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In the Western society, non-alcoholic fatty liver disease (NAFLD), characterized by the
excessive accumulation of fat in the liver, represents the most common cause of chronic
liver disease. If left untreated, approximately 15%–20% of patients with NAFLD will
progress to non-alcoholic steatohepatitis (NASH), in which lobular inflammation,
hepatocyte ballooning and fibrogenesis further contribute to a distorted liver
architecture and function. NASH initiation has significant effects on liver-related
mortality, as even the presence of early stage fibrosis increases the chances of adverse
patient outcome. Therefore, adequate diagnostic tools for NASH are needed, to ensure
that relevant therapeutic actions can be taken as soon as necessary. To date, the
diagnostic gold standard remains the invasive liver biopsy, which is associated with
several drawbacks such as high financial costs, procedural risks, and inter/intra-observer
variability in histology analysis. As liver inflammation is a major hallmark of disease
progression, inflammation-related circulating markers may represent an interesting
source of non-invasive biomarkers for NAFLD/NASH. Examples for such markers
include cytokines, chemokines or shed receptors from immune cells, circulating
exosomes related to inflammation, and changing proportions of peripheral blood
mononuclear cell (PBMC) subtypes. This review aims at documenting and critically
discussing the utility of such novel inflammatory markers for NAFLD/NASH-diagnosis,
patient stratification and risk prediction.
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INTRODUCTION

To date, non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease
worldwide. It is a very heterogeneous disorder, that finds its aetiology in a complex and
multifactorial interplay of different parameters, such as obesity, a sedentary life-style, the
composition of the main nutrient-intake, insulin resistance, diabetes, alterations in the gut
microbiome, and genetic predisposition (1). It mainly manifests as an excess fat disposition in
the liver (≥5% hepatic steatosis), independent of injury or inflammation, a condition termed isolated
steatosis or non-alcoholic fatty liver (NAFL). When not intervened, NAFL may progress to non-
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alcoholic steatohepatitis (NASH), which is characterised by the
presence of injury, hepatocyte ballooning, inflammation, and a
varying extent of fibrosis, and which enhances the risk of
cirrhosis and hepatocellular carcinoma (HCC) development,
thus strongly influencing liver-related mortality (2). Due to the
current epidemic in excess body weight and the aging – and thus
more diabetes-susceptible - world population, the NAFLD
pathology will only increase further into modern society.
Indeed, while in 2016, in the USA alone, the number of
NAFLD patients clocked at 85.3 million, mathematical models
estimate a prevalence of 100.9 million cases in 2030, a substantial
increase of 18%. The numbers of patients suffering from the
more severe NASH are thought to display an even more steep
increase of 56%, going from 17.3 million patients in 2016 to an
estimated 27 million in 2030. Subsequently, significant increases
in the number of patients suffering from decompensated
cirrhosis, HCC, and liver-related deaths will be observed (3).

Although the severity of NAFLD-prevalence and potential
critical outcome, no efficient specific pharmacological
interventions are currently available, besides the obligatory
changes in lifestyle. Multiple clinical trials, however, are ongoing,
evaluating the potential efficacy of novel pharmacotherapeutics
in NAFLD patients (4). As the presence and severity of
fibrosis has been identified as the major indicator of poor long-
term outcome, including death and the need for a liver biopsy,
in NASH patients (5, 6), it has become a critical determinant
for the inclusion of NAFLD patients in clinical trials (7). Moreover,
therapeutically obtained fibrosis regression is found to be
closely correlated to the resolution of steatohepatitis and
improvement of the NAFLD activity score (NAS) (8, 9),
therefore highlighting the importance of evaluating the different
NASH parameters for assessment of disease improvement.
An accurate and efficient diagnostic tool for NAFLD evaluation
is thus crucial to ensure a timely trial-inclusion of at-risk
patients as well as subjecting these high-risk patients to
more intense lifestyle interventions and surveillance for disease-
related complications (10).
CURRENT CLINICAL DIAGNOSTIC
MEANS FOR FATTY LIVER DISEASE

At present, the liver biopsy, either percutaneous or transjugular,
remains the gold standard for disease evaluation in patients with
NAFLD. This invasive procedure is however associated with
multiple drawbacks, including the limited representation of the
total liver mass, intra- and interobserver variability, pain and
post-procedure complications, and an extensive financial cost
causing a subsequent doubtable cost-effectiveness ratio (11). The
poor inter-reader variability was recently stressed by a secondary
analysis from a (negative) clinical trial, in which 678 paired
biopsies from 339 patients were independently read by three
hepatopathologists. Particularly, the scoring for histological
NASH, as well as treatment responses (NASH resolution,
fibrosis improvement) showed a low inter-reader reliability
(12). In addition, the high financial cost and the potential
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procedural risks, withhold the liver biopsy to be used as a tool
for regular patient follow-up in medical practice, creating a
severe hiatus in NAFLD-management. Multiple non-invasive
techniques have therefore been suggested to be more suitable
as manner offirst-line investigation, including laboratory (blood)
tests, and imaging-based tools (13).

Blood-based markers can be divided into direct markers,
representing ECM production and degradation (hyaluronic
acid, matrix metalloproteases, etc.), and indirect markers which
indicate liver function and inflammation (aminotransferases,
platelet counts, etc.) (11). Such circulating markers are often
combined with risk characteristics (diabetes, age, etc.) into
diagnostic scores to obtain maximum sensitivity and specificity.
One popular example comprises the NAFLD fibrosis score (NFS),
which includes age, aminotransferases, albumin, body mass
index (BMI), platelet count, and glucose intolerance status,
and which has a high negative predictive value for excluding
NAFLD-patients with advanced fibrosis (14). Examples of
other serological scoring tools are Fib-4, AST-to-platelet
ratio index (APRI), Fibrotest, and enhanced liver fibrosis
test (ELF). A recent meta-analysis, including 64 studies with a
total of 13,046 NAFLD patients, compared the diagnostic
performance of APRI, Fib-4, BARD score, and NFS for
identification of advanced fibrosis, and reported the respective
summary AUROCs of 0.77, 0.84, 0.76, and 0.84. This study
concluded that Fib-4 and NFS have, of the analysed serological
scoring tools, the highest accuracy and negative predictive
value for ruling out advanced fibrosis (15). Moreover, as Fib-4
and NFS show the highest extent of validation in different
NAFLD populations, with consistent accuracy in excluding
advanced fibrosis (generating negative predictive values of over
90%), these scores are proposed as first-line screening method in
clinical settings where more advanced/expensive tests are
unavailable (16).

In the process of chronic liver damage, the liver acquires a
stiffened character, due to the excessive deposition and
accumulation of ECM by activated myofibroblasts. Such
important change in elasticity may be visualized and quantified
using different imaging-tools, having each their own accuracy,
methodology, handling and interpretation (17). Especially the
evaluation of liver stiffness through abdominal ultrasound has
found its way into clinical practice, and comprises acoustic
radiation force impulse (ARFI), (point) shear wave elastography,
and (vibration-controlled) transient elastography (TE; Fibroscan),
this latter being the most popular technique in current clinical
practice (17). However, although specific adaptions (such as
the development of an XL-probe) increase the utility of TE
in patients with central obesity, excessive fat accumulation
may still bear a risk of technical failure (18). One important
advantage of TE is its potential to simultaneously evaluate the
hepatic fat content through the additional feature of controlled
attenuation parameter (CAP) (19). Furthermore, the combination
of liver stiffness and CAP measures by TE with serological
markers such as AST (FibroScan-AST/FAST score) can increase
its accuracy in identifying patients at risk for progressive
NASH (20).
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Magnetic resonance imaging-based techniques, so called
magnetic resonance elastography (MRE), represent another
method of liver stiffness evaluation. MRE-results are less
influenced by the presence of obesity, and may also
simultaneously evaluate the extent of fibrosis and steatosis, the
latter through use of the proton density fat fraction (PDFF), of
which the accuracy has been suggested to be even higher than
CAP (21). However, while MRI-based scoring tools have greater
potential of correctly identifying the extent of steatosis and
fibrosis in the affected liver, as compared to ultrasound-based
techniques, due to their higher costs and low availability, they are
more predominantly used in a research setting (22).

The abovementioned non-invasive diagnostic tools, are useful to
narrow down the indication for liver biopsy, and help decide on the
further clinical management of the patient. For example, in
individuals suffering from obesity, who do not present any other
feature of the metabolic syndrome, who have an APRI score ≤ 0.5, a
FIB-4 score ≤ 1.1; and TE ≤ 6 kPa, the likelihood for the presence of
significant liver fibrosis is very low, subsequently leading to a small
liver-related mortality in the timeframe of 10 years (23, 24). In these
cases, lifestyle changes combined with patient follow-up through use
of stiffness measurement, are the best approach (2). However, in
those patients with aberrant scoring values, the use of liver biopsy
remains the reference standard for confirmation and evaluation of
the presence of significant fibrosis (2).
Frontiers in Immunology | www.frontiersin.org 3
Overall, the current non-invasive scoring tools lack sufficient
sensitivity and specificity, especially for the early stages of liver
disease, to make the liver biopsy completely aberrant.
Additionally, almost no data is available on their usefulness in
clinical follow-up. Therefore, novel diagnostic strategies are
considered, focussing not only on the extent of fibrosis or
damage of the affected liver, but also on liver inflammation,
one other crucial aspect of liver pathogenesis.
INFLAMMATORY PROCESSES
DURING NASH

The pathogenesis of NAFLD relies on multiple damaging “hits”
(Figure 1), with the proliferation, dysfunction and inflammation
of adipose tissue being one of them (25, 26). Indeed, in the
visceral adipose tissue of NASH patients, an increased presence
of, among other, CD11c+CD206 and CCR2+ macrophages can
be found (27). Similar changes of intrahepatic accumulation of
CCR2+ macrophages are present in the liver, particularly in
patients with NASH-fibrosis (28). Such immune cell infiltration
is accompanied by an increased release of chemokines and
proinflammatory cytokines into the circulation, which have
proven propagating effects on liver disease and insulin
FIGURE 1 | Damaging hits during non-alcoholic fatty liver disease (NAFLD) pathogenesis. The pathogenesis of NAFLD relies on multiple damaging “hits”, including
the proliferation, dysfunction and inflammation of adipose tissue, the excessive presence of fatty acids and cholesterol in the liver and circulation, and important
changes in gut permeability and microbiota composition causing an increased release of pathogen-associated molecular patterns. Subsequent to these damaging
factors, an enhanced production and release of pro-inflammatory cytokines and chemokines is observed, creating a pro-inflammatory environment in which Kupffer
cells become activated and monocyte-derived macrophages (MoMФs) and other leukocytes are recruited to the liver.
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resistance (the so called adipose tissue – liver axis), and which
serve as fuel for local and systemic inflammation (25, 26, 29).

One other liver damaging “hit” concerns the excessive
presence of fatty acids (FAs) and cholesterol in the liver and
circulation (30). While during normal liver homeostasis, FAs are
metabolized by the hepatocytes to form triglycerides, during
NAFLD progression, an excessive amount of FAs, impaired beta-
oxidation, and diminished export of triglycerides as very low-
density lipoproteins can be observed, causing an accumulation of
saturated FAs and oxidized cholesterol in the hepatocytes. The
subsequent formation of lipotoxic species, and endoplasmic
reticulum- and oxidative-stress, leads to profound hepatocyte
damage, which may eventually cause the hepatocytes to undergo
necrosis, apoptosis, or necroptosis. Such hepatocyte death is
associated with the release of reactive oxygen species and their
cellular content, including nuclear and mitochondrial DNA,
purine nucleotides (ATP, UTP) and other damage-associated
molecular patterns (DAMPs) (30, 31). These metabolic danger
signals may activate a plethora of pattern recognition receptors
(PRRs) expressed by various liver cells, and which will trigger the
production and release of pro-inflammatory cytokines and
chemokines, creating a pro-inflammatory environment in
which Kupffer cells become activated and monocyte-derived
macrophages (MoMФs) and other leukocytes are recruited.
This recruitment of pro-inflammatory cells, which significantly
changes the immune cell composition of the liver during
NAFLD, may occur via various chemoattractant-axes,
including the CCL2/CCR2, CCL1/CCR8, CXCR6/CXCL16, and
CCL25/CCR9-pathways, with the chemoattractants being
secreted by activated Kupffer cells, liver sinusoidal endothelial
cells, and hepatic stellate cells. Besides the enhanced recruitment,
also an enhanced polarization of macrophages toward a pro-
inflammatory (“M1-like”) phenotype can be observed,
potentially caused by stimulating cytokines such as TNF and
IFN-g (30, 32).

The major changes in gut permeability and microbiota
composition, form an additional plausible harmful “hit”.
Multiple alterations can be observed that range from reduced
microbial diversity, abundance of pathogenic microbiota,
accumulation of bacterial metabolites, changes to the intestinal
virome and reduced intestinal barrier (33, 34). With these
changes, an increased release of pathogen-associated molecular
patterns (PAMPs), e.g., lipopolysaccharide (LPS) can be
observed in the portal vein and the systemic circulation, which
stimulate the respective PRRs expressed by the various liver cells,
and therefore further contribute to the pro-inflammatory liver
environment (35).

Many experimental studies revealed that the “sterile”
inflammation observed during NAFLD leads to a perpetuation
of liver disease. Indeed, studies depleting certain types of
immune cells (36, 37), or blocking the polarization and
recruitment of inflammatory cells, have led to significant
alleviation of fibrosis in various mouse models and early-stage
clinical trials (32). However, it should not be forgotten that the
inflammatory response is also crucial for healing and tissue
repair, often observed during the early stages of liver injury
Frontiers in Immunology | www.frontiersin.org 4
(38). While this dual function of the inflammatory system may
have a more hampering effect on its use as therapeutic target, the
overall presence of inflammation may represent an interesting
tool for the diagnosis and follow-up of disease (Table 1).
Therefore, next, we will describe and discuss potential new
inflammatory markers for NAFLD-evaluation.
INFLAMMATORY MARKERS

C-Reactive Protein
During the acute phase of the inflammatory process associated
with NAFLD development, an IL-6-dependent increased
transcription and subsequent release of C-reactive protein
(CRP) by the liver is observed. In the addition to the standard
techniques for CRP evaluation (mainly through immunoassay),
high-sensitivity CRP detection tests have been developed, which
thus allow the detection of low-grade systemic inflammation.
Various studies have identified elevated circulating high-
sensitive (hs) CRP levels as indicators for histology- (39, 40) or
ultrasound-based (41, 42) NASH. Elevated hsCRP levels were
even found to be associated with the severity of NAFLD (43) and
to distinguish patients with advanced fibrosis from those with
mild fibrosis (40). This latter finding also correlated to the
elevated CRP mRNA levels that were found in the liver tissue
of NASH patients (40). Additionally, elevated hsCRP levels in
NAFLD patients seem to have a predictive value for the
development of cardiovascular complications (43). Such
association between (hs)CRP levels and cardiovascular disease
has already been proven outside the NAFLD pathology (44).

Although the previous mentioned studies claim the diagnostic
utility of circulating hsCRP in NAFLD, results of other studies
contradict this hypothesis, being unable to find any relationship
between hsCRP and the extent of hepatic steatosis,
necroinflammation, and fibrosis (45, 46), especially when
hsCRP values are being corrected for visceral fat, BMI, gender
or age of the patient (47, 48). Indeed, circulating hsCRP-levels
are known to be associated with BMI, systolic blood-pressure,
waist-to-hip ratio, insulin resistance, and concentrations of HDL
cholesterol and triglycerides (49). Especially the amount of fat
seems to be an important determinant of hsCRP levels, as it has
been found that per 10% increase in BMI, circulating hsCRP
levels increase by 19-20% (46).

Pentraxin 3
Pentraxin 3 (PTX3) is a member of the long chain pentraxin
family, like CRP, and is a marker of the acute phase
inflammatory response (50). It is predominantly produced by
immune cells, although other cells and tissues may also
contribute to its production, as a response to pro-inflammatory
signals. Various studies have identified the elevated presence of
circulating PTX3 in patients with NAFLD, as compared to
controls (51–53), in NASH patients as compared to patients
with simple steatosis (51, 54) and in correlation with the severity
of hepatic fibrosis (51, 54, 55). Additionally, PTX3 levels were
associated with triglyceride concentrations, LDL-cholesterol, and
February 2021 | Volume 11 | Article 634409
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TABLE 1 | Selected experimental inflammatory biomarkers in NAFLD.

Biomarker Predominant Cellular source Application Conflicting results reported? Strength of
evidence

(high sensitivity)
C-reactive protein

Hepatocytes, macrophages,
lymphocytes

- NASH vs NAFL- NAFLD severity- prediction
cardiovascular complications

Yes, by multiple studies. CRP
seems strongly influenced by
body fat.

+/-

Pentraxin 3 Neutrophils, macrophages,
monocytes, dendritic cells

- NAFLD vs controls- NASH vs NAFL- NAFLD
severity

Yes, 1 study reported the
inability of pentraxin 3 to identify
NASH

+

Interleukins
IL-1b Monocytes, macrophages - NASH vs NAFL No ++
IL-6 Monocytes, macrophages - NAFLD vs controls- NASH vs NAFL-

advanced fibrosis vs no or mild fibrosis
No +++

IL-8 Monocytes, macrophages - NAFLD vs controls- correlation to stage of
fibrosis- correlation to NAFLD severity

No +++

IL-12 Dendritic cells, monocytes,
macrophages

- NAFLD severity No + (only 1 study)

IL-32 NK cells, monocytes, T-cells - NAFLD vs controls- NASH vs NAFL No + (only 1 study)
Lipocalin-2 Neutrophils, hepatocytes - NAFLD vs controls- NASH vs NAFL No +++
TNFa Macrophages, NK cells,

lymphocytes
- NAFLD vs controls Yes, disputed correlation with

severity of NAFLD
+

sTNFR1/2 Large variety of cell types - NASH vs NAFL- advanced fibrosis vs no or
mild fibrosis- Paediatric NAFLD vs controls-
Paediatric NASH vs NAFL

No +++

sCD14 Monocytes, macrophages - NASH vs NAFL- correlation to NAS-score Yes, disputed possibility to
indicate NAFLD/NASH

+

sCD36 Macrophages, hepatocytes - NAFLD vs controls- correlation to NAFLD
severity

No +++

sCD163 Monocytes, macrophages - NAFLD vs controls- NASH vs NAFL- NAFLD
severity- advanced fibrosis vs no or mild
fibrosis- Treatment response- Paediatric
NAFLD vs controls

No ++++

Extracellular vesicle-
phenotypes
CD14+ Monocytes, macrophages - NAFLD vs controls- NAFLD severity No + (only 1 study)
Va21/Vb11+ iNKT-cells - NAFLD vs controls- NAFLD severity No + (only 1 study)
CD14+/CD16+ Monocytes, macrophages - advanced fibrosis vs no or mild fibrosis No + (only 1 study)

Quantity immune cell
subtypes & their
phenotypes
↑ CD14+CD16++

monocytes ↓ CD14++CD16-

monocytes

N.A. - NAFLD vs controls No ++

CCR4 expression on
monocytes

N.A. - NAFLD vs controls No + (only 1 study)

TLR6 expression on
monocytes

N.A. - NAFLD vs controls- NASH vs NAFL No + (only 1 study)

CD25+CD45RA+CD4+

T-cells
N.A. - NAFLD vs controls- Significant fibrosis vs no

or mild fibrosis
No + (only 1 study)

CXCR3+CD4+ T-cells N.A. - NAFLD vs controls- Significant fibrosis vs no
or mild fibrosis

No + (only 1 study)

PD1+CD25+CD45RA+CD4+

T-cells
N.A. - NAFLD vs controls- Significant fibrosis vs no

or mild fibrosis
No + (only 1 study)

Th17/rTreg N.A. - NASH vs NAFL No + (only 1 study)
Th2/rTreg N.A. - NASH vs NAFL No + (only 1 study)
Neutrophil-to-lymphocyte
ratio

N.A. - NASH vs NAFL- NAFLD severity- advanced
fibrosis vs no or mild fibrosis- Liver disease
related mortality

No ++++
Frontiers in Immunology | www
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References for the mentioned circulating markers can be found in the main text.
N.A., not applicable; NASH, non-alcoholic steatohepatitis; NAFLD, non-alcoholic fatty liver disease; NAFL, non-alcoholic fatty liver; IL, interleukin; NK, natural killer; TNFa, tumour necrosis
factor alpha; sTNFR, soluble tumour necrosis factor receptor; CD, cluster of differentiation; iNKT, invariant natural killer; CCR, C-C chemokine receptor; TLR, toll-like receptor; CXCR, C-X-C
chemokine receptor; PD1, programmed cell death protein 1; Th, T helper cell; rTreg, resting regulatory T cells.
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waist circumference (53) and was found to be increased in obese
children and adolescents with increasing severity of fatty liver
(56). However, one study reports the inability to find any
significant diagnostic value of PTX3 for the identification of
NASH, nor any correlation with the severity of the disease (57),
thus nuancing its diagnostic utility.

Interleukins
Interleukins (ILs), a heterogeneous group of cytokines which
play essential roles on the activation and differentiation of
immune cells, have been shown to play essential roles in
NAFLD pathogenesis, what makes them interesting therapeutic
targets (58–60). Their utility in diagnosis of NAFLD has been
evaluated in various studies, and identified that several specific
interleukins possess significant sensitivity and specificity as
stand-alone marker, or in combination with other biomarkers.
We describe some of the interleukins with diagnostic potential.

Circulating IL-6 levels show significant value for the
discrimination of NAFLD patients from obese individuals
(61). Moreover, a progressive increase during the NAFLD
pathogenesis is observed, as proven by the potential of
circulating IL-6 levels to identify patients with simple steatosis
(NAFL) to healthy controls (62), to identify patients with NASH
as compared to those with simple steatosis (63), and to
discriminate NASH patients with advanced fibrosis, from
patients with no or mild fibrosis (64). Interestingly, also the
expression of its receptor (IL-6R) has been found to be elevated
in the circulation of NASH patients (63). The elevated circulating
IL-6 levels in NASH patients were found to be associated with
the hepatic IL-6 protein levels and the overall degree of hepatic
inflammation and fibrosis (65). It should be noted that on
mRNA-level, one other study found no difference in hepatic
IL-6 expression between individuals with NASH and those with
simple steatosis (40).

In contrary to IL-6, the hepatic mRNA-expression levels of
IL-8 are significantly increased in NASH patients with advanced
fibrosis. IL-8 is an important chemoattractant for neutrophils
and possibly other myeloid immune cells (66). Such changing
IL-8 levels are reflected in the serum of these NASH patients, as
elevated circulating IL-8 levels are found to correlate to the stage
of fibrosis (67). Moreover, IL-8 levels can identify the presence of
significant fibrosis in NASH patients (68), and are elevated in
NAFLD patients when compared to both obese and non-obese
controls (61). Additionally, a positive correlation between
circulating IL-8 levels and the histological NASH parameters,
lobular inflammation and hepatocellular ballooning, was
observed in NASH patients suffering from (morbid) obesity
(68, 69). The importance of IL-8 as diagnostic tool is further
demonstrated by the possibility to, as only parameter in a panel
of 24 analysed cytokines, significantly correlate with hepatic
fibrosis after controlling for age, sex, BMI, hypertension,
metabolic syndrome, and diabetes mellitus (67).

IL-12 is a pro-inflammatory cytokine, known for its
aggravating effect on liver disease, through the induction of a
T-helper (Th)-1 phenotype in Th cells and inhibition of the Th-2
phenotype (70). An elevation of circulating IL-12 levels is
Frontiers in Immunology | www.frontiersin.org 6
associated with NAFLD-severity, as observed in an ultrasound-
staged NAFLD population of 100 individuals (71).

Transcriptomics analysis on hepatic tissue identified up-
regulated IL-32 levels in NAFLD patients, as compared to
liver tissue obtained from obese individuals showing no
signs of hepatic steatosis. Such elevated IL-32 mRNA levels
were found to be associated with body mass index (BMI),
aminotransferases, NAFLD activity score, and homeostasis
model assessment of insulin resistance (HOMA-IR) index (72).
Another transcriptomics-based study, including NAFLD
patients with and without the PNPLA3 I148M genetic risk
variant, identified a similar robust up-regulation of IL-32 in
individuals with a severe phenotype (defined as NAFLD activity
score ≥ 4, fibrosis stage ≥ 2, or presence of steatohepatitis),
independently of the underlying genotype. The evaluation
of circulating IL-32 levels identified its potential to diagnose
NAFLD, and development of NASH. Surprisingly, these elevated
levels were found to be independent of aminotransferases. No
differences between PNPLA3 I148M carriers and non-carriers
were observed (73).

TheNAFLD pathology is strongly associated with inflammasome
activation, with the nucleotide-binding oligomerization domain-
like receptor pyrin domain containing 3 (NLRP3) inflammasome
being the most extensively studied. In the presence of danger
signals, the NLRP3 protein complex activates the protease
caspase-1, which initiates the maturation of the pro-inflammatory
cytokines IL-1b and IL-18. In the liver, the NLRP3-caspase-1
complex is predominantly expressed in KCs, but may also
be present in parenchymal cells and other inflammatory
cells (74). IL-1b plays a key role in liver disease, as it affects
both steatosis, inflammation and fibrosis. Indeed, IL-1b stimulates
triglyceride and cholesterol accumulation in hepatocytes,
promotes the recruitment of immune cells through up-
regulation of ICAM-1 on liver sinusoidal endothelial cells, and
stimulates local inflammation through induction of IL-6
production (59). This strong association of IL-1b with disease
severity is also reflected in the circulation, as elevated blood-
levels of IL-1b are found in patients with NASH, compared
to those with simple steatosis (75, 76). Interestingly, also
elevated hepatic and circulating levels of IL-1 receptor antagonist
(IL-1RA) are observed in NASH patients, and were even found
to be correlated to the degree of lobular inflammation (77).
While circulating IL-18 levels show a positive correlation with
waist circumference, insulin resistance, the development of
atherosclerosis, and triglyceride content in patients with metabolic
syndrome (78), no changes in circulating expression levels
were observed between NASH patients and patients with simple
steatosis, or NAFLD patients and healthy individuals (79, 80).
Remarkably, in mice receiving a “American lifestyle-induced
obesity syndrome” diet, elevated levels of IL-18, but not IL-1b,
were observed, in contrast to the above mentioned human data (81).

Neutrophil-to-Lymphocyte Ratio
Neutrophils, protagonists of the innate immunity response,
differentiate from myeloid precursors in the bone marrow, and
are recruited into the blood stream through various signalling
February 2021 | Volume 11 | Article 634409
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molecules such as granulocyte colony stimulating factor (G-
CSF), CXC chemokine receptor (CXCR) 2 and 4 (82).
Calculating the ratio of the number of neutrophils to
lymphocytes (the neutrophil-to-lymphocyte ratio; NLR)
harbors the potential to discriminate individuals with NASH
from those with NAFL (83, 84). Indeed, using a cut-off value of
1.9, a sensitivity and specificity of respectively 72% and 70% is
obtained for the identification of NASH-patients (85).
Furthermore, NLR is able to discriminate NASH patients with
advanced fibrosis, from those with mild-to-moderate fibrosis,
indicating the significant association of NLR with the extent of
histological features of NASH (83, 85). Additionally, due to the
many effects of neutrophils on the immunological and metabolic
features of NASH, NLR may also give information concerning
hepatic steatosis, insulin resistance, hyperlipidaemia, imbalanced
metabolic hormones, and abundance of pro-inflammatory
signals (86). It is important to mention that NLR may also
predict liver-disease related mortality. Indeed, analysis of the
NLR in 570 patients with end-stage liver disease, of which 54
were NAFLD-patients, identified a significant correlation
between increasing NLR and mortality within 3 months of
listing for transplantation, and an overall association with high
3-month mortality when NLR ≥ 5 (87).

Lipocalin-2
Lipocalin-2 (LCN2), also known as neutrophil gelatinase-
associated lipocalin (NGAL), is a secretory glycoprotein, which
has a pro-inflammatory action, and which is thought to be
strongly involved in the metabolic and cardiovascular
complications associated with obesity (88). An overall increase
in circulating LCN2 is observed in NAFLD patients, as compared
to healthy controls, which additionally correlated to insulin
resistance and inflammation (this latter was evaluated through
CRP) (89). One other study, which included biopsy-staged
NAFLD patients, identified the elevated circulating LCN2
levels in patients with NASH, as compared to NAFL patients
or healthy controls. Moreover, in all NAFLD patients, LCN2
levels positively correlated to the injury-associated markers ALT,
AST, and gGT. Co-localization of LCN2 with CD66b, a general
neutrophil marker, in the liver biopsies of NASH patients further
indicated the neutrophilic origin of the circulating LCN2 (90).
Other recent studies renounce this neutrophil-exclusive origin of
LCN2, claiming that also hepatocytes, adipocytes, and endothelia
contribute to LCN2 production and secretion (91, 92), therefore
questioning its exclusive representation of liver inflammation.

Tumour Necrosis Factor Alpha
One of the major pathogenic drivers of the NAFLD pathology is
tumour necrosis factor alpha (TNF-a), which mediates liver
injury mainly via TNF-receptor-1 (TNFR1) signalling (93).
Indeed, blocking this signalling pathway through use of anti-
TNF-a (infliximab) (94, 95) or anti-TNFR1 (96) antibodies in
rodent models of NAFLD, led to significant improvement of liver
steatosis, inflammation, insulin resistance and extent of liver
fibrosis. Furthermore, the presence of the rs1799964 single
nucleotide polymorphism (SNP) in the TNF risk allele has
Frontiers in Immunology | www.frontiersin.org 7
been found to be an independent risk factor for an enhanced
rate of histological progression (97).

Besides its potential as a therapeutic target for treatment of
NAFLD, its diagnostic utility has been widely discussed. In
multiple studies, circulating levels of TNF-a have been found
to identify the presence of NAFLD (98, 99), which would reflect
up-regulated TNF-a mRNA expression in the affected liver (99).
However, contradictory results concerning the sensitivity of
circulating TNF-a levels for the identification of the different
stages of the NAFLD pathology, have been reported. While some
studies only report its potential to discriminate NASH-patients
with cirrhosis from healthy subjects, being unable to show any
correlation with the severity of the histopathology (100), others
report its potential to distinguish NASH-patients with significant
fibrosis from those with no or mild fibrosis (68).

Not only TNF-a itself, but also its soluble receptors (sTNFR1/2)
have an increased presence in the blood stream of NASH patients,
as compared to patients with simple steatosis (63, 99, 101).
Furthermore, circulating levels of sTNFR-2 in NASH were even
suggested to discriminate between advanced- and low stage-fibrosis.
Interestingly, such sTNFR-2 were found to be higher in patients
with diabetes mellitus (DM) compared to those without DM (102).

Lastly, circulating TNF-a and sTNFR1/2 levels might also
have a diagnostic utility in paediatric NAFLD patients, as their
levels were found to be increased in children with NAFLD (103)
and NASH (104). However, these markers did not allow
discrimination between advanced and no-mild liver
steatosis (103).

CD14
CD14 is a multifunctional receptor, with a constitutive
expression on the cell surface of various immune cells. In the
liver, different macrophage populations express CD14 (105). Its
main function is the recognition of LPS, or other components of
the bacterial wall, causing the activation of a plethora of
signalling cascades, eventually leading to cytokine production
and shedding of its extracellular domain (sCD14) (106, 107).
During NAFLD development, a strong correlation between the
presence of CD14-positive immune cells, and the extent of
necroinflammation and fibrosis has been observed (108).
Additionally, the C/T (-159) polymorphism in the CD14 gene
(rs2569190) has been closely linked to an increased risk in the
development of NAFLD, however, without however influencing
the degree of hepatic steatosis or fibrosis (109).

Circulating levels of soluble CD14 (sCD14), which has been
claimed to be mainly derived from the liver (110), were found to
be inversely correlated to insulin resistance and markers of liver
injury (ALT and gGT) in both lean and obese individuals (111,
112). Additionally, changing levels of sCD14 accompanied the
significant changes in hepatic necro-inflammation, and overall
NAS-score, in obese individuals undergoing surgically induced
weight loss (113). In a cohort of 113 NAFLD patients; sCD14
levels showed diagnostic value for the presence of NASH, and a
strong correlation to liver inflammation (114), thus suggesting its
diagnostic utility in this pathology. One other study, however,
questions these results, as they only found such dynamic sCD14
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levels in obese patients, as compared to healthy individuals, but
not in relation to the development or severity of NAFLD/
NASH (115).

CD36
One important example of a scavenger receptor, a pattern-
recognition receptor, on phagocytic cells concerns CD36.
Indeed, this receptor recognizes a plethora of both foreign
material, such as lipids and lipoprotein components of
bacterial cell walls, and endogenously derived ligands,
including oxidized phospholipids, glycated proteins, and
apoptotic cells. As activation of the CD36 causes the induction
of pro-inflammatory signalling, its contribution to the
development of inflammatory disease is evident (116). Besides
macrophages, the presence of CD36 has also been identified on
adipocytes, myocytes, enterocytes, and hepatocytes, where it
regulates free fatty acid (FFA) transport and oxidation, VLDL
secretion, and autophagy (117). Moreover, its stimulating effect
on FFA uptake caused the CD36 receptor to act as driving force
of the initiation and perpetuation of liver steatosis (118), thus
displaying key functions in the different aspects of
NAFLD pathogenesis.

The importance of CD36 in metabolic liver disease has been
suggested by the close correlation between hepatic CD36 mRNA
and protein expression and the liver fat content in morbidly
obese patients (119, 120), and by its elevated presence in the
livers of NAFLD patients compared to healthy controls (121,
122). This enhanced hepatic presence is represented in the
blood-stream, as soluble CD36 (sCD36) was found to be
increased in biopsy-staged NAFLD patients, compared to
healthy controls, and as the circulating levels were even
correlated with the histological grade of steatosis (123). sCD36
can also nicely distinguish patients with simple steatosis from
healthy individuals (123, 124), and would correlate well with the
extent of intrahepatic lipids (as measured by magnetic resonance
spectroscopy) in NAFLD patients, therefore suggesting that this
circulating marker especially represents the metabolic aspect of
NAFLD pathology, and less of the immunological aspects. Lastly,
it should be mentioned that sCD36 is tightly correlated to the
presence of insulin resistance in obese patients with type 2
diabetes mellitus (125, 126), further suggesting its -especially-
metabolic representation.

CD163
CD163 is a scavenger receptor, which has as main function the
recognition of the tight complex of haptoglobin and
haemoglobin, known to be formed after red blood cell
haemolysis. While both monocytes and macrophages express
CD163, its expression especially becomes elevated during
macrophage-maturation (127, 128). The presence of a soluble
form of CD163, sCD163, has been observed in the bloodstream,
and is thought to be mainly derived from proteolytic shedding in
response to various inflammatory responses such as LPS,
oxidative stress and thrombin (128, 129). A significant portion
of sCD163 is potentially derived from Kupffer cells, as sCD163-
concentrations are found to be 23% higher in the hepatic vein, as
compared to the portal vein, in patients with obesity or NAFLD
Frontiers in Immunology | www.frontiersin.org 8
(130). Interestingly, no differences in sCD163 concentrations
were observed between the portal and hepatic vein in healthy
individuals (131).

In adult NAFLD patients, circulating levels of sCD163 are
elevated, when compared to healthy controls. Furthermore,
sCD163 has been described as able to discriminate NASH
from simple steatosis, and to correlate with the extent of
steatosis, inflammation, and hepatocellular ballooning (132).
Indeed, other studies confirmed the close correlation of
sCD163 with the histological extent of NAFLD (133), its utility
for identification of NAFLD-induced advanced fibrosis (134),
and its association with markers of liver necro-inflammation and
glucose-homeostasis (135). sCD163 might also reflect treatment
response, as decreasing circulating expression levels were
observed in obese patients undergoing bariatric surgery (130),
and NAFLD patients undergoing life-style intervention
(135, 136)

Also in paediatric NAFLD cases, sCD163 may have diagnostic
utility. Indeed, in children with biopsy-proven NAFLD or
NASH, a significant increase in the amount of hepatic CD163-
positive cells was observed in those with severe histological
activity, and in close correlation with the presence and extent
of fibrosis (137). Furthermore, in obese children, an elevated
presence of sCD163 is observed in those with ultrasonographic-
proven steatosis and elevated transaminase-levels (138).

Extracellular Vesicles
Extracellular vesicles (EVs) are small, membrane-derived
structures which can be divided into three subtypes (exosomes,
microvesicles, and apoptotic bodies), and are released by the cells
into their microenvironment. The EV-cargo may consist of
messenger RNA (mRNA), micro-RNA (miRNA), long non-
coding RNA (lncRNA), lipids, and proteins, and strongly
reflects the cytosolic and membrane composition of its cell of
origin, therefore suggesting the use of blood-circulating EVs to
represent disease-associated cellular changes (11). Besides such
changing cargo, also changes in the absolute numbers of
circulating EVs may be observed during disease. For example,
an elevated number of circulating EVs is observed in NASH
patients, with the EV-numbers strongly correlating to NASH
clinical characteristics and disease severity (139). These findings
reflect the elevated number of circulating EVs identified in mice
with diet-induced NASH (140). Moreover, while in these mouse
models the circulating hepatocyte-derived (ASGR1+ and
CYP2E1+) EVs were found to be already increased after 12
weeks of feeding, macrophage (Galectin 3+)- and neutrophil
(Ly-6G and Ly-6C)- derived EV were only elevated after 48
weeks of feeding, and were associated with the histological
presence of inflammatory foci in the liver (140). These results
suggest that circulating extracellular vesicles derived from
specific subsets of inflammatory cells might have significant
diagnostic utility. Such EV analysis in human patients
identified the potential of CD14+ EVs, derived from monocytes
and macrophages, and Va21/Vb11+ EVs, derived from invariant
NK T (iNKT)-cells, to diagnose patients with NAFLD from
healthy individuals. Furthermore, quantities of these specific
EV-subsets were correlated to ALT levels and the overall
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severity of NASH (141). Although CD4+ and CD8+ EVs were
also up-regulated in NAFLD individuals, they displayed less
diagnostic utility for the extent of steatosis (141). Another
study identified changing numbers of CD14+ and CD16+ EVs
in NAFLD patients with advanced fibrosis (F3-4) as compared to
those with non-severe (F0-2) fibrosis, and the potential of these
novel circulating markers to increase the diagnostic utility of the
liver fibrosis score (LFS) (142). Although no NAFLD-patients
were included, it is worth mentioning the study performed by
Rautou et al, which identified significantly changing circulating
levels of leuko-endothelial (CD31+/41-)-, pan-leukocyte
(CD11a+)- and lymphocyte (CD4+)-derived EVs in patients
with liver cirrhosis as compared to healthy controls. The
number of leuko-endothelial (CD31+/41-)-derived EVs was
found to be an indicator for systemic inflammation and the
severity of cirrhosis (143). However, it is important to mention
that the standardized preparation of EVs from plasma, their
qualitative assessment (i.e., specific cargo content) as well as their
accurate and reproducible quantification remain challenging and
hamper the widespread use of EVs as NAFLD biomarkers at
present (144).

Upon liver disease initiation and development, not only
changing amounts of circulating EV subtypes and dynamic EV
phenotypes can be observed, also significant changes in their
miRNA cargo has been suggested as a potential diagnostic tool.
While most studies focus on the total circulating miRNA
content, consisting of protein (Ago2)-bound and EV-associated
miRNAs, this diagnostic approach may lack sensitivity and
specificity as delicate cell-type specific miRNA-dynamics may
not be observed. Focusing on EV-associated miRNAs,
representing the miRNA content of their cell of origin, may
therefore be a more suitable diagnostic tool, as has been
previously reported in a retrospective study using early-stage
HBV/HCV patients (145). Indeed, various in vitro studies,
mimicking the cellular changes observed during liver disease,
identified a strong correlation between the dynamic cellular
miRNA content, and the miRNA levels in their derived EVs
(146–148). However, most of such studies have been executed
using (primary) hepatocytes, and thus lack information
concerning inflammatory cells and their EVs. Overall, upon
the initiation and progression of liver disease, various
circulating EV-associated miRNAs have dynamic expression
levels (149). For example, EV-associated miRNA-122 has been
found to increase in human NAFLD patients with significant
liver fibrosis (150) and in dietary animal NASH models (151).
Although most miRNAs are expressed by a variety of cell types,
and show dynamics in various physiological or pathological
conditions, some miRNAs may especially represent the
increased inflammation associated with NAFLD-development.
One such miRNA concerns miRNA-155, which is especially
expressed in hepatocytes and macrophages, and which is known
to control the innate and adaptive immune system during
NAFLD (152). Indeed, miRNA-155 tightly contributes to
TNFa production and LPS sensitization (152–154). Although
its EV-associated expression levels have not yet been evaluated in
human patients, increased levels are observed in LPS and CpG-
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administered mouse models of liver disease. Such enriched EV-
associated miRNA-155 levels correlated well with the increased
TNFa-levels and to the hepatic miRNA-155 content (155).

Dynamic Changes in PBMC-Subsets
During the initiation and perpetuation of NAFLD, the important
dynamic changes in the phenotype and quantity of circulating
immune cells have been proposed as a potential non-invasive
diagnostic tool. While some studies have tried to characterize the
complete circulating white blood cell content (156), others
mainly concentrate their research on peripheral blood
mononuclear cells (PBMCs), consisting of lymphocytes and
monocytes, as they have been found to display the most
important dynamics during the NAFLD pathology. Indeed,
PBMC-analysis of the peripheral blood of NAFLD patients
compared to healthy individuals, identified a significant
elevation in the total monocyte fraction (157). Moreover,
quantitation of the three different monocyte subtypes, being
the classical CD14++CD16-, intermediate CD14++CD16+ and
non-classical CD14+CD16++ monocytes, identified an elevated
number of non-classical monocytes, and a decreased number of
classical monocytes in NAFLD patients. However, neither the
quantitation of total monocyte levels, nor of monocyte subsets,
was correlated to the severity of NASH (157–159). The different
monocyte fractions showed strong association with age,
triglyceride-content, and waist circumference (159).
Interestingly, comparing monocyte-subsets between HCV- and
NAFLD-patients, identified an increased proportion of non-
classical monocytes only in the latter pathology (158).

Besides the important changes in monocyte subsets, a change in
receptor/ligand expression on their cell membrane may be observed.
For example, the expression of CCR4, which is known to recognise
the chemoattractants CCL2, CCL4, and CCL5, is significantly
enriched on monocytes, especially intermediate monocytes, from
NAFLD patients as compared to healthy controls. Also sialic acid
binding Ig-like lectin (SIGLEC)-1, also known as CD169, which is
involved in monocyte recruitment, knows enrichment on
intermediate and classical monocytes of NAFLD patients (158).
Monocytes isolated from patients with NAFLD demonstrated
increased expression of the inflammatory cytokines IL-6, TNF-a,
and IL-1b, particularly in patients with fibrosis (160). Last, TLR6
expression is up-regulated on monocytes, and is useful as marker to
differentiate NAFLD patients form obese individuals, and even to
distinguish patients with NASH from those with simple
steatosis (161).

Further characterisation of the circulating immune cell landscape
led to the identification of decreased levels of total CD3+ cells, CD8+ T
cells, CD56dim NK cells, NKG2D+ NK cells, NKG2D+ CD56dim NK
cells, NKG2D+ iNKT cells, PD1+CD4+ T cells, CXCR3+CD4+ T cells,
PD1+CD25+CD45RA+CD4+ T-cells, and mucosal-associated
invariant T (MAIT) cells, and elevated numbers of total CD4+ T
cells, CD25+CD45RA+CD4+ T-cells and Th2 cells, when NAFLD
patients were compared to healthy controls (162, 163). Changing
levels of PD1+CD4+, PD1+CD25+CD45RA+CD4+, and
CXCR3+CD4+, CD25+CD45RA+CD4+ T-cells were even able to
discriminate patients with significant fibrosis (F2-4) from those
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with no or mild fibrosis (163). Lastly, based on the observation
of a diminished amount of resting Tregs (rTregs; CD4+

CD45RA+CD25++) in patients with NASH, compared to those
with NAFL, the Th17/rTreg and Th2/rTreg ratios have showed
significant diagnostic value in NASH patients (164).

Overall, NAFLD affects the composition and functional
properties of circulating immune cells, which likely reflects the
hepatic pathology as well as extrahepatic metabolic disorders
(e.g., in adipose tissue). While this is interesting from a
conceptual perspective for understanding NASH, this has as of
now not yet translated into a more accurate disease phenotyping
or risk stratification. Part of this gap might be explained by
technical challenges (e.g., requirement of fresh cells, laborious
work-flow for multi-panel characterization), but part might be
related to the complex biology, in which systemic immune
responses are not solely driven by changes in the diseased liver.
CONCLUDING REMARKS

One major hiatus in the clinical management of NAFLD patients
remains the inability of non-invasive scoring tools to identify those
patients with risk of NAFLD progression, and their lack in
sensitivity and specificity to detect small changes in disease
perpetuation or progression. An overwhelming number of studies
have identified novel circulating markers, suggesting their utility for
routine clinical practice. Indeed, in the search for such novel
diagnostic tools, preference has been given to serological markers,
as they harbor multiple features of the ideal biomarker, being their
ease of sampling, wide availability, small sampling error, good cost-
effectiveness, the possibility to execute repeatedmeasures, possibility
of automatization, and limited observer-related variability (11). Due
to the important contribution of the inflammatory system in the
NAFLD pathogenesis, circulating markers reflecting such
inflammatory actions may represent innovative diagnostic tools.

One of the major drawbacks for the implementation of novel
discovered biomarkers in clinical practice is their discovery in,
often, small cross-sectional studies, lacking external validation.
Very few studies investigated dynamic changes of inflammatory
biomarkers in response to treatment, but the high number of
ongoing clinical trials in NAFLD/NASH is expected to close this
gap (165). Indeed, while the ideal patient cohort is heterogeneous
in various parameters such as age, gender, and ethnicity, most of
the reported studies rely on highly selected and specific patient
populations, such as morbidly obese individuals. For example,
while most studies have been performed in ethnicity-
homogeneous populations, often with an Asian or Caucasian
background, important ethnicity-dependent differences in the
diagnostic utility of biomarkers have been reported (166). It is
also important to mention that, due to the important
perpetuating effects of type 2 diabetes mellitus (T2DM) on the
risk of NAFLD and advanced fibrosis, the diagnostic utility of
biomarkers may be altered due to presence of T2DM. Indeed,
several studies reported that diagnostic tools, which were
developed and validated in non-diabetic populations, may
underperform when applied to NAFLD patients suffering from
Frontiers in Immunology | www.frontiersin.org 10
T2DM (167, 168). When comparing the results obtained from
different studies, it is often difficult to compare the diagnostic
utility of the proposed markers, due their validation against
different standards, often liver biopsy or ultrasonography.
Additionally, without the use of liver biopsy as reference, the
credibility of the proposed marker is often lower, especially due
to the inability to report the correlation of the marker with the
various stages of NAFLD propagation and its histological-
associated changes. When comparing studies concerning the
same diagnostic marker, comparison of the negative and
positive predictive value is often complicated due to the use of
different cut-off values.

Due to the complex interplay of the various damaging “hits” in
the pathogenesis of NASH, including the dysfunction/inflammation
of adipose tissue and an overall increased systemic inflammation
(169), circulating inflammatory markers are unable to provide
information solely on hepatic inflammation, but instead represent
the overall (hepatic and extrahepatic) inflammatory status.
Significant differences in the level of extrahepatic inflammation
between NASH-patients, e.g., lower levels of adipose tissue
inflammation observed in NAFLD patients with the PNPLA3
I148M genetic variant as compared to weight-matched NAFLD
patients homozygous for the wild type allele (170), may therefore
cause the observed discrepancies between various published studies.

To gain popularity in the clinical community, a proposed
novel biomarker should provide significant additional and useful
information, impossible to obtain through use of the clinical
routine parameters or imaging systems. While most of the
clinical serological scoring tools are unable to differentiate
patients with NAFLD from those with simple steatosis, some
of the described inflammatory markers claim this possibility
(Table 1). However, almost all studies lack extensive validation
to ensure credibility of these obtained results. It should also be
mentioned that inflammatory markers are not liver-specific, and
therefore demand critical interpretation, as they can be strongly
influenced by comorbidities (171). As each individual biomarker
has his own strengths and weaknesses, the combination of
several of such circulating markers, or their combination with
demographic characteristics or imaging-based results in the
creation of mathematical models, probably holds the highest
potential in the search for the ideal non-invasive diagnostic tool.
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