Chapter 2

General Kinetic Description of
Electrochemical Interfaces

This chapter introduces basic notions concerning the mathematical description of
interfacial processes at electrified interfaces [60], the occurrence of electrochemical
temporal instabilities as well as the description of spatial coupling effects in electro-
chemical systems.

2.1 State equations of the interface

The study of a physical phenomenon often leads to the elaboration of a model. One
looks for a model that is an appropriate representation, often mathematical, of a
phenomenon and which captures the essential features of the real system under study.
The purpose of such a model is many-fold: First, it can reproduce (ideally all) the
facts discovered experimentally, it can help predict the experimental system behavior
under various conditions what thereafter (hopefully) can be experimentally verified
and, finally and maybe most importantly, it helps rationalize the observed facts within
the model’s categories of description. Models often deal with the very structure of a
system, but it can also be useful to elaborate models of the "input-output’ type which
describe the system behavior with respect to its environment.

The aim of an electrochemist is to identify the processes occurring at the electrified
interface between a working electrode and the electrolyte, either by elaborating a
model for the interface behavior or by trying to find value of some parameters of the
system of interest when the reaction mechanism involved is already known. However,
in some practical cases, empirical relationships are sufficient.

At this point, some comments on basic concepts regarding the structure of the
interface [48] are appropriate. Fig. 2-1 illustrates the generally accepted Stern model
of the electrified interfacial region, called the double layer. Charged unsolvatized
or solvatized ions are adsorbed close at the electrode (compact or Hemholtz layer)
shielding some of the electric field which extends into the solution; furthermore within
some distance from the surface, called the diffuse layer, excess ions are found according
to a Boltzmann distribution. The compact layer is further subdivided by the plane
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Figure 2-1: Tllustration of the compact (several Angstroem in width = radius of
solvatized ions) and the diffuse double layer the width of which depends on ionic
strength of the solution (10 - 100 Angstroem). #.H.= outer Helmhotz plane.

of closest approach for the centers of the ions which are nonspecifically adsorbed
(outer Helmholtz plane, 4.H. in the figure), i.e. ions which still are surrounded by
solvent molecules and by the plane for the centers of specifically adsorbed ions (inner
Helmholtz plane, not shown). Beyond the diffuse part of the double layer, bulk
concentration conditions and electro-neutrality is assured.

The elaboration of a model for the interface behavior is derived from the general
equations of physics that take account of the non-linear character of the processes
involved. The spatial distribution of the general state variables ¢(r,t) and ¢;(r,t)
-the electric potential and concentration of species i at point 7 of the electrochemical
system and time t - is determined by a set of differential equations, subject to the
appropriate boundary and initial conditions.

Vi=—p.+VP (2.1)
801- _ ' '
= = VT i+¢& (2.2)

where 1 <7 < m.

The first of these coupled (m + 1) equations generaliz§ the Poisson equation,
where p, is the electric charge density per unit volume and P the dielectric polariza-
tion. The second set of equations generalizes the hydrodynamic equations and applies
to the m types of chemical entities involved in the system; ¢; is either a surface or a
bulk concentration, J_; is the flux, and &; is a term representing the production or con-
sumption of a chemical species i generally arising from chemical and electrochemical
reactions. This last term can be made explicit from the mass balance of the reaction
scheme to be tested and from the laws of homogeneous and heterogeneous kinetics.

Starting from this general frame work, the elaboration of a model for the interface
will be performed by making a certain number of hypotheses which generally allow
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one to simplify the initial equations. This simplifying hypothesis fall into several
categories, each of which is now briefly described.

2.1.1 Poisson equation versus Laplace equation

The charge density, p, in eq. 2.1 can be considered as non-zero in particular situa-
tions. Firstly, around a reference ion in the solution, in the Debye-Hiickel theory [61].
Secondly, in the Helmholtz part as well as in the diffuse part of the double layer for
which a static and dynamic description has been given [61, 48].

In practice, however, it is often assumed that net eletric charges within the solution
can be neglected and therefore the Laplace equation is a reasonable approximation
for the description of the potential distribution in the electrolyte:

Vip=0 (2.3)

This is valid for every volume element of the solution, since the electrolyte, as a
whole, is electro-neutral, i.e. there are no net sources of charge. Early electrochemical
models dealing with the potential distribution within the electrolyte placed emphasis
exclusively on gradients perpendicular to the electrode surface. This led to the con-
cept that the ohmic potential drop due to the solution resistance R must be added
to the potential drop right at the interface

U=¢o+ LiatR (2.4)

where U is the potential drop between the working electrode and the point of the
reference electrode by which the potential of the working electrode is controlled. ¢g’
denotes the interfacial potential drop, called the double layer potential, determining
the electrochemical processes®. I;; represents the current flowing between the work-
ing electrode and the reference electrode. Recall, however, that ideally there is no
current actually flowing into the reference electrode; instead, all current is collected
by the third electrode of an electrochemical setup, the counter (auxiliary) electrode
(see chapter 3). Fig. 2-2 illustrates the potential drops between working and refer-
ence electrode. Eq. 2.4 will become crucial as electrochemical instabilities will be
discussed.

2.1.2 Equations describing the concentration change

The hypothesis often made is that of a dilute solution for which the flux of a species
i can be separated into a flux due to diffusion and a flux due to migration in an
electric field [62]. Assuming that the transport properties (Dj; p;,u;) are uniform in

! Note that the subscript ’0’ will be dropped in subsequent chapters where no potential inside the
solution is concerned.

*Note that a further refinement of this statement will be given when double layer effects will be
discussed.
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solution double layer

Figure 2-2: General equivalent circuit of an electrochemical cell, Itot= total migration
current, R= ohmic electrolyte resistance, C= double layer capacitance, Z= faradaic
impedance, U= outer applied potential,¢p9 =double layer potential.

the solution bulk and independent of the concentration ¢;, the concentration change
in the absence of any chemical reaction is given by:

% = D;V?%¢;, — 7 Ve, + 2iFu;V (V) (2.5)

where D; is the diffusion constant of a species ¢, ¥ the velocity field of the liquid,
u; the mobility of 4, z; its charge number and ¢ the potential as given in eq. 2.3 (see
section 1.2). The concentration change is most generally governed by Diffusion (first
term), convection (second term) and migration (third term).

If electro-neutrality is assured, in the presence of inert major ionic species in ex-
cess (supporting electrolyte), one can neglect the migration terms of the electroactive
species. Generally, calculation of concentrations in the presence of convection is diffi-
cult unless very special convective conditions hold. The known example of a rotating
disc electrode, for instance, gives rise to a constant gradient at the interface. Mostly
however, calculation of concentration is simple only if one can neglect convection.
This is sufficiently well fulfilled if Schmidt’s number (viscosity/diffusion coefficient)
is sufficiently high (several thousand). The concentration gradient is then located in
the so-called Nernst layer (see chapter 5 and 8) of thickness ¢, within which the liquid
is nearly motionless. The transport equation then reduces with good accuracy to the
simple Fick’s law of diffusion:

% = D;V?¢ (2.6)

Convection is now taken into account by applying the boundary conditions on c;,
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that is ¢; equals its bulk value at a finite distance from the interface instead of at
infinity.

2.1.3 Separation of the faradaic current from the charging current
of the double layer

Strictly speaking, there is close coupling between faradaic currents, i.e. charge trans-
fer due to chemical reactions, and capacitive currents, i.e. charge flowing into the
double layer. Still, in most models, in particular at high concentrations of the sup-
porting electrolyte, calculation of the double layer potential is greatly simplified by
the hypothesis that a separation between these currents is possible. Then, the overall
current is given by:

Lot = Icap + Ifar- (27)

Eq. 2.7 is particularly important in forthcoming models of electrochemical systems
and will serve as the temporal evolution equation for the double layer potential. The
equation can equivalently be considered as a charge conservation equation as well as
a current balancing equation.

2.1.4 Heterogeneous reactions at the interface

In applying laws of heterogeneous chemical kinetics to the adsorbed species involved
in electrochemical kinetics, the mass balance equation for a species 7 can be written:

8Ci,sur‘face

ot - 61 + Di,surfacevci,surface (28)

where &;, the source term, can be either positive or negative and represents the
electrochemical or chemical surface reactions, the adsorption or desorption. D; sur face
is the surface diffusion coefficient of species i. The surface concentration of i , ¢; sur face,
is generally considered as being proportional to the coverage fraction 6; of the elec-
trode surface by species ¢

Ci,sur face = 6192 (29)

where (; is the maximum surface concentration of 7. By analogy with gas phase
adsorption, an expression for the value of 6; is obtained by choosing an isothermal
law (isotherm).The shape of the isotherm critically influences the relation between the
heterogeneous reaction rate and the volume concentration of species near the double
layer.

2.1.5 Charge-transfer at the interface

The charge balance gives the faradaic current which is a function of several quantities
48, 63].

The general expression of the rate of charge transfer with fast mass transport
reads:
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Ifa'r‘ = Ifar(cbulk7¢7T7p7A7w) (210)

with cpyix being the bulk concentration of ¢, T, p absolute temperature and pres-
sure, A the electrode area and w the rotation speed (rotating disc). The most com-
monly adopted formalism for the description of I, of a simple electrochemical re-
action A = B + ne~, where n electrons are exchanged with the elctrode, is the
Butler-Volmer expression:

Ifa'r‘ anF (¢,¢0

_ (1—o)nF 40
nFA = CA,surfaceke RT w99

) — CB,su'r‘facek € (211)

Here, the surface concentrations c;, the rate constant k£ and the double layer
potential ¢ are related to the observable charge transfer. ¢ is the standard potential
of the reaction and a denotes the symmetry factor [48]. In situations where the mass
transport is slow the surface concentration ¢; will be different from cpy.

2.1.6 The Frumkin effect

In a previous section, the splitting of the double layer into a compact part and a
diffuse part has been introduced. Equivalently, the total potential drop across the
double layer, ¢, can be subdivided into a portion across the compact layer up to the
outer Helmholtz plane and the portion which drops across the diffuse part, called ¢o
(see Fig.2-3 where the potential in the bulk solution was set to zero). This potential
splitting can affect the electrode reaction in two ways. (i) The concentration of the
electroactive species at the outer Helmholtz plane will be different from that outside
the Nernst diffusion layer due to coulomb interactions. The concentration difference
will generally be a function of ¢o. (ii) The potential difference driving the electrode
reaction is not ¢, but instead (¢ — ¢2); thus the effective electrode potential (double
layer potential) is U —I R— ¢2. Both effects can lead to a non-trivial I—¢ characteristic
of an electrode process. In particular, the rate of charged transfer might decrease with
increasing overpotential over some potential interval, when anion reduction or cation
oxidation is considered.

2.2 Polarisation control

As Fig. 2-2 suggests, the electrochemical system under potentiostatic control can
be thought of as an ensemble of an inner circuit (double layer) with faradaic and
capacitive currents placed in series with an external circuit (load line) with ohmic
resistance R. This ensemble is characterized by dependent state variables such as
current I and double layer potential ¢ and parameters governed by the experimenter
(constraints) such as the outer potential U between reference and working electrode.
In a stationary state the state variables of the external and the internal circuit and
the imposed constraint must be matched. Usually, the steady state characteristics
is plotted by varying the constraints imposed and by measuring the change of a
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Figure 2-3: (a) The differential capacitance in the Stern model as a series of Helmholtz
and diffuse layer capacitances. (b) Spatial profile of potential through the solution
side of the double layer (calculated for 0.01 M 1:1 electrolyte in water 25°C).

state variable (e.g. I — U plots). This technique is called polarisation control. The
dependence of state variables and constraints in the load line are essentially captured
in eq.2.4. Matching the currents in the steady state leads to

Ifa'r(cbulka ¢7 T,P, A,w) = Iload = _% + % (212)

This relation will help rationalize the occurrence of dynamical instabilities in

electrochemical systems. Before the mechanistic origin of instability is introduced,
however, the different types of polarisation control need to be discussed.

First, there are polarisation conditions, where the ohmic resistance R is finite and,

consequently, ¢ may be different from the fixed outer potential U; such conditions

are called potentiostatic with fived outer potential or simply potentiostatic and are
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most frequently employed in the upcoming chapters. Secondly, conditions of elec-
trochemical measurements for vanishing ohmic resistance R are referred to as truly
potentiostatic conditions, since ¢ = U = const. In this case, the double layer potential
is no longer a state variable, but instead a system parameter.

Finally, if the total current is kept constant, the polarisation conditions are re-
ferred to as galvanostatic.

2.3 Dynamical instabilities at electrochemical interfaces

2.3.1 Origin of electrochemical bistable behavior

Consider Fig. 2-4 where the load line and the faradaic polarisation curve are plotted
at given constraints U and R. In Fig. 2-4a the faradaic process exhibits a normal
positive regulation over the entire potential interval. It is seen that there is only
one stationary set (I, ¢) of state variables determining the system behavior. Multiple
working points become possible, however, if the stationary faradaic polarisation curve

shows a region of inverse regulation (negative faradaic impedance Z = d{ifg or equally

negative differential resistance , N-shaped polarisation curve) as given in Fig. 2-4b
and c. According to Koper [64] the origin of a region of negative impedance can be
rationalized as follows: since the faradaic current is given according to

Itor =nFAcke’?

for the impedance follows

dl tor dA d dk
d{b :an—¢ckeﬁ¢+nFA£ke’8¢+nFAc%eﬁ¢.
dIchr

A N-shaped 1/¢ curve (=5
double layer (j—(‘; < 0), the potential-dependent ad- and desorption of a catalyst (g—(’; <

< 0) can therefore stem from a Frumkin effect in the

0) or the possibility that the available surface area becomes potential-dependent, e.g.
due to fast adsorption processes (% < 0). Usually, in the case of three stationary
states, two of them are stable whereas the third one is unstable. Upon perturbing
the system from one stable stationary state, a transition to the other stable steady
state can be achieved without changes in the constraints. Note that the dynamic
bistable behavior is determined by the temporal evolution of the double layer only.
All chemical species affecting the reaction are assumed to be stationary at all times.

It is obvious from Fig. 2-4 that for bistability to occur apart from the presence of a
potential region with negative impedance (= negative differential resistance, NDR), a
condition as to the absolute value of the ohmic resistance R must be fulfilled, namely
|Zf| < R, where Z; is the faradaic impedance. This feature had been conjectured
from early on to be critically involved in the instability mechanism [65, 66]

In addition to the electrochemical bistability, an electrochemical system can be-
come bistable due to a purely chemical bistability not involving the double layer
potential as essential variable. There are only few known experimental bistable sys-
tems of this type [67].
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Figure 2-4: The origin of multiple stationary states in electrochemical systems. a)
Always one stable steady.state. b) and ¢) Due to an N-shaped stationary polarisation
curve, a transition to bistability (three stationary points) can occur.

2.3.2 Electrochemical oscillations

Sustained periodic behavior is generally obtained from bistability if an additional
slow degree of freedom associated with a slow state variable arises in the system. If
the regulation between the bistable part of the system and the additional variable is
chosen properly [68, 33, 69] and if the timescales are sufficiently different, the fast
positive feedback based on the electrical quantities and the slow negative feedback can
interact to yield electrochemical oscillations. As already conjectured in early electro-
chemical literature the slow negative feedback can result from the rate-determining
slow transport of electroactive species leading to variations in the double layer con-
centration [65, 66, 70, 71, 72]. A general mathematical formulation of the problem
together with a thorough analysis of electrochemical oscillations was for the first time
given by Koper [73, 64, 74].

Sustained oscillations in current or potential are also conceivable in purly chemical
oscillators with one or more reaction steps being associated with charge transfer at
the interface. Such oscillators would not involve the double layer potential as an
essential variable (truly potentiostatic oscillators).

2.3.3 Mechanistic classification of electrochemical oscillators

The first mechanistic classification of oscillatory electrochemical systems has been put
forward by Wojtowicz [15] who generally distinguished between purely chemical oscil-
lators with charge transfer and electrochemical oscillators characterized by an inter-
action of external and internal circuit. More recently, Koper [73, 64, 74, 23] developed
a more precise picture as to a possible categorization of electrochemical oscillations:
Koper identified the group of oscillators which require both a negative differential re-
sistance and a finite ohmic resistance R for instabilities. Within this group, he further
subdivided into electrochemical oscillators which oscillate only under potentiostatic
conditions (with additional external ohmic resistance if the solutions resistance is
not sufficient) and those which exhibit potential oscillations under galvanostatic con-
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ditions as well. According to ref. [27] oscillators of the former and latter type are
referred to as "INDR-~oscillators” and "HNDR-oscillators”, respectively, indicating the
requirement of a negative differential resistance. HNDR stands for 'hidden negative
differential resistance’. The prominent feature of a HNDR-oscillator is the fact that
the differential resistance is negative only on a fast time scale and therefore is not
visible in a stationary I/U curve. The fast time scale can be caused by a fast ad- and
desorbing species which blocks free surface sites and thereby leads to a negative %.

There are numerous experimental examples of these two oscillator classes; In3+
reduction in the presence of catalysts as well as the reduction of peroxodisulphate in
alkaline solution are prominent examples of NDR oscillators, whereas the oscillatory
hydrogen oxidation reaction in the presence of UPD metals and adsorbing ions belongs
to the latter HNDR type [75, 29]. Koper further pointed out his finding that NDR
oscillators usually show the so-called cross-shaped phase diagram (XPD) [44] in two-
parameter bifurcation diagrams, whereas HNDR oscillator generally exhibit more
complex bifurcation diagrams involving a saddle-loop bifurcation of stable periodic
orbits [64, 29, 26]. The shape of these bifurcation diagrams is related to the existence
of highly degenerate bifurcation points that cannot occur in systems with a XPD
[74]. A systematic study of this phenomenon, in particular the study of the transition
between the bifurcation diagrams of the two oscillator classes was still missing.

Furthermore, Koper picked up the concept of purely chemcial oscillators referring
to them as truly potentiostatic oscillators [23]. These oscillators show sustained pe-
riodic behavior even in the limiting case of truly potentiostatic conditions, i.e.where
the double layer potential is kept constant without quenching the oscillations. Since
the instability is of chemical nature, the classification scheme of chemical oscillatory
systems can be applied [33] if a simple synergistic autocatalysis is involved. For more
complicated mechanisms of instability (competitive autocatalysis or autocatalysis-free
oscillatory instability) classification schemes are still to be elaborated. Note that at
higher values of the ohmic resistance, ¢ does in fact oscillate even if it is nonessential
for the dynamics. There are a few experimental systems which are believed to fall into
this class but clear evidence for the purely chemical nature of their instabiliy is still
missing [76, 67, 77, 78]. Consequently, the bifurcation behavior and the impedance
spectra of those electrochemical system are poorly investigated both in experiment
and theory.

2.4 Spatiotemporal description of electrochemical inter-
faces

So far in this chapter, the kinetic description of an electrified interface considered
exclusively spatially homogeneous systems, i.e. systems in which any spatial poten-
tial variation was neglected. However, it is well known from studies by Ostwald and
Franck[14, 13| that the electrode cannot always be assumed to be spatially homoge-
neous. As pointed out in chapter 1 for general chemical systems, spatial transport
processes may occur parallel to the reactive interface and need to be included as
spatial coupling terms into a complete dynamic model description.
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Fig. 2-5 reviews the most common types of spatial coupling: A global coupling is
defined as one that is felt instantaneously and equally strongly at any spatial position
x of the system. A local coupling, in contrast, implies, that only two points in close
distance are coupled, whereas two distant points do not ’feel’ each other at all. Finally,
a nonlocal coupling is intermediate global and local in the sense that the region of
coupling is wider than in the local case, possibly including the entire system, and that
the coupling stength between two points varies with their spatial distance. Note that
in Fig. 2-5 all spatial points along the electrode are assumed to be subject to the same
coupling function. Recent calculations for specific electrode geometries indicate that
this is not necessarily the case [40]. Local coupling, e.g. diffusion, as well as global
coupling, e.g. through the gas phase in UHV experiments, have been extensively
studied in models and experiments and are well understood [79, 80, 57, 59, 56, 58|.

Unlike reaction-diffusion systems where spatiotemporal patterns arise from the
interaction of an autocatalysis and diffusional coupling, in electrochemical systems
an additional transport mechanism occurs through the transport of charged species
in an electric potential gradient (migration processes). As pointed out previously, the
strong tendency of migration to neutralize net charges within the solution justifies
the hypothesis that the potential distribution is governed by the Laplace rather than
by the Poisson equation. This assumption is actually the starting point of all re-
cent modeling approaches of spatial electrochemical pattern formation. Furthermore,
the presence of migration coupling in electrochemical systems gives rise to peculiar
properties absent in reaction-diffusion systems.

Early modeling addressed complex spatial pattern such as waves and antiphase
oscillations observed during Ni dissolution in sulfuric acid [81, 34, 82]. Even though
there was a correspondence of model and experiments, the numerical results remain
questionable due to some unreasonable model asumptions.

A model approach by Koper and Sluyters [83] fails to allow for a nonlinear poten-
tial distribution between working and reference electrode which reduces the coupling
parallel to the interface across the electrolyte to a formal diffusion. Furthermore, po-
tential inhomogeneities outside the diffusion layer are neglected which is in contrats
to experiments [36]. Hence, the latter model approach is also unable to adequately
capture the characteristics of electrochemical coupling.

Fldtgen and Krischer [84, 85, 86] reported on spatio-temporal phenomena in the
bistable or oscillatory regime during peroxodisulphate reduction, a NDR oscillator,
at a Ag ring electrode or disk. They found travelling potential fronts along the
electrode mediating the transition between the active and passive state. Unlike
reaction-diffusion fronts, the electrochemical fronts did not show a constant veloc-
ity but exhibited acceleration [85]. Similar accelerating fronts were observed during
cobalt electrodissolution [87]. Solving the Laplace equation in two space dimensions
x and z, corresponding to the direction parallel and respectively perpendicular to the
electrode, by means of Fourier modes, Flitgen and Krischer calculated the migration
term I,,;4, i.e. the potential gradient at the interface in direction of z, in the charge
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Figure 2-5: Common types of one-dimensional spatial coupling in dynamical systems
with periodic boundary conditions . H denotes the coupling strength, (x-x’) represents
the spatial position relative to a reference point x’.

balance equation [36, 27]

O¢o(x,t
C’dl % = _Ifa'r + Imig - _Ifa'r'(xa t)

0 0(x,t)

35 (2.13)

interf ace

It is this equation which governs the time evolution of the interfacial potential (see
also eq.2.7) and therefore is the crucial part of the model. Cy denotes the interface
capacity, (8 is a geometrical parameter and o is the conductivity of the solution.
Simulations using the Flitgen-Krischer model revealed that the presence of a nonlocal
coupling across the electrolyte due to migration currents parallel to the electrode must
be held responsible for the acceleration [84, 36].

Mazouz et al. [37, 38] further investigated the two-dimensional Flitgen-Krischer
model with respect to the range and strength of the spatial coupling. As to the
range of the coupling, they stressed the significance of the length scale of the elec-
trochemcial system [, i.e. the ratio of the distance between the working electrode and
an equipotential plane (reference electrode) and the area of the working electrode,
whereas the conductivity was found responsible for the strength of the spatial cou-
pling. Large 3 were found to increase the range of the coupling, whereas very small
5 led to diffusion-like coupling.

Christoph, finally, recently suggested an alternative approach to the calculation
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of the total migration current Ip,;, in the charge balance equation. Whereas FIit-
gen used a Fourier mode representation,Christoph employed theorems on Green’s
functions in order to develop a numerically tractable fomalism for eq. 2.13 even for
complex electrode geometries,e.g. requiring mixed boundary conditions [40]. Unlike
previous electrochemical models Christoph’s approach led to an illustrative integral
representation of eq. 2.13 [41]. In the case of periodic boundary conditions along
the interface of a ring electrode with a rotational- symmetric point-like reference
electrode, eq. 2.13 becomes

Opo(x,t)

5 Flocai(z,t) + / H(|2— x]) (¢ — ¢o) do’ (2.14)

ring

where the spatial coupling is entirely taken care of by the integral expression
containing the coupling function H and the potential difference of two points (¢f— ¢o)
considered. The function H represents the coupling between a given reference point x
and the other points along the ring; for the ring geometry considered, H is identical for
all z , thus depends only on distance (z’—x). The function F' includes all local chemical
dynamics. Christoph’s integral formalism not only allows the precise formulation of
a three-dimensional ring geometry including a finite ring width, but also can be used
to approach complex geometries such as ribbon or disk electrodes. Generally, in
Christoph’s formalism the counter elctrode is considered to be at infinity.

For the geometry of interest for forthcoming experiments in chapter 6, i.e. periodic
boundary conditions in x direction along a 'quasi one-dimensional’ working electrode
with point reference electrode on the rotational axis, the dependence of H on system
constraints such as (i) the geometric aspect ratio 3 of the system and (ii) an external
ohmic resistance Re; in series to the working electrode can be lumped into a single
parameter B :

H=H(B)
B = B(aspectratio, Reg).

Fig. 2-6 summarizes the predictions of the integral formalism as to the dependence
of the sign of H on the system parameter B. The system length was normalized
to 1 and the reference point considered is located at * = 0.5. For a large value
of the aspect ratio, i.e. a large distance between working and point-like reference
electrode, and in the absence of an external ohmic resistance, the value of B is
zero and the H is given by the middle curve in Fig. 2-6. All points along the
ring are coupled positively with the coupling strength decreasing with distance. If
the reference electrode is approached towards the center of the ring electrode, B
becomes negative; this leads ot a negative offset of H resulting in a negative nonlocal
coupling along the ring electrode, i.e. a positive short-range, but negative long-range
coupling, as shown in the lower curve in Fig. 2-6. The negative nonlocal coupling
has important consequences as to the dynamical behavior of the system. Whereas
two adjacent points tend to synchronize their behavior, two distant points do the
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Figure 2-6: Dependence of the coupling function H on parameter B for a reference
point located at x=0.5. For large aspect ratios and no external resistance (B=0),
H represents a positive nonlocal coupling. For small aspect ratios and no external
resistance (B negative) a negative nonlocal coupling, i.e. a positive short-range and
negative long-range coupling, arises. An additional external resistance increases B
which leads to a positive offset of H until in the galvanostatic limit a strong positive
nonlocal coupling exists (adapted from [40]).

opposite. Unlike a negative global coupling, the nonlocality of the negative coupling
confines the opposite coupling to a more localized portion of the electrode. If an
external resistance is put in series with the working electrode, the value of B increases
leading to apositive offset of the coupling function as shown in the upper curve in
Fig. 2-6. In the galvanostatic limit a strong positive nonlocal coupling results which
instantaneously tends to synchronize the electrode.

The negative nonlocal character of H can give rise to qualitatively new dynamical
states and phenomena unknown in reaction-diffusion systems. In chapter 6, exper-
imental evidence will be provided in favor of the numerical predictions obtained by
Christoph using the integral formalism.



