
simulations the actions for all agents are sampled probabilistically. Specifically,
for each agent, the actions are generated with the corresponding behavioral

data analysis model detailed below in Paragraph Behavioral data analysis
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models. To ensure that the action with the highest valence is sampled with a
high probability and all other actions are sampled with low probabilities, for
the behavioral data analysis models that include a softmax operation (Reverdy
& Leonard, 2015), the inverse temperature parameter is set to an arbitrary
large value (5 = 100).

Belief state-free agents The belief state-free agents denoted by Al and
A2 allocate action valences based on instantaneously available information.
They do not maintain a probabilistic map encoding the subjective uncertainty
about the treasure locations and are therefore belief state-free. To realize an
action, both agents use a probabilistic decision rule by directly translating

action valences into choice probabilities.

The belief state-free cognitive null agent A1 The belief state-free cog-
nitive null agent A1 does not have any objective and therefore deems all actions
equally desirable. Formally, on each trial A1l identifies the actions available at
its current grid position and allocates equal valences to these according to

va1(a) : ! (3.11)

= Al

Worked trial example. On the example trial, Al allocates the following

action valences:

1
’UA1<—5) = §
1
UA1<+1) == g
1
UA1(+5) = g

Thus, all available actions are equally desirable for the agent.

Simulated task behavior. Figure 3.5 shows an exemplary behavior of Al.
In this simulation, the agent does not solve the task: It collects one of the
treasures in the first attempt but does not revisit this location in the next

attempts nor collects the other treasure.

The belief state-free exploitative agent A2 The belief state-free exploita-
tive agent A2 tries to collect the treasures by leveraging the task instructions
about the treasure detector (cf. Supplementary Material B.1). Specifically, as
A2 is informed that a light grey bar necessarily indicates a direction towards the

treasures, on each trial the agent allocates high valence to the corresponding

76



3.2. General methods

Trials
—

stat WMeE BE P R OHP OB OB OBE OBE BE
- e HE OHE HE 8 3 i ! } ! !
= — —
£ Observation I I L
e — — —-—
<
. TR H K EKEE R
°
8 R OB P OHER OBE OBE BE B B
& e T W HE O SEE O HBE O HYE SR HH O HE HY
"5. -
£ Observation l I l I
g —
e MW EEEEEE R
°
e 3 B B B P OB OBPE B BE
State THOHB SHH O OHH HE OHH O HBHEOHH O BHEOHEH
[2e]
‘e - - - -
£ Observation I l I
£ - E
<

Action probabilties H . . . . . . . .

Figure 3.5. Agent A1l interacting with the treasure hunt task. Al is a belief state-
free cognitive null agent. This agent does not aim to optimize any quantity and on each trial
allocates equal valences to the actions available from its position. In this simulation, the
agent collects one of the treasures in the first attempt but does not solve the task. Note:
Clusters of three rows show the attempts. The trial evolution is shown column-wise. The
first row of each attempt shows the state with pink dots marking the treasure locations and
the blue dot marking the agent position. The second row shows the collection of observation
bars presented to the agent. The third row shows the action probabilities, which are allocated
based on the agent-specific action valences. A lighter color marks a higher probability.

action and low valence to all other actions. Formally,

L ifieO
vz (a;) = { 1© , (3.12)
0, else

where, given observation o at the agent’s position s' on trial , O := arg max ((o)ieosl)

7
denotes the set of directions marked with a light grey bar. On those few trials
where no light grey bar is presented, A2 uses the action valence allocation

scheme of agent Al (eq. 3.11).

Worked trial example. On the example trial, A2 allocates the following

action valences:
VA2 ( — 5)

UAQ(—l—l)
UA2(+5)

1
0
0.

Thus, for agent A2, the most desirable action is the northward movement.
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Simulated task behavior. Figure 3.6 shows an exemplary behavior of A2. In
this simulation, the agent does not solve the task: Although A2 follows the
light grey bar, it only collects one of the treasures in the first attempt, akin to

Al
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Figure 3.6. Agent A2 interacting with the treasure hunt task. A2 is a belief state-
free exploitative agent. To try to collect the treasures, on each trial A2 allocates action
valences based on the available observations: It allocates high valences to moving towards
light grey bars and low valences to moving towards dark grey bars. In this simulation, the
agent collects the treasure located at node 10 in the first attempt, but it does not revisit this
location nor collects the other treasure in the second and third attempts. Note: For layout
conventions, please see the legend of Figure 3.5.

Belief state-based agents The belief state-based agents denoted by A3
to A9 compute action valences based on their belief states, i.e., a probability
mass function, which for every node of the grid specifies the agent’s subjective
uncertainty that a treasure is located there. The belief state is formed by
assuming a uniform distribution over all possible treasure locations at the task’s
outset and employing a trial-by-trial two step belief state update. The first
update happens after the agent enters a new grid position, where it either finds
a treasure or not. The second update happens after the agent is presented
with the observation bars. On each trial, the belief state is used to plan ahead
following an exploitative (agents A3-A6), explorative (agent A7), or hybrid
explorative-exploitative (agents A8-A9) objective. To realize an action, all

belief state-based agents assume a maximizing decision rule, i.e., the action to
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issue is the action with the highest valence. Before we introduce these agents

in detail, we next proceed with a formal description of the belief state.

Formally, we denote the agent’s prior belief state on trial ¢ based on the
history of directly observable state components ., and observations o01.;_1
by

2 T 2
1= (Iugl), . ,pgd )) € R”. (3.13)

The ith component of u; represents the agent’s belief that a treasure is located
at node i € Ng. At the beginning of the task, the components of u; are

initialized as

pd) =0 and pl? = p = =1/ (@ = 1) (3.14)
representing the fact that a treasure is never encountered at the start node,
and equal beliefs over all remaining nodes. The subsequent belief state updates
depend on the state and take slightly different forms, for the case of two
remaining treasures (s? = 0) or a single remaining treasure (s? € {1,2}).
Specifically, in the former case, the belief state is first projected into a two-

dimensional matrix form

M, = (M) — (- e R4 (3.15)

1<i,j<d? ) 1<i,j<d?

encoding the current belief for all treasure location combinations. This two-
dimensional belief state projection is necessitated to reflect that the agent does
not discriminate between the first and second treasure, and thus allocates equal
probabilities to the location combinations s* = i,s* = j and s® = j,s* = i.
To account for the fact that the treasures are located at different nodes, the

diagonal of this belief state matrix is then set to zero
M =0, if i =j for i,j € Ng. (3.16)

The two-dimensional belief state M, is subsequently updated in two steps. First,
the belief state of the agent is updated as it enters the new grid position s!. If
node k is visited on trial ¢ and no treasure is found at this node (y; = (k,0)),
the probabilities allocated to the treasure location combinations including node
k are set to zero, i.e.,

Mtlﬂ(ik) :=0 and Mt’H(kj) =0, forall 7,7 € Np. (3.17)
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This reflects the agent’s subjective certainty that node k is not a treasure
location. The second update follows after the agent is presented with the

observation bars and has the form
ML = My p (0, = ofsy = (0,4, 7). (3.18)

This corresponds to a Bayesian update with prior probability M/ +1(ij) and
likelihood p (0; = o|s; = (k,0,4,7)). Finally, the belief state is normalized by

setting
1

2 ?
T T M

Upon evaluation of this two-dimensional symmetric belief state projection, the

Mty =

SMY ). (3.19)

trial posterior belief state is evaluated by marginalization

Hit1 2= Z Mt—zi-Jl (3.20)

If on trial ¢ the agent enters node k and finds a treasure there (y; = (k, s? € Ny)),
a two-dimensional projection is not necessary anymore. Therefore, the position-

updated belief state is given by the vector
1:d2 .k
Hipq = Mt( )a (3.21)

which specifies the agent’s subjective uncertainty about the remaining treasure

location. This belief state is updated following the observation according to

Ngﬂ(i) = M;H(i) -p(or = ols; = ). (3.22)

The normalized posterior belief state

1
M1 = ) lu;/Jrl (323)

d2
Dict Mig1
serves as the prior belief state on the subsequent trial, where the position-

dependent belief state update takes the form

1, if s? 0, s?
lu:H_l(s%) — y 153 ¢ { 7St71} ) (324)
0, else

If the agent does not solve the task within the attempt, the final belief state
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w7 in the attempt serves as the prior belief state in the next attempt, i.e.,

Mo = U (325)

This holds if no treasure location was recovered in a previous attempt. Other-
wise, the prior belief state in the new attempt is defined by setting the belief
at the recovered treasure location to the maximum value. This modification is
necessary, because, to solve the task, the agent has to collect both treasures
within a single attempt. Consequently, in the new attempt, the agent has to
revisit the previously recovered treasure location. Formally, the prior belief
state in the new attempt is first defined as the final belief state in the previous
attempt (eq. 3.25). Then, the prior belief state is modified and normalized

according to

1
k
,u(() V=1, po = =7 Ho (3.26)

Zi:l Ho

where k denotes the previously recovered treasure location. The subsequent
belief state updates are evaluated as described above with a minor modification:
The two-dimensional belief state projection is given by assigning the prior belief
state vector and its transpose to the kth column and kth row of a null matrix
of the size d? x d?, respectively. Formally, the two-dimensional belief state is
first defined as

M, := 0> (3.27)

and then its entries are modified according to

L:d? k) (k,1:02)

Mt( = and M, =yl (3.28)

Note that we throughout assume that the agent is endowed with the true
probability of making observation o given state s as defined by the observation
function g of the task model. As detailed above, these probabilities formalize the
notions that (1) a direction leading away from the treasures is always marked
with a dark grey bar and (2) the accuracy of the treasure detector correctly
returning a light grey bar in the direction towards the treasures increases as
the agent moves closer to the treasures. To motivate our assumption, recall
the experimental procedure participants underwent prior to the runs in the
scanner. In the task instructions, participants were truthfully informed about
the first notion (Supplementary Material B.1). Although participants were not
further informed about the second notion, before the runs in the scanner, they

completed a training run by the end of which they arguably became familiar
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with the distance-dependent accuracy of the treasure detector.

Belief state-based exploitative agents Agents A3, A4, A5 and A6 imple-
ment variations of a belief state-based exploitative planning strategy: On each
trial, these agents harness their accumulated knowledge about the location of
the treasures to try to move closer to, and eventually collect them. Formally,
each belief state-based exploitative agent allocates action valences by employing
a heuristic real-time dynamic programming approach originally proposed by
Korf (1990) and elaborated on by Geffner and Bonet (1998). The characteristic
differentiating these agents is whether this approach is based on unitary state

estimates or the entire belief state.

The belief state-based exploitative agent A3 The belief state-based
exploitative agent A3 identifies the node with the highest subjective uncertainty
that a treasure is located there and allocates the highest valence to the action
which leads closest to this node. Formally, on every trial ¢t € Ny, A3 first

identifies the maximum-a-posteriori (MAP) belief state node

iy = arg max ,ugl. (3.29)

1€N ;2
Then, adopting the heuristic real-time dynamic programming approach (Geffner
& Bonet, 1998; Korf, 1990), the agent substitutes node i, in the /; distance-based

heuristic function

vas(a) == =1 (s; +a, i) (3.30)

to allocate action valences. If there is more than one MAP belief state node,
A3 evaluates the actions with respect to the node with the smallest index. Note
that in eq. 3.30 the negative of the [; distances is taken. This is to ensure
consistency across agents, in that a higher valence indicates a more desirable
action.

Worked trial example. On the example trial, the MAP belief state node
corresponds to

iy = 21.

Consequently, A3 allocates the following action valences:

UA3(—5) = —l1(6,21) =-3
vaz(+1) = =1 (12,21) = =3
'UA3(+5) = —l1(16, 21) =—1.
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Thus, for agent A3, the most desirable action is the southward movement.

Simulated task behavior. Figure 3.7 shows an exemplary behavior of A3. In
this simulation, the agent does not solve the task: A3 recovers the first treasure
location already in the first attempt but does not manage to recover the second
treasure location. The reason for this is that the strategy of A3 has limited
flexibility. Specifically, after the agent finds a treasure at node 10 in the first
attempt, it becomes certain that this node is a treasure location. Consequently,
at the outset of the second and third attempts, A3 allocates the highest belief
to this node and goes directly to it. The problem is that from this node, the
agent can not reach the other treasure located at node 16 within the step limit
- even if the agent allocates the second highest belief to node 16. As a result,

A3 closely approaches the second treasure location but does solve the task.

The belief state-based exploitative agent A4 The belief state-based
exploitative agent A4 uses the same strategy as A3 with one important difference:
Until there is only one treasure left, the agent identifies the most probable
location of both treasures and evaluates the actions with respect to the location
that is closer to its current position. Formally, while s? = 0, A4 first identifies

the two nodes with the highest associated beliefs,

i; = argmax ugi)l and i = argmax ugl. (3.31)

keN 2 1e{Npg\it }

Then, the agent identifies the node reachable within fewer steps

ji = argmin i (s;,m) (3.32)
me{iti?}
and substitutes this node in the [; distance-based heuristic function to allocate

action valences. After the recovery of a treasure location (s? € {1,2}), A4 uses

the valence allocation scheme of A3 to collect the remaining treasure, i.e.,

— (3% +a,j), if sf =0

vag(a) == (3.33)

vas(a), else

Worked trial example. On the example trial, the nodes with the highest
associated beliefs are

if =21 and i} = 6.

83



Chapter 3

Trials
— .

HEHBHEEH B

+  Observation I S D

o

£

2

e il EBEESENETNENEAEN
Action probabilities l : H l l a H H H
iR R

:", Observation

-3 —

£

2

zee I HBEEBEEETTEEN
Action probabilities E “ : : : H H H H
i

2 Observation l j

Q.

£

]

e P HBEEETEEEN
Action probabilities n : l : : H H H :

Figure 3.7. Agent A3 interacting with the treasure hunt task. A3 is a belief state-
based exploitative agent. This agent tries to collect the treasures by relying on its belief state,
a dynamically evolving probabilistic representation of the treasure locations. In particular,
on each trial, this agent identifies the most likely to treasure location and allocates action
valences depending on how close the new position would be to this location. Formally, this
scheme corresponds to evaluating the MAP belief state node and computing action valences
using a real time dynamic approach with an /; distance-based heuristic function. In this
simulation, A3 collects the treasure located at node 10 in the first attempt. Although the
agent revisits this node in the second and third attempts, it fails to collect the other treasure
at node 16. Note: The trial-by-trial evolution of the agent’s belief state is shown in the third
row of each attempt, which complements the trial-by-trial states, observations, and action
probabilities as shown for the belief state-free agents (cf. Figures 3.5 and 3.6). As in the
case of the action probabilities, a lighter color indicates a higher probability.

Of these,
Jr=0

is closer to the agent’s position. Consequently, A4 allocates the following

valences:

vaa(—5) = —11(6,6) =0
vas(+1) = =1;(12,6) = =2
vas(+5) = —11(16,6) = —2.
Thus, for agent A4, the most desirable action is the northward movement.

Simulated task behavior. Figure 3.8 shows an exemplary behavior of A4. In
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this simulation, the agent solves the task: The agent recovers the first treasure
location in the first attempt, the second treasure location in the second attempt
and, by combining its knowledge about these locations, consecutively collects
both treasures in the third attempt. This simulation demonstrates that by
taking into account the potential location of both treasures A4 overcomes the
limitation of A3.
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Figure 3.8. Agent A4 interacting with the treasure hunt task. A4 is a belief state-
based exploitative agent with a similar strategy to that of A3. The difference is that A4
takes into account the potential location of both treasures. Specifically, until a treasure is
collected in the attempt, A4 first identities the two most probable treasure locations, then
the one closer to its current position and subsequently evaluates the actions based on the [y
distance between this location and the new position. After a treasure is collected, A4 uses
the same valence allocation scheme as A3. In this simulation, A4 recovers the treasure at
node 10 in the first attempt, the treasure at node 16 in the second attempt and solves the
task in the third attempt. Note: For layout conventions, please see the legend of Figure 3.7.

The belief state-based exploitative agent A5 The belief state-based
exploitative agent A5 does not identify single most probable treasure locations.
Instead, this agent takes into account its entire belief state when evaluating
the actions. Specifically, for each available action a € A,:1, A5 evaluates the

negative sum of the belief-weighted [; distances between the new position that
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would result upon the action and each node of the grid,

vas(a Z ut+1ll s, +a,i). (3.34)

Intuitively, agent A5 favors the action that leads towards the part of the grid,

where a treasure is likely located and which is in close reach.

Worked trial example. On the example trial, agent A5 allocates the following

action valences:

vas(—5) = —(0.25 - 1,(6,6) + 0.15 - 1,(6, 13)

+0.2-11(6,14) + 0.1 11(6,15) + 0.3 - 11(6,21)) = —2.65
vas(+1) = —(0.25 - 1;(12,6) + 0.15 - 1;(12, 13)

+0.2-1,(12,14) + 0.1 - 11(12,15) + 0.3 - 1;(12,21)) = —2.25
vas(+5) = —(0.25 - 11(16,6) + 0.15 - 1, (16, 13)

+0.2-15(16,14) 4+ 0.1 - 1;(16,15) 4 0.3 - 11(16,21)) = —2.55.

Thus, for agent A5, the most desirable action is the eastward movement.

Simulated task behavior. Figure 3.9 shows an exemplary behavior of Ab5.
In this simulation, the agent solves the task: A5 does not collect any of the
treasures in the first attempt, but it collects the treasure at node 16 in the
second attempt and both treasures in the third attempt. As this agent takes
into account its entire belief state when evaluating the actions’ desirability,
tasks where the treasures are located at opposite ends of the grid can lead to to
ambiguous decision situations, i.e., trials with multiple best actions leading in
opposite directions. For example, in the exemplary simulation, the agent faces
a series of ambiguous decision situations in the first attempt. This happens
because the agent correctly believes that the treasures are located at opposite
ends and therefore, midway between the treasures, it allocates equally high
valences to converse actions. As a result, the agent moves back-and-forth in
the first attempt but it manages to break this pattern in the second attempt
and solve the task in the third attempt.

The belief state-based exploitative agent A6 The belief state-based
exploitative agent A6 uses the same strategy as A5, but in ambiguous decision
situations it switches to the strategy of A4. Formally, if there is more than one

action maximizing the valence function of A5 (eq. 3.34), the agent re-evaluates
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Figure 3.9. Agent A5 interacting with the treasure hunt task. A5 is a belief state-
based exploitative agent. To evaluate the valence of an action, A5 does not identify single
potential treasure locations - like agents A3 and A4 do - but uses its knowledge about all
nodes and computes the sum of belief-weighted [; distances. In this simulation, the agent
collects the treasure at node 16 in the second attempt and solves the task in the third attempt.
Note: For layout conventions, please see the legend of Figure 3.7.

all available actions based the valence allocation scheme of A4 (egs. 3.31-3.33),

vas(a), if |argmaxvas(a)| =1
vagla) := a€A ) (3.35)

vas(a), else

Worked trial example. On the example trial, there is only one action

maximizing eq. 3.34,

arg max vas(a)| =1
acA 1

and thus

vag(a) = vas(a).

To illustrate an ambiguous decision situation, assume that the agent has the non-

zero trial posterior belief state components uii)l =0.3, uﬁf’f =0.15, uifl) =02
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and ,uﬁll) = 0.35. Then, the action valences based on the scheme of A5 evaluate

to
vA5(—5) = —(0.3 . 11(6, 6) +0.15 - 11(6, 13)

+0.2-04(6,14) +0.35-1;(6,21)) = —2.3
vas(+1) = —(0.3-1;(12,6) + 0.15 - [1(12,13)
+0.2-04(12,14) + 0.35 - 1;(12,21)) = —2.2
vas(+5) = —(0.3-1;(16,6) + 0.15 - [1(16, 13)
+0.2-1;(16,14) + 0.35 - 1;(16,21)) = —2.2.
As the eastward and southward movements are equally desirable, i.e.,

argmax vas(a)| = 2,

acA

A6 re-evaluates the actions using the A4 scheme:
it =21 and i} = 6.

Consequently,

and therefore,

Given that

vas(a) = vas(a),

the most desirable action for A6 is the northward movement.

Simulated task behavior. Figure 3.10 shows an exemplary behavior of A6. In
this simulation, the agent solves the task: By switching between the strategies
of A5 and A4, the agent recovers the first treasure location in the first attempt

and manages to solve the task already in the second attempt.

The belief state-based explorative agent A7 The belief state-based
explorative agent A7 tries to resolve its uncertainty about the treasure locations
as quickly as possible. To accomplish this, A7 uses its belief state to evaluate the
amount of information it would gain by choosing a certain action. Specifically, to

allocate action valences, A7 adopts a one-step look-ahead Bayesian exploration
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Figure 3.10. Agent A6 interacting with the treasure hunt task. A6 is a belief
state-based exploitative agent that uses the same strategy as A5. If, however, the agent faces
an ambiguous decision situation, it switches strategy and allocates action valences using
the scheme of A4. In this simulation, A6 collects the first treasure in the first attempt and
both treasures in the second attempt. Note: For layout conventions, please see the legend of
Figure 3.7.
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approach (e.g., Sun, Gomez, and Schmidhuber (2011)): For each available
action a € A, the agent evaluates the expected Bayesian surprise, which
corresponds to the expected shift in the belief state that would result upon
entering the new grid position and being presented with the observation bars.
This shift is evaluated in two steps. First, A7 computes the Kullback-Leibler
(KL) divergence between the current trial posterior belief state j;.; (which
serves as the prior belief state on the next trial) and the simulated position-

updated belief state p;_ , as

d2 i /~L/ (Z)
KL (M2+2|‘Mt+1) = Zi:l M2+2() -In ( :(Lz) > : (3.36)
t+1

Then, by taking into account all possible observations at the simulated new
position sl, A7 computes the expected KL divergence between the simulated
position-updated belief state yi;,, and the simulated position- and observation-

updated belief state 117/, ,,
E (KL (Mé@z”ﬂﬂz)) = ZOGO P (0) KL (:U’;I+2H:u/t+2) : (3.37)

Importantly, as eqs. 3.36 and 3.37 depend on whether there is a treasure

discovery on the next trial or not, the overall expected shift in the belief state
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for an action a € A, is given by

vaz(a) —Zﬂt+1 (KL (Nt+2||ﬂt+1) 2 s? +F (KL (Mt+2||ﬂ£+2))s§+l¢sg>

+ (1 N ZUt—H) <KL (Nt+2||ﬂt+1) 1=5% tE (KL (M:fl*‘2||u2+2))52 :5?) )

t+1

(3.38)

The first term in eq. 3.38 captures the expected shift in the belief state if there
is a treasure discovery on trial ¢ + 1. The second term captures the expected

shift in the belief state if there is no treasure discovery on trial ¢ + 1. The

1
product ngj_*l) captures the agent’s subjective uncertainty that a treasure is

located at the new grid position s!. Here, z is set to 2 if no treasure was
discovered in the attempt up to trial ¢ (i.e., s? = 0), and to 1 otherwise. This
is to account for the fact that until a treasure is discovered in the attempt, u
represents the belief over both treasure locations. Therefore, maximal certainty
about a treasure location is represented as a value of 0.5 at the corresponding

component of .

Worked trial example. On the example trial, A7 allocates the valence

[§
var(=5) = 2y - (KL (Htsollie) o, cquo T F (KL (M2/+2||M2+2))s§+1€{172})

(1= =) - (KL (hallis) g o+ B (KL (1 alli)) . o)
=2-0.25-(0.29 +0.29) 4+ (1 — 2- 0.25) - (0.340)
=0.44

to the northward movement, the valence

(12
var(+1) = zﬂt+1) : (KL (Mt+2”ﬂt+1) 2 {1,2} +E (KL (”t+2HN2+2))53+1{1,2})

(1= 2®) - (KL (haallinn) g o+ B (KL (halliie)) 5 )
=2-0-(0+0)+(1—2-0)-(0+0.45)
=0.45

to the eastward movement, and the valence

(16
va7(+5) = zﬂt+1) : (KL (Nt+2’|ﬂt+1) 2 {1,2} + E (KL (M+2Hﬂ2+2))s§+1{172})

+ (1 - zuﬁﬂ)) : (KL (Mt+z||ut+1)sg+1:0 +E (KL (ﬂéﬁr2’|ﬂi+2))sgﬂ:o>
=2-0-(0+0)+(1—-2-0)-(04+0.4)
= 0.4.
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to the southward movement. Thus, for agent A7, the most desirable action is

the eastward movement.

Stmulated task behavior. Figure 3.11 shows an exemplary behavior of agent
A7. In this simulation, the agent does not solve the task: Although A7 recovers
the first treasure location in the first attempt and the second treasure location
in the second attempt, it fails to revisit these locations in the third attempt. It
is notable that until the agent recovers the second treasure location, it behaves
as if it tried to collect the treasures. The reason for this is that in order to
reduce uncertainty about the treasure locations, A7 first visits parts of the grid
that likely house a treasure. Then, once the agent recovers both locations, its
uncertainty is resolved. From this point on, the agent allocates equal valences
to all available actions because there is no further information to be gained.
Consequently, after the recovery of the second treasure, A7 behaves like the

belief state-free cognitive null agent A1 and does not solve the task.

Belief state-based hybrid explorative-exploitative agents We designed
two belief state-based hybrid agents, A8 and A9, that combine the objectives of
the explorative and exploitative agents. Specifically, these agents explore their
belief states first to reduce their uncertainty about the treasure locations and
then exploit their accumulated knowledge to collect the treasures. To this end,
both agents allocate action valences by evaluating the convex combination of
the valences of the belief state-based explorative agent and a belief state-based
exploitative agent. However, there are two main differences between agents
A8 and A9. First, they employ the valences of different belief state-based
exploitative agents. Second, they differ with respect to the functional form of

their weighting parameter.

The belief state-based hybrid agent A8 Agent A8 is the simpler belief
state-based hybrid explorative-exploitative agent. To allocate action valences,
this agent computes the convex combination of the normalized action valences
of the belief state-based exploitative agent A3 and the belief state-based
explorative agent A7. For this agent, the weighting parameter is constant

throughout. Formally,

vaz(a)
Son, var(a)

na(a)i= -~ ”:3(523 ARk

(3.39)
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Figure 3.11. Agent AT interacting with the treasure hunt task. A7 is a belief
state-based explorative agent that tries to resolve its uncertainty about the treasure locations.
To this end, on each trial, this agent allocates action valences based on the expected shift in
the belief state that would result upon choosing the action. In this simulation, A7 collects the
treasure at node 10 in the first attempt and the treasure at node 16 in the second attempt.
After the recovery of both treasure locations, there is no further information to be gained
and the agent allocates equal valences to the available actions. By doing so, A7 fails to solve
the task in the third attempt. Note: For layout conventions, please see the legend of Figure

3.7.

where A € [0,1] is the weighting parameter. The reason we chose to adopt
the action valences of A3 for this agent is that A3 arguably implements the
purest form of a belief state-based exploitative strategy: A3 always favors the
action that is the safest bet - i.e., the move towards the node which has the
highest associated belief - and does not take into account other aspects of the
task environment, such as the presence of two treasures. Therefore, for the
simpler belief state-based hybrid explorative-exploitative agent the valences of
A3 naturally contrast with the valences of the belief state-based exploitative
agent A7.

Worked trial example. On the example trial, agent A8 allocates the following
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action valences using a weighting parameter of A = 0.7:

-3 0.44
By T 1—0.7)- =-0.1
vas(=8) = 0.7+ =52 + (1 = 0.0) - o e g — 0198
-3 0.45
N=07 —— _° 1—-0.7)- =—-0.1
vas(+1) = 0.7 =5 + (1 = 0.7) - s g = 019
—1 0.4
vas(+5) 551 0 oA o4

Thus, for agent A8, the most desirable action is the southward movement.

Stmulated task behavior. Figure 3.12 shows an exemplary behavior of agent
AS8. In this simulation with the weighting parameter set to A = 0.7, the agent
does not solve the task: A8 recovers the treasure location at node 16 in the first
attempt and the treasure location at node 10 in the second attempt. Although
the agent revisits and thereby collects the treasure at node 10 in the third
attempt, it does not manage to collect the other treasure before the step limit
is reached. Notably, while a weighting parameter value of A\ = 0.7 grants a
stronger control to the belief state-based exploitative agent A3, the influence
of the belief state-based explorative agent A7 is evident. In particular, in
the second attempt agent A8 does not get trapped in revisiting the treasure
location discovered in the first attempt, as A3 would do, but seeks for and
recovers the other treasure location. After recovering both treasure locations,
A7 does not differentiate between the available actions and therefore action
selection on the remaining trials is driven by the valences of A3. Consequently,
in the third attempt, agent A8 behaves similar to agent A3 and does not solve
the task.

The belief state-based hybrid agent A9 Agent A9 is the more advanced
belief state-based hybrid explorative-exploitative agent. This agent allocates
action valences based on the convex combination of the valences of the belief
state-based exploitative agent A4 and the belief state-based explorative agent
AT7. In contrast to the constant weighting parameter of agent A8, for this agent
the value of the weighting parameter depends on its current state uncertainty.

Formally,

var(a)
on, var(a)

vaq(a)

=N\ —
’UAQ(G) t ZG*EA51 UA4(CL*>

+ (1= N\) -

(3.40)
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Figure 3.12. Agent A8 interacting with the treasure hunt task. A8 is a belief
state-based hybrid explorative-exploitative agent that tries to resolve its uncertainty about
the location of the treasures first and then collect them. To this end, agent A8 allocates
action valences by evaluating the convex combination of the action valences of agents A3
and A7. In this simulation, the agent collects the first treasure in the first attempt and the
second treasure in the second attempt. In the third attempt, the agent collects the first
treasure but it does not manage to reach the second treasure location before the step limit
is exhausted. Note: The trial-by-trial normalized action valences of agents A3 and A7 are
shown in the fourth and fifth row of each attempt, respectively, with a lighter color indicating
a higher value. These complement the trial-by-trial states, observations, belief states, and
action probabilities as also shown for the other belief state-based agents (cf. Figure 3.7).
The weighting parameter A was set to 0.7 in this simulation.

where A, € [0, 1] is the weighting parameter on trial ¢ and is evaluated according
to

Ae =m0 - exp (—=m - H (per1)) - (3.41)

94



3.2. General methods

Here, ny € [0,1] and 7, € R are the offset and slope parameters of the

exponential decay function, respectively, and

@ i
H (pp41) == — Zi:l N§421 ! <M§421> (3.42)

is the entropy of the agent’s trial posterior belief state. Of note, our choice to
express the dynamic weighting parameter with an exponential function is in
line with similar previous work (e.g., Camerer and Ho, 1998; Glascher et al.,
2010). This agent combines the valences of agents A4 and A7. As discussed
above for agent A4, by taking into consideration the possible location of both
treasures, the strategy of A4 allows for more flexibility compared to the strategy
of A3. Consequently, we reasoned that for the more advanced belief state-based
hybrid explorative-exploitative agent the valences of A4 constitute a suitable

contrast to the valences of the belief state-based exploitative agent A7.

Worked trial example. On the example trial, state uncertainty evaluates to
H (p41) = 1.54.

By setting the offset and slope parameters to ny = 1 and ny = 0.4, respectively,

the weighting parameter evaluates to
At =1-exp(—0.4-1.54) = 0.54.

Consequently, A9 allocates the following action valences:

0 0.44
5 =054 —— 0 (1-054)- — 0.16
va9(=5) TR ) 01045 104
5 0.45
1) =054 —— > 4+ (1-0.54)- — 011
vas(+1) 022! ) 0T 045 104
S 0.4
) =054 —— % 1 (1-054)- — 013,
vas(+9) 0—2_3 ! ) AT 045704

Thus, for agent A9, the most desirable action is the northward movement.

Stmulated task behavior. Figure 3.13 shows an exemplary behavior of agent
A9. In this simulation with an offset of 79 = 1 and a slope of n; = 0.4, the
agent solves the task: A9 finds the treasure at node 16 in the first attempt, the
treasure at node 10 in the second attempt and collects both treasures in the
third attempt. For the 7y and 7, values used in this simulation, the weighting
parameter )\; grants dominant control to the belief state-based explorative

agent A7 if the agent is maximally uncertain about the state (this is the case in
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the first trial of the first attempt, where the entropy of the trial posterior belief
state is H (u2) ~ 3 and thus A\; = 0.3). The weighting parameter )\, grants full
control to the belief state-based exploitative agent A4 if the agent’s uncertainty
is resolved (A, = 1; this is the case if both treasure locations are recovered
and thus the entropy of the belief state is H (us41) ~ 0). To demonstrate the
changing contribution of agents A7 and A4 in the action valences of A9, consider
the second and third attempts. In the beginning of the second attempt, the
agent is still uncertain about the location of the first treasure. Consequently,
the preference of A7 prevails over the preference of A4 and the agent searches
for and finds the treasure. Then, in the third attempt, the valences of agent
A4 prevail and, like agent A4, agent A9 solves the task (cf. Figure 3.8).

3.3 Behavioral methods

3.3.1 Descriptive behavioral data analyses

We evaluated six descriptive statistics of participants’ decision-making behavior
in the treasure hunt task. First, we evaluated the average performance by
dividing the sum of solved tasks across participants by the number of partici-
pants. Second, we evaluated the average number of solvable tasks by dividing
the sum of solvable tasks across participants by the number of participants.
We evaluated this statistic because some tasks were not solvable due to the
randomly allocated step limit. This was the case if the step limit in all three
attempts of a task was smaller than the optimal step limit. For the last four
statistics, we evaluated the average performance per run, per attempt, per opti-
mal step limit and per treasure location combination. To evaluate the average
performance per run, for each participant and run, we first divided the number
of solved tasks by the number of solvable tasks and subsequently computed
the mean and the standard error of the mean (SEM) across participants. To
evaluate the average performance per attempt, for each participant, we first
divided the number of tasks solved within one, two and three attempts by the
number of all tasks that were solvable for that participant and subsequently
computed the mean and the SEM across participants. To evaluate the average
performance per optimal step limit, for each participant and optimal step limit,
we first divided the number of solved tasks by the number of solvable tasks and
then averaged across participants. Finally, to evaluate the average performance

per treasure location combination, for each participant and treasure location
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Figure 3.13. Agent A9 interacting with the treasure hunt task. A9 is a belief state-
based hybrid explorative-exploitative agent, that, similar to A8, allocates action valences
by combining the action valences of a belief state-based exploitative and explorative agent.
Specifically, A9 evaluates the convex combination of the valences of A4 and A7 using a state
uncertainty-dependent weighting parameter. In this simulation, the agent recovers the second
treasure location in the first attempt. It subsequently searches for and recovers the first
treasure location in the second attempt, and solves the task in the third attempt. Note: For
layout conventions, please see the legend of Figure 3.12. In this simulation, the offset and
slope parameters were set to 179 = 1 and n; = 0.4.

combination, we first divided the number of solved tasks by the number of

solvable tasks and then averaged across participants.
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3.3.2 Model-based behavioral data analyses

Behavioral data analysis models To evaluate the agent models based on
the experimentally acquired behavioral data, for each agent we first formulated
a corresponding behavioral data analysis model that specifies the probability
over action a; given the history of directly observable state components ;.
and observations o1;. For the belief state-free cognitive null agent Al, the
behavioral data analysis model is given by mapping the action valences into

probabilities according to

p(a = alyr4,014) = p (at = a|st1) = v(a). (3.43)

For all other agents, the behavioral data analysis models are given by nesting

the agent-specific action valence functions in a softmax operation according to

exp (8 (v(a))) (3.44)

Pla = a 1, 01:t) *= ’
( v ) 2aea, P (4 (v(a)))

p

where the inverse temperature parameter 5 € Rs( denotes the post-decision
noise (Reverdy & Leonard, 2015). The larger the value of /3, the higher the
probability that the action with the highest valence is realized, i.e., the smaller
the post-decision noise. Correspondingly, the smaller the value of 5 the less
the probabilities reflect the action valence differences, i.e., the higher the

post-decision noise.

Model simulations We ran two sets of simulations using each agent’s behav-
ioral data analysis model. First, to compare participants’ performance with the
performance of the agents, we presented the models with task configurations
identical to those presented to the participants. In particular, in the first set of
simulations, the models were presented with tasks that had the same treasure
location combinations as the tasks presented to the participants. The attempt
limit on each task was determined by the number of attempts the participant
used and the step limit on each attempt was identical to the step limit given
to the participant. Second, to obtain a global marker of the locally defined
agent strategies and to complement the results of the first set of simulations,
we presented the models with standard task configurations. In particular, in
the second set of simulations, the models were presented with all possible
treasure location combinations. On each task, the attempt limit was set to the

maximal of three and the step limit corresponded to the optimal step limit.
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Consistent with the simulations we conducted to show exemplary behaviors of
the agents (cf. Figures 3.5-3.13), in both sets of simulations we set the value
of the inverse temperature parameter 5 to an arbitrary large value (5 = 100)
to ensure minimal post-decision noise in the action generation. Similarly, we
set the free parameters of the belief state-based hybrid explorative-exploitative
agents to the values used in the exemplary simulations (A = 0.7, 70 = 1 and
no = 0.4). In both sets of simulations, for each task we generated one data
set with each model and subsequently computed average model performances.
Specifically, in the first set of simulations, for a given set of tasks presented to
a single participant we evaluated the number of solved tasks for each model
and subsequently computed the mean and SEM across participants. In the
second set of simulations, for each model, we divided the number of solved tasks

by the number of all tasks to obtain the mean performance and subsequently

computed the SEM.

Model evaluation We employed a maximum likelihood (ML) approach to
evaluate the agent-specific behavioral data analysis models in light of the
participants’ data. To this end, for each model and participant, we first
evaluated the sum of the summed log probability of all actions on each task over
all tasks, conditional on the participant-specific history of the directly observable
state components and observations. Formally, let m denote the total number
of tasks, ny denote the number of valid trials (i.e., the number of trials with a
valid action) on task 7'=1,...,m, and K = > 7', ny denote the total number
of valid trials across the experiment. Further, let 3!, o, al” denote the directly
observable state components, observation and action on trial t = 1,...,np
of task T. Finally, let yix = (y1,93,-- YL ), o1.x == (01,0},...,0L ) and
a1.x = (a%, a, ..., Ay, ) denote the set of directly observable state components,
observations, and actions across the experiment. Then, for each model the
directly observable state components-observation-action data log likelihood is

given by

hlp (al:K|y1:K7 OI:K ZT 1 Zt 1 ll'lp |y1 41 01. t) (345)

P (aﬂy{t, oﬂt) denotes the model-specific probability of action al given the
history of directly observable state components 7, and observations o, on task
T'; intuitively, it evaluates the probability of the participant action a] under the
assumption that a given agent had experienced the identical directly observable

state components and observations as the participant did up to trial ¢ on task
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T. For agent A1, this probability is evaluated directly. For all other agents, this
probability depends on the post-decision noise parameter 3, and, for agents
A8 and A9, additionally on the weighting parameter A and on the offset and
slope parameters 79 and 7y, respectively. To estimate these parameters, we
maximized a model’s log probability Inp (a1.x|y1.x, 01.x) as a function of its
free parameters using Matlab’s constrained nonlinear optimization function
fmincon (Byrd, Gilbert, & Nocedal, 2000; Byrd, Hribar, & Nocedal, 1999;
Waltz, Morales, Nocedal, & Orban, 2006). For 8 and 7, the optimization was
performed on the interval [107°,10] and the initial value was set to 5. For A
and 7, the optimization was performed on the interval [107°,1] and the initial

value was set to 0.5.

Model comparison To compare the models’ relative plausibilities given the
participants’ data, we first computed the Bayesian Information Criterion (BIC;

Schwarz, 1978) for each agent and participant as
BIC = —2lnpé(a1:K]y1:K, o1.x) + jInK (3.46)

to account for the accuracy-complexity trade-off (Farrell & Lewandowsky,
2018). On the right hand-side of eq. 3.46, the first term denotes the model’s
maximized log probability multiplied by the factor —2, 5 denotes the model’s
number of free parameters and K denotes the number of data points (i.e.,
the number of valid trials). We then subjected the negative BIC scores of
all agents and participants to a random-effects Bayesian model selection as
implemented in the spm_ BMS function in SPM12 (www.fil.ion.ucl.ac.uk /spm /;
Rigoux, Stephan, Friston, and Daunizeau, 2014; Stephan, Penny, Daunizeau,
Moran, and Friston, 2009). We report the ensuing protected model exceedance
probabilities, which indicate the group-level probability that the particular
model is more likely than any other models of the model space. We additionally
evaluated a pseudo-r? statistic p according to McFadden (1973). This statistic
offers a standardized measure of how well a model of an optimizing agent fits
the data by quantifying the variance of a participant’s actions explained by the
respective model compared to a cognitive null model. In our model space, the
cognitive null model corresponds to the model of agent A1 and consequently,
for each participant we report p for all other agents. Formally, p is evaluated
according to )
lnpeAgentyéAl (ar.r Y1, 01:K)

=1- ) 3.47
P lnpAl(al:K !th, 01:K) ( )
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3.4. Behavioral results

Model recovery analysis To validate our agent-based behavioral modeling
approach, we conducted a model recovery analysis to test if we can reliably
arbitrate between the agent-specific behavioral data analysis models. To this
end, we evaluated each model based on the synthetic data sets generated in the
second set of simulations by means of the ML and BIC approaches discussed
above. Specifically, for each model we evaluated the maximum log likelihood of
the synthetic actions given the synthetic directly observable state components
and observations generated with a given model on a given task. Then, we
computed the BIC score for each model and synthetic data set and subsequently
averaged across the synthetic data sets of a given data generating model. This
way, we obtained an average BIC score for each model, for data generated with

each model.

3.4 Behavioral results

3.4.1 Descriptive behavioral results

On average, the performance was high: Participants solved 11.26 4+ 0.67 of
14.95 solvable tasks (Figure 3.14a). There was no difference in the performance
between runs (one-way analysis of variance (ANOVA), F(3,70) = 0.72,p =
0.55; Figure 3.14b), suggesting that participants performed at a constant
level throughout the experiment. Of all solvable tasks, 59.12% =+ 3.54 were
solved within one or two attempts and significantly less within three attempts
(16.09% =+ 2.19; one-way ANOVA, F'(2,54) = 10.71,p < 0.001; Figure 3.14c).
This result indicates that participants were able to solve most task using
only two attempts and it therefore reassures our decision to limit the number
of attempts to three. We additionally evaluated the average performance
per optimal step limit and per treasure location combination. Overall, the
performance decreased with increasing optimal step limit (Figure 3.14d) and,
on average, participants solved more tasks if at least one of the treasures was
close to the start position (compare the second row with the last column in
Figure 3.14e). These results are consistent with the notion that tasks with
larger optimal step limits and with more distant treasure locations were harder.
This is because in these tasks the solution required more steps and the initial

accuracy of the treasure detector was lower.
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Figure 3.14. Descriptive behavioral results. a Number of presented, solvable and
solved tasks for each participant. Horizontal lines show the participant-averaged values. The
performance was high with approximately 11 solved tasks on average. b Average performance
per run. The performance was stable throughout all runs. ¢ Average performance per
attempt. The majority of the tasks were solved in the first or the second attempt. d
Average performance per optimal step limit. The performance showed a decreasing trend
with increasing optimal step limit. e Average performance per treasure location combination.
The performance was higher if at least one of the treasures was located at a cell close to the
initial grid position. Black color marks those treasure location combinations that were not
presented to the participants (cf. Figure 3.2a). Note: The error bars in b and ¢ denote the
SEM and * in ¢ denotes p < 0.001.

3.4.2 Model-based behavioral results

Model recovery results We validated our agent-based behavioral model-
ing approach by conducting a model recovery analysis of the agent-specific
behavioral data analysis models. As shown in Figure 3.15, for data generated
with a given model, the BIC score was minimal for the same recovering model
except for the belief state-based hybrid explorative-exploitative agent A9. This
indicates that all models except the model of A9 are reliably identifiable. For
data generated with the model of A9, the BIC score was minimal for the model
of the belief state-based exploitative agent A4. This is possibly due to the
fact that with the offset and slope parameter values used in the simulations
(no = 1 and 7y = 0.4), the behavior of agent A9 mimics the behavior of agent
A4. As the model of agent A4 has two parameters less than that of A9, in the
evaluation of the BIC score the penalization term is smaller for A4, which in
turn leads to a smaller BIC score for this agent. Although the model of A9 is
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not recoverable for data generated with the aforementioned parameter values
as evaluated based on the BIC scores, it is noteworthy that even with these
parameter values there are certain characteristics of the behavior of A9 that
differ from the behavior of A4, as discussed above in Paragraph Simulated task

behavior of agent A9 (see also Figure 3.13).

Model simulation results To obtain global markers of the locally defined
agent strategies and compare the agents’ behavior to that of the participants, we
evaluated synthetic performances based on data simulated with the behavioral
data analysis model of each agent. The results from both sets of simulations show
a very similar pattern (Figure 3.16a): The lowest performance was exhibited by
agent A1, followed by a markedly higher performance of agents A7 and A2. On
average, the latter two agents successfully solved 5-7 tasks with participants
configurations and 49-59% of the tasks with standard configurations. Arguably,
these values already suggest a decent performance given the complex nature of
the treasure hunt task. Agents A3, A5, A8 and A9 solved approximately 11
tasks with participants configurations on average, which is comparable to the
participants’ performance (cf. Figure 3.14a). These agents solved 88-96% of
the tasks with standard configurations. The best performing agents were A4
and A6 on both sets of simulations, with A6 solving almost all tasks (99.6%)

with standard configurations.

The results of the simulations and their implications can be summarized as
follows. First, a high performance as exhibited by the participants was only
achieved by agents A3, A4, A5, A6, A8 and A9. This suggests that they are
plausible models of the participants’ decision-making behavior in the treasure
hunt task, lending high face validity to the belief state-based exploitative or
hybrid explorative-exploitative planning strategies. Second, the finding that
these agents outperformed the belief state-free cognitive null agent A1 and the
belief state-based explorative agent A7 is not surprising, because neither Al
nor A7 try to collect the treasures and thereby solve the task. However, their
outperforming the belief state-free exploitative agent A2 is more surprising.
While A2 does not maintain a belief state, it tries to collect the treasures by
relying on the available signal of the treasure detector. As a light grey bar
necessarily indicates a direction towards the treasures, this strategy could have
turned out to be good enough to succeed on most tasks. Yet, as our finding
highlights, a performance comparable to that of the participants can not be

achieved merely based on instantaneously available information. Third, we
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found that of the belief state-based agents, the purely exploitative strategy
of A6 prevailed. This agent exhibited a nearly perfect performance on the
set of simulations with standard configurations. This suggests that optimal
behavior in the treasure hunt task - by means of task solution given the standard
configurations - requires belief state-based exploitative planning from the outset.
It is notable that agent A6 implements the most advanced belief state-based
exploitative planning strategy by dynamically switching between the strategies
of agents A4 and A5.

A1
A2

—— A3

— A5

A6

0 A9
Al A2 A4 A5

A3 A6 A7 A8 A9

BIC score
n W S
o o o

o

Data generating agent

Figure 3.15. Model recovery results. Y-axis shows the average BIC score of each
agent-specific behavioral data analysis model evaluated on the synthetic data sets of each
data generating model shown on the x-axis. For data generated with a given model, the
BIC score was minimal for the corresponding model indicating that the models are reliably
recoverable. The only exception is the model of agent A9. For data generated with the model
of agent A9, the BIC score was minimal for the model of its constituent agent A4.

Model comparison results We evaluated and compared the agent-specific
behavioral data analysis models based on the participants’ data. As shown in
Figure 3.16b, for 15 of the 19 participants the BIC score was minimal under the
model of agent A5. Accordingly, the group cumulative BIC score was minimal
for this agent showing that among the set of models assessed the belief state-
based exploitative planning strategy of A5 explained participants’ behavior
the best (left panel of Figure 3.16¢). This conclusion is further supported by
the result of the random-effects Bayesian model selection: The group-level
protected exceedance probability of the model of A5 was larger than 0.99
indicating that within the group of participants the most frequently applied
strategy resembled that of agent A5 (right panel of Figure 3.16¢c). On average,
the winning A5 model explained 35.65% + 2.06 of the participants actions as
evaluated by the pseudo-r? statistic. Given the complexity of the treasure hunt

task, this p value suggests a considerably good model fit.
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Figure 3.16. Model simulation and comparison results. a Synthetic agent perfor-
mances evaluated based on the set of simulations with participants (left panel) and standard
(right panel) configurations. The results from both analyses are similar: The highest perfor-
mance was achieved by the belief state-based exploitative and hybrid exploitative-explorative
agents, with a level comparable to that of the participants (cf. Figure 3.14a). b Participant-
level BIC scores. For the majority of the participants (15 of 19), the BIC score was minimal
for the model of agent A5. ¢ Group-level cumulative BIC scores (left panel) and protected
exceedance probabilities (right panel). The cumulative BIC score was minimal and the
protected exceedance probability was maximal for the model of A5, providing evidence in
favor of the belief state-based exploitative planning strategy of this agent.

3.5 FMRI methods

3.5.1 FMRI data acquisition and preprocessing

Functional imaging was performed on a 3T Siemens Magnetom Tim Trio MRI
scanner (Siemens, Erlangen, Germany) with a 12-channel head coil. During
task completion, 36 interleaved axial slices (flip angle: 80°, slice thickness: 3
mm, voxel size: 3x3x3 mm?, distance factor: 20%) of T2*-weighted echo-
planar images (EPIs) (field of view: 216 mm) were acquired each 2000 ms. On
each run, the data acquisition was terminated manually when the participant
completed the tasks. Therefore, the number of volumes varied across runs, with
a maximum of 600 volumes per run. To allow for the signal to saturate, the first 3
images of each run were discarded. Before the first run, T1-weighted anatomical
images (voxel size: 1x1x1 mm?, field of view: 256 mm) were additionally
acquired. The fMRI data were preprocessed and analyzed using SPM12. To
prepare the participants’ EPIs for analysis, each data set was motion-corrected
by realigning the images to the first scan of the first run, normalized to the
Montreal Neurological Institute (MNI) EPI reference template, and re-sampled

to 2 mm isotropic voxel size. The images were subsequently smoothed using an
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8 mm full-width half-maximum isotropic Gaussian kernel.

3.5.2 Model-based fMRI data analysis

Participant-level model formulation We analyzed the preprocessed fMRI
data using a model-based GLM approach (Friston & Dolan, 2010). Specifically,
our primary aim was to identify the functional anatomy of the putative cogni-
tive processes underlying participants’ behavior, as formally captured by the
group-favored model of agent A5. To this end, we formulated the first-level
design matrix with the following regressors: The first regressor served as a
basis regressor and modeled the valid trials in a boxcar fashion with onsets
corresponding to the time of the grid position presentation and with participant
response time-dependent durations. To account for the maintenance of a belief
state, the second regressor constituted a parametric modulation of the first re-
gressor by the trial-by-trial Bayesian surprise (Itti & Baldi, 2009). The Bayesian
surprise on a given trial corresponds to the KL divergence between the task-
and trial-specific prior and posterior belief states (p and pf, , respectively) of

a participant, i.e.,

(@)

(@) H
KL Ht+1HUt Z MtT+1 -In ( t+t) ) (3.48)
ul

t

As the evaluation of the belief state is not dependent on any free parameters, the
Bayesian surprise on trial ¢ of task 7' depends only on the participant-specific
history of the directly observable state components y{,, and observations of,,. For
a consistent scaling across tasks, the Bayesian surprise was task-wise normalized

by projecting the trial-by-trial values onto the interval [0, 1] according to

KL (pfallpl) = min KL (pfp][pi)
nr

max KL (uf ||uf) — min KL (uf [|uf)
n

[ eNnT t«EN

KL (pfallu)) = (3.49)

Here, K'L (uf||1T)" denotes the task-wise re-scaled Bayesian surprise and nyp
denotes the number of valid trials on task 7". The third regressor constituted a
parametric modulation of the first regressor by the trial-by-trial chosen action
valences as evaluated by agent A5. We included this regressor to account for
action evaluation reflecting exploitative planning on the basis of belief states by
means of the heuristic real-time dynamic programming approach of the winning

agent. In particular, the chosen action valence on trial ¢t of task T is given by
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the negative sum of the belief-weighted [; distances between the new position

resulting from the participant’s action a! and each node of the grid, i.e.,
T _ ¢ ) T, 7
vas(a; ) = — P Li{s;  +a,i (3.50)

(cf. eq. 3.34). As in the case of the Bayesian surprise, the chosen action
valence does not depend on any free parameters and for action a! is evaluated
directly based on the participant-specific history of the directly observable state
components y1,, and observations of,,. Before combining the first regressor with
the chosen action valences, they were also task-wise normalized on the interval
[0,1] as

vas(ai) — min vas(al)

T ! t« € np
vas(a; ) = TR = (3.51)
2 vasla.) = gl oas(an)

for a consistent scaling across tasks. In addition to the model-based parametric
regressors, as the fourth regressor we included a parametric modulation of
the first regressor by the trial-by-trial average luminance to account for the
confounding effect of varying light intensity across trials. To obtain trial-by-
trial average luminance values, we first calculated the luminance of a three-

dimensional RGB image I € R7*%*3 according to
) = — 57 S5 0200760 10587169 4 0114108 (3.59)
TR 2y 2t O . . .

and subsequently calculated the average luminance across the images presented
to a participant on trial ¢ of task 7" (Parekh, 2006). Finally, we also included
three regressors modeling additional task events with 0-duration pulses at the
event onsets. Specifically, the fifth regressor modeled the treasure discovery (i.e.,
grid positions with a treasure), the sixth regressor modeled the information
display presented after each attempt and task, and the seventh regressor
modeled the fixation crosses presented after every fourth attempt. Of note,
the parametric regressors were only weakly correlated (the run- and subject-
averaged correlation coefficient was 0.33 4= 0.02 between Bayesian surprise and
chosen action valence, 0.25 + 0.01 between Bayesian surprise and luminance,
and 0.16 4 0.03 between chosen action valence and luminance) and all seven
regressors, referred to as regressors of interest, were entered in the participant-

level design matrix without serial orthogonalization.

The regressors of interest were convolved with the canonical hemodynamic

response function (HRF) and, as per SPM default, low frequency components

107



Chapter 3

were removed using a high-pass filter with a 128s cutoff. The residual error
correlations were accounted for by SPM’s standard AR(1) model (Friston,
Glaser, et al., 2002). In addition, a constant run offset (as per SPM default)
and six spatial realignment parameters estimated during preprocessing were
entered in the participant-level design matrix as nuisance regressors of no
interest. For an exemplary time course of the regressors of interest and the
participant-level design matrix of a complete data set with four runs, please

see Figure 3.17a and b, respectively.
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Figure 3.17. Participant-level GLM design matrix. a. Exemplary time course of
the regressors of interest over a single run. From top to bottom: Valid trials modeled with
a boxcar function with onsets corresponding to the onset of the grid position and offsets
corresponding to the participant’s button press. Normalized Bayesian surprise quantifying
the trial-by-trial shift in the belief state. Normalized chosen action valence reflecting the
trial-by-trial action evaluation process as assumed by the group-favored agent A5. Average
luminance quantifying the light intensity of the images presented on a trial. Treasure discovery
modeled with O-duration pulses at the onsets of grid positions with a treasure. Information
display modeled with 0-duration pulses at the respective stimulus onsets (presented after each
attempt and task). Fixation cross modeled with 0-duration pulses at the respective stimulus
onsets (presented after every fourth attempt). Note: Black lines depict the HRF-convolved
regressors, grey lines depict the unconvolved regressors, orange dots denote the task onsets
(or, equivalently, the onsets of the first task attempts), and small orange squares denote the
attempt onsets. b Exemplary participant-level design matrix of a complete data set with
four runs as output by SPM12. In addition to the regressors of interest, the participant-level
design matrix comprised constant run offsets and motion parameters as regressors of no
interest.
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3.5.3 Participant- and group-level model estimation and

evaluation

We estimated the parameters of the participant-level GLM using SPM’s re-
stricted maximum likelihood scheme (Friston, Penny, et al., 2002). We subse-
quently evaluated contrasted parameter estimates, first for the positive main
effects of valid trials, luminance, treasure discovery and information display to
validate the fMRI data quality, and then for the positive and negative main
effects of the Bayesian surprise and chosen action valence to identify brain
regions encoding model-based quantities. For example, we used the contrast
vector ¢ = (0,1,0,0,0,0,0)” to evaluate the positive main effect of Bayesian
surprise. The resulting eight contrast images were entered for group-level voxel-
wise one-sample t-tests. We applied a cluster-forming threshold of p < 0.001
(uncorrected) to the t-statistic maps and report the clusters with a family-wise
error (FWE) corrected p-value smaller than 0.05. Anatomical labels were
obtained using the third version of the Automated Anatomical Atlas (AAL3;
Rolls, Huang, Lin, Feng, and Joliot, 2020).

3.6 FMRI results

3.6.1 FMRI data validation

Before interrogating the fMRI data for model-based effects, we conducted a
set of analyses to investigate the neural underpinnings of cognitive processes
involved in the treasure hunt task, which are not specifically assumed by the
group-favored agent model A5. In particular, we evaluated the positive main
effects of valid trials, luminance, treasure discovery, and information display.
We reasoned that these regressors would capture variability in the fMRI data
primarily related to movement planning and execution, visual processing,
reward processing, and reading, respectively. Importantly, the goal of these
analyses was to test if we can detect activity clusters in brain regions commonly
implicated in the respective putative cognitive processes and to thereby validate
the quality of our fMRI data. Therefore, we do not present these results in
detail but show that they largely corroborate the validity of the fMRI data
quality.

As shown in Figure 3.18, testing for the positive main effects of valid trials

revealed a large cluster extending through mainly left-hemispheric areas of the
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pre- and postcentral gyri, supplementary motor area, middle cingulate gyrus,
inferior parietal cortex, insula, rolandic operculum, putamen, pallidum and
thalamus, consistent with participants using their right hand for button press
(e.g., Ebbesen and Brecht, 2017; Gazzaniga, Ivry, and Mangun, 2013). For
a list of all clusters, please refer to Supplementary Table B.1. As expected,
activation in the bilateral visual cortex comprising parts of the superior and
middle occipital gyri, calcarine sulcus and surrounding cortex, cuneus, as well
as the lingual and fusiform gyri scaled positively with the trial-by-trial stimuli
luminance, among other regions (eg., Gazzaniga et al., 2013; Grill-Spector
and Malach, 2004; Supplementary Table B.2). For the positive main effects of
treasure discovery and information display, we obtained single activity clusters
spanning the majority of the brain. Specifically, both treasure discovery and
information display engaged a similar extended bilateral network of cortical and
subcortical areas, indicating the involvement of additional and partly shared
cognitive processes at these events, over and above those hypothesized. For
example, both analyses revealed increased activity in the hippocampus and the
parahippocampus, which are typically not associated with reward processing
or reading but have established roles in memory formation and recall (eg.,
Eichenbaum, 2017; Gazzaniga et al., 2013). Nevertheless, in keeping with our
expectations, for the positive main effects of treasure discovery, the obtained
large activity cluster also comprised classic reward regions, such as the bilateral
dorsal and ventral striatum, insula, ventromedial prefrontal cortex, and ventral
tagmental area (Bartra, McGuire, and Kable, 2013; Morales and Margolis,
2017; Supplementary Table B.3). While the activity pattern was similar for
the positive main effects of information display, the obtained large activity
cluster did not comprise the ventral striatum and the ventral tagmental area.
It however comprised all regions commonly implicated in reading, including
the bilateral lateral frontal cortex, supplementary motor areas as well as the
temporal and occipital lobes, with slightly more extended activity in the left
hemisphere (Martin, Schurz, Kronbichler, and Richlan, 2015; Supplementary
Table B.1).

3.6.2 Model-based fMRI results

After validating the fMRI data quality, we commenced with investigating the
neural substrates of the trial-by-trial cognitive processes belief state maintenance
and action evaluation as assumed by the behaviorally most plausible agent

model A5. To this end, we evaluated the main effects of the model-based
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Figure 3.18. Positive main effects of valid trials. Group-level voxel-wise one-sample
t-tests revealed increased activation in areas involved in motor planning and execution
during valid trials. These include the left pre- and postcentral gyri, inferior parietal cortex,
thalamus as well as the bilateral supplementary motor areas, middle cingulate gyri, insula,
rolandic operculum, putamen, and pallidum, among other regions. Note: The t-value map
is thresholded at a cluster-defining threshold corresponding to p < 0.001 (uncorrected) and
overlaid on the SPM average T1 image. For each slice, the value in the upper left corner
denotes the corresponding MNI z-coordinate. The results are visualized with the xjView
toolbox available at https://www.alivelearn.net /xjview.

t-value

parametric regressors Bayesian surprise and chosen action valence.

Bayesian surprise We first examined the neural signals encoding the trial-
by-trial Bayesian surprise quantifying belief state maintenance in terms of
trial-by-trial belief state update. Drawing on previous work, we hypothesized
that if participants maintain a belief state in the treasure hunt task, a distributed
network of cortical and subcortical areas including the frontal and posterior
parietal cortices, as well as the dorsal striatum would be engaged (Fischer
et al., 2017; O’Reilly et al., 2013). Consistent with this hypothesis, we found
increased activation in response to the Bayesian surprise in the bilateral inferior,
middle, superior and medial frontal gyri. We also detected increased activation
in more posterior cortical areas including the bilateral inferior and superior
parietal lobules, precuneus and lingual gyri, and, in addition, in the right dorsal
striatum and the bilateral cerebellum. The positive main effects of Bayesian
surprise are visualized in Figure 3.19 and summarized in Supplementary Table
B.5. Testing for the negative main effects of Bayesian surprise revealed a small
cluster in the left precuneus and calcarine sulcus as listed in Supplementary
Table B.6.

Chosen action valence We next sought for neural signals representing the

trial-by-trial chosen action valences as evaluated by the belief state-based
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Figure 3.19. Positive main effects of Bayesian surprise. We detected clusters
positively encoding the Bayesian surprise in the bilateral prefrontal cortices (inferior, middle,
superior and superior medial frontal gyri), the bilateral inferior parietal cortices dorsally
extending into the superior parietal gyri and medially extending into the precuneus, the

bilateral lingual gyri, the right dorsal striatum and the bilateral cerebellum. Note: For the
applied visualization conventions, please see the legend of Figure 3.18.

t-value

exploitative agent A5 adopting a heuristic real-time dynamic programming
approach. Although the functional anatomy of belief state-based exploitative
planning is understudied, fMRI studies on planning (Korn & Bach, 2018; Simon
& Daw, 2011) and on exploitation (Chakroun et al., 2020; Daw et al., 2006) have
implicated the orbitofrontal and ventromedial prefrontal cortices in encoding
the subjective desirability of the chosen actions. As shown in Figure 3.20 and
listed in Supplementary Table B.7, we observed a similar activation pattern.
Specifically, activity in the right insula, posterior orbitofrontal gyrus and inferior
frontal gyrus, as well as in the bilateral anterior cingulate cortices reaching
into the medial frontal gyri scaled positively with the valences of the chosen
actions. We additionally obtained positively activated clusters in the bilateral
middle and superior temporal gyri (larger in the right hemisphere), and, more
posteriorly and ventrally, in the bilateral inferior occipital gyri, also comprising
parts of the fusiform and lingual gyri and the cerebellum. Seeking for areas

negatively encoding the chosen action valence returned no activation clusters.

3.7 Discussion

In real-life, multistep tasks are often complicated by the states of the environ-
ment not being fully observable. Despite their relevance, how humans make
sequential decisions in such tasks remains a largely open question. In the current

work we addressed this issue and assessed if in multistep tasks with partially
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Figure 3.20. Positive main effects of chosen action valence. We observed clusters
with increasing activation in response to increasing chosen action valences in the right insula
extending into the orbitofrontal and inferior frontal cortices, the bilateral anterior cingulate
cortices extending towards the medial frontal gyri, the bilateral middle and superior temporal
gyri, and the bilateral inferior occipital gyri extending into the fusiform and lingual gyri.
Note: For the applied visualization conventions, please see the legend of Figure 3.18.

observable states humans (1) rely on belief state-based planning strategies or
use computationally simpler belief state-free strategies, and whether they (2)
adopt an exploitative or a combined explorative-exploitative objective. We
furthermore investigated (3) the network of brain regions supporting sequential
decision making in these tasks. To this end, we developed a multistep task
with partially observable states framed as a spatial search task and analyzed
behavioral and fMRI data acquired from human participants using a combi-
nation of agent-based computational behavioral modeling and model-based
GLM for fMRI. By doing so, we provide evidence for a belief state-based
exploitative planning strategy engaging a distributed network of cortical and
subcortical brain regions. In the following, the task design, computational

modeling framework, and findings are discussed in turn.

Task design

As mentioned in Section 3.1, the defining characteristic of multistep tasks is
that actions of the deciding agent affect next states and thereby future rewards
(e.g., Bertsekas, 2000; Puterman, 2014; Sutton and Barto, 2018). Beside the
fact that states can be fully or partially observable, the task environment can
have various configurations. For example, the state transition and reward
structures specifying how state-action pairs lead to next states and rewards,
respectively, can be deterministic or probabilistic, and reward emissions can be

restricted to terminal state-action pairs. Furthermore, the step horizon can,
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in principle, range from two to infinity. In the treasure hunt task, to focus on
partially observable states, we opted for simple deterministic state transition
and reward structures, with reward emissions restricted to terminal state-action
pairs: participants’ position changed according to their directional decision
and they were only rewarded if they found both treasures. The step horizon
depended on the combination of the treasure locations, with most combinations

requiring participants to make decisions over six steps.

Tasks employed in two recent studies investigating model-free decision
making versus planning in multistep tasks with fully observable states share key
features with the treasure hunt task: The reward structures in the tasks both
by Korn and Bach (2018) and Simon and Daw (2011) are also deterministic,
and reward emissions in the task by Korn and Bach (2018) are restricted to
terminal state-action pairs as in our task. However, different from our task,
state-transition structures of both tasks are probabilistic. With respect to the
step horizon, participants interact with the task by Korn and Bach (2018) over
five steps, whereas they interact with the task by Simon and Daw (2011) over
a total of one thousand steps. Although the step horizon of the task by Korn
and Bach (2018) is more similar to ours, the spatial embedding of our task
resembles the task employed by Simon and Daw (2011), while the task by Korn
and Bach (2018) is framed as foraging.

Our task is also closely related to the spatial search task introduced by
Yoshida and Ishii (2006) to test the Bayesian brain hypothesis in the context
of sequential decision making under state uncertainty. Specifically, similar to
the treasure hunt task, in the task by Yoshida and Ishii (2000) participants are
instructed to navigate to a goal location in a grid-world by making decisions
over a minimum of ten steps under state uncertainty. Moreover, Yoshida and
Ishii (2006) also used deterministic state transition and reward structures with
rewards emitted only for terminal state-action pairs. However, while their task
constitutes an example of a multistep task with partially observable states
similar to the treasure hunt task, the focus of the work by Yoshida and Ishii
(2006) was not to examine various sequential decision-making strategies in such
tasks but to investigate the neurocomputational mechanisms of state estimation.
To this end, they induced state uncertainty by providing participants with
ambiguous observations about their current position. This differs from our task,
where state uncertainty results from ambiguous observations about the goal
locations delivered by the treasure detector, which always shows a dark grey

bar in the directions leading away from the treasures and either a light or a
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dark grey bar in the directions leading to the treasures. Crucially, introducing
state uncertainty this way allowed us to contrast various belief state-based
planning strategies in the treasure hunt task with belief state-free strategies,
such as the simple but considerably effective strategy of following the light grey

bar as further discussed below.

Computational modeling framework

Behavioral modeling To computationally characterize sequential decision
making in the treasure hunt task on a behavioral level, we designed a set of
agent-based behavioral models that can interact with the task (cf. Russell and
Norvig (2010)). In our model set, the belief state-free agents A1 and A2 simply
rely on immediately available information to evaluate the actions. Specifically,
by merely acknowledging the available actions without differentiating between
them, agent A1 corresponds to a generic cognitive null model. By contrast, agent
A2 adopts a relatively refined, yet computationally inexpensive strategy: This
agent takes advantage of the fact that the light grey bars necessarily indicate
directions towards the treasures and always follows these. Model-free strategies
that are specific to the task at hand, such as the strategy of A2, are often
contrasted with planning strategies. For example, the aforementioned work by
Korn and Bach (2018) applied a comparable approach, whereas Simon and Daw
(2011) formally captured model-free decision making with a temporal-difference
learning algorithm (e.g., Daw et al. (2005) and Sutton and Barto (2018)).
In their standard form, temporal-difference learning algorithms evaluate the
actions in a given state based on the associated reward history. Previous
theoretical (Rao, 2010) and rodent work (Babayan, Uchida, & Gershman,
2018; Starkweather, Babayan, Uchida, & Gershman, 2017) has extended this
framework by substituting states with belief states to accommodate decision
making under state uncertainty. However, our task design is not suited to
test decision making as accounted for by belief state-based temporal difference
learning. This is because even if the agent’s memory capacity allowed for storing
a value estimate for each belief state-action pair, in order for such a strategy
to be effective, the agent would need to re-encounter a belief state-action pair
that has previously been associated with reward. Since the treasure locations
change upon reward emission, this is unlikely to happen beyond the first few
steps in a new task.

The belief state-based agents of our model space perform recursive Bayesian

updating to infer the latent components of the state, i.e., the treasure locations.
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All belief state-based agents plan ahead on the basis of their thereby ensuing
belief states. However, they either pursue a purely exploitative, a purely
explorative, or a hybrid explorative-exploitative objective. More specifically, to
try to collect the treasures, the belief state-based exploitative agents A3-A6
harness their accumulated knowledge about the treasure locations and evaluate
the actions using heuristic real-time dynamic programming (Geffner & Bonet,
1998; Korf, 1990). The belief state-based explorative agent A7 tries to resolve
its uncertainty about the treasure locations and for each action quantifies the
one-step look-ahead information gain as the expected Bayesian surprise (Itti &
Baldi, 2009). The belief state-based explorative-exploitative agents A8-A9 try
to resolve their uncertainty about the treasure locations and then collect these.
To this end, they combine the heuristic action values of agents A3-A4 and the
expected Bayesian surprise of agent A7. The algorithmic architectures of the

belief state-based agents relate to earlier work central to our study as follows:

First, our approach to formalize belief state-based exploitative planning
in the treasure hunt task is conceptually linked to the partial tree search
algorithm used by Simon and Daw (2011) (Sutton & Barto, 2018). Although
their algorithm operates on the basis of states and not belief states given the
lack of state uncertainty in their task, it also accounts for planning by evaluating
the reward-related consequences of the available actions in an approximate
fashion. In contrast, Korn and Bach (2018) modelled planning by means of
optimal action value computations. Even more similar to our formalization of
belief state-based exploitative planning than the partial tree search algorithm
of Simon and Daw (2011) is the model applied by Yoshida and Ishii (2006). As
alluded to above, these authors did not compare the behavioral plausibility
of various sequential decision-making strategies in terms of the dichotomies
belief state-free versus belief state-based, and exploration versus exploitation.
However, to uncover the neurocomputational mechanisms of state estimation
in their spatial search task, they combined Bayesian state inference with a
form of action evaluation, which, in essence, corresponds to the heuristic
real-time dynamic programming algorithm employed by our belief state-based
exploitative agents. Notably, the model of Yoshida and Ishii (2006) assumes
action evaluation on the basis of unitary state estimates, which is consistent with
early theoretical work (Ishii, Yoshida, & Yoshimoto, 2002). Newer theories, on
the other hand, suggest action evaluation on the basis of the entire belief state
(Rao, 2010). Therefore, to further refine belief state-based exploitative planning,

agents A3-A4 and A5 implement heuristic real-time dynamic programming with
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unitary state estimates or with the entire belief state, respectively, while agent
A6 implements heuristic real-time dynamic programming both with unitary
state estimates and the entire belief state.

Second, our approach to cast belief state-based exploration as expected
Bayesian surprise maximization rests on Bayesian accounts of exploration
(Sun et al., 2011). By evaluating actions on the basis of the expected shifts
in the belief state, our approach more broadly links to other (Bayesian or
frequentist) methods quantifying the information gain associated with an
action (Schwartenbeck et al., 2019).

Third, as mentioned in Section 3.1, whether humans adopt a purely exploita-
tive or an explorative-exploitative objective has been primarily investigated
in bandit tasks, i.e. sequential decision-making tasks where the reward struc-
ture is latent and the actions only affect immediate rewards (e.g., Berry and
Fristedt (1985), Robbins (1952), and Sutton and Barto (2018)). To account for
exploration-exploitation choice strategies in bandit tasks, quantities that cap-
ture information gain with respect to the reward structure are usually combined
with action value estimates computed based on the current knowledge about
the reward structure (e.g., Daw et al. (2006), Gershman (2018), and Wilson
et al. (20141); see also Chapter 2). In our approach to model belief state-based
explorative-exploitative planning in the treasure hunt task we followed a similar
logic: Agents A8 and A9 combine the expected Bayesian surprise evaluated
by agent A7 with the heuristic action values evaluated by agents A3 and A4,
respectively. In these combinations we opted for the heuristic action values
of agents A3 and A4 as opposed to agents A5 or A6 because, by relying on
unitary state estimates, they arguably represent the simplest and strongest

contrasts to belief state-based exploration.

fMRI modeling Given our behavioral model set, we found that the most
plausible explanation of participants’ actions in the treasure hunt task is
provided by the belief state-based exploitative agent A5. To identify the
underlying network of brain regions, we applied a model-based GLM approach
(Friston & Dolan, 2010). Specifically, we evaluated the neural correlates of
two key latent quantities derived from agent A5 on a trial-by-trial basis: the
Bayesian surprise and the chosen action valence.

The Bayesian surprise offers a readout of the maintenance of the belief state
by quantifying the extent to which the belief state changes following a new
action and observation (Itti & Baldi, 2009). Of note, the Bayesian surprise as
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entered for fMRI data analysis is computed with respect to the current trial,
which is different from our formalization of belief state-based exploration, where
the expected Bayesian surprise is computed with respect to the next trial. In the
context of the Bayesian brain hypothesis, Bayesian surprise has been extensively
applied to model neural signals reflecting belief state maintenance; we therefore
opted for this quantity in our fMRI modeling approach (e.g., Fischer et al.
(2017), Gijsen, Grundei, Lange, Ostwald, and Blankenburg (2020), O’Reilly
et al. (2013), Ostwald et al. (2012), and Schwartenbeck et al. (2016)). However,
other closely related information theoretic measures have also been employed.
For example, in their effort to map the functional anatomy of hidden state
estimation, Yoshida and Ishii (2006) used the belief state entropy, which, akin
to the Bayesian surprise, also declines with decreasing uncertainty.

The second key latent quantity whose neural correlates we analyzed was the
chosen action valence. It corresponds to the desirability of participants’ actions
as evaluated by the heuristic real-time dynamic programming algorithm of
the behaviorally most plausible agent A5. This quantity thus offers a readout
of exploitative planning on the basis of belief states. As the desirability of
an action is the primary variable underlying decision making, our approach
is consistent with previous work aiming to uncover the neurocomputational
mechanisms of various strategies such as exploitation and exploration (e.g.,
Chakroun et al. (2020) and Daw et al. (2006)), or model-free decision making
and planning (e.g., Korn and Bach (2018) and Simon and Daw (2011)). We
here modelled the fMRI data in terms of the absolute value of the trial-by-trial
chosen action valence. An alternative would be to quantify the valence of the
chosen action relative to the other actions available on a given trial. However,
this quantity would indicate the easiness of a decision and not the desirability

of the chosen action per se.

Findings

Behavioral findings On a behavioral level, we found evidence for a belief
state-based exploitative planning strategy as formally captured by agent A5.
The key implications of this result are twofold. First, our result implies that
instead of resorting to belief state-free strategies, humans plan ahead on the
basis of their belief states in the treasure hunt task. Second, our result further
implies that in our task humans adopt a purely exploitative objective. In the
following, these two key implications are discussed.

As alluded to in Section 3.1, there is a wealth of studies examining the
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dichotomy model-free decision making versus planning in multistep tasks with
fully observable states and the Bayesian brain hypothesis. The first key impli-
cation of our behavioral result is consistent with findings from both lines of
research, and, in particular, from the studies discussed in detail above with
respect to their task design and computational modeling framework. Specifi-
cally, by investigating sequential decision making in a multistep task with fully
observable states framed as spatial search, Simon and Daw (2011) demonstrated
that participants planned ahead. Similarly, Korn and Bach (2018) also found
that participants’ actions reflected planning in their virtual foraging task, in
addition to model-free strategies eschewing prospective computations. Our
finding is perhaps most closely foreshadowed by Yoshida and Ishii (2006). These
authors examined the Bayesian brain hypothesis in a multistep spatial search
task with partially observable states and found striking correspondence between
participants’ actions and those predicted by their model that implemented a

belief state-based planning strategy.

The second key implication of our behavioral result is also in line with the
work by Yoshida and Ishii (2006), as their model assumed a purely exploitative
objective. It is however more puzzling with respect to research on sequential
decision making in bandit tasks. As mentioned in Section 3.1, there is grow-
ing evidence that in bandit tasks humans balance between exploration and
exploitation depending on their current level of uncertainty about the environ-
mental reward structure (e.g., Gershman (2018, 2019), Wilson et al. (2014),
and Zhang and Yu (2013); see also Chapter 2). However, some studies did not
find evidence for the combination of these two objectives (Daw et al., 2006;
Payzan-LeNestour & Bossaerts, 2011). These controversial findings suggest
that certain configurations of the bandit task at hand, such as partial feedback
(Dezza, Angela, Cleeremans, & Alexander, 2017; Gershman, 2018; Wilson et al.,
2014), can veil exploration. Likewise, in the treasure hunt tasks we might have
promoted exploitation, for example, by providing information about the trea-
sure locations on each step or limiting the step horizon to approximately match
the shortest path to the treasures. Despite these design-related considerations,
the behavioral findings from the present work and the work by Yoshida and
Ishii (2006) raise the intriguing possibility that in multistep tasks with partially
observable states, people’s tendency to explore is generally less pronounced as
compared to bandit tasks. This might be due to the different sources of uncer-
tainty in these two classes of sequential decision-making tasks. Alternatively,

one might speculate that this is because multistep tasks are considerably more
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demanding and therefore, in these tasks purely exploitative strategies - which
are simpler than explorative-exploitative strategies - prevail. Testing for these
possibilities using carefully designed experimental tasks remains an interesting

avenue for future research.

In addition to the two key implications of our behavioral result, it is
noteworthy that the belief state-based exploitative planning strategy of the
group-favored agent model assumes action evaluation that is reflective of the
current level of subjective uncertainty about all possible treasure locations.
This is in accordance with the theoretical work by Rao (2010) who postulated
that, to make sequential decisions, biological agents rely on their entire belief
state and not on unitary state estimates as suggested by Ishii et al. (2002).
Given that Yoshida and Ishii (2006) only tested the behavioral plausibility of
belief state-based exploitative planning on the basis of unitary state estimates,
our behavioral result as afforded by our extensive model set offers a more
fine-grained resolution to sequential decision-making behavior on multistep

tasks with partially observable states.

FMRI findings On a neural level, we found that a distributed network of
cortical and subcortical regions is involved in belief state-based exploitative
planning. Specifically, belief state maintenance as indexed by the trial-by-
trial Bayesian surprise engaged the bilateral prefrontal, parietal and medial
occipitotemporal cortices as well as the right dorsal striatum. The trial-by-trial
chosen action valence reflecting exploitative planning on the basis of belief
states was neurally encoded in the right insula, orbitofrontal and inferior frontal
cortices, as well as the bilateral anterior cingulate, medial frontal and lateral
occipitotemporal cortices.

With respect to the neural correlates of belief state maintenance, our findings
replicate previous human fMRI studies employing the Bayesian brain hypothesis
framework: O’Reilly et al. (2013) and Fischer et al. (2017) sought to characterize
the functional anatomy of belief state maintenance in a visual attention and
bandit task, respectively, as captured by the Bayesian surprise. In striking
correspondence with our findings, both studies reported activation related to the
Bayesian surprise in the dorsal striatum, and the posterior parietal and frontal
cortices. Furthermore, although medial occipitotemporal areas are primarily
implicated in vision (e.g., Gazzaniga et al. (2013)), Fischer et al. (2017) also
detected activity associated with Bayesian surprise in these areas. Notably,

the frontal activation in our study was more focused to prefrontal areas than
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observed by O’Reilly et al. (2013) and Fischer et al. (2017). This is, however, in
accordance with the study by Yoshida and Ishii (2006), who found that in their
spatial search task the trial-by-trial belief state entropy reflecting belief state
maintenance was represented in the anterior prefrontal cortex. In sum, our
work provides further neural evidence for the Bayesian brain hypothesis in the
context of sequential decision making in multistep tasks. In light of previous
research, the brain regions identified here to be working together to integrate
information about the state in a Bayesian fashion appear to be independent of
the cognitive task and the nature of the latent task-relevant quantity.

The neural correlates of the trial-by-trial chosen action valence are largely
consistent with prior human fMRI work on planning and exploitation: Akin
to our findings, in their multistep task with fully observable states, Simon
and Daw (2011) detected activation related to the planning-based desirability
of the chosen action in the insular, orbitofrontal and inferior frontal cortices.
Similarly, Korn and Bach (2018) also found the involvement of inferior frontal
regions, and, in addition, the anterior cingulate and medial frontal cortices.
These two latter areas are usually considered to be part of the ventromedial
prefrontal cortex, which, together with the orbitofrontal cortex, is thought to
play a central role in reward-guided decision making (e.g., Levy and Glimcher
(2012) and Rushworth et al. (2011)). Accordingly, these regions have been
implicated in exploitation in bandit tasks as captured by the value estimate of
the chosen action, or a relative measure thereof (Boorman, Behrens, Woolrich,
& Rushworth, 2009; Chakroun et al., 2020; Daw et al., 2006). Finally, the
exploitative planning-related activity along the lateral occipitotemporal cortex
as obtained in our work is perhaps surprising. However, of the aforementioned
bandit studies, Chakroun et al. (2020) also identified a similar neural pattern,
suggesting that beyond its established role in visual and auditory processing
(e.g., Gazzaniga et al. (2013)), the occipitotemporal cortex may support higher
cognitive processes, such as exploitation. Taken together, the regions uncovered
here to be participating in exploitative planning likely ubiquitously contribute
to decision making by evaluating the actions’ reward-related consequences
based on input from regions representing the state and other task-relevant

quantities.

Conclusion

To conclude, we here computationally characterized 19 human participants’

sequential decision-making behavior and underlying neural activity in a novel
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multistep spatial search task where the environmental states are only partially
observable. On a behavioral level, we showed that instead of relying on simple
belief state-free strategies that forgo prospective computations, participants en-
gaged in belief state-based planning and adopted a purely exploitative objective.
On a neural level, we showed that prefrontal, parietal, medial occipitotempo-
ral and dorsal striatal areas subserve the maintenance of belief states, while
the insular, orbitofrontal, vetromedial and lateral occipitotemporal cortices
enable action evaluation according to exploitative planning. By accounting
for state uncertainty in multistep tasks, the present work expands on previous
research and contributes to a better understanding of the neurocomputational

mechanisms of sequential decision making in such tasks.

3.8 Data and code availability

Data formatted according to the Brain Imaging Data Structure (Gorgolewski
et al., 2016) and code implementing all analyses are hosted on Open Science
Framework (Nosek et al., 2015) and are available at https://osf.io/pmnd6/7vie
w_only=fa824ad40aad4be18b8b3ab0b9478c28 and https://ost.io/jrpg3/?vie
w__only=934412d65a8e4460a19bealleeb84ed3, respectively.
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4 (General discussion

In this dissertation, I computationally modeled human sequential decision-
making strategies under uncertainty with respect to the dichotomies model-free
versus model-based and exploitative versus explorative. Chapter 1 conceptually
situated the empirical work presented in Chapters 2 and 3 within relevant
theories. To conclude the dissertation, in what follows, I first synthesize and
discuss in a broader context the main findings from the empirical work. I then
outline some interesting outstanding questions relating to these findings and

the agent-based modeling framework applied throughout this dissertation.

4.1 Synthesis and discussion of the main find-
ings

How humans make sequential decisions under uncertainty was investigated in
two everyday choice environments previously neglected in decision neuroscience
research. In the first choice environment, actions do not have effects on states -
and it therefore belongs to the family of bandit tasks. Novel to the bandit task
introduced in Chapter 2 is that an action is always associated with (positive or
negative) reward gain, but not necessarily with information gain. In the second
choice environment, state transitions depend on actions - and it therefore
belongs to the family of multistep tasks. The distinctive characteristic of
the multistep task introduced in Chapter 3 is that states are only partially
observable. These novel tasks are referred to as information-selective reversal
bandit task and treasure hunt task, respectively.

Using extensive sets of agent models to account for human participants’
choice behavior in both tasks, I showed that the employed strategies reflect
model-based processes: The behaviorally most plausible agent models main-
tained belief states and evaluated the desirability of actions by looking one
step ahead. Yet, the nature of the belief state-based look-ahead differed in the
two tasks. In the information-selective reversal bandit task, the look-ahead
combined exploitation with exploration, whereas in the treasure hunt task, it

conformed to pure exploitation. In this latter task, I additionally provided
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neural evidence for belief state-based exploitation, with a distributed network of
cortical and subcortical brain regions playing an essential role in the realization
of such a strategy. The remainder of this section contextualizes these key

findings on a global level from a decision neuroscience standpoint.

4.1.1 Model-free versus model-based strategies

Decision neuroscientists have long been puzzled by the question whether biolog-
ical agents apply model-free or model-based strategies. This question emerges
from a dual-system view of behavior and is also discussed under the related
terms habitual versus goal-directed (Dickinson, 1985; Dickinson & Balleine,
2002; Dolan & Dayan, 2013), associative versus rule-based (Sloman, 1996) and
retrospective versus prospective (Dolan & Dayan, 2013; Economides, Kurth-
Nelson, Liibbert, Guitart-Masip, & Dolan, 2015). According to this view, the
first system governs behavior in a reactive fashion, which is resource-efficient
albeit inflexible. By contrast, the second system governs behavior in a deliber-
ate fashion, which is flexible albeit resource-intense (Collins & Cockburn, 2020;
Evans, 2008; Gilovich, Griffin, & Kahneman, 2002).!

Early experimental work seeking for evidence for model-free strategies as
foreseen by the first system was carried out by Thorndike (1911). In this work,
cats were repeatedly locked in a box equipped with levers (or similar constructs)
outside of which fish were placed visible from inside the box. To escape the box
and reach the fish, the cats had to solve a puzzle by performing, for example, a
certain sequence of lever-presses. Thorndike measured the amount of time it
took for the cats to accomplish this and found that it decreased over several
repeats. On the basis of his findings, Thorndike put forward the theory Law of
Effect, which states that if, in a given situation, an action leads to a rewarding
outcome, then it is likely to be repeated when the situation is encountered
again. This theory later inspired the decision neuroscientists Rescorla and
Wagner (1972), whose research, in turn, was fundamental to the development of

temporal difference learning methods within the field of reinforcement learning

INotably, while the terms model-free versus model-based are commonly used to differ-
entiate strategies in bandit tasks (e.g., Fischer, Bourgeois-Gironde, and Ullsperger, 2017;
Speekenbrink and Konstantinidis, 2015), the related terms listed here are usually applied
in connection with multistep tasks only. This is because in bandit tasks, model-based
strategies usually do not explicitly define a dynamic programming component accounting
for (myopic or extended time horizon) look-ahead, just a Bayesian inference component
accounting for belief formation (but see, e.g., Zhang and Yu, 2013). Nevertheless, given the
flexible albeit resource-intense nature of Bayesian inference alone (e.g., Tavoni, Doi, Pizzica,
Balasubramanian, and Gold, 2019), the dual-system view as described here naturally extends
to bandit tasks (cf. Knox, Otto, Stone, and Love, 2012).
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(Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 2018; Wiering & van Otterlo,
2014). Moreover, research on heuristics that rely on some readily available
reward-related information - such as the win-stay-lose-shift heuristic - also owes
its root to Thorndike’s work (Bonawitz, Denison, Gopnik, & Griffiths, 2014;
Gigerenzer & Gaissmaier, 2011; Robbins, 1952; Tversky & Kahneman, 1974).

Shortly after the results presented by Thorndike, his contemporary, Edward
Tolman, delivered evidence for the opposite model-based strategies as postulated
by the second system (Tolman, 1948). In his experiments, rats were assessed
based on their ability to navigate a maze. For example, when comparing the
path undertaken by rats to a location novelly baited with food, Tolman found
that those who previously freely ran the maze were more efficient than those
who were previously not exposed to the maze. Similarly, after pre-exposure on
a magze, rats were able to seek out the next shortest path if the shortest path
to a rewarding location had been closed (Tolman & Honzik, 1930). To explain
these findings, Tolman reasoned that biological agents plan ahead based on
a cognitive map - which, in essence, corresponds to a representation of the

environment entailing its statistical regularities.

Although the work of Tolman has since shaped the field of decision neu-
roscience by prompting it to turn to methods of dynamic programming to
computationally characterize model-based strategies, it did not explicitly ad-
dress uncertainty. This issue has, however, been the focus of Bayesian theories
of decision making. Similar to Tolman, these theories also furnish biological
agents with a representation of the statistical regularities of the environment,
which they refer to as the generative model. The generative model underlies
belief state formation and, consequently, serves as basis for action selection
(Ma, 2019). Empirical testing of Bayesian theories of decision making traces
back to the 19th century. Building on observations about the physiology of
vision, Helmholtz (1866) argued that the brain turns sensory data into their
hidden cause by means of unconscious inference. This notion was later linked
with Bayesian inference and has been applied to various cognitive functions,
including decision making, culminating in a line of research considering the
brain to be inherently Bayesian (Doya, Ishii, Pouget, & Rao, 2007; Friston,
2010; Knill & Pouget, 2004).

When pitting model-free and model-based strategies against each other, a
growing body of literature suggests the superiority of the latter in explaining

human behavioral and neural data (Collins & Cockburn, 2020; Doll, Simon,
& Daw, 2012; Doya et al., 2007). This holds true both for bandit tasks (e.g.,
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Chakroun, Mathar, Wiehler, Ganzer, and Peters, 2020; Fischer et al., 2017;
Hampton, Bossaerts, and O’Doherty, 2006; Knox et al., 2012; Stoji¢, Orquin,
Dayan, Dolan, and Speekenbrink, 2020; Zhang and Yu, 2013) and multistep
tasks (e.g., da Silva and Hare, 2020; Deserno et al., 2015; Doll, Duncan, Simon,
Shohamy, and Daw, 2015; D. A. Simon and Daw, 2011; Yoshida and Ishii,
2006). The results presented in Chapters 2 and 3 lend further support to a
predominantly model-based nature of sequential decision making under uncer-
tainty. Yet, it is important to highlight that if resources are limited, model-free
strategies can prevail (e.g., Dasgupta, Schulz, Hamrick, and Tenenbaum, 2019;
Keramati, Smittenaar, Dolan, and Dayan, 2016; Otto, Gershman, Markman,
and Daw, 2013). Together with studies providing evidence for decisions reliant
on both model-based and model-free processes (e.g., Babayan, Uchida, and
Gershman, 2018; Glascher, Daw, Dayan, and O’Doherty, 2010; Korn and Bach,
2018; Kuperwajs, Van Opheusden, and Ma, 2019; Momennejad et al., 2017), this
implies that instances of the two types of strategies - and combinations thereof
- are flexibly realized to accommodate the ever-changing demands biological
agents face (cf. Griffiths, Lieder, and Goodman, 2015; Lieder and Griffiths,
2020). Thus, viewing model-free and model-based strategies as cooperative,
rather than competitive, is called for to refocus future research on deciphering
how their cohabitation is organized. In Section 4.2.1, I review a theoretical

advance in this regard and delineate related outstanding questions.

4.1.2 Exploitative versus explorative strategies

Besides scrutinizing strategies through the lens of the model-free versus model-
based dichotomy, decision neuroscience has also striven to decipher whether
biological agents engage in exploration beyond exploitation. Crucially, this ques-
tion arises in the face of uncertainty: If the environment is not fully observable,
humans and other animals can aim for a balance between maximizing informa-
tion gain to improve their knowledge about the environment and maximizing
reward gain in light of their accumulated knowledge. Alternatively, instead
of combining exploration and exploitation, which is necessary to maximize
reward gain in the long run, they might behave as if the environment was fully
observable and settle for exploitation (Cohen, McClure, & Yu, 2007; Dayan &
Daw, 2008; Schwartenbeck et al., 2019).

Experimental work on correlates of exploration and exploitation dates back
to at least Tversky and Edwards (1966), who analyzed human participants’

trial-by-trial choices on the observe-or-bet task, an extended variant of the
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pure exploration paradigm. As detailed in Chapter 2, in this task, the observe
action only confers information but no reward, whereas the bet action only
confers reward but no information. The authors found that while on most trials
participants chose a bet action, pertaining to exploitation, they also explored
as manifested by choices of the observe action. The observe actions were,
however, spread across all trials, despite the fact that the bet actions’ expected
reward values were stationary. Seemingly, this behavioral pattern contradicted
the optimal strategy, but only if participants trusted the instructions with
respect to the stationary nature of the task, which possibly was not the case
(Navarro, Newell, & Schulze, 2016). In accordance with this reasoning, Tversky
and Edwards (1966) reported that this pattern was more pronounced in those
participants who were explicitly malinformed and told that the task was non-
stationary. In a subsequent study, Krebs, Kacelnik, and Taylor (1978) presented
birds with a classical two-armed bandit task, wherein the arms corresponded
to feeding places. Upon hopping on its feeding place of choice, the bird was
rewarded with a mealworm emitted with a stationary probability. The results
show that the birds first exhibited an explorative strategy by switching back
and forth between the feeding places and eventually committed to the more
rewarding feeding place, reflecting exploitation. Moreover, the time point of

commitment was strikingly close to the optimum.

Research following up on these early studies providing evidence for explo-
ration beyond exploitation has gained momentum in the last two decades. A
particular focus has been placed on computationally assessing if biological
agents directly seek out actions that maximize information gain as qualitatively
motivated by an optimal balance - and, as such, as foreshadowed by the studies
introduced above (Dayan & Daw, 2008; Gershman, 2018, 2019; Schwartenbeck
et al., 2019; Wilson, Geana, White, Ludvig, & Cohen, 2014). Work in this
vein has behaviorally and neurally modeled strategies using some combination
of reward value estimates and measures of information gain, derived either in
a model-free or model-based fashion. In doing so, mixed results have been
reported. Some studies - including the study reported in Chapter 2 - found
evidence for directed exploration additionally to exploitation (e.g., Chakroun
et al., 2020; Navarro et al., 2016; Wu, Schulz, Speekenbrink, Nelson, and Meder,
2018; Zhang and Yu, 2013), whereas others - including the study reported
in Chapter 3 - only found evidence for exploitation (e.g., Daw, O’Doherty,
Dayan, Seymour, and Dolan, 2000; Payzan-LeNestour and Bossaerts, 2011;
Speekenbrink and Konstantinidis, 2015).
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On the one hand, these mixed results have been attributed to specifics
of the applied task, such as the reward—information confound in classical
bandit tasks, which has the potential to mask directed exploration (Dezza,
Angela, Cleeremans, & Alexander, 2017; Gershman, 2018; Wilson et al., 2014).
Consistent with this line of reasoning, the continuous availability of information
and the probabilistic allocation of step limits in the treasure hunt task might
have promoted exploitation, as also noted in Section 3.7 of Chapter 3. On
the other hand, recent work emphasized the attenuating effect of increasing
time pressure (Wu, Schulz, Gerbaulet, Pleskac, & Speekenbrink, 2019) and
cognitive load (Cogliati Dezza, Cleeremans, & Alexander, 2019) on directed
exploration, suggesting a resource-dependent account of the mixed results (cf.
Griffiths et al., 2015; Lieder and Griffiths, 2020). Given that in the treasure
hunt task, as compared to the information-selective reversal bandit task, the
interdependency between actions together with the large state space arguably
results in an increased cognitive load, the differing strategies used in these tasks

might in fact support such a resource-dependent account.

The notion of resource-dependent arbitration between exploitative and
explorative-exploitative strategies fits well with the cooperative view of model-
free and model-based strategies as described above. Before delving into a
corresponding integrative theory proposed by Griffiths et al. (2015), an issue
with respect to exploration deserves mentioning. Besides computationally
conceptualizing exploration in a directed sense, exploration has also been
computationally conceptualized in a random sense. The virtue of random
exploration as introduced in reinforcement learning research is that information
can also be acquired by injecting some noise into the action selection process
(Kaelbling, 1993; Sutton & Barto, 2018; Wiering & van Otterlo, 2014). Inspired
by this idea, decision neuroscience research commonly interprets a biological
agent’s observable stochastic deviation from the action with the highest reward
value estimate as random exploration (e.g., Chakroun et al., 2020; Daw et al.,
2006; Dezza et al., 2017; Speekenbrink and Konstantinidis, 2015). However,
as already argued in earlier chapters of this dissertation and recapitulated in
some more detail in Section 4.2.2, this interpretation is problematic, because it

conflates different sources of noise.
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4.2 Outstanding questions

By embedding the main findings of Chapters 2 and 3 in the broader discussion
they contribute to, I highlighted the remarkable capability of biological agents
to employ a rich repertoire of strategies. This, in turn, raises the intriguing
question of how the cohabitation of different strategies is organized. In this
last section of the discussion, I first present an integrative theory arguing
for resource rationality as the organizing principle and outline related open
endeavors (Griffiths et al., 2015; Lieder & Griffiths, 2020). I then proceed
by delineating ways to further refine how biological agents make sequential
decisions under uncertainty, from the perspective of the agent-based modeling

framework adopted in this dissertation.

4.2.1 How do different strategies cohabitate?

As reviewed above, while ample evidence has been provided in favor of model-
based strategies, they are often complemented with or, if resources are cut
short, may even be replaced by model-free strategies (e.g., Babayan et al., 2018;
Gléascher et al., 2010; Huys et al., 2015; Keramati et al., 2016; Otto, Gershman,
et al., 2013). Similarly, studies have shown that resource shortage dampens
directed exploration, resulting in purely exploitative strategies to prevail (e.g.,
Cogliati Dezza et al., 2019; Wu et al., 2019). A common thread across these
findings is that the available resources limit the complexity of the applied
strategies - a notion readily accommodated by the theory of resource rationality
(Griffiths et al., 2015; Lieder & Griffiths, 2020). According to this theory,
biological agents make rational use of their limited resources. More specifically,
drawing inspiration from Herbert Simon’s work on bounded rationality (H. A.
Simon, 1956; H. A. Simon, 1997), resource rationality posits that evolution
has rendered biological agents’ strategies optimal with respect to the trade-off
between benefits in terms of accrued reward and costs in terms of processing
time and related cognitive demands.

Although a substantial body of indirect evidence supports the theory of
resource rationality, its formal testing is still in an early phase. To aid research
in this regard, Lieder and Griffiths (2020) laid out an analysis scheme leveraging
the constrained optimization problem biological agents, in particular humans,
supposedly solve in an implicit fashion. Accordingly, the centerpiece of this
scheme is that a cost-benefit trade-off is computed for each plausible strategy

and the predictions of the strategy with the optimal trade-off is evaluated against
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empirical data. Using an early version of this analysis scheme, Callaway et al.
(2018) demonstrated that human participants’ choices in a multistep task were
best explained by the constrained-optimal strategy, which rapidly adjusted to
changes of the environment. While this finding constitutes an encouraging first
step, much work remains to be done to conclude whether resource rationality
truly is the principle according to which the cohabitation of pure and combined
forms of model-free, model-based, explorative and exploitative strategies is

organized.

A particular challenge for future research on resource rationality in humans
concerns the quantification of costs. One option is to take on a biological
perspective and consider general principles of neural activity, as Lieder and
Griffiths (2020) point out. In my view, an important undertaking for work
along this line will be to also carefully account for the possibility that the brain
is better adapted to perform certain computations than others - even if, from
an artificial agent perspective, the complexity of the operations is similar. For
example, previous neuroimaging work, including the work presented in Chapter
3, revealed that Bayesian inference is enabled by a large network encompassing
parts of the frontal, posterior parietal and occipital cortices as well as the dorsal
striatum (e.g., Fischer et al., 2017; O’Reilly, Jbabdi, Rushworth, and Behrens,
2013; Yoshida and Ishii, 2006). This network is largely overlapping with a set of
task-positive regions thought to routinely work together during performance of
cognitive tasks (Fox et al., 2005; Raichle, 2011). In contrast, neural correlates of
dynamic programming appear to be more localized to ventromedial prefrontal
and orbitofrontal areas (e.g., Korn and Bach, 2018; D. A. Simon and Daw, 2011;
see also Chapter 3). These findings might imply that Bayesian inference is more
robustly represented than dynamic programming, which might, in turn, ease
processing time and thereby diminish the associated costs.” Although the issue
of cost quantification renders research on resource rationality a challenging
endeavor, it could shed light on how humans arbitrate between sequential
decision-making strategies to tackle the diversity of daily life and is therefore

an important path forward.

2The hypothesis that the brain is better adapted to perform Bayesian inference than
dynamic programming is also consistent with the observation that while Bayesian inference is
resistant to stress (Trapp & Vilares, 2020), the reliance of humans on dynamic programming
is negatively impacted by it (Otto, Raio, Chiang, Phelps, & Daw, 2013).

136



4.2. Outstanding questions

4.2.2 How can strategies be further refined?

In the agent-based modeling framework used in this dissertation, an agent’s
choice environment is formalized within the task model and alternative strategies
are formally captured by means of the agent models. These agent models are
then nested in statistical inference frameworks such as the softmax operation and
model-based GLM for fMRI to evaluate their behavioral and neural plausibility,
respectively, based on experimentally acquired data. To obtain a refined picture
of human sequential decision-making strategies under uncertainty, setting up an
extensive agent model space is thus essential. Consequently, while in Chapters
2 and 3 a variety of agent models implementing model-free, model-based,
explorative and exploitative strategies were considered, future work should
make expanding the agent model space an imperative.

One direction for expanding the agent model space is to also include random
exploratory agents. In Chapters 2 and 3, exploration was only accounted for
in a directed sense, which assumes an explicit evaluation of the attainable
information. However, it is conceivable that humans rely on random exploratory
strategies (Cohen et al., 2007; Dayan & Daw, 2008; Schwartenbeck et al.,
2019; Wilson, Bonawitz, Costa, & Ebitz, 2021). As already mentioned in the
introductory Chapter 1 and in Section 4.1.2 of the current chapter, the central
idea underlying such strategies is that information can also be solicited by
randomly deviating from the action with the highest reward value estimate.
Instead of quantifying information gain as part of a directed exploratory
agent’s valence function, this idea can be implemented simply by defining
stochastic agent decision rules (Bertsekas & Tsitsiklis, 1996; Kaelbling, 1993;
Puterman, 2014; Sutton & Barto, 2018; Wiering & van Otterlo, 2014). Random
exploratory strategies are thus comparatively computationally inexpensive and,
in line with the resource rationality principle introduced above (Griffiths et al.,
2015; Lieder & Griffiths, 2020), present themselves as viable alternatives to
directed exploratory strategies.

In the last years, many studies have sought to decompose behavioral and
neural correlates of directed and random exploration (e.g., Chakroun et al.,
2020; Daw et al., 2006; Dezza et al., 2017; Speekenbrink and Konstantinidis,
2015; Tomov, Truong, Hundia, and Gershman, 2020; Wilson et al., 2014; Za-
jkowski, Kossut, and Wilson, 2017). Yet, a central issue tends to fall short
in these investigations: Stochastic decision rules are turned into statistical
inference frameworks to model data, thereby ascribing noise stemming from

unrelated sources, such as lapses in attention or changes in motivation, to
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random exploration. This issue, once again, demonstrates the importance of
explicitly separating agent models formally capturing strategies and their sta-
tistical embedding. Given that random exploratory agents yield latent random
variables, future work expanding the agent model space in this regard will need
to replace the maximum likelihood approach employed in Chapters 2 and 3 by
a filtering approach. Performing model estimation and evaluation by means of
filtering will enable partitioning of noise with respect to random exploration
and unrelated sources (cf. Findling, Skvortsova, Dromnelle, Palminteri, and
Wyart, 2019; Ostwald, Kirilina, Starke, and Blankenburg, 2014).

Another interesting direction that goes beyond the dichotomies model-free
versus model-based and exploitation versus exploration is to expand the agent
model space by formalizing possible ways in which humans construct a task
model. Consistent with the experimental procedure adopted in Chapters 2
and 3, research on decision-making strategies in humans typically provides
detailed task instructions prior to the experiment. Thus, it is assumed that
participants can, in principle, enter the experiment with a complete copy of the
task model. In life, however, exact instructions are rarely available, raising the
question of how humans construct a task model in the first place. While this is
still a largely open question, advances from machine learning could serve as
insightful starting points. For example, previous theoretical work suggested
that the expectation maximization algorithm (Dempster, Laird, & Rubin, 1977)
could potentially capture how humans form representations of the statistical
regularities of the environment, i.e., observation and reward emissions as well
as state transitions, in the face of partially observable states (Dayan & Daw,
2008; Rao, 2010). Furthermore, it has recently been highlighted that deep
neural networks could be leveraged to better understand humans’ environmental
representations in general, that is, also with respect to states, observations,
actions and rewards (Botvinick, Wang, Dabney, Miller, & Kurth-Nelson, 2020;
Ma & Peters, 2020). Testing these methods against empirical data would
benefit decision neuroscience research. In addition, it might help elucidate why
in certain aspects - such as generalization - biological intelligence still surpasses

artificial intelligence and thereby also benefit research on the latter.

4.3 Conclusion

In this dissertation, I presented work on the computational characterization of

human sequential decision making under uncertainty, with a focus on model-
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free, model-based, exploitative and explorative strategies. Using an agent-based
modeling framework (Chapter 1), I demonstrated that humans rely on model-
based strategies in an information-selective reversal bandit task (Chapter 2) and
in a spatial multistep task with partially observable states (Chapter 3). In the
former task, model-based strategies were deployed in an explorative-exploitative
fashion. In the latter task, model-based strategies were deployed in a purely
exploitative fashion, which was supported by the orchestrated activity of cortical
and subcortical brain regions. By contextualizing these findings within a broader
decision neuroscience discourse, I outlined key undertakings for future research,
such as studying the arbitration between strategies from a resource-rational
standpoint or adopting measures to capture random exploration and task model
construction (Chapter 4).

Together, on a theoretical level, this dissertation offers a computational
framework to decompose the behavioral and neural correlates of sequential
decision making under uncertainty. On an empirical level, this dissertation
contributes to a more fine-grained resolution of the strategies the human mind

employs to master the challenges of everyday choice environments.
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A Supplementary material to
Chapter 2

A.1 Sample characteristics

To characterize the group of participants, we measured symptoms of attention
deficit hyperactivity disorder (ADHD), anxiety, depression and impulsivity.
To this end, we used the questionnaires Conners Adult ADHD Rating Scale
— Self Report, Short Version (CAARS-S:S; Conners, Erhardt, and Sparrow,
1999), State and Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene,
Vagg, and Jacobs, 1983), Beck Depression Inventory II (BDI-II; Beck, Steer,
and Brown, 1996) and UPPS-P Impulsive Behavior Scale (Lynam, Smith,
Whiteside, & Cyders, 2006), respectively. As shown in Table A.1, the sample
varied only moderately with respect to these symptoms. For example, on
CAARS-S:S, our main questionnaire of interest, participants scored within +2
standard deviations of the mean of their age- and gender-matched norm groups
of the general population. We therefore argued that the sample represents the
healthy population and did not relate individual variability in terms of ADHD
or other clinical symptoms to behavioral strategies. Note that in Table A.1 we
also report the IQQ score, which was obtained by administering the Wechsler
Abbreviated Scale of Intelligence (WASI-IT; Wechsler, 1999) at the time of the
Nathan Kline Institute Rockland Sample study (Nooner et al., 2012).
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Measurement Range Median Mean + SD
Age (years) 18 - 35 23.5 24.5 + 5.52
WASI-IT (total score) 84 - 122 101.5 102.38 £ 9.14
CAARS-S:S (total T-score) 32-65 48 47.63 £ 9.15
BDI-II (total) 0-20 4 6.67 + 6.28
STAI STATE (total T-score) 34 - 63 43 45.58 £ 8.52
STAI TRAIT (total T-score) 34 - 71 49.5 49.92 £+ 10.29
UPPS-P (total) 73 - 190 118.5 124.04 + 25.66

Table A.1. Sample characteristics. There was a moderate variability in terms of
cognitive abilities (measured with Wechsler Abbreviated Scale of Intelligence (WASI-II)),
attention deficit hyperactivity disorder (measured with Conners Adult ADHD Rating Scale —
Self Report, Short Version (CAARS-S:S)), anxiety (measured with State and Trait Anxiety
Inventory (STAI)), depression (measured with Beck Depression Inventory II (BDI-II)) and
impulsivity (measured with UPPS-P Impulsive Behavior Scale). As the scores remained
largely in the normal range we treated the group of participants as a healthy sample.

A.2 Task instructions

Participants were provided with the following instructions about the reversal
bandit task:

Welcome to the main part of today’s experiment! In the following we will
introduce to you the decision making task that you will complete in the scanner.
Please read the instructions carefully. If you have any questions, feel free to ask
at any time. Once you read the instructions, you will complete a test run with
the task to make sure you feel comfortable with it before going in the scanner.
On every trial we will present to you two objects, an orange square and a blue
triangle on either side of a black and grey screen and ask you to choose between
them. One of these objects is profitable, meaning that it is going to give you a
win most of the time, while the other object in not profitable meaning that it is
going to give you a loss most of the time. Once you choose one of the objects,
the outcome (win: +1 or loss: —1) will be registered to your account. You will
have 2.5 seconds to indicate your choice. If you do not respond within this time
window, the message “Too slow’” will appear on the screen and you automatically
lose 1 point. Here you see an example for a trial (Supplementary Figure A.1).

You will start the experiment with a balance of 0 points and any wins or
losses will be registered to your account. After the experiment, in addition to
your standard payment for participation, you will receive up to 330 depending
on your final account. Note that your balance cannot get below 0 and if you do

not earn additional money on the task, you will not be penalized and you will
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A.2. Task instructions

First, you will see Then you make a After that you will Finally, you will Before the new trial
the two objects to decision have short see the outcome you will have a short
choose from waltlng period waiting period agam

!

Figure A.1. Reversal bandit task instructions 1. The figure shows the sequence of
events within a trial as presented to the participants in the instructions.

still receive the standard payment for your participation. We would however
encourage you to try to earn as much as possible on the task. After each run
we will show you your balance. A run consists of 80 trials, which takes about
20 minutes to complete. You will have two runs in the scanner.

As mentioned above, one of the objects is profitable and it will bring you
a win most of the times and every now and then it will bring you loss. At
the same time, the other object is not profitable and it will bring you a loss
most of the time and a win every now and then. You won’t explicitly know
which object is the profitable one and which is the non-profitable and you will
need to conclude it from the outcomes. But be aware! These roles can switch,
which means that the previously profitable object becomes non-profitable and the
previously non-profitable object becomes profitable. Such a switch will happen
only 1-4 times in the entire run and you will have enough trials without a switch
to conclude which object is the profitable one.

Keep in mind that even the currently profitable object can from time to time
deliver a loss and a couple of negative outcomes does not necessarily mean that
a switch occurred. Similarly, even the non-profitable object can from time to
time deliver a win and a couple of positive outcomes does not necessarily mean
that a switch occurred. You can however assume that a switch has happened
if you feel the previously rewarding object started to give you more losses than
wins and the previously non-rewarding object started to bring you more wins
than losses.

Before you do the test run, there is one more important aspect to the task:
On each trial, one of the objects will be presented to you in front of a black
background while the other object will be in front of a grey background. If you
choose the object on the black-side, you will see the outcome of your choice.
However, if you choose the grey-side object, the outcome will remain hidden
from you but it will be registered to your account (Supplementary Figure A.2).

You will now complete a test run, which will be just like the ones you will

complete in the scanner. We will discuss all your questions to make sure you

149



Appendix A

If you choose the triangle on the black side you
will see the outcome, which is either win or loss

OO

If you choose the square on the grey side, the
outcome will be hidden from you

Figure A.2. Reversal bandit task instructions 2. The figure depicts the lucrativeness
and informativeness associated with the actions as presented to the participants in the
instructions.

feel comfortable with the task before going in the scanner.

150
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A.3 Trial sequence

Participants were presented with the identical sequence of trials specifying the
evolution of the first state component, s!, which encodes the lucrative shape
and the second state component, s2, which encodes the choice options. The
trial sequence of both runs is shown in Table A.2.

t 1 2 3 4 5 6 7 8 9 10

se (L) (1,1) (1,2) (1,1) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1)

11 12 13 14 15 16 17 18 19 20
st (L) (L,1) (1,2) (1,2) (1,2) (1,1) (L,2) (1,2) (1,2) (2,1)

~

t 21 22 23 24 25 26 27 28 29 30
st (2,1) (2,2) (2,1) (2,2) (2,1) (2,2) (2,2) (2,1) (2,2) (2,2)

t 31 32 33 34 35 36 37 38 39 40
st (2,1) (2,1) (2,2) (2,1) (2,2) (2,1) (2,2) (2,1) (2,2) (2,1)

t 41 42 43 44 45 46 47 48 49 50
st (2,2) (2,2) (1,2) (1,2) (1,1) (1,1) (1,2) (1,2) (1,2) (1,2)

t 51 52 53 54 55 56 57 58 59 60
s (L,1) (1,2) (1,1) (1,2) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1)

t 61 62 63 64 65 66 67 68 69 70
st (L) (L,1) (1L,2) (2,1) (2,1) (2,2) (2,1) (2,2) (2,1) (2,1)

t 71 72 73 74 75 76 7 78 79 80
st (2,2) (2,1) (2,1) (2,1) (2,2) (2,2) (2,2) (2,2) (2,2) (2,1)

t 1 2 3 4 5 6 7 8 9 10
st (2,1) (2,1) (2,1) (2,2) (2,1) (2,1) (2,1) (2,1) (2,2) (2,2)

t 11 12 13 14 15 16 17 18 19 20
st (2,1) (2,1) (2,2) (2,2) (2,1) (2,2) (2,2) (2,2) (2,2) (2,1)

t 21 22 23 24 25 26 27 28 29 30
st (2,1) (2,1) (2,2) (1,1) (1,2) (1,2) (L,2) (1,1) (1,2) (1,1)

t 31 32 33 34 35 36 37 38 39 40
s (L2) (L2 (L2 (L2) (L2) (L) (LD (L2) (L2) (L2

t 41 42 43 44 45 46 47 48 49 50
st (1L,2) (L) (2,2) (2,2) (2,2) (2,1) (2,2) (2,2) (2,2) (2,1)

t 51 52 53 54 55 56 57 58 59 60
st (2,2) (2,1) (2,2) (2,1) (2,1) (2,2) (2,1) (2,2) (2,1) (1,2)

t 61 62 63 64 65 66 67 68 69 70
st (L,1) (1,1) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1) (1,1) (1,1)

71 72 73 74 75 76 7 78 79 80
st (L,2) (1,1) (1,1) (1,2) (1,1) (1,2) (1,1) (1,1) (1,1) (1,2)

~

Table A.2. State evolution function f. Upper table shows the trial sequence of the first
run and lower table shows the trial sequence of the second run. t encodes the trial in the run
and s; encodes the state on the trial.
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A.4 Belief state and posterior predictive distri-

bution evaluation

Belief state Capitalizing on the probability distributions p (s1), p (8%+1|St1)
and p* (o¢|s;) of the agent model Magent (eq. 2.4), the belief state at trial
t =2,...,T can be recursively evaluated according to eq. 2.11. To show that

this equation holds, we first express the belief state as

pUt=t (s), 014-1) (A.1)

ari—1 (o1 =
P (St |01:t—1) pal;t_l (Olzt—l)

The numerator of eq. A.1 can be rewritten as

palzt—l (8t17 01:2571) — Zpal:t—l (8%7 Stl_l; Olztfl)

1
St—1

- Zpalt ! St‘St 15 01:t— 1) e (Stl—lﬂolit*Q’Otfl)

si_q

= Zp |St 1 at zd (Ot—1’3t1_17 01:t—2) pau_Q (5%_17 01:t—2)

511

= p(silsiy) P (ormalsi_y) P (si_y]on—2) P2 (01.4-2)

si_q

=p d1:t—2 Olt 2 Zp |St 1 -1 (Ot—l‘stlfl) pamfz (3%71’01:75—2> .

514
(A.2)
Similarly, we can rewrite the denominator of eq. A.1 as
e (P 1 ZZpa” ! Stvst 15 O1:t— 1)
stosiq
1 it 1
P2 (0142 ZZP ‘St 1 p™ (Otflyst_l) pt? (St_1’01:t72)7
st st
(A.3)

where in the last equality we used the numerator’s derivation from eq. A.2. By

substituting the derived expressions A.2 and A.3 in eq. A.1, we obtain

P2 (01.4-2) Z (51|5z171) ph! (Ot71|5t171) piti—2 (5t171|01:t72)

ai:t—1 (ol —
P (St|01't71) P2 (014-2) Zst Zst L ( HS%A)P’“” (Ot—1|8%71)10‘”:“2 (5%71|01:t—2)

2o D (silsiy) P (0r-alsiy) p™=2 (511 [ore-2)
Zét S P (stlstoy) prmr (oralsioy) pe=2 (si_1]ori—2)
(A.4)

5t1

for the belief state in trial ¢.
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A.4. Belief state and posterior predictive distribution evaluation

Posterior predictive distribution Given the agent’s belief state p®*=1 (s}]01.;_1)
and the action-dependent state-conditional observation distribution p (o4|s}),
the posterior predictive distribution can be evaluated according to eq. 2.19. A

proof of this equation is as follows:

Pt (04, 01:¢-1)
Pt (01:4-1)
> P (01, 011, 5¢)
Pt (01:4-1)

ng Pt (s¢]0g, 014-1) P (04, 01:4—1)
N Pt (01:4-1)

Zs% pal:ti1 (3% |01:t—1) Zs% pau (0tv 01:¢—1, 5%)
N Pt (01:4-1)

> P (splora1) 2o ™ (0fore—r, s) P (0101, 8)
B 2 Pt (0141, 57)

_ al:t—1 1 at 1
= E p (3t|01:t—1)p (0t|5t)
h

= byp™ (ot|st1 = 1) + (1 — by) p™ (01t|st1 = 2) , (A.5)

Pt (0]014-1) =

where in the last equality we substituted the belief state with its scalar repre-

sentation to complete the derivation of eq. 2.19.

153



Appendix A

A.5 Belief state and posterior predictive distri-

bution implementation

For a concise implementation of the belief state and the posterior predictive
distribution, we represented the probability distributions the agent model
M pgent (eq. 2.4) by stochastic vectors and stochastic matrices. Specifically, in

our implementation

® [y € Rlsgl represents the initial belief state p(sj). The ith entry of 1y
corresponds to the agent’s subjective uncertainty that the non-observable

state component takes on value s =i at trial ¢ = 1. Formally,

_(p(sy=1)\ (05
= (p (s1 = )) B (0.5.) (A.6)
1St

e 1y € RY,' represents the belief state p®t-1 (stlo1.¢—1) at trial t. The ith
entry of y; corresponds to the agent’s subjective uncertainty that the non-
observable state component takes on value s; = i at trial ¢ given the history

of observations 01, 1 and actions a;;_;. Formally,

e <pa1:t—1 (3% = 1|01:t—1)) . (A7)

it (s = 2|01,4-1)

‘51|X|Sl‘ _ o . . . . 1 1
e & € RS, represents the state-state transition distribution p (st +1\st)‘
The jth entry of the ith row of ® corresponds to the agent’s subjective
uncertainty that the non-observable state component takes on the value

S}H = j in trial ¢ + 1 given that s} = in trial ¢. Formally,

- p(sty=1st =1) p(siy=2[st=1)\ [0.9625 0.0375
o \p(sha=1st=2) p(st,=2st=2)) \0.0375 09625/

(A.8)

o () ¢ Rglxlol represents the action-dependent state-conditional observation
distribution p* (o|s;) for action a € A. The kth entry of the ith row of
Q%= corresponds to the agent’s subjective uncertainty that the observation

takes on the value o; = k given that the non-observable state component
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A.5. Belief state and posterior predictive distribution implementation

takes on the value s! = i and action the value a; = a. Formally,

Qu=1 . _ pt(op=1lst =1) p'(op=2|st =1) p'(o,=3s} =1)
P ee=1]s5p =2) p'o=2]s; =2) p'(o=3lsi =2)

0.15 0.85 0
— (A.9)
0.85 0.15 0

and

Qa=3 . _ pP(og=1lst =1) p*(op=2|s} =1) p3(0y =3|s} =1)
PPl =1s; =2) pP(oy=2s; =2) p* (0 =3|s} =2)

085 0.15 0
— (A.10)
0.15 0.85 O

represent the action-dependent state-conditional observation distribution for

the informative actions, and

quezay . _ (P (op =1|s{ =1) p“ (o =2[s; =1) p* (0 = 3|s; = 1)
P (o= 1]s; =2) p* (o =2[s; =2) p» (o, = 3|s; = 2)

0 01
o o

represent the action-dependent state-conditional observation distribution for

the non-informative actions.

NSNS R‘ZSOI <% represents the action-dependent state-conditional reward
distribution p* (r4|s}) for action @ € A. The [th entry of the ith row of W=2
corresponds to the agent’s subjective uncertainty that the reward takes on
the value r, = [ —m given that the non-observable state component takes on
the value s; = i and action the value a;, = a. Note that m is introduced to
convert the linear indices to reward values and takes on the value 2 if [ =1

and the value 1 if [ = 2. Formally,

gacar _ (P (= —llsi=1) p*(r=+1]s; = 1)) _ (015 0.85
S\t (= —1st =2) p(r = +1|s) = 2) 0.85 0.15
(A.12)

represent the action-dependent state-conditional reward distribution for the
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actions of choosing the square and,

\Ijate{3,4} — p* (Tt = _1|S% — 1) D
p™ (ry = —1|s} =2) p™

“(rp=+1lst =1)) (085 0.15
(ry = +1|st = 2) 0.15 0.85
(A.13)

represent the action-dependent state-conditional reward distribution for the

actions of choosing the triangle. Accordingly, ZEI Vi m = 1.

Belief state Using matrix multiplication (denoted as -) as well as element-
wise Hadamard matrix multiplication (denoted as o), the agent’s prior belief

state at trial ¢ (cf. eq. 2.11) can be written as

(R (A14)

=

Mt i=

where

fy =P (QF o py_q) (A.15)

is the unnormalized belief state following action a;_; = a and observation

(Zisll' gti) h (A.16)

is the normalization constant. In eq. A.15, Qf denotes the kth column of Q¢

0;—1 = k and

and ;1 denotes the prior belief state on trial ¢ — 1, which corresponds to eq.
ATift—1>1andtoeq. AGift—1=1.

Posterior predictive distribution Based on the stochastic matrix repre-
sentation of the action-dependent state-conditional observation distribution
Q* and the belief state p;, the posterior predictive distribution of A2 (cf. eq.

2.19) can be implemented using matrix multiplication as
aT
wy = ()" - g (A17)

for action a; = a.
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B Supplementary material to
Chapter 3

B.1 Task instructions

Participants were provided with the following instructions about the treasure

hunt task (translated from the original German instructions):

Welcome to the treasure hunt task! The goal of this task is to find two
hidden treasures in a 5-by-5 cell grid-world within a limited number of steps.
You can navigate through the grid-world using the buttons. In each trial, you
will first see the cell corresponding to your current position. To help you track
your position, you will additionally be presented with the index of your current
position. For example, (2,3) means that you are in the second row and in the
third column. You start each attempt in (1,1), i.e., the first row and the first
column, which corresponds to the upper left corner.

The right panel of Supplementary Figure B.1 displays the grid-world with
two treasures from above. We are showing you this figure here to make you
familiar with the layout. During the experiment, however, you will not see
the grid-world from a bird’s eye perspective. The left panel of Supplementary
Figure B.1 displays how you will see your position in the grid-world during the

experiment.

N\
"
= .

) 2,5

Figure B.1. Treasure hunt task instructions 1. The figure displays the grid-world
from above (right panel) and a grid cell position (left panel) as presented to the participants
in the instructions.

After you are presented with your position, you will see a light or a dark grey

D]

bar in each available direction (Supplementary Figure B.2). The bars convey
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information about the location of the treasures and can be interpreted as noisy
signals of a treasure detector. Light bars indicate directions that potentially lead
you closer to a treasure. Dark bars indicate directions that potentially lead you
away from the treasures. In the directions that lead you away from the treasures
you will always receive the correct information. That is, in these directions you
will always see a dark bar. In the directions that lead you closer to a treasure
you will sometimes receive false information. That is, in these directions you
will sometimes see a light bar and sometimes see a dark bar. Consequently,
light bars always indicate a good direction. Dark bars, on the other hand, can

indicate either a good or a bad direction.

Figure B.2. Treasure hunt task instructions 2. The figure displays the light and dark
grey bars of the "treasure detector" as presented to the participants in the instructions.

In the final stage, you can decide where to move in the grid-world. To this
end, you will be presented with arrows pointing towards the available directions
(Fig 1c). You will have approximately 4 seconds to indicate your decision
using the buttons. If you do not make a decision, you will stay at your current
position. Top left, you will see the number of remaining steps in your current
attempt. In parentheses you will see the number of treasures you have found so

far in your current attempt.

Figure B.3. Treasure hunt task instructions 3. The figure displays the arrows
prompting for a decision as presented to the participants in the instructions.

A task 1s considered to be solved if you find both treasures within a single
attempt. FEach attempt will consist of a limited number of steps. The number
of available steps will sometimes suffice to find the treasures, but sometimes
it will not. You will have three attempts to solve a task. For each task, the
treasure locations will be randomly assigned. The treasure locations will remain
unchanged in all three attempts of a task. If you solve a task in fewer than

three attempts, the next task begins immediately.
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B.2. FMRI result tables

If you solve a task, you will see the following message printed on the screen:
"Both targets found - Creating new task." (That is, you will be presented with
a new task.) If in an attempt you exhaust the number of available steps but do
not find the treasures you will see the following message: "Step limit reached -
Resetting position” (That is, your position will be reset to the start position.)
If you do not solve a task within three attempts, you will see the following
message: "Step limit reached — Attempt limit reached — Creating new task”
(That is, you will be presented with a new task.) A run consists of four tasks
and takes approrimately 10-15 minutes. After the fourth task, you will get a
message informing you about the end of the run: "Task limit reached — Ending
program”

Do you have any questions? Good luck and have fun!

B.2 FMRI result tables

We applied a model-based general linear model (GLM) approach to identify
the neural substrates of the cognitive processes involved in the treasure hunt
task (Friston & Dolan, 2010). Tables B.1-B.7 summarize the results of the
group-level GLM analyses of the fMRI data obtained by applying a cluster
forming threshold of p < 0.001 (uncorrected). Anatomical cluster labels are
based on the Automated Anatomical Atlas (AAL3; Rolls, Huang, Lin, Feng,
and Joliot, 2020).
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Region Cluster Cluster- Peak voxel MNI Peak
size level coordinates voxel
(number  p-value (mm) t-value
of (FWE-
voxels)  corrected)

R; cerebellum 2221 0.000 20 -H2  -22 10.53

L; postcentral and 11552 0.000 -6 6 42 9.98
precentral gyri,
supplementary
motor area (L/R),
inferior parietal
supramarginal
gyrus, insula,
rolandic operculum,
middle cingulate
gyrus (L/R),
putamen, pallidum,
thalamus, superior
temporal gyrus

R; putamen, 395 0.000 16 -2 2 6.44
pallidum, insula

L; middle and 694 0.000 -40  -62 8 6.34
inferior occipital

gyri, middle

temporal gyrus

R; insula, rolandic 176 0.028 44 0 4 6.29
operculum

L; precuneus, 179 0.026 -10  -72 58 6.23
superior parietal

gyrus

R; middle temporal 808 0.000 40 -62 10 5.98
and middle occipital

gyri

L; cerebellum 377 0.000 -30  -52 -30 5.86

L; middle and 431 0.000 -28 40 30 5.77
superior frontal gyri

L; superior occipital 315 0.002 -6 - 10 5.55
gyrus, cuneus, 100

calcarine sulcus and

surrounding cortex,

lingual gyrus

R; superior occipital 224 0.01 30 -90 18 5.11
gyrus, cuneus

Table B.1. Positive main effects of valid trials. Clusters with increased activity during
valid trials are entered row-wise. Anatomical labels from AAL3 and other statistics are
entered column-wise. Note: R denotes the right hemisphere, L. denotes the left hemisphere,
and L/R denotes both hemispheres. The leading annotation applies to all regions of a given
cluster unless a region is individually annotated with the hemisphere location in parentheses.
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Region Cluster Cluster- Peak voxel MINI Peak
size level coordinates voxel
(number  p-value (mm) t-value
of (FWE-
voxels)  corrected)
X y z
L/R; superior and 4137 0.000 12 -92 4 12.51
middle occipital
gyri, cuneus,
calcarine sulcus and
surrounding cortex,
lingual and fusiform
gyri
R; superior and 870 0.000 22 16 56 9.96
middle frontal gyri
R; inferior parietal 448 0.000 38 -38 38 6.2
and supramarginal
gyri
R; superior parietal 245 0.004 24 -60 54 5.17
gyrus, precuneus
R; middle and 169 0.026 36 36 26 5.02

inferior (triangular
and opercular parts)
frontal gyri

Table B.2. Positive main effects of luminance. Activity clusters positively relating to
the trial-by-trial luminance value. Note: For table conventions, please see the legend of Table

B.1.
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Region Cluster Cluster- Peak voxel MNI Peak
size level coordinates voxel
(number  p-value (mm) t-value
of (FWE-
voxels)  corrected)
x y z
L/R; lateral and 84128 0.000 30 20 -4 15.8

medial surfaces of
the occipital,
temporal, parietal
and frontal lobes,
cingulate cortex,
insula, rolandic
operculum,
amygdala, thalamus,
basal ganglia,
ventral tegmental
area, cerebellum

Table B.3. Positive main effects of treasure discovery. Using a cluster defining
threshold of p < 0.001, we obtained a single large bilateral cluster with increased activity in
response to treasure discovery as compared to implicit baseline. Note: For table conventions,
please see the legend of Table B.1.
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B.2. FMRI result tables

Region Cluster Cluster- Peak voxel MINI Peak
size level coordinates voxel
(number  p-value (mm) t-value
of (FWE-
voxels)  corrected)
b y z
L/R; lateral and 68694 0.000 0 -22 38 13.55

medial surfaces of
the occipital,
temporal, parietal
and frontal lobes
(except the right
superior parietal
gyrus), cingulate
cortex, insula,
rolandic operculum,
amygdala, thalamus,
basal ganglia
(except ventral
striatum),
cerebellum

Table B.4. Positive main effects of information display. As in the case of the positive
main effects of treasure discovery, applying a cluster defining threshold of p < 0.001 resulted
in a single large bilateral cluster with increased activity in response to information display as
compared to implicit baseline. Note: For table conventions, please see the legend of Table

B.1.
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Region Cluster Cluster- Peak voxel MNI Peak
size level coordinates voxel
(number  p-value (mm) t-value
of (FWE-
voxels)  corrected)
x y z
R; middle and 3507 0.000 46 28 28 9.47

superior frontal gyri,
superior medial
frontal gyrus (L/R),
inferior frontal gyrus
triangular and
opercular parts

R; superior and 7032 0.000 30  -68 46 7.4
inferior parietal gyri

(L/R), angular

gyrus, precuneus

(L/R), lingual gyrus,

inferior temporal

gyrus

L; inferior 2425 0.000 24 10 48 7.35
(triangular,

opercular and

orbital parts),

middle and superior

frontal gyri,

precentral gyrus

R; caudate, 291 0.001 18 16 0 6.05
putamen, pallidum

L; cerebellum 154 0.023 34  -54 -32 5.8
L; inferior occipital 575 0.000 -44 76 -14 5.71

gyrus, fusiform and
lingual gyri,
cerebellum

R; cerebellum 150 0.026 34 -56 -34 0.22
Table B.5. Positive main effects of Bayesian surprise. Activity clusters positively

relating to the trial-by-trial Bayesian surprise. Note: For table conventions, please see the
legend of Table B.1.
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B.2. FMRI result tables

Region Cluster Cluster- Peak voxel MINI Peak
size level coordinates voxel
(number  p-value (mm) t-value
of (FWE-
voxels)  corrected)
X y z
L; precuneus, 189 0.009 12 34 20 5.38

calcarine sulcus and
surrounding cortex

Table B.6. Negative main effects of Bayesian surprise. Activity clusters negatively
relating to the trial-by-trial Bayesian surprise. Note: For table conventions, please see the
legend of Table B.1.
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Region Cluster Cluster- Peak voxel MNI Peak
size level coordinates voxel
(number  p-value (mm) t-value
of (FWE-
voxels)  corrected)
X y z
R; inferior occipital 1856 0.000 20 -84 -6 9.48

gyrus, lingual and
fusiform gyri,
calcarine sulcus and
surrounding cortex,
cerebellum, inferior
temporal gyrus

L; inferior occipital 1240 0.000 20 -96 -10 8.84
gyrus, lingual and
fusiform gyri,
middle occipital
gyrus, inferior
temporal gyrus,

cerebellum

R; middle and 391 0.001 56 -20 -4 6.32
superior temporal

gyri

L/R; pregenual and 572 0.000 6 44 12 6.17

subgenual anterior
cingulate cortex,
superior medial
frontal gyrus

R; insula, posterior 373 0.001 38 14 -20 5.98
orbital gyrus,

inferior frontal gyrus

orbital part

L; middle and 173 0.046 -52 28 22 4.94
superior temporal

gyri, supramarginal

gyrus

Table B.7. Positive main effects of chosen action valence. Activity clusters positively
relating to the trial-by-trial chosen action valence. Note: For table conventions, please see
the legend of Table B.1.
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