Chapter 1

Introduction

1.1 Far-from-equilibrium self-organization
and electrochemistry

7 Als ich den vorigen Versuch mit einem Antheil einer andersher bezoge-
nen officinellen Silberauflosung anstellte, war die Ablenkung des Fisens
ebenfalls anfangs positiv; sie ging aber bald in die entgegengesetzte ne-
gative diber. Ich habe jedoch bei wiederholten Versuchen bemerkt, daf die
Erscheinung hierbei gewdhnlich noch nicht stehen blieb, vielmehr das Auf-
losen des Fisens und sein Wiederblankwerden nebst Auflosung des gefill-
ten Silbers wohl 4 bis 6 mal, oft sehr schnell hinter einander abwechsel-
ten, wobei jedesmal die Ablenkung der Magnetnadel auf das Entgegenge-
setzte tbersprang, bis das Eisenstibchen zuletzt jedesmal unwirksam liegen

blieb.”

M.G.Th. Fechner, Jahrbuch der Chemie und Physik, 5311 (1828) 141

The given quotation is taken from a remarkable publication which is usually cited
as the very first report on spontaneous, periodic, self-organization phenomena in
electrochemistry! [1]. Fechner made his memorable observations just four years after
Carnot had verbally formulated the theoretical feasibility of a cyclic process for the
production of work from heat. About another 40 years passed before Clausius was
to introduce the notion of Entropy thereby opening up the triumphal march of equi-
librium thermodynamics. Still, it was not until 150 years or so later that Fechner’s
surprising findings could entirely be explained.

Initially, the advent of classical thermodynamics made matters worse. While
Fechner’s contemporaries approached spontaneous dynamical phenomena in chem-
istry with a sense of puzzled admiration, many chemists during the second half of

!Note, however, that Th. Fechner himself frequently refers to his own experiments as a mere
confirmation of previous experiments conducted by the chemist Wetzlar in 1827.
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the 19th century considered such reports as evidence for non-serious scientific work
or, at best, as an irrelevant curiosity. At the heart of this uptight, dogmatic view lay
doubtlessly the strict statements of the second law of thermodynamics regarding the
immutable increase in entropy during irreversible processes in closed systems.

With the formulation of quantitative relations valid in near-equilibrium situations,
the notion of fluxes, forces and stationary states eventually arrived in textbooks on
thermodynamics during the first half of this century. Still, another rigid evolution
criteria of ”"no return” - this time pertaining to the rate of entropy production -
determined the fate of processes in the linear regime and left no room for sustained
periodic rates.

Finally, De Groot, Prigogine and Glansdorff [2, 3], among other people, extended
our view of thermodynamics to far-from-equilibrium processes introducing the notion
of open systems with the ability to exchange mass and energy with their surroundings.
In so doing, they could loosen the seemingly tight grip of the second law, but instead
had to throw out most quantitative relations on state functions valid in the non-linear
regime leaving behind a generalized evolution and a stability criterion only. These
thermodynamic relations, however, usually are little instructive for an understanding
or prediction of complex chemical reaction processes.

Meanwhile, scientific folk of various separated disciplines such as theoretical physics,
hydrodynamics, bifurcation theory, laser physics, biomathematics, computer science,
engineering or theoretical biology etc. started talking to each other realizing that the
dynamics of their nonlinear systems under investigation had much more in common
than they would have thought. Thus, certain scientific communities increasingly grew
together thanks to the gradual usage of common mathematical tools and terminologies
for the kinetic description of the complex spatial and temporal phenomena observed
in models and experiments. This was the time when a sort of ”Metadiscipline” was
born referred to as ”Complex Dynamical Systems Theory” or ”Nonlinear Dynam-
ics”; its goal has been to provide an interdisciplinary framework for the modeling of
qualitatively similar natural phenomena. Yet the significance of this framework was
not restricted to common mathematical tools, important though that is. Rather, the
concepts of Nonlinear Dynamics evidence a certain inner functional relation between
many natural processes which had been unknown until then. Needless to say that
the emerging computer power catalyzed this development further providing the pos-
sibility of numerical solutions to equations previously too hard to tackle. The theory
of nonlinear dynamical systems became finally appealing even for economists, social
sciences and certain branches in humanities. Admittedly fascinating, though, it still
remains to be seen whether or not the application of physical concepts in these areas
will meet the expectations.

In the 1970s and 1980s, it was dawning on more and more chemists that it is the
kinetic approach of Nonlinear Dynamics rather than pure thermodynamics which can
possibly provide valuable help for understanding chemical self-organizing instabilities
when the deviations from equilibrium became sufficiently marked. In this context the
pioneering theoretical work by Meinhardt and Gierer [4, 5, 6] and O.E. Rossler [7, 8]
is worth mentioning. At the same time, allegedly singular experimental findings, e.g.
the oscillatory Belousov-Zhabotinskii reaction [9, 10] or aperiodic biochemical enzyme
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reactions [11], were suddenly seen in the light of the new paradigm and fit smoothly
in the theoretical framework. Sparked by ever more complex calculations of spatially
extended reactive systems, spatial chemical phenomena increasingly came to the fore;
they involved sustained, transient, propagating or stationary macroscopic inhomo-
geneities in concentrations, potential or temperature. The associated research field
occasionally referred to as ”chemical pattern formation” deals with the systematic
hunt for novel spatiotemporal self-organizing structures in chemistry and gradually
fascinated researchers of an increasing number of physico-chemical disciplines such as
liquid-phase reactions, combustion chemistry or surface science and catalysis.

Recent years have seen nonlinear dynamicists focusing more and more on the de-
liberate control of chemical patterns rather than on merely evidencing their existence.
”Chaos control” [12] had become the path-breaking paradigm of the early 1990s, and
again, after the temporal taming of nonlinear behavior in certain systems, controlled
spatial patterns are currently top on the research agenda.

The perception of nonlinear kinetic concepts in Electrochemistry pretty much
followed a similar, slightly delayed pattern as pointed out above. At first, elec-
trochemists gathered an enormous amount of experimental observations, data and
mechanistic speculations on oscillatory electrochemical processes [13]. Naturally, elec-
trodissolution rather than electrocatalytic systems were dominating the picture, since
self-organizing systems of this kind have long been known and new ones were easy
to find. This becomes comprehensible if one recalls that electrochemistry is usually
conducted far from equilibrium and that the interplay of chemical reactions, mass
transport and electrical quantities usually provides an appropriate number of differ-
ent time scales. Both conditions are well known to be necessary for the occurrence of
spontaneous temporal periodic behavior. Thus, electrochemistry offers ideal dynam-
ical systems for the study of the spontaneous emergence of order. Very early, even
spatial phenomena like propagating waves had been observed in electrodissolution
systems [14]. Early dynamical modeling, though, still had to involve discontinuous
chemical kinetics around the Flade potential in order to account for periodic behavior.
In the early 1970s, Wojtowicz [15] surprised the electrochemical community with con-
cepts on possible mechanistic origins of electrochemical oscillations such as a negative
differential resistance which are partially still valid to date.

Until that time, prominent electrocatalytic reaction systems exhibiting kinetic os-
cillations involved the oxidation of small organic compounds which was discovered
by E. Miiller [16], as well as the reduction of certain anions like S203~ [17, 18, 19].
The latter reaction constitutes the most prominent example of a simple, one-reaction
electrocatalysis and was thoroughly studied by Frumkin [17]. The former electro-
catalytic reactions were known to be nontrivial electrocatalytic systems in the sense
that they involved multiple and parallel reaction steps; they were intensively studied
under both oscillatory and stationary conditions owing to their emerging technolog-
ical importance for continuous energy conversion (direct methanol fuel cell). Con-
sequently, a number of disputed mechanistic hypotheses pertaining to the oxidation
of methanol and formic acid have been put forward [20]. Even though it was known
that a successful kinetic description of far-from-equilibrium behavior provides mean-
ingful conclusions as to the plausibility of a hypothetical mechanism, no one had ever
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clearly shown by means of kinetic models that any of the proposed reaction schemes
was actually able to account for the experimental nonlinear features.

Eventually, in the mid 1980s deterministic chaos had also been reported in exper-
imental electrodissolution systems [21, 22]. Still, despite a great number of studies on
electrochemical self-organization, the 1980s witnessed no significant progress in the
mechanistic understanding of the origin of spontaneous instabilities.

Finally, it was Koper [23] who succeeded in giving stringent evidence for the crucial
role of a negative differential resistance in the occurrence of temporal electrochemical
instabilities such as bistability and oscillations. Using the methodology of Nonlinear
Dynamics he impressively showed for electrochemical systems that operating with
simple prototype models may suffice in order to account for complex self-organization.
His work also included a refined categorization of electrochemical oscillators with
respect to the operating conditions.

In the meantime, another non-trivial self-organizing electrocatalytic system had
attracted considerable attention. The oxidation of hydrogen in the presence of anions
and metal cations [24, 25, 26, 27| allowed for both potentiostatic and galvanostatic os-
cillations and, therefore, turned into a workhorse for galvanostatic oscillatory systems
[28, 29]. Over the last few years more and more distinct electrochemical oscillatory
phenomena have been reported in literature (e.g. [30] and [31] or see the review
[32]). In order to gain a systematic understanding of these oscillators, a classification
with respect to the mechanistic origin of the instability is a useful tool [33]. Still,
an increasing number of chemical realizations of periodic instabilities requires ever
more sophisticated methods for a unique experimental identification of the respective
mechanistic category. Thus, a comprehensive mechanistic categorization scheme in
combination with a ready identification procedure seemed presently to be appropriate.

Inhomogeneous spatial structures on electrode interfaces - though long ago ob-
served in electrodissolution systems [14, 34] - had remained the last theoretical and
experimental challenge where electrocatalytic processes were concerned. The major
reason for this lies in the necessity for sophisticated imaging techniques for either
potential or chemical surface species. Again, the simplest electrocatalysis, the Sgng
reduction on Ag, was subjected first to a spatiotemporal investigation of the electri-
fied interface employing both novel (plasmon microscopy [35]) and classical (potential
microprobes [36]) imaging techniques. The principal experimental findings involved
locally triggered, accelerated potential fronts under bistable conditions; importantly,
the acceleration could be reproduced by a numerical model assuming a nonlocal mi-
gration coupling across the electrolyte [36, 37, 38, 39]. The model has recently been
extended by J. Christoph to account for centro-symmetric electrode geometries and
the effect of the range of the nonlocal coupling on the front velocity has theoreti-
cally been examined [40, 41]. However, the question of whether an electrocatalytic
systems involving a more complex chemistry could lead to the observation of more
complex spatiotemporal self-organization was still unclear. Also direct experimental
evidence for the relations between certain model parameters and the nature of the
migration coupling as suggested by theory [40] was missing. Thus, as far as spatial
patterns are concerned, electrochemistry is still in the stage of collecting phenomeno-
logical data and matching them to models. The possibility of a practical leverage for
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inhomogeneous electrocatalysis remains to be seen.

In summary, despite of over 150 years of complex dynamical phenomena, electro-
chemistry faces a number of ongoing, ever intriguing problems concerning spontaneous
self-organization: (i) the mechanistic clarification of the temporal self-organization of
individual important reaction systems, (ii) the physical and mechanistic origin and
scope of spatial-pattern forming processes as well as (iii) the possibility of a practical
leverage for self-organizing far-from-equilibrium structures.

1.2 Essentials of dynamical systems theory

This section will provide a brief introduction to some essential concepts of far-from
equilibrium self-organization phenomena occurring in complex nonlinear (chemical)
systems. Dynamical systems theory puts emphasis on the kinetic description of non-
linear phenomena where thermodynamics fails to provide a proper theoretical frame-
work. The treatment is intentionally not an in-depth mathematical essay; rather it
will focus on only those concepts which will be necessary for a comprehension of sub-
sequent chapters; it will, therefore, remain incomplete. More complete treatments
of this subject, especially with respect to chemical systems, can be found in ref.
[42, 43, 44, 45, 46].

1.2.1 Temporal self-organization phenomena in chemistry

In the absence of any spatial inhomogeneity the temporal evolution of a chemical
dynamical system can be described by coupled ordinary differential equations

x =F(x,p), (1.1)

where F represents the set of nonlinear differential equations, the vector x consists
of the individual state variables x;, and p denotes the vector of system parameters.
The number of state variables n defines the dimension of the phase space, while the
parameters form a parameter space. Generally, there are many parameters involved
in a nontrivial chemical system, but for practical reasons only a few of them can and
will be varied experimentally.

It is useful to be very precise about the usage of the terms parameter and vari-
able. Parameters are quantities which can usually be controlled by the experimenter
(constraints). Examples are the externally applied potential U in electrochemistry,
temperature, bulk concentrations of certain chemical species or pH etc. Variables,
however, are typically time-dependent quantities which are chosen by the system, i.e.
by its governing dynamical relations. Examples are the double layer potential ¢ or the
electrical current in a potentiostatic experiment, the concentrations of surface species
or, in general, of any intermediate. The total current in a galvanostatic experiment,
however, changes back into a parameter as it is chosen prior to the experiment. In
upcoming chapters, it will be seen that it is in general experimentally feasible to
transform parameters into variables and vice versa by appropriately changing the
experimental conditions.
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Usually for given parameters, the dynamical system under consideration, i.e. the
solution (trajectory) of eq. 1.1, autonomously evolves towards a limit set as time
approaches infinity. In physically meaningful systems, there are always one or more
limit sets in phase space exactly one of which is approached depending on the ini-
tial values of the variables. Time-independent limit sets, i.e. long-term solutions,
are called fized points or stationary states (steady states). It often occurs in com-
plex systems that several steady states coexist in phase space. Limit cycles describe
periodically oscillating limit sets, i.e. closed curves in phase space. Phenomenologi-
cally, oscillations can be characterized as harmonic, when involving smooth sinusoidal
changes, or relaxation oscillations which exhibit sharp changes due to two very dif-
ferent time scales. Mized-mode oscillations represent a limit set where two distinct
modes of oscillations are periodically interwined: regular large-amplitude relaxation
oscillations are interspersed by small-amplitude harmonic oscillations. Usually, exper-
imental mixed-mode data are rarely strictly periodic owing to the narrow parameter
ranges of mixed-mode regimes which leads to random jumps of the system trajectory
between different mixed-mode states. Finally, the most complex limit set is referred
to as chaotic attractor which leads to aperiodic trajectories with high sensitivity to
initial conditions. Ewven though the system dynamics appears to be random, the
unpredictable chaotic trajectory fulfills the deterministic equations at all times.

Limit sets can only be reached by the system if they are stable in all directions.
Here, stability of a limit set means that nearby trajectories flow towards the limit set.
Equally, the term stability is used for characterizing the current state of a dynamical
system sitting on a stable limit set. There, the system shows an insensitivity to small
perturbations (fluctuations): if a small perturbation takes the system away from the,
for instance, steady state, the system will return to the stable state after the pertur-
bation has died out. Conversely, instability implies that any fluctuation, no matter
how small, will make the system leave that state. If there are trajectories in phase
space that flow both towards and away from a limit set, this limit set solution is of a
saddle-type, e.g. stationary saddles or saddle-orbits. Note that two coexisting stable
steady states imply the existence of a third saddle-type state (bistability) the unsta-
ble direction of which separates the basins of attraction of the stable steady states.
Also, in general, spontaneous oscillations in a physico-chemical system are related to
the fact that a steady state has become unstable and imply its existence somewhere
in phase space. Therefore, the question of why stable oscillations occur always in-
volves the question of why a steady state has become unstable. Stability of simple
limit sets, such as steady states or limit cycles, can be assessed by a linear stability
analysis. This is a standard technique which studies the stability of the evolution
equations in the linear neighborhood of a steady state where nonlinear term are neg-
ligible. Solving the linearized equations results in the calculations of the eigenvalues
of the associated Jacobian matrix (g—z‘ss). (Linear) stability is determined by the
signs of the eigenvalues: negative eigenvalues imply a damping out of fluctuations,
while positive ones represent an exponential growth of perturbations, i.e. instability.
According to their eigenvalues, steady states can be classified into nodes (only real
eigenvalues) and foci (complex conjugate eigenvalues) which can be either stable or
unstable. Similarly, the stability of the stationary intersection of a limit cycle with an
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Figure 1-1: Schematic phase portrays near a saddle-node bifurcation at p=0.

n — 1 dimensional hyperplane determines the stability of the limit cycle. Since linear
stability only looks at the immediate properties near a steady state, it represents the
local nature of the trajectories. Global stability analysis, in contrast, requires more
sophisticated non-linear stability tests.

Any significant qualitative change of the dynamical behavior of a system upon
variation of a parameter is called a bifurcation and is caused by changes in stability
of the limit set on which the system was sitting. Bifurcation theory seeks to provide a
precise formalism in order to describe and predict when a certain bifurcation can occur
in a set of differential equations. Bifurcation theory also teaches a lot on the universal
and characteristic properties of bifurcations which helps experimentalists identify the
occurrence of a certain bifurcation in experiments. Three bifurcations are of particular
interest for the spontaneous temporal pattern formation in electrochemical systems.
The saddle-node bifurcation and the Hopf bifurcation are both local in nature and can,
therefore be identified by local stability analysis, whereas the homoclinic bifurcation
represents a global bifurcation of a vector field. The homoclinic bifurcation can further
be subdivided into a saddle-loop bifurcation and a saddle-node bifurcation on a limit
cycle (SNIPER= saddle-node infinite period).

A saddle-node bifurcation is the simplest way of spontaneous temporal self-orga-
nization and occurs when one eigenvalue passes through zero. Here, a saddle and a
steady state annihilate each other or are created out of the blue. Fig. 1-1 illustrates
the characteristic changes in phase space as the parameter p passes through the saddle-
node bifurcation at p = 0. Where the system will settle after the stable steady state
and the saddle have annihilated each other, cannot be extracted be the linear analysis.
In practice, however, the system will settle on another steady state or on periodic
solutions. This is why this bifurcation is typically encountered at the boundaries of
a bistable parameter region: in chemical systems, saddle-node bifurcations come in
pairs and lead to S-shaped hysteresis which is observable as a parameter is swept
back and forth across the bistable region.

Hopf bifurcations are the origin of spontaneous periodic self-organization. They
constitute dynamical scenarios where a focus loses stability and a limit cycle with
initially small amplitude is born. Here the real part of a pair of complex conjugate
eigenvalues passes through zero. If the Hopf bifurcation is supercritical (soft transi-
tion), see Fig. 1-2, the oscillatory state is stable and oscillations will be observed with
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Figure 1-2: Schematic bifurcation diagram and phase space plots near a supercritical
Hopf bifurcation.

the amplitude growing gradually as one moves away from the bifurcation point. If the
Hopf bifurcation if subcritical (hard transition),see Fig. 1-3, oscillations of immediate
finite amplitude may or may not be observed. The supercritical Hopf bifurcation is
the most widespread way in which oscillations occur in chemical systems.

A generic homoclinic bifurcation in one parameter is the saddle-loop bifurcation;
it appears when a limit cycle collides with a saddle (see Fig. 1-4). Upon collision the
outset (unstable manifold) of the saddle is seen to be identical with its inset forming
a closed loop called homoclinic orbit. Approaching this bifurcation the period of the
oscillations exhibit a typical scaling behavior until it becomes infinite precisely at the
bifurcation. In chemical practice, a saddle-loop bifurcation represents a typical way
in which oscillatory behavior disappears after being born in a Hopf bifurcation given
that bistability and oscillatory behavior coexist.

Finally, Fig. 1-5 illustrates briefly the most common bifurcations of co-dimension

two, i.e. points where two or more bifurcations of the type discussed above coincide
[42].

1.2.2 Spatial coupling and spatiotemporal patterns

Up to now it has been assumed that there are no spatial inhomogeneities present in
the chemical system. In real systems, however, the state variables tend to exhibit
some dependence on spatial coordinates due to incomplete rotation, heating etc. of
the reaction vessel. Especially in heterogeneous catalysis, no simple way for avoiding
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Figure 1-3: Schematic bifurcation diagram and phase space plots near a subcritical
Hopf bifurcation.
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Figure 1-4: Schematic bifurcation diagram and phase space plots near a saddle-loop
bifurcation.
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Figure 1-5: Examples of unfoldings of co-dimension 2 bifurcations: a) Cusp C, b)
Degenerate Hopf DH, c¢) Takens-Bogdanov point TB, d) Saddle-node-loop SNL, e)
Neutral saddle-loop NSL, f) Double saddle-loop bifurcation DSL (adapted from [47]).
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spatial inhomogeneities of surface species exists. Spatial coupling of locally tempo-
ral reaction elements leads to the emergence of spatial patterns in extended systems
ranging from randomly distributed inhomogeneities (spatial fluctuations) to cooper-
atively emerging far-from equilibrium spatiotemporal structures (dissipative spatial
patterns).

Spatial coupling in chemical systems is generally based on gradients in certain
quantities leading to spontaneous transport (flux) of matter or energy; the fluxes
typically try to annihilate the gradients. Thus, depending on the range of the spatial
coupling one could say that neighboring or distant parts of the reactive chemical
system "feel” each other’s presence. The most widespread entities transported across
chemical systems are heat due to a temperature gradient (heat flur) as well as mass
due to concentrations gradients ( diffusional fluzx), velocity fields (convective transport)
or in electrochemistry due to potential gradients (migration fluz).

All these types of coupling are local couplings in the sense that each infinitesimally
small location of the extended systems is coupled to the immediate neighboring region
only. It is further assumed that the time scale of the chemical reaction processes is
small ,i.e. fast, compared to the rate of spatial propagation of mass or heat. Following
textbooks [48, 49] one can write the evolution equation for a isothermal set of reactive
chemical species in one space dimension most generally as

3} .
5= F(x,p) —divJ (1.2)

Ori  zF 00
‘0z RT lxlaz

Jl’ = — + 2;U, (13)
where the term J includes the spatial fluxes of all species x; in the z direction, D;
denotes the diffusion constant, ¢ the potential inside the electrolyte, v, the velocity
component in z direction and z; and F' have their usual meaning. In the absence
of convection and migration one recovers the classical reaction-diffusion equations
applicable to homogeneous and heterogeneous reaction systems alike [50, 51, 52]

Fra F(x,p) + DV?x. (1.4)

Depending on the local dynamics and the spatial dimensionality spatiotemporal
patterns such as trigger waves (pulses or fronts), target patterns, spirals, chemical
turbulence etc. are possible solutions. If F exhibits bistable behavior, the most
common pattern consists of chemical trigger fronts, i.e. a moving interface between
domains of different stable steady states. The creation of a trigger front can be
rationalized as follows: Consider a system with an up and a down state. Sitting
initially in the down steady state the bistable system is locally perturbed at some point
to the up state. Subsequently, an interface (double front or circular wave, depending
on the spatial dimensionality) emerges and the up state domain starts invading the
domain of the down state until the entire system is in the up state. The front velocity
is a function of the diffusion constant as well as of the chemical reaction rates and,
therefore, is constant in reaction-diffusion systems at given parameters. The direction
in which the front moves is determined by the relative stability of the two steady
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states. Since a one-variable nonlinear system allows the formulation of a kinetic
potential, the relative stability is analytically well defined for each parameter value
along the hysteresis. If two or more variables are involved, however, the assessment
of the relative stability of steady states requires numerical methods. Fronts have
been observed and successfully modelled by eq. 1.4 in numerous chemical systems
such as catalytic surface reactions under UHV conditions [53, 52] or the Belousov-
Zhabotinskii reaction [51]. Note that trigger fronts are transient spatial patterns.
Stationary spatiotemporal patterns due to local coupling in eq. 1.4 are possible when
certain experimental conditions are fulfilled: Turing structures [54] are characterized
by a time-independent, periodic pattern in space, whereas standing waves [55] exhibit
periodic behavior in space and time with one or more points along the system at rest
(wave nodes). The number of locally coupled experimental systems exhibiting such
structures is still rather limited [51, 53, 52].

In contrast to local coupling, nonlocal coupling implies that every location of the
extended chemical system can immediately ”feel” even remote changes in the reactive
system. The strength with which remote events are influencing the local dynamics
may vary with distance (global versus nonlocal coupling). Chemical nonlocality is
often related to the small ratio of the time scales of chemical kinetics and spatial
transport processes what makes perturbations appear immediately at a distant loca-
tion. Thus, even a sufficiently rapid diffusion can in principal lead to a quai-nonlocal
effect. Still, certain physical entities tend to be naturally transported on a time
scale faster than chemical reaction kinetics and, therefore, can be considered as non-
locally operating couplings. Nonlocal coupling can arise inherently in experimental
reaction-diffusion systems when certain experimental conditions are applied. In sur-
face reactions under UHV conditions a global mass coupling across the gas phase may
be present for small pump rates as well as well-mixed gas phases, as local adsorption
changes the partial pressure of the gaseous reactants immediately across the entire
isothermal catalyst [52]. Moreover, in thermokinetic catalytic surface reactions in-
volving an electrical heating of the catalyst implies a global coupling of the current, as
any local change of the reaction rate leads to changes in the local electrical resistance
and, in turn, immediately is followed by changes in the total current across the cata-
lyst [56, 57, 58, 59]. In the latter system the presence of a negative nonlocal or global
coupling across the systems resulted in the emergence of stationary spatiotemporal
patterns such as standing fronts.

In general, stationary spatial patterns are easily obtained in reaction-diffusion
systems when a negative long-range interaction is operating across the system. For
nonlocal couplings, however, qualitatively new behavior can be expected.

1.3 Scope and outline of this thesis

The overriding objective of the present thesis is the contribution to our understand-
ing of spontaneous self-organization phenomena in electrochemistry with an emphasis
on electrocatalytic systems. The thesis deals with the experimental and theoreti-
cal investigation of certain self-organizing electrochemical reactions under far-from-
equilibrium conditions in order to achieve a mechanistic understanding by means of
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the conceptual machinery of Nonlinear Dynamics. In so doing, the present thesis
seeks to give answers to several of the open problems in electrochemistry:

e Mechanistic analysis and clarification of temporal oscillatory self-organization in
a number of electrocatalytic reactions is achieved using experiments and kinetic
modeling,

e Spatiotemporal patterns in a complex electrocatalytic electrode process are in-
vestigated by means of an electrochemical imaging technique placing special
emphasis on the clarification of the nature of the spatial coupling.

e A unifying categorization scheme for electrochemical oscillators is suggested
including all relevant mechanistic information known so far. In addition, an
operational procedure for a systematic classification of an unknown oscillator is
provided.

The detailed outline of the thesis is as follows:

Chapter 2 and 3 cover the basic conceptual notions of the electrochemical interface
and the general experimental details of methods applied in upcoming chapters.

The oscillatory electrocatalytic oxidation of formic acid on Pt single crystals is the
primary subject of chapters 4 and 5. In chapter 4, the experimental characterization
of temporal oscillatory regimes found on all three low-indexed Pt single crystals (100),
(110) and (111) is reported. Chapter 5 deals with the development of a detailed kinetic
model for the formic acid oxidation and gives exhaustive account of the mechanistic
origin of the oscillations.

The experimental and theoretical investigation and mechanistic clarification of
another class of oscillatory electrocatalytic reactions - the reduction of IO3 anions
and related systems - is described in chapter 8.

Intriguing spatiotemporal patterns on polycrystalline Pt electrodes during the
formic acid oxidation system are the subject of chapter 6. Here, the parameter
dependence as well as the underlying spatial coupling of the spatial structures are
examined

Chapters 7 and 9 focus on a general mechanistic classification of electrochemical
oscillators. While chapter 7 stresses the leverage of feedback control methods for the
purpose of a classifying distinction between oscillators exemplified in the experimental
Hy oxidation system, chapter 9 gives a detailed account of all relevant mechanistic
categories of electrochemical oscillators and their experimental features along side
with a practical experimental classification procedure.

Finally, chapters 10 and 11 conclude this thesis summarizing its important ele-
ments.
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