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Abstract

Toll-like receptors (TLRs) represent one of the most fascinating and currently most

widely studied immunologic targets, due to their crucial role in forming the first barrier

in immune response. The structurally conserved TLRs consist of ten human subtypes

(TLR1-TLR10), with a structurally broad range of natural ligands, including lipids,

peptides, and ribonucleic acid (RNA), which challenges the rational design of drug-like

TLR ligands. Therefore, despite their enormous therapeutic potential as powerful

regulators of inflammatory pathways, only few TLR modulators (e.g., Imiquimod) are

currently in clinical use.

Since no complete and up-to-date repository for known TLR modulators is currently

available, we carefully collected and manually curated data to create a Toll-like receptor

database (TollDB), the first database which includes all reported small organic drug-

like molecules targeting TLRs and detailed pharmacological assay conditions used for

their characterization. TollDB is freely accessible via https://tolldb.drug-design.de and

provides three different search possibilities including a ligand-centered simple search,

an advanced search that can retrieve information on biological assays and a structure

search.

Currently, TollDB contains 4925 datapoints describing 2155 compounds tested in

36 assay types using 553 different assay conditions. Among all the 2155 compounds,

1278 are not reported as TLR ligands by ChEMBL database. Users can retrieve

information about the measured inactives and multi-target TLR ligands from TollDB.

After statistical analysis for TollDB, we compared the chemical space covered by

compounds in TollDB to that covered by the compounds in DrugBank. Next, we

explored the matched molecular pairs (MMPs) and activity cliffs, then used docking

to explain the activity cliffs between MMPs. After a thorough analysis of the entire

database, we used a selected dataset from TollDB to train machine learning models to
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distinguish active ligands for different subtypes. These validated models can be used for

prioritizing hits from virtual screening for chemical synthesis or for biological testing.

The curated database can be directly used in many ways, for example, as a validation

dataset for pharmacophore model evaluation, as a virtual screening library for drug-

repurposing or as reference for pharmacological assay design. TollDB represents a

unique and useful resource for various research fields such as medicinal chemistry,

immunology, computational biology and promotes the use of artificial intelligence in

modern drug design campaigns.
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Zusammenfassung

Toll-like Rezeptoren (TLRs) sind aufgrund ihrer entscheidenden Rolle bei der Bildung der

ersten Barriere der Immunantwort eines der faszinierendsten und derzeit am häufigsten

untersuchten immunologischen Ziele. Die strukturell konservierten TLRs weisen zehn

menschliche Subtypen (TLR1-TLR10) auf. Sie umfassen ein breites strukturelles

Spektrum natürlicher Liganden, einschließlich Lipiden, Peptiden und RNA, was das

rationale Design von arzneimittelähnlichen TLR-Liganden herausfordernd macht. Daher

werden derzeit trotz ihres enormen therapeutischen Potenzials als starke Regulatoren

von Entzündungswegen nur wenige TLR-Modulatoren (z. B. Imiquimod) klinisch

eingesetzt.

Da derzeit keine vollständiges und aktuelles Respository für bekannte TLR Modula-

toren verfügbar ist, haben wir sorgfältig Daten gesammelt und manuell überprüft, um

eine Toll-like-Rezeptor-Datenbank TollDB zu erstellen. Diese Datenbank enthält alle

uns bekannten kleinen organischen arzneimittelähnlichen Moleküle mit detaillierten

pharmakologischen Testbedingungen, die für ihre Charakterisierung verwendet wur-

den. TollDB ist unter https://tolldb.drug-design.de frei zugänglich und bietet drei

verschiedene Suchmöglichkeiten, darunter eine Liganden zentrierte einfache Suche, eine

erweiterte Suche, mit der Informationen zu biologischen Assays abgerufen werden

können, und eine strukturelle Suche.

Derzeit enthält TollDB 4925 Datenpunkte, die 2155 Verbindungen beschreiben, die

in 36 in vitro Testtypen unter Verwendung von 553 verschiedenen Testbedingungen

getestet wurden. Von allen 2155 Verbindungen sind 1278 nicht in der ChEMBL

Datenbank enthalten. Benutzer können bei der TollDB auch Informationen zu den

gemessenen inaktiven und Multi-Target-TLR-Liganden erhalten. Nach der statistischen

Analyse für TollDB haben wir den von den Verbindungen in TollDB abgedeckten

chemischen Raum mit dem von den Verbindungen in DrugBank abgedeckten verglichen.
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Wir haben die matched molecular pairs und activity cliffs untersucht. Nachdem wir ein

umfassendes Verständnis der Daten in der TollDB erlangt haben, haben wir die Daten

verwendet, um Modelle für maschinelles Lernen zu trainieren, um aktive Liganden

für verschiedene Subtypen zu identifizieren. Diese validierten Modelle können zur

Priorisierung von Treffern aus dem virtuellen Screening zur Synthese oder zum Testen

verwendet werden.

Zusammenfassend kann die Datenbank in vielen Aspekten direkt verwendet werden,

beispielsweise als Validierungsdatensatz für die Bewertung eines Pharmakophormodells,

als virtuelle Screening-Bibliothek für die Umfunktionierung von Arzneimitteln oder

als Referenzsubstanz, für das Design des pharmakologischen Assays. TollDB stellt

eine einzigartige und nützliche Ressource für verschiedene Forschungsbereiche wie

medizinische Chemie, Immunologie und Computerbiologie dar und fördert den Einsatz

künstlicher Intelligenz in modernen Wirkstoffdesign.
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1. Introduction

TLRs are a family of structurally conserved proteins that received their name from their

similarity to the protein coded by the toll gene identified in Drosophila by Christiane

Nüsslein-Volhard and Eric Wieschaus in 1985 [1]. A total of 13 TLRs have been

discovered, 10 TLRs (TLR1-10) are found in human and 12 TLRs (TLR1-9 and TLR11-

13) are expressed in rodents [2, 3]. The TLR family can be divided into two subgroups,

extracellular and intracellular TLRs, depending on their cellular localization. Among

these TLRs, TLR1, TLR2, TLR5, TLR6 and TLR10 are localized on the cell surface,

whereas the TLR3 and TLR7, TLR8 and TLR9 are found in the endoplasmic reticulum,

endosome, and lysosome. The subcellular localization of TLR4 is unique because it is

localized in both the plasma membrane and endosomal vesicles [4]. However, TLR10-13

remain poorly characterized and their function is unclear [5, 6]. The native ligands

for TLRs include lipoteichoic acid (LTA) from gram-positive bacteria or macrophage-

activating lipopeptide-2 (MALP-2) originally isolated from Mycoplasma fermentans

for TLR1, 2, and 6; lipopolysaccharide (LPS) from gram-negative bacteria for TLR4

and flagellin for TLR5; double-stranded RNA (dsRNA) for TLR3 and single-stranded

RNA (ssRNA) for TLR7 and TLR8; TLR9 recognizes unmethylated CpG motifs of

bacterial deoxyribonucleic acid (DNA). TLRs are highly expressed on immune cells

and their presence and distribution vary by immune cell type [7]. TLRs are central to

the innate and adaptive immune response and were considered as the first line in the

immune defense [8, 9]. Thus, targeting small molecule TLR modulators has a great

potential in developing prophylactic/therapeutic agents.

TLRs have major roles in the activation of the innate immune response against in-

vading microbial pathogens [10] through recognizing specific sets of pathogen-associated

molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Ligand

types for TLRs range very broadly, including components of bacterial cell walls like LPS,
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along with RNA or DNA immune complexes or DAMPs like heat shock proteins (HSP60,

HSP70) [11]. All (patho)physiological TLR modulators are structurally complex, which

challenges the rational design of drug-like TLR modulators. However, several studies led

to the identification of small organic molecules with TLR modulating properties [12, 13].

These small molecules have the potential to be developed as therapeutic options against

various diseases [8] such as sepsis [14], autoimmune diabetes [15] and metabolic syn-

drome [16], or used as vaccine adjuvants [17]. There are several TLR-targeting molecules

that have been developed as marketed drugs, including Imiquimod, a TLR7 agonist

that has been approved by the FDA for treatment of keratosis [18–20], condylomata

acuminate [21] and basal cell carcinoma [22], Resiquimod (R848), a dual TLR7

and TLR8 agonist granted as an orphan drug for the treatment of cutaneous T cell

lymphoma in the European Union [23, 24] and Rintatolimod, a TLR3 agonist used

in severe cases of myalgic encephalomyelitis/chronic fatigue syndrome [25].

TLRs belong to the class of integral membrane type I glycoproteins, which have

three major domains: the extracellular domain (ECD) with 16-28 of leucine-rich repeat

(LRR) motifs, the transmembrane domain (TMD), and the cytoplasmic domain (similar

to that of interleukin-1 receptor; IL-1R), which is known as the Toll/IL-1R (TIR)

domain [26, 27]. In 2005, the first crystal structure of the ECD of TLR reported was

TLR3 [28, 29], and crystal structure analysis of other later-reported TLRs provided

more information for elucidating the ligand/receptor binding mechanism [30]. Despite

the differences in ligand interactions, the overall shape of the TLR-ligand complexes

is strikingly similar: upon the ligand binding, two ECDs form an M-shaped homo- or

heterodimer sandwiching the ligand molecule, thus bringing the TMD and TIR domain

of the dimer in close proximity to trigger a downstream signaling cascade [31].

After ligand engagement, TLRs trigger multiple signaling pathways, including one

depending on the adaptor molecule, termed MyD88, and another that is MyD88 inde-

pendent, but depends on TIR-domain-containing adaptor protein inducing interferon-β

(TRIF) [33, 34]. MyD88 is a universal adaptor molecule used by almost all TLRs

except TLR3 and it plays a crucial role in TLR signal transduction as a component for

a “shared” signaling pathway. An overview of the TLR signaling pathways is shown

in Figure 1.1. TLR signaling is initiated by ligand-induced dimerization of receptors.

Following this, the Toll-IL-1-resistance (TIR) domain of TLRs engages TIR domain-
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1. INTRODUCTION

Endosome

TLR2/1 TLR2/6 TLR4 TLR5 TLR10
Pam3CSK4 Pam2CSK4 Flagellin Unknown

TIR

MyD88 MyD88 MyD88 MyD88 MyD88

IRAK4

TRAF6

TAB2 TAB3

IRAK1 IRAK2

TAK1

MKK3/6 MKK4/7

p38

IKKβ

JNK

IKKα

CREB AP1 NF-κB

TLR3

TLR7

TLR9
dsDNA CpG-DNA

ssRNA ssRNA

MyD88

MyD88
MyD88

TRAM

TRIFRIP1

TRAF3

TBK1 IKKε

IRF3

IRAK4

TRAF3

IRAK1 IRAK2IKKα
IRF7

TRAM

TRIF

Nucleus

Type I IFNs (IFN-α
and IFN-β)

Pro-
inflammatory 
cytokines

LPS

TLR8

Figure 1.1: MyD88-dependent and MyD88-independent signaling pathways for TLRs.
Figure modified from [32]. Note that TLR4 localizes at both the plasma membrane
and the endosomes. dsRNA, double-stranded RNA; IKK, inhibitor of NF-κB kinase;
LPS, lipopolysaccharide; MKK, MAP kinase kinase; RIP1, receptor-interacting protein
1; rRNA, ribosomal RNA; ssRNA, single-stranded RNA; TAB, TAK1-binding protein;
TAK, TGF-β-activated kinase; TBK1, TANK-binding kinase 1.
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containing adaptor proteins (either myeloid differentiation primary-response protein 88

(MyD88) and MyD88-adaptor-like protein (MAL), or TIR domain-containing adaptor

protein inducing interferon-β (IFN β), i.e. TRIF and TRIF-related adaptor molecule

(TRAM). Engagement of the signaling adaptor molecules stimulates downstream sig-

naling pathways that involve interactions between IL-1R-associated kinases (IRAKs)

and the adaptor molecules TNF receptor-associated factors (TRAFs). This leads to

the activation of mitogen-activated protein kinases (MAPKs), JUN N-terminal kinase

(JNK) and p38, and finally to the activation of transcription factors. The two important

families of transcription factors that are activated downstream are nuclear factor-κB

(NF-κB) and interferon-regulatory factors (IRFs). Other transcription factors, such as

cyclic AMP-responsive element-binding protein (CREB) and activator protein 1 (AP1),

are also important. A major consequence of TLR signaling is the induction of various

pro-inflammatory cytokines, and in the case of the endosomal TLRs, the induction of

type I interferon (IFN) [32].

1.1 Therapeutic relevance of TLRs

TLRs are widely accepted to be present on immune cells and vast numbers of studies

reported the presence of TLR message in leukocytes, with different TLR isoforms being

present on specific subsets [35]. According to a study in 2002, which used quantitative

real-time polymerase chain reaction (PCR) to systematically examine the expression

of mRNAs encoding all known human TLRs, most tissues tested expressed at least

one TLR, and several (spleen, peripheral blood leukocytes) expressed all subtypes.

Monocyte-like THP-1 cells regulate TLR mRNAs in response to a variety of stimuli

including phorbol esters, LPS, bacterial lipoproteins, live bacteria, and cytokines.

The immune response can discriminate between self and non-self, recognize specific

pathogens, and uses an immunological memory to learn about the threat and enhance

the immune response accordingly, thus protecting humans from potentially harmful

disease-causing organisms or pathogens, like bacteria or viruses. When the human

immune system is hyperresponsive, conditions including organ rejection, cardiovascular

diseases, and autoimmune diseases (e.g., multiple sclerosis, allergy) may occur, on

the contrary, when the immune system is hyporesponsive, conditions like cancer and

4



1. INTRODUCTION

infectious disease or sepsis may occur [36]. Therefore, regulating the immune response

can be a therapeutic avenue to treat such diseases. Since TLRs are engaged in not

only innate immunity but also adaptive immunity, they are well-suited as targets for

modulating the immune response to cure related diseases.

Studies have shown that TLRs are involved in a wide spectrum of diseases [8, 37–41].

As shown in Table 1.1, TLR agonists are potential agents to be used as vaccine adjuvants,

and for the treatment of allergy, cancer, and infectious diseases. TLR antagonists are

designed to reduce inflammation caused by infection or autoimmune disease. In the

past two decades, many endeavors have been dedicated to delineating this relationship

and compiling data regarding the TLR involvement in various diseases [42].

Table 1.1: TLR family as potential drug targets

Disease TLR involved Therapeutic
approach

references

Cancer (including colon can-
cer, gastric cancer, breast can-
cer, melanoma, hepatocellular
carcinoma, lung cancer, glioma,
prostate cancer, ovarian cancer,
cervical squamous cell carcinomas,
chronic lymphocytic leukemia or
used as vaccine adjuvants)

TLR1-9 Agonist [19, 43–46]

Allergic diseases (including
asthma, allergic rhinitis)

TLR4, 7, 8, 9 Agonist [19, 43, 47]

Infectious diseases (anti-
bacterial/anti-viral activity)

TLR2, 3, 4, 7, 8,
9

Agonist [19, 43, 48–51]

Acute/chronic inflammatory
diseases (including diabetes,
chronic obstructive pulmonary
disease)

TLR2, 4 Antagonist [15, 52–54]

Neuropathic pain, chronic
pain

TLR4 Antagonist [55, 56]

Autoimmune diseases (includ-
ing systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA),
systemic sclerosis [57], Sjögren’s
syndrome, multiple sclerosis (MS))

TLR1-9 Antagonist [19, 43, 58, 59]

Sepsis TLR2, 4, 9 Antagonist [19]

Upon binding of ligands with TLRs, the ligand-receptor complexes lead to the

activation/inhibition of transcription factors and cytokine production. A signaling

5



pathway modulator does not directly interact with the TLRs but modulates the

downstream signaling pathway, which could potentially either enhance or decrease the

effects of a TLR ligand. The pathway modulator (that does not bind directly to TLRs)

could also be targeted for potential therapeutic effect.

Despite the great potential for TLR ligands in therapy, it remains challenging for

their development and application. TLR agonists have the potential to cause chronic

inflammation and the non-specific activation of immune cells, and as an anti-tumor

or anti-infectious agent they have the possibility of activating self-reproduction that

might result in autoimmune diseases. Many TLR agonists under clinical studies were

withdrawn from further development due to either lack of efficacy or serious side

effects [18]. The major drawback to the use of TLR antagonists is an increase in

susceptibility to infectious agents and tumors. These adverse effects highlight the

number of issues that must be taken into consideration when designing TLR ligands.

1.1.1 Therapeutic fields for TLR agonists

Immunotherapy based on TLR agonists represents a promising way for the prevention

and/or treatment of several disorders including cancer, allergy, and infectious diseases.

Cancer

Functional TLRs are not only expressed on immune cells but also on cancer cells, thus

implicating TLRs in tumor biology [60]. Increasing bodies of evidence have suggested

that TLRs act as a double-edged sword in cancer cells as uncontrolled TLR signaling

provides a microenvironment that is necessary for tumor cells to proliferate and evade

the immune response. Alternatively, TLRs can induce an antitumor immune response

in order to inhibit tumor progression [61]. Activation of TLRs leads to the induction

of cytokines such as IL-12, IL-10, IL-6, TNF-α, and types I and II IFN. In addition,

it also enhances the activation of CD4+ helper T cells and CD8+ cytotoxic T cells

(CTL), which leads to induction of Th1, Th2, and Th17 responses [62]. TLR agonists

can therefore serve as immunotherapeutics or vaccine adjuvants for the treatment or

prevention of cancer.

Several TLR agonists are being explored for cancer immunotherapy [63]. Monophos-

phoryl lipid A (MPLA) has been approved for prophylaxis of HPV-associated cervical
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1. INTRODUCTION

cancer (used as a human vaccine adjuvant) [64]. Also, the TLR7 agonist, Imiquimod,

an imidazoquinoline derivative, has been approved by Food and Drug Administration

(FDA) as a therapeutic agent for basal cell carcinoma and genital warts [65].

A phase 1 study of TLR8 agonist VTX-2337 (alternatively: Motolimod) in treat-

ing patients with recurrent or persistent ovarian epithelial, fallopian tube, or peritoneal

cavity cancer was successfully completed [66]. A phase 1b multicenter pre-surgical study

to evaluate immune biomarker modulation in response to VTX-2337 in combination

with Nivolumab in subjects with resectable squamous cell carcinoma of the head and

neck (SCCHN) is now under phase 1 recruiting [67]. The phase 1 study of a TLR4 ago-

nist GLA-SE (Glucopyranosyl Lipid A in Stable Emulsion) in patients with Merkel cell

carcinoma was completed in March 2018 [68], GLA-SE was also used as an adjuvant in

a pilot study of peptide vaccine (melanoma antigen recognized by T-cells 1 (MART-1)

antigen) for patients with resected melanoma [69]. The phase 1/2 dose-escalation

study in patients with relapsed or refractory Waldenström’s macroglobulinemia using

TLR7/8/9 antagonist IMO-8400 (an oligonucleotide) was terminated due to lack of

efficacy [70]. Phase 2 trial with intradermal IMO-2125 (alternatively: Tilsotolimod)

in pathological tumor stage pT3-4 cN0M0 melanoma (INTRIM) is under phase 2

study [71]. TLR9 agonist SD-101, in combination with Ibrutinib and local radiation, is

now under phase 2 study for relapsed or refractory grade 1-3A follicular lymphoma [72].

Other clinical studies relating to TLR ligand on cancer immunotherapy before 2019

were summarized in references [73, 74].

Allergic disease: asthma and allergic rhinitis

Allergies, also known as allergic diseases, are a number of conditions caused by hyper-

sensitivity of the immune system to allergens. Common allergens include pollen and

food. According to the site of contact with the allergen, different clinical manifestations

may develop in the airways, skin, or gastrointestinal tract. The frequency of allergic

diseases has increased over the last century [75]. Allergic rhinitis (AR) and asthma are

two common allergic diseases of the respiratory system. Both the innate and adaptive

immune systems are relevant for the development of asthma.

Asthma is mainly driven by type 2 immune responses, which comprise increased

airway eosinophils, CD4+ T helper 2 (TH2) cells. Recently, group 2 innate lymphoid
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cells (ILC2s) have been identified that may play an important role in non-allergic

asthma [76]. The recruitment of TH2 and ILC2s and later activation of transcription

factors lead to the secretion of IL-4, IL-5, and IL-13 [77, 78].

Allergic rhinitis represents another allergic disease of the respiratory system. It is

clinically defined as a symptomatic disorder of the nose induced after allergen exposure

by IgE-mediated inflammation [79]. It affects people of all ages, peaking in the teenage

years. Although allergic rhinitis is not a serious illness, it is clinically relevant because

it underlies many complications. It is a major risk factor for poor asthma control

and affects quality of life as well as productivity at work or school [80]. In 2011, a

TLR8 agonist was used in phase 1b/2a trials for allergic rhinitis [81]. Compounds that

target TLRs have been found to suppress airway inflammation, eosinophilia and airway

hyperresponsiveness in various animal models of allergic inflammation [82].

A TLR7 agonist, GSK2245035, was studied for its effect on the allergen-induced

asthmatic response but was withdrawn after revision of new data [83, 84]. It was

also used in a clinical study for treating allergic rhinitis [85–87]. CYT003, a TLR9

agonist, was also withdrawn [88, 89]. This indicates that a great effort is still needed

for developing TLR agonists for the treatment of asthma and allergic rhinitis.

Infectious diseases

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses,

parasites, or fungi; the diseases can be spread, directly or indirectly, from one person to

another. TLRs can induce a multitude of inflammatory cytokines and mediators and

play a major role in viral clearance. This has led to the discovery that TLR agonists can

be utilized to control viral infections [49]. The MyD88-dependent pathway is important

for protection against bacterial infection [90]. TLR agonists have been harnessed as

anti-microbial agents or as adjuvants [17, 91]. Other development of TLR agonists as

anti-bacterial/anti-viral agents are summarized in review [92].

Starting from the end of 2019, the COVID-19 epidemic [93] has spread all over the

world and posed a great threat to public health. This pandemic had a profound impact

on people’s lives [94] and the global economy [95]. The TLR signaling pathways, specif-

ically the TRIF-dependent pathway, which activate the type I IFNs and inflammatory

factors, is important for enhancing the protection for uninfected cells. Therefore, TLR3
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1. INTRODUCTION

and TLR4 have been highlighted as crucial and can be targeted for generating host

defense to COVID-19 [96].

1.1.2 Therapeutic fields for TLR antagonists

TLRs exhibit homeostatic roles in immunity. Therefore, modulating the immune

response by using TLR agonists or antagonists might be of therapeutic value. Their use

in clinical trials to treat septic shock and autoimmune disease shows great potential [97].

Acute/chronic inflammatory diseases

Inflammation is an essential process in response to injury and infection. Manifested

in the form of heat, pain, redness, and swelling, inflammation represents a critical

process as the body adapts to restore homeostasis after infection or injury. However,

excessive inflammation contributes to the development of inflammatory and autoimmune

diseases [5].

The pathogenesis of chronic obstructive pulmonary disease (COPD) is driven by

chronic inhalation of noxious particles, often cigarette smoke, that persistently stimulates

innate and inflammatory responses [98]. TLR2 and TLR4 play an important role in the

immunoregulation of the inflammatory process in COPD [99], providing a new target

for COPD treatment. TLRs and their downstream protein kinases may be potential

targets for the treatment of traumatic brain injury [100]. Recent studies indicate that

TLR activation could be the molecular basis for the development of metabolic syndrome-

induced inflammation, thus providing a new strategy for developing TLR antagonists

to suppress unwanted metabolic syndrome-associated inflammatory response [101].

Autoimmune diseases

Under certain circumstances, dis-regulation of the inflammation process can lead to

pathological conditions, such as autoimmune diseases, including rheumatoid arthritis,

multiple sclerosis, and atherosclerosis. The pivotal function of TLR2/4 in the patho-

genesis of autoimmune diseases is summarized in a review by Liu et al. [58]. Activation

of TLR signaling pathways leads to the pro-inflammatory cytokine production and

direct/indirect T cell activation, which are now considered to be major factors in the
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development of autoimmunity [59, 102]. This is another promising application of TLR

antagonists in treatment.

Although it failed in the clinical trial for cancer treatment, IMO-8400 was used

in phase 2 study for patients with moderate to severe plaque psoriasis [103] and

demonstrated clinical improvement.

1.2 Pharmacological/biological concepts used in TollDB

With considerable information on structure, function and signaling known for the

TLRs, and their relationship with numerous diseases, researchers have targeted TLRs

to discover potential therapeutic agents. During the experimental testing procedure,

many different materials and experimental methods were used.

The TLR modulators database we built is referred to as TollDB in all following

sections. All assays collected in TollDB have been classified as two main types, namely

functional assay and binding assay. Functional assays were used to investigate whether

the molecule tested is relating to a particular cellular pathway or biological process.

Binding assays were used to test the binding affinity between the target protein

and the testing molecule. Functional assays in TollDB mainly include gene reporter

assays [104], cytokines related assays [105, 106], mRNA related assays [107, 108],

transcription factor related assays [109, 110] and cell proliferation related assays [111],

depending on the content that was being measured. Binding assays in TollDB include

surface plasmon resonance (SPR) [112], isothermal titration calorimetry (ITC) [113],

fluorescence polarization [114] and microscale thermophoresis assay (MST) [115]. These

assays also represent the main methods for measuring ligand-acceptor binding affinity.

Tested effects in TollDB were categorized as antagonism and agonism, depending on

whether the testing compound has a positive, activating effect, or a negative, inhibiting

effect on the signaling pathway. We also curated the cell line category for TollDB

according to the cell line type used in the functional assays, where the two categories

comprise primary cell line and immortalized cell line. Primary cell lines are cells that

are directly derived from normal embryonic or adult tissue, which are propagated in

culture. These cells are considered to be genetically identical to cells in the tissue of

origin [116]. Immortalized cell lines are comprised of a single cell type that can be
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1. INTRODUCTION

serially propagated in culture either for a limited number of cell divisions (approximately

thirty) or otherwise indefinitely [117].

1.3 Machine learning in drug discovery

The drug discovery process (Figure 1.2) in general can be divided into three parts: (1)

target identification; (2) lead discovery; and (3) clinical trials [118]. TollDB focuses on

lead discovery and lead optimization. Lead design is the most decisive step in the process

of drug discovery and rational drug design makes it more likely to find new structures

possessing the required properties and biological activity. With the fast development of

new computer hardware such as graphical processing units (GPUs) that make parallel

processing faster, drug discovery has taken advantage of abundant, high-quality data to

make use of machine learning or deep learning for accurate predictions, thus speeding

up the process and reducing failure rates. Opportunities to apply machine learning

may occur in all stages of drug discovery [119].

Functional 
Genome

Drug 
Target

Target 
Validation

Lead 
Discovery

Pre-
Clinical

Lead 
Optimize

MarketClinic

New gene/ New
Drug Function

New Target Lead Compound New Drug

Target 
Identification

Lead Compound 
Discovery

Drug 
Development

Figure 1.2: Drug discovery process. Figure modified from [118].

Artificial intelligence (AI), in particular machine learning and deep learning, have

been successfully employed for drug discovery and design, including virtual screening,

physicochemical and ADMET properties predictions, drug repurposing and so on, all
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summarized in a review by Yang et al. [120]. For application to TLRs, the first reported

use of random forest-based approaches [121, 122] to predict novel mouse TLR9 agonists

based on an in-house experimentally validated single-stranded DNA oligonucleotides

dataset was reported by Khanna and colleagues [123]. This will be discussed in the

Discussion section.

The term “machine learning” was coined in 1959 by Arthur Samuel, with the general

definition that machine learning is the field of study that gives computers the ability to

learn without being explicitly programmed [124]. Tom M. Mitchell provided a widely

quoted, more formal definition of the algorithms studied in the machine learning field:

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E.” [125]. Depending on the amount and type of

supervision a model gets during training, machine learning systems can be classified

into four major categories: supervised learning, unsupervised learning, semi-supervised

learning, and reinforcement learning. In supervised learning, the training data fed

to the algorithm includes the desired solutions, called labels. A typical supervised

learning task is classification (example shown in Figure 1.3), another is to predict a

target numeric value, given a set of features called predictors. This sort of task is called

regression [126]. In our current work, we concentrate on building models for prediction

of potential active molecules. Thus, classification models are used.

Training Set

√

×

√

√

×

√
×

√

×

?

Label

Instance

New Instance

Figure 1.3: A labeled training set for supervised learning (e.g., spam classification).
Figure modified from [126]
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1. INTRODUCTION

In practical machine learning projects, data is as important as algorithms. Sometimes

the data source cannot be used directly, this can be due to several reasons: missing

values, imbalanced dataset, noise, too many variables, specific domain restriction of

the algorithms, etc. Therefore, most of the times the dataset needs to be preprocessed.

Furthermore, data preprocessing has a huge impact on model performance [127–129].

Common data types include numerical (such as height) and categorical (such as

a label), and each of them could be further subdivided, numerical variables can be

subdivided as integer variables and floating-point variables, and categorical variables

can be subdivided as boolean (dichotomous), ordinal, or nominal variables.

Preprocessing of the dataset includes extracting and transforming data, handling of

missing values, encoding for categorical features, scaling and normalization for numerical

features etc. It is very common to encounter categorical features in a dataset, and

these categorical features can be ordinal or not. However, machine learning algorithms

can only read numerical values. Thus, it is essential to encode categorical features

into numerical values. The commonly used categorical encoding methods provided by

scikit-learn include label encoding and one-hot encoding.

In machine learning, hyperparameters are used to control the learning process and

are set before the learning process begins. In scikit-learn [130, 131] hyperparameters

are passed in as arguments to the constructor of the model classes. The most commonly

used methods for optimizing hyperparameters include grid search [132] and random

search [133]. The benefit of grid search is that it is guaranteed to find the optimal

combination of parameters supplied. The drawback is that it can be computationally

expensive and time consuming. Random search differs from grid search mainly in that

it searches the specified subset of hyperparameters randomly instead of exhaustively.

The major benefit of random search is decreased processing time. Note that random

search does not guarantee the optimal combination of hyperparameters.

1.3.1 Machine learning model evaluation methods

In the field of machine learning and specifically the problem of classification tasks,

different performance measurement methods are used [134]. In the case of a supervised

binary classification problem, a confusion matrix (see Table 1.2) is often used. Each row

of the matrix represents the instances in a predicted class while each column represents
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the instances in an actual class (or vice versa), i.e., reports the number of false positives

(FP), false negatives (FN), true positives (TP) and true negatives (TN). Terminologies

derived from a confusion matrix are shown in the following paragraphs [135].

Table 1.2: Confusion matrix

Actual Positive (1) Actual Negative (0)
Predicted Positive (1) TP FP
Predicted Negative (0) FN TN

Accuracy is used for evaluating the performance of machine learning models, and

for binary classification, accuracy can be calculated in terms of positives and negatives

as in Equation 1.1 [136]. It works well only if there are equal number of samples

belonging to each class. Accuracy is not always perfect for model evaluation, especially

for imbalanced datasets [137].

accuracy =
TP + TN

TP + TN + FP + FN
(1.1)

We use a balanced accuracy score to avoid inflated performance estimates on

imbalanced datasets. Balanced accuracy score is the macro-average of recall scores per

class or, equivalently, raw accuracy, where each sample is weighted according to the

inverse prevalence of its true class. Thus, for balanced datasets, the balanced accuracy

is equal to accuracy. In the case of binary classification, balanced accuracy is equal

to the arithmetic mean of sensitivity (true positive rate, TPR) and specificity (true

negative rate, TNR). See Equation 1.2.

balanced accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (1.2)

Precision focuses on false positive errors. See Equation 1.3.

precision =
TP

TP + FP
(1.3)

Recall is also called the true positive rate (TPR) or sensitivity, and corresponds

to the proportion of positive data points that are correctly considered as positive,

with respect to all positive data points. For a binary classification problem, it can be

calculated using Equation 1.4.
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1. INTRODUCTION

recall = TPR =
TP

TP + FN
(1.4)

The false positive rate (FPR) (fall out) is equal to one minus specificity or true

negative rate (TNR). Defined in Equation 1.5.

FPR =
FP

FP + TN
(1.5)

The area under the ROC curve [138] (AUC [139]) is one of the most widely used

metrics for evaluation [140]. It is used for binary classification problems. The AUC of

a classifier is equal to the probability that the classifier will rank a randomly chosen

positive example higher than a randomly chosen negative example. AUC is the area

under the curve of plotting FPR vs. TPR at different points in the range [0, 1]. Since

AUC is scale-invariant, it measures how well predictions are ranked, rather than their

absolute values. It is also classification-threshold-invariant, measuring the quality of

the model’s predictions irrespective of what classification threshold is chosen. Thus, we

also used this to compare model performance.

The F1 Score is the harmonic mean between precision and recall, see Equation 1.6.

The range for the F1 Score is [0, 1]. It tells you how precise your classifier is (how

many instances it classifies correctly), as well as how robust it is (it does not miss a

significant number of instances).

F1 = 2 · 1
1

precision
+ 1

recall

(1.6)

The Matthews correlation coefficient (MCC) is a balanced measure of prediction

quality which not only takes TP and FP into account, but also TN and FN, thus can be

used if the classes are of very different sizes. It is calculated according to Equation (1.7).

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(1.7)

While there is no perfect way of describing the confusion matrix of true and false

positives and negatives by a single number, the Matthews correlation coefficient is

generally regarded as being one of the best matrices [141]. Thus we used MCC as

the primary measure of model performance for our binary classification problems to
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compare the used algorithms in order to choose the best for a specific problem and at

the same time take accuracy score, balanced accuracy score, and the AUC into account.
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2. Aim and Objectives

TLRs are a family of structurally conserved, single-pass membrane-spanning proteins

that play important roles in the activation of the innate immune response against

invading microbial pathogens. They recognize specific sets of PAMPs or DAMPs.

Ligand types for TLRs range from components of bacterial cell walls like LPS, to RNA

or DNA immune complexes, to DAMPs like HSP60, HSP70. All (patho)physiological

TLR modulators are structurally very complex, which challenges the rational design

of drug-like TLR modulators. Despite a large number of TLR modulators emerging

in publications in the past two decades, there is no complete and curated database

available that containing all published small molecule TLR modulators.

The aim of this thesis is to make use of all available information for TLRs to develop

a strategy for assisting rational drug design through machine learning approaches. As

a starting point, we collected all available information about published small molecule

TLR modulators and transformed them into a MySQL database. This process is not

only fundamental for the data-driven approaches including investigation of chemical

space coverage, matched molecular pairs and activity cliffs, but also for the development

of predictive machine learning models. To achieve our goals, we proceed according to

the following steps:

1. Literature search, reading, data collection and curation, database compilation.

2. Web application development for easier information retrieving and publication.

3. Data analysis and visualization for TollDB, chemical space analysis to get a deeper

understanding of the database.

4. Development of machine learning models including data preprocessing, algorithm

selection, feature selection, hyperparameter tuning and model evaluation.
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The constructed database will provide a more profound understanding of TLR

ligand profiles. The developed web application will help scientists from various fields

in targeting TLRs for drug development, and the optimized machine learning models

will provide a useful tool for filtering hits from virtual screening campaigns, prioritizing

compounds for synthesis and testing, or even predicting TLR related off-target effects

when designing ligands for other targets.

18



3. Methods and Materials

3.1 Data collection and curation

For collecting all original papers related to TLR ligands, our reference sources include

the following: SciFinder, PubMed, Web of Science, Google Scholar, Google. To obtain

research articles containing information on TLR modulators, systematic searches were

performed using various keywords such as “toll-like receptor”, “toll-like receptor ligand”,

“TLR 2 (or other subtypes such as 1, 3, 4, 5, 6, 7, 8, 9, 10) ligand”, “TLR 2 (or other

subtypes such as 1, 3, 4, 5, 6, 7, 8, 9, 10) inhibitor (activator, agonist, antagonist)”,

“small molecule toll-like receptor ligand” and so on. Articles describing prediction

methods without experimental data, book chapters and patents were excluded. The rest

of the search articles were manually checked by cautious reading through the abstract

to discriminate whether it was focusing on small molecule modulator for TLRs with

reported biological assay/testing. Review articles were checked for their cited papers.

For modulators that have been examined in more than one study or tested in different

labs, multiple entries were included.

More detailed inclusion criteria for the data from a publication were as follows:

1. Publication is accessible in the public domain

2. Publication is the primary source for the data

3. Related activity testing assays are part of the publication

Compounds from publications that satisfy the aforementioned criteria were collected,

curated and compiled manually in Instant JChem [142]. Other criteria for inclusion of

compounds were as follows:

1. Compounds with detailed testing information in the original publication
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2. Compounds with a molecular weight (MW) of less than 700 Da

3. Compounds that were not cytotoxic when tested at the effective concentrations

It is noteworthy to mention that we included information about stereochemistry if

available, i.e., we considered stereo isomers as well as racemates if available as unique

entries, since bioactivity is likely to differ between them. Additional information about

related testings from the publications were collected and curated, which includes the

following aspects (see Table 3.1):

Table 3.1: Data collection and curation

Column name a Description

TargetName the TLR subtype that an assay is targeting
TargetOrganism organism or the origin of target TLR gene
AssayType categorized as functional assay or binding assay
CellLineName cell line used in the assay
CellLineCategory categorized as primary cell line or immortalized cell line
Stimuli b if used in some antagonistic-effect related assays
ActivityType b IC50, EC50, Kd or other
EffectType categorized as agonism or antagonism
Result testing result for the corresponding activity type
Unit unit for the result
ResultLabel categorized as active or inactive
a: in italic if used as column names in TollDB.
b: information included in ConditionDescription if exists.

The criteria for determining whether a compound is active/inactive include the

following: (1) compounds are defined clearly as active or inactive in the original

publications; (2) experimental data for all compounds that have an obvious threshold

in IC50, EC50, Kd, or activation/inhibition rate; (3) for those that the authors did not

note clearly as active or inactive, and those that do not have an obvious threshold, the

following criteria were applied: (i) if the negative control is provided, the compound

that generates an effect that is significantly different compared to the negative control

is considered as active, otherwise considered as inactive; (ii) if the positive control

is provided, the compound that generates at least half of the effect of the positive

control is considered as active, otherwise considered as inactive; (iii) when neither (i)

nor (ii) applies, compounds used for further testing are considered as active and those

only tested in the initial screening assays but without further testings are considered
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3. METHODS AND MATERIALS

as inactive. The overall workflow for publication selection, compound selection and

compound labeling is shown in Figure 3.1.

We took advantage of the friendly graphical user interface (GUI) of Instant JChem

for collecting data from publications, especially for the 2D structure collection. We then

transferred the whole database into a relational MySQL database. Later modification

or updating of the database was performed using the same approach. We checked the

uniqueness of the compounds in TollDB using canonical isomeric SMILES (simplified

molecular input line entry system) [143, 144] before transferring the database to MySQL.

Canonical SMILES are used as the unique string that encodes the connection table of

a molecule, but with no chiral or isotopic information. Consequently, two stereoisomers

always share the same canonical SMILES, since their stereo information was ignored

during the canonicalization process. Canonical isomeric SMILES encodes isotopic and

stereo information. Due to the unambiguity of canonical isomeric SMILES, they can be

used as universal identifiers for a specific chemical structure (absolute SMILES [145]).

Since we recorded the molecule structures as they were tested in publications, we

conducted a preprocessing step using Molecular Operating Environment (MOE) version

20190102 [146] to remove the salts before transforming molecules to canonical isomeric

SMILES by Open Babel [147, 148] and used them for duplicate checking in TollDB.

We used MOE to calculate all available 2D descriptors and some 3D descriptors

(including ASA1, E sol2, vol3, VSA4) for compounds in TollDB. Molecular quantum

numbers (MQNs) [149] and molecular fingerprints were calculated using RDKit [150].

Descriptors are referred to as features in our machine learning studies described in

Section 3.4.

3.2 Web deployment for TollDB

Before deployment, TollDB was transferred to MySQL Workbench [151]. The TollDB

web interface was developed with Bootstrap [152], a popular responsive development

framework including HTML, CSS and JavaScript, which enables integration of all data

for user-friendly searching and visualization. Marvin JS [153], Smiles Drawer [154]

1ASA: Water accessible surface area
2E sol: solvation energy
3vol: Van der Waals volume
4VSA: Van der Waals surface area
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and RDKit were employed for structure search and 2D structure depiction on the web

application. Python [155] with flask package was used for server-side scripting. The

TollDB website is compatible with most major browsers.

3.3 Data analysis for TollDB

3.3.1 Basic data analysis and visualization

Data analysis and visualization for TollDB were mainly conducted using Python with

the numpy, pandas, matplotlib, and seaborn packages. The basic calculation included

count number, quartile values, minimum value, maximum value, median value, skewness,

kurtosis, variance and standard deviation of all descriptors for each ligand type.

For chemical space visualization we used principal component analysis (PCA) [156]

and compared the chemical space between TollDB and DrugBank. Descriptors used for

PCA analysis include: water accessible surface area (ASA)5, number of hydrogen-bond

acceptors (a acc), number of hydrogen-bond donors (a don), weight (or molecular

weight, MW), number of heavy atoms (a heavy), number of hydrophobic atoms (a hyd),

fraction of rotatable bonds (b rotR), number of chiral centers (chiral), solvation energy

(E sol), sum of formal charges (FCharge), n-octanol/water partition coefficient (log

P(o/w)), number of rings (rings), Van der Waals volume (vol), Van der Waals surface

area (VSA)6, topological polar surface area (TPSA). These were calculated with MOE.

3.3.2 Matched molecular pairs and activity cliffs

Drug discovery projects frequently discover that a small structural change causes a

major change to a property of interest. It is a central premise of medicinal chemistry that

molecules that are structurally similar have similar biological activities [157]. In drug

design, traditional medicinal chemists apply this in synthesis to modify hit compound

expecting discovery of compounds with an improved desired property. Sometimes this

similarity principle can fail, in which case digging into molecular similarity or diversity

5Water accessible surface area calculated using a radius of 1.4 Å for the water molecule. A polyhedral
representation is used for each atom in calculating the surface area.

6van der Waals surface area. A polyhedral representation is used for each atom in calculating the
surface area.
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would be beneficial for the quantitative structure-activity relationship (QSAR) study

of a particular target.

Matched molecular pairs and activity cliffs search

Matched molecular pairs (MMPs) have generally been defined as “a pair of molecules

that differ only by a particular, well-defined, structural transformation (represented

by a substructure) such as a ring or an R-group” [158], and one of the key advantages

of MMP analysis over other data analysis and modeling techniques is that it directly

deals with the chemistry and measured data, ensuring clear interpretation of the

results [159, 160]. Many researchers have developed software for identifying matched

molecular pairs, such as MedChem Toolkit (from OpenEye) [161], mmpdb [162], Drug-

Guru [163], WizePairZ [164], VAMMPIRE [165] and others [166]. The MMP concept

has been further developed into Matched Pair Series [167, 168] or Matched Molecular

Series (MMS) [169] to describe a set of compounds (not only a pair) differing by only a

single chemical transformation.

In this work, we used the Automated Matched Pairs node from Erlwood knime

open source cheminformatics in KNIME [170, 171] to detect and output all the possible

matched molecular pairs in TollDB. Since the algorithm is not based on maximum

common substructure (MCS) detection [172, 173], it is comparatively fast and effi-

cient. [161, 174, 175] The workflow in the KNIME Analytics Platform is shown in

Figure 3.2. Subsequently, we conducted docking studies trying to explain the activity

difference between matched molecular pairs.

Docking study for activity cliff pairs

Docking studies were carried out using GOLD (Version 5.8.1, Genetic Optimization for

Ligand Docking, CCDC software, Cambridge, UK) [176]. The binding site was defined

as all protein residues within 6 Å of the bound ligand, protein residues were kept rigid

during docking and 15 diverse poses were generated for each ligand, using GoldScore

as scoring function [176]. The crystal structure of TLR2/TLR1 with Pam3CSK4

(PDB ID: 2Z7X) [177] was used for the docking study of TLR2 agonists, for TLR8

agonists the crystal structure of TLR8 with CL097 (PDB ID: 3W3J) [178] was used,

and the crystal structure of TLR8 with CUCPT9b (PDB ID: 5WYZ) [179] was
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Figure 3.2: KNIME workflow applied for searching activity cliffs between MMPs.

selected for the docking study of TLR8 antagonists. Docking poses were minimized

using MMFF94 [180] force field and inspected in LigandScout (Version 4.2, Inte:ligand,

Vienna, Austria) [181, 182].

3.4 Machine learning model development

The overall machine learning workflow is shown in Figure 3.3.

3.4.1 Dataset preparation for machine learning models

We used MOE to calculate all available 2D descriptors and the open-source cheminfor-

matics toolkit RDKit to calculate the MQNs for all compounds in TollDB. Apart from

these two feature sets, we also manually selected a feature set as a subset of the MOE

2D feature set (containing 206 features, later referred as moe2d). We selected the subset

in the following manner: for the numerical features, we first removed all the constant

features. Constant features are the type of feature that contains only one value for all

the output of the instances in the dataset, which provides no information in discrimi-

nating different classes. We then removed all the constant and near-constant features

(similar to constant feature, we consider that the features that have less than 5 unique

values for all the output of all instances of the whole TollDB database as near-constant

features), and also removed those features that are mathematically closely related. For

example, the MOE 2D feature set includes a series of descriptors like“Kier1”, “Kier2”,
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“Kier3”, “KierA1”, “KierA2”, “KierA3”, and “KierFlex”7 [183, 184] and we only kept

one of them (i.e., the “KierFlex”), removing all the others. In cases where two features

had a correlation coefficient above 0.9, we removed one of the features of the pair. After

that, the categorical features were carefully inspected and selected. These processes

finally resulted in a feature set that contains 32 features (referred to as the sf32 feature

set later).

In order to initiate the exploration of different machine learning algorithms, three

different molecular descriptor sets; (1) all 2D descriptors available in MOE (referred

to as moe2d feature set later), (2) 42 MQNs (referred to as MQNs feature set later),

and (3) a manually selected subset from moe2d (i.e., sf32 feature set) were prepared as

described previously. These three descriptor sets are referred to as feature sets later, and

different descriptors are referred to as features. The purpose of feature selection was to

choose the best feature set in terms of accuracy, speed, and computing space. Different

datasets were selected for different models, for example, in predicting TLR2 agonism,

all the compounds that have been tested towards TLR2 agonism were selected as the

dataset for the TLR2 agonism prediction model. Data preprocessing was conducted for

the dataset of each model before using it in training. The preprocessing steps include:

(1) removing the features that have the same value in the whole data set, i.e., the

constant features; (2) removing one of the numerical features from a pair that have a

correlation coefficient with each other of above 0.9; (3) checking if there are distinct

compounds that have the same values for all features but are labeled as a different class,

7KierFlex: Kier molecular flexibility index: (KierA1)(KierA2) / n. The Kier and Hall chi connectiv-
ity indices are calculated from the heavy atom degree di (number of heavy neighbors) and vi. The vi are
calculated using a connection table approximation. For a heavy atom i let vi = (pi − hi)/(Zi − pi − 1)
where pi is the number of s and p valence electrons of atom i, Z denotes the atomic number of an
atom, lone pair pseudo-atoms (LP) are given an atomic number of 0. Heavy atoms are atoms that
have an atomic number strictly greater than 1 (not H nor LP); h denotes the hydrogen count; the
number of hydrogens an atom is (or should be) attached, this count includes all hydrogen atoms that
are necessary to fill valence, a trivial atom is an LP pseudo-atom or a hydrogen with exactly one
heavy neighbor; d denotes the heavy degree, which is the number of heavy atoms to which an atom is
bonded. That is, d is the number of bonded neighbors of the atom in the hydrogen suppressed graph;
n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the
hydrogen suppressed graph and a is the sum of (ri/rc − 1) where ri is the covalent radius of atom i,
and rc is the covalent radius of a carbon atom. Also, let p2 denote the number of paths of length 2
and p3 the number of paths of length 3. Kier1 is first kappa shape index: (n− 1)2/m2; Kier2 is second
kappa shape index: (n − 1)2/m2; Kier3 is third kappa shape index: (n − 1)(n − 3)2/p3

2 for odd n,
and (n− 3)(n− 2)2/p3

2 for even n; KierA1 is first alpha modified shape index: s(s− 1)2/m2 where
s = n + a; KierA2 is second alpha modified shape index: s(s− 1)2/m2 where s = n + a; KierA3 is
third alpha modified shape index: (n− 1)(n− 3)2/p3

2 for odd n, and (n− 3)(n− 2)2/p3
2 for even n

where s = n + a.
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and, if so, removing them, as this is due to the existence of isomers in the database;

(4) converting all categorical features (if there are any) using “OneHotEncoder” in

scikit-learn.

The quality of the training dataset determines the quality of the resulting machine

learning models [185]. Missing or insufficient data, mislabeling of the target variable,

and irrelevant features may complicate the learning task and hinder the performance

of the trained models. The datasets selected from TollDB all contain validated data

from reliable sources. Additionally, we applied methods to deal with missing values

and checked the inconsistency of labeling (for compounds that have the same values

for all feature sets, such as isomers). For filling up missing values with common

strategies, scikit-learn provides a “SimpleImputer” [186, 187]. The four main strategies

are the mean, the most frequent (mode), the median and the constant, which replace

each attribute’s missing value with the corresponding mean (or mode or median or

a constant) of that attribute. Before transforming the data, we determined whether

there were ordinal or nominal features among the categorical features and transformed

them using different transforming methods from scikit-learn, i.e., “OrdinalEncoder”

for ordinal data, and “OneHotEncoder” for nominal data. “StandardScaler” was used

when measured features were in different scales and did not contribute equally to the

analysis, thus potentially creating a bias.

All compounds are labeled based on their testing results and stored in TollDB. For

a specific model, for example, to build a model to predict if a compound shows TLR7

agonist activity, we selected all the compounds that were tested towards TLR7 agonistic

activity. In this way, compounds that have been tested on other TLR subtypes at the

same time are also selected.

3.4.2 Model selection and hyperparameter tuning

Scikit-learn is a Python module integrating a wide range of state-of-art machine learning

algorithms for medium-scale supervised and unsupervised problems, and we used this

module for all machine learning studies.

Initially, we explored the performance of five algorithms, K-Nearest Neighbors

(kNNs), Logistic Regression (LR), Support Vector Machine (SVM, or SVC), Decision

Tree (DT) and Random Forest (RF) classifiers on three feature sets (i.e., moe2d,
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MQNs and sf32), using the default parameters for each algorithm. We then applied

10-fold cross-validation with grid search or random search for a carefully prepared

hyperparameter searching space for each algorithm to try to get the best performance

for each algorithm and each feature set. We then compared the accuracy, balanced

accuracy, MCC score and AUC in order to determine the best feature set and the best

algorithm for our models.

Since we aimed to find the optimal combination of hyperparameters for the given

parameter searching space, both grid search with cross-validation and random search

with cross-validation were used for the selected feature set and algorithm. With the

number of combinations in hyperparameter searching space getting larger, we can see

that random search performs better than grid search considering the comparable results

and the relatively fast calculation. The random search method outweighs the grid

search when there was a large number of hyperparameter combinations and when using

more complex algorithms such as RF. Thus, random search is the preferred method in

later studies due to its computational efficiency.

3.4.3 Model evaluation and validation

The whole dataset selected for a specific prediction model was divided into two parts

beforehand in a ratio of 4:1 using stratified sampling methods. We used stratified

methods because in some models, the number of active and inactive compounds differs

a lot, and stratified methods ensure that the relative active/inactive compound ratio is

approximately preserved in training and testing set. 80% of the data from the selected

dataset was used for training and the remaining 20% of the data was used as a testing

set to calculate the final performance of the model.
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4. Results

4.1 Database information

4.1.1 Database schema

TollDB was developed as a local MySQL database; the database schema is shown

in Figure 4.1. MySQL is an open source relational database management system

(RDBMS) based on structured query language (SQL). The main tables in TollDB

comprise compound, assaycondition, compoundassay and reference. The compound

table shows general information about the molecules, with distinct compounds as

entries in it; the assaycondition table includes basic biological testing conditions; the

compoundassay table includes testing results for compounds, using a combination of

CompoundID and AssayConditionID as the primary key to ensure uniqueness; the

reference table provides the possibility for tracing back to the original articles.
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Figure 4.1: Database schema for TollDB.
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4.1.2 Web application

A web application was developed for TollDB, which can be accessed at https://tolldb.drug-

design.de/ and provides a user-friendly interface for convenient data searching and

browsing. There are mainly three searching possibilities: “Simple Search”, “Advanced

Search” and “Structure Search”.

Simple Search

All the distinct TLR ligands are shown by clicking at the “Show all data” button on

the right side below the query builder. Users can use the query builder at the top to

retrieve specific TLR ligands from the database.

The query builder takes several distinct query parameters. Users can specify:

• specific TLR target

• host organism of target TLR

• tested effect type (agonism or antagonism)

• molecular weight

• log P

By clicking “Show/hide example queries”, the dropdown list of default query

examples will be shown. A click on an example query will automatically fill the query

field accordingly. “Run query” on the right side below the query builder will perform

a search. Users can query with a single query parameter or with a conjunction of

the query parameters. Query parameters can be grouped and connected by Boolean

operators “AND” and “OR”. To add further parameters or create a group, “Add rule”

and “Add group” can be used. “AND” will return the intersection between compounds

queried by specified parameters (or group of parameters), while “OR” will return the

union. Note that TLR2 refers to cases where the authors worked with the TLR2

monomer specifically, or when the authors did not specify whether TLR2/1 or TLR2/6

heterodimer was used.

The “Run query” button can be clicked after the query mask was updated. In

response to the query parameter provided, a table of all matching molecules will be
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shown. When multiple fields are used for creating a query, the results will show

molecules that satisfy all conditions. A screenshot of this search page is shown in

Figure 4.2.

Figure 4.2: Screenshot of example query for Simple Search.

Advanced Search

The query builder at the top of the “Advanced Search” page allows the user to retrieve

the bioactivity data for all reported molecules tested against different TLRs from the

database. It must be kept in mind that “Simple Search” only contains ligands tested as

actives against different TLRs, while “Advanced Search” additionally contains inactive

molecules. The query builder takes several distinct query parameters. Apart from those

queries that users can specify in “Simple Search”, users can specify additional queries

as follows:

• flag for activity (active or inactive)

• tested effect type (agonist or antagonist)

• assay type (functional or binding)

• activity type (how the activity is expressed, e.g., IC50, EC50, Kd, relative activation

or inhibition rate)
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• cell line used for testing

• cell line category used for testing (primary cells or immortalized cells)

• activity value (when activity type set to IC50, EC50, Kd, users can set the activity

value range or threshold)

• result unit (unit for the activity value)

The basic rules for the query builder on the “Advanced Search” page are the same

as on the “Simple Search” page. For more examples, please refer to the query examples

below “Advanced Search”. The results table displays information related to bioactivity

data of retrieved molecules from experiments that satisfy the input query.

Additionally, users can access information about a specific compound or assay by

clicking on Structure or Assay Name, respectively. This will navigate to a new page with

a basic overview of the compound or overview of compounds tested under the chosen

Assay Name. A screenshot for the “Advanced Search” page is shown in Figure 4.3.

Figure 4.3: Screenshot of example query for Advanced Search.

Structure Search

“Structure Search” includes “Substructure Search” and “Similarity Search”. “Substruc-

ture Search” allows searching for a specified substructure. Enabling “Similarity Search”
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shows the fingerprints used for calculating the Tanimoto similarity [188] between

molecules. Users can choose which fingerprints to use for similarity calculation and

even specify a threshold for the Tanimoto similarity for filtering the result table. Users

can either input SMILES, upload the molecular structure file, or draw the molecule.

Similarity is expressed as the Tanimoto similarity between specified fingerprints gener-

ated from respective SMILES. A screenshot of the “Structure Search” page is shown in

Figure 4.4.

Figure 4.4: Screenshot of example query for Structure Search.

4.2 Basic statistical analysis for TollDB

The current version of TollDB contains a total of 2155 compounds, of which 1329

are tested active towards TLR targets and the remaining are tested inactives. Of all
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the active compounds, 861 are agonists and 468 are antagonists. There are also 248

compounds that have multi-TLR effects, including five dual TLR2/TLR4 antagonists,

two TLR2/7/8 antagonists, two TLR3/TLR4 antagonists, two TLR3/TLR5 antagonists,

one TLR3/8/9 agonist, two TLR4/7/8/9 antagonists, three TLR4/TLR9 antagonists,

212 dual TLR7/TLR8 agonists, 19 dual TLR7/TLR8 antagonists, ten TLR7/TLR9

antagonists, two TLR4/7/8/9 antagonists and one TLR2/3/4/5/7/8/9 antagonist. The

number of active molecules targeting each TLR subtype is shown in Figure 4.5. As

shown on Figure 4.5, the number of discovered agonists of TLR7 and TLR8 differs a

lot compared to their corresponding antagonists, and so far there is neither a reported

TLR5 agonist nor a TLR10 ligand, thus, TLR5 and TLR10 were not considered for

later analysis. Judging by the discovered ligand number for each TLR subtype, research

interest mainly focuses on TLR2, TLR4, TLR7 and TLR8.

Compounds were tested in 36 assay types using 553 conditions with a total number

of 4921 datapoints. Of the 36 assay types, 32 are functional assays and 4 are binding

assays. For functional assays, the main categories comprise reporter gene related assays,

cytokine related assays, mRNA related assays, transcription factor related assays and

cell proliferation related assays. The methods used for binding assays are mainly surface

plasmon resonance (SPR), isothermal titration calorimetry (ITC) and fluorescence

polarization. The overall information about the assays shows in Figure 4.6. Binding

assays were rarely used in testing and most of the biological testing involves functional

testing for activation or inhibition of cytokines or cytokine-related proteins, or mRNA

expression. A gene reporter assay for NF-κB was the most frequently used testing

method for determining TLR-related activity.

Although TLR modulators can be found in current databases such as ChEMBL [189,

190], BindingDB [191], PRRDB [192, 193], ImmtorLig DB [194] or the IUPHAR/BPS

Guide to Pharmacology [195], there is only a small overlap with TollDB. No other

database that contains all known drug-like TLR ligands or focuses primarily on small

TLR modulating compounds is available. We retrieved all molecules tested for activity

against TLRs from ChEMBL version 25 (accessed on 10/15/2019) [196] that have an

MW below 700 Da and were published in peer-reviewed journals. The total number

of distinct compounds is 881 and all of these compounds were included in TollDB.

Moreover, TollDB contains more recently published small organic compounds and,
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Figure 4.5: Number of active molecules targeting each TLR subtype. Multi-target
molecules are included in all the subtypes that they belong to. The outer shell shows
the ligand distribution according to the function.
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Figure 4.6: Assay condition number count for the same assay readout.

compared with ChEMBL, 1278 compounds (about 59.3%) were exclusively reported in

TollDB, as shown in Figure 4.7.

To get an overview of the compounds in TollDB for each activity type, we first

compared the distribution of two key physicochemical properties; molecular weight

(MW) and n-octanol/water partition coefficient (log P) between agonists and antagonists

at different TLR subtypes (shown in Figure 4.8). Figure 4.8A shows that the mean MW

of TLR antagonists is a bit smaller than that of TLR agonists (p ≤ 0.001), and this

trend is recapitulated at nearly all subtypes except for TLR8 and TLR9. The p-values

for the difference in MW between agonists and antagonists for TLR2, TLR3, TLR4 are

all less than 0.001, and for TLR7 the p-value is less than 0.05. If we distinguish the dual

TLR7/TLR8 ligand, these differences are shown in Figure 4.9A, which distinguishes

dual TLR7/TLR8 ligands from pure TLR7 and 8 ligands. The mean log P values of

TLR agonists and TLR antagonists are almost the same (p > 0.05), see Figure 4.8B.

However, for agonists and antagonists of different TLR subtypes, as exemplified by

the TLR2, 3, and 4 ligands, the agonists usually show a higher log P value than their

corresponding antagonists, with p-values all less than 0.001. For TLR7, if we exclude

the large number of dual functioning compounds (shown in Figure 4.9B), this trend is

also apparent (i.e., the log P value for pure TLR7 agonists is greater than pure TLR7
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Figure 4.7: Composition of TollDB with comparison to the portion overlapping with
ChEMBL.

antagonists).

The number of compounds targeting each TLR subtype featuring a certain number

of chiral atoms is shown in Figure 4.10. It is evident that most TLR ligands contain

fewer than three chiral atoms. TLR4 has the biggest variety in ligand chiral atom

count. After a detailed examination of TLR4 ligand structures, it is apparent that this

is mainly due to series of compounds featuring a core structure containing multiple

chiral centers, such as pyranose derivative-containing compounds, or other examples of

multiple chiral centers, such as monocyclic or fused-ring compounds.

The polar surface area (PSA) is defined as the sum of the surface areas of polar

atoms in a molecule, which correlates to membrane transportability of drugs [197]. In

2000, Ertl et al. [198] used the sum of PSA values of polar fragments of a molecule to

define the topological polar surface area (TPSA) index. TPSA is now a widely used

physicochemical property for the prediction of molecular transport properties [199].

The distribution of TPSA for TLR subtypes are shown in Figure 4.11. As shown in

Figure 4.11A, the TPSA of most TLR ligands is in the range of 60-120 Å2. We also can
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Figure 4.8: Box plot illustrating the distribution of (A) MW and (B) log P for
different types of TLR ligands. Green triangles indicate the mean value.
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Figure 4.9: Box plot illustrating the distribution of (A) MW and (B) log P for TLR7
ligands (compounds that activate or inhibit TLR7), TLR7 agonist pure (compounds
tested on TLR7 and TLR8 but turn out to be specifically activate on TLR7), TLR7
agonist (compounds that can activate TLR7), TLR7 antagonist (compounds that can
inhibit TLR7), TLR7 antagonist pure (compounds tested towards TLR7 and TLR8
that specifically inhibit TLR7), TLR7 8 agonist (compounds that can activate both
TLR7 and TLR8), TLR7 8 antagonist (compounds that can inhibit both TLR7 and
TLR8), TLR8 agonist pure (compounds tested towards TLR7 and TLR8 but turn
out to be specifically activate on TLR8), TLR8 agonist (compounds that can activate
TLR8), TLR8 antagonist (compounds that can inhibit TLR8), TLR8 antagonist pure
(compounds tested towards TLR7 and TLR8 that specifically inhibit TLR8) and TLR8
ligand (compounds that activate or inhibit TLR8). Green triangles indicate the mean
value.
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see from Figure 4.11B, that for TLR intracellular antagonists, the TPSA displays a clear

left shift compared to TLR extracellular antagonists (p ≤ 0.001). This is reasonable

since molecules with a smaller TPSA are more lipophilic, and thus more likely to

permeate cell membranes. For agonists, the TPSA distribution between intracellular

and extracellular ligands does not differ much (p = 0.002 > 0.001 if considering the

same significance level).
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Figure 4.11: TPSA distribution of (A) TLR ligands, TLR agonists and TLR antago-
nists and (B) TPSA distribution of intracellular agonists (including all TLR3, TLR7,
TLR8 and TLR9 agonists), extracellular agonists (including TLR2 and TLR4 agonists),
intracellular antagonists (including all TLR3, TLR7, TLR8 and TLR9 antagonists) and
extracellular antagonists (including TLR2 and TLR4 antagonists).

The distribution of number of rings for ligands of different TLR subtypes is shown

in Figure 4.12. As shown in Figure 4.12A, most TLR ligands contain 2-5 rings. For

different TLR subtypes, the ring number distribution does not differ much (as shown

in Figure 4.12B-D).

H-bond donors and H-bond acceptors are commonly used molecular descriptors.

The distribution of H-bond acceptors for ligands of different TLR subtypes is shown in

Figure 4.13. As we can see in Figure 4.13A, most TLR ligands have between three to

six H-bond acceptors. The number of H-bond acceptors do not differ much for different

TLR subtypes (TLR2, TLR4, TLR3, TLR9) or between agonists and antagonists (see

Figure 4.13(B,D)). For TLR7 and TLR8, agonists have a slightly higher number of

H-bond acceptors than antagonists (see Figure 4.13C).
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Figure 4.12: Ring number distribution for ligands of different TLR subtypes.

Figure 4.13: Distribution of H-bond acceptors for TLR subtypes.
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The distribution of H-bond donors for ligands of different TLR subtypes is shown

in Figure 4.14. As we can see in Figure 4.14A, most TLR ligands have between one to

three H-bond donors. The number of H-bond donors do not differ much for different

TLR subtypes (TLR2, TLR4, TLR3, TLR9) or between agonists and antagonists (see

Figure 4.14(B,D)). For TLR7 and TLR8, agonists have a slightly higher number of

H-bond donors than antagonists (see Figure 4.14C).
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Figure 4.14: Distribution of H-bond donors for TLR subtypes.

Studies have shown that reduced molecular flexibility, as measured by the number

of rotatable bonds, and low polar surface area or total hydrogen bond count (sum of

donors and acceptors) are important predictors of good oral bioavailability [200]. The

distribution of rotatable bonds for TLR subtypes is shown in Figure 4.15. As shown

in Figure 4.15A, most TLR ligands have fewer than 10 rotatable bonds. For TLR2,

TLR4, TLR3 and TLR9, the number of the rotatable bonds of agonists and antagonists

shows almost the same distribution (see Figure 4.15(B,D)). Interestingly, TLR7 and

TLR8 antagonists show fewer rotatable bonds than their corresponding agonists (see

Figure 4.15C).

The distribution of ASA for TLR subtypes is shown in Figure 4.16. Figures 4.16A-C

show that the ASA of TLR agonists and antagonists follows the same trend. For
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Figure 4.15: Distribution of rotatable bonds for TLR subtypes.
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Figure 4.16: Distribution of ASA for TLR subtypes.
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TLR2 and TLR4, the ASA of their agonists is shifted to the right compared to their

corresponding antagonist. TLR7 ligands show the same tendency as TLR2 and TLR4

ligands, while the ASA of TLR8 ligands (agonists and antagonists) do not show the

same trend; TLR8 agonists and antagonists have nearly the same distribution.

The distribution of VSA [201] for TLR subtypes is shown in Figure 4.17. For TLR2,

TLR3, TLR4 and TLR9, agonists have a larger VSA value than antagonists but for

TLR7 and TLR8, the distribution between agonists and antagonists is nearly the same.

Figure 4.17: Distribution of VSA for TLR subtypes.

4.3 Chemical space analysis for TollDB

In order to determine the chemical space covered by TollDB, we compared it with that

of molecules from DrugBank [202], a database of drugs and drug candidates. PCA

based on 15 relevant physicochemical properties was applied, and Table 4.1 provides

detailed information on used descriptors. A total of 9998 molecules from DrugBank

with an MW of less than 700 Da were taken into consideration, including about 94% of

the molecules from DrugBank. Figure 4.18 shows a scatter plot of the first two principal

components (PCs). The loadings of the first and second PC are listed in Table 4.1.
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PC1 and PC2 explain 45% and 22% of the total variance, respectively. Ligand entries

of TollDB are within the chemical space of DrugBank molecules. This underlines the

drug-like properties for most known TLR small-molecule ligands.

Figure 4.18: Scatter plot of the second PC against the first PC for the two data sets
based on 15 relevant physicochemical properties. Dark blue dots represent compounds
from TollDB and light blue dots represent compounds from DrugBank.

As we can see from Table 4.1, there is no descriptor that dominates PC1 or PC2.

Instead, features correlated with the size of a molecule, such as MW, number of heavy

atoms, water accessible surface area, Van der Waals volume and Van der Waals surface

area are the major contributors to PC1, and the major contributors to PC2 are number

of hydrogen bond donors, number of hydrogen bond acceptors, topological polar surface

area and number of chiral atoms.

4.4 Matched molecular pairs and activity cliffs study

A matched molecular pair (MMP) is defined as a pair of compounds that only differ

by a particular, well-defined, structure transformation (represented by a substructure)

such as a ring or an R-group [158]. We used the “Automated Matched Pairs” node from

Erlwood open source cheminformatics in KNIME [170, 171] to detect and output all

the possible matched molecular pairs in TollDB. For the formation of MMP-cliffs, the

following structural and potency criteria were applied. For a qualifying MMP, the heavy
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Table 4.1: Loadings of the first two components resulting from PCA analysis.

Principal component PC1 PC2

Variance(%) 0.45 0.22
Principal component 0.45 0.67
ASA 0.37 -0.04
a acc 0.19 0.44
a don 0.08 0.48
Weight 0.37 0.03
a heavy 0.38 -0.00
a hyd 0.34 -0.22
b rotR 0.05 0.10
chiral 0.12 0.28
E sol -0.01 -0.04
FCharge -0.00 -0.04
log P(o/w) 0.17 -0.44
rings 0.27 -0.15
vol 0.38 -0.07
VSA 0.37 -0.05
TPSA 0.16 0.46

ASA: water accessible surface area; a acc: number of H-bond ac-
ceptor atoms; a don: number of H-bond donor atoms; Weight:
molecular weight; a heavy: number of heavy atoms; a hyd: number
of hydrophobic atoms; b rotR: fraction of rotatable bonds; chiral:
number of chiral centers; E sol: solvation energy; FCharge: sum
of formal charges; log P(o/w): log n-octanol/water partition coef-
ficient; rings: number of rings; vol: Van der Waals volume; VSA:
Van der Waals surface area; TPSA: topological polar surface area.
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atom number of the transformed part from either molecule of the MMPs is no more

than the heavy atom number of the common core part of the MMPs. Furthermore, the

potency difference between compounds in an MMP that meets the structural criteria has

to be at least two orders of magnitude (100-fold) in comparable assays. The workflow

used is shown in Figure 3.2.

1373 molecules in TollDB with defined IC50, EC50, Kd values yielded a total of

9023 unique MMPs, and 275 of these pairs met our cliff criteria. After evaluating

whether the activity is comparable (i.e., the testing condition is similar), the number of

MMPs was reduced to 65 (including one enantiomer pair). Thus, ~0.72% of all MMPs

represented activity cliffs (results shown in appendix A Table 6.1). Of all these 65 pairs,

both compounds in the pair stem are from the same paper. The TLR targets for those

pairs that feature activity cliffs are mainly TLR4, TLR7 and TLR8.

The activity differences between the MMPs range from 100 to 7200 fold. Several

representative pairs that possess activity cliffs are shown in Table 4.2. Other MMPs

with activity cliffs are shown in the appendix.

4.4.1 Case study of activity cliffs

All the activity cliffs for MMPs in TollDB can be found in Table 6.1 in the appendix.

The compound pairs used for docking studies were chosen from the pairs where any

compound of the pair has an activity value of less than 10000 nmol (i.e., 10 µmol).

Selected pairs were then docked into the corresponding target protein in an attempt

to rationalize the activity cliffs. The following section discusses example cases where

molecular docking was used to explain activity cliffs between MMPs.

TLR2 agonists

For TLR2, the activity difference between compound pairs 4-1 and 4-5, 4-2 and 4-5,

4-3 and 4-5, 4-4 and 4-5 are shown in Figure 4.19. The table in Figure 4.19 shows

the activity comparison (the IC50, EC50 or Kd value for the corresponding compound

divided by the IC50, EC50 or Kd value for compound 4-5) between these pairs. As we

can see directly from the structures, compounds with substitutions at the phenolic

hydroxyl group (compounds 4-1, 4-2, 4-3 and 4-4) show a greater decrease in activity

compared to compounds without a substitution (compound 4-5).
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Table 4.2: Examples of activity cliffs between MMPs.

Target Structure1 Structure2 ADa

TLR8
antagonism

NHO

HO

IC50 = 2370 nM

NHO

OH

IC50 = 0.7 nM

3385.71

TLR7
agonism

N

NH2N

NHO
N

N

EC50 = 8390 nM

N

NH2N

NHO

EC50 = 8.58 nM

977.86

TLR2
agonism

F

F

F

N
N+

O

-O

N
H

N

O

Br

EC50 = 4074.84 nM

F
F

F
NN+

O

-O

N
H

N

HO

EC50 = 4.88 nM

835.01

TLR4
antagonism

HN

SO O O

O

Cl
N

IC50 = 1600 nM

HN

SO O O

O

Cl F

IC50 = 3.2 nM

500

TLR8
agonism

N

H2N N N
H

Si

EC50 = 9240 nM

N

H2N N NH

N

EC50 = 29.0 nM

318.62

TLR9
antagonism

N

O O

HN

O

N

IC50 = 2560.0 nM

N

O O
O

NN

IC50 = 15.0 nM

170.67

ADa: Activity difference, equal to the activity value (IC50/EC50/Kd) for structure1 divided by the activity value 

(IC50/EC50/Kd) for structure2.
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Figure 4.19: Activity cliff examples for TLR2 agonists. The activity comparison in
the table refers to the listed compounds in the table compared to compound 4-5, i.e.,
the activity value (IC50/EC50/Kd) for the listed compounds divided by activity value
(IC50/EC50/Kd) for compound 4-5.
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We docked those compound pairs into the TLR1-TLR2 heterodimer (PDB ID:

2Z7X) and compared their interactions. The results for compound pair 4-1 and 4-

5 are shown in Figure 4.20 and Figure 4.21 as an example. The main difference

in interactions between the two compounds is the H-bond donor interaction formed

between the hydroxyl group in compound 4-5 and the tyrosine residue (TYR326A) on

TLR2. This interaction is lost for compound 4-1 due to the substitution on the hydroxyl

group, resulting in the dramatic activity decrease seen for compound 4-1 compared to

compound 4-5. This indicates the importance of this H-bond interaction between the

ligand and the protein. Compounds 4-2, 4-3 and 4-4 have the same interaction pattern

as compound 4-1. Compared to compound 4-5, the other four compounds have lost the

H-bond interaction due to their respective substitutions at the hydroxyl group. This

substitution causes the substituted trifluoromethyl phenol portion to adopt a different

orientation, i.e., the benzene ring plane is made to rotate along the single bond (shown

in Figure 4.19 in the structure in green color) between the imidazole and the benzene

moiety, to avoid the steric hindrance between the substitution chain and the leucine

residue (LEU328A) in TLR2. This rotation causes the substituted moiety (shown in

Figure 4.19 in red) to be oriented towards the pocket in TLR2, providing a further

hydrophobic contact to the valine residue (VAL348A). However, this hydrophobic

interaction cannot compensate for the loss of the H-bond donor interaction.

TLR8 agonists

For TLR8, the activity difference between pairs 4-6 and 4-10, 4-7 and 4-10, 4-8

and 4-10, 4-9 and 4-10 are shown in Figure 4.22. Table in Figure 4.22 shows the

comparison in activity (the IC50, EC50 or Kd value for the corresponding compound

divided by the IC50, EC50 or Kd value for compound 4-10) between these pairs.

We docked those compound pairs in the TLR8 protein (PDB ID: 3W3J) and

compared their interactions. As an example, 4-10 and 4-6 are shown in Figure 4.23

and Figure 4.24, respectively.

We can see from Figure 4.23 that the pyrimidine ring forms an aromatic interaction

with PHE405B and the nitrogen in position 1 serves as an H-bond acceptor for THR574A.

The protonated nitrogen in position 3 of the pyrimidine ring serves as an H-bond donor

for residue ASP543A and is also a positive ionizable center. The primary amino
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4. RESULTS

Figure 4.20: 2D representation of ligand-protein interactions for TLR2 agonists.
Interaction pattern between compound 4-1 and the protein (left), interaction pat-
tern between compound 4-5 and the protein (right). Interactions are color-coded:
hydrophobic – yellow sphere; H-bond donor – green arrow.

TYR326A

PHE325A

LEU328A

VAL343A

VAL351A

VAL348A

PHE349A

PHE312B

Figure 4.21: Predicted binding poses for TLR2 agonists. Compound 4-1 with carbons
colored in silver and compound 4-5 with carbons colored in black. Both compounds
are in shown in stick representation with nitrogens, oxygens, and fluorines colored in
blue, red, and yellow, respectively. Important interacting protein residues are shown in
ball-and-stick style. Interactions are color-coded: hydrophobic – yellow sphere; H-bond
donor – green arrow.
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Figure 4.22: Activity cliff examples for TLR8 agonists. The activity comparison
corresponds to the listed compounds in the table compared to compound 4-10, i.e., the
activity value (IC50/EC50/Kd) for the listed compounds divided by the activity value
(IC50/EC50/Kd) for compound 4-10.

substitute group in position 2 serves as an H-bond donor to the THR754A backbone

and ASP545A sidechain. There are two hydrophobic interaction areas. One is the

methyl substitute at position 6 of the pyrimidine, surrounded by residues THR574A,

PHE405B, VAL378B, VAL573A and TYR348B, and the other is the methyl group, the

tail of the N-butylamino substitute in position 4 of the pyrimidine ring, surrounded

by residues VAL520A and TYR353B. Apart from these, the protonated nitrogen on

the isoindoline ring serves as an H-bond donor is also a positive ionizable center. The

interaction between compound 4-10 and the protein residues cause the compound

to adopt a configuration so that the isoindoline ring plane is perpendicular to the

pyrimidine ring plane.

For compounds 4-6, 4-7 4-8 and 4-9, a triple bond exists in the substitution of

position 5 in the pyrimidine ring. These molecules therefore become less flexible. The

amino group, the pyrimidine ring, and the triple bond are positioned in the same

plane. This forces the pyrimidine ring into a sub-optimal orientation when compared

to compound 4-10) and may adopt the binding pose shown in Figure 4.24, using

compound 4-6 as an example. The two hydrophobic interaction areas and the H-bond

donor to residue ASP545A remain, and a new hydrophobic interaction forms involving

the triple bond. The overall decrease of interactions between the ligand and the protein

residues may weaken the ligand-protein affinity, thus resulting in reduced activity for

these compounds (compared to compound 4-10).
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VAL520A

ASP545A

ASP543A

VAL573A

TYR348B

THR574A

PHE405B

TYR353B

VAL378B

Figure 4.23: Predicted binding pose for TLR8 agonists. Compound 4-10 is shown in
stick representation with carbons and nitrogens colored in grey and blue, respectively.
Important interacting protein residues are shown in ball-and-stick style. Interactions
are color-coded: hydrophobic – yellow sphere; H-bond donor – green arrow; H-bond
acceptor – red arrow; positive ionizable center – blue stars; aromatic interaction – blue
sphere/circle.
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TYR353B

ASP545A

PHE405B

THR574B

PHE261B

Figure 4.24: Predicted binding pose for TLR8 agonists. Compound 4-6 is shown
in stick representation with carbons, nitrogens, and silicons colored in grey, blue, and
green, respectively. Important interacting protein residues are shown in ball-and-stick
style. Interactions are color-coded: hydrophobic – yellow sphere; H-bond donor – green
arrow.
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4.5 Machine learning study

The main goal of the machine learning study was to build machine learning models

that could distinguish small molecules (either as agonists or antagonists) that have

high activity or low activity at different TLR targets. For a specific effect type for each

TLR subtype, we used the tested positive examples and tested negative examples in

TollDB as the data source for model construction.

In initial experiments, we used five different machine learning algorithms (starting

with the default parameters) and three feature sets. The three feature sets comprise

moe2d feature set, MQNs feature set and sf32 feature set as mentioned before. Taking

the TLR2 agonism model as an example, the results are shown in Figure 4.25 and

Figure 4.26. Results for other models are in appendix B (Table 6.2 and Table 6.3).

For TLR2 agonist activity, different combinations of algorithms and feature sets with

two different searching methods (random and grid search) result in different accuracy

score, balanced accuracy score, MCC and AUC values. For TLR2 agonistic model with

random search, the accuracy scores range from 0.827 to 0.889. The balanced accuracy

scores range from 0.585 to 0.790, the MCC values range from 0.245 to 0.518, and AUC

ranges from 0.706 to 0.924. While with grid search, the accuracy scores range from

0.827 to 0.877, the balanced accuracy scores range from 0.585 to 0.790, the MCC values

range from 0.245 to 0.545, and AUC ranges from 0.720 to 0.919. We can see clearly

that the results from random search and grid search are comparable. If we compare the

results from using different feature sets, it is apparent that the sf32 feature set used

the least number of features without losing too much accuracy. Furthermore, of the

five different algorithms used, kNN and RF performed well using the sf32 feature set

on the TLR2 agonist activity prediction model.

Comparing the results for other models, the accuracy scores of the initial trials do

not differ between different algorithms or between different feature sets. The results

obtained using random search or grid search also do not differ much. Taking into

account the balanced accuracy score, MCC score, the AUC, and also the computational

efficiency, we finally selected two algorithms and one feature set for the final models.

The two algorithms comprise kNN and RF, and the sf32 feature set as the best feature

set. When considering the same algorithm and the same feature set, the scores after
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hyperparameter tuning using random search and grid search are similar. But if taking

the computational cost into account, random search proves to be more efficient than grid

search. This is obvious especially when dealing with a huge hyperparameter searching

space, a big training set or a relatively more complex algorithm. Thus, random search

was used for the later hyperparameter tuning process.

The detailed scores for the machine learning study are shown in Table 6.2 and

Table 6.3 in appendix. We can choose the best algorithms for different models to make

use of them in assisting drug design.

The ROC curve for the kNN and RF algorithms that use the sf32 feature set is

shown in Figure 4.27. It is apparent from Figure 4.27A and Figure 4.27B that for

using kNN in predicting TLR2 agonism activity, random search obtained better results

than grid search. Regardless of the algorithms used, the ROC curve remains above the

random curve (dashed line).

It is important to not only have an accurate model for making predictions, but

also to know which features are most important in determining the forecast. Knowing

which features are more important will help gain a better understanding of the model’s

logic, and make the model more interpretable. This allows us to focus on these more

important features when designing a new ligand. The feature importance for RF using

the sf32 feature set for TLR2 agonism prediction model is shown in Figure 4.28 and

Figure 4.29. From these figures we can see that the five most important features are

h pKb (basicity), Weight (molecular weight), TPSA (topological polar surface area),

a ICM (atom information content (mean)1) and b rotR (fraction of rotatable bonds)

from grid search and Weight, TPSA, density2, h pKb and a ICM from random search.

The physicochemical properties of a compound affect its potential to be developed

into a drug. The most well-known rule of thumb is Lipinski’s rule of five (“rule of

5”) [203], which was designed to estimate oral bioavailability. However, many marketed

drugs violate this rule. Tinworth and Young recently appraised the “Rule of 5” and

recommended using the facts (measurements) and the patterns they reveal to establish

1This is the entropy of the element distribution in the molecule (including implicit hydrogens but
not lone pair pseudo-atoms). Let ni be the number of occurrences of atomic number i in the molecule.
Let pi = ni/n where n is the sum of the ni. The value of a ICM is the negative sum over all i of
pi log pi.

2Molecular weight divided by van der Waals volume. The van der Waals volume is calculated using
a grid approximation (spacing 0.75 Å).
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Figure 4.25: Model scores for TLR2 agonism with random search. (A) Accuracy
score, (B) balanced accuracy score, (C) MCC, and (D) AUC for predicting TLR2
agonism using five different algorithms and three feature sets using default parameters
for each algorithm. (E) Accuracy score, (F) balanced accuracy score, (G) MCC, and
(H) AUC for predicting TLR2 agonism using five different algorithms and three feature
sets. Results shown are for the best hyperparameters obtained through random search.
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Figure 4.26: Model scores for TLR2 agonism with grid search. (A) Accuracy score,
(B) balanced accuracy score, (C) MCC, and (D) AUC for predicting TLR2 agonism
using five different algorithms and three feature sets using default parameters for each
algorithm. (E) Accuracy score, (F) balanced accuracy score, (G) MCC, and (H) AUC
for predicting TLR2 agonism using five different algorithms and three feature sets.
Results shown are for the best hyperparameters obtained through grid search.
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Figure 4.27: (A) ROC curve for TLR2 agonism prediction using the kNN algorithm
and sf32 feature set with random search or (B) grid search. (C) ROC curve for TLR2
agonism prediction using the RF algorithm and sf32 feature set with random search or
(D) grid search.
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informative principles [204]. From the results of the RF model, the features that

are important for activity prediction are MW, TPSA, h pKb, a ICM, b rotR and

density. Typically, lipophilicity will increase with increasing MW and MW increase

will also lead to the increase of log P, H-bond donor and H-bond acceptor number, but

compound solubility will decrease. The flexibility and shape of a molecule will affect

its permeability and solubility, and flexibility can to some extent be quantified by the

number of rotatable bonds.

With these features identified as the most important ones, we plotted the distribution

of these features against each other for the TLR2 agonism dataset in Figure 4.30. As

shown in Figure 4.30A, the area in the upper left accumulates inactives, even though

there are also inactives located in the same areas as the actives. Figure 4.30B shows

that many compounds with the same MW have the same calculated TPSA. This might

be due to the same core structure of shape similarity between compounds. Figure 4.30C

shows that even actives show a large range of MW. The h pKb value of the actives

are mostly in the range of 7-9. The combinations of these important features already

show some level of discrimination between actives and inactives, explaining why these

features possess a higher value of feature importance in our models. The scatter plots

help to explore the different distributions of these features for actives and inactives,

thus providing insights that can inform the design of new ligands.

Since we have imbalanced datasets for some models, we used the balanced accuracy

score instead of accuracy score for evaluating the model performance. In the binary clas-

sification problem, this is defined as the arithmetic mean of sensitivity and specificity.3

This will be discussed in the Discussion section.

In summary, we generated 8 prediction tasks, regarding four TLR targets (TLR2,

TLR4, TLR7 and TLR8) and two effect types (agonism and antagonism). For instance,

the task of predicting whether a compound is active or not for TLR2 agonism. Through

our machine learning workflow, we can construct a robust model with a selected

algorithm and optimized hyperparameters. The best model achieved a high level of

accuracy, and can be used to aid the drug design process.

3Balanced-accuracy = 1
2 ( TP

TP+FN + TN
TN+FP )
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Figure 4.28: Feature importance for TLR2 agonism with random search.
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Figure 4.29: Feature importance for TLR2 agonism with grid search.
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5. Discussion

The aim of the thesis was the construction of a small molecule TLR ligand database

and the use of all available information for building machine learning models to aid

in drug design. This was achieved by carefully developing a database and performing

detailed data analysis. Using this curated data, prospective machine learning models

for activity predictions were developed. In the following sections, the significance of

the results, challenges, pitfalls and gained insights will be discussed.

5.1 Data compilation

Since the publications we collected come from different journals, in which the authors

used different experimental conditions, such as using different concentrations of stimuli

when testing antagonistic activity or using different units for compound concentrations

in testing, it was essential to perform some pre-processing steps when collecting the

data. This is distinct from the data cleaning process that was performed after the

construction of the whole database. These pre-processing steps include validation of

the compound structure using its chemical name in the publication (or checking the

structure to see if it is the same as provided by the vendor); conversion of the compound

concentrations to the same unit, for example, µmol and mmol were both converted to

nmol; removal of compounds that are cytotoxic at their effective concentration; and

collection of compounds reported in supplementary materials.

It is important to record not only quantitative data, such as IC50, EC50, Kd, but

also the qualitative data, such as when testing whether a compound is a selective TLR7

agonist with respect to other TLR targets (i.e. TLR8). Quite often, the publication

contains information about compounds tested towards TLR7 in the form of IC50, EC50,

or Kd values, yet only reporting a result comparing this compound with negative/positive
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control towards TLR8. This information is then used to declare that the compound

is a selective TLR7 agonist. In this case, the qualitative data on the TLR8 testing

result is also kept in the database, which proves useful for the overall understanding of

compound selectivity.

Throughout the whole data collecting and database compiling process, using the

same publication inclusion criteria, the same compound inclusion criteria and the same

assay information collection method were essential for the overall consistency of the

database, thus ensuring the database analysis and comparison to be comparable and

reliable.

5.2 Data analysis and docking studies

In this work, the basic data analysis provides an overview of the compounds and assays

in TollDB. It also provides an opportunity to explore the various features of ligands

for different TLR subtypes. TollDB provides further insight into structure-activity

relationship of TLR ligands.

5.2.1 Data analysis

An overview of the active compound number towards each TLR subtype is shown in

Figure 4.5, giving us a first impression of the overall research status for each TLR

subtype. This also indicates researchers’ interests in different subtypes and the total

hitherto successfully discovered number of small molecule ligands. Detailed explorations

into the distribution of a specific TLR ligand (e.g., for TLR2 agonists) can provide a

deeper understanding. For example, the currently discovered TLR2 agonists normally

have an MW between 350-500 Da, which is on average about 100 Da heavier than

TLR2 antagonists. The log P value for TLR2 agonists and antagonists is mostly in

the range of 2-5, where the log P value of TLR2 antagonists is a bit smaller. TLR2

agonists have an average of three rings, six H-bond donors, two H-bond acceptors and

an average TPSA of 84.22 Å2. All this information can guide the design of new TLR2

agonists as well as the prioritizing of new compounds to synthesize and test.

Comparison of the chemical space represented by the small molecules in DrugBank

further highlights the druglike properties of ligands in TollDB.
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5. DISCUSSION

5.2.2 Docking studies

In this thesis, docking studies were performed to explore activity cliffs between MMPs.

For docking studies of TLR2 ligands, the crystal structure of the human TLR2/1 together

with the ligand Pam3CSK4 (PDB ID: 2Z7X) was chosen as the starting point. In 2014,

Murgueitio et al. used the monomer of TLR2 from this crystal structure for docking

studies of TLR2 ligands [205] while Zhong [206] and Durai [207] used the heterodimer

TLR2/TLR1 structure for molecular docking. There are known TLR ligands that bind

to heterodimers of TLR2/1 or TLR2/6, but as there is no compelling evidence for

the direct binding of different agonists to TLR2 under physiological conditions, the

exact mechanism of TLR2 interaction with its ligands remains unknown. It was widely

acknowledged that the formation of ligand-TLR2 heterodimer complexes is crucial

for the interaction of the TIR domain of the heterodimer, thus leading to either the

activation or inhibition of the downstream signaling pathway. It was previously shown

that TLR2 and TLR1 form heterodimers [208], and the cytoplasmic domain of TLR2

forms a functional pair with either TLR6 or TLR1, which is crucial for triggering the

downstream signaling pathway. No matter whether this TIR domain approximation is

caused by direct ligand binding to TLR2 monomer or to the surface of the heterodimer,

they should all lead to a stable ligand-protein complex. Therefore, we chose this

heterodimer for our docking studies.

The predicted binding mode for TLR2 agonists shown in Figure 4.21 explains

the activity difference between the compound pairs: the H-bond interaction between

the ligand and the protein residue PHE325A and the three hydrophobic interactions

between the ligand and key interacting residues are crucial for the agonistic activity of

the compounds. Apart from that, the extra H-bond between the ligand and the protein

residue TYR326A dramatically enhances ligand activity. This furthers understanding

of the binding mode.

5.3 Machine learning studies

Machine learning algorithms aim to optimize the performance of a certain task by using

examples and/or experience [209]. We applied supervised learning in this work, which

makes use of parts of the dataset for training and the remaining parts for validation. The
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basic process for constructing a machine learning model includes data gathering, dataset

pre-processing, algorithm selection, hyperparameter tuning, and model evaluation.

In the first documented application of machine learning on TLRs [123], the authors

used features including count and position of motifs, the distance between the motifs and

graphically derived features such as the radius of gyration and moment of inertia. These

features are very specific due to the special structure of the oligodeoxyribonucleotide

(ODN) ligands. Therefore, this approach is not suitable for application to a small

molecule ligand dataset. Considering that our dataset only includes small molecule

ligands and molecular descriptor calculation is easy and fast using MOE and RDKit,

we prepared our own feature sets. The authors in the aforementioned paper [123] used

downsampling due to an unbalanced dataset. We did not use this method since we

value every datapoint in our dataset. However, in order to deal with the class imbalance

problem, we calculated both the accuracy and the balanced accuracy.

We employed three feature sets for selection and optimization, and were able to use

all the features in each feature set for building the machine learning models. However,

problems occur when using all the possible features: (1) some features might be highly

correlated; (2) some may not be relevant but may contribute to the noise in the model;

and (3) using a large number of features may increase computational cost and even

lead to overfitting. We therefore applied a series of preprocessing steps for the datasets,

such as removal of constant and near-constant features, highly correlated features

and features that are conceptionally similar; encoding of categorical features (for the

algorithms to have a better handling of the data); and double-checking the class label

for the dataset.

We tried out five classical machine learning algorithms in our models, including

kNN, SVC, DT, RF and LR. Each has its own advantages and disadvantages. LR is an

easy, fast and simple classification method. It can be used for multiclass classifications,

but is not applicable on non-linear classification problems, which is the case in many

real scenarios. Additionally, collinearity and outliers tamper with the accuracy of the

LR model. However, LR is the best starting point and gives an initial impression of how

well machine learning models will perform in classification models. Other algorithms

such as kNN, SVM and DT handle collinearity better than LR. One caveat in the

use of kNN is that it is a non-parametric model and is comparatively slower. SVM
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uses a kernel trick to solve complex solutions and outliers can be well handled using

the soft margin constant C (a hyperparameter that decides the level of penalty over

the outliers). DT is a tree-based algorithm which handles collinearity efficiently and

can provide understandable explanations over the prediction. It forms no assumptions

on the distribution of data and no need for data preprocessing, but the chances of

overfitting are higher compared to RF, since RF is a collection of decision trees and

the average/majority vote of the forest is selected as the predicted output (i.e., it gives

a more generalized solution). RF is more robust and accurate than DT.

For the TLR2 agonism activity prediction model using kNN, we have a total of 402

compounds in our dataset, including 333 inactives and 69 actives. This dataset was

divided into the training and testing set by a ratio of 4:1, resulting in 81 compounds in

the testing set. We can see from these numbers that the dataset for TLR2 agonism is

imbalanced. If we had a balanced dataset, i.e., the number of activities and inactives

in the dataset is similar, we could use 50% accuracy as the baseline for evaluating the

model. In other words, if our model has an accuracy of above 50% then the prediction

model performs better than random guess. Since we have an imbalanced dataset, the

number of actives and inactives in our training set is 57 and 264, respectively. We must

consider the different number of instances for each class. If we predict all the instances

as inactives, we will get an accuracy of 82%, which is far beyond 50% for balanced

datasets. Predicting all the instances to the major class is a highly biased model and

could not generalize well to new data. Therefore, we used the balanced accuracy score

for comparison to avoid the influence of the imbalanced datasets. As we can see for

this model (TLR2 agonism prediction model using kNN algorithm, sf32 feature set,

with 10-fold cross-validation and random search for the best hyperparameters), the

accuracy and balanced accuracy are 85.2% and 71.3%, respectively, while the MCC

and AUC are 0.453 and 0.892, respectively. These values indicate that even with an

imbalanced dataset, where the number of compounds in one of the classes (the actives)

is quite small, the model performance is good and could be later used for prediction or

for prioritizing screening hits.

The TLR2 agonism activity prediction model showed that even with an imbalanced

dataset, moderate accuracy is achievable. In the case of a roughly equal number of

actives and inactives as in the TLR8 agonism activity prediction model, our dataset
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contains 311 inactives and 360 actives in total. Using kNN, sf32 feature set with

10-fold cross-validation and random search for searching the best hyperparameters, the

accuracy score, balanced accuracy score, MCC and AUC are 82.7%, 82.3%, 0.666 and

0.926, respectively. When using RF, these values are 85.6%, 85.4%, 0.715 and 0.918,

respectively. The results are much better than in the case of an imbalanced dataset.

No particular machine learning model outperforms all others, and the fact that a

certain algorithm can outperform others in one model does not mean it will outweigh

other algorithms in other models. When dealing with predicting different activities for

TLRs, we should choose different algorithms due to the different distribution of the

data. The goal is to choose the most suitable algorithm and construct the best model

for a specific scenario.

Hyperparameters are critical in building robust and accurate models. They help

strike the balance between bias and variance, thus preventing the model from overfitting

or underfitting. To be able to adjust the hyperparameters, we need to understand what

they mean and how they change a model. In our hyperparameter tuning steps, grid

search and random search were both explored. Random search is much faster than grid

search, and could find the best hyperparameters combination that performs nearly the

same as that which was found using grid search. Thus, in our models, random search is

primarily used and grid search is used when hyperparameters are narrowed down to a

small set. This saved a lot of time when using more complex models such as RF or

when either the hyperparameter searching space or the dataset increased in size.

When designing hyperparameter searching space, there are some rules of thumb to

be taken into consideration. For example, in kNN, the hyperparameter K represents

the number of neighbors to consider. It is better to be set to an odd number (in binary

classification problems) to avoid ties, and the searching space for K is usually set to

less than the square root of the feature numbers. It is very important to understand

every hyperparameter in each algorithm in order to set a more meaningful searching

space for hyperparameter tuning.

Every algorithm is different and has different requirements when applying. For

example, in kNN or SVM, scaling is important in these non-tree-based algorithms.

All features should be normalized to the same scale, i.e., data standardization in

preprocessing is needed. Most importantly, k-nearest neighbor does not “learn”, it just
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memorizes the data, so when the dataset gets bigger, computation time will increase

dramatically.

For application of machine learning models in TLR activity prediction, we can see

from our results that the quality of the data is important, not only data reliability and

the amount of data but also a dataset balance. A balanced and large dataset results

in better predictions, as we have seen for TLR2 agonist and TLR8 agonist models.

For TLR2, 4, 7 and 8 we obtained robust and accurate models, even though for some

targets the dataset is imbalanced. However, for other TLR targets like TLR3, 5, 9,

there are not enough data to build a model. This indicates the current research state for

these targets, suggesting that small molecule modulators for these targets remain to be

explored. Data is the biggest limitation for developing machine learning models. With

good data, an appropriately selected algorithm and careful study in hyperparameter

tuning, we were able to obtain robust and accurate models and apply them to predict

and prioritize possible new compounds for chemical synthesis or biological testing.
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6. Conclusion and Outlook

TLRs play a pivotal role in the native immune response of humans. They are related to

various diseases and have been proposed as a promising drug target for the treatment

of these diseases. In this thesis, we aimed to build a comprehensive small molecule

TLR modulator database, analyzed it for assisting rational drug design and developed

predictive models using machine learning.

We carefully constructed a comprehensive database and developed a web application

for information retrieval. Our work combines data analysis and machine learning. We

developed a retrospective study on activity cliffs occurring in reported ligands and

explained the differences using molecular docking. We developed an automated machine

learning workflow that can be used for filtering hits from virtual screening campaigns,

as well as prioritizing compounds for synthesis and testing.

With the rapid development of computer technology and its usage in rational drug

design, more high-quality data are in need for data-oriented studies. The successful

construction of TollDB made it possible to explore the TLR ligand space and develop

prediction models through a machine learning approach. This database can also help

us better understand the structure activity relationship for TLR ligands, provide a

solid base for novel small TLR ligand design, and even be used as a library for drug

repurposing screening.

Due to the crucial role that TLRs play in the innate and adaptive immune response

and the use of TLR ligand therapeutics in various diseases, it would be hugely beneficial

to develop TLR ligands into drugs. With the increase in newly discovered small

molecule TLR modulators and rapidly developing artificial intelligence technology and

its application in the drug discovery process, it is promising to discover novel, low

toxicity and high efficiency lead compounds targeting TLRs. Furthermore, enormous

amounts of data relating to chemical structures and their biological activity at TLRs
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will help to gain a better understanding of the interactions between the ligand and the

target, thus benefiting the study of TLR signaling mechanisms. Future research efforts

can be dedicated to studying the mechanism of TLR modulation by small molecules

based on our chemical space, matched molecular pair, activity cliff and machine learning

study presented in this thesis.
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A MMPs for TollDB
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Table 6.1: MMPs for TollDB

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*c1ccnc2cc(O)ccc12 *Cc1ccc(O)c(C)c1 *c1ccc(O)c(C)c1 0.487 TLR8 2370.0/0.7

*c1ccnc2cc(O)ccc12 *Cc1ccc(O)c(C)c1 *c1cnc(OC)c(C)c1 0.500 TLR8 2370.0/0.7

*c1ccc2c(-c3ccc(O)c(C)c3)ccnc2c1 *c1ccccc1 *OC 0.227 TLR8 910.0/0.5

*c1ccc2c(-c3ccc(O)c(C)c3)ccnc2c1 *c1ccccc1 *O 0.209 TLR8 910.0/0.7

*c1ccnc2cc(OC)ccc12 *CCCCC *c1ccc(O)c(C)c1 0.405 TLR8 610.0/0.5

*c1ccnc2cc(O)ccc12 *Cc1ccc(O)c(C)c1 *c1cnc(O)c(C)c1 0.487 TLR8 2370.0/2.3

*Cc1nc2c(N)nc3ccccc3c2n1CC(C)(C)O

*N(CC)CCC#N *CCC 0.240 TLR7 8390.0/8.58

*c1ccc2c(-c3ccc(O)c(C)c3)ccnc2c1 *c1ccccc1 *Cl 0.209 TLR8 910.0/1.0

*Cc1nc2c(N)nc3ccccc3c2n1CC(C)(C)O

*N(CC)CC *CCC 0.208 TLR7 7710.0/8.58

*c1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*OCCBr *O 0.123 TLR2 4074.84/4.88

*c1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*OCC *O 0.107 TLR2 3845.23/4.88

Continued on next page
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Table 6.1 – Continued from previous page

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1cccnc1NCCOC

*c1ccc(NCCN2CCCCC2)nc1

0.483 TLR7 125.0/0.2

*CCNc1ccc(Cn2c(=O)[nH]c3c(N)nc(C(F)(F)F)cc32)cn1

*O *N1CCCCC1 0.158 TLR7 121.0/0.2

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1cccnc1OCCN1CCCC1

*c1ccc(NCCN2CCCCC2)nc1

0.508 TLR7 121.0/0.2

*c1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*OCCCBr *O 0.138 TLR2 2853.19/4.88

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CCBr *C(=O)c1ccccc1 0.200 TLR2 4074.84/7.65

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1ccnc(NCCOC)c1

*c1ccc(NCCN2CCCCC2)nc1

0.483 TLR7 105.0/0.2

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CC *C(=O)c1ccccc1 0.188 TLR2 3845.23/7.65

*c1ccc(NS(=O)(=O)C2CCCC=C2C(=O)OCC)c(Cl)c1

*C#N *F 0.106 TLR4 1600.0/3.2

Continued on next page
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Table 6.1 – Continued from previous page

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CCBr *C(C)=O 0.133 TLR2 4074.84/8.83

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CC *C(C)=O 0.119 TLR2 3845.23/8.83

*c1cn(-c2cc([N+](=O)[O-

])ccc2NC)cn1
*c1ccc(C(F)(F)F)c(OCCN)c1

*c1ccc(C(F)(F)F)cc1O 0.474 TLR2 2122.13/4.88

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1ccnc(OCCN2CCCC2)c1

*c1ccc(NCCN2CCCCC2)nc1

0.508 TLR7 81.9/0.2

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CCCBr *C(=O)c1ccccc1 0.212 TLR2 2853.19/7.65

*S(=O)(=O)Nc1ccc(F)cc1Cl
*[C@H]1CCCC=C1C(=O)OCC

*[C@@H]1CCCC=C1C(=O)OCC

0.522 TLR4 640.0/1.8

*NS(=O)(=O)C1CCCC=C1C(=O)OCC

*c1ccccc1C(=O)OC *c1ccc(F)cc1Cl 0.417 TLR4 1100.0/3.2

Continued on next page
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Table 6.1 – Continued from previous page

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CCBr *C(=O)CCCCCCC 0.212 TLR2

4074.84/12.32

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CCCBr *C(C)=O 0.148 TLR2 2853.19/8.83

*c1c(C)nc(N)nc1NCCCC *C#C[Si](C)(C)C *CCCN1Cc2ccccc2C1 0.455 TLR8 9240.0/29.0

*CC-

CCc1cccc2nc(N)c(CCCCC)cc12

*NC(=N)N *CN 0.174 TLR8 2862.0/9.0

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CC *C(=O)CCCCCCC 0.200 TLR2

3845.23/12.32

*c1ccc(Cn2c(=O)[nH]c3c(N)nc(C(F)(F)F)cc32)cn1

*NCCO *N(C)CCN1CCN(C)CC1 0.288 TLR7 121.0/0.4

*CCCc1cccc2nc(N)c(CCCCC)cc12

*C(N)=O *CCN 0.182 TLR8 2181.0/9.0

*c1cn(-c2cc([N+](=O)[O-

])ccc2NC)cn1
*c1ccc(C(F)(F)F)c(OCCN)c1

*c1ccc(C(F)(F)F)cc1OC(C)=O

0.500 TLR2 2122.13/8.83

Continued on next page83



Table 6.1 – Continued from previous page

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*Cc1nc2c(N)nc3ccccc3c2n1CC(C)(C)O

*NCC *CCC 0.174 TLR7 2000.0/8.58

*Oc1cc(C(F)(F)F)ccc1-c1cn(-

c2cc([N+](=O)[O-])ccc2NC)cn1

*CCCBr *C(=O)CCCCCCC 0.224 TLR2

2853.19/12.32

*c1ccnc2ccccc12 *C(=O)c1ccc(OC)cc1 *c1cc(C)c(O)c(C)c1 0.538 TLR8 5570.0/25.5

*S(=O)(=O)Nc1ccc(F)cc1Cl
*[C@H]1CCCC=C1C(=O)OCC

*C1CCCC=C1C(=O)OCC 0.522 TLR4 640.0/3.2

*c1c(C)nc(N)nc1NCCCC *C#CCCC *CCCN1Cc2ccccc2C1 0.442 TLR8 5000.0/29.0

*c1nc2ccc(OCCCN3CCCC3)cc2o1
*c1cccc(NC(=O)c2ccccc2)c1

*c1ccc(OCCCN2CCCC2)cc1

0.485 TLR9 2560.0/15.0

*c1c(C)nc(N)nc1NCCCC *C#C *CCCN1Cc2ccccc2C1 0.400 TLR8 4900.0/29.0

*c1cn(-c2cc([N+](=O)[O-

])ccc2NC)cn1
*c1ccc(C(F)(F)F)cc1OCCBr

*c1ccc(OC(F)(F)F)cc1 0.474 TLR2

4074.84/24.87

*c1ccc(Cn2c(=O)[nH]c3c(N)nc(C(F)(F)F)cc32)cn1

*N1CCOCC1 *NCCN1CCCCC1 0.288 TLR7 32.1/0.2

Continued on next page
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Table 6.1 – Continued from previous page

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*CNc1ccc(Cn2c(=O)[nH]c3c(N)nc(C(F)(F)F)cc32)cn1

*c1ccccc1 *CN1CCCCC1 0.246 TLR7 31.0/0.2

*c1cn(-c2cc([N+](=O)[O-

])ccc2NC)cn1

*c1ccc(C(F)(F)F)cc1OCC *c1ccc(OC(F)(F)F)cc1 0.464 TLR2

3845.23/24.87

*c1ccnc2cc(OC)ccc12 *CCCCC *c1cnc(O)c(C)c1 0.405 TLR8 610.0/4.2

*c1ccnc2ccccc12 *C(=O)c1ccc(OC)cc1 *c1ccc(O)c(C)c1 0.526 TLR8 5570.0/38.6

*CCNc1ccc(Cn2c(=O)[nH]c3c(N)nc(C(F)(F)F)cc32)cn1

*OC *N1CCCCC1 0.172 TLR7 28.6/0.2

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1ccc(C)nn1 *c1ccc(N2CCN(C)CC2)nc1 0.423 TLR7 411.0/3.0

*c1ccc(Cn2c(=O)[nH]c3c(N)nc(C(F)(F)F)cc32)cn1

*OCCN(C)C *NCCN1CCCCC1 0.288 TLR7 26.9/0.2

*NS(=O)(=O)C1CCCC=C1C(=O)OCC

*c1ccc(C#N)cc1Cl *c1ccccc1Cl 0.391 TLR4 1600.0/12.0

Continued on next page
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Table 6.1 – Continued from previous page

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*S(=O)(=O)Nc1ccc(F)cc1Cl
*C1CCCCC=C1C(=O)OCC

*[C@@H]1CCCC=C1C(=O)OCC

0.532 TLR4 240.0/1.8

*c1ccnc2cc(OC)ccc12 *CCCCC *c1cnc(OC)c(C)c1 0.421 TLR8 610.0/4.6

*c1c(C)nc(N)nc1NCCCC *C#CCN1CCCCC1 *CCCN1Cc2ccccc2C1 0.489 TLR8 3790.0/29.0

*NS(=O)(=O)C1CCCC=C1C(=O)OCC

*c1ccc(Cl)cc1 *c1ccc(F)cc1Cl 0.378 TLR4 400.0/3.2

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1cccnc1NCCOC

*c1ccc(N(C)CCN(CC)CC)nc1

0.483 TLR7 125.0/1.0

*c1ccc(Cn2c(=O)[nH]c3c(N)nc(C(F)(F)F)cc32)cn1

*NCCO *N(C)CCN(CC)CC 0.263 TLR7 121.0/1.0

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1cccnc1OCCN1CCCC1

*c1ccc(N(C)CCN(CC)CC)nc1

0.508 TLR7 121.0/1.0

*c1cn(-c2cc([N+](=O)[O-

])ccc2NC)cn1
*c1ccc(C(F)(F)F)cc1OCCCBr

*c1ccc(OC(F)(F)F)cc1 0.483 TLR2

2853.19/24.87

*c1c(C)nc(N)nc1NCCCC *C *CCCN1Cc2ccccc2C1 0.385 TLR8 3280.0/29.0

Continued on next page

86



6.
C

O
N

C
L

U
S
IO

N
A

N
D

O
U

T
L

O
O

K

Table 6.1 – Continued from previous page

Common Substructure Transformation1 Transformation2 MCSa Target Activity

Compareb

*Cc1cccc2nc(N)c(CCCCC)cc12 *c1ccccc1CN *CCCCN 0.319 TLR8 1000.0/9.0

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1cccc(C)n1 *c1ccc(N2CCN(C)CC2)nc1 0.423 TLR7 328.0/3.0

*CCc1c(C)nc(N)nc1NCCCC *C(C)(C)O *CN1Cc2ccccc2C1 0.364 TLR8 3140.0/29.0

*CC-

CCc1cccc2nc(N)c(CCCCC)cc12

*NC(=N)N *N 0.156 TLR8 2862.0/27.0

*Cn1c(=O)[nH]c2c(N)nc(C(F)(F)F)cc21

*c1ccnc(NCCOC)c1

*c1ccc(N(C)CCN(CC)CC)nc1

0.483 TLR7 105.0/1.0

a: MCS distances.

b: the activity of molecule with common substructure and Transformation1 divided by the activity of molecule with common

substructure and Transformation2.

87



B Machine learning results for random search (Table 6.2) and

grid search (Table 6.3)
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Table 6.2: Machine learning study for TollDB with random search

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR2Agonism kNN moe2d 0.889 0.763 0.581 0.896 0.840 0.790 0.518 0.790

TLR2Agonism SVC moe2d 0.864 0.664 0.440 0.913 0.840 0.649 0.358 0.899

TLR2Agonism DT moe2d 0.827 0.670 0.361 0.670 0.840 0.649 0.358 0.800

TLR2Agonism RF moe2d 0.840 0.649 0.358 0.878 0.889 0.707 0.557 0.924

TLR2Agonism LR moe2d 0.877 0.756 0.545 0.907 0.840 0.592 0.290 0.853

TLR2Agonism kNN MQNs 0.852 0.684 0.424 0.801 0.840 0.677 0.391 0.720

TLR2Agonism SVC MQNs 0.864 0.692 0.462 0.844 0.827 0.641 0.325 0.717

TLR2Agonism DT MQNs 0.840 0.733 0.455 0.730 0.852 0.656 0.396 0.813

TLR2Agonism RF MQNs 0.852 0.741 0.482 0.832 0.852 0.684 0.424 0.920

TLR2Agonism LR MQNs 0.827 0.641 0.325 0.748 0.827 0.641 0.325 0.748

TLR2Agonism kNN sf32 0.864 0.692 0.462 0.769 0.852 0.713 0.453 0.892

TLR2Agonism SVC sf32 0.840 0.649 0.358 0.861 0.864 0.692 0.462 0.885

TLR2Agonism DT sf32 0.827 0.641 0.325 0.641 0.840 0.677 0.391 0.706

TLR2Agonism RF sf32 0.815 0.606 0.254 0.832 0.864 0.664 0.440 0.856

TLR2Agonism LR sf32 0.827 0.585 0.245 0.851 0.827 0.585 0.245 0.851

Continued on next page89



Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR2Antagonism kNN moe2d 0.727 0.735 0.462 0.791 0.773 0.774 0.540 0.774

TLR2Antagonism SVC moe2d 0.727 0.752 0.504 0.812 0.636 0.658 0.316 0.778

TLR2Antagonism DT moe2d 0.682 0.714 0.437 0.714 0.591 0.637 0.302 0.722

TLR2Antagonism RF moe2d 0.727 0.735 0.462 0.718 0.636 0.641 0.277 0.744

TLR2Antagonism LR moe2d 0.727 0.735 0.462 0.752 0.682 0.697 0.388 0.786

TLR2Antagonism kNN MQNs 0.636 0.624 0.248 0.748 0.682 0.662 0.332 0.756

TLR2Antagonism SVC MQNs 0.727 0.718 0.436 0.795 0.773 0.774 0.540 0.812

TLR2Antagonism DT MQNs 0.682 0.679 0.354 0.679 0.727 0.718 0.436 0.752

TLR2Antagonism RF MQNs 0.773 0.791 0.574 0.769 0.818 0.812 0.624 0.795

TLR2Antagonism LR MQNs 0.773 0.774 0.540 0.838 0.773 0.774 0.540 0.838

TLR2Antagonism kNN sf32 0.727 0.735 0.462 0.650 0.591 0.568 0.140 0.667

TLR2Antagonism SVC sf32 0.682 0.679 0.354 0.684 0.773 0.791 0.574 0.786

TLR2Antagonism DT sf32 0.455 0.487 -0.027 0.487 0.591 0.620 0.245 0.620

TLR2Antagonism RF sf32 0.682 0.679 0.354 0.748 0.727 0.752 0.504 0.778

TLR2Antagonism LR sf32 0.682 0.679 0.354 0.778 0.773 0.722 0.567 0.769

Continued on next page
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Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR4Agonism kNN moe2d 0.842 0.755 0.526 0.882 0.833 0.793 0.550 0.855

TLR4Agonism SVC moe2d 0.789 0.693 0.385 0.839 0.807 0.718 0.436 0.862

TLR4Agonism DT moe2d 0.798 0.727 0.436 0.721 0.763 0.690 0.357 0.715

TLR4Agonism RF moe2d 0.798 0.727 0.436 0.810 0.825 0.729 0.473 0.858

TLR4Agonism LR moe2d 0.807 0.689 0.404 0.858 0.807 0.689 0.404 0.858

TLR4Agonism kNN MQNs 0.833 0.778 0.535 0.858 0.825 0.801 0.550 0.801

TLR4Agonism SVC MQNs 0.825 0.729 0.473 0.842 0.825 0.744 0.488 0.874

TLR4Agonism DT MQNs 0.860 0.795 0.590 0.788 0.781 0.701 0.387 0.842

TLR4Agonism RF MQNs 0.877 0.806 0.632 0.873 0.825 0.686 0.433 0.854

TLR4Agonism LR MQNs 0.807 0.704 0.420 0.840 0.842 0.741 0.514 0.841

TLR4Agonism kNN sf32 0.807 0.776 0.503 0.859 0.833 0.793 0.550 0.873

TLR4Agonism SVC sf32 0.825 0.729 0.473 0.833 0.781 0.629 0.294 0.751

TLR4Agonism DT sf32 0.754 0.670 0.323 0.669 0.789 0.678 0.367 0.789

TLR4Agonism RF sf32 0.860 0.766 0.568 0.845 0.816 0.666 0.396 0.853

TLR4Agonism LR sf32 0.789 0.635 0.314 0.819 0.789 0.635 0.314 0.819

Continued on next page91



Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR4Antagonism kNN moe2d 0.822 0.812 0.604 0.891 0.844 0.828 0.645 0.919

TLR4Antagonism SVC moe2d 0.822 0.793 0.585 0.926 0.844 0.828 0.645 0.853

TLR4Antagonism DT moe2d 0.756 0.685 0.400 0.685 0.733 0.709 0.403 0.760

TLR4Antagonism RF moe2d 0.867 0.825 0.680 0.876 0.778 0.682 0.441 0.906

TLR4Antagonism LR moe2d 0.800 0.757 0.525 0.843 0.800 0.757 0.525 0.843

TLR4Antagonism kNN MQNs 0.733 0.709 0.403 0.810 0.800 0.757 0.525 0.829

TLR4Antagonism SVC MQNs 0.800 0.757 0.525 0.843 0.733 0.709 0.403 0.737

TLR4Antagonism DT MQNs 0.711 0.673 0.339 0.673 0.756 0.744 0.466 0.795

TLR4Antagonism RF MQNs 0.822 0.793 0.585 0.927 0.844 0.789 0.623 0.931

TLR4Antagonism LR MQNs 0.689 0.657 0.303 0.806 0.689 0.657 0.303 0.806

TLR4Antagonism kNN sf32 0.756 0.725 0.441 0.838 0.756 0.725 0.441 0.844

TLR4Antagonism SVC sf32 0.822 0.773 0.572 0.919 0.756 0.744 0.466 0.776

TLR4Antagonism DT sf32 0.778 0.741 0.482 0.741 0.711 0.712 0.397 0.729

TLR4Antagonism RF sf32 0.778 0.721 0.463 0.877 0.756 0.666 0.384 0.882

TLR4Antagonism LR sf32 0.822 0.793 0.585 0.816 0.822 0.793 0.585 0.816

Continued on next page
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Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR7Agonism kNN moe2d 0.835 0.830 0.677 0.883 0.857 0.853 0.718 0.905

TLR7Agonism SVC moe2d 0.835 0.834 0.669 0.909 0.813 0.811 0.625 0.909

TLR7Agonism DT moe2d 0.857 0.855 0.714 0.855 0.824 0.824 0.648 0.881

TLR7Agonism RF moe2d 0.830 0.829 0.658 0.907 0.835 0.835 0.669 0.918

TLR7Agonism LR moe2d 0.802 0.800 0.603 0.891 0.802 0.800 0.603 0.891

TLR7Agonism kNN MQNs 0.791 0.786 0.585 0.869 0.813 0.810 0.627 0.870

TLR7Agonism SVC MQNs 0.802 0.799 0.605 0.857 0.775 0.772 0.548 0.828

TLR7Agonism DT MQNs 0.808 0.806 0.614 0.806 0.813 0.808 0.630 0.850

TLR7Agonism RF MQNs 0.819 0.816 0.637 0.890 0.797 0.795 0.592 0.885

TLR7Agonism LR MQNs 0.725 0.723 0.448 0.807 0.753 0.750 0.503 0.783

TLR7Agonism kNN sf32 0.797 0.793 0.593 0.879 0.808 0.806 0.614 0.888

TLR7Agonism SVC sf32 0.802 0.800 0.603 0.877 0.791 0.788 0.581 0.854

TLR7Agonism DT sf32 0.742 0.739 0.481 0.739 0.775 0.770 0.550 0.817

TLR7Agonism RF sf32 0.824 0.825 0.649 0.893 0.808 0.806 0.614 0.905

TLR7Agonism LR sf32 0.747 0.745 0.492 0.787 0.742 0.739 0.481 0.780

Continued on next page93



Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR7Antagonism kNN moe2d 0.810 0.792 0.612 0.838 0.762 0.736 0.517 0.880

TLR7Antagonism SVC moe2d 0.667 0.639 0.304 0.796 0.667 0.653 0.311 0.648

TLR7Antagonism DT moe2d 0.714 0.681 0.420 0.681 0.714 0.722 0.440 0.718

TLR7Antagonism RF moe2d 0.762 0.764 0.523 0.866 0.667 0.653 0.311 0.806

TLR7Antagonism LR moe2d 0.667 0.653 0.311 0.704 0.667 0.653 0.311 0.704

TLR7Antagonism kNN MQNs 0.857 0.833 0.730 0.861 0.667 0.639 0.304 0.741

TLR7Antagonism SVC MQNs 0.810 0.778 0.645 0.898 0.714 0.694 0.408 0.722

TLR7Antagonism DT MQNs 0.714 0.681 0.420 0.681 0.667 0.639 0.304 0.755

TLR7Antagonism RF MQNs 0.571 0.556 0.113 0.653 0.714 0.681 0.420 0.806

TLR7Antagonism LR MQNs 0.714 0.694 0.408 0.722 0.714 0.694 0.408 0.722

TLR7Antagonism kNN sf32 0.762 0.736 0.517 0.838 0.714 0.708 0.417 0.708

TLR7Antagonism SVC sf32 0.714 0.681 0.420 0.861 0.810 0.792 0.612 0.787

TLR7Antagonism DT sf32 0.667 0.639 0.304 0.639 0.714 0.681 0.420 0.667

TLR7Antagonism RF sf32 0.667 0.653 0.311 0.731 0.714 0.694 0.408 0.806

TLR7Antagonism LR sf32 0.810 0.792 0.612 0.731 0.810 0.792 0.612 0.731

Continued on next page
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Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR8Agonism kNN moe2d 0.813 0.809 0.636 0.901 0.835 0.830 0.682 0.909

TLR8Agonism SVC moe2d 0.827 0.825 0.659 0.898 0.863 0.863 0.726 0.909

TLR8Agonism DT moe2d 0.806 0.806 0.612 0.806 0.734 0.729 0.477 0.810

TLR8Agonism RF moe2d 0.856 0.854 0.714 0.924 0.871 0.869 0.743 0.929

TLR8Agonism LR moe2d 0.748 0.748 0.496 0.852 0.763 0.760 0.527 0.822

TLR8Agonism kNN MQNs 0.763 0.759 0.531 0.872 0.820 0.817 0.646 0.906

TLR8Agonism SVC MQNs 0.784 0.783 0.568 0.892 0.791 0.792 0.585 0.870

TLR8Agonism DT MQNs 0.849 0.845 0.712 0.843 0.835 0.834 0.669 0.907

TLR8Agonism RF MQNs 0.842 0.839 0.686 0.910 0.820 0.818 0.644 0.924

TLR8Agonism LR MQNs 0.791 0.791 0.582 0.845 0.791 0.791 0.582 0.845

TLR8Agonism kNN sf32 0.791 0.789 0.584 0.875 0.827 0.823 0.666 0.926

TLR8Agonism SVC sf32 0.799 0.797 0.598 0.898 0.777 0.776 0.553 0.850

TLR8Agonism DT sf32 0.770 0.766 0.544 0.766 0.842 0.841 0.683 0.887

TLR8Agonism RF sf32 0.856 0.855 0.712 0.923 0.856 0.854 0.715 0.918

TLR8Agonism LR sf32 0.734 0.733 0.467 0.827 0.712 0.711 0.423 0.825

Continued on next page95



Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR8Antagonism kNN moe2d 0.684 0.681 0.365 0.808 0.658 0.653 0.312 0.744

TLR8Antagonism SVC moe2d 0.737 0.739 0.478 0.797 0.711 0.711 0.422 0.808

TLR8Antagonism DT moe2d 0.632 0.639 0.288 0.639 0.658 0.667 0.351 0.649

TLR8Antagonism RF moe2d 0.632 0.636 0.275 0.731 0.737 0.733 0.472 0.794

TLR8Antagonism LR moe2d 0.711 0.714 0.430 0.822 0.711 0.711 0.422 0.797

TLR8Antagonism kNN MQNs 0.684 0.675 0.376 0.661 0.605 0.603 0.206 0.603

TLR8Antagonism SVC MQNs 0.605 0.594 0.208 0.647 0.658 0.661 0.324 0.678

TLR8Antagonism DT MQNs 0.553 0.561 0.129 0.597 0.658 0.664 0.335 0.640

TLR8Antagonism RF MQNs 0.553 0.558 0.119 0.624 0.605 0.608 0.218 0.647

TLR8Antagonism LR MQNs 0.632 0.631 0.261 0.681 0.632 0.631 0.261 0.681

TLR8Antagonism kNN sf32 0.763 0.767 0.536 0.756 0.658 0.658 0.316 0.678

TLR8Antagonism SVC sf32 0.711 0.714 0.430 0.781 0.737 0.739 0.478 0.781

TLR8Antagonism DT sf32 0.632 0.633 0.267 0.633 0.737 0.744 0.506 0.783

TLR8Antagonism RF sf32 0.632 0.633 0.267 0.693 0.737 0.739 0.478 0.794

TLR8Antagonism LR sf32 0.711 0.711 0.422 0.742 0.684 0.689 0.382 0.739

Continued on next page
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Table 6.2 – Continued from previous page

prediction task algorithm descriptors
default parameter random search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

a: balanced accuracy.
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Table 6.3: Machine learning study for TollDB with grid search

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracy MCC roc auc accuracy b accuracy MCC roc auc

TLR2Agonism kNN moe2d 0.889 0.763 0.581 0.896 0.840 0.790 0.518 0.790

TLR2Agonism SVC moe2d 0.864 0.664 0.440 0.913 0.864 0.692 0.462 0.919

TLR2Agonism DT moe2d 0.852 0.713 0.453 0.746 0.840 0.705 0.423 0.763

TLR2Agonism RF moe2d 0.840 0.677 0.391 0.886 0.852 0.656 0.396 0.906

TLR2Agonism LR moe2d 0.877 0.756 0.545 0.907 0.840 0.592 0.290 0.853

TLR2Agonism kNN MQNs 0.852 0.684 0.424 0.801 0.840 0.677 0.391 0.720

TLR2Agonism SVC MQNs 0.864 0.692 0.462 0.844 0.827 0.641 0.325 0.827

TLR2Agonism DT MQNs 0.852 0.741 0.482 0.735 0.840 0.620 0.324 0.819

TLR2Agonism RF MQNs 0.852 0.713 0.453 0.784 0.852 0.684 0.424 0.920

TLR2Agonism LR MQNs 0.827 0.641 0.325 0.748 0.827 0.641 0.325 0.748

TLR2Agonism kNN sf32 0.864 0.692 0.462 0.769 0.877 0.756 0.545 0.812

TLR2Agonism SVC sf32 0.840 0.649 0.358 0.861 0.864 0.692 0.462 0.906

TLR2Agonism DT sf32 0.815 0.634 0.295 0.634 0.840 0.677 0.391 0.761

TLR2Agonism RF sf32 0.852 0.656 0.396 0.814 0.864 0.664 0.440 0.856

TLR2Agonism LR sf32 0.827 0.585 0.245 0.851 0.827 0.585 0.245 0.851

Continued on next page

98



6.
C

O
N

C
L

U
S
IO

N
A

N
D

O
U

T
L

O
O

K

Table 6.3 – Continued from previous page

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR2Antagonism kNN moe2d 0.727 0.735 0.462 0.791 0.773 0.774 0.540 0.774

TLR2Antagonism SVC moe2d 0.727 0.752 0.504 0.812 0.636 0.658 0.316 0.778

TLR2Antagonism DT moe2d 0.636 0.658 0.316 0.658 0.545 0.564 0.128 0.470

TLR2Antagonism RF moe2d 0.773 0.808 0.629 0.718 0.682 0.697 0.388 0.726

TLR2Antagonism LR moe2d 0.727 0.735 0.462 0.752 0.682 0.697 0.388 0.786

TLR2Antagonism kNN MQNs 0.636 0.624 0.248 0.748 0.636 0.624 0.248 0.765

TLR2Antagonism SVC MQNs 0.727 0.718 0.436 0.795 0.773 0.774 0.540 0.838

TLR2Antagonism DT MQNs 0.682 0.679 0.354 0.679 0.773 0.756 0.524 0.795

TLR2Antagonism RF MQNs 0.682 0.679 0.354 0.705 0.818 0.812 0.624 0.821

TLR2Antagonism LR MQNs 0.773 0.774 0.540 0.838 0.773 0.774 0.540 0.838

TLR2Antagonism kNN sf32 0.727 0.735 0.462 0.650 0.682 0.679 0.354 0.731

TLR2Antagonism SVC sf32 0.682 0.679 0.354 0.684 0.773 0.791 0.574 0.786

TLR2Antagonism DT sf32 0.500 0.543 0.094 0.543 0.636 0.675 0.370 0.585

TLR2Antagonism RF sf32 0.636 0.641 0.277 0.705 0.682 0.714 0.437 0.786

TLR2Antagonism LR sf32 0.682 0.679 0.354 0.778 0.773 0.722 0.567 0.769

Continued on next page99



Table 6.3 – Continued from previous page

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR4Agonism kNN moe2d 0.842 0.755 0.526 0.882 0.833 0.764 0.520 0.878

TLR4Agonism SVC moe2d 0.789 0.693 0.385 0.839 0.842 0.741 0.514 0.869

TLR4Agonism DT moe2d 0.825 0.787 0.534 0.785 0.763 0.618 0.257 0.749

TLR4Agonism RF moe2d 0.842 0.741 0.514 0.834 0.868 0.772 0.592 0.877

TLR4Agonism LR moe2d 0.807 0.689 0.404 0.858 0.807 0.689 0.404 0.858

TLR4Agonism kNN MQNs 0.833 0.778 0.535 0.858 0.825 0.801 0.550 0.801

TLR4Agonism SVC MQNs 0.825 0.729 0.473 0.842 0.807 0.718 0.436 0.830

TLR4Agonism DT MQNs 0.851 0.789 0.571 0.804 0.789 0.693 0.385 0.823

TLR4Agonism RF MQNs 0.851 0.775 0.558 0.858 0.842 0.769 0.539 0.880

TLR4Agonism LR MQNs 0.807 0.704 0.420 0.840 0.842 0.741 0.514 0.841

TLR4Agonism kNN sf32 0.807 0.776 0.503 0.859 0.833 0.793 0.550 0.873

TLR4Agonism SVC sf32 0.825 0.729 0.473 0.833 0.746 0.593 0.201 0.822

TLR4Agonism DT sf32 0.781 0.716 0.405 0.716 0.807 0.704 0.420 0.839

TLR4Agonism RF sf32 0.842 0.755 0.526 0.881 0.860 0.752 0.559 0.874

TLR4Agonism LR sf32 0.789 0.635 0.314 0.819 0.789 0.635 0.314 0.819

Continued on next page
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Table 6.3 – Continued from previous page

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR4Antagonism kNN moe2d 0.822 0.812 0.604 0.891 0.822 0.812 0.604 0.862

TLR4Antagonism SVC moe2d 0.822 0.793 0.585 0.926 0.733 0.709 0.403 0.836

TLR4Antagonism DT moe2d 0.800 0.718 0.504 0.718 0.711 0.692 0.367 0.740

TLR4Antagonism RF moe2d 0.756 0.666 0.384 0.843 0.800 0.737 0.511 0.917

TLR4Antagonism LR moe2d 0.800 0.757 0.525 0.843 0.800 0.757 0.525 0.843

TLR4Antagonism kNN MQNs 0.733 0.709 0.403 0.810 0.778 0.741 0.482 0.803

TLR4Antagonism SVC MQNs 0.800 0.757 0.525 0.843 0.756 0.725 0.441 0.712

TLR4Antagonism DT MQNs 0.733 0.630 0.315 0.630 0.800 0.796 0.565 0.847

TLR4Antagonism RF MQNs 0.867 0.825 0.680 0.894 0.889 0.841 0.735 0.942

TLR4Antagonism LR MQNs 0.689 0.657 0.303 0.806 0.689 0.657 0.303 0.806

TLR4Antagonism kNN sf32 0.756 0.725 0.441 0.838 0.800 0.737 0.511 0.737

TLR4Antagonism SVC sf32 0.822 0.773 0.572 0.918 0.800 0.796 0.565 0.788

TLR4Antagonism DT sf32 0.711 0.614 0.264 0.614 0.756 0.764 0.495 0.767

TLR4Antagonism RF sf32 0.800 0.757 0.525 0.829 0.800 0.757 0.525 0.857

TLR4Antagonism LR sf32 0.822 0.793 0.585 0.816 0.822 0.793 0.585 0.816

Continued on next page101



Table 6.3 – Continued from previous page

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR7Agonism kNN moe2d 0.835 0.830 0.677 0.883 0.857 0.853 0.718 0.905

TLR7Agonism SVC moe2d 0.835 0.834 0.669 0.909 0.857 0.855 0.714 0.923

TLR7Agonism DT moe2d 0.835 0.833 0.670 0.833 0.813 0.811 0.625 0.890

TLR7Agonism RF moe2d 0.863 0.864 0.726 0.925 0.846 0.845 0.691 0.923

TLR7Agonism LR moe2d 0.802 0.800 0.603 0.891 0.802 0.800 0.603 0.891

TLR7Agonism kNN MQNs 0.791 0.786 0.585 0.869 0.830 0.827 0.659 0.863

TLR7Agonism SVC MQNs 0.802 0.799 0.605 0.857 0.824 0.821 0.649 0.862

TLR7Agonism DT MQNs 0.808 0.806 0.614 0.806 0.824 0.820 0.651 0.872

TLR7Agonism RF MQNs 0.819 0.818 0.636 0.889 0.791 0.788 0.581 0.880

TLR7Agonism LR MQNs 0.725 0.723 0.448 0.807 0.753 0.750 0.503 0.783

TLR7Agonism kNN sf32 0.797 0.793 0.593 0.879 0.808 0.806 0.614 0.888

TLR7Agonism SVC sf32 0.802 0.800 0.603 0.877 0.775 0.772 0.548 0.844

TLR7Agonism DT sf32 0.769 0.768 0.537 0.767 0.775 0.770 0.552 0.804

TLR7Agonism RF sf32 0.852 0.851 0.702 0.901 0.835 0.833 0.669 0.907

TLR7Agonism LR sf32 0.747 0.745 0.492 0.787 0.742 0.739 0.481 0.780

Continued on next page
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Table 6.3 – Continued from previous page

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR7Antagonism kNN moe2d 0.810 0.792 0.612 0.838 0.714 0.694 0.408 0.778

TLR7Antagonism SVC moe2d 0.667 0.639 0.304 0.796 0.667 0.653 0.311 0.676

TLR7Antagonism DT moe2d 0.714 0.681 0.420 0.681 0.810 0.792 0.612 0.769

TLR7Antagonism RF moe2d 0.714 0.708 0.417 0.810 0.762 0.750 0.510 0.833

TLR7Antagonism LR moe2d 0.667 0.653 0.311 0.704 0.667 0.653 0.311 0.704

TLR7Antagonism kNN MQNs 0.857 0.833 0.730 0.861 0.667 0.639 0.304 0.741

TLR7Antagonism SVC MQNs 0.810 0.778 0.645 0.898 0.714 0.694 0.408 0.722

TLR7Antagonism DT MQNs 0.762 0.736 0.517 0.736 0.714 0.694 0.408 0.819

TLR7Antagonism RF MQNs 0.667 0.653 0.311 0.796 0.714 0.681 0.420 0.806

TLR7Antagonism LR MQNs 0.714 0.694 0.408 0.722 0.714 0.694 0.408 0.722

TLR7Antagonism kNN sf32 0.762 0.736 0.517 0.838 0.810 0.778 0.645 0.815

TLR7Antagonism SVC sf32 0.714 0.681 0.420 0.861 0.762 0.750 0.510 0.750

TLR7Antagonism DT sf32 0.619 0.597 0.204 0.597 0.762 0.750 0.510 0.796

TLR7Antagonism RF sf32 0.714 0.708 0.417 0.801 0.762 0.750 0.510 0.833

TLR7Antagonism LR sf32 0.810 0.792 0.612 0.731 0.810 0.792 0.612 0.731

Continued on next page103



Table 6.3 – Continued from previous page

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR8Agonism kNN moe2d 0.813 0.809 0.636 0.901 0.835 0.830 0.682 0.909

TLR8Agonism SVC moe2d 0.827 0.825 0.659 0.898 0.842 0.841 0.683 0.902

TLR8Agonism DT moe2d 0.820 0.821 0.641 0.821 0.842 0.841 0.683 0.872

TLR8Agonism RF moe2d 0.835 0.834 0.669 0.918 0.871 0.868 0.745 0.933

TLR8Agonism LR moe2d 0.748 0.748 0.496 0.852 0.763 0.760 0.527 0.822

TLR8Agonism kNN MQNs 0.763 0.759 0.531 0.872 0.849 0.846 0.705 0.911

TLR8Agonism SVC MQNs 0.784 0.783 0.568 0.892 0.799 0.797 0.597 0.878

TLR8Agonism DT MQNs 0.878 0.875 0.763 0.879 0.856 0.855 0.712 0.884

TLR8Agonism RF MQNs 0.863 0.860 0.734 0.935 0.813 0.810 0.630 0.916

TLR8Agonism LR MQNs 0.791 0.791 0.582 0.845 0.791 0.791 0.582 0.845

TLR8Agonism kNN sf32 0.791 0.789 0.584 0.875 0.827 0.823 0.666 0.926

TLR8Agonism SVC sf32 0.799 0.797 0.598 0.898 0.799 0.797 0.597 0.898

TLR8Agonism DT sf32 0.791 0.789 0.585 0.789 0.784 0.783 0.568 0.854

TLR8Agonism RF sf32 0.856 0.855 0.712 0.925 0.849 0.847 0.700 0.934

TLR8Agonism LR sf32 0.734 0.733 0.467 0.827 0.712 0.711 0.423 0.825

Continued on next page
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Table 6.3 – Continued from previous page

prediction task algorithm descriptors
default parameter grid search

accuracy b accuracya MCC roc auc accuracy b accuracya MCC roc auc

TLR8Antagonism kNN moe2d 0.684 0.681 0.365 0.808 0.658 0.653 0.312 0.744

TLR8Antagonism SVC moe2d 0.737 0.739 0.478 0.797 0.711 0.711 0.422 0.806

TLR8Antagonism DT moe2d 0.658 0.667 0.351 0.667 0.658 0.667 0.351 0.633

TLR8Antagonism RF moe2d 0.632 0.633 0.267 0.668 0.763 0.764 0.527 0.761

TLR8Antagonism LR moe2d 0.711 0.714 0.430 0.822 0.711 0.711 0.422 0.797

TLR8Antagonism kNN MQNs 0.684 0.675 0.376 0.661 0.605 0.603 0.206 0.603

TLR8Antagonism SVC MQNs 0.605 0.594 0.208 0.647 0.658 0.658 0.316 0.694

TLR8Antagonism DT MQNs 0.553 0.561 0.129 0.597 0.605 0.608 0.218 0.550

TLR8Antagonism RF MQNs 0.553 0.561 0.129 0.712 0.632 0.633 0.267 0.631

TLR8Antagonism LR MQNs 0.632 0.631 0.261 0.681 0.632 0.631 0.261 0.681

TLR8Antagonism kNN sf32 0.763 0.767 0.536 0.756 0.658 0.658 0.316 0.678

TLR8Antagonism SVC sf32 0.711 0.714 0.430 0.781 0.737 0.739 0.478 0.775

TLR8Antagonism DT sf32 0.684 0.689 0.382 0.689 0.684 0.683 0.367 0.686

TLR8Antagonism RF sf32 0.737 0.744 0.506 0.781 0.711 0.711 0.422 0.758

TLR8Antagonism LR sf32 0.711 0.711 0.422 0.742 0.684 0.689 0.382 0.739
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[126] Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,

2019.

[127] Crone, S. F., Lessmann, S., and Stahlbock, R. The impact of preprocessing on

data mining: An evaluation of classifier sensitivity in direct marketing. Eur. J.

Oper. Res., 173(3):781–800, 2006.

[128] Dasu, T. and Johnson, T. Exploratory data mining and data cleaning, volume

479. John Wiley & Sons, 2003.

120

https://eprints.soton.ac.uk/262954/


BIBLIOGRAPHY

[129] Mohd Nawi, N., Atomia, W. H., and Rehman, M. Z. The effect of data pre-

processing on optimized training of artificial neural networks. In: 4th International

Conference on Electrical Engineering and Informatics (ICEEI 2013, 24-25 June),

Universiti Kebangsaan Malaysia, 2013.

[130] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,

A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn:

Machine learning in Python. J. Mach. Learn. Res., 12:2825–2830, 2011.

[131] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O.,

Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas,

J., Joly, A., Holt, B., and Varoquaux, G. API design for machine learning software:

experiences from the scikit-learn project. In ECML PKDD Workshop: Languages

for Data Mining and Machine Learning, pages 108–122, 2013.

[132] Feurer, M. and Hutter, F. Hyperparameter Optimization, pages 3–33. Springer

International Publishing, 2019.

[133] Bergstra, J. and Bengio, Y. Random search for hyper-parameter optimization. J.

Mach. Learn. Res., 13(1):281–305, 2012.

[134] Sokolova, M. and Lapalme, G. A systematic analysis of performance measures

for classification tasks. Inf. Process. Manage., 45(4):427–437, 2009.

[135] Sammut, C. and Webb, G. I. Encyclopedia of machine learning. Springer Science

& Business Media, 2011.

[136] Sammut, C. and Webb, G. I., editors. Accuracy, pages 9–10. Springer US, Boston,

MA, 2010. ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 3. URL

https://doi.org/10.1007/978-0-387-30164-8_3.

[137] Chawla, N. V. Data mining for imbalanced datasets: An overview. In Data

mining and knowledge discovery handbook, pages 875–886. Springer, 2009.

[138] Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett., 27(8):

861–874, 2006.

121

https://doi.org/10.1007/978-0-387-30164-8_3


[139] Myerson, J., Green, L., and Warusawitharana, M. Area under the curve as a

measure of discounting. J. Exp. Anal. Behav., 76(2):235–243, 2001.

[140] Bradley, A. P. The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern Recognit., 30(7):1145–1159, 1997.

[141] Chicco, D. and Jurman, G. The advantages of the matthews correlation coefficient

(mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics,

21(1):1–13, 2020.

[142] Instant JChem was used for structure database management, search and prediction.

Instant JChem version 18.1.0, 2018. ChemAxon (http://www.chemaxon.com).

[143] Weininger, D. SMILES, a chemical language and information system. 1. Introduc-

tion to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28:31–36,

1988.

[144] Weininger, D., Weininger, A., and Weininger, J. L. SMILES. 2. Algorithm for

generation of unique SMILES notation. J. Chem. Inf. Comput. Sci., 29(2):97–101,

1989.

[145] Daylight SMILES theory, 2019. URL https://www.daylight.com/dayhtml/

doc/theory/theory.smiles.html.

[146] Molecular operating environment (MOE), 20190102. Chemical Computing Group

Inc., 2019. https://www.chemcomp.com/.

[147] O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and

Hutchison, G. R. Open Babel: An open chemical toolbox. J. Cheminf., 3(1):33,

2011.

[148] The Open Babel Package, version 2.4.1, Oct 2016. URL http://openbabel.org.

[149] Nguyen, K. T., Blum, L. C., van Deursen, R., and Reymond, J.-L. Classification

of organic molecules by molecular quantum numbers. ChemMedChem, 4(11):

1803–1805, 2009.

[150] Landrum, G., Tosco, P., Kelley, B., sriniker, gedeck, NadineSchneider, Vianello,

R., Dalke, A., Cole, B., AlexanderSavelyev, Turk, S., Ric, Swain, M., Vaucher, A.,

122

http://www.chemaxon.com
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.chemcomp.com/
http://openbabel.org


BIBLIOGRAPHY
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