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1 List of abbreviations 
 
APOE ε4  Apolipoprotein E allele ε4 

BIS   Berlin Initiative Study 

COVID-19  Coronavirus disease 2019 

C-index  Concordance index 

CSF   Cerebrospinal fluid 

CSFtau  Tau protein in cerebrospinal fluid 

DAG   Directed acyclic graph 

HDL   High-density lipoprotein 

HbA1c  Hemoglobin A1c 

ICI   Integrated calibration index 

ISTAT   Italian National Institute of Statistics 

Lasso   Least absolute shrinkage and selection operator 

MB   Markov blanket 

SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2 

SCORE  Systematic coronary risk evaluation 

SCORE H  Systematic coronary risk evaluation for populations at high risk 

SCORE L  Systematic coronary risk evaluation for populations at low risk 

SCORE OP  Systematic coronary risk evaluation older persons 

SCORE OP H Systematic coronary risk evaluation older persons for populations at 

high risk 

SCORE OP L Systematic coronary risk evaluation older persons for populations at 

low risk 

SCORE OP H5 Systematic coronary risk evaluation older persons for populations at 

high risk and 5-year time frame 

SCORE OP L5 Systematic coronary risk evaluation older persons for populations at 

low risk and 5-year time frame 

UK   United Kingdom  
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2 Abstract 
 

Health Data Science is a health discipline engaged in three tasks: Description, Prediction, 

and Counterfactual Prediction. In this dissertation, I explored similarities and differences 

in the statistical methods for probability estimation within the framework of these tasks, 

relying on clinical and public health relevant applications. 

Description focuses on studying the occurrence of health events in populations using 

surveillance systems. The probability of a new event, or incidence proportion, cannot be 

directly computed using information from surveillance systems. However, it is possible to 

estimate the incidence rate, which can be used to approximate the incidence proportion 

of a theoretical cohort. We estimated the all-cause mortality of the Italian city Nembro, 

which was severely affected by the COVID-19 pandemic. We used data from national 

and local registries to estimate the monthly all-cause mortality rates from 2012 to April 

2020. We found that the all-cause mortality rate in Nembro increased dramatically in 

March 2020: it was 154.4 per 1,000 person-years, which corresponded approximately to 

a 1.3% probability of dying within one month. 

The use of prediction models to estimate the probability of an event is widespread in 

medicine. The main challenge in Prediction is making sure that a model performs well for 

individuals outside of the development setting. Therefore, it is crucial to assess the 

transportability of a model. We conducted an external validation of the SCORE OP, a risk 

score recently developed to predict the risk of fatal cardiovascular events in European 

older persons. We assessed discrimination and calibration (using projections for the 10-

year versions) of the SCORE OP using data from the Berlin Initiative Study. We found 

that the SCORE OP overestimated the true risk for older persons within Berlin. 

Counterfactual Prediction aims at answering “what if” questions, estimating the probability 

of an outcome in different worlds in which different interventions are applied. This task is 

rooted in counterfactual thinking, and relies on prior causal knowledge summarized in 

causal graphs. In clinical examples and simulations, we examined the role of these 

elements (focusing on the principle of independent mechanisms and the Markov Blanket) 

in informing modeling strategies for probability estimation in the factual world.  

Each Health Data Science task deals with the probability estimation problem differently, 

according to its challenges and objectives. Recently, the exchange of tools, statistical 

techniques, and theoretical concepts between Prediction and Counterfactual Prediction 
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has made important scientific advancements possible and opened several research 

tracks for future exploration. 

 
 

3 Zusammenfassung 
 
Health Data Science ist eine Gesundheitsdisziplin, die sich mit drei Aufgaben befasst: 

Beschreibung, Vorhersage und kontrafaktische Vorhersage. In meiner Dissertation 

untersuchte ich Ähnlichkeiten und Unterschiede in den Methoden dieser drei Aufgaben, 

wobei ich mich auf klinische und gesundheitsrelevante Anwendungen stützte. 

Die Beschreibung konzentriert sich auf die Untersuchung des Auftretens von 

Gesundheitsereignissen in Populationen unter Verwendung von Surveillance. Die 

Wahrscheinlichkeit eines neuen Ereignisses kann jedoch nicht direkt anhand von 

Surveillance Daten berechnet werden. Es ist es jedoch möglich, die Inzidenzrate, die zur 

Annäherung an den Inzidenzanteil einer theoretischen geschlossenen Kohorte 

verwendet werden kann, abzuschätzen. 

Als Anwendung schätzten wir die Gesamtmortalität von Nembro, einer italienischen 

Kleinstadt, die von der COVID-19-Pandemie schwer getroffen wurde. Wir verwendeten 

Daten aus nationalen und lokalen Registern, um die monatlichen Gesamtmortalitätsraten 

der Einwohner von Nembro von 2012 bis April 2020 zu schätzen. Wir stellten fest, dass 

die Gesamtmortalitätsrate in Nembro im März 2020 dramatisch anstieg. Sie betrug 154,4 

pro 1.000 Personenjahre, was einer Sterbewahrscheinlichkeit von 1,3% entsprach. 

Die Verwendung von Risikovorhersagemodellen zur Schätzung der Wahrscheinlichkeit 

eines Ereignisses ist in der Medizin sehr verbreitet. Die größte Herausforderung bei der 

Vorhersage besteht darin, sicherzustellen, dass das Modell auch bei Personen 

funktioniert, die nicht zur Entwicklung des Models herangezogen wurden. Daher ist es 

wichtig, externe Validierungen durchzuführen, um die Nutzung des Modells in anderen 

Settings sicherzusellen. 

Wir haben eine externe Validierung des SCORE OP, eines Risikoscores zur Vorhersage 

des Risikos tödlicher kardiovaskulärer Ereignisse bei älteren Menschen in Europa, 

durchgeführt. Wir bewerteten die Diskrimination und Kalibrierung des SCORE OP unter 

Verwendung von Daten aus der Berliner Initiative Studie. Wir stellten fest, dass die 

SCORE OP-Gleichungen das tatsächliche Risiko bei älteren Menschen in Berlin 

erheblich überschätzt und nicht angewandt werden sollte. 
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Die kontrafaktische Vorhersage zielt darauf ab, "Was-wäre-wenn"-Fragen zu 

beantworten. Die Vorhersagen stützen sich auf kausales Vorwissen und die Verwendung 

von Kausalgraphen. Wir untersuchten in klinischen Beispielen und Simulationen die Rolle 

dieser Elemente, insbesondere des Prinzips der unabhängigen Wirkmechanismen und 

der Markov-Blanket-Konzepte.  

Jede Aufgabe der Gesundheitsdatenwissenschaft lehnt das 

Wahrscheinlichkeitsschätzproblem entsprechend ihren eigenen Herausforderungen, 

Methoden und Zielen ab. In den letzten Jahren ermöglichte der Austausch von 

Werkzeugen, statistischen Techniken und theoretischen Konzepten zwischen 

Vorhersage und kontrafaktischer Vorhersage wichtige wissenschaftliche Fortschritte und 

eröffnete mehrere neue Wege für zukünftige biomedizinische Forschung. 
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4 Introduction 
 

Health Data Science is an umbrella term for the application of modern data analysis 

techniques to address problems in health and medicine. Health Data Science emerged 

over time from the natural convergence of Epidemiology, Biostatistics, and the more 

recently formalized field of Data Science[1]. The later scientific field generates knowledge 

from data, using modern analytical techniques and critical thinking to solve “complex real-

world health problems”[2]. 

 

Hernàn et al. believe that defining Data Science by its tasks, rather than by its activities 

and tools, is more rigorous and presents a unique opportunity to bridge the historical gaps 

of traditional statistics[3]. According to this perspective, Data Science should be defined 

as the discipline engaged in three tasks: Description, Prediction and Counterfactual 

Prediction[3]. 

 

Despite these three tasks being characterized by different languages, assumptions, aims, 

and set of procedures, they often rely on the same statistical concepts. While this 

dependence on the same concepts can be disorientating in health research[3,4], the 

consideration of the same statistical problems in Description, Prediction and 

Counterfactual Prediction makes it possible to study the differences between their 

approaches. A statistical problem that is crucial in all three Health Data Science tasks is 

the estimation of probability. 

 

Descriptive epidemiology predominantly aims its attention at the examination of the 

occurrence of diseases or other health-related events in populations[5]. A common goal 

in descriptive epidemiology is to estimate the frequency of new health-related events in a 

specified time frame in a given population[5]. This quantity is called “incidence” and can 

be quantified according to two different metrics: the “incidence proportion” and the 

“incidence rate”[6]. Estimating the incidence of health-related events for specific 

geographic regions over time is crucial to better allocate healthcare resources and to 

detect temporal or spatial differences that may indicate a difference in the underlying 

distribution of risk factors[7,8].  

When a surveillance system (e.g. a population-based registry) records all the new 

occurrences of the event of interest in a specific geographic region, the incidence rate 
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can be estimated in a highly cost-effective way[7]. The incidence rate is the ratio between 

the number of new cases recorded by the registry during the study period and the overall 

number of person-time spent at risk from the individuals living in the geographic region 

during the study period[7]. The denominator's quantity can be approximated, under 

reasonable assumptions, using information on the number of individuals living in the 

region[7,9]. 

The incidence rate is less interpretable than the incidence proportion, which is a 

probability[6,7]. The incidence proportion, however, cannot be directly computed in 

geographically defined populations[7]. Probabilities can only be computed in “closed” 

populations[6], while geographically defined populations observed over a calendar time 

period are “dynamic” or “open” populations[7,9]. Fortunately, in a closed population, a 

known mathematical formula describes the relationship between the incidence rate and 

the incidence proportion of a non-recurrent inevitable event (e.g., all-cause death)[6]. 

Under a set of (typically reasonable) assumptions[6,7], the incidence rate estimated from 

an open population can be used to approximate the incidence proportion of a 

corresponding theoretical closed population of interest[6,7,9]. In this way it can be 

interpreted as a probability. 

 

The estimation of probability is also crucial in Prediction, the second Health Data Science 

task. Risk prediction models for binary outcomes are widely used in the medical field to 

inform or support decision making[10,11]. According to Moons et al., “risk prediction 

models use predictors (covariates) to estimate the absolute probability or risk that a 

certain outcome is present (diagnostic prediction model) or will occur within a specific 

time period (prognostic prediction model) in an individual with a particular predictor 

profile”[11]. A clinical risk prediction model is usually developed by applying statistical 

techniques (e.g. regression models, machine learning algorithms) to a “development” 

dataset which contains information about the predictors and the outcome for a sample of 

individuals[10,11]. However, the actual aim of a risk prediction model is to predict the 

probability of the outcome for individuals outside the development dataset, for whom the 

outcome is still unknown, and outside the underlying population from which the 

development sample was drawn[12]. The trade-off between a model’s good fit on the 

development dataset and its ability to provide valid predictions outside the development 

dataset is crucial in risk prediction[10,11,13]. Good performances in the development 

setting do not ensure similarly accurate performances in other populations[10,12]. The 
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practice of assessing a risk prediction model’s performance by applying it to a sample of 

individuals drawn from an underlying population different from the development one is 

called “external validation”[10,12]. The external validation assesses the “transportability” 

(or “generalizability”) of a risk prediction model to a different and specific setting[10,12]. 

This assessment is a necessary step before a model can be used to estimate probabilities 

in clinical practice[10,12]. 

 

Prediction relies on the association between the covariates and the outcome to predict 

the value of the outcome variable for newly observed individuals[4,12,14]. Counterfactual 

Prediction, on the other hand, aims at predicting the value of the outcome variable in a 

hypothetical “counterfactual” world characterized by different actions (e.g. treatment or 

intervention)[3,4]. Therefore, Counterfactual Prediction is rooted in causal reasoning 

rather than mere probabilistic reasoning[15]. Counterfactual Prediction answers “what if” 

questions and comprises the foundation of causal effects estimation and causal 

inference, which are essential for decision making[3]. Even this task, if the outcome of 

interest is binary, ultimately consists of estimating a probability[4]. Unlike Description or 

Prediction, however, Counterfactual Prediction heavily relies on subject matter 

knowledge[3]. Prior knowledge about the causal structure is crucial for Counterfactual 

Prediction[3] and is often summarized using Directed Acyclic Graphs (DAGs)[3,4,6,15–

17]. DAGs are graphical tools designed to map all a priori knowledge in the form of 

assumptions about the causal mechanism underlying the data generation process. These 

tools are generally used in epidemiology to define analytic strategies to deal with 

selection, confounding, and measurement bias when estimating causal 

effects[4,6,16,17]. More generally, a DAG describes a causal structure and, under some 

assumptions, provides qualitative information about the conditional independence 

between variables[4,16,17]. Because of these characteristics, DAGs are valuable 

resources in probability estimation problems when causal mechanisms are known. 
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5 Objectives 
 

The aim of my doctoral project is to explore, in clinical and public health relevant 

applications, the statistical methods for probability estimation in the framework of the 

three Health Data Science tasks. 

Specifically, the research objectives are: 

1. Study I (Publication 1): Estimate, in a descriptive study based on registry data, the 

incidence of all-cause death (all-cause mortality) over time for an Italian city hardly 

hit by the COVID-19 pandemic[18]. 

2. Study II (Publication 2): Assess the performance, in an external validation study, 

of the SCORE OP clinical risk prediction model in Berlin older persons 

population[19]. 

3. Study III (Publication 3): Investigate how the use of DAGs and causal thinking, 

typical of Counterfactual Prediction, can improve modeling strategies for 

probability estimation problems[20]. 

 

6 Methods 
 

6.1 Description task: all-cause mortality rate estimation using registry 
data 

 

6.1.1 Population 
 
Nembro is a small city with 11,505 inhabitants[21], situated in the province of Bergamo, 

Lombardy, Italy[18]. 

In 2018 the province of Bergamo was characterized by a high life expectancy at birth 

(83.28 years), similar to the corresponding Lombardy regional value (83.44 years)[22]. 

Between 2009 and 2016, the two leading causes of death in the province were 

cardiovascular disease and cancer (specifically bronchial and lung cancer for men and 

breast cancer for women), representing 66.9% of the total deaths[23]. Within this time 

interval, Bergamo province had a higher mortality rate for all-type cancers compared to 

the region, but similar mortality rates for cardiovascular disease, bronchial and lung 

cancers, and breast cancer[23]. 

Towards the end of February 2020, the province of Bergamo became one of the major 

hot spots of the COVID-19 outbreak in Italy[24]. Hospitals in the area rapidly became 



9 
 

overwhelmed by the surging number of infections. On March 8th the Italian government 

imposed a regional lockdown in the attempt to halt the spread of the virus[24]. Nembro 

was one of the first Italian cities to register SARS-CoV-2 infections during the outbreak 

and was severely affected by the COVID-19 pandemic[25]. 

 

6.1.2 Data 
 
To compute an all-cause mortality rate (incidence rate of death events) two quantities are 

needed: the numerator and the denominator of the rate. 

We sought to compute the Nembro all-cause mortality rates for each month from January 

2012 to April 2020 to describe variation over time[18]. The numerator of each rate was 

the number of all-cause deaths that occurred among Nembro residents during a given 

month[18]. The denominator was the number of person-years the population of Nembro 

residents spent at risk of dying during the month[18]. 

The number of monthly all-cause deaths that occurred in Nembro from January 2012 to 

November 2019 was retrieved from the public dataset of the Italian National Institute of 

Statistics (ISTAT)[22]. The number of monthly all-cause deaths for the remaining months 

(December 2019 to April 2020) was obtained from the Nembro official registration office, 

thanks to the special authorization from the mayor of the city[18]. Despite not belonging 

to official ISTAT data sources, this death registry, managed by the local authority, 

promptly records the number of resident death, and is a valuable and high-quality data 

source during a pandemic emergency. 

Since all-cause death is a non-recurrent event and prevalence is not of concern, the 

number of person-years spent at risk every month was estimated using official information 

about the population size. The number of residents alive at the beginning of each month, 

from January 2012 to December 2019, was obtained from ISTAT official data[22]. The 

number of residents alive at the beginning of January 2020 was obtained from the 

Nembro official registration office yearly report[21]. 

Due to data limitations, the mortality rate for April was estimated using only information 

based on the first eleven days[18]. 

 

6.1.3 Statistical analysis 
 
The computation of the overall amount of person-time spent at risk can be conceptualized 

as a geometrical problem. Let’s consider a plot in which the time from the beginning of 
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the study is on the x-axis and the population of individuals at risk is on the y-axis. The 

overall amount of person-time spent at risk during the study is the area under the curve 

describing the size of the population at risk over time[9]. The computation of the overall 

amount of person-time spent at risk consists of finding the solution of a definite integral. 

While this conceptualization is often ignored in practice, it comprises the theoretical 

rationale behind the classical approaches for the estimation of the rate’s denominator[9]. 

Classical formulas for the estimation of this quantity are based on the assumption of a 

linear change of the population at risk over time. Under this assumption, the area under 

the curve of the population size function is simply the area of a trapezoid[9]. 

To estimate the amount of person-years spent at risk by the population of Nembro, we 

used a flexible and easy to implement approximation. We approximated the area under 

the curve of the population size function as the sum of the area of smaller rectangles 

corresponding to each day of the study period. Each small rectangle has the base equal 

to one (one day) and the height equal to the number of residents alive on that day. This 

approach follows the same rationale of the Reimann sum for integral approximations. 

Hence, we estimated the amount of person-years spent at risk in two steps.  

First, the number of residents alive each day from January 1st, 2012 to January 1st, 2020, 

was estimated by interpolating data of the population size on the first day of the month, 

using a spline regression model[18]. Specifically, we used linear splines, assuming a 

linear change of the population size between the first days of two consecutive 

months[18].   

Meanwhile the number of alive residents between January 1st and April 11th in 2020 was 

a projection based on two different models. The projections were obtained as the 

weighted average of the predictions from the last segment of the spline regression, and 

the predictions of a third-degree polynomial regression fitted on the whole time period[18]. 

The weights were chosen to avoid function discontinuity and to give more importance to 

long term trends[18]. 

The second step consists of summing up the number of Nembro residents alive every 

day within each month[18]. This operation corresponds to the abovementioned “sum of 

smaller rectangles”, where the result of the sum approximates the overall number of 

person-days spent at risk in the month. Finally, person-days were converted into person-

years through dividing by 365.25.  
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In a sensitivity analysis, we estimated the monthly all-cause mortality rates using the 

same approach while assuming a drop in the population size after February 20th, 2020, 

proportionate to a dramatic increase in deaths or emigration[18]. 

All analyses were conducted using R-3.6.0 and RStudio v1.1.456[18]. 

 

6.2 Prediction task: external validation of the SCORE OP risk 
prediction model 

 

6.2.1 Risk prediction models 
 
The Systematic COronary Risk Evaluation (SCORE)[26] is a prognostic risk prediction 

model developed in 2003 using European populations data. The SCORE predicts the 

probability of an individual dying from cardiovascular diseases within 10 years based on 

age, sex, total cholesterol, systolic blood pressure, and smoking status. It has two 

versions: the SCORE for populations at high cardiovascular risk and the SCORE for 

populations at low cardiovascular risk[26]. We will refer to them as SCORE H and SCORE 

L, respectively. The use of SCORE is currently recommended by the European Society 

of Cardiology guidelines for individuals between 40 and 65 years old[27]. 

On several occasions, risk prediction models developed using data from middle-aged 

individuals demonstrated poor performance when applied in older person 

populations[28]. This was attributed to a different association between classical risk 

factors and cardiovascular endpoints in older people compared to middle-aged adults[28]. 

For this reason, in 2015, a new version of the SCORE, called SCORE Older Persons 

(SCORE OP) was developed using data from older European individuals only[28].  

The SCORE OP was designed to predict the probability of fatal cardiovascular events 

among Europeans aged 65 or older, using the same predictors included in the SCORE 

with the addition of diabetes status and HDL cholesterol[28]. Overall, there are four 

SCORE OP equations[28]: two which produce 5-year predictions in high and low 

cardiovascular risk populations (SCORE OP H5 and SCORE OP L5), and two producing 

10-year predictions in high and low cardiovascular risk populations (SCORE OP H and 

SCORE OP L). 

To compute SCORE and SCORE OP predictions, we relied on published coefficients, 

parameters, and formulas[26,28]. The published SCORE formula is based on a 

“mathematical inconsistent model” that allows the computed probabilities to be higher 
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than one[29]. We applied a simple mathematical correction proposed by Støvring et al. 

as the first step of their competing risk approach to prevent this error from occurring[29]. 

 

6.2.2 Data 
 
We externally validated the SCORE OP using data from the Berlin Initiative Study 

(BIS)[19]. The BIS is a population-based cohort study of 2,069 Berlin older persons (aged 

70 or older) recruited from the database of a large health insurance company. Further 

details of the study design and recruitment strategy can be found in the original paper[30]. 

Information on the following SCORE and SCORE OP predictors were obtained during in-

person interviews at the baseline: age, sex, systolic blood pressure (average of two 

measurements), HDL cholesterol level, total cholesterol level, self-reported smoking 

status (current status), diabetes mellitus presence (self-reported antidiabetic treatment 

use and/or HbA1c level higher than 6.5%)[19]. 

Information about the date of death and causes of death were obtained from multiple 

sources: general practitioners, direct contact with relatives, insurance records, Berlin 

death certificate archive, and, for in-hospital deaths, medical discharge letters[19]. When 

no information on the causes was available, in the primary analyses, deaths were 

assumed to be due to non-cardiovascular reasons[19]. 

The BIS recruitment process started in November 2009, while the end of the follow-up for 

this external validation study was set to September 30th, 2015[19]. Therefore, each 

individual was followed from recruitment until death, last available study visit (loss to 

follow-up), or the last day of September 2015 (administrative censorship)[19]. 

We only included participants with follow-up information and who self-reported no history 

of myocardial infarction at baseline to maintain consistency with SCORE and SCORE OP 

development study criteria[19]. We further excluded individuals without information on all 

SCORE or SCORE OP predictors[19]. The BIS was approved by the local ethics 

committee of the Charité – Universitätsmedizin Berlin (Ref. EA2/009/08). 

 

6.2.3 Statistical analysis 
 
We predicted the 5-year risk of fatal cardiovascular events for all individuals in the study 

according to SCORE OP H5 and SCORE OP L5 risk prediction models[19]. 
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Performance of the 5-year version of the SCORE OP was then assessed, comparing the 

predicted risks with the actual outcomes[19]. Two crucial metrics were considered in the 

performance evaluation of each risk prediction model: calibration and discrimination. 

To assess calibration, individuals were grouped based on deciles of the predicted risk. 

For each group, the average predicted probability and the estimated actual probability 

obtained from a Kaplan-Meier estimator were computed[19]. The overall number of 

predicted and actual events across all decile groups were contrasted to assess 

calibration-in-the-large[19]. Average predictions and actual probabilities for each decile 

group were also reported to ensure a more detailed calibration assessment. 

Discrimination was, instead, measured using the C-index on all the available follow-up 

time[19]. 

In a secondary analysis, we assessed the calibration of the 10-year versions of the 

SCORE and SCORE OP risk prediction models[19]. Since the observed follow-up was 

shorter than 10 years, we used as actual probabilities the 10-year projections obtained 

from a Weibull regression survival model (instead of the Kaplan-Meier estimates) for each 

risk score in the secondary analysis[19]. 

In a sensitivity analysis, we assessed risk prediction model performance under the 

assumption that deaths ascribed to unknown reasons were all due to cardiovascular 

diseases[19]. Additionally, to understand the magnitude of the results at the population 

level, all analyses were rerun on five resampled datasets representative of the size and 

age-sex structure of the 2010 Berlin older person population[19]. 

Finally, we compared the SCORE and SCORE OP 10-year risk predictions 

graphically[19]. The comparison was conducted on the age range between 60 and 100 

years for three hypothetical risk profiles (high, medium, and low risk) for men and women 

separately[19]. 

All analyses were conducted using R-3.4.3 and RStudio v1.0.153[19]. 

 

6.3 Counterfactual Prediction task: DAGs and causal thinking in 
probability estimation 

 

Counterfactual Prediction is rooted in counterfactual thinking and relies heavily on prior 

causal knowledge and the use of causal graphs. We examined the role of these elements, 

typical of Counterfactual Prediction, in informing modeling strategies for probability 

estimation problems in the “factual” world. Specifically, we focused on two concepts 
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pertaining to the causal inference and causal discovery worlds: the principle of 

independent mechanisms and the Markov Blanket. 

 

6.3.1 Principle of independent mechanisms 
 
Using the words of Peters et al., the principle of independent mechanisms assumes that 

“the causal generative process of a system’s variables is composed of autonomous 

modules that do not inform or influence each other”[15]. According to this principle, a 

causal process can be seen as a chain of independent physical mechanisms, meaning 

that each physical mechanism is independent of the input it receives and, therefore, from 

the previous mechanisms on the chain[15]. 

The consequences of this principle are clear, even when considering the simple scenario 

with only two variables: one Cause and its Effect. 

The joint probability distribution of the variables Cause and Effect P(Cause,Effect) can be 

written in two different ways[15,31]: 

 

P(Cause,Effect) = P(Cause|Effect)P(Effect) = P(Effect|Cause)P(Cause) 

 

P(Effect|Cause) maps probabilistically the values of the variable Cause to the values of 

the variable Effect, representing the causal mechanism. P(Cause), on the other hand, is 

the distribution of the variable Cause, representing the input of the causal mechanism. 

According to the principle of the independent mechanisms, P(Cause) and 

P(Effect|Cause) are independent[15,31]. As a consequence, the conditional distribution 

of the Effect given the Cause P(Effect|Cause) and the marginal distribution of the Cause 

P(Cause) change independently across different joint distributions[15,20,31]. 

This independence in the second factorization induces a dependency between 

P(Cause|Effect) and P(Effect) in the first factorization[15,31]. Therefore, P(Cause|Effect) 

(which is only a mathematical relationship not representing a causal mechanism) and 

P(Effect) tend to change together across different joint distributions[15,20,31]. 

This implies that the probability of a disease estimated using its effect as predictor 

(anticausal direction) could be less transportable to other settings characterized by a 

different joint distribution[15,20,31]. This principle, which has a long history and was 

recently well described by Peters et al.[15], has important implications for the 
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transportability of diagnostic clinical risk prediction models. We will demonstrate this 

using two hypothetical clinical examples in the field of neurodegenerative diseases. 

 

6.3.2 Markov Blanket 
 
Predictor selection is a step of paramount importance when estimating the probability of 

an outcome through a risk prediction model. Predictor selection can be described as the 

challenge of choosing the lowest possible number of variables that contain sufficient 

information to predict the outcome. 

Thus an intuitive idea might be to exclude, from all the available variables, those that do 

not provide additional information about the outcome. 

When we quantify the “additional information” in terms of “conditional dependence”[32], 

predictor selection is reduced to a Markov Blanket identification problem. In order to 

define the Markov Blanket, we need to introduce some notation: let Y be the random 

outcome variable that we are interested in predicting; let X be the set of all available 

variables (without Y), which we will assume includes all variables relevant in the causal 

processes involving Y. Then, the Markov Blanket of the outcome variable MB(Y) is the 

smallest subset of X that satisfies the following relationship[20,33,34]: 

 

 K  X - MB(Y): Pr(Y|MB(Y),K) = Pr(Y|MB(Y)) 

 

All other variables of X are conditionally independent from Y (and therefore do not provide 

additional information about the outcome) once we condition on the Markov Blanket set 

of Y[20,33,34]. If we have a preference for a lower number of predictors and we measure 

the performance in terms of calibration, in an ideal regression setting, the variables in the 

Markov Blanket of the outcome are the only variables needed for optimal prediction[33]. 

The concept of Markov Blanket was first formalized in 1988 by Pearl[35] and was later 

used for predictor selection[32]. Tsamardinos proved that a variable is strongly 

relevant[36,37] to predict the outcome if and only if it is included in the Markov Blanket of 

the outcome[37]. 

Another positive characteristic of the Markov Blanket concept that highlights its 

applicability is the possibility of identifying the Markov Blanket using DAGs. 

Let us imagine that we have a DAG representing all the causal processes involving Y and 

describing the causal relationships among Y and all the variables in X. If the joint 



16 
 

distribution of the variables is Markovian and faithful with respect to the described DAG 

(two common assumptions in causal inference and causal discovery), then the Markov 

Blanket of Y can be easily identified as all the parents of the Y node, all the children of 

the Y node, and all the parents of Y node’s children[15,20,33–35]. 

This implies that if all variables involved in the causal processes of the outcome are 

known, and we are able to accurately describe the causal relationships among all the 

variables in a DAG, then we can use this graphical rule to confidently identify the relevant 

predictors to be included in the clinical risk prediction model. 

To show this, we ran a simulation of 100,000 different scenarios, each based on a random 

DAG, according to which a dataset with 10,000 observations, 24 candidate predictors, 

and one binary outcome was generated. In each scenario, the calibration of eight different 

prediction tools was compared using the 10 fold cross-validation Integrated Calibration 

Index (ICI)[38]. Specifically, the eight prediction tools were: a logistic regression model 

with Markov Blanket set variables as independent variables, a a logistic regression model 

with all 24 candidate predictors as independent variables, a logistic regression model with 

all variables with a path to the outcome node as independent variables, a logistic 

regression model with parents of the outcome node as independent variables, a logistic 

lasso regression model with all 24 candidate predictors as input, a logistic ridge 

regression model with all 24 candidate predictors as input, a logistic elastic net regression 

model with alpha equal to 0.5 and all 24 candidate predictors as input, and a random 

forest algorithm with all 24 candidate predictors as input. Details of the simulation and the 

simulation code are available in the original paper and supplement material[20]. All 

analyses were conducted using R-3.6.3[20]. 
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7 Results 
 

7.1 Description task: all-cause mortality rate estimation using registry 
data 

 

In total, 1,116 Nembro residents died between January 1st, 2012 and April 11th, 2020[18]. 

Specifically, 112 Nembro residents died in 2012, 112 died in 2013, 95 died in 2014, 119 

died in 2015, 126 died in 2016, 109 died in 2017, 128 died in 2018, 121 died in 2019, and 

194 died in the first 102 days of 2020[18]. More Nembro residents died during March 

2020 alone (151 deaths) than during the entire year 2019[18].  

The monthly all-cause mortality rate from January 2012 to February 2020 ranged from 

1.0 per 1,000 person-years to 21.5 per 1,000 person-years (see Figure 1)[18]. Strikingly, 

the all-cause mortality in March 2020 was 154.4 per 1,000 person-years, almost eleven 

times the all-cause mortality recorded in March 2019 (14.3 per 1,000 person-years) and 

by far the highest rate observed in the last 8 years (Figure 1)[18]. In April 2020 (11 days 

considered), the all-cause mortality rate decreased to 23.0 per 1,000 person-years 

(Figure 1)[18]. 

Since in the sensitivity analysis scenario a loss in person-years is assumed, all-cause 

mortality rates estimated in the sensitivity analysis are slightly higher: 15.3 per 1,000 

person-years in February 2020, 155.7 per 1,000 person-years in March 2020, and 23.5 

per 1,000 person-years in April 2020[18]. 

Information about deceased Nembro residents’ demographics and official COVID-19  

deaths, obtained from other data sources, are reported in the original paper[18]. 
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Figure 1. Nembro residents monthly all-cause mortality rates (per 1,000 person-years) from January 2012 

to April 2020[18]. April 2020 mortality rate is estimated only based on the first eleven days information. The 

first month of each year and March 2020 are indicated on the x-axis. 
. 

7.2 Prediction task: external validation of the SCORE OP risk 
prediction model 

 

Out of 2,069 BIS participants, 1,657 were included in this validation study[19]. Overall, 

412 participants were excluded: 102 because no follow-up information was available, 23 

because no information on myocardial infarction history was available, 273 because they 

self-reported at the baseline to have experienced a myocardial infarction, and 14 because 

information on some of the SCORE OP predictors was missing[19]. The median follow-

up time was 4.8 years, and the overall amount of person-time spent at risk during the 

study period was 7,370.3 person-years[19]. During the study follow-up, 118 deaths due 

to cardiovascular diseases were observed[19].  

The SCORE OP H5 and the SCORE OP L5 predicted 302 and 215 fatal cardiovascular 

events in 5 years, respectively[19]. The number of fatal cardiovascular events estimated 

with the Kaplan-Meier estimator for the same time interval was only 142[19]. Therefore, 

relying on the calibration-in-the-large assessment, both the SCORE OP H5 

(predicted/actual ratio=2.13) and the SCORE OP L5 (predicted/actual ratio=1.51) 
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overestimated the true risk[19]. The SCORE OP H5 showed a systematic overestimation 

across all decile groups (Table 1)[19]. Similarly, the SCORE OP L5 average predicted 

risk was higher than the probability of the event as estimated by the Kaplan-Meier 

estimator in 9 out of 10 decile groups (Table 1)[19]. 

These same results were confirmed in the secondary analysis on the 10-year time span. 

The SCORE OP H predicted 677 events, despite only 399 actual events being projected 

(predicted/actual ratio=1.70) and overestimated the true risk in all decile groups (Table 

1)[19]. Similarly, the SCORE OP L overestimated the true risk in eight decile groups 

(Table 1)[19].  

We estimated a C-index of 0.79 (0.75 to 0.83) and 0.80 (0.75 to 0.83) for the SCORE OP 

H and the SCORE OP L respectively[19]. The estimated C-index for the SCORE H and 

the SCORE L were 0.72 (0.67 to 0.76) and 0.72 (0.67 to 0.77) respectively[19]. Despite 

the fact that the SCORE OP equations showed slightly better discrimination ability 

compared to the SCORE equations on the observed follow-up, they showed less 

calibration compared to the SCORE equations on the 10-year interval[19]. The SCORE 

L demonstrated an underestimation of the true risk in the calibration-in-the-large 

assessment (predicted/actual ratio=0.67). In contrast, the SCORE H showed relatively 

good calibration both in terms of calibration-in-the-large (predicted/actual ratio=0.97) and 

decile group comparison (Table 1)[19]. 
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  SCORE OP H5 SCORE OP L5 SCORE OP H SCORE OP L SCORE H SCORE L 

Decile 

group 

Average 

prediction 

Actual 

probability 

Average 

prediction 

Actual 

probability 

Average 

prediction 

Actual 

probability* 

Average 

prediction 

Actual 

probability* 

Average 

prediction 

Actual 

probability* 

Average 

prediction 

Actual 

probability* 

1 0.02662 0.02081 0.01498 0.02079 0.08292 0.06445 0.05281 0.06479 0.05997 0.06082 0.04096 0.08115 

2 0.04264 0.0218 0.02582 0.01295 0.13083 0.06522 0.08496 0.04326 0.08921 0.06321 0.06059 0.06365 

3 0.05918 0.01278 0.03809 0.02141 0.17836 0.04259 0.11725 0.06496 0.11454 0.16344 0.07623 0.10567 

4 0.08099 0.01979 0.05345 0.02633 0.23806 0.0665 0.15957 0.06588 0.1429 0.06488 0.09345 0.16534 

5 0.10729 0.02685 0.07157 0.02772 0.30611 0.08725 0.20944 0.06663 0.17111 0.12481 0.11346 0.06463 

6 0.13931 0.04849 0.09449 0.0401 0.38324 0.15489 0.26769 0.17472 0.20475 0.27377 0.13555 0.20213 

7 0.18859 0.07226 0.12709 0.06508 0.48985 0.21994 0.35471 0.22253 0.24413 0.2341 0.16518 0.29727 

8 0.25377 0.12521 0.17874 0.1155 0.61016 0.3841 0.46414 0.35076 0.29291 0.2507 0.2005 0.25683 

9 0.34997 0.23465 0.25076 0.22386 0.74797 0.6237 0.60052 0.60843 0.37195 0.45189 0.259 0.44614 

10 0.57292 0.27283 0.44448 0.30469 0.9157 0.69801 0.81788 0.73361 0.55269 0.61689 0.41168 0.63402 

 
 

Table 1. Average predictions and actual probabilities for each decile group for all examined risk score 

equations[19].  

*10-year actual probabilities are estimated using Weibull regression models to project beyond the observed 

follow-up. 

 

 

Overall, the results obtained in the above-described analyses were consistent with the 

ones obtained from the sensitivity analyses[19]. 

When we compared the predicted risks of SCORE and SCORE OP across age for three 

different hypothetical risk profiles (low, medium, and high-risk profile), we found that the 

SCORE OP predicted higher risks compared to the SCORE in all risk profiles for female 

persons aged over 75 years old and for male persons aged over 78 years old[19]. 
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7.3 Counterfactual Prediction task: DAGs and causal thinking in 
probability estimation 

 

7.3.1 Principle of independent mechanisms 
 
Imagine that we are interested in developing a diagnostic clinical risk prediction model to 

predict the presence of Alzheimer’s disease (Y=1, while Y=0 denotes absence of 

Alzheimer’s disease)[20]. In this example, the only predictor we will use is the APOE ε4 

allele status: X = 1 denotes allele presence, while X = 0 denotes allele absence[20]. 

As APOE ε4 allele is a known risk factor for Alzheimer’s disease[39], we could represent 

the relationship between the two variables with the DAG in Figure 2a. 

We assume that the allele APOE ε4 is a direct cause of the disease status and that the 

two variables have no common causes. Under this scenario, we could collect cross-

sectional data about Alzheimer’s disease presence and APOE ε4 allele status in a defined 

population A, and then use a logistic regression to predict the presence of Alzheimer’s 

disease[20]. 

The logistic regression equation would then encode the four conditional probabilities,  

Pr(Y = 1|X = 1), Pr(Y = 1|X = 0), Pr(Y = 0|X = 1), and Pr(Y = 0|X = 0), which define the 

conditional distribution (Y|X)[20]. The marginal distribution (X) is fully defined from the 

prevalence of the APOE ε4 allele (Pr(X = 1)) because we are dealing with a binary 

variable[20]. 

Let us imagine that we would like to apply this recently developed diagnostic clinical risk 

prediction model in another population, labeled as population B, in which we know the 

prevalence of the APOE ε4 allele to be different[20]. 

In this case, APOE ε4 allele status (X) is the cause and (Y|X) represents the causal 

mechanism. Hence, according to the principle of independent mechanisms, a change in 

the cause distribution (X) does not give any information on (Y|X) in the population 

B[15,20,31].  

The conclusion is that if the causal mechanism (Y|X) is the same in the two populations 

(A and B) the diagnostic clinical risk prediction model developed in population A will lead 

to valid predictions in population B[20]. However, if the underlying causal mechanism 

changed from population A to population B, no information on the change could be 

obtained knowing only the difference in the predictor distribution[15,20,31]. 
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Consequently, the diagnostic clinical risk prediction model developed in population A is 

still our best guess[15,20,31].  

In this example, our knowledge of the causal structure suggests that using the diagnostic 

clinical risk prediction model developed from population A, in the new population B is the 

right choice[15,20,31]. 

 

Imagine now that we want to predict the presence of Alzheimer’s disease using a binary 

variable that indicates if the concentration of tau protein measured in the cerebrospinal 

fluid is high (CSFtau), instead of the APOE ε4 allele status[20]. Since the CSFtau levels 

are a product of Alzheimer's disease[40], assuming that no other variables are relevant, 

the DAG can be represented as described in Figure 2b (Y indicates Alzheimer’s disease 

status, while K indicates CSFtau levels). 

As before, we can develop a diagnostic clinical risk prediction model using a logistic 

regression and cross-sectional data from a defined population C[20]. 

Similarly to the previous example, the logistic regression would describe the conditional 

distribution (Y|K), while the marginal distribution (K) would be described by the CSFtau 

prevalence (Pr(K = 1))[20].  

Imagine we want to apply this developed diagnostic clinical risk prediction model to a new 

population, labeled as population D, in which we know that the prevalence of high CSFtau 

is different[20]. In this case, (Y|K) does not represent a causal mechanism, and we are 

in the anticausal scenario, where the predictor K is an effect of the disease status (Y). 

According to the principle of independent mechanisms, (Y|K) is not independent of (K). 

Consequently, the change in the prevalence of CSFtau is likely to occur together with a 

change in (Y|K)[15,20,31]. We could conclude that the diagnostic clinical risk prediction 

model developed in population C would lead to invalid predictions in the population D, 

because it describes a mathematical relationship that is unlikely to hold in the population 

D[20]. This reasoning is correct, even though the causal mechanism between the 

Alzheimer’s disease status and the CSFtau levels is the same for both populations[20]. 
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Figure 2. Directed acyclic graphs for the two simplified examples[20]. CSF=cerebrospinal fluid 

 

7.3.2 Markov Blanket 
 
To illustrate the use of the Markov Blanket concept in predictor selection, we generated 

100,000 datasets each based on a random DAG[20]. 

Out of the 100,000 generated datasets, 37,272 presented an exogenous outcome 

variable, 8,032 of which presented an outcome variable without any children nodes[20]. 

Therefore, the performance of the logistic regression with parents as predictors and the 

logistic regression with the Markov Blanket set or with variables with a path to the 

outcome as predictors could not be assessed for all datasets[20]. In general, the Markov 

Blanket-based logistic model showed an average ICI of 0.01882, the lowest across all 

prediction tools[20]. 

The Markov Blanket-based logistic model had the lowest average ICI (0.01956) even 

when only the 62,159 datasets in which all prediction tools had a computable ICI were 

considered[20]. In these datasets, the Markov Blanket-based logistic model included on 

average only 4.1 predictors[20]. Still, its ICI was, in direct comparison, lower or equal to 

the ICI obtained from the other prediction tools most of the times (from 56.36% to 97.37%, 

depending on the tool being compared)[20]. The distribution of the ICI for the eight 

prediction tools over the 62,159 datasets is represented in Figure 3. 
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Figure 3. Violin plot of the distribution of the 10-fold cross-validated Integrated Calibration Index (ICI) for 

each prediction tool[20]. Only the 62,159 datasets in which the ICI was computable for all eight prediction 

tools were considered. 
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8 Discussion 
 

8.1 Description task: all-cause mortality rate estimation using registry 
data 

 

In the three projects, Description, Prediction, and Counterfactual prediction were coverd. 

Description consists of providing a compact quantitative representation of phenomena as 

they appear[3,14], and represents the basis for new hypotheses and research 

questions[41]. This task is particularly important when the research community is faced 

with a new phenomenon whose characteristics and behavior are unknown[41]. The newly 

emerged COVID-19 pandemic is a perfect opportunity to illustrate the value of descriptive 

studies. Description is particularly useful during such an emergency situation because of 

its potential to provide readily available results. Indeed, descriptive studies often rely on 

already available data, representing an efficient way to analyse trends, plan healthcare 

resources, and generate causal hypotheses[7,41]. In our application, we dealt with the 

statistical problem of probability estimation in the context of surveillance of incident cases 

(passive surveillance in particular), a specific type of descriptive study[41]. The probability 

of the event (also referred to as incidence proportion) cannot be directly computed by 

using only information from a registry surveilling an open population[7]. However, this 

quantity can be approximated using incidence rates, which can be estimated using 

information from the registry and administrative data about the population size at a 

specific time point[7,9]. 

In our study, we found that the all-cause mortality rate in Nembro increased dramatically 

in March 2020[18]. In this month, the all-cause mortality was 154.4 per 1,000 person-

years[18], which corresponds approximately to a probability of 1.3% of dying in one month 

(using the exponential formula and relying on some known assumptions[6,7]). The 

mortality rate in March 2020 was almost 11 times the mortality rate recorded in March 

2019, and the number of recorded deaths in March 2020 was higher than the number of 

deaths recorded during the entire previous year[18].  

The increase in all-cause deaths observed during the first months of the COVID-19 

pandemic in Nembro is not completely explained by official COVID-19 statistics. At the 

end of March 2020, the mayor of Nembro reported that only about 200 COVID-19 cases 

were confirmed in the city[25]. According to data obtained from Ondata[42], only 85 



26 
 

deaths in Nembro were officially attributed to COVID-19 between the beginning of the 

outbreak and April 11th, 2020[18]. 

One limitation of our study is the use of provisional or not fully updated data[18]. Arguably 

this limitation was unavoidable because of the timing of the analysis and the nature of the 

COVID-19 emergency situation in Italy.  

Overall, our results were consistent with previous findings. The dramatic increase in all-

cause deaths within the first months of the COVID-19 pandemic in Italy that were not fully 

accounted for in the number of official COVID-19 deaths was also highlighted in some 

previous reports: a local investigation on all-cause deaths in Bergamo[43], a study 

analysing more than 1000 Italian cities with increased mortality[44], and a report of the 

Italian Ministry of Health and the Italian National Center for Prevention and Control of 

Disease analysing all-cause mortality of 18 major Italian cities[45]. 

The mismatch between the increase in all-cause mortality and the number of official 

COVID-19 confirmed deaths in the first months of the pandemic may have been due to a 

combination of several factors. Firstly, the lack of testing due to resource shortages may 

have led to the misclassification of several cause of death (in Nembro it was not possible 

to test all individuals with symptoms or with COVID-19 contacts[46]). Secondly, the 

occurrence of indirect deaths of individuals affected by other conditions who did not 

receive appropriate care due to the crisis of the healthcare system (in the province of 

Bergamo the healthcare system was overwhelmed and close to collapse[24,47]). Lastly, 

the delay in obtaining and communicating COVID-19 testing results may explain some of 

the disparity between the disproportionate increase in all-cause deaths and official 

COVID-19 deaths[18]. 

In Nembro, we observed a decrease in all-cause mortality in the month of April 2020[18]. 

This was probably mostly due to the strict measures introduced by the Italian government 

to contain the spread of the virus, social and hygienic preventive measures, reallocation 

of healthcare resources, and increased number of immune individuals[18]. 

More recently, a report from the Italian National Institute of Health and the Italian National 

Institute of Statistics analysing mortality data of 95% of the Italian resident population 

confirmed that 15,133 deaths from COVID-19 positive individuals occurred in the month 

of March, while in the same month 27,195 more deaths compared to the average 2015-

2019 were recorded[48]. 

These findings show that all-cause mortality is an important metric to quantify the 

consequences of a pandemic. Despite being only a general indicator of the health of the 



27 
 

population, all-cause mortality has several advantages. Mortality data are systematically 

collected, death is an end-point whose definition is universally accepted, collection of 

mortality data is usually of high quality, and mortality data collection does not depend on 

the specific testing strategies[18]. Moreover, all-cause mortality allows researchers to 

consider not only the deaths directly induced by the virus but also the ones caused by the 

crisis in the healthcare system due to the pandemic[18]. This indirect effect is a crucial 

consequence of the pandemic[49] that needs to be taken into account by policy makers. 

For this reason, we believe that all-cause mortality should be reported along with more 

traditional metrics in the first stages of a pandemic[18]. 

 

8.2 Prediction task: external validation of the SCORE OP risk 
prediction model 

 

Prediction focuses on “forecasting” the value of an outcome variable for an individual 

whose outcome status is unknown. When the outcome is binary, as often happens in 

medicine, the prediction task consists of estimating a probability. In this scenario, the 

main challenge is making sure that the developed risk prediction model has good 

performance on individuals outside of the development dataset[10,12]. Therefore, 

conducting external validations is crucial to assess the performance in estimating 

probabilities for individuals from different settings[10,12]. 

This is especially important in cardiovascular medicine, in which the use of risk prediction 

models to target high-risk individuals is widespread and recommended by the majority of 

global guidelines[50]. A recent systematic review by Damen et al. found that, from 1967 

until 2013, 363 risk prediction models for future cardiovascular outcomes were developed 

to be used in the general population[51]. However, only 36% of all these risk prediction 

models had ever been externally validated[51]. 

In our application, we conducted an external validation in the Berlin population of a 

recently developed risk score, the SCORE OP, for predicting  5- and 10-year risk of fatal 

cardiovascular events in European older persons[19]. 

Our validation study found that the SCORE OP equations substantially overestimated the 

true risk of a fatal cardiovascular event[19].  

SCORE equations, specifically the SCORE for high-risk populations, showed better 

calibration than the SCORE OP models in our analysis based on 10-year projections[19].  
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These results are important both from a practical and theoretical point of view. Indeed, 

the use in clinical practice of a risk score that overestimates the true risk could lead to 

overtreatment[19]. On the other hand, it is also interesting that the SCORE OP was 

originally developed to correct the SCORE’s suspected overestimation in older persons 

but provided higher estimates in our population[28].  

It is indeed worth further exploring the underlying rationale for the SCORE OP 

development. The SCORE model was developed using information about mostly middle-

aged Europeans. Since the association between the traditional risk factors and 

cardiovascular outcomes decreases with age[52,53], SCORE regression coefficients 

were thought to reflect too strong of an association, which resulted in being too great in 

magnitude for older persons[28,52–54]. The inappropriately large coefficients combined 

with the high risk factor levels typical of older persons were, therefore, thought to lead the 

SCORE to overestimate the true risk in this population[28]. However, in our study, we 

found that the SCORE OP predicted higher risks compared to the SCORE[19], and this 

result was confirmed in a previously published external validation conducted in the 

UK[55]. Conversely, in two previously published cross-sectional studies, the SCORE OP 

was found to predict lower risks than the SCORE in a population of individuals aged 65 

to 69[56,57]. We believe that this inconsistency can be explained by the different age 

distributions[19]. Comparing the values obtained by the two different risk assessment 

systems for six hypothetical risk profiles, we found that the SCORE OP tends to provide 

lower risk estimates compared to the SCORE for individuals in the age group 65-68 

but tends to provide higher risk estimates for older individuals[19]. 

In general, the lower generalizability of the SCORE OP to the Berlin older persons 

population could be explained by a different unmeasured risk factors distribution, a 

different baseline cardiovascular risk, or a difference in the underlying hazard ratios 

compared to the SCORE OP development dataset[19]. A factor that could have played a 

role in determining the low transportability is the different definition of the risk factors[19]. 

Specifically, the large difference in the prevalence of diabetes in the SCORE OP 

development dataset compared to the BIS dataset could be explained by different ways 

of assessing or defining this important risk factor[19]. 

Despite the large sample size[58], high-quality data, and the robust methods used in this 

study, some limitations have to be considered when interpreting the results. Firstly, the 

cause of death reported on death certificates is known not to be completely reliable for 

older persons; secondly, the comparison of 10-year SCORE and SCORE OP equations 
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needs to be interpreted carefully since it is based on projected endpoints rather than 

observed ones; and finally, we excluded individuals based on self-reported information 

about myocardial infarction history rather than medical records[19]. 

The only previously published external validation of the SCORE OP found that this risk 

prediction model had very good calibration but poor discrimination ability in the Norfolk 

older persons population (UK)[55]. Despite reporting very different performances from 

those observed in our study, both this and our external validations suggested the use of 

the SCORE OP in clinical practice in these two populations was not appropriate[19,55].  

Life expectancy has continued to increase over the last decades,  and currently less than 

one-fifth of the overall cardiovascular deaths in Europe occur in individuals younger than 

65[59]. For these reasons, developing a prediction tool to identify older persons at high 

cardiovascular risk with good performance is of crucial importance[28,60]. Conducting 

external validations is fundamental for understanding the settings in which it is appropriate 

to use a particular clinical risk prediction model. Additionally, as in our application, 

external validations are valuable in identifying possible threats to transportability and 

problems in the theoretical framework underlying the risk score development while also 

providing useful information for improving clinical risk prediction model development. 

 

8.3 Counterfactual Prediction task: DAGs and causal thinking in 
probability estimation 

 

Similarly to Prediction, the Counterfactual Prediction task consists of estimating a 

probability when the outcome of interest is binary[4]. Relying on previous causal 

knowledge, Counterfactual Prediction aims at estimating the probability of the outcome 

in different worlds in which different interventions are applied[3,4]. In our study, we 

showed how counterfactual reasoning and causal knowledge could be of paramount 

importance when the aim is to develop a model to estimate the probability of the outcome 

in different settings[20]. Assessment of transportability across different settings can be 

conceptualized as the evaluation of a model’s ability to predict the outcome in different 

counterfactual worlds. These various counterfactual worlds are characterized by 

interventions that alter, to some extent, the joint distribution of the variables. For example, 

other populations characterized by different distributions of an exogenous variable can 

be thought of as “counterfactual” worlds in which an intervention on the exogenous 

variable was applied. In our study, we investigated the important consequences that this 
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reasoning can have on statistical modelling using causal inference tools such as DAGs. 

We showed that, in two specific clinical examples, a diagnostic clinical risk prediction 

model in the “anticausal direction” (i.e. one which uses a consequence of the disease as 

a predictor) is less transportable compared to one in the “causal direction”[20]. We 

provided a theoretical framework to support the idea[61] that a prediction model, which 

includes causes of the outcome, is more transportable[20]. We also demonstrated how 

the causal knowledge summarized in a DAG can be useful for predictor selection[20].  

By borrowing concepts from causal discovery and causal inference fields, we 

demonstrated that strong causal knowledge of the underlying data generation process 

could provide support to clinical risk prediction modeling strategies[20]. Previous work 

detailing the importance of causal knowledge in prediction tasks focused on prognostic 

clinical risk prediction modeling strategies in situations of treatment initiation after the 

baseline[62,63]. This was also the topic of a commentary by Dickerman and Hernán 

published shortly after our study[64]. The authors discuss the importance of causal 

knowledge in clinical risk prediction and the practical trade-off between counterfactual 

and factual prediction in this setting[64]. Since then several pieces illustrating the 

importance of causal knowledge and counterfactual thinking when dealing with clinical 

prediction tasks, especially in machine learning techniques, have been published[65–67]. 

This increasing body of literature demonstrates the way that knowledge and methods 

from the Counterfactual Prediction field have an influence on Prediction model research 

in epidemiology. This was probably a consequence of the recent emergence of causal 

discovery, a research field that uses prediction tools to infer the causal structure 

underlying the data[15]. This exchange across the border separating the two Health Data 

Science tasks and the ensuing contamination of each field creates a new lively, active, 

and young area of research with an extremely large potential. 

 

9 Conclusion 
 
In this PhD project, I focused on three different relevant applications of the statistical 

problem of probability estimation, each involving one of the three Health Data Science 

tasks.  

I demonstrated how Description tasks are characterized by specific statistical challenges 

determined by the nature of the analysed data, often originally collected for other 

purposes. Relying on this type of data collection represents, on the one hand, a limitation 
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from a statistical perspective but allows, on the other, for cost-effective and quick 

analyses, which unquestionably provides an advantage during new public health 

emergencies. Description tasks focus on estimating probabilities only conditioned on a 

few variables (for example, the city of residence, the month, and the year) to provide 

general information on the phenomenon. Prediction tasks, meanwhile, generally aim to 

estimate probabilities conditioned on several variables. Indeed, clinical risk prediction 

models try to provide as “personalized” predictions as possible. The crucial statistical 

challenge in Prediction is producing models capable of providing valid predictions for 

individuals outside the development dataset. This is essential for clinical practice as only 

valid prediction tools allow for correct estimation of individual risk and subsequent 

decision on preventive strategies. The transportability of a clinical risk prediction model 

across different settings and populations is assessed in external validations. I showed 

how transportability can be interpreted as an overlapping concept between Prediction and 

Counterfactual Prediction, since different settings can be interpreted as the result of 

different interventions. Counterfactual Prediction answers “what if” questions and is 

deeply rooted in causal thinking. I showed how causal knowledge can be compactly 

summarized in a DAG and how useful the information entailed in such a causal graph can 

be for risk prediction problems.  

Each of the three Health Data Science tasks is of fundamental importance for health 

research. They are each characterized by their own statistical challenges, methods, and 

objectives. For practical and didactical reasons, avoiding confusion by keeping the three 

tasks separate is important. Maintaing a clear separation of these concepts could prevent 

common errors, such as the interpretation of regression coefficients in prediction models 

as causal effect estimates. However, it is undeniable that there are no well-defined 

borders between the three tasks. In the last years, new synergies have developed 

between Prediction and Counterfactual Prediction fields. The exchange of tools, statistical 

techniques, and theoretical concepts across these two research areas made important 

scientific advancement possible and opened several tracks for future research in 

biomedicine.  
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2
 Tobias Kurth

1

ABSTRACT
OBJECTIVE

To quantify the impact of coronavirus disease 2019 
(covid-19) on all cause mortality in Nembro, an Italian 
city severely affected by the covid-19 pandemic.
DESIGN

Descriptive study.
SETTING

Nembro, in the Bergamo province of Lombardy, 
northern Italy.
POPULATION

Residents of Nembro.
MAIN OUTCOME MEASURES

Monthly all cause mortality between January 2012 
and April 2020 (data to 11 April), number of confirmed 
deaths from covid-19 to 11 April 2020, and weekly 
absolute number of deaths between 1 January and 4 
April across recent years by age group and sex.
RESULTS

Nembro had 11 505 residents as of 1 January 2020. 
Monthly all cause mortality between January 2012 and 
February 2020 fluctuated around 10 per 1000 person 
years, with a maximum of 21.5 per 1000 person years. In 
March 2020, monthly all cause mortality reached a peak 
of 154.4 per 1000 person years. For the first 11 days 
in April, this rate decreased to 23.0 per 1000 person 
years. The observed increase in mortality was driven 
by the number of deaths among older people (≥65 
years), especially men. From the outbreak onset until 11 
April 2020, only 85 confirmed deaths from covid-19 in 
Nembro were recorded, corresponding to about half of 
the 166 deaths from all causes observed in that period.
CONCLUSIONS

The study findings show how covid-19 can have 
a considerable impact on the health of a small 
community. Furthermore, the results suggest that the 
full implications of the covid-19 pandemic can only 
be completely understood if, in addition to confirmed 
deaths related to covid-19, consideration is also given 
to all cause mortality in a given region and time frame.

Introduction
The global spread of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) and the resulting 
coronavirus disease 2019 (covid-19)1 quickly escalated 
into a critical situation for healthcare systems worldwide 
and continues to pose a major threat to population 
health. In Italy, more than 28 700 people have died 
from covid-19, the highest number of officially reported 
covid-19 related deaths in Europe (as of 2 May 2020).2-4  
The steep increase in the number of people with 
symptoms of covid-19 led to a sudden and catastrophic 
overload of Italian healthcare capacities.5 6

The Lombardy region of northern Italy, an area with 
almost 17% of the Italian population (2019 data7), 
rapidly became the most severely affected area, and by 
late March the region comprised 60% of all covid-19 
related deaths in Italy and 40% of the confirmed 
covid-19 cases.8 Considerable media coverage of 
Bergamo, one of the first Italian cities in Lombardy 
to be severely affected by covid-19, showed military 
vehicles carrying coffins to other cities because of the 
lack of space and morgue staff.9

Although the reported number of covid-19 related 
deaths in Bergamo is high,10 the real figure could be 
even higher according to all cause mortality data. A local 
investigation raised initial doubts about the accuracy 
of confirmed case and death counts, indicating a 
substantial underestimation of the magnitude of the 
burden.11 Such underreporting is not surprising given 
the state of emergency in many of the hospitals, the 
large number of patients needing immediate intensive 
care, the enormous time and emotional pressure 
on medical teams, the shortage of materials and 
human resources, and the clinical complexity of the 
disease.5 12 13 However, underreporting is not the only 
possible explanation for the considerable difference 
between the number of covid-19 specific deaths and 
the increase in all cause deaths.

The impact of covid-19 on all cause mortality is 
especially noticeable when data are analysed from 
small cities characterised by stable age-sex structures 
over time and low mobility. This metric is sensitive 
to small increases in absolute numbers of deaths in 
small cities. In an effort to accurately determine the 
consequences of covid-19 on mortality, we describe the 
change in all cause mortality over time in Nembro, a 
small city in the province of Bergamo (Lombardy) that 
has been severely affected by the covid-19 pandemic.

Methods
Setting

Nembro, located in the Bergamo province of Lombardy, 
has a population of 11 505 (2020 data14). In 2018, life 
expectancy at birth in the province was 81.2 years for 
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WHAT IS ALREADY KNOWN ON THIS TOPIC
The global spread of coronavirus disease 2019 (covid-19) has severely affected 
northern Italy
The consequences of covid-19 are generally assessed using the number of 
confirmed covid-19 related deaths

WHAT THIS STUDY ADDS
The covid-19 pandemic had a substantial impact on the health of the small 
community of Nembro city (Lombardy, Italy) based on comparisons of monthly all 
cause mortality since 2012
All cause mortality represents an important metric to quantify the burden of a 
pandemic
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men and 85.5 years for women, similar to those in 
the region.7 Between 2009 and 2015, cancer was the 
leading cause of death in men in the province (cause 
specific mortality 328.7 per 100 000 person years) and 
cardiovascular disease was the leading cause of death 
in women (317.8 per 100 000 person years).15 Among 
cancer related deaths, bronchial and lung cancers were 
the most common causes in men and the second most 
common causes in women.15 16 Between 2009 and 
2015, the mortality rate for all cancers in the province 
was higher than the rate in the region of Lombardy, 
while the mortality rates for cardiovascular diseases 
and bronchial and lung cancers did not differ.15 16

In a provincial survey between 2011 and 2014 
among adults aged 18 to 69 years, 24% were 
current smokers, 19% were former smokers, and 
57% were non-smokers.16 Given the advanced age 
of the population, the province of Bergamo has a 
high prevalence of chronic conditions (especially 
hypertension, diabetes, and hypercholesterolaemia).16 
When requiring medical care, most residents in the 
province of Bergamo were treated in hospitals close 
to home. The province ranked first among Italian 
provinces for having the lowest number of residents 
(1.85%) discharged from hospitals outside of the 
region.17

Indeed, the healthcare system in Lombardy is 
characterised by high standards and plentiful 
resources, with more than 200 accredited hospitals 
employing about 130 000 skilled healthcare workers.18 
In this region, the capacity of intensive care units 

before the pandemic was about 720 beds (typically 
operating at 85-90% occupancy during winter).6 13

By the end of February 2020, Nembro was one of 
the first Italian cities to report patients with covid-19 
outside the original red zone around Lodi city. The 
first community isolation measures in Lombardy were 
implemented on 23 February, such as school closures, 
reduced commercial activity, and the cancellation of 
events and large gatherings. On 2 March, as a result of 
the emerging numbers of confirmed cases of covid-19, 
the Italian National Institute of Health recommended 
the creation of a red zone in the area, including 
Nembro.19 20 These recommendations, however, were 
first implemented on 8 March; thereafter, no one could 
enter or leave the region and residents could not leave 
their homes, except for certain types of essential work 
or necessities such as groceries.13 21 At the end of 
March, the mayor of Nembro publicly reported about 
200 confirmed cases of covid-19 in the city.20

Data sources

Our study data integrated information from multiple 
sources. Firstly, we retrieved publicly available 
information from the Italian National Institute of 
Statistics (ISTAT), a public organisation that provides 
official statistics for Italian citizens and policy makers. 
The ISTAT data we used are freely available.7 We 
extracted information on the number of Nembro 
residents at the beginning of each month from January 
2012 to December 2019 and the number of residents 
who died from all causes each month from January 
2012 to November 2019.

As a second source of information, we used data 
from Nembro’s official registration office. We obtained 
special authorisation from the mayor to receive 
anonymised information from this registry on the 
number of residents who died from all causes between 
1 January 2015 and 11 April 2020. Because local 
authorities are rapidly informed about deaths, both in 
and out of hospitals, we believe this registry to be an 
accurate and direct information source for December 
2019 and early 2020. Using a report issued from this 
office, we further extracted the number of residents in 
Nembro as of 1 January 2020.14

The number of confirmed covid-19 deaths in the city 
was obtained from a public repository22 provided by 
OnData,23 an association that promotes transparency 
and open data. OnData reported extracting this 
information from the official Lombardy region covid-19 
map dashboard.22 From this source we obtained 
information from 21 February (the date of receipt of 
the first positive laboratory sample) until 11 April for 
those people living in Nembro who tested positive for 
covid-19. The dates from this source indicate when 
the biological sample was received by the laboratory, 
and the geographical reference listed is the city in 
which those people lived at the time they were tested 
(we did not anticipate this to differ meaningfully from 
the registered city of residence).22 From the OnData 
repository, we obtained information on the vital status 
of people living in the city who tested positive for 
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covid-19; however, we were unable to discern whether 
those who tested positive actually died from the disease 
of interest or from another cause.

We also used data from the recently published ISTAT 
mortality dataset for covid-19 emergency, available for 
selected municipalities.24 From these data we extracted 
information about the weekly absolute number of all 
cause deaths by age group and sex in Nembro from 1 
January to 4 April, for each year from 2015 to 2020.

Statistical analysis

To estimate the amount of total person time Nembro 
residents spent at risk, we combined two approaches. 
Firstly, between 1 January 2012 and 1 January 2020, we 
interpolated values between the recorded population 
size at the beginning of each month, assuming the 
change between the two consecutive time points was 
constant within that interval. To do this we used a 
spline regression model with the population size on 
the first day of the month as the dependent variable 
and the time in days as the independent variable, 
which was transformed using linear splines with knots 
set to the first day of each month.

Since no data were available on the number of 
residents after 1 January 2020, for each day thereafter 
we estimated the number of residents using a 
weighted average of projections obtained from two 
models: the prolongation of the last segment of the 
spline regression and a third order polynomial linear 
regression fitted over the entire observed interval. To 
estimate the daily number of residents after 1 January 
2020, we used a convex combination of the two 
projections with weight equal to the reciprocal of the 
square root of the elapsed days since 1 January 2020 
to avoid unnatural jump discontinuity in the function 
and to account more for long term trends than for short 
term trends.

Using this strategy, we estimated the number of 
residents across the entire study period (1 January 2012 
to 11 April 2020). We estimated the total person years 
spent at risk each month by summing the estimated 
number of residents each day of the month divided 
by 365.25. Our approach to compute person time 
between 1 January 2012 and 1 January 2020 is about 
equivalent to the established practise of estimating the 
person time for each month as the product between 
the month’s length and the average of the number of 
residents at the beginning and end of the month.

As a sensitivity analysis, we also estimated the 
monthly mortality rates under the hypothetical 
scenario of a large decrease in contributed person 
years during the final months of the study period (that 
is, to reflect many deaths or emigration, or both as a 
result of the pandemic). We projected the number of 
residents after 1 January 2020 in an alternative way by 
prolonging the last segment of the spline regression 
until 20 February 2020. From that day onwards, we 
estimated the number of residents by subtracting one 
tenth of the square of the elapsed number of days since 
20 February from the estimated population size at 20 
February.

We computed monthly all cause mortality rates by 
dividing the number of deaths by the estimated number 
of person years, expressed per 1000 person years. The 
April 2020 mortality rate was computed using data 
only from 1 to 11 April. We additionally compared the 
number of deaths captured by both the ISTAT covid-19 
emergency dataset and the city registration office of 
Nembro from 1 January 2020 to 4 April 2020. Analyses 
were conducted using R version 3.6.0 and RStudio 
version 1.1.456.

Patient and public involvement

No patients were directly involved in this study. After 
the study was conceived, additional data were obtained 
from the mayor of Nembro, and he is interested in the 
wider dissemination of these results.

Results
Between 1 January 2012 and 1 January 2020, the 
monthly number of residents in Nembro ranged from 
11 498 to 11 712 (fig 1). Information on population 
size was available to 1 January 2020, at which time 
the number of residents was 11 505. Thereafter the 
number of residents projected using our approach 
reached 11 525 on 11 April 2020 (fig 1).

Between 1 January 2012 and 11 April 2020, a total 
of 1116 people in Nembro died of all causes. Of these 
deaths, 112 (10.0%) occurred in 2012, 112 (10.0%) in 
2013, 95 (8.5%) in 2014, 119 (10.7%) in 2015, 126 
(11.3%) in 2016, 109 (9.8%) in 2017, 128 (11.5%) in 
2018, 121 (10.8%) in 2019, and 194 (17.4%) in the 
first months of 2020 (until 11 April). Of the 194 deaths 
in the first months of 2020, 151 occurred in March 
alone. Between 21 February and 11 April 2020, a total 
of 166 deaths were recorded among the residents.

Of the biological samples received by the regional 
laboratory between 21 February and 11 April, 218 
people later tested positive for covid-19. Of these 
positive tests, 85 were documented to belong to people 
who had died (last updated 16 April). Overall, the data 
source contained 64 135 confirmed cases of covid-19 
in the Lombardy region; only 2% did not have recorded 
information on location.

Monthly all cause mortality between January 2012 
and February 2020 fluctuated around 10 per 1000 
person years (range 1.0 to 21.5 per 1000 person years) 
(fig 2). In March 2020, monthly all cause mortality 
reached a peak of 154.4 per 1000 person years—the 
corresponding rate for the same month in 2019 was 
14.3 per 1000 person years. In April 2020, based 
on data from the first 11 days, all cause mortality 
decreased to 23.0 per 1000 person years (fig 2).

Results from the sensitivity analysis accounting for 
a potential sudden decrease in the population size 
showed monthly all cause mortality rates of 15.3, 
155.7, and 23.5 per 1000 person years in February, 
March, and April, respectively.

The number of deaths in 2020 began to rapidly 
increase during the week of 23 February, peaked 
during the week of 8 March, and subsequently 
declined until 4 April. Of the 161 people who died 
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during this period, none were aged 14 years or younger 
and 14 (8.7%) were aged between 15 and 64 years. The 
deviation in weekly all cause deaths compared with 
previous years was largely driven by the increase in 
deaths among older people (≥65 years) and men (table 
1). Among those aged 75 years and older, 47 deaths 
were observed during the week of 8 March alone, 33 of 
which were in men.

No differences in weekly death counts were observed 
for 1 January to 4 April 2020 between the ISTAT 
covid-19 emergency dataset and the one used to 
compute mortality rates in our analysis.

Discussion
This study found a steep increase in all cause mortality 
in Nembro in early 2020 compared with the rather 
stable mortality rate observed over the past eight years 
in this city. More Nembro residents died in March 2020 
than in the entire previous year or in any single year 
since 2012, with the all cause mortality rate in that 
month almost 11 times that observed in March 2019. 

After accounting for a potential sudden decrease 
in population size in a sensitivity analysis, this 
deviation was even more pronounced. The increase in 
mortality was mostly driven by an increase in deaths 
of older people (≥65 years), especially men. Since the 
population of Nembro had been relatively stable across 
recent years, we conclude that this rapid increase in 
deaths is attributable to the covid-19 pandemic. Only 
about half of the deaths observed since the pandemic 
onset (21 February to 11 April 2020), however, were 
categorised as confirmed covid-19 deaths.

Strengths and limitations of this study

The information used in our study was obtained from 
various sources. We acknowledge that some of the 
data might be provisional or not fully updated. Given 
the state of emergency and rapid development of 
covid-19, however, this limitation was unavoidable, 
and we did not observe any meaningful mismatches 
between the data sources. The source for confirmed 
covid-19 deaths is not official and does not include 
date of death, but rather the date the laboratory 
received the biological sample. This means the 
number of confirmed covid-19 deaths reported in 
our study is likely to be slightly higher than the 
official number in the same period because we 
included deaths of those who might have died after 
the 11 of April (although their sample was sent to 
the laboratory earlier). Furthermore, we know these 
deceased individuals tested positive for covid-19, but 
we cannot be absolutely certain whether the disease 
was a contributing cause of death. This means the 
difference between covid-19 specific deaths and 
the increase in all cause deaths could be even more 
extreme. The OnData repository we used in our study 
was the only data source available at the municipality 
level.

We did not estimate age-sex specific all cause 
mortality because information on the age-sex structure 
for Nembro was only available yearly, and the last 
update was on the 1 January 2019. Therefore, we 
preferred to avoid unreliable projections of person 
time at risk that would be based on strong, likely 
unreasonable assumptions.
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Fig 1 | Population size of Nembro from 1 January 2012 to 11 April 2020. Actual numbers 
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Comparison with other studies

Our findings corroborate results from a large study by 
the Istituto di studi e ricerche Carlo Cattaneo.25 In that 
investigation encompassing more than 1000 Italian 
cities selected because of an increase in mortality 
compared with previous years, the authors compared 
the overall number of deaths between 21 February 
2020 and 21 March 2020 with the number of deaths 
in the same period averaged over the previous five 
years.25 The study concluded that even under the best 
case scenario, in which all other Italian municipalities 
(about 7000) showed no deviation from the average 
mortality measured in previous years, the number of 
deaths attributable to covid-19 in Italy would still be 
twice as high as the number of confirmed deaths from 
covid-19 reported by the Italian authorities.25 This 
study sheds light on the scale of the problem—that 
many deaths are erroneously not being attributed to 
covid-19 and that many of those who die outside of a 
hospital and have the disease are not being tested.25 
The authors also noticed large increases in mortality 
in regions not considered to be key Italian SARS-CoV-2 
hot spots.25 Another report, issued by the Italian 
Ministry of Health and the Italian National Center for 
Prevention and Control of Disease, about the daily 
surveillance mortality project (SiSMG) involving 18 
major Italian cities, found similar results.8 According 
to this report, the two included Lombardy cities (Milan 
and Brescia) showed a large increase in the number 

of all cause deaths in the period from the beginning 
of the outbreak to 18 March 2020 compared with the 
average number of deaths in the same period across 
the previous five years.

Conclusions and implications

Across Italian cities, all cause mortality has notably 
increased because of the covid-19 pandemic, but this 
increase is not being completely captured by officially 
reported statistics on confirmed covid-19 deaths. 
We believe several factors might have contributed 
to the discrepancy between the burden described 
by the confirmed death counts for covid-19 and that 
described by the increase in all cause mortality.

Firstly, covid-19 related deaths are generally 
counted as such if people test positive for the disease. 
Given the higher case fatality of covid-19 among older 
people with comorbidities, as well as the shortage 
of healthcare resources, many who actually died 
from covid-19 were likely never tested; therefore, the 
cause of death in these people was misclassified. For 
example, a shortage of tests prevented the assessment 
of covid-19 in people with symptoms and confirmed 
contacts in Nembro.26

A second explanation for the mismatch between 
these two death counts could lie in the group who 
did not have covid-19 but experienced other serious 
medical conditions and died from causes indirectly 
related to covid-19. During this period, this group might 

Table 1 | Number of weekly all cause deaths among Nembro residents aged 65 and older between 1 January and 4 April 

during six years (2015-20) by sex and age group according to the ISTAT covid-19 emergency dataset

Week
65-74 years ≥75 years

2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

Women

01/01-11/01 0 0 0 0 0 0 1 1 1 3 1 6

12/01-18/01 1 0 0 1 0 0 5 1 2 2 3 4

19/01-25/01 1 0 0 0 0 1 2 0 3 0 1 2

26/01-01/02 0 0 0 0 0 0 1 0 2 3 2 2

02/02-08/02 0 0 0 1 0 0 0 0 2 0 0 1

09/02-15/02 1 0 0 0 0 0 3 2 1 1 4 2

16/02-22/02 0 1 0 1 0 0 0 0 0 3 1 1

23/02-29/02 0 0 0 0 0 0 2 1 3 1 3 2

01/03-07/03 0 1 0 0 0 2 2 1 1 3 3 16

08/03-14/03 0 1 0 0 1 2 2 1 4 1 1 14

15/03-21/03 0 0 0 1 0 0 1 0 1 0 1 10

22/03-28/03 0 0 1 0 1 0 0 2 2 2 0 12

29/03-04/04 0 0 0 0 1 0 0 2 1 1 2 3

Men

01/01-11/01 2 1 0 1 0 0 0 4 1 4 1 2

12/01-18/01 0 1 0 1 1 0 3 0 1 0 0 1

19/01-25/01 1 0 1 0 0 1 0 0 0 1 0 1

26/01-01/02 0 0 0 0 0 0 1 1 1 0 2 2

02/02-08/02 0 0 0 0 0 1 2 1 0 1 2 1

09/02-15/02 0 0 0 0 0 0 1 1 0 1 1 0

16/02-22/02 1 0 0 0 0 0 0 0 1 0 2 0

23/02-29/02 0 0 0 0 0 0 1 2 1 1 0 5

01/03-07/03 0 0 0 0 0 1 1 1 1 0 1 11

08/03-14/03 0 0 0 0 1 9 0 1 1 0 0 33

15/03-21/03 2 0 0 0 0 8 0 1 1 2 1 10

22/03-28/03 0 0 0 0 1 2 0 1 0 0 0 4

29/03-04/04 1 0 0 0 0 2 1 1 0 1 1 1

Total 10 5 2 6 6 29 29 25 31 31 33 146

ISTAT=Italian National Institute of Statistics.
24
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have experienced restricted access to healthcare owing 
to shortages in capacity, limited human resources 
for such a large patient influx (10% of patients with 
confirmed covid-19 in Italy worked in healthcare27), or 
fear of seeking hospital care during the pandemic. In 
Nembro, signs of the burden on the healthcare system 
and logistical challenges were noticeable.26 A recent 
article describes the challenges and difficulties of the 
provincial healthcare system to provide even basic 
healthcare services.28

Thirdly, the known delay between administering 
and processing the test and the availability of results, 
especially in overwhelmed settings, might have 
exacerbated this difference.

Our results describe the impact of the covid-19 
pandemic on the health of a small community. On 
a larger scale, the consequence of an uncontrolled 
SARS-CoV-2 outbreak in Italy would be the collapse of 
the healthcare system,13 which, in turn, would have a 
substantial negative impact on the health of the entire 
population. We emphasise that measures of lethality 
are hardly interpretable solely as characteristics of the 
disease but also depend on the continuous availability 
and quality of care. The consequences of a pandemic 
are not only limited to covid-19 related deaths but 
rather contribute in an indirect way to the potentially 
avoidable deaths due to extreme triage of limited 
resources in crisis situations.29

Despite being weakened by a substantial 
reduction in public funding during the past decade,6 
the Italian healthcare system’s overall performance 
still ranks high in international comparisons.30 
However, in the face of the unprecedented challenge 
from covid-19, policy makers are only equipped with 
the ability to introduce social distancing measures 
to slow down the spread of the virus and protect 
vulnerable groups and simultaneously strengthen 
the healthcare system to ensure high quality care 
for all patients.31  32 Our results showed a decrease 
in all cause mortality in early April 2020, possibly 
attributable to reduced spread of the virus and 
reduced case fatality. Potential explanations for 
reduced spread of the virus include the implemented 
stringent community isolation measures, the 
promotion of preventive behaviours, as well as a 
growing number of immune people. For the reduced 
case fatality rate, possible contributing factors 
include a smaller pool of vulnerable people as well 
as boosted healthcare capacities from reallocation 
and optimisation of resources.

Our findings imply that the reporting of confirmed 
covid-19 specific deaths represents, at least for some 
Italian regions, a substantial underestimation of 
the actual number of deaths from the disease. As a 
consequence, we believe data on all cause mortality 
should be considered along with traditionally 
reported measures as an important metric to evaluate 
and compare the consequences of the covid-19 
pandemic within and between settings. Although 
all cause mortality can only be interpreted as an 
approximation of the health status of the population 

under study, it is more often systematically collected 
under high quality standards, relies on universally 
accepted classification, and is not influenced by 
testing strategies or shortages of tests. 25 Furthermore, 
this metric captures indirect deaths, such as those 
related to a healthcare system under crisis, yielding 
a more complete picture of the pandemic’s effects 
on population health. As we have outlined, this 
metric has several advantages and overcomes major 
drawbacks of other statistics for quantifying the 
impact of the covid-19 pandemic.
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Epidemiology, Charité –Universitätsmedizin Berlin, Berlin, Germany

These authors contributed equally to this work.
‡ MP and JLR are joint first authors of this work.
* jessica.rohmann@charite.de

Abstract

Background
European guidelines recommend the use of the Systematic COronary Risk Evaluation

(SCORE) to assess 10-year risk of fatal cardiovascular events in people aged 40 to 65. The

SCORE Older Persons (SCORE OP, 5-year and 10-year versions) was recently developed

for people aged 65 or older. We assessed the performance of these risk scores in predicting

fatal cardiovascular events in older persons in Berlin.

Methods and findings
Data from the Berlin Initiative Study (BIS), a prospective, population-based study of older

persons recruited from a German public health insurance company database were used.

1,657 participants aged 70 or older without reported previous myocardial infarction were

included. We assessed calibration by comparing predicted risks to observed (for 5-year ver-

sions, 5y) or projected (for 10-year versions) probabilities. During follow-up (median: 4.8

years), 118 cardiovascular deaths occurred. The calibration assessment of the SCORE OP-

H 5y and SCORE OP-L 5y equations revealed 2.1- and 1.5-fold overestimation. Comparing

10-year versions, the SCORE OP showed better discrimination ability compared to the

SCORE (C-indices of around 0.80 compared to 0.72) and the SCORE for high-risk regions

showed the best calibration (chi-square = 29.68). The SCORE OP overestimated the true

risk; 519 and 677 events were predicted using the low-risk and high-risk region SCORE OP

equations compared to 397 to 399 events projected based on BIS follow-up data (predicted/

actual ratios of 1.3 and 1.7).
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Conclusions
Given the low transportability of the SCORE OP observed in our population, we caution

against its use in routine clinical practice until further information is available to avoid possi-

ble overtreatment among older persons in Berlin.

Introduction
Cardiovascular (CV) diseases are a leading cause of morbidity and are responsible for approxi-

mately 40% of deaths in the European Union[1] and 30% of deaths worldwide[2]. As most

major CV risk factors are modifiable and can be targeted in preventive strategies[3–6], applica-

tion of risk stratification tools remain of increasing importance and is suggested in the major-

ity of CV disease guidelines[7,8].

More than 363 prediction models for CV disease have been developed over the last decades

[9]. Generally, most known are the risk scores developed in the Framingham Heart Study[10–

12]. The Systematic COronary Risk Evaluation (SCORE) was developed in 2003 to predict the

10-year risk of CV disease mortality in European populations using data from twelve European

cohort studies[13]. The original SCORE is recommended for individuals aged 40 to 65 by the

European guidelines on CV disease prevention from the European Society of Cardiology[14],

and has been re-calibrated in various European countries to account for differences in mortal-

ity rates and risk factor distributions[15–18].

Since the majority of risk scores have been developed using data from primarily middle-

aged populations, it remains unknown how well they perform in older populations[19,20].

With steadily increasing life expectancy, the need for valid CV risk assessment tools for older

individuals is becoming more pressing[21,22]. Indeed, fewer than 20% of all fatal CV events

occur between ages 40 and 65 in Europe[23]. Furthermore, since relationships between indi-

vidual risk factors and CV events are known to change with age[19], it seems unlikely that fatal

CV event risk scores based on coefficients estimated from a mostly middle-aged population

provide reliable estimates of the actual probabilities in older persons[20,22].

Based on this rationale, an updated version of SCORE was developed in 2015 to predict the

risk of fatal CV events specifically for persons aged�65 (SCORE Older Persons, SCORE OP)

[22].

Until recently, the SCORE OP had not been externally validated; the newly published study

calls for further validations of this risk tool[24]. Our objective was to assess calibration and dis-

crimination of SCORE OP in a prospective cohort study of individuals aged�70 in Berlin.

Our secondary aim was to compare the 10-year predictive performance of SCORE OP and

SCORE in this cohort.

Methods

Study population

We used data from the ongoing Berlin Initiative Study, a longitudinal, population-based

cohort study of adults aged�70 with biennial follow-up visits. Details of the study design have

been previously described[25]. In brief, starting in November 2009, participants were selected

using age and sex-stratified random sampling from a database of one of the largest German

health insurance companies in the Berlin region (Allgemeine Ortskrankenkasse (AOK) Nor-

dost) that covers about 50% of older persons in the Berlin region. Oversampling was
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Charité – Universitätsmedizin Berlin received an
unrestricted compensation. He further reports
having received honoraria from Lilly, Newsenselab,
and Total for providingmethodological advice,
from Novartis and from Daiichi Sankyo for
providing a lecture on neuroepidemiology and
research methods, and from the BMJ for editorial
services. This does not alter our adherence to
PLOS ONE policies on sharing data and materials.



conducted to increase participation among women and the highest age strata[26]. At the end

of the recruitment in June 2011, a total of 2,069 individuals (52.6% female, mean age 80.4

years) completed baseline assessment at one of 13 clinical centers across Berlin. The response

rate of the random sample was 8.1%, and the distribution of common comorbidities, including

myocardial infarction and stroke, was found to be representative of the Allgemeine Ortskran-

kenkasse Nordost source population[26]. An administrative censorship date of September

30th, 2015 was used to ensure endpoint information completeness. In accordance with the eli-

gibility criteria used to select participants in the development of the original SCORE risk

scores, all participants with follow-up information who self-reported no previous history of

myocardial infarction at baseline were included. Written informed consent was obtained from

all participants prior to recruitment. The Berlin Initiative Study was approved by the ethics

committee of Charité –Universitätsmedizin Berlin, Germany (EA2/009/08).

Risk scores

The following risk scores were selected for external validation:

• SCORE OP-H 5y: European risk score for 5-year fatal CV events among older persons in

high-risk regions[22]

• SCORE OP-L 5y: European risk score for 5-year fatal CV events among older persons in

low-risk regions[22]

• SCORE OP-H: European risk score for 10-year fatal CV events among older persons in

high-risk regions[22]

• SCORE OP-L: European risk score for 10-year fatal CV events among older persons in low-

risk regions[22]

• SCORE-H: European risk score for 10-year fatal CV events among adults in high-risk

regions[13]

• SCORE-L: European risk score for 10-year fatal CV events among adults in low-risk regions

[13]

Since Germany is considered to be between a high- and low-risk region[27], we validated

both versions (for definitions, see [14]).

The published formulas, parameters, and coefficients were used for the computation of the

risk scores. Of the two original parallel SCORE estimation models, we used the simpler version

(with total cholesterol), since no superiority was demonstrated by the model including total

cholesterol to the high-density lipoprotein cholesterol ratio.[13] Additionally, we used the cor-

rected version of the original SCORE formula, which was characterized by a mathematical

inconsistency.[28] In the 2003 publication, the overall risk for fatal CV events (R) was esti-
mated as the sum of two risks; the risk for coronary heart disease death (RCHD) and risk for
non-coronary CV disease death (Rnon-CHD CVD) as follows:

R ¼ RCHD þ Rnon�CHD CVD

Defining the risk of CV mortality in this way is not suitable for participants with high-risk

profiles since the sum of the two specific risks can exceed one. For this reason, we used a sim-

ple correction to estimate the overall risk, assuming cause-specific risk independence:

R ¼ 1� ð1� RCHDÞ � ð1� Rnon�CHD CVDÞ
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This correction was initially proposed by Støvring et al. as the first step in their approach

aiming to account for competing events in the SCORE model.[28]

Since we are validating these scores in an increased risk population due to advanced age, we

have applied this approach to avoid implausible probabilities exceeding 100%.

Risk factors

The following variables used in the models were assessed at baseline during a face-to-face

interview: age as an integer, sex, the mean value of two consecutive blood pressure measure-

ments, HDL and total cholesterol levels (converted from mg/dl to mmol/l dividing by 38.67),

self-reported current smoking status, diabetes mellitus status (as determined by self-reported

use of antidiabetic medication and/or measured HbA1c level>6.5%), and self-reported use of

antihypertensive medication.

Endpoint definition

In the Berlin Initiative Study, information about participant deaths was obtained from several

sources. When no reply to a follow-up invitation letter was received and the participant could

not be reached, the general practitioner on file for the participant was contacted to inquire

about vital status (and date of death, if deceased). Occasionally, participants’ relatives con-

tacted the study team directly about death events. If no information could be obtained from

these sources, AOK Nordost records were used to determine vital status. Berlin Initiative

Study staff additionally obtained records from the Berlin death certificates archive to validate

all deaths, confirm dates, and obtain information on causes of death. Independent of the death

certificate information, the study team attempted to obtain archived medical discharge letters

for all in-hospital deaths as supplemental information to help correctly classify the cause of

death. CV death was defined as death due to fatal myocardial infarction, fatal coronary heart

disease, sudden cardiac death, death due to other cardiac diseases such as heart failure, fatal

cerebrovascular disease (ischemic stroke, subarachnoid hemorrhage, intracerebral hemor-

rhage), and death due to peripheral occlusive arterial disease (complications of an aortic aneu-

rysm, organ ischemia, ischemia). Ambiguous cause of death information were discussed and

final coding decisions were made by two medical doctors without knowledge of individuals’

risk factor profiles. In cases where mortality was confirmed but cause of death could not be

ascertained due to insufficient information, we assumed death by non-CV cause in the pri-

mary analysis.

Statistical analyses

Participants’ baseline risk factors are reported as frequencies and percentages or using means

and standard deviations for categorical and continuous variables. Person-years were calculated

from the date of recruitment to the individual’s death date (as confirmed by a death certifi-

cate), or the date of the last available study visit in cases of loss to follow-up, or the date of

administrative censorship (September 30, 2015).

Associations between the predicted risks from each of the risk estimation systems were

assessed using pairwise Spearman’s rank correlation coefficients. We then computed overall

and CV-specific mortality rates as ratios of the number of observed events to the total amount

of observed person-years with 95% Poisson exact confidence intervals.

For each prognostic model, and for both high- and low-risk region versions, we computed

predicted risks for all individuals. In a second step, we grouped individuals according to deciles

of the predicted risk and assessed calibration for each predicted risk decile group. The “actual”

probability of an event was compared to the mean of the predicted risks in each decile group.
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This comparison was conducted both graphically using a calibration plot and, to allow for

comparability with previous studies, using the Nam-D’Agostino chi-square test[29]. We fur-

ther compared the overall number of “actual” and predicted events across the decile groups to

assess calibration-in-the-large for each risk score.

Given that the Berlin Initiative Study follow-up was shorter than 10 years, we performed

calibration assessment using five years of the observed follow-up data for the SCORE OP risk

equations (SCORE OP-H 5y and SCORE OP-L 5y) as the primary analysis. In this analysis, the

calibration assessment was performed using the Kaplan-Meier estimates as “actual” probabili-

ties. The original SCORE-L and SCORE-H risk equations were unfortunately only reported as

10-year versions. For calibration assessment of the SCORE risk equations, it was therefore nec-

essary to project probabilities of the endpoints beyond the observed follow-up. Specifically,

after creating the predicted risk decile groups, we ranWeibull regression survival models treat-

ing the predicted risk groups as a categorical covariate and the 10-year probabilities for each

decile group projected by the Weibull models were considered “actual” probabilities. In this

secondary analysis, assessment of 10-year calibration was also performed for the SCORE OP

risk equations.

The discrimination ability of each risk score was assessed using the concordance index (C-

index)[30] on the entire observed follow-up.

We computed projected probability estimates and the C-index along with their 95% bias-

corrected and accelerated bootstrapped confidence intervals with 2,000 bootstrap replications.

To check for robustness of our primary results treating unknown causes of death as non-

CV, we re-ran all analyses making the most extreme assumption that all deaths of unknown

cause were of CV nature. Moreover, to confirm that our external validation study findings are

applicable to the general older Berlin population as a whole, we performed an additional sensi-

tivity analysis. All analytical steps described above were repeated in five resampled datasets (by

age and sex strata of the BIS study population), which were generated to create a pseudopopu-

lation exactly representative in terms of size and demographic structure of the 2010 Berlin

population aged 70 or older (data from [31]; see S1 File).

To explore the possible impact on clinical decision making, we applied different “very-

high-risk” thresholds, above which prevention and/or treatment intervention strategies would

be indicated among older persons. Since no such single very-high-risk threshold has been

established, we compared five different hypothetical thresholds (�10%,�15%,�20%,�25%,

and�30%) and calculated the number of very-high-risk persons based on 10-year predicted

risks using the various risk scores. We also computed the percentage of participants classified

as very-high-risk at the various thresholds based on a full Weibull model (with sex, systolic

blood pressure, total cholesterol, HDL cholesterol, smoking status, diabetes and age as covari-

ates and cardiovascular fatal events as the outcome) fitted on BIS data to give a near descrip-

tion of the projected reality at 10 years for our cohort.

All statistical analyses were performed using R v3.4.3 (https://www.R-project.org/) and

RStudio v1.0.153 (https://www.rstudio.com/).

Results
Of the original 2,069 Berlin Initiative Study participants, 412 people who self-reported a his-

tory of myocardial infarction or had missing information on past myocardial infarction, on

one or more risk factors included in the SCORE OP equations, or lacked any follow-up were

excluded (Fig 1). Baseline characteristics of the 1,657 remaining included participants, as well

as mean values for predicted risks estimated by SCORE OP-H 5y, SCORE OP-L 5y, SCORE-H,

SCORE-L, SCORE OP-H, and SCORE OP-L are displayed in Table 1. During the observed
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follow-up period (median: 4.8 years), a total of 324 deaths were recorded, of which 118

(36.4%) were CV deaths. In total, participants contributed 7,370.3 person-years, and the over-

all mortality and CV-specific fatal event rates in the cohort were 44.0 (39.3 to 49.0) and 16.0

(13.3 to 19.2) per 1,000 person-years.

A correlation plot illustrates the distribution of the participants’ predicted probabilities of

the various prognostic models and correlations between the individual scores (S1 Fig in S1

File). As expected, both high-risk and low-risk region pairs from the same models were highly

correlated (Spearman’s rho 0.99–1.00), as well as the 5- and 10-year versions of the SCORE OP

(rho = 0.99–1.00). Overall, we observed moderate correlation between all SCORE and SCORE

OP equations (0.76–0.78).

The calibration of both the SCORE OP-H 5y and the SCORE OP-L 5y equations were

assessed using observed probabilities (Fig 2). In total, 302 fatal CV events were predicted by

the SCORE OP-H 5y while 142 fatal CV events were estimated without accounting for compet-

ing risks, showing an overestimation (predicted/actual ratio = 2.13). This score systematically

overestimated the true risk (chi-square = 139.2, Fig 2A and 2B). The SCORE OP-L 5y also

showed overestimation, but to a lesser extent, with 215 predicted compared to 142 observed

events (ratio = 1.51, chi-square = 39.7, Fig 2C and 2D). Again, a systematic overestimation was

observed across most of the risk score decile groups.

Fig 1. Flow chart showing berlin initiative study participant inclusion/exclusion criteria for this external
validation study.

https://doi.org/10.1371/journal.pone.0231097.g001
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For the secondary analysis, after grouping individuals according to deciles of predicted risk,

we ran Weibull regression survival models. Weibull regression assumptions were fulfilled in

all models (see diagnostic plots; S2 Fig in S1 File). Actual and predicted SCORE-H probabili-

ties are displayed in Fig 3A. The corresponding calibration plot is shown in Fig 3B. Globally,

SCORE-H predicted 372 expected events over ten years, and 382 actual events were projected

(ratio = 0.97, chi-square = 29.7). The discrimination ability of SCORE-H as measured by the

C-index was 0.72 (0.67 to 0.76).

The corresponding probabilities for SCORE-L are illustrated in Fig 3C. In eight decile

groups, predicted probabilities were underestimated (Fig 3D). In total, the number of actual

events projected was 384 while only 258 events were expected based on the SCORE-L (pre-

dicted/actual ratio = 0.67, chi-square = 117.6). The C-index for discrimination was found to be

0.72 (0.67 to 0.77).

Compared to SCORE-H, the 10-year SCORE OP-H equation designed for older persons

had a higher discrimination ability in our study population (C-index = 0.79, 0.75 to 0.83). How-

ever, the SCORE OP-H overestimated risk in each decile group (Fig 4A; chi-square = 327.9).

This systematic overestimation is visible in the calibration plot (Fig 4B). The SCORE OP-H pre-

dicted 677 events, while only 399 actual events were projected, a considerable overestimation

(ratio = 1.70). Similarly, the 10-year version of the SCORE OP-L, despite its good discrimina-

tion ability (C-index = 0.80, 0.75 to 0.83), overestimated the risk for fatal CV events in eight dec-

ile groups (see Fig 4C and 4D). As illustrated by the calibration plot, this overestimation by

SCORE OP-L was to a lesser extent than for SCORE OP-H (chi-square = 76.3). In total, SCORE

OP-L predicted 519 events compared with 397 projected actual events (ratio = 1.31).

We have provided a summary of all the results previously described in Table 2.

To determine the impact of potential misclassification due to 44 fatalities with unknown

cause of death information, we performed all analyses again under a ‘worst-case’ scenario

assuming that all 44 individuals died due to CV reasons. In this sensitivity analysis, the

SCORE-H still underestimated risk (predicted/actual ratio = 0.88), and the SCORE OP-L

Table 1. Baseline characteristics of the study populationa.

Total (n = 1,657) Males (n = 734) Females (n = 923)

Mean age (SD), years 79.7 (6.7) 80.2 (6.7) 79.2 (6.6)

Current smoking, N (%) 86 (5.2%) 47 (6.4%) 39 (4.2%)

Diabetes, N (%) 414 (25.0%) 200 (27.2%) 214 (23.2%)

Hypertensive treatment, N (%) 1254 (75.9%) 551 (75.3%) 703 (76.3%)

Cholesterol (SD), mmol/l 5.6 (1.2) 5.1 (1.1) 5.9 (1.2)

HDL cholesterol (SD), mmol/l 1.5 (0.5) 1.3 (0.4) 1.7 (0.4)

Mean systolic blood pressure, mmHg (SD) 147.0 (22.8) 147.3 (22.8) 146.7 (22.7)

Mean diastolic blood pressure, mmHg (SD) 82.0 (14.5) 82.4 (14.6) 81.6 (14.4)

Risk scoresb

SCORE OP-H 5y risk (SD) 0.18 (0.17) 0.20 (0.16) 0.17 (0.17)

SCORE OP-L 5y risk (SD) 0.13 (0.13) 0.16 (0.14) 0.10 (0.12)

SCORE-H risk (SD) 0.22 (0.15) 0.27 (0.15) 0.19 (0.13)

SCORE-L risk (SD) 0.16 (0.11) 0.17 (0.11) 0.14 (0.11)

SCORE OP-H risk (SD) 0.41 (0.27) 0.45 (0.25) 0.37 (0.27)

SCORE OP-L risk (SD) 0.31 (0.24) 0.36 (0.23) 0.28 (0.24)

aAll participants were enrolled between 2009–2011.
bSCORE OP[22] and SCORE[13] risk scores are described in detail in the Methods section. H and L indicate high- and low- cardiovascular risk regions. Unless

otherwise specified, 10-year risk equations were used. 5y indicates 5-year risk equations.

https://doi.org/10.1371/journal.pone.0231097.t001
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overestimated risk (ratio = 1.22) (S1 Table in S1 File). Consistent results were obtained upon

repeating all analyses in the pseudopopulation dataset with the same size and age-sex structure

of the 2010 Berlin older population, obtained by resampling (see S1 File).

We found that using SCORE OP compared to SCORE led to more individuals classified as

“very-high-risk” at hypothetical thresholds beyond 10% (Table 3). For example, using a 20%

Fig 2. Panel a) shows observed Kaplan-Meier probabilities to be free of fatal cardiovascular (CV) events at a given time point grouped by deciles
of risk as predicted by SCORE OP-H 5y (5-year risk equation for high-risk regions). The right y-axis scale shows the probability of the
complementary event: occurrence of a fatal CV event before a given time point in the counterfactual scenario of no competing events (if we
assume independent competing risks). The legend indicates the average predicted risk of having a fatal CV event within each decile group of risk.
Panel b) shows the calibration plot for SCORE OP-H 5y comparing the predicted mean risk (corresponding to ones in the legend of Panel a)) to
the actual fatal CV event probabilities within five years (corresponding to the intersection between the curves and the right Y-axis in Panel a)) for
each decile group. We report 95% confidence intervals. Panels c) and d) show the results as described in Panels a) and b) for SCORE OP-L 5y
(5-year risk equation for low-risk regions).

https://doi.org/10.1371/journal.pone.0231097.g002
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cut-off, which would be reasonable given the European Society of Cardiology’s recommenda-

tion to select a threshold higher than 10% in older persons[14], results in the following per-

centage of participants being classified as “very-high-risk” per score: SCORE-H: 45.9%

SCORE-L 25.0%, SCORE OP-H 71.2%, and SCORE OP-L 56.5%. According to the full Wei-

bull model fitted on BIS data, 40.9% of BIS participants should be classified as “very-high-

risk”.

Fig 3. Panel a) shows both observed (Kaplan-Meier, dotted lines) and projected (Weibull regression model, solid lines) probabilities to be free of fatal
cardiovascular (CV) events at a given time point grouped by deciles of risk as predicted by SCORE-H (for high-risk regions). The right y-axis scale
shows the probability of the complementary event: occurrence of a fatal CV event before a given time point in the counterfactual scenario of no
competing events (if we assume independent competing risks). The legend indicates the average predicted risk of having a fatal CV event within each
decile group of risk. Panel b) shows the calibration plot for SCORE-H comparing the predicted mean risk (corresponding to ones in the legend of Panel
a)) to the actual fatal CV event probabilities within ten years (corresponding to the intersection between the curves and the right Y-axis in Panel a)) for
each decile group. We report 95% bias-corrected and accelerated bootstrapped confidence intervals. Panels c) and d) show the results as described in
Panels a) and b) for SCORE-L (for low-risk regions).

https://doi.org/10.1371/journal.pone.0231097.g003
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To further explore differences in performance of the two score systems among older per-

sons, we compared fatal CV event risk predicted by the two risk scores for six hypothetical risk

profiles based on risk factors. We created high-, medium-, and low-risk examples for females

and males across the entire age spectrum from 60 to 100 years (see Fig 5). We found that

SCORE OP predicted higher risks compared to SCORE in female individuals aged�75 and in

male individuals aged�78.

Fig 4. Panel a) shows both observed (Kaplan-Meier, dotted lines) and projected (Weibull regression model, solid lines) probabilities to be free of
fatal cardiovascular (CV) events at a given time point grouped by deciles of risk as predicted by SCORE OP-H (for high-risk regions). The right y-
axis scale shows the probability of the complementary event: occurrence of a fatal CV event before a given time point in the counterfactual scenario
of no competing events (if we assume independent competing risks). The legend indicates the average predicted risk of having a fatal CV event
within each decile group of risk. Panel b) shows the calibration plot for SCORE OP-H comparing the predicted mean risk (corresponding to ones
in the legend of Panel a)) to the actual fatal CV event probabilities within ten years (corresponding to the intersection between the curves and the
right Y-axis in Panel a)) for each decile group. We report 95% bias-corrected and accelerated bootstrapped confidence intervals. Panels c) and d)
show the results as described in Panels a) and b) for SCOREOP-L (for low-risk regions).

https://doi.org/10.1371/journal.pone.0231097.g004
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Discussion
In this prospective, population-based study of Berlin older individuals, the SCORE OP 5y sub-

stantially overestimated the true risk of fatal CV events. In the 10-year comparison, interest-

ingly, the SCORE equation recommended for persons aged from 40 to 65, showed better

Table 2. Risk scores: Measures of validity.

Risk scorea Predicted number of fatal
cardiovascular events

Actual number of fatal
cardiovascular eventsb

Predicted/ Actual
ratio

Nam-D’Agostino chi-square
(p-value)

C-indexc (95%
CI)

SCORE
OP

0.79

high-risk (0.75 to 0.83)

Regions

SCORE 302 142 2.13 139.16

OP-H 5y (p<0.001)

SCORE 677 399 1.70 327.9

OP-H (p<0.001)

SCORE
OP

0.80

low-risk (0.75 to 0.83)

Regions

SCORE 215 142 1.51 39.68

OP-L 5y (p<0.001)

SCORE 519 397 1.31 76.29

OP-L (p<0.001)

SCORE-H 372 382 0.97 29.68 0.72

(p = 0.001) (0.67 to 0.76)

SCORE-L 258 384 0.67 117.63 0.72

(p<0.001) (0.67 to 0.77)

aSCORE OP[22] and SCORE[13] systems have been previously described elsewhere. H and L indicate high- and low- cardiovascular risk regions. 5y indicates 5-year risk

equations. All other scores listed are 10-year versions.
bWeibull regression model projections beyond the observed follow-up are reported for 10-year risk scores, leading to small differences in the number of actual events.

5-year risk scores use observed Berlin Initiative Study data only using the Kaplan-Meier estimator.
cRisk score discrimination capability was assessed using the entire observed follow-up data.

https://doi.org/10.1371/journal.pone.0231097.t002

Table 3. Percentage of berlin initiative study participants classified as very-high-riska based on various hypothetical thresholds of cardiovascular mortality pre-
dicted risk.

Prognostic modelb Predicted 10-year risk threshold

�10% �15% �20% �25% �30%

SCORE-H 80.0% 62.8% 45.9% 33.2% 23.5%

SCORE-L 60.9% 39.4% 25.0% 16.3% 10.4%

SCORE OP-H 91.4% 80.4% 71.2% 62.8% 55.8%

SCORE OP-L 79.9% 67.2% 56.5% 47.6% 40.7%

Full Weibull model fitted on BIS data 58.1% 48.2% 40.9% 33.7% 28.7%

aIn this hypothetical example, only individuals with a predicted risk higher than the threshold are considered very-high-risk persons. This simplification is only intended

to illustrate possible clinical implications of the use of prognostic tools.
bSCORE[13] and SCORE OP[22] risk scores have been previously described elsewhere. H and L indicate high- and low- cardiovascular risk regions. The full Weibull

model fitted on BIS data includes sex, systolic blood pressure, total cholesterol, HDL cholesterol, smoking status, diabetes and age as covariates and cardiovascular fatal

events as the outcome to give a near description of the projected reality at 10 years for our cohort.

https://doi.org/10.1371/journal.pone.0231097.t003
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calibration than the SCORE OP, developed specifically for persons aged from 65 to 80[22].

The SCORE OP did, however, demonstrate slightly superior discrimination capabilities as

assessed by the C-index, likely attributable to the higher number of included risk factors.

Because the prevalence of CV risk factors and their estimated effects on CV outcomes are

known to change with increasing age[20,32], the SCORE OP was developed to correct for a

suspected overestimation of fatal CV event risk as predicted by the original SCORE in persons

aged�65[22]. The SCORE development dataset was comprised largely of middle-aged indi-

viduals (only three cohorts out of 12 included participants aged�70, and no cohort included

individuals aged>80). Because of this, it was hypothesized that the estimated prediction

model beta coefficients were inappropriately large in magnitude, likely overemphasizing the

contribution of these risk factors to the predicted risk in older persons[20,22,32,33]. Since the

Fig 5. We compared SCORE-L, SCORE-H, SCOREOP-H and SCOREOP-L predicted 10-year risks for six risk profiles; high-,
medium- and low-risk for females and males. The high-risk profile was constructed using data from a hypothetical diabetic, current
smoker with a systolic blood pressure of 180 mmHg, total cholesterol level of 8 mmol/l, and HDL cholesterol level of 1 mmol/l. The
medium-risk profile was created using mean values for all variables based on the baseline characteristics of Berlin Initiative Study
participants (see Table 1). The low-risk profile was constructed using data from a hypothetical non-diabetic, current non-smoker with a
systolic blood pressure of 120 mmHg, total cholesterol level of 4 mmol/l, and HDL cholesterol level of 2 mmol/l. The high- and low-risk
reference values for systolic blood pressure and total cholesterol were taken from the minimum and maximum values reported in the
SCORE chart.

https://doi.org/10.1371/journal.pone.0231097.g005
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levels of traditional CV risk factors are known to be elevated in older persons, the use of inap-

propriately large coefficients for this population was expected to result in substantial overesti-

mation of the true fatal CV event risk using the SCORE[22].

The SCORE OP is based on re-estimated beta coefficients using data from people aged�65

also including additional parameters (diabetes and HDL) in an attempt to correct the expected

overestimation. Based on this rationale, the use of SCORE OP is currently suggested as an

alternative by the European Society of Cardiology and European Society of Hypertension

guidelines for the management of arterial hypertension in older individuals (aged�65)[34].

The idea that the SCORE gives higher estimates of risk compared to the SCORE OP among

older persons was reinforced by findings from a cross-sectional study in Spain[35,36] and the

charts comparison presented in the SCORE OP development paper (p.8)[22]. However, these

two comparisons were based solely on the 65–69 age group. No attempt was made to compare

predictions across all ages 65 and above.
In our cohort comprised of older persons, we found that SCORE OP yielded higher risk

estimates than SCORE (with mathematical correction). The same result was found in the only

published external validation of the SCORE OP[24]. While the authors attributed this incon-

sistency with the previous cross-sectional study[35,36] to a difference in the methods used, we

think it may have arisen because of a difference in age composition of the participants. Upon

comparing the scores designed for low-risk regions, we confirm that in the age group 65–68,

the SCORE-L yields higher risk estimates than the SCORE OP-L for medium- and high-risk

individuals (see Fig 5). However, this is not true for any of the risk profiles in individuals aged

�70; in these individuals, the risk estimated by SCORE OP-L consistently exceeds that of

SCORE-L. We observed a similar behavior upon comparing the high-risk region risk scores

(Fig 5).

Moreover, we found a lower transportability of the SCORE OP compared to the original

SCORE. This is likely explained by a difference in the distribution of unmeasured risk factors

and baseline CV fatal risk in our cohort compared to the SCORE OP development dataset.

The SCORE OP development dataset was composed of 85% individuals from Norway and

included no German cohorts, while the SCORE development dataset included a German

cohort and a balanced distribution of individuals from several European countries. Differences

in the definition of CV risk factors included in the models or in the true underlying hazard

ratios may have led to the unsuitability of the SCORE OP coefficients. For example, in the

SCORE OP development dataset, included cohort prevalences of diabetes mellitus ranged

from 6% to 7% in females and 4% to 7% in males[22]. These prevalences are considerably

lower than the diabetes mellitus prevalences observed in the Berlin Initiative Study (23% in

females and 27% in males, which align with German prevalence figures among older persons

[37]) and it is likely a difference in the definition of diabetes contributed to the observed low

transportability of the SCORE OP.

We found the best performing risk score among older persons in Berlin was the SCORE-H

developed for high-risk regions despite that Germany’s fatal CV risk is considered to be

between that of high- and low-risk regions, with a tendency towards the latter[27]. The fact

that the SCORE-L seems more appropriate in middle-aged persons while the SCORE-H seems

better suited among older persons suggests that in the Berlin population, the observed differ-

ence in risk prediction is likely explained by differences in baseline survivorship functions

(determined by age, sex, unmeasured risk factors) of these age groups rather than by differ-

ences in the coefficients of classical risk factors such as cholesterol, blood pressure and smok-

ing. In fact, SCORE developers used the same coefficients in both regional versions.

In general, the performance of the SCORE equations was surprisingly good, especially con-

sidering that this risk score was developed in 2003 using data from cohort studies with

PLOS ONE Performance of CVmortality risk scores in older persons: External validation of the SCOREOP and appraisal

PLOSONE | https://doi.org/10.1371/journal.pone.0231097 April 9, 2020 13 / 18



recruitment periods between 1967 and 1991 and that the incidence and treatment strategies

for CV diseases changed substantially over the last decades[38].

Recently, the SCORE OP was subjected to external validation for the first time in a cohort

of 6,590 older individuals aged between 65 and 79 living in Norfolk, UK[24]. Their results

about the transportability of the SCORE OP and SCORE among older persons were divergent

compared to ours. In this UK population, the SCORE OP showed “excellent calibration”, per-

forming better than the SCORE, despite showing low discrimination ability[24]. Interestingly,

in this UK cohort, diabetes prevalence was extremely low, around 3%[24], likely because this

information was only self-reported. This observation provides additional support for our

aforementioned argument that the definition of diabetes plays a crucial role in the transport-

ability of the SCORE OP. Regional differences and the age of the cohort, overall younger than

our study participants, may also have contributed to the discrepancies.

Finally, the SCORE and SCORE-OP were developed without accounting for possible com-

peting events, thus, our calibration used a consistent approach; neither the Weibull model pro-

jections nor the Kaplan-Meier estimates accounted for competing events. We acknowledge,

however, that competing risks do pose a large problem for practical use among older persons,

in whom competing fatal events are common. For this reason, methods have been suggested

for the development of local, updated, recalibrated scores that can be used to inform regional

risk prediction accounting for mortality due to other causes[28].

Study strengths and limitations

Strengths include the prospective design, population-based setting, and availability of compre-

hensive health-related information, providing unique insights into the health of the very old, a

population often excluded from larger studies. Death information is considered to be complete

and was obtained from the Berlin death certificates archive and supplemented with informa-

tion from medical records. Specific cause of death information was consistently extracted

when available. Furthermore, a total of 118 fatal CV endpoints were recorded during observed

follow-up, exceeding the minimum amount needed to properly validate a 10-year prognostic

model over the entire time span (at least 100)[39].

Some limitations should be considered when interpreting our findings. First, we compared

predicted probabilities to projected ones since the Berlin Initiative Study follow-up data were

available for less than 10 years. However, the Weibull diagnostic plots indicate fulfillment of

the assumptions of all projection models, and our analyses predicting 5-year risk using

observed data were consistent with the findings using 10-year projected probabilities and thus

confirm our results. A minor drawback to our approach is that the number of “actual” events

is not constant across calibration assessments because it depends on decile groupings of partic-

ipants, which differed for each risk score. However, these “actual” event numbers did not differ

substantially (range: 382 to 399).

Second, the reliability of cause of death information on death certificates is known to be

error-prone, especially among older persons. However, we believe this potential misclassifica-

tion is similar for most population-based settings and was also present in the risk score devel-

opment studies[22].The impact of unknown or unavailable cause of death information as

demonstrated by our “worst-case” sensitivity analysis was negligible.

Furthermore, all of the original SCORE endpoints are well-represented in our definition,

with the exception of non-aortic aneurysms, which are very rare events.

Finally, the exclusion of subjects with previous history of myocardial infarction was based

on self-reported information. However, the self-reported nature of this information in our

study is unlikely to be problematic, since this exclusion criterion was introduced during the
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SCORE development only to ensure overall CV health in the considered sample and not for

the purpose of excluding participants not at risk for the outcome.

Nonetheless, we suggest against excluding people with a predefined CV event from future

prognostic models developed to predict CV mortality risk, as this limits prediction score

usability. This is a particularly important consideration among older persons, in whom preva-

lent non-fatal CV events are common.

Implications and suggestions for future research

This external validation study shows that the SCORE OP overestimates CV mortality risk

among Berlin older persons, which ultimately leads to the classification of more individuals to

higher levels of CV mortality risk at most hypothetical very-high-risk thresholds, above which

intervention strategies would be indicated. We believe our results may have important impli-

cations since overestimation of risk in these individuals may lead to overtreatment in a poten-

tially vulnerable population already prone to polypharmacy[40], which is known to lead to

adverse drug events or interactions and increase health care costs[41]. Our results underscore

the importance of external validation of prediction tools before clinical use. Mass medicaliza-

tion may result from an overestimation due to lack of transportability of these tools or from

setting too low of a risk threshold[42]. This potential danger is illustrated by the higher num-

ber of BIS participants who would be classified as very-high-risk for 10-year fatal CV risk

according to the SCORE OP compared to the reality.

In our external validation study, the original SCORE developed for high-risk regions per-

formed best in older persons living in Berlin. Our findings are very different from the ones

obtained in the first SCORE OP external validation study conducted among older adults in the

UK; however, both studies do not support the use of SCORE OP in clinical practice. Therefore,

the challenge of finding a valid tool for profiling risk among older European individuals may

not yet be solved.

Supporting information
S1 File.

(PDF)

Acknowledgments
We are indebted to the participants in the Berlin Initiative Study for their commitment and

cooperation and to the entire Study staff for their expertise and assistance. We also thank the

health insurance fund AOK Nordost-Die Gesundheitskasse for its continued cooperation and

technical support of the Berlin Initiative Study. We are grateful to Dr. Patrick Larscheid, direc-

tor of the Berlin death certificates archive, and his colleagues for their support.

Author Contributions
Conceptualization:Marco Piccininni, Jessica L. Rohmann, Giancarlo Logroscino, Tobias

Kurth.

Data curation: Dörte Huscher, Nina Mielke, Natalie Ebert, Elke Schäffner.
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13. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk
of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003; 24: 987–1003. https://
doi.org/10.1016/s0195-668x(03)00114-3 PMID: 12788299

14. Authors/Task Force Members:, Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, et al. 2016 Euro-
pean Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of

PLOS ONE Performance of CVmortality risk scores in older persons: External validation of the SCOREOP and appraisal

PLOSONE | https://doi.org/10.1371/journal.pone.0231097 April 9, 2020 16 / 18



the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clini-
cal Practice (constituted by representatives of 10 societies and by invited experts) Developed with the
special contribution of the European Association for Cardiovascular Prevention & Rehabilitation
(EACPR). Atherosclerosis. 2016; 252: 207–274. https://doi.org/10.1016/j.atherosclerosis.2016.05.037
PMID: 27664503

15. Panagiotakos DB, Fitzgerald AP, Pitsavos C, Pipilis A, Graham I, Stefanadis C. Statistical modelling of
10-year fatal cardiovascular disease risk in Greece: the HellenicSCORE (a calibration of the ESC
SCORE project). Hellenic J Cardiol. 2007; 48: 55–63. PMID: 17489342

16. Marques-Vidal P, Rodondi N, Bochud M, Pécoud A, Hayoz D, Paccaud F, et al. Predictive accuracy
and usefulness of calibration of the ESC SCORE in Switzerland. Eur J Cardiovasc Prev Rehabil. 2008;
15: 402–408. https://doi.org/10.1097/HJR.0b013e3282fb040f PMID: 18677163

17. van Dis I, Kromhout D, Geleijnse JM, Boer JMA, VerschurenWMM. Evaluation of cardiovascular risk
predicted by different SCORE equations: the Netherlands as an example. Eur J Cardiovasc Prev Reha-
bil. 2010; 17: 244–249. https://doi.org/10.1097/HJR.0b013e328337cca2 PMID: 20195155

18. De Bacquer D, De Backer G. Predictive ability of the SCORE Belgium risk chart for cardiovascular mor-
tality. Int J Cardiol. 2010; 143: 385–390. https://doi.org/10.1016/j.ijcard.2009.03.101 PMID: 19386372

19. Rodondi N, Locatelli I, Aujesky D, Butler J, Vittinghoff E, Simonsick E, et al. Framingham risk score and
alternatives for prediction of coronary heart disease in older adults. PLoS One. 2012; 7: e34287. https://
doi.org/10.1371/journal.pone.0034287 PMID: 22470551

20. Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of car-
diovascular risk: a review for clinicians. J Am Coll Cardiol. 2009; 54: 1209–1227. https://doi.org/10.
1016/j.jacc.2009.07.020 PMID: 19778661

21. Koller MT, Steyerberg EW,Wolbers M, Stijnen T, Bucher HC, Hunink MGM, et al. Validity of the Fra-
mingham point scores in the elderly: results from the Rotterdam study. AmHeart J. 2007; 154: 87–93.
https://doi.org/10.1016/j.ahj.2007.03.022 PMID: 17584559

22. Cooney MT, Selmer R, Lindman A, Tverdal A, Menotti A, Thomsen T, et al. Cardiovascular risk estima-
tion in older persons: SCOREOP. Eur J Prev Cardiol. 2016; 23: 1093–1103. https://doi.org/10.1177/
2047487315588390 PMID: 26040999

23. MortensenMB, Afzal S, Nordestgaard BG, Falk E. The high-density lipoprotein-adjusted SCORE
model worsens SCORE-based risk classification in a contemporary population of 30 824 Europeans:
the Copenhagen General Population Study. Eur Heart J. 2015; 36: 2446–2453. https://doi.org/10.1093/
eurheartj/ehv251 PMID: 26082084

24. Verweij L, Peters RJG, Scholte Op ReimerWJM, Boekholdt SM, Luben RM,WarehamNJ, et al. Valida-
tion of the Systematic COronary Risk Evaluation—Older Persons (SCORE-OP) in the EPIC-Norfolk
prospective population study. Int J Cardiol. 2019; 293: 226–230. https://doi.org/10.1016/j.ijcard.2019.
07.020 PMID: 31324398

25. Schaeffner ES, van der Giet M, Gaedeke J, Tölle M, Ebert N, KuhlmannMK, et al. The Berlin initiative
study: the methodology of exploring kidney function in the elderly by combining a longitudinal and
cross-sectional approach. Eur J Epidemiol. 2010; 25: 203–210. https://doi.org/10.1007/s10654-010-
9424-x PMID: 20094758

26. Ebert N, Jakob O, Gaedeke J, van der Giet M, Kuhlmann MK, Martus P, et al. Prevalence of reduced
kidney function and albuminuria in older adults: the Berlin Initiative Study. Nephrol Dial Transplant.
2017; 32: 997–1005. https://doi.org/10.1093/ndt/gfw079 PMID: 27190381
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Abstract

Background: In epidemiology, causal inference and prediction modeling methodologies have been historically
distinct. Directed Acyclic Graphs (DAGs) are used to model a priori causal assumptions and inform variable selection
strategies for causal questions. Although tools originally designed for prediction are finding applications in causal
inference, the counterpart has remained largely unexplored. The aim of this theoretical and simulation-based study
is to assess the potential benefit of using DAGs in clinical risk prediction modeling.

Methods: We explore how incorporating knowledge about the underlying causal structure can provide insights
about the transportability of diagnostic clinical risk prediction models to different settings. We further probe
whether causal knowledge can be used to improve predictor selection in clinical risk prediction models.

Results: A single-predictor model in the causal direction is likely to have better transportability than one in the
anticausal direction in some scenarios. We empirically show that the Markov Blanket, the set of variables including
the parents, children, and parents of the children of the outcome node in a DAG, is the optimal set of predictors
for that outcome.

Conclusions: Our findings provide a theoretical basis for the intuition that a diagnostic clinical risk prediction
model including causes as predictors is likely to be more transportable. Furthermore, using DAGs to identify Markov
Blanket variables may be a useful, efficient strategy to select predictors in clinical risk prediction models if strong
knowledge of the underlying causal structure exists or can be learned.

Keywords: Causality, Clinical risk prediction, Prediction models, Markov blanket, Directed acyclic graph,
Transportability, Predictor selection

Background
In modern epidemiology, prediction modeling and
causal inference are generally considered separate
branches with unique sets of methods and aims. How-
ever, recently, the emerging field of “causal learning” or
“causal discovery” has led to the introduction of predic-
tion modelling and machine learning techniques as tools
to generate causal structures based on data-driven pro-
cedures [1]. Despite some specific implementations [2],
movement in the other direction has been less explored;

namely, the application of causal inference principles
and graph theory in clinical risk prediction modeling
strategies.
Diagrams and graphs are intuitive, visual tools used to

inform analytic methods to answer causal questions [3].
The increasing use of causal graphs and the need for au-
tomated procedures to assess causal effects given the
combination of previous structural knowledge and new
data led to the development of a compact, formal theory
free of parametric assumptions to transparently model
causal relationships [3]. Directed Acyclic Graphs (DAGs)
are used to rigorously map all a priori assumptions sur-
rounding a causal question of interest [3] and to graph-
ically describe the underlying data generating process. In
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DAGs, each node represents a random variable, and di-
rected causal paths are represented by arrows. The
causal graph structure thus provides qualitative informa-
tion about the conditional independencies of the vari-
ables of interest. DAGs are used as a tool in causal
inference to illustrate potential sources of confounding
and selection bias and ultimately identify suitable strat-
egies to address them [3, 4]. We assume the reader is fa-
miliar with DAGs; for those not yet familiar, several
accessible introductions have been published elsewhere
[3, 5].
The aim of this work is to investigate the potential

benefits of using DAGs and causal thinking in clinical
risk prediction problems. Specifically, we describe the
use of causal knowledge in assessing transportability and
selecting predictors for a clinical risk prediction model.

Methods
Transportability and the principle of independent
mechanisms
A causal concept that could be useful in clinical risk pre-
diction modeling is the principle of independent mecha-
nisms [1]. This fundamental assumption was formalized
to justify the inference of causal structure from observed
data [1, 6] and was later suggested as a useful hypothesis
to drive machine learning-based prediction approaches
[7].
This principle of independent mechanisms states that

the “causal generative process of a system’s variables is
composed of autonomous modules that do not inform
or influence each other” [1]. This means that a causal
process can be interpreted as a chain of independent
mechanisms, in which each causal mechanism takes the
state output from the previous mechanism as input and
“feeds” the next mechanism with its own state output.
Each causal mechanism on the chain can be conceptual-
ized as a physical mechanism invariant to the input it re-
ceives [1]. The idea of the autonomy of the mechanisms
is actually more intuitive than it seems. In fact, it is how
we justify all clinical interventions: we assume that artifi-
cially changing one mechanism or its input will not
affect any of the other mechanisms [1].
Let’s consider two variables with an unconfounded

causal relationship. For simplicity, we will call these two
variables “Cause” and “Effect”. The joint probability dis-
tribution of these two variables ℙ(Cause,Effect) can be
factorized in two ways [1, 7]:

ℙ Cause; Effectð Þ ¼ ℙ EffectjCauseð Þℙ Causeð Þ ¼ ℙ CausejEffectð Þℙ Effectð Þ

The principle of independent mechanisms states that
the marginal distribution of the variable Cause,
ℙ(Cause), and the conditional distribution of the variable
Effect on the variable Cause, ℙ(Effect|Cause), contain no

information about each other [1, 7]. Indeed, ℙ(Effect|-
Cause) is the distribution of the variable Effect for each
given value of the variable Cause. It represents the phys-
ical mechanism that transforms the input (Cause) into
an output (Effect), while ℙ(Cause) represents the state of
the input. Under the principle of independent mecha-
nisms, ℙ(Cause) and ℙ(Effect|Cause) change independ-
ently of each other across different joint distributions
[1].
This independence constraint in the first factorization

induces a dependency between the conditional distribu-
tion of Cause on Effect, ℙ(Cause|Effect), and the mar-
ginal distribution of the Effect, ℙ(Effect), shown in the
second mathematical factorization in the anticausal dir-
ection [1, 7]. Therefore, ℙ(Effect) and ℙ(Cause|Effect)
often change in a dependent way across different joint
distributions [1]. Since this concept of independence in-
volves mechanisms rather than variables, it cannot be
simply defined, tested, or quantified like the concept of
statistical independence in probability theory [1].
In this work, we present two hypothetical, simplified

clinical examples from the field of neurodegenerative dis-
ease to illustrate the consequences of the principle of in-
dependent mechanisms in the context of diagnostic
clinical risk prediction models. Specifically, we describe
the transportability of two clinical risk prediction models
for Alzheimer’s disease diagnosis using different predic-
tors. In the first example, the disease is the effect of the
predictor (allele APOE ε4 status, which is a known cause
of Alzheimer’s disease), while in the second example, the
disease is the cause of the predictor (concentration of tau
protein in cerebrospinal fluid, which is described as an ef-
fect of the Alzheimer’s disease pathological process).

Predictor selection and the Markov blanket
There is another causal concept that may be useful for
the first and arguably most important step in building
clinical risk prediction models: predictor selection. Here,
we focus on the main challenge of selecting the smallest
possible subset of all available variables that provide
enough information to predict the outcome of interest
with good validity in terms of calibration.
There are many well-known reasons to limit the num-

ber of predictors used to build a risk prediction model:
(i) to reduce problems due to the high number of vari-
ables in the model, thereby increasing performance, (ii)
to reduce the costs, time and effort associated with data
collection and storage, model development or training,
(iii) to enable easier use of the model in different set-
tings, and (iv) to increase the interpretability of the
mechanisms behind the generation of the probability es-
timates [8, 9]. The last reason is particularly important
in the context of clinical risk prediction models. Indeed,
medical doctors are reluctant to use prediction models
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without a certain degree of interpretability [10], since
the output probabilities are used to support clinical deci-
sions about treatments and prevention strategies.
Intuitively, the predictor selection problem can be

interpreted as how to choose the smallest subset of vari-
ables excluding all variables that do not provide add-
itional information on the outcome of interest.
By operationalizing the lack of additional information

using the notion of conditional independence [11], the
entire problem of predictor selection is analogous to
identifying the so-called “Markov Blanket” of the out-
come variable.
We define Y as the random variable for the outcome

of interest and X as the set of all available candidate pre-
dictor variables of Y. We assume that X is a superset of
the variables relevant to the causal processes in which Y
is involved. The Markov Blanket of Y, MB(Y), is the
minimal subset of X, conditioned on which, all other
variables of X not included in MB(Y) are independent of
Y [8, 9]:

∀V ∈ X−MBðYÞ : PrðYjMBðYÞ;VÞ ¼ PrðYjMBðYÞÞ;

where X - MB(Y) denotes the set of variables which are
contained in X but not in MB(Y). The concept of the
Markov Blanket was first introduced by Pearl in 1988 in
his work on Bayesian networks [12]. Years later, it was
first used to identify the theoretical optimal set of vari-
ables for prediction tasks [11].
According to the definition above, given MB(Y), the

other variables contained in X are independent of the
outcome Y. This means that they do not provide any
further information about Y, and all the information to
predict the behavior of the outcome is already contained
in the Markov Blanket MB(Y) [1, 13].
If the technique used to build the prediction model for

Y can fully describe the underlying true probabilities
Pr(Y|MB(Y)), and a model with fewer variables is pre-
ferred, then the variables included in the Markov Blanket
of the outcome Y are the only variables needed for an op-
timal prediction in terms of calibration [8]. Therefore, in
an idealized regression setting, to fit the appropriate
model, the predictor selection task consists of finding the
Markov Blanket of the outcome variable [1, 9]. This con-
cept can be used to link variable selection in clinical risk
prediction modeling to the underlying causal structure of
the data [14].
Let’s consider a DAG G and a set of variables S de-

scribed by a joint distribution ℙS with a density. The dis-
tribution ℙS, is said to be Markovian with respect to G if
each variable is conditionally independent of its non-
descendants (i.e. variables it does not affect), given its
parents (i.e. its direct causes) [1, 9]. This Markov prop-
erty creates a link between ℙS and G, ensuring that all

the conditional independencies entailed by the DAG are
also present in the probability distribution [1, 15].
A further condition makes this link stronger; “faithful-

ness” implies that the only conditional independencies
to hold in the joint distribution ℙS are the ones entailed
in G [14].
The previous intuition can be formalized; it has been

demonstrated that if the joint distribution of the vari-
ables is faithful and Markovian with respect to the DAG,
a predictor is strongly relevant (see [16, 17] for a defin-
ition) for predicting the outcome if and only if it is part
of the Markov Blanket of the outcome [17]. Under these
conditions, the Markov Blanket of the outcome is
unique and has a particular constitution: it includes all
parents of the outcome node, all of its children, and all
parents of its children [1, 8, 9, 12].
As shown in Fig. 1, these nodes “shield” the outcome

variable Y from all the remaining variables in the DAG
[13]. Therefore, the information contained in these
nodes is sufficient to describe the outcome variable’s
status.
These results are appealing for researchers tasked with

selecting predictors for clinical risk prediction modeling.
According to a 2010 review, at least 8 different algo-
rithms have been developed to identify the Markov Blan-
ket for an outcome variable using data-driven
procedures [9]. In the field of causal learning, algorithms
that learn the entire causal structure [14] and the local
causal structure [18] based on the identification of Mar-
kov Blankets have been developed. Given this theoretical
line of argumentation, we believe that a knowledge of
the underlying causal processes behind the data gener-
ation can help to identify the best predictors to be in-
cluded in a clinical risk prediction model.
As proof of concept, we conducted a series of simula-

tions using R version 3.6.3 (R code can be found in the
Supplementary file). We simulated 100,000 datasets with

Fig. 1 Example of the Markov Blanket (in black) of outcome Y in a
simple Directed Acyclic Graph (DAG) with many nodes
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25 variables and 10,000 observations each. Each dataset
was simulated according to a randomly generated DAG
(using the randomDAG function in the dagitty R pack-
age). The DAG included 25 ordered nodes correspond-
ing to 25 variables. Each node was given a probability of
0.1 of receiving a directed arrow from each of the indi-
vidual previous nodes. One of the nodes was then ran-
domly selected as the binary outcome of interest, all
other 24 variables were assumed to be continuous. Any
exogenous variables (i.e. variables without any parent
nodes) were generated as normally distributed variables
with a mean of 0 and variance of 1, or, if the outcome
was exogenous, as a Bernoulli random variable with an
event probability of 0.2.
When the outcome was an endogenous variable (i.e.,

with at least one parent node), each observation was
drawn from a Bernoulli distribution with a defined prob-
ability parameter. This was set as the inverse-logit func-
tion evaluated at the linear combination of the outcome
node’s parent variables, with randomly drawn coeffi-
cients. Specifically, the coefficients (including the inter-
cept) for the outcome endogenous variable were drawn
from a uniform distribution on (− 1,1).
Similarly, the observations of the continuous endogen-

ous variables were randomly drawn from a normal dis-
tribution with unit variance and with the mean equal to
the linear combination of randomly drawn coefficients
and the values of the node’s parent variables. Here, the
coefficients (including the intercept) for each endogen-
ous variable were drawn from a uniform distribution on
(− 2,2). The choice of the regression coefficients was
therefore not restricted in order to satisfy the faithful-
ness assumption by design.
For each of the 100,000 datasets, eight prediction tools

were developed to predict the probability that the binary
outcome equals 1:

(i) a logistic regression model including only variables
in the Markov Blanket of the outcome as
predictors,

(ii) a logistic regression model including all 24 variables
as predictors,

(iii)a logistic regression model including any variable
with a path leading to the outcome node (regardless
of arrow direction on the path) as predictors,

(iv) a logistic regression model including only the
outcome node’s parent variables as predictors,

(v) a logistic lasso regression model inputting all 24
variables,

(vi) a logistic ridge regression model inputting all 24
variables,

(vii)a logistic elastic net regression model with mixing
parameter alpha of 0.5 inputting all 24 variables,
and

(viii) a random forest algorithm inputting all 24
variables.

In all regression models, all included variables were
modeled as being linearly related to the logit of the out-
come. Lasso, ridge, and elastic net models were com-
puted using the glmnet function in the glmnet R
package with default settings. The regularization param-
eter, lambda, that minimized the 10-fold cross-validated
error based on the deviance for logistic regression with
the cv.glmnet function (glmnet package) was selected.
Random forests were built using the randomForest func-
tion in the randomForest R package with 1000 trees and
default settings.
For each dataset, the calibration of each prediction

tool was measured using the Integrated Calibration
Index [19] (ICI) based on 10-fold cross-validation. Lower
ICI indicates better model calibration. The ICI estima-
tion relies on a non-parametric regression between the
outcome variable and the predicted risk estimated by the
prediction tool. Therefore, if the non-parametric regres-
sion fails in one or more of the 10 cross-validation sets,
it is not possible to compute the ICI. This happens if an
intercept-only model or a model with variables’ regres-
sion coefficients very close to 0 is evaluated. We also
compared the variable sets included in the Markov
Blanket-based logistic models with the ones selected by
the lasso and elastic net regression models. We consid-
ered a variable to be selected by the model if the abso-
lute value of its estimated regression coefficient was
nonzero, which we operationalized as a value higher
than 10− 10.

Results
Transportability and the principle of independent
mechanisms
The potential benefit gained from applying the principle
of independent mechanisms to the assessment of trans-
portability of clinical risk prediction models is presented
using two simplified clinical examples from the field of
neurodegenerative disease.

Example 1
Say that we are interested in building a diagnostic clin-
ical risk prediction model for the presence of Alzhei-
mer’s disease (Y = 1), using the APOE ε4 allele status
(X = 1, presence; X = 0, absence) as the sole predictor of
the outcome in the general population of older persons.
Y = 0 indicates disease absence.
Since APOE ε4 is a known cause for Alzheimer’s dis-

ease [20], we could draw the DAG shown in Fig. 2. Note
that we are assuming a direct, unconfounded causal rela-
tionship (a strong assumption). By convention, each vari-
able in the DAG is affected by a “noise” variable, which
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are assumed to be independent of other noise variables
and modeled as random variables. These are usually not
explicitly depicted because they are not of relevance to
the causal relationship under study. However, it is worth
noting that the noise variable affecting X determines the
prevalence of the APOE ε4 allele, while the noise vari-
able affecting Y contributes to the definition of the
causal mechanism between the APOE ε4 allele status
and Alzheimer’s disease [7].
Assume we collect cross-sectional data about Alzhei-

mer’s disease and APOE ε4 allele status in a population
A. Using this data, we can develop a simple diagnostic
clinical risk prediction model using logistic regression to
predict the presence of Alzheimer’s disease. The regres-
sion equation would be:

loge Pr Y ¼ 1jX ¼ xð Þ= Pr Y ¼ 0jX ¼ xð Þð Þ ¼ β0 þ β1x

Using the logistic regression equation it’s possible to
estimate the four conditional probabilities Pr(Y = 1|X =
0), Pr(Y = 1|X = 1), Pr(Y = 0|X = 0), and Pr(Y = 0|X = 1),
which define the conditional distribution ℙ(Y|X). We
will assume that the logistic regression is able to fully
describe this conditional distribution, while the preva-
lence of the APOE ε4 allele (Pr(X = 1)) defines the mar-
ginal distribution ℙ(X) of this predictor.
Next, say we want to use our newly developed risk

prediction model as a diagnostic tool for Alzheimer’s
disease in another population B in which we know there
is a different prevalence of the APOE ε4 allele. The new
distribution of the predictor X in population B can be
denoted as ℙ*(X).
According to the principle of independent mecha-

nisms, the fact that the original distribution of X, ℙ(X),
has been changed to ℙ*(X) does not give any information
on the mechanism ℙ(Y|X) in population B [1, 7]. This is
because X causes Y, and ℙ(Cause) is independent of
ℙ(Effect|Cause).
If the underlying causal mechanism is not altered

(ℙ(Y|X) is the same in the two populations), the diagnos-
tic clinical risk prediction model developed in popula-
tion A will produce valid estimates also in population B.
On the other hand, if the causal mechanism changed,
knowing the predictor distribution ℙ*(X) does not give
us any information about how the mechanism changed

[1, 7]. In this case, the logistic regression model devel-
oped in population A for modeling ℙ(Y|X) is still our
best diagnostic tool candidate [1, 7].
In this example, knowledge of the underlying causal

structure suggests that using the same diagnostic clinical
risk prediction model in the new population is a reason-
able choice [1, 7].

Example 2
Next, say we are still interested in building a diagnostic
clinical risk prediction model for the presence of Alzhei-
mer’s disease, but instead choose to use a different vari-
able as the sole predictor, which indicates whether the
concentration of tau protein in cerebrospinal fluid (CSF-
tau) is above a predefined threshold. As before, Y = 1
and Y = 0 indicate presence and absence of Alzheimer’s
disease. K = 1 indicates high tau protein concentration,
and K = 0 indicates low tau protein concentration.
It is known that high CSF-tau levels are associated

with the presence of Alzheimer’s disease. Specifically, as
a consequence of the deposition of proteins in the brain
that characterizes Alzheimer’s disease, the concentration
of tau protein is altered in the cerebrospinal fluid [21].
Therefore, the high level of tau protein in the cerebro-
spinal fluid can be interpreted as a consequence of Alz-
heimer’s disease, leading to the DAG shown in Fig. 3.
In this example, we define Alzheimer’s disease by its

underlying pathological process instead of based on
diagnostic criteria. However, in the real world, direct ef-
fects are usually incorporated as part of the diagnostic
criteria of the disease for practical clinical purposes. We
further assume a direct effect of Y on K without con-
founding, even though we acknowledge direct effects of
a disease are typically also caused by risk factors for the
disease (introducing confounding in the Y→K causal
relationship depicted in Fig. 3). These strong assump-
tions are needed to create a simplified, illustrative
example.
As before, assume we have collected cross-sectional

data about Alzheimer’s disease and CSF-tau concentra-
tion in a new population C. Using population C data, we
can develop another simple diagnostic clinical risk pre-
diction model to predict Alzheimer’s disease using logis-
tic regression. The estimated regression equation would
be:

Fig. 2 Directed Acyclic Graph (DAG), Example 1

Fig. 3 Directed Acyclic Graph (DAG), Example 2
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loge Pr Y ¼ 1jK ¼ kð Þ= Pr Y ¼ 0jK ¼ kð Þð Þ ¼ γ0 þ γ1k

Assuming that logistic regression is suitable, its equa-
tion fully describes the underlying conditional distribu-
tion ℙ(Y|K), while the prevalence of the high CSF-tau
(Pr(K = 1)) defines the marginal distribution ℙ(K) of the
predictor.
Say that we now want to apply this diagnostic clin-

ical risk prediction model developed in population C to
detect the presence of Alzheimer’s disease in a popula-
tion D with a different prevalence of high CSF-tau con-
centration. However, we are now in an anticausal
scenario in which we are trying to use the effect, CSF-
tau concentration, to detect the cause, Alzheimer’s dis-
ease. Therefore, ℙ(Y|K) does not represent a causal
mechanism and is not independent of ℙ(K).
Since the marginal distribution of CSF-tau levels

changes from ℙ(K) in population C to ℙ* (K) in popula-
tion D, a change in the conditional distribution, ℙ(Y|K),
is likely to occur because we are in an anticausal direc-
tion [1, 7]. The model developed in population C to de-
scribe ℙ(Y|K) will probably not be well calibrated for use
in the population D because the underlying conditional
distribution of Y on K is different in the two popula-
tions. This would also hold if the causal mechanism that
leads from Alzheimer’s disease to the high CSF-tau con-
centration was the same in the two populations, as the
equation describing the conditional distribution of Y on
K is purely a mathematical artefact and does not de-
scribe the causal process.

Predictor selection and the Markov blanket
The results of the simulation study investigating whether
a strong knowledge of the causal structure underlying
the data generation process improves predictor selection
compared to other commonly implemented methods are
shown in Table 1.
In 37,272 of the 100,000 simulated datasets, the out-

come variable node did not have any parents, therefore
it was not possible to assess the performance of logistic
regression including only the outcome node’s parent
variables as predictors in these cases (Table 1). In 8032
simulated datasets, the outcome variable node did not
have any parents or children, therefore it was not pos-
sible to assess the performance of the Markov Blanket-
based logistic model and the logistic regression including
all the variables with a path to the outcome as predictors
(Table 1).
When the Markov Blanket set was empty, both the

lasso and elastic net regression models correctly shrunk
all regression coefficients to zero or very close to zero
approximately 93.3% of the time, leading to an uncom-
putable ICI. Overall, the lasso regression selected exactly
the Markov Blanket set of variables in at least one of the

ten cross-validations in 14,936 (14.9%) simulated data-
sets. The percentage was higher when the Markov Blan-
ket was empty (93.3%) or included only one variable
(46.8%) compared to when it contained two (7.6%) or
more variables. This finding supports the idea proposed
by Li et al. that there is a link between the lasso
regularization and selection algorithm and the identifica-
tion of the Markov Blanket [22].
Overall, the average ICI of the Markov Blanket-based

logistic model (0.01882) was lower compared with all
other investigated prediction tools. This model also
yielded the lowest average ICI (0.01956) when consider-
ing only those datasets in which all prediction tools had
computable ICI values (Table 1). In head-to-head com-
parisons, the ICI of the various prediction tools were
greater than or equal to the ICI of the Markov Blanket-
based logistic model in the majority of the simulated
datasets (range: 57.0 to 98.2%).

Discussion
Transportability and the principle of independent
mechanisms
Through the two simple examples presented, we provide
a theoretical basis for the intuition that a diagnostic clin-
ical risk prediction model including causes as predictors
may be more transportable [23]. As illustrated in Ex-
ample 2, transportability in terms of calibration is likely
to be lower in anticausal scenarios, in which the pre-
dicted outcome is the disease and the predictor is an ef-
fect of the outcome [1, 7].
No common causes of Y and K were included in the

simplified Example 2, and we note that the transport-
ability of the diagnostic clinical risk prediction model to
different populations in similar anticausal scenarios
could be higher if the predictor and the disease share
one or more common cause(s). The idea that risk pre-
diction models including the direct causes of an out-
come of interest as predictors will be more transportable
to different settings is also exploited in the causal learn-
ing “invariant causal prediction” method [1] and in the
machine learning practice of “covariate shift” [1, 7]. In
general, we think the field of diagnostic clinical risk pre-
diction modeling could greatly benefit from the practice
of incorporating knowledge of the underlying causal
structure in modelling strategies. The integration of such
information could provide insights into the transport-
ability of a given diagnostic risk prediction model in dif-
ferent settings [7].

Predictor selection and the Markov blanket
Our results empirically demonstrated equal or superior
performance of the Markov Blanket-based logistic
model, corroborating the theories presented earlier. In
the head-to-head comparisons with each of the other
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approaches, the Markov Blanket-based logistic model
yielded an equal or better calibration in more than 57%
of all generated datasets (range 57 to 98% across the
compared prediction tools). Not only did the Markov
Blanket-based logistic model show good performance in
terms of calibration but also required considerably fewer
input variables than the number of available variables.
Moreover, this approach relies explicitly on summarizing
causal knowledge, which provides a high degree of inter-
pretability in contrast to commonly encountered causally
agnostic approaches.
We acknowledge that in real-world settings, it is un-

likely to encounter ideal situations in which there is per-
fect knowledge of the underlying causal structure, all
requisite variables are available and complete, and non-
linear relationships and interactions are absent. Further
research on deviations from these ideal conditions is
needed, in particular to understand consequences of
model misspecification when statistical interactions or
non-linear relationships are present as well as measure-
ment error. Nevertheless, we believe our results provide
an important contribution as a theoretical basis for using
a DAG that summarizes a priori knowledge of the causal
structure to identify predictors in a simple and struc-
tured way in an ideal setting.

Conclusions
Through a series of theoretical examples and simulation
results, we have shown that strong knowledge of the
underlying causal structure can be useful for under-
standing potential transportability and optimizing pre-
dictor selection for a given clinical risk prediction
model. In the field of clinical risk prediction model de-
velopment and application, we think that a priori causal
information is often ignored or used intuitively without
a structured framework. We are eager to see first appli-
cations of the framework we have outlined, further the-
oretical development, and scientific discussion of this
concept.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-01058-z.

Additional file 1.
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