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Idiopathic pulmonary fibrosis (IPF) is a progressively and ultimately fatal lung disease.

Previously it has been shown that intratracheal administration of alveolar epithelial type

II cells (AE2C) in the animal model of bleomycin-induced pulmonary fibrosis is able

to reverse fibrosis and restore surfactant protein levels. However, to date, it has not

been evaluated whether these changes involve any improvement in alveolar dynamics.

Consequently, the aim of the present work was to study lung physiology after AE2C

transplantation at different time points during the development of injury and fibrosis.

Lung fibrosis was induced by intratracheal instillation of bleomycin (4U/kg) in rat lungs.

The animals were transplanted with AE2C (2.5 × 106 cells/animal) 3 or 7 days after

bleomycin instillation. Assessments were done at day 7 and 14 after the induction

of fibrosis to plot time dependent changes in lung physiology and mechanics. To

assess the pressures and rates at which closed alveoli reopens invasive pulmonary

tests using a small-animal mechanical ventilator (Flexivent®, Scireq, Canada) including

de-recruitability tests and forced oscillation technique as well as quasi-static pressure

volume loops were performed. Afterwards lungs were fixed by vascular perfusion and

subjected to design-based stereological evaluation at light and electron microscopy

level. AE2C delivered during the lung injury phase (3 days) of the disease are only

able to slightly recover the volume of AE2C and volume fraction of LB in AE2C.

However, it did not show either positive effects regarding ventilated alveolar surface

nor any increase of lung compliance. On the other hand, when AE2C are delivered at

the beginning of the fibrotic phase (7 days after bleomycin instillation), an increased

ventilated alveolar surface to control levels and reduced septal wall thickness can

be observed. Moreover, transplanted animals showed better lung performance, with

increased inspiratory capacity and compliance. In addition, a detailed analysis of

surfactant active forms [mainly tubular myelin, lamellar body (LB)-like structures and

multilamellar vesicles (MLV)], showed an effective recovery during the pro-fibrotic phase
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due to the healthy AE2C transplantation. In conclusion, AE2C transplantation during

fibrogenic phases of the disease improves lung performance, structure and surfactant

ultrastructure in bleomycin-induced lung fibrosis.

Keywords: lung fibrosis, alveolar epithelial type 2 cells, lung surfactant, cell therapy, bleomycin, alveolar dynamics,

lung structure

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive and severe
disease with no known cause and with a limited response to
currently available therapies, ultimately IPF is a fatal lung disease
(1–3). The median survival time is 3–5 years from the time
of diagnosis (1). The classic features of the disorder include
progressive dyspnea and a non-productive cough. Pulmonary
function tests usually reveal decreased lung volumes (especially
decreased forced vital capacity, total lung capacity, and functional
residual capacity) and diminished carbon monoxide diffusing
capacity. During the course of the disease patients show a
progressive decline in pulmonary function leading to respiratory
failure and death.

The pathogenesis of IPF is characterized primarily by
epithelial cell damage and inadequate regeneration. In normal
physiological conditions, the renewal of alveolar epithelial cells
occurs through the specific proliferation and differentiation of
alveolar epithelial type 2 cells (AE2C) into alveolar type 1 cells.
However, IPF is characterized by the loss of both alveolar cell
types leading over time to epithelial necrosis, the appearance of
fibroblast foci and persistent alveolar collapse (4, 5). In addition
to AE2C dysfunction (5–7), IPF is also characterized by impaired
surfactant function (8). In this sense, it is important to note
that AE2C are also the cells responsible for synthesizing, storing,
secreting and recycling the components of surfactant (9, 10)
and therefore also play a crucial role in pulmonary mechanics
by stabilizing alveolar dimensions and surface throughout the
respiratory cycle (11, 12). During fibrosis development the
surfactant dysfunction and edema increase the degree of alveolar
recruitment and de-recruitment (alveolar R/D). The localized
mechanical stresses imparted on the alveolar epithelium during
R/D aggravate lung injury (13) leading to fibrotic remodeling
(14, 15). The surface tension in some collapsed alveoli may
become so high that recruitment is impossible. Eventually,
collapse induration can occur whereby chronically collapsed
alveoli effectively disappear by being reabsorbed into the
surrounding interstitial tissue increasing the damage (5, 16, 17).

Since AE2C seem to be key cells in the fibrotic development, it
has been proposed that re-generation or replacement of AE2C
may be an alternative for the therapy of lung fibrosis patients
(18–20). In this context, transplanting healthy donor AE2C in
fibrotic lungs is a promising tool to explore. Previously, our
research group has shown that intratracheal administration of
AE2C in the animal model of bleomycin-induced pulmonary
fibrosis was able to reverse fibrosis and restores surfactant protein
levels (18, 19). Although our research group pioneered the
development of this cell therapy, our results have also been
corroborated by other research groups. They have also observed

that both AE2C and stem cells derived to AE2C have also
been able to reverse pulmonary fibrosis (20–24). Moreover, in
a clinical study performed with IPF patients, the intratracheal
administration of heterologous AE2C was safe, well-tolerated,
with no relevant side effects, and was able to stabilize disease
progression, improving health-related quality of life throughout a
1-year clinical follow-up (25). Those astonishing results obtained
in humans were assessed by means of non-invasive pulmonary
function tests, however to date it has not been evaluated whether
these changes are related to any improvement in lung dynamics
and structure. Consequently, the aim of the present work was
to study lung physiology after AE2C transplantation at different
time points during the development of fibrosis.

METHODS

Animals
Fischer 344 rats, weighting 200–225 g at the beginning of
the experiment, were used, in accordance with the European
Community (Directive 2010/63/EU) for experimental animals
and it was approved by the local authorities of Lower
Saxony (Nidersächsisches Landesamt für Verbraucherschutz und
Lebensmittelsicherheit, LAVES, Lower Saxony, Germany) with
number TVA 15/1890.

Bleomycin-Induced Lung Fibrosis
Lung fibrosis was induced by intratracheal instillation of a single
dose of BLM (4U/kg) (Sigma, USA) dissolved in 200 µl of sterile
saline under isoflurane anesthesia. Control animals received the
same volume of saline. The animal body weights were recorded
every day during the course of the experiment.

Isolation of Alveolar Epithelial Type II Cells
Fresh alveolar epithelial type II cells (AE2C) were isolated from
healthy donor animals. The protocol for purification has been
described by Richards RJ group (26). Briefly, to isolate AE2C,
the lungs were removed from the animal and lavaged with 5
× 10ml saline. The lungs were digested by filling with 0.25%
trypsin dissolved in saline (100ml) (T8003, Sigma, Missouri,
USA) and suspended in 0.9% NaCl at 37◦C for 30min, with
the trypsin constantly topped up to expand the parenchyma
for 30min, suspended in a saline solution at 37◦C. Following
digestion, the lungs were chopped into 1–2 mm2 cubes, treated
with 75 U/ ml DNase dissolved in saline and filtered through
nylon meshes ranging from 150 to 30µm. The resulting cell
suspension was centrifuged (250 × g, 20min at 10◦C) through
a sterile Percoll gradient and the AE2C rich band was removed.
A second DNase treatment of 20 U/ml was administered, and the
cells were recovered as a pellet by centrifugation at 250 × g for
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FIGURE 1 | Scheme of the experimental design. The animals were randomly distributed into four experimental groups and two different time points during the

inflammatory phase (Group 7d) and fibrotic phase (Group 14 d) (n = 5–8 in each group).

20min. These cells were resuspended in 5mlDCCM1 (Biological
Industries, Kibbutz Beit Haemek, Israel) completed with a 2%
(w/v) L- Glutamine and subjected to differential attachment on
a plastic Petri dish. Non-adherent AE2C were collected after 2 h
and counted to establish the final cell yield of freshly purified cells.

The AE2C viability was assessed by Trypan Blue (Sigma,
Missouri, USA), showing >95% viability. Cell yield, purity and
characterization of freshly isolated AE2C were established by the
presence of intracellular alkaline phosphatase (Sigma, USA).

Transplantation Procedure
At day 3 or 7 after intratracheal BLM, recipient animals were
transplanted with AE2C by intratracheal instillation (2.5 ×

106 cells/animal suspended in 400 µl of sterile saline) under
isoflurane anesthesia. The control group received the same
dose of cells 3 or 7 days after saline instillation. The animals
were sacrificed at day 7 and 14 after the induction of lung
fibrosis to plot time dependent changes in lung physiology
and functionality.

Experimental Groups
The animals were randomly distributed into four experimental
groups and we studied two different time points (n = 5–8 in
each group): Healthy Control: Saline instillation; Healthy Control
+ AE2C (3 days after saline instillation); Bleomycin control:
Bleomycin instillation + saline (3 or 7 days after bleomycin
instillation); Bleomycin + AE2C: Bleomycin instillation +

alveolar type II cell transplantation (3 or 7 days after bleomycin
instillation). Figure 1 shows a scheme of the experimental design.

Invasive Pulmonary Function Test
To assess the pressures and rates at which alveoli in the injured
lungs closed, de-recruitability tests at different PEEP (positive
end-expiratory pressures) as well as quasi-static pressure volume-
loops using a Flexivent ventilator (SCIREQ, Canada) were
performed (27). The de-recruitability tests consist of two
recruitment maneuvers (up to 30 cmH2O followed) followed
by 5min of low-tidal volume ventilation (10 ml/kg body
weight) interspersed with 8 s multi-frequency forced oscillation
perturbations at 30 s intervals. Tissue elastance (H), tissue
damping (G) and tissue hysteresivity (G/H) were calculated by
fitting the constant phase model to impedance spectra. After each
de-recruitability test, 3 quasi-static PV loops were recorded, and
quasi-static compliance was calculated according to the Salazar-
Knowles equation.

Perfusion-Fixation of Lungs and Sampling
Procedures for Light and Electron
Microscopy
Fixation and sampling were conducted according to standards on
quantitative morphology of the lung (28). The lungs were fixed
by vascular perfusion at an airway pressure of 13 cm H2O on
expiration. The volume of the lungs was determined and followed
by a systematic uniform random sampling. Seven to 9 tissue slices
per lung were randomized for light microscopy and 5–6 tissue
blocks per lung for electron microscopic evaluation. Slices for
light microscopy were embedded in Technovite resin and stained
with toluidine blue. Lung blocks for electron microscopy were
embedded in Epon resin and contrasted with uranyl acetate and
lead citrate.
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Design-Based Stereology
At the light microscopic level, a newCAST-system (Visiopharm
A/S, Denmark) was used to perform systematic uniform
random area sampling and to superimpose an appropriate
test system on the fields of view. A transmission electron
microscope (FEI Morgagni, Netherlands) equipped with a digital
camera (Olympus Soft Imaging Systems, Germany) was used
to obtain representative fields of view. The parameters useful
to characterize the pathology of fibrotic development were
volume of lungs, volume of parenchyma, volume of ventilated
parenchyma, thickness of the septal wall, volume fraction
of AE2C cells, volume of lamellar bodies per AE2C cell,
volume of intra-alveolar surfactant, lamellar body like structures,
multilamellar vesicles, tubular myelin, and unilamellar vesicles. A
stereology tool (STEPanizer R©, Bern, Switzerland) was employed
for definitive stereological morphometry. A point grid was
chosen as a test system for volume estimation. Securing sufficient
stereological precision, the number of test points was adjusted to
a minimum of 200 to 300 counting events per parameter per lung
(29). A counting event was defined as a match of a structure of
interest (SOI) with the test probe. At 5x magnification, volume
fractions of parenchyma [Vv(par/lung)] and non-parenchyma
[Vv(non-par/lung)] were obtained. Parenchyma was defined
as lung tissue enabling gas exchange, comprising septa and
airspaces, and was differentiated in ventilated [Vv(ventpar/par)]
and non-ventilated parenchyma [Vv(non-vent/par)]. Pleura,
conducting airways and large vessels with the surrounding
connective tissue were defined as non-parenchyma. Volume
densities of ductal airspaces [Vv(duct/par), alveolar airspaces
(Vv(alv/par) and alveolar septa (Vv(sept/par)] were determined
at 20x magnification within ventilated parenchyma. Herein, an
additional test system consisting of 4 line-pairs was utilized for
counting intersections of test probes and alveolar surface. All
analyzed parameters for lung structure regarding fibrosis were
chosen according to recommendations from Ochs and Mühlfeld
(29) for stereology in pulmonary fibrosis and (30) for stereology
in bleomycin induced lung injury and fibrosis.

Volume fractions [e.g., Vv(par/lung)] were calculated by
dividing the number of points (P) hitting the SOI (structure of
interest) by the number of points hitting the reference space, e.g.,
total lung.

Vv(par/lung) =
∑

[Ppar]/
∑

[Ppar+ Pnon−par]

Multiplication of the volume fraction with total lung volume
provided total volumes of each SOI [e.g., V(par,lung)]:
V(par,lung)= Vv(par/lung)∗V(lung),

Analogous calculations were performed for parenchymal
components, e.g., alveolar airspaces, LB in AE2C and TM fraction
in total intra-alveolar surfactant:

Vv(alv/ven−par) =
∑

[Palv]/
∑

[Pvent−par]

V(alv, vent−par) = Vv(alv/vent−par)∗V(vent−par, lung),

Intersection (I) countings were utilized in combination with the
length per point of the test system (l(p)) to estimate the alveolar

surface density of ventilated parenchyma. The calculated absolute
volume describes the alveolar surface contributing to pulmonary
gas exchange:

Sv(alv/vent−par) = (2∗
∑

[I])/(l(p)∗
∑

[Pvent−par]

Salv = Sv(alv/(vent−par))∗V(vent−par, lung),

Septal thickness was computed as follows: τ (sep) =

Vv(sept/par)/Sv(alv/par)∗2.

Statistical Analysis
Data are expressed as mean values for each subject, horizontal
bars represent the mean of the group. In bar graphs, data is
represented as mean and SD in error bars. Statistical analysis
was carried out by a non-parametric analysis (Kruskal-Wallis
test) followed by appropriate post hoc tests, Dunn’s multiple
comparisons test when differences were significant (GraphPad
Software Inc, USA). A p <0.05 was considered significant.

RESULTS

Alveolar Dynamics of Bleomycin Induced
Lung Injury (d7) and Fibrosis (d14) After
AE2C Transplantation
After isolation of healthy AE2C, the purity of the cells measured
by positive staining with alkaline phosphatase was 87 ± 2%.
After transplantation of AE2C, we performed a complete alveolar
dynamics analysis by means of Forced Oscillation Technique
(FOT) in a small animal ventilator. Figures 2A,B shows the
elastance (H) of the lungs 7 days after bleomycin application
and 4 days after AE2C transplantation in the corresponding
treatment and control groups. As already described, elastance is
significantly increased after bleomycin application at both PEEP
of 3 (Figure 2A) and 6 cmH2O (Figure 2B) compared to healthy
controls. In addition, after AE2C transplantation, no changes
in elastance could be observed compared to bleomycin control.
In accordance, the application of bleomycin reduced static
compliance (Figure 2C) and AE2C showed no improvement
of this value. Tissue hysteresivity (G/H) was also significantly
reduced in the groups with application of bleomycin with no
changes after AE2C transplantation (Figure 2D).

When analyzing the alveolar dynamics 14 days after
bleomycin application, and 7 days after AE2C transplantation,
an improvement on elastance (Figures 2E,F) and compliance
(Figure 2G) could be observed. The group that received an AE2C
transplantation after bleomycin application showed significantly
lower elastance values than the bleomycin control group, between
those of the bleomycin control group and the healthy groups.
This could be related to a beneficial effect of the newly
transplanted AE2C in the mechanical properties of the lung.
Accordingly, static compliance was also significantly higher
in the disease group that received the AE2C transplantation
than the bleomycin control group. Tissue hysteresivity was
also affected by AE2C transplantation, showing a significant
reduction (Figure 2H).
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FIGURE 2 | Alveolar dynamics of bleomycin induced lung injury (d7) and fibrosis (d14) after AE2C transplantation. (A–D) Alveolar dynamics of bleomycin induced lung

injury (7 days after bleomycin application) and AE2C transplantation (3 days after bleomycin application). (A) Tissue elastance (H) at a positive end-expiratory pressure

(PEEP) of 3cmH2O over the 5min forced oscillation technique (FOT) at day 7 after bleomycin application. (B) Tissue elastance (H) at a PEEP of 6cmH2O at day 7 after

bleomycin application. (C) Static compliance (ml/cmH2O) at day 7 after bleomycin application. (D) Tissue histeresivity (G,H) at day 7 after bleomycin application.

(E–H) Alveolar dynamics of bleomycin induced lung fibrosis (14 days after bleomycin application) and AE2C transplantation (7 days after bleomycin application).

(E) Tissue elastance (H) at a positive end-expiratory pressure (PEEP) of 3cmH2O over the 5min forced oscillation technique (FOT) at day 14 after bleomycin

application. (F) Tissue elastance (H) at a PEEP of 6cmH2O at day 14 after bleomycin application. (G) Static compliance (ml/cmH2O) at day 14 after bleomycin

application. (H) Tissue histeresivity (G,H) at day 14 after bleomycin application. *p < 0.05 vs. healthy controls, #p < 0.05 vs. bleomycin control.

Lung Structure of Bleomycin Induced Lung
Injury (d7) and Fibrosis (d14) After AE2C
Transplantation
In order to understand if the mechanical parameters are a
reflection of changes in lung structure, we immediately inflated
and fixed the lungs of the animals after performing the alveolar
dynamics in the small animal mechanical ventilator. Figure 3
shows representative micrographs of the lungs from the animals
at light (two upper panels, micrographs 1–12) and electron
microscopy (two bottom panels, micrographs 13–24) level to
illustrate the quantitative results shown in the following figures.
As expected from stiffer and less compliant injured lungs
(d7), the lung volume measured by fluid displacement and
the volume of air used for inflation at constant pressure, is
reduced in the bleomycin groups with and without AE2C
transplantation (Supplementary Figures 1A,B). Looking closely
at the parenchymal tissue, we also observed a significant decrease
in ventilated (Figure 4A) and an increase of non-ventilated
(Figure 4B) parenchyma total volume (Figure 3, micrographs
3 and 9). In addition, we also observed a significant increase

in septal wall thickness (Figure 4C) and a decrease in total
alveolar surface (Figure 4D) in the bleomycin treated with and
without AE2C transplantation (Figure 3, micrographs 3-4 and 9-
10). Within ventilated parenchyma, the alveolar spaces seemed
to be the most affected by bleomycin application (Figure 4E
and Supplementary Figures 2A–C). While there was a trend to
increase in ductal volume density (Figure 4E), the total volume of
ductal spaces remained unchanged (Supplementary Figure 2B),
leading us to think that the air lost in the alveolar side is due to
collapse and is not over-distending alveolar ducts.

On the other hand, the AE2C transplantation in lungs

undergoing fibrotic remodeling showed more promising

results (Figure 3, micrographs 5-6 and 11-12). According to

the mechanical parameters presented above, the decrease in
elastance and the increase in compliance in the transplanted

group compared to the bleomycin group, was accompanied

by an increase in ventilated parenchyma (Figure 4F) and
a decrease in non-ventilated parenchyma (Figure 4G). In

addition, there was a significant reduction of the septal wall
thickness (Figure 4H) and increased alveolar surface (Figure 4I).
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FIGURE 3 | Representative light and electron microscopy pictures of bleomycin induced lung injury (d7) and fibrosis (d14) after AE2C transplantation. Upper panels

(micrographs 1-12): toluidine blue stained tissue at 5 and 20X magnification of the different experimental groups. Bottom panels (micrographs 13-24): electron

microscopy pictures at 9.8 and 14Kx magnification of the different experimental groups.

As for the treatment during lung injury, within ventilated
parenchyma, the alveolar spaces seemed to be the most affected
ones by the bleomycin application and the transplantation
treatment (Figure 4J and Supplementary Figures 2D–F). In
this case, a significant increase in total volume of alveolar
spaces (Supplementary Figure 2D) was observed in the
bleomycin treated and transplanted lung compared to the
bleomycin control.

Taking all together, the improved mechanics shown by the
fibrotic lung treated with AE2C seemed to be supported by an
improved lung structure by means of increased opened alveolar
spaces and surface with thinner septal walls.

Lung Surfactant Ultrastructure of
Bleomycin Induced Lung Injury (d7) and
Fibrosis (d14) After AE2C Transplantation
In order to dissect the fine structure and composition of
the alveolar parenchyma, we further analyzed the lung
ultrastructure by means of quantification using electron
microscopy micrographs (Figure 3, micrographs 13-24). This
analysis allowed us to look closely at AE2C total volume
in the alveolar parenchyma, as well as the total volume
of edema and extracellular matrix. In addition, we have
quantified the volume fraction of lamellar bodies (LB) in

AE2C, to understand if surfactant synthesis is influenced by the
AE2C transplantation.

As described before (30), the application of bleomycin reduces
the volume of AE2C and the transplantation of AE2C slightly
changed this (Figure 5A). However, the volume fraction of
LB inside AE2C showed a trend to increase (non-statistically
significant) in the transplanted injured group compared to
the bleomycin group (Figure 5B). Also according to previous
reports, bleomycin induced the formation of alveolar edema
and its volume was unchanged after transplantation (Figure 3,
micrograph 15 and 21, Figure 5C). Since the volume of ECM
was not changed in any group (Figure 5D), the increase in
septal wall thickness reported above (Figure 4C) is likely due
to the alveolar edema and not to a remodeling process in
the ECM.

When looking at fibrotic lungs (d14), the decrease in volume
of AE2C after bleomycin was not significant compared to
control groups, but the AE2C transplantation resulted in an
increased total volume of these cells over the values of the

controls (Figure 5E). The volume fraction of LB in AE2C also

showed the same pattern, non-statistically significant against the
bleomycin control (Figure 5F). Even when the volume of edema
in bleomycin treated lungs was still significantly higher than
in controls (Figure 5G), the values are much lower than the
lung injured (d7) groups (Figure 5C). However, the volume of
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FIGURE 4 | Lung structure of bleomycin induced lung injury (d7) and fibrosis (d14) after AE2C transplantation. (A–E) Lung structure of bleomycin induced lung injury

(7 days after bleomycin application) and AE2C transplantation (3 days after bleomycin application). (A) Total volume of ventilated parenchyma per lung (ml) at day 7

after bleomycin application. (B) Total volume of non-ventilated parenchyma per lung (ml) at day 7 after bleomycin application. (C) Thickness of septal wall (τ ) at day 7

after bleomycin application. (D) Total alveolar surface per lung (Salv). (E) Volume fractions of alveolar spaces (white bar), ductal spaces (dark gray bar) and septal wall

(light gray bar) per ventilated parenchyma at day 7 after bleomycin application. (F–J) Lung structure of bleomycin induced lung fibrosis (14 days after bleomycin

application) and AE2C transplantation (7 days after bleomycin application). (F) Total volume of ventilated parenchyma per lung (ml) at day 14 after bleomycin

application. (G) Total volume of non-ventilated parenchyma per lung (ml) at day 14 after bleomycin application. (H) Thickness of septal wall (τ ) at day 14 after

bleomycin application. (I) Total alveolar surface per lung (Salv). (J) Volume fractions of alveolar spaces (white bar), ductal spaces (dark gray bar) and septal wall (light

gray bar) per ventilated parenchyma at day 14 after bleomycin application. *p < 0.05 vs. healthy controls, #p < 0.05 vs. bleomycin control.

ECM was notably increased in the bleomycin group 14 days
after application, and significantly reduced after transplantation
(Figure 5H). Therefore, the increase in septal wall thickness
described above (Figure 4H) could be mainly related to aberrant
accumulation of ECM components.

As AE2C are responsible for surfactant synthesis and
secretion, we investigated whether the volume fraction of
surfactant in alveolar spaces was affected by the AE2C
transplantation. In addition, we were also interested in describing

if the surfactant present in the alveolar spaces presented different

fractions of active (tubular myelin (TM), lamellar body-like

(LBL) and multilamellar vesicles (MLV) or inactive (unilamellar
vesicles (ULV)) forms (9, 31) within the different disease stages

or treatments.
For both experimental settings, the application of bleomycin

significantly reduced the volume fraction of intra-alveolar

surfactant and its active forms (Figure 6). AE2C transplantation

during lung injury resulted in a non-significant increase

of volume fraction of intra-alveolar surfactant (Figure 6A)

compared to the bleomycin group. In addition, the
transplantation did not change the reduction of TM and
LBL induced by bleomycin, and inversely the increase on ULV
(Figure 6B). On the other hand, AE2C transplantation in the
lungs undergoing fibrotic remodeling showed a promising, but
not significant, increase of volume fraction of intra-alveolar
surfactant, accompanied by a statistically significant increase in
TM and LBL active forms of surfactant (Figure 3, micrograph
24, Figures 6C,D).

Lung Structure-Mechanics Relationships
of Bleomycin Induced Lung Injury (d7) and
Fibrosis (d14) After AE2C Transplantation
Lastly, in order to investigate which structural parameters may
impact the mechanical properties of the lungs after the different
treatments and potential causal relationships, we systematically
correlated the mechanical and structural data. In Figure 7,
the most interesting correlations are presented for either the
bleomycin induced lung injury (Figures 7A–D) and fibrosis
(Figures 7E–H) after transplantation. Even though we found a
significant correlation between tissue elastance and thickness of
the septal wall (Figure 7A) and elastance and volume fraction
of intra-alveolar surfactant (Figure 7B), there is no effect of
the therapy in the bleomycin induced lung injury model (d7).
In addition, the increase in septal wall thickness previously
described here is not significantly correlated with the total
volume of extracellular matrix (Figure 7C), but with the volume
fraction of edema (Figure 7D). Therefore, it seems that edema is
the main structural change induced in this model and preventing
the transplantation treatment to have a positive effect. On the
other hand, when the treatment is performed during the fibrotic
remodeling phase, the correlation of tissue elastance and septal
wall thickness (Figure 7E) and tissue elastance and volume
fraction of intra-alveolar surfactant (Figure 7F) were statistically
significant and showed the transplanted group to be between
the control and disease groups. In addition, in this experimental
setting, the main structural component change in the septal
walls was the increase in total volume of extracellular matrix
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FIGURE 5 | Lung ultrastructure of bleomycin induced lung injury (d7) and fibrosis (d14) after AE2C transplantation. (A–D) Lung ultrastructure of bleomycin induced

lung injury (7 days after bleomycin application) and AE2C transplantation (3 days after bleomycin application). (A) Total volume of AE2C in alveolar parenchyma at day

7 after bleomycin application. (B) Volume fraction of lamellar bodies (LB) in AE2C at day 7 after bleomycin application. (C) Total volume of edema in alveolar

parenchyma at day 7 after bleomycin application. (D) Total volume of extracellular matrix (ECM) in alveolar parenchyma at day 7 after bleomycin application. (E–H)

Lung ultrastructure of bleomycin induced lung injury (14 days after bleomycin application) and AE2C transplantation (7 days after bleomycin application). (E) Total

volume of AE2C in alveolar parenchyma at day 14 after bleomycin application. (F) Volume fraction of LB in AE2C at day 14 after bleomycin application. (G) Total

volume of edema in alveolar parenchyma at day 14 after bleomycin application. (H) Total volume of ECM in alveolar parenchyma at day 14 after bleomycin application.

*p < 0.05 vs. healthy controls, #p < 0.05 vs. bleomycin control.

(Figure 7G). Edema was not statistically significantly correlated
to septal wall thickness (Figure 7H). Therefore, remodeling and
aberrant accumulation of extracellular matrix seemed to be
the main component of the increase of septal wall thickness.
Very interestingly, the transplantation with AE2C seemed to
prevent this aberrant accumulation of extracellular matrix and
consequently the septal wall thickness was not increased.

DISCUSSION

Damage/injury and apoptosis of AE2C (32–34) is a well-
described process contributing to lung remodeling. AE2C are
essential cells for the proper functioning of the lung and
surfactant homeostasis (8, 35). Therefore, a therapeutic strategy
to replace the injured AE2C may help to improve the disease
outcome. Previously, Serrano-Mollar et al. demonstrated, in
preclinical studies, that AE2C intratracheal transplantation

was able to reduce fibrosis and restore pulmonary surfactant
proteins levels (18, 19). They also observed that the induced
pluripotent stem cells (iPSCs) derived AE2C reduce fibrosis by
inhibiting TGF-β and α-SMA expression (23). Furthermore, in
a clinical study performed with IPF patients, the intratracheal
administration of heterologous AE2C was safe, well-tolerated
and with no relevant side effects. Furthermore, this cell therapy
was able to stabilize disease progression and improve health-
related quality of life throughout a 1-year clinical follow-up
(25). The functionality tests evaluated in that clinical study were
DLCo and FVC (25), although these results provide information
regarding lung capacity and performance, to date it has not
been assessed whether these changes involve any improvement
in lung structure functionality. Here, we studied the mechanical
and structural changes induced by bleomycin and changed by the
AE2C transplantation in order to contribute to understanding
the effect of the replacement of injured AE2C as a therapeutic
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FIGURE 6 | Lung surfactant ultrastructure of bleomycin induced lung injury (d7) and fibrosis (d14) after AE2C transplantation. (A,B) surfactant ultrastructure of

bleomycin induced lung injury (7 days after bleomycin application) and AE2C transplantation (3 days after bleomycin application). (A) Volume fraction of intra-alveolar

surfactant in alveolar parenchyma at day 7 after bleomycin application. (B) Proportion of different surfactant ultrastructures, tubular myelin (TM, black bars), lamellar

body-like (LBL, light gray bars), multilamellar vesicles (MLV, dark gray bars) and unilamellar vesicles (ULV, white bars) at day 7 after bleomycin application. (C,D)

Surfactant ultrastructure of bleomycin induced lung fibrosis (14 days after bleomycin application) and AE2C transplantation (7 days after bleomycin application).

(A) Volume fraction of intra-alveolar surfactant in alveolar parenchyma at day 14 after bleomycin application. (B) Proportion of different surfactant ultrastructures,

tubular myelin (TM, black bars), lamellar body-like (LBL, light gray bars), multilamellar vesicles (MLV, dark gray bars) and unilamellar vesicles (ULV, white bars) at day 14

after bleomycin application. *p < 0.05 vs. healthy controls, #p < 0.05 vs. bleomycin control.

approach. Interestingly, we can conclude that when performing
the treatment early during the lung injury phase of the bleomycin
model, mainly edema and edematous material seem to impose
a barrier to the potential beneficial effect of the transplanted
cells. As already described (36), the formation of alveolar
edema is one of the earliest events induced by the intratracheal
application of bleomycin. Lutz and colleagues (30) also showed
that already at day 3 after bleomycin application, the presence of
edema and inactivation of surfactant, showing abnormally high

surface tension, lead to a decreased number of opened alveoli.
Accordingly, we found that 7 days after bleomycin application,
the volume of ventilated parenchyma (Figure 4A) as well as total
alveolar surface (Figure 4D) was reduced. In addition, there was
an increase in septal wall thickness, mainly due to the formation
of alveolar edema (Figures 4C, 5C, 7D), rather than a remodeling
process with ECM accumulation (Figure 7C).

We found a non-statistical significant increase in the volume
fraction of intra-alveolar surfactant in the transplanted group
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FIGURE 7 | Alveolar dynamics and structure correlations in bleomycin induced lung injury (d7) and fibrosis (d14) after AE2C transplantation. (A–D) Alveolar dynamics

and structure correlation of bleomycin induced lung injury (7 days after bleomycin application) and AE2C transplantation (3 days after bleomycin application). (A)

Correlation between tissue elastance at PEEP 3 cmH2O and septal wall thickness (τ ) at day 7 after bleomycin application. (B) Correlation between tissue elastance at

PEEP 3 cmH2O and volume fraction of intra-alveolar surfactant in alveolar parenchyma at day 7 after bleomycin application. (C) Correlation between volume fraction

of ECM and septal wall thickness at day 7 after bleomycin application. (D) Correlation between alveolar edema and septal wall thickness at day 7 after bleomycin

application. (E–H) Alveolar dynamics and structure correlation of bleomycin induced lung injury (14 days after bleomycin application) and AE2C transplantation (7 days

after bleomycin application). (A) Correlation between tissue elastance at PEEP 3cmH2O and septal wall thickness (τ ) at day 14 after bleomycin application. (B)

Correlation between tissue elastance at PEEP 3cmH2O and volume fraction of intra-alveolar surfactant in alveolar parenchyma at day 14 after bleomycin application.

(C) Correlation between volume fraction of ECM and septal wall thickness at day 14 after bleomycin application. (D) Correlation between alveolar edema and septal

wall thickness at day 14 after bleomycin application. *p < 0.05 vs. healthy controls, #p < 0.05 vs. bleomycin control.

compared to the bleomycin diseased group (Figure 6A) in
accordance with the increased volume fraction of LB in AE2C
(Figure 5B). However, when analyzing the ultrastructure of
this surfactant, we found an increased amount of ULV, as in
the bleomycin control group, which seems to be the result
of an inactivating process of surfactant by the edematous
material, as previously reported (37–41). As surfactant remained
inactivated, and edemawas still present, we could not observe any
improvement in alveolar dynamics. Therefore, freshly isolated
and transplanted AE2C could not help in resolving edema and/or
activating/replacing surfactant.

On the other hand, when transplanting the AE2C during the
fibrotic remodeling phase, we can observe a promising beneficial
effect of the therapy in improving alveolar dynamics and lung
structure. At day 14 after bleomycin application, tissue elastance
is further increased (Figures 2E,F) as a consequence of a
statistically significant reduced volume of ventilated parenchyma
and total alveolar surface, with the associated increase in non-
ventilated parenchyma and septal wall thickness (Figures 4A–I).
Interestingly, at this stage the total volume of edema is
minimally increased (Figure 5G) compared to d7 (Figure 5C),
whereas the volume of ECM is statistically significantly increased
(Figure 5H), as previously described (30, 36). Therefore, in this
case, the increase in septal wall thickness may be mainly due
to the aberrant accumulation of ECM (Figure 7G), rather than
alveolar edema (Figure 7H). In addition, bleomycin application
also impacted the volume fraction of intra-alveolar surfactant

(Figure 6C) and induced the conversion of active to inactive
structures of lung surfactant (Figure 6D), as previously shown
(30). The transplantation of AE2C at day 7, prevented the
accumulation of ECM (Figure 5H), and therefore the increase
in septal wall thickness (Figure 4H), resulting in a statistically
significant reduction of elastance and an increase in compliance
in alveolar dynamics (Figures 2E–H). A higher PEEP during
forced oscillation perturbation was linked with a reduced tissue
elastance in healthy controls but an increase in untreated
bleomycin challenged lungs at day 14. The AE2C transplantation
could convert this PEEP-dependent behavior of tissue elastance
to normal – a higher PEEP resulted in a reduction in tissue
elastance. In healthy lungs, the increase in the PEEP level from 3
to 6 cmH2O results in a recruitment of folds in the alveolar walls
and probably also alveolar shape changes without overdistension
which would place ventilated airspaces to the upper non-linear
portion of their pressure volume relationship. In bleomycin
challenged lungs with their heterogeneous ventilation due
to higher fraction of non-ventilated lung parenchyma and
thickened septa those distal airspaces which are still ventilated
become overstretched between PEEP 3 and 6 cmH2O so
that tissue elastance increases. Such an overdistension of lung
parenchyma which occurs already at quite low airway opening
pressures might represent an additional trigger for fibrotic
remodeling even during spontaneous breathing e.g., by release
of active TGF-β1 as demonstrated by (14). AE2C transplantation
at day 7 results in a more homogenous ventilation of the lung
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as indicated by the reduced fraction of non-ventilated lung
parenchyma, reduced septal wall thickness and improved alveolar
surface area so that the reduction in tissue elastance at PEEP 6
compared to PEEP 3 cmH2O can be interpreted by recruitment
of folding or even complete alveoli without overdistension of
distal airspaces so that at the organ scale the pressure-volume
relationship does not reach the upper non-linear portion. Hence,
in this range of airway opening pressures there is no hint for
overdistension and therefore pro-fibrotic mechanical stress. The
improvement in homogeneity of ventilation within the lung
after AE2C transplantation might be a consequence of improved
regeneration and/or reduction in surface tension.

Of note, the transplantation of freshly isolated healthy AE2C
at day 7, induced the increase in total volume of AE2C
and volume fraction of LB in AE2C, which persisted 7 days
later (day 14) compared to the bleomycin control group. This
seems to be related to the secretion of functional surfactant,
as the volume fraction of intra-alveolar surfactant recovered
to healthy levels (Figure 6C) and the most active structures
of surfactant (mainly TM and LBL) were also similar to the
controls (Figure 6D). Therefore, we can conclude that the
transplantation of AE2C showed to be very effective in recovering
the healthy status of lung surfactant, contributing to prevent
ECM accumulation and septal wall thickening, resulting in softer
lung tissue.

Taking all together, even though the treatment with AE2C
shows no effect in the treatment of lung injury, this treatment
is able to prevent the main features of lung fibrotic remodeling,
mainly aberrant accumulation of ECM and thickening of the
septal wall. Whether this effect is a direct consequence to
the newly secreted active surfactant deserves further research.
However, it has already been described that mechanical stress,
for example, due to surfactant dysfunction and increased
surface tension, may contribute to the fibrotic remodeling
(42). Preventing this mechanical stress by the production and
secretion of active surfactant may be one of the mechanisms of
action in this therapeutic model.
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