Catalytic and Stoichiometric Organohalogen Chemistry:

Mechanistic Investigations and Applications

Inaugural-Dissertation
to obtain the academic degree
Doctor rerum naturalium (Dr. rer. nat.)

submitted to the Department of Biology, Chemistry, Pharmacy
of Freie Universität Berlin
by

Sebastian Ponath

The present work was carried out under the supervision of Prof. Dr. Mathias Christmann in the period from January 2017 to December 2020 in the Department of Biology, Chemistry, Pharmacy at the Freie Universität Berlin.
$1^{\text {st }}$ Reviewer: Prof. Dr. Mathias Christmann
(Institute of Chemistry and Biochemistry, Freie Universität Berlin)
$2^{\text {nd }}$ Reviewer: Prof. Dr. Philipp Heretsch
(Institute of Chemistry and Biochemistry, Freie Universität Berlin)

Date of disputation: 17.05.21

I hereby confirm that this work was prepared without the help of third parties and without the use of other than the indicated sources. The thoughts taken from the sources are marked. This thesis has not been submitted to any other examination authority and no doctoral examination has taken place to date.

Sebastian Ponath

Danksagung

Der größte Dank gilt zunächst meinem Doktorvater Herrn Prof. Dr. Mathias Christmann, der mir ein Forschungspraktikum, die Masterarbeit und zuletzt die Promotion in seiner Arbeitsgruppe ermöglicht hat. Vielen Dank für die Unterstützung und das Vertrauen bei diesen interessanten und herausfordernden Fragestellungen. Der gewährte Freiraum bei der eigenen Forschung sowie die Leitung in schwierigen Phasen ist ein zentraler Punkt zum Gelingen dieser Arbeit und meiner eigenen Entwicklung gewesen.

Herrn Prof. Dr. Philipp Heretsch möchte ich für die Übernahme des Zweitgutachtens danken.

Außerdem möchte ich den Kooperationspartnern und Unterstützern danken, die maßgeblich am erfolgreichen Bearbeiten der Projekte beteiligt waren: Stefan Leisering, Dr. Benjamin Schmidt, Patrick Voßnacker, Prof. Dr. Sebastian Hasenstab-Riedel, Chetan Joshi, Prof. Dr. Mathew J. Vetticatt, Amy Bellinghiere, Prof. Dr. Dean J. Tantillo, Dr. Volker Schmidt, Prof. Dr. Christina Thiele, Kim Greis, Maike Lettow und Prof. Dr. Kevin Pagel.

Ein weiterer Dank gilt den Studenten Deniz Meyer, Marvin Busse und Wesley Pietsch, die im Zuge ihrer Bachelorarbeiten und Forschungspraktika an diesen Projekten beteiligt waren.

Der gesamten analytischen Abteilung möchte ich für die Bearbeitung der zahlreichen NMR- und Masseproben sowie für die Einkristallstrukturanalysen danken.

Danke auch an alle, die diese Arbeit Korrektur gelesen haben: Dr. Amel Mekic, Dr. Benjamin Schmidt, Dr. Volker Schmiedel, Stefan Leisering, Merlin Kleoff und Dr. Reinhold Zimmer.

Ein ganz besonderer Dank gilt allen aktuellen und ehemaligen Mitarbeiten der AG Christmann und AG Heretsch, die dafür gesorgt haben, dass man sich bei euch zu Hause fühlt. Danke auch für die fantastischen Momente außerhalb des Labors. Ein besonderer Dank gilt meinen ehemaligen Laborpartnern und Labornachbarn: Dr. Volker Schmiedel, Dr. Tommaso Pecchioli, Merlin Kleoff und Stefan Leisering.

Ein Dankeschön verdienen auch Luise Schefzig und Christiane Groneberg für die synthetisch-praktische Unterstützung und die Betreuung der HPLC und GC-Systeme.

Außerdem möchte ich mich ganz herzlich bei Dr. Reinhold Zimmer für alles was er für die AG Christmann und seine Mitarbeiter getan hat und in Zukunft tun wird bedanken.

Ein weiterer Dank gilt auch meinen ehemaligen Studienkollegen aus Düsseldorf, mit denen mich bis heute eine wertvolle Freundschaft verbindet.

Ich möchte mich auch von Herzen bei denen Bedanken, die außerhalb der Universität dafür gesorgt haben, dass es mir an nichts mangelt. Ein unendlicher Dank gilt meinen Eltern und Großeltern, die mich mein Leben lang unterstützt haben und mir ein festes Fundament gegeben haben. Danke an meine Freunde aus Neuss, Düsseldorf, Berlin und dem Rest der Welt für das Feiern großartiger und das Überwinden nicht so großartiger Momente.

Zum Schluss möchte ich mich noch bei der wichtigsten Person in meinem Leben bedanken. Danke für vier Jahre voller Liebe, Zusammenhalt und Unterstützung.

Zusammenfassung

Organokatalytische α-Chlorierung von Aldehyden

Die direkte organokatalytische α-Chlorierung von Aldehyden wurde im Jahre 2004 von den beiden Arbeitsgruppen um MacMillan und Jørgensen unabhängig voneinander vorgestellt. Im Anschluss folgten zahlreiche Veröffentlichungen zur Aufklärung des Katalysemechanismus. Die Rolle und Eigenschaften von sogenannten Aminal-Intermediaten wurden seitdem kontrovers diskutiert. Basierend auf Kalorimetrie- und NMR-Experimenten wurde diesen Spezies durch die Arbeitsgruppe um Blackmond eine aktive Rolle im Katalysezyklus zugeordnet („on-cycle"). Im Gegensatz zum klassischen „steric-shielding"-Modell, bei dem die $\mathrm{C}-\mathrm{Cl}$-Bindungsknüpfung für die Stereoselektivität der Reaktion verantwortlich ist, soll hier das thermodynamische Gleichgewicht zweier diastereomerer Aminal-Intermediate für das Enantiomerenverhältnis der Produkte verantwortlich sein (Curtin-Hammett-Paradigma). Erste eigene Forschungsergebnisse konnten dieses Szenario zunächst nicht unterstützen, sodass eine umfassende mechanistische Untersuchung der zuvor erwähnten Reaktion aufgenommen wurde.

Die organokatalytische α-Chlorierung von Aldehyden wurde mit diversen MacMillan- und JørgensenKatalysatoren eingehend untersucht. Die Isolierung und Einkristallstrukturanalyse verschiedenster MacMillan-Aminale konnte erstmals die genaue Stereokonfiguration aufklären und damit die in der Literatur vorgenommene Bezeichnung widerlegen. Mit Hilfe einer Kombination aus Zersetzungsexperimenten, NMR-Messungen und DFT-gestützten Berechnungen wurde ein Curtin-Hammett-Szenario für diese Spezies zweifelsfrei ausgeschlossen. Stattdessen bilden die Aminale im

Fall der MacMillan-Katalysatoren stabile, parasitäre Intermediate, die einen Teil des Katalysators aus dem Katalysezyklus entfernen.

Den Abschluss dieser mechanistischen Studie bildet die gründliche Untersuchung der JørgensenAminale, die in der Publikation „Curtin-Hammett Paradigm for Stereocontrol in Organocatalysis by Diarylprolinol Ether Catalysts" erforscht wurden. Durch eine Modifikation des Reaktionsprozesses wurden erstmals Einkristalle der wesentlich instabileren Aminale erfolgreich für die Strukturanalyse isoliert. Durch eine Kombination aus NMR-Messungen und DFT-basierten Berechnungen konnten die beiden in der Literatur beschriebenen Aminale ausführlich charakterisiert werden. Zur weiteren Aufklärung der absoluten Stereokonfiguration durch Zersetzungs- und Deuterierungsexperimente, gelang es die nachgelagerte Reaktivität genauer zu untersuchen. Neben den MacMillan-Aminalen konnte so auch für die Jørgensen-Aminale die falsche stereochemische Zuordnung korrigiert werden und ein Curtin-Hammett-Szenario ausgeschlossen werden.

Basierend auf einem besseren Verständnis der stabilisierenden Wechselwirkungen innerhalb der Aminale, wurde in weiterführenden Untersuchungen die Bildung dieser parasitären Spezies unterdrückt und die Katalysatorbeladung dadurch deutlich reduziert. Des Weiteren konnte gezeigt werden, dass die organokatalytische α-Chlorierung von Aldehyden Zugang zu synthetisch interessanten chiralen Verbindungen wie Triazolen ermöglicht.

Anwendung neuartiger Polyinterhalogenide

Aufgrund der Instabilität und schlechten Handhabung von reinem BrCl stellt die Synthese und Anwendung stabilisierter Polyinterhalogenide ein interessantes fachübergreifendes Forschungsgebiet dar. In einer aktuellen Veröffentlichung konnte die Arbeitsgruppe Hasenstab-Riedel die Synthesen und Charakterisierungen von Verbindungen des Typs $[\mathrm{Y}]\left[\mathrm{Cl}(\mathrm{BrCl})_{\mathrm{x}}\right](\mathrm{Y}=$ Kation; $\mathrm{x}=1-6)$ präsentieren.

Im zweiten Teil dieser Arbeit wurde die Interhalogenierung von ungesättigten organischen Verbindungen mittels eines neuartigen $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$-Komplexes, welcher in der Arbeitsgruppe

Hasenstab-Riedel entwickelt wurde, untersucht. Die gute Atomökonomie in Kombination mit einer hohen Reaktivität bei gleichzeitiger Selektivität konnte anhand verschiedenster Substrate gezeigt werden.

Studien zur Totalsynthese von Hypatulin A und B

Der letzte Teil dieser Arbeit befasst sich mit der Synthese der beiden Naturstoffe Hypatulin A und B. Die beiden polyprenylierten Meroterpene wurden 2016 von der Arbeitsgruppe Kashiwada aus den Blättern des Großblumigen Johanniskrautes (Hypericum patulum) isoliert und mit Hilfe von 2D-NMR und ECD-Spektroskopie charakterisiert. Die einzigartige hoch-substituierte tri- bzw. bizyklische Struktur und die vier bzw. drei benachbarten quaternären Stereozentren von Hypatulin A und B ließen einen chemisch-synthetischen Zugang zu beiden Naturstoffen erstrebenswert erscheinen. Im Hinblick auf die vielfältige biologische Aktivität verwandter Naturstoffe, sollte die Totalsynthese zusätzlich verschiedenste Derivatisierungsmöglichkeiten eröffnen.

Ausgehend vom iodierten Enon I konnte die erste Allylgruppe durch eine organokatalytische BrownAllylierung mit exzellenter Enantioselektivität (94\%) eingeführt werden. Eine anschließende Nickelkatalysierte Kumada-Reaktion lieferte Alkohol II mit einer ausgezeichneten Ausbeute von 84\% über zwei Stufen. Die nahezu quantitative Darstellung des β-Ketoesters III gelang in einer Eintopf-Reaktion, bei der eine Oxa-Cope-Umlagerung mit einer Methoxycarbonylierung kombiniert wurde. Die zweite Allylgruppe wurde durch eine Sequenz bestehend aus einer Mitsunobu-artigen O-Allylierung und anschließender enantioselektiver Oxa-Cope-Umlagerung stereoselektiv eingeführt. Durch eine nachfolgende Silylierung konnte der Silylenolether IV mit einer moderaten Ausbeute von 32\% über drei Stufen hergestellt werden. Eine intermolekulare Mukaiyama-Aldol Reaktion und säurekatalysierte Eliminierung führten mit einer guten Gesamtausbeute von 60\% zum Enon V. Mit Hilfe der anschließenden Hosomi-Sakurai-Reaktion wurde die letzte Allylgruppe zwar mit einer guten Ausbeute (63\%) aber schlechten Diastereoselektivität ($\mathrm{dr}=1: 2$) eingeführt. Im weiteren Verlauf gelang es die bizyklische Struktur VII nach drei weiteren Schritten aufzubauen.

Abstract

Organocatalytic α-Chlorination of Aldehydes

The organocatalytic α-chlorination of aldehydes was presented independently by the two research groups of MacMillan and Jørgensen in 2004. Subsequently, numerous publications followed to elucidate the catalytic mechanism. The role and properties of aminal intermediates have been controversially discussed since then. Based on calorimetry and NMR experiments, these species were assigned to play an active role in the catalytic cycle ("on-cycle") by the Blackmond group. In contrast to the classical steric-shielding model, in which the C-Cl bond linkage defines the stereoselectivity of the reaction, the thermodynamic equilibrium of two diastereomeric aminal intermediates is supposed to be responsible for the enantiomeric ratio of the products here (Curtin-Hammett paradigm). Early results of our own research were unable to support this scenario, so that a comprehensive mechanistic investigation of the aforementioned reaction was commenced.

The organocatalytic α-chlorination of aldehydes with various MacMillan and Jørgensen catalysts was investigated in detail. With the isolation and single crystal structure analysis of a wide variety of MacMillan aminals we were able to elucidate the exact stereoconfiguration for the first time, thus refuting the assignment made in the literature. Using a combination of decomposition experiments, NMR measurements and DFT-based calculations, the Curtin-Hammett scenario could be excluded for these species. Instead, MacMillan catalysts form aminals which are stable parasitic intermediates that remove some of the catalyst from the catalytic cycle.

Consequently, the conclusion of this mechanistic study was the thorough investigation of Jørgensen aminals, which were considered in the publication "Curtin-Hammett Paradigm for Stereocontrol in Organocatalysis by Diarylprolinol Ether Catalysts". Single crystals of the much more unstable aminals were successfully isolated for structural analysis for the first time by modifying the reaction process. A combination of NMR measurements and DFT-based calculations could be used to further characterize the two aminal species described in the literature. To elucidate the absolute stereoconfiguration and conformation, decomposition and deuterium incorporation experiments allowed the downstream reactivity to be studied in more detail. In addition to the MacMillan aminals, the incorrect stereochemical assignment of the aminal species could thus also be corrected for the Jørgensen aminals and a Curtin-Hammett scenario could be excluded also for this type of catalyst.

Based on the better understanding of the stabilizing interactions within aminals, it was possible to suppress the formation of these parasitic species and significantly reduce the catalyst loading. Furthermore, it could be shown that the organocatalytic α-chlorination of aldehydes can access synthetically interesting chiral compounds such as triazoles.

Application of Novel Polyinterhalides

Due to the instability and dangerous handling of pure BrCl , the synthesis and application of stabilized polyinterhalides represents an interesting interdisciplinary field of research. In a recent publication, the Hasenstab-Riedel group successfully completed the syntheses and characterizations of compounds of the type $[\mathrm{Y}]\left[\mathrm{Cl}(\mathrm{BrCl})_{\mathrm{x}}\right](\mathrm{Y}=$ cation; $\mathrm{x}=1-6)$.

In the second part of this thesis, the interhalogenation of unsaturated organic compounds was investigated using a novel $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$ complex developed by the Hasenstab-Riedel group. The good atomic economy in combination with a high reactivity and simultaneous selectivity could be demonstrated using a broad substrate scope.

The last part of this thesis deals with studies on the total synthesis of the two natural products hypatulin A and B. The two polyprenylated meroterpenes were isolated from the leaves of goldencup St. John's wort (Hypericum patulum) by the Kashiwada group in 2016 and characterized by 2D NMR and ECD spectroscopy. The unique highly substituted tri- and bicyclic structures and the four and three adjacent quaternary stereocenters of hypatulin A and B, respectively, suggested that a synthetic approach to both natural products was desirable. In view of the diverse biological activity of related natural products, a total synthesis approach should open up a wide variety of derivatization possibilities.

Starting from the commercially available iodinated enone I, the first allyl group was introduced by an organocatalytic Brown allylation with high enantioselectivity (94\%). A subsequent nickel-catalyzed Kumada coupling afforded alcohol II with an excellent yield of 84% over two steps. Nearly quantitative preparation of β-keto ester III was achieved through a one-pot reaction combining an oxy-Cope rearrangement with a methoxycarbonylation. The second allyl group could be stereoselectively introduced by a sequence consisting of a Mitsunobu-like O -allylation followed by an enantioselective oxy-Cope rearrangement. Subsequent silylation allowed the preparation of silyl enol ether IV with a
satisfactory overall yield of 32% over three steps. An intermolecular Mukaiyama-aldol reaction and acid-catalyzed elimination led to the enone \mathbf{V} with a good yield of 60%. By applying the Hosomi-Sakurai reaction, the last allyl group could be introduced with a good yield (63\%) but poor diastereoselectivity ($\mathrm{dr}=1: 2$). The construction of the bicyclic structure VII could further be realized after three additional steps.

List of Publications:

Ponath, S.; Menger, M.; Grothues, L.; Weber, M.; Lentz, D.; Strohmann, C.; Christmann, M. Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates. Angew. Chem. Int. Ed. 2018, 57, 11683-11687 (DOI:10.1002/anie.201806261); Angew. Chem. 2018, 130, 11857-11861 (DOI:10.1002/ange.201806261).

Ponath, S.; Joshi, C.; Merrill, A. T.; Schmidts, V.; Greis, K.; Lettow, M.; Weber, M.; Steinhauer, S.; Pagel, K.; Thiele, C. M.; Tantillo, D. J.; Vetticatt, M. J.; Christmann, M. On Stereocontrol in Organocatalytic $\alpha-$ Chlorinations of Aldehydes. ChemRxiv. Preprint (https://doi.org/10.26434/chemrxiv.14229875.v1). Submitted to J. Am. Chem. Soc. (March 18, 2021).

Schmidt, B.; Ponath, S.; Hannemann, J.; Voßnacker, P.; Sonnenberg, K.; Christmann, M.; Riedel, S. In Situ Synthesis and Applications for Polyinterhalides Based on BrCl. Chem. Eur. J. 2020, 26, 15183-15189 (doi.org/10.1002/chem.202001267). Highlighted in ChemistryViews (November 18, 2020).

Content

Danksagung V
Zusammenfassung VII
Abstract XI
List of Publications. XV

1. Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes and the Application in Organic Synthesis 1
1.1. Introduction 1
1.1.1. Organocatalysis 1
1.1.2. Activation of Aldehydes by Secondary Amines 3
1.1.3. Organocatalytic α-Chlorination of Aldehydes 6
1.1.4. Aminal Intermediates 12
1.1.5. Application in Organic Synthesis 15
1.2. Scientific Goal 17
1.3. Publications 19
1.3.1. Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates 19
1.3.2. On Stereocontrol in Organocatalytic α-Chlorinations of Aldehydes 26
1.4. Summary and Outlook 41
1.5. Further Results 45
2. Application of Novel Polyinterhalides in Organic Synthesis 50
2.1. Introduction 50
2.1.1. Halogen Bonding 50
2.1.2. Polyhalides 51
2.1.2. Polyhalides as Reagents in Organic Chemistry 52
2.2. Scientific Goal 56
2.3. Publication 57
2.3.1. In Situ Synthesis and Application for Polyinterhalides Based on BrCl 57
2.4. Summary and Outlook. 66
3. Studies on the Total Synthesis of Hypatulin A and B 68
3.1. Introduction 68
3.1.1. Natural Products and the Importance for Humanity 68
3.1.2. The Plant Genus Hypericum 70
3.1.3. Polyprenylated Acylphloroglucinols 71
3.1.4. Hypatulin A and B and Other Polyprenylated Benzophenones 74
3.2. Scientific Goal 77
3.3. Results 79
3.4. Summary and Outlook. 84
4. References 86
5. Appendix 91
5.1. Abbreviations 91
5.2. Supporting Information: Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates 94
5.3. Supporting Information: On Stereocontrol in Organocatalytic α-Chlorinations of Aldehydes 176
5.4. Supporting Information: In Situ Synthesis and Application for Polyinterhalides Based on BrCl 429
5.5. Experimental Part 466
5.5.1. Triazoles 467
5.5.2. Studies on the Total Synthesis of Hypatulin A and B 487

1. Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes and the Application in Organic Synthesis

1.1. Introduction

1.1.1. Organocatalysis

A catalyst is defined as a substance that accelerates a reaction without undergoing a (net) reaction itself. By opening an alternative reaction pathway, it lowers the activation energy (E_{A}) without changing the free enthalpy of the reaction (ΔG) (Figure 1). ${ }^{[1]}$

Figure 1: Simplified energy diagram for a catalyzed (green) and non-catalyzed (blue) process.

For catalytic processes, a distinction is made between heterogeneous catalysis, in which the substrate and the catalyst are in different phases, and homogeneous catalysis, in which both substances are in the same phase. ${ }^{[2]}$ Catalytic processes are omnipresent in organisms, play a major role in industry and are therefore extensively researched. Especially heterogeneous catalysis plays a crucial role in our modern society. From the Haber-Bosch process, which provides the supply of nitrogen to agriculture, to automotive catalysts, which enable the reduction of toxic emissions, catalysts are a key element of our modern life. ${ }^{[1]}$

Catalysis can be further divided into subgroups such as biocatalysis, metal catalysis and organocatalysis. By definition, organocatalysis is described as a reaction in which small organic and metal-free molecules serve as catalysts for organic reactions. ${ }^{[3]}$ Within organocatalysis, a distinction is made between covalent and non-covalent interactions. Covalent organocatalysis is represented by the diverse group of amine catalysts ${ }^{[4]}$ (Scheme 1, 1.) or N-heterocyclic carbenes ${ }^{[5]}$ (Scheme 1, 2.). In these cases, the substrates and the catalysts give rise to covalently bonded reactive intermediates (enamines, Breslow intermediates), which with a suitable reagent lead to formation of the product. Non-covalent organocatalysis is based on activation of the substrate by means of hydrogen bonds
(Scheme 1, 3. and 4.) (chiral Brønsted acids ${ }^{[6]}$, urea derivatives ${ }^{[7]}$) or other electrostatic interactions (Scheme 1, 5.) (halogen bond donors ${ }^{[8]}$).

1.

2.

3.

4.

5.

Scheme 1: Different organocatalysts, modes of activation with suitable substrates and possible reactivities (E: electrophile, Nu: nucleophile): 1. Aminocatalysts can form enamines with aldehydes; 2. N -Heterocyclic carbenes can form Breslow intermediates with aldehydes; 3. Organophosphates can activate imines by hydrogen bonding; 4. Thiourea derivatives can activate ketones by hydrogen bonding; 5. Cationic multidentate halogen bond donors can activate alkyl chlorides by halogen bonding

Although the term "organocatalysis" was coined at the beginning of the new millennium, particularly by MacMillan ${ }^{[9]}$, the application of this concept goes back much further historically. The benzoin addition discovered by Wöhler and Liebig in 1832 can be regarded as the first organocatalytic reaction developed by chemists. ${ }^{[10]}$ Twenty-seven years later, Liebig first identified an organic molecule (acetaldehyde) as the catalyst of an organic reaction (oxamide synthesis from dicyan and water). ${ }^{[11]}$ In 1912, Bredig and Fiske were able to observe a small enantiomeric excess in the addition of hydrogen cyanide to aldehydes by using the diastereomers quinine and quinidine as catalysts. ${ }^{[12]}$ This research marks the first man-made asymmetric organocatalytic reaction. The Hajos-Parrish-Eder-SauerWiechert reaction developed in the 1970s can be regarded as another milestone. By using enantiomerically pure proline, it was possible to achieve enantiomeric excesses of $>90 \%$ for the first time. ${ }^{[13]}$

Since the introduction of the term "organocatalysis" in 2000, this field of research has seen a tremendous increase in publications every year until 2012. The nearly constant publication numbers since 2012 illustrate that research interest in this topic is undiminished (Figure 2). ${ }^{[14]}$

Figure 2: Number of SciFinder entries for the research topic „organocatalysis" (*: Extrapolation based on 414 entries on March 29, 2021). ${ }^{[14]}$

1.1.2. Activation of Aldehydes by Secondary Amines

A fascinating subarea of covalent organocatalysis is the activation of aldehydes by secondary amines. A distinction can be made between LUMO, SOMO and HOMO activation. ${ }^{[15]}$

Scheme 2: Different activation modes for aldehydes with secondary amines.

The condensation of a secondary amine with an α-unsubstituted aldehyde generates, after elimination of water, an iminium ion whose LUMO is energetically lowered compared to the carbonyl group. The representation of the resonance structure illustrates the localization of the LUMO at the former carbonyl carbon (blue box). This position is accessible by suitable nucleophiles. At the same time, the acidity of the α-protons increases. The π-system consists of two π-electrons which are part of the C-N
double bond or are present as a free electron pair at the nitrogen atom in a second mesomeric structure.

Figure 3: Molecular orbital scheme for the C-O double bond of a carbonyl compound (left) and for the C-N double bond of an iminium ion (right).

Figure 3 illustrates the differences between the $\mathrm{C}=\mathrm{O}$ carbonyl and the $\mathrm{C}=\mathrm{N}$ iminium bond by means of a qualitative molecular orbital diagram. ${ }^{[16]}$ The LUMO of the carbonyl bond (left) corresponds to the antibonding π^{*} molecular orbital, which is formed from the linear combination of the two p_{z} atomic orbitals of the carbon and oxygen atom. The two non-bonding electron pairs of two sp^{2} hybrid orbitals of the oxygen atom form the HOMO. The unpaired electron in the third sp^{2} hybrid orbital of the oxygen atom would form the σ-bond to the carbon atom in a complete molecular orbital scheme. Compared to the carbonyl bond, the LUMO of the C-N double bond in the iminium ion (Figure 3, right), which results from the same linear combination, is energetically lowered and clearly localized at the carbon atom. The energetic lowering of the LUMO results from the energetically lower atomic orbitals of the positively charged nitrogen. This reflects the increased reactivity toward the HOMO of a nucleophile. The HOMO of the iminium ion is the occupied and binding π-molecular orbital. The three unpaired electrons in the three sp^{2} hybrid orbitals of the nitrogen atom would, in a complete molecular orbital scheme, again form the σ-bond to the carbon atom and additionally two more σ-bonds to two (alkyl) substituents.

Examples of LUMO activation include reductive amination ${ }^{[17]}\left(\mathrm{Nu}^{-}=\mathrm{H}^{-}\right)$or activation of carbonyl compounds by Lewis or Brønsted acids followed by nucleophilic attack at the former carbonyl carbon atom ${ }^{[18]}$. In addition, iminium catalysis with α, β-unsaturated aldehydes can provide nucleophilic addition at the β-position. ${ }^{[19]}$

Formal one-electron reduction provides access to SOMO activation with three electrons in the π system (orange box). The mesomeric structure shows the reactive center of the molecule. In this case, SOMO-philic molecules can react with the α-position of the activated aldehyde. Literature-known examples for the application of SOMO activation are the α-allylation ${ }^{[15]}$ and α-chlorination ${ }^{[20]}$ of aldehydes.

Through another formal one-electron reduction, HOMO activation with four π-electrons in the π system is accessible (green box). The same activation mode can be achieved by α-deprotonation of the previously mentioned iminium ion. The HOMO, which is localized in the α-position, is energetically higher than the one for the corresponding enol species. ${ }^{[16]}$ Thus, it has a distinct nucleophilic character and is reactive towards electrophiles. HOMO activation, on which enamine catalysis is based, has been and is a subject of versatile research. Applications include aldol reactions and a wide variety of α functionalizations (α-oxidation, α-chlorination, α-amination, etc.). ${ }^{[4]}$

Enamine and iminium ion are in direct equilibrium with each other due to protonation/deprotonation (Scheme 2). The equilibrium between iminium ion $\mathbf{3}$ and enamine $\mathbf{4}$ can also be interpreted as a simple acid-base equilibrium. ${ }^{[21]}$ The stability of the respective species (enamine and iminium ion) and the available reaction partner (electrophile or nucleophile) define the type of reaction that takes place subsequently. Since the two modes of activation can in principle take place under the same conditions, some organocatalysts can mediate both, nucleophilic and electrophilic reactions. Based on the vinylogy principle ${ }^{[22]}$ functionalizations of α, β-unsaturated aldehydes or conjugated dienals (1) in the $\beta-, \gamma-, \delta-$ and ε-position are accessible (Scheme 3). Due to the cascade-like reaction course, multiple functionalization in one reaction are possible. ${ }^{[23]}$

Scheme 3: Reactivities of the polyunsaturated aldehyde $\mathbf{1}$ and amine catalyst $\mathbf{2}$ according to the vinylogy principle.

The formation of aminal intermediates in the organocatalytic α-chlorination of aldehydes (Chapter 1.1.4.) is a consequence of a twofold activation. The enamine 6 formed by HOMO activation from aldehyde 5 and catalyst $\mathbf{2}$ first reacts as a nucleophile with the electrophilic chlorinating reagent NCS (7). The resulting α-chloroiminium ion 8 is now LUMO-activated and allows nucleophilic attack of the
succinimide anion (9) at the iminium carbon atom, leading to the formation of the aminal $\mathbf{1 0}$ (Scheme 4).

Scheme 4: Aminal formation through the sequence of HOMO and LUMO activation.

1.1.3. Organocatalytic α-Chlorination of Aldehydes

The catalytic cycle shown in Scheme 5 depicts the general and simplified idea of a HOMO-activated, amine-catalyzed reaction of aldehydes with electrophiles. The secondary amine catalyst 2 first condenses with the α-unsubstituted aldehyde 5 to generate the iminium ion 11 . Subsequent deprotonation leads to enamine 6. This nucleophile can react with an electrophile (E^{+}) to form the iminium ion 12. Subsequent hydrolysis releases the α-functionalized aldehyde 13 under regeneration of the catalyst 2.

Scheme 5: Simplified catalytic cycle for the amine-catalyzed reaction of aldehydes with electrophiles (E^{+}).

Based on the HOMO activation, the two research groups of MacMillan and Jørgensen independently developed the first enantioselective organocatalytic α-chlorination of aldehydes in 2004. ${ }^{[24,25]}$ Previously, other α-functionalizations of aldehydes and ketones had been realized by enamine catalysis. ${ }^{[4]}$

MacMillan's research group used a combination of imidazolidinone 14 and Lectka's ketone 15 to achieve excellent yields (up to 94\%) and enantiomeric excesses (up to 95\%) at a temperature of $-30^{\circ} \mathrm{C}$ (Scheme 6, top). At $4{ }^{\circ} \mathrm{C}$ and by using NCS as a chlorinating agent, the enantiomeric excess decreased dramatically (19\%). ${ }^{[24]}$

Scheme 6: The first two examples of an enantioselective organocatalytic α-chlorination of aldehydes (top MacMillan, bottom Jørgensen).

In the course of his doctoral research in the MacMillan group, Brown observed the racemization of the chiral α-chloroaldehyde over time at room temperature. He also identified significant amounts of dichlorinated aldehyde at this temperature. ${ }^{[26]}$

Jørgensen and co-workers, on the other hand, used the C_{2}-symmetric diarylpyrrolidine 17 as a catalyst and NCS as a chlorinating reagent to achieve excellent yields (up to 99\%) and enantiomeric excesses (up to 97%) already at room temperature (Scheme 6, bottom). In this example, no racemization could be observed over time. ${ }^{[25]}$

In 2009, MacMillan's research group developed an α-chlorination protocol based on the SOMO activation mode, using lithium chloride as a low-cost and atom-economical chlorinating reagent (Scheme 7). ${ }^{[20]}$

Scheme 7: MacMillan's SOMO chlorination.

The initially employed imidazolidinone catalyst $\mathbf{2 0}$ led to unsatisfactory enantioselectivities at room temperature, as in Brown's studies. ${ }^{[20,26]}$ Only the novel design of the pseudo- C_{2}-symmetric catalyst 18 gave satisfactory results and suppressed the downstream racemization of the product even at elevated temperatures.

MacMillan and Brown postulated a downstream mechanism that explains both racemization and dual chlorination of the product (Scheme 8). ${ }^{[20,26]}$ Here, the imidazolidinone catalysts 14 and 19 can recondense with the chiral α-chloroaldehydes (R)-16 and (S)-16 to form the chloroiminium ions 20a/20b and $\mathbf{2 1} \mathbf{a} / \mathbf{2 1}$ b, which can be in equilibrium with the chloroenamines $\mathbf{2 2}$ and $\mathbf{2 3}$, respectively. These chloroenamines can subsequently lead to racemization of the α-stereocenter by non-selective protonation (rac-16) or be chlorinated for a second time (24). For the pseudo- C_{2}-symmetric catalyst 18, downstream racemization or dichlorination was not observed.

Scheme 8: Postulated mechanism for racemization and dichlorination ($X=Y=M e$ Brown dissertation; $X={ }^{t} B u, Y=H$ MacMillan 2009).

The group of Jørgensen showed that two enantiomeric α-halogenated aldehydes have different tendencies to form halo enamines. The authors reason that this phenomenon is due to the different shielding of the two acidic protons of the haloiminium ions (Scheme 9, red). To verify their hypothesis, they condensed a racemic mixture of α-fluoroaldehydes (R)-25 and (S)-25 with a chiral organocatalyst and reacted it with N-fluorobenzenesulfonimide as an electrophilic fluorinating reagent. The twofold fluorinated aldehyde 29 was subsequently identified in the reaction mixture. Moreover, the enantiomeric excess of the monofluorinated aldehyde (S)-28 was now 20%. Through this experiment, it was shown that one enantiomer can be preferentially converted to the difluorinated aldehyde $\mathbf{2 9}$ via the fluorinated enamine 27. ${ }^{[27]}$

Scheme 9: Kinetic resolution of a racemic α-fluoroaldehyde according to Jørgensen.

In another study on the α-chlorination of aldehydes using 2,5-diphenylpyrrolidines as catalysts, the group of Jørgensen gained additional insights into the reaction mechanism. ${ }^{[28]}$ Experimental and computational methods led the authors postulate an initial N-chlorination of enamine $\mathbf{3 0}$, followed by an $[1,3]$-sigmatropic shift to form the product, rather than direct chlorination of the nucleophilic enamine carbon (Scheme 10). This hypothesis was investigated by the group of Metzger, ${ }^{[29]}$ Blackmond, ${ }^{[30]}$ and Renaud ${ }^{[31]}$ and was evaluated differently. In addition, the study of Jørgensen identified the hydrolysis of the chloroiminium ion 33 as the rate-determining step of the reaction.

Scheme 10: Excerpt from the reaction mechanism postulated by Jørgensen.

Over the course of the last two decades, numerous studies have appeared in which the catalytic properties of various secondary amines have been compared. Of particular interest for organocatalysis is the nucleophilicity of the catalysts and the stability and reactivity of the corresponding enamines. The group of Mayr showed that the basicity and nucleophilicity of the imidazolidinone-based MacMillan catalysts is significantly lower than that of the pyrrolidine-based catalysts (e.g. JørgensenHayashi catalyst). This observation correlates with the nucleophilicity of the corresponding enamines. Again, the enamines of the imidazolidinones show significantly lower nucleophilicity than the pyrrolidine-based enamines. ${ }^{[32]}$

A crucial factor for the reactivity of enamines is the pyramidalization of the nitrogen atom. ${ }^{[33]} \mathrm{A} \mathrm{distinct}$ sp^{3} hybridization leads to a tetrahedral nitrogen in which the four tetrahedral corners are occupied by the free electron pair and the three bonding partners of the nitrogen. The more planar the nitrogen, the stronger the sp^{2} hybridization character. In this borderline case, all bonding partners of the nitrogen lie in a triangular plane and the free electron pair is located in the porbital, which is perpendicular to it. Figure 4 shows the two boarder cases of hybridization. In an idealized sp^{3} hybridized nitrogen, the nonbonding sp^{3} orbital carrying the free electron pair points away from the N-C bond axis at a tetrahedral angle of $109.5^{\circ} \mathrm{C}$. The geometric overlap of this orbital with the antibonding π-orbital of the C-C double bond (LUMO) is unfavorable in this case (Figure 4, left). A different picture emerges for an ideal sp^{2} hybridization of the nitrogen. Here, the non-bonding p orbital lies in the same plane as the antibonding π orbital of the $\mathrm{C}-\mathrm{C}$ double bond and the overlap is optimal (Figure 4, right). The more planar the nitrogen and the better the overlap of the nonbonding orbital of the nitrogen with the antibonding π orbital of the $\mathrm{C}-\mathrm{C}$ double bond, the better the electron donation $\left(\mathrm{n} \rightarrow \pi^{*}\right)$ and the higher the reactivity with electrophiles. ${ }^{[33]}$

$s p^{3}$-hybridization

sp^{2}-hybridization

Figure 4: Extreme cases of hybridization at the nitrogen atom and the resulting overlaps with the LUMO of the C-C double bond.

The group of Vilarrasa compared the relative stabilities of the enamines formed from the equilibrium between catalyst/aldehyde and enamine. Accordingly, the thermodynamic stability correlates with the subsequent reactivity toward electrophiles. ${ }^{[34]}$

Figure 5: Structure-reactivity relationship of some enamines from the two catalyst classes.

The authors concluded that imidazolidinone enamines such as 36 and 37 posses lower nucleophilicity than pyrrolidine-based enamines such as 34 and 35 (Figure 5). According to the authors, their observation can be rationalized by steric shielding and the electronic structure of the catalysts.

Enamine formation of different catalysts has also been studied by Wiest. ${ }^{[21]}$ Figure 6, illustrates that enamine formation proceeds more favorably when using the Jørgensen-Hayashi catalyst 38 than with the MacMillan imidazolidinones 14 and 19. These observations are consistent with the previously mentioned publications. The effect of the addition of acid (benzoic acid, TFA) to the reaction mixture is also evident. For example, the addition of benzoic acid dramatically reduces the enamine formation of catalyst 38. In the case of imidazolidinone 14, enamine formation is completely suppressed by the addition of TFA.

Figure 6: Enamine formation of various catalysts and additives after 30 min according to Wiest.

In the context of the conversion of terpene-based starting materials, the organocatalytic α-chlorination of aldehydes was also investigated and applied in the Christmann group. The starting point was the desire to make synthetically valuable chiral epoxides accessible by the organocatalytic α-chlorination of aldehydes. SOMO activation according to MacMillan initially represented a promising possibility because inexpensive and atom-economical chlorinating agents could be used here. Due to side reactions attributed to the decomposition of radical intermediates, ${ }^{[35]}$ a suitable alternative had to be found. MacMillan's α-chlorination benefits from the simple, inexpensive, and scalable synthesis of imidazolidinone catalysts. ${ }^{[36]}$ However, the quantitative use of Lectka's ketone 15 is expensive ${ }^{[37]}$ and releases pentachlorophenol after conversion, a toxic and probably carcinogenic substance. ${ }^{[38]}$ For the reaction procedure according to Jørgensen, ${ }^{[25]}$ the opposite case arises: the synthesis of diphenylpyrrolidine catalyst 17 represents a major disadvantage, especially considering scalability and cost. ${ }^{[39]}$ At the same time, the chlorinating reagent NCS is inexpensive ${ }^{[40]}$ and releases harmless succinimide after conversion. Finally, the combination of catalyst 18 and NCS provided an efficient, inexpensive and scalable system for α-chlorination of aldehydes (Scheme 11). ${ }^{\text {[35] }}$

Scheme 11: „Merged"-chlorination according to Christmann.

1.1.4. Aminal Intermediates

The reaction mechanism was further elucidated by the observation of previously unknown aminal intermediates. These species consist of catalyst, aldehyde and chlorinating reagent and were identified spectroscopically for the first time by the Jørgensen group. ${ }^{[28]}$ For this purpose, a previously synthesized enamine 39 was reacted with NCS to generate the aminal 40 (Scheme 12). Interestingly, the authors observed the exclusive formation of one diastereomer (40a or 40b). The unstable nature of the aminal made the isolation impossible, which would have been necessary to elucidate the relative stereoinformation.

Scheme 12: Aminal synthesis according to Jørgensen.

In 2012, the group of Blackmond revisited these aminal intermediates in a study on stereocontrol of organocatalytic reactions. ${ }^{[30]}$ The aim was to show that in the organocatalytic α-chlorination of aldehydes, the final stereochemical outcome is not defined by the transition state in which the stereocenter is formed, but by the relative stabilities of two interconverting diastereomeric aminal intermediates. This Curtin-Hammett scenario, postulated by the authors should lead to the erosion of the initially near-perfect stereoselectivity of the C-CI bond formation (6 to 41). The remaining anion $\left(\mathrm{Y}^{-}\right)$of the chlorinating agent $(\mathrm{Y}-\mathrm{Cl})$ can subsequently form the two equilibrating diastereomeric aminals syn-42 and anti-42 by syn- or anti-addition to the chiral chloroiminium ion 41. As a rate-determining step, stereospecific E2 elimination leads to the chloro enamines E-43 or Z-43. A highly selective protonation and subsequent hydrolysis of the two species generates the two enantiomeric α chloroaldehydes (S)-16 and (R)-16, respectively.

Scheme 13: Catalytic cycle according to Blackmond.

The main hint for this new paradigm of stereocontrol was the observation that the diastereomeric ratio of the aminals (Scheme 13, green) was nearly identical to the enantiomeric ratio of the chlorinated products (Scheme 13, blue). The appearance of EXSY-cross-peaks in the NOESY spectrum of the reaction mixture led the authors to postulate the interconversion of the two aminals. All spectroscopic data were taken from ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures. The absolute or relative stereoconfiguration of the aminals could again not be clarified. In the course of their studies the authors used three different chiral pyrrolidine-based catalysts, isovaleraldehyde as the substrate and

NCS and NCP as chlorinating reagents. As a conclusion of their research, they claim "that this concept may apply to related reactions and thus may represent a general phenomenon for amine catalysts lacking an acidic directing proton".

According to a master thesis prepared in the Blackmond group, aminal formation could also be studied using MacMillan catalysts 14 and 19. ${ }^{[21]}$ Under the conditions published by MacMillan in 2004 ${ }^{[24]}$ (Lectka's ketone 15 as chlorinating reagent), no intermediate (in this case hemiaminal: pentachlorophenol anion) could be identified. Replacing the previously used chlorinating reagent by NCS, two (in analogy to the results previously published by Blackmond ${ }^{[30]}$) diastereomeric aminals were detected (Figure 7). These compounds showed significantly greater stability than the aminals of the Jørgensen-Hayashi catalyst and were isolable (the relative and absolute stereoconfiguration of these species could again not be clarified). Importantly, no interconversion of the two diastereomers was observed, not even at elevated temperature. The author concluded that these observations rule out a Curtin-Hammett scenario: "In this case they [the two diastereomeric aminals] could not only be detected at room temperature but also be isolated. Even heating did not provide enough energy to equilibrate those diastereomers (no Curtin-Hammett scenario)." ${ }^{[21]}$

44
$(d r=1: 2)$

45
(dr = 1:10)

syn-44
dr (syn:anti) $=33: 67$

$(R)-46 \quad(S)-46$
er $(R: S)=40: 60$

Figure 7: Aminals identified in the aforementioned master thesis and the syn- and anti-assignment of aminals made by Blackmond et al. together with the correlation between the diastereomeric ratio of these aminals and the enantiomeric ratio of the corresponding α-chloroaldehydes (right)

Furthermore, when using MacMillan catalyst 19 with TFA, the author observed the decomposition of one diastereomer during the ongoing reaction. In the review article "Explaining Anomalies in Enamine Catalysis: Downstream Species as a New Paradigm for Stereocontrol" ${ }^{[41]}$ Blackmond et al. list the results of this master thesis as further evidence for a Curtin-Hammett paradigm, despite the author's contrary interpretation.

Further research to elucidate the catalytic mechanism in the Christmann group allowed the identification of similar aminal intermediates as observed by Jørgensen ${ }^{[28]}$ and Blackmond ${ }^{[21,30,41]}$. These compounds, incorporating the imidazolidinone catalyst 18, could be isolated and the absolute configuration could be determined by X-ray crystal structure analysis for the first time. ${ }^{[22]}$

1.1.5. Application in Organic Synthesis

As demonstrated by various groups, α-chloroaldehydes are precursors for numerous compound classes. This concept of "linchpin catalysis", taken up by MacMillan, includes the generation of an enantiomerically enriched intermediate by a highly specialized catalytic transformation, which can then be efficiently converted into numerous synthetically valuable building blocks. ${ }^{[20]} \alpha$-Chlorinated aldehydes are ideal examples for this type of intermediates. They are sufficiently stable compounds, yet possess enough reactivity to undergo further synthetic derivatizations. As presented in Scheme 13, the carbonyl functionality (blue) can be reduced, oxidized or otherwise modified. These transformations can be followed by esterification, etherification and other reactions. Coupled with the good leaving group properties of the chloride atom (red), which enables inter- and intramolecular $\mathrm{S}_{\mathrm{N}} 2$ reactions, this opens up access to multiple compounds. Enantiomerically enriched amino acids, ${ }^{[43]}$ epoxides, ${ }^{[35]}$ aziridines ${ }^{[44]}$ or γ-chlorinated Michael systems ${ }^{[45]}$ can thus be efficiently constructed in a few steps.

Scheme 13: Possible transformations of α-chloroaldehydes.

By applying these numerous transformations, research groups have further explored the application of chiral α-chloroaldehydes over time, allowing the synthesis of more complex structural elements. The group of Britton established the α-chlorine atom as a practical and atom-economical auxiliary in aldol reactions ${ }^{[46]}$ and opened access to heterocycles and their related natural products ${ }^{[47]}$. Kokotos and co-workers developed a one-pot strategy to prepare chiral 2-oxopiperazines, structural motifs in various drugs and natural products. ${ }^{[48]}$

A more recent example can be found in the Pihko group. The synthesis and successful installation of the two stereocenters of (+)-lycoperdic acid was achieved by an organocatalytic Mukaiyama aldol and an organocatalytic α-chlorination combined with a Pinnick oxidation (Scheme 14). ${ }^{[43]}$

Scheme 14: Part of the synthesis of (+)-lycoperdic acid.

The method developed in the Christmann group (chapter 1.1.2; organocatalyst 18 and NCS) found valuable application in the total synthesis of ripostatin B. ${ }^{[49]}$ The aldehyde 49 prepared from geranyl acetate could be efficiently converted to the key intermediate 50 by the previously mentioned method (Scheme 15).

Scheme 15: Part of the total synthesis of ripostatin B.

1.2. Scientific Goal

The combination of imidazolidinone 18 and NCS requires a high catalyst loading to allow for satisfying conversion to the product. Together with the isolation and characterization of the stable aminals, the question arises which role these intermediates play in the catalytic cycle and how to minimize the catalyst loading by better understanding the reaction mechanism. Achieving the isolation and therefor stable nature of these aminals, makes their role in a downstream process as described in the CurtinHammett scenario ${ }^{[30]}$ seem unrealistic. Instead, it was hypothesized that these aminals are stable parasitic species that accumulate outside the catalytic cycle. Since these aminals remove catalyst from the ongoing reaction and incorporate the product, the first aim was to suppress the formation of these intermediates or to promote their decomposition.

Scheme 16: Simplified catalytic cycle with color-coded modification options.

The catalytic cycle in Scheme 16 reveals various possibilities for modifications of the catalytic system. First, by introducing sterically demanding substituents (\mathbf{R}^{2}, R^{3}, and R^{4}) on catalyst 51, the nucleophilic attack of the anion $\left(\mathrm{Y}^{-}\right)$to the chloroiminium ion $\mathbf{5 3}$ and hence the formation of the aminal $\mathbf{5 4}$ should be prevented. Due to the convenient and flexible synthesis of the imidazolidinone catalysts, ${ }^{[36]}$ the substituent \mathbf{R}^{2} can be varied by utilizing different amino acids as the starting material. \mathbf{R}^{3} and \mathbf{R}^{4} can be altered by choosing from a variety of aldehydes (R^{3} or $R^{4}=H$) or ketones (R^{3} and $R^{4}=$ alkyl, aryl). Another conceptual way to prevent intermediate enrichment is to modify the chlorinating reagent Y-Cl. By introducing electron-withdrawing groups, the nucleophilicity of the anion Y^{-}can be lowered and the leaving group quality increases. Since the chlorinating reagents are used stoichiometrically, a short, inexpensive and scalable synthesis should be envisioned. In addition, the use of additives should be investigated. As mentioned in a previous work on another system, ${ }^{[28]}$ the addition of water and acids can increase the reaction rate. Looking again at the catalytic cycle allows for an explanation of this effect. Water can accelerate the hydrolysis of the chloroiminium ion 53 and thus reduce the
competing formation of the aminal 54. A Brønsted acid could further protonate the anion Y^{-}, thus lowering its nucleophilicity. In addition, acidic conditions could facilitate the decomposition of aminal 54 and thus promote the release of the product and catalyst.

The influence of novel imidazolidinone catalysts and additives on the reaction rate should be investigated by time-resolved GC-MS measurements. We intended to observe the accumulation of aminal intermediates when using novel chlorinating reagents by monitoring the course of the reaction with the aid of ${ }^{1} \mathrm{H}$ NMR spectroscopy. A preliminary interpretation of the aminal intermediates should also be made by evaluating the kinetic profile. The decomposition mechanism of the aminals should be elucidated by decomposition and deuterium incorporation experiments. The absolute stereoconfiguration of various intermediates from different catalysts, substrates and chlorinating reagents should be elucidated by single crystal structure analyses. KIE experiments and DFT-based calculation of possible transition states should give a deeper insight into the reaction mechanism. Furthermore, we intended to elucidate the properties of the much more unstable Blackmond aminals experimentally by NMR measurements, decomposition and deuterium incorporation experiments, and theoretically by DFT-based calculations.

The evaluation and interpretation of these experiments can subsequently provide further insights into the catalytic mechanism and unambiguous assignment of various aminal species. The results should then be compared to findings from other groups. Of particular interest can be the similarities and variations between different catalyst systems (Ex: Jørgensen-Hayashi pyrrolidines and MacMillan imidazolidinones).

Based on the better understanding of the stabilizing interactions within aminals, an improved catalytic system should be presented. The applicability should be demonstrated using a wide range of substrates and by synthesizing two chiral regioisomeric bistriazoles. These bistriazoles can be investigated in further studies for their properties as bidentate ligands.

1.3. Publications

1.3.1. Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates

Sebastian Ponath, Martina Menger, Lydia Grothues, Manuela Weber, Dieter Lentz, Carsten
Strohmann and Mathias Christmann*

Angew. Chem. Int. Ed. 2018, 57, 11683-11687.
DOI:10.1002/anie. 201806261

Angew. Chem. 2018, 130, 11857-11861.
DOI:10.1002/ange. 201806261

Permission granted for reproduction in print and electronic format for the purpose of this dissertation by:

Angew. Chem. Int. Ed. 2018, 57, 11683-11687.
https://doi.org/10.1002/anie. 201806261
Copyright: 2018 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim
license number: 4963700232275

Angew. Chem. 2018, 130, 11857-11861.
https://doi.org/10.1002/ange. 201806261
Copyright: 2018 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim
license number: 5006530161006

Abstract

:

Herein we report the isolation and characterization of aminal intermediates in the organocatalytic $\alpha-$ chlorination of aldehydes. These species are stable covalent ternary adducts of the substrate, the catalyst and the chlorinating reagent. NMR-assisted kinetic studies and isotopic labeling experiments with the isolated intermediate did not support its involvement in downstream stereoselective processes as proposed by Blackmond. By tuning the reactivity of the chlorinating reagent, we were able to suppress the accumulation of rate-limiting off-cycle intermediates. As a result, an efficient and highly enantioselective catalytic system with a broad functional group tolerance was developed.

Author Contribution:

I was first able to develop an optimized catalytic system consisting of an adamantyl-substituted imidazolidinone catalyst and the electron-deficient chlorinating reagent 2-chloro-5-nitroisoindoline-1,3-dione and demonstrate its applicability to a wide range of substrates. Time-dependent ${ }^{1} \mathrm{H}$ NMR measurements to investigate the influence of self-developed chlorinating reagents and the comparison of novel catalysts by time-resolved GC-MS spectroscopy were also carried out by me. Furthermore, the aminal intermediate could be prepared in larger amounts for the first time by an optimized synthesis and workup procedure and subsequent decomposition and deuterium incorporation experiments could be realized. The interpretation of the collected results and the preparation of the manuscript were carried out in collaboration with Prof. Dr. Mathias Christmann.

Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates

Sebastian Ponath, Martina Menger, Lydia Grothues, Manuela Weber, Dieter Lentz, Carsten Strohmann, and Mathias Christmann*

Abstract

Herein we report the isolation and characterization of aminal intermediates in the organocatalytic α-chlorination of aldehydes. These species are stable covalent ternary adducts of the substrate, the catalyst and the chlorinating reagent. NMR-assisted kinetic studies and isotopic labeling experiments with the isolated intermediate did not support its involvement in downstream stereoselective processes as proposed by Blackmond. By tuning the reactivity of the chlorinating reagent, we were able to suppress the accumulation of rate-limiting offcycle intermediates. As a result, an efficient and highly enantioselective catalytic system with a broad functional group tolerance was developed.

E_{n}Enantiomerically enriched α-chlorinated aldehydes constitute important chiral building blocks. ${ }^{[1-3]}$ In 2004, MacMillan and Jørgensen reported the first asymmetric organocatalytic α-chlorination of aldehydes via enamine catalysis using imidazolidinones ${ }^{[4]}$ or diarylpyrrolidines ${ }^{[1]}$ as catalysts. Five years later, MacMillan developed a conceptually different SOMO chlorination approach. ${ }^{[2]}$ The group of Britton and others have utilized organocatalytic chlorinations to access chiral heterocycles and natural products. ${ }^{[5]}$

During a total synthesis campaign, we attempted to convert citronellal as terpene-feedstock into the corresponding 1,2 -epoxide by α-chlorination, reduction and baseinduced epoxide formation. ${ }^{[6]}$ The application of MacMillan's organo-SOMO methodology ${ }^{[2]}$ led to decomposition which can be attributed to radical intermediates, which react with the electron-rich olefin within the substrate. ${ }^{[7]}$ Expensive chlorinating reagents ${ }^{[4]}$ or catalysts ${ }^{[1]}$ were prohibitive for scale-up. Merging inexpensive N-chlorosuccinimide (NCS) 3 and MacMillan's imidazolidinone 2.TFA resulted in an efficient system that was used in our group ${ }^{[6,8]}$ and by others. ${ }^{[5,9]}$ While yields and enantioselectivities are usually excellent, a relatively high catalyst loading of up to $30 \mathrm{~mol} \%$ is required to achieve good conversion. Aiming to overcome

[^0]this obstacle, a detailed investigation of the enamine chlorination was initiated. The mechanism has been discussed controversially by several groups. ${ }^{[10,11]}$ In early studies, the stereochemical outcome was rationalized using a steric shielding model. ${ }^{[12]}$ In contrast, Blackmond, Bures and Armstrong suggested a Curtin-Hammett paradigm where aminals are part of a secondary cycle. In this scenario, the enantioselectivity results from the relative stability and reactivity of intermediates downstream to the primary cycle. They concluded that this mechanistic concept may present a general phenomenon for amine catalysts lacking an acidic directing proton and can be also applied to other enamineelectrophile reactions. ${ }^{[11]}$ In a computational study on related organocatalytic Michael additions of aldehydes and nitroalkenes, Pápai concluded that the reaction rate is dictated by the stability of similar ternary intermediates. The stereoselectivity, however, was rationalized by the attack of the enamine (steric shielding model). The suggestion that the enantioselectivity is determined by the stability of rapidly interconverting intermediates was not supported. ${ }^{[13]}$

Irrespective whether a downstream cycle is operative, suppressing aminal accumulation was envisioned to be beneficial for the reaction rate. Thus, it was anticipated that tuning the catalyst structure and the counteranion of the Cl^{+} source would greatly impact the formation and decomposition of the aminal.

As a model reaction, the chlorination of hydrocinnamaldehyde (1) using $\mathbf{2} \cdot$ TFA as the catalyst and NCS (3) as the Cl^{+} source was investigated (Figure 1). The substrate was quickly consumed and converted to chloroaldehyde 4. However, after one hour the catalyst is almost completely caught up in the stable intermediate $\mathbf{5}$. It was possible to isolate this intermediate for the first time and unambiguously characterize its structure by x-ray crystallography (Figure 2). In order to rule out that the isolated intermediate was a singular example, the reaction was carried out with different (di-)aldehydes and chlorinating reagents. In all cases, stable and isolatable intermediates were observed. The relative configuration corresponds to a formal syn-addition of the chlorinating agent to an E-enamine double bond.

The optimization began with the synthesis of imidazolidinones $\mathbf{2}$ and $\mathbf{1 0 - 1 3} \cdot{ }^{[15]}$ Increasing the size of the alkyl groups at C2 and C5 was anticipated to lower the rate of aminal formation and consequently, increase the overall rate of the chlorination reaction. Screening experiments using in situ generated ${ }^{[9]}$ TFA salts of $\mathbf{1 0} \mathbf{- 1 3}$ showed no significant benefit on the reaction rate and the enantioselectivity compared to catalyst 2. Interestingly, catalyst $\mathbf{1 3}$ showed a slightly higher

Figure 1. Reaction monitoring by ${ }^{1} \mathrm{H}$ NMR spectroscopy: Hydrocinnamaldehyde 1 (0.1 m) in MeCN- d_{3}, NCS 3 (1.2 equiv), catalyst 2-TFA ($20 \mathrm{~mol} \%$) at $22^{\circ} \mathrm{C}$.

Figure 2. Crystal structures of isolated intermediates: 5 (hydrocinnamaldehyde, NCS, 2), 6 (octanal, NCS, 2), 7 (pentanal, NCS, 2), 8 (hydrocinnamaldehyde, NCP, 2), phthalimide was cleaved upon workup with $\mathrm{NaBH}_{4}^{[14]}$), 9 (heptanedial, NCS, 2).
reaction rate, the best enantioselectivity and was convenient to handle as a bench-stable crystalline solid (Figure 3).

We then turned our attention to the modification of the chlorinating reagent. The installation of electron withdrawing groups was anticipated to weaken the $\mathrm{N}-\mathrm{Cl}$-bond increasing

10: $R=(S)$-sec-butyl
11: $R=$ isopropyl

2: $\mathrm{R}=$ tert-butyl 12: $R=$ 1-methylcyclohexyl 13: $R=$ adamant $-1-y l$

Figure 3. Synthesized imidazolidinone derivatives and crystal structure of catalyst 13.
the reactivity of the electrophile. More importantly, reducing the nucleophilicity of the nitrogen atom lowers its ability for nucleophilic attack on the iminium ion $\mathbf{1 4}\left(k_{1}\right)$. By the same reasoning, the electron-deficient imides would destabilize the intermediates $16\left(k_{-1}\right)$. Irrespective whether the formation of 16 is inhibited or its decomposition is promoted, both effects would suppress the accumulation of this intermediate as illustrated in Figure 4.

Figure 4. Modified Cl^{+}source and its effect on enamine formation and decomposition.

To probe that hypothesis, four electronically different chlorinating reagents were synthesized (Figure 5). ${ }^{[16]}$

18

19

Figure 5. Electronically modified chlorinating reagents.

In analogy to an investigation on the fluorine plus detachment (FPD) of F^{+}-sources, ${ }^{[17]}$ placing electron-withdrawing substituents at the phthalimide was anticipated to increase its reactivity by weakening the $\mathrm{N}-\mathrm{Cl}$-bond. In addition, the effect on the accumulation of the aminal intermediates was studied. The tetrachloro- $\left(\mathrm{Cl}_{4} \mathrm{NCP}\right) \mathbf{1 8}$ and the nitrophthalimide ($\mathrm{NO}_{2} \mathrm{NCP}$) derivative 19 afforded the highest reaction rates whereas the fluorophthalimide (FNCP) $\mathbf{1 7}$ showed lower reactivity. The tetramethylsuccinimide ($\mathrm{Me}_{4} \mathrm{NCS}$) $\mathbf{2 0}$ derivative gave very sluggish conversion. For further investigations, $\mathrm{NO}_{2} \mathrm{NCP}(19)$ was selected over $\mathrm{Cl}_{4} \mathrm{NCP} \mathbf{1 8}$ due to higher solubility and its accessibility from inexpensive nitrophthalimide.

In a ${ }^{1} \mathrm{H}$ NMR study, the influence of the Cl^{+}sources 19 and $\mathbf{2 0}$ on aminal formation was studied (Figure 6). As expected, the electron-rich $\mathrm{Me}_{4} \mathrm{NCS} 20$ formed a highly stable aminal intermediate. After 3 h , the aminal concentration reached its maximum with almost all the catalyst and a significant amounts of the product being tied-up in this intermediate. In contrast, using $\mathrm{NO}_{2} \mathrm{NCP} 19$ as the Cl^{+}source gives rise to an intermediate which reaches its maximum concentration after 30 minutes. Interestingly, the maximum aminal concentration is significantly lower compared to $\mathrm{Me}_{4} \mathrm{NCS} 20$ and quickly drops within the next two hours. As a consequence, the amount of free catalyst is never below $10 \mathrm{~mol} \%$ and none of the product remains trapped within the aminal intermediate. The rapid decomposition of aminal

Figure 6. Reaction monitoring by ${ }^{1} \mathrm{H}$ NMR spectroscopy: Hydrocinnamaldehyde 1 (0.1 m) in $\mathrm{MeCN}-d_{3}, \mathrm{Me}_{4} \mathrm{NCS}$ (20) or $\mathrm{NO}_{2} \mathrm{NCP}$ (19) (1.2 equiv), 2.TFA ($20 \mathrm{~mol} \%$) at $22^{\circ} \mathrm{C}$.
intermediate underscores the excellent leaving group properties of nitrophthalimide anion, which may be attributed to better charge delocalization.

Finally, the effects of acids as additives was investigated. It was found that a 1:1:2 ratio of catalyst:TFA:AcOH gave optimal results, whereas binary acid-catalyst mixtures were inferior. It is conceivable that the acetate ion plays a role beyond a proton source such as forming short-lived adducts with iminium intermediates.

With the ability to follow the concentration of the relevant intermediates \mathbf{A}, \mathbf{B} and \mathbf{C} over time and the isolated aminal in hand, we felt we were in a position to positively contribute to the discussion on the existing conflicting mechanistic proposals (Figure 8). As proposed by Jørgensen ${ }^{[10]}$ and MacMillan, ${ }^{[4]}$ the classical mechanism for chlorination of aldehydes \mathbf{A} involves condensation with the catalyst 2.TFA to form enamine $\mathbf{2 1}$ as the reactive species. Attack on a Cl^{+}source (Y-Cl) from the face opposite to the proximal bulky substituent on N-heterocyclic catalyst affords an α-chloroiminium ion I in the stereodetermining step. Hydrolysis releases the catalyst $\mathbf{2}$ alongside formation of α-chloroaldehyde C. Jørgensen also noted that the addition of the succinimide anion to the iminium ion intermediate can give rise to aminal intermediates ${ }^{[10]}$ (Figure 7, black).

Upon reinvestigation of the chlorination reaction using the Jørgensen-Hayashi catalyst, Blackmond proposed that the aminal B is not only an off-cycle intermediate but instead involved in a secondary stereodetermining catalytic cycle. ${ }^{[18]}$ It was suggested that E2-elimination of succinimide from aminal syn-B affords Z-chloroenamine 23. Diastereoselective protonation of this intermediate generates an α-chloroiminium ion I (or its Z-diastereomer) ${ }^{[11]}$ (Figure 7 gray). In their scenario, equilibration of diastereomeric iminium ions \mathbf{I} prior to hydrolysis is responsible for the stereochemical outcome.

Following the concentrations of \mathbf{A}, \mathbf{B} and \mathbf{C} should allow one to distinguish whether \mathbf{B} is an off-cycle intermediate or a mandatory intermediate in the pathway toward the product C. In the classical mechanism, the aldehyde \mathbf{A} forms the chloroiminium ion I, which upon hydrolysis releases the product \mathbf{C}. In a non-productive pathway, the chloroiminium

Figure 7. The extended catalytic cycle (black) and downstream pathway in analogy to Blackmond ${ }^{[1]]}$ (gray).
ion \mathbf{I} is in an equilibrium with an off-cycle intermediate \mathbf{B}. As we have shown above, the stability of \mathbf{B} strongly depends on the character of the counteranion of the Cl^{+}source. In Blackmond's two-cycle mechanism, the chloroiminium ion I forms intermediate \mathbf{B}, which upon elimination of succinimide and protonation forms chloroiminium ion \mathbf{I} or a diastereomer. Eventually, hydrolysis of I affords the product C. Assuming that decomposition of \mathbf{B} is rate-liming, the concentration of \mathbf{B} would be expected to rise and reach a maximum concentration $\left(c_{\max }\right)$ before decomposing to the product \mathbf{C}. Under this premise, the product formation \mathbf{C} should be delayed and its rate should be maximal at $c_{\max }(\mathbf{B})$, that is, \mathbf{C} should have an inflection point at $c_{\max }(\mathbf{B})$ (see Figure 8 b for an idealized kinetic profile). In our observation (Figure 8a), no delay in product formation was observed, that is, the rate was the highest in the beginning and dropped continuously over time. This behavior was observed irrespective whether the inter-

Figure 8. a and b) Experimental observation (a) and idealized kinetic profile with mandatory formation of the intermediate (b); A: Substrate, I: Iminiumion, B: Aminal, C: α-Chloroaldehyde.
mediate accumulated ($\left.\mathrm{Me}_{4} \mathrm{NCS} 20\right)$ or quickly decomposed ($\mathrm{NO}_{2} \mathrm{NCP} 19$) (Figure 6).

In order to distinguish between the two mechanisms, we subjected the isolated intermediate to the standard reaction conditions using deuterated solvents and acids. If the reaction proceeds through a chloroenamine, one would expect deuteration of the α-position of the aldehyde. Under the standard conditions, the decomposition of the aminal is very slow (see Figure 1). Thus, we did not observe deuterium incorporation. Under more forcing conditions (Figure 9), the aminal $\mathbf{5}$ was

Figure 9. Decomposition process including downstream racemization investigated by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR monitoring.
partially decomposed to the α-chloroaldehyde $\mathbf{4}^{\mathbf{H}}$ after 1 h . Interestingly, no deuteration was observed as seen by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 19 h , most of the intermediate was decomposed. At this time, partial deuteration of the α position was identified by the coupling pattern of the diastereotopic beta protons and the multiplicity of the α carbon $\left(4^{\mathrm{D}}\right)$. This behavior can be explained by a nonselective racemization pathway as evidenced also by the drop of the enantiomeric excess. After 66 h, the chloroaldehyde 4 was nearly racemic. Our experimental results support the classical mechanistic proposal where the enamine chlorination constitutes the stereo-determining step (steric shielding model). We could also show that accumulation of the off-cycle aminal can become rate-limiting and has a negative impact on the reaction rate by removing active catalyst from the catalytic cycle. By tuning the chlorinating reagent with electron withdrawing substituents, we could shift the aminal/ iminium equilibrium to the iminium ion (see Figure 4) and increase the overall reaction rate. With an improved catalytic system in hand, we wanted to explore its utility in the chlorination of a diverse set of different aldehydes. Table 1 shows that using $5 \mathrm{~mol} \%$ of catalyst $\mathbf{1 3}$ and 1.2 equiv of $\mathrm{NO}_{2} \mathrm{NCP}(19)$ were sufficient to achieve excellent enantioselectivities and good to excellent yields.

Table 1: Substrate scope.
(
[a] Isolated yields. [b] $10 \mathrm{~mol} \%$ of 2•TFA, $20 \mathrm{~mol} \%$ of $\mathrm{AcOH}, 2.4$ equiv of $\mathrm{NO}_{2} \mathrm{NCP} ; \mathrm{dr}=95: 5$. [c] 97\% ee for the starting material (S)-citronellal; Upscaling $5.00 \mathrm{~g}, 32.4 \mathrm{mmol}(\mathrm{S})$-citronellal, Rondomatic 400^{\circledR}, cryostat; $d r=97: 3$.

For octanal (entry 1), the reaction proceeds in 78% yield and $97 \% e e$. As a result of a Horeau- amplification, ${ }^{[19]}$ decan1,10 -dial is an excellent substrate for bidirectional synthesis ${ }^{[20]}$ and affords the C_{2}-symmetric dichlorinated alcohol in 63% yield and $>99 \%$ ee along with minor amounts of the meso diastereomer (entry 2). Bromides did not interfere with the chlorination as shown for 5-bromopentanal to give the β chloroalcohol in 77% yield (entry 3). A variety of acid-stable protecting groups such as TBDPS, Ac, and MOM (entries 46) were tolerated. In case of the Boc-protected primary amine the yield was slightly lower. Aldehydes bearing aryl-, alkenyl and alkynyl side chains (entries 8-11) gave excellent selectivities (97-98 \% ee) and good yields (73-79\%). In case of (S)citronellal (entry 10), we initially encountered a significant drop in the yield. Analysis of side products revealed that the trisubstituted alkene readily reacts with the more electrophilic Cl^{+}source $\mathrm{NO}_{2} \mathrm{NCP}$ (19) compared to NCS (3). ${ }^{[21]}$ As a major side product, we were able to isolate the allylic chloride of α-chlorinated citronellal. As only small amounts of (more reactive) enamine compared to the alkene are present in the reaction mixture, we aimed to suppress undesired allylic chlorination by slow addition of the chlorinating agent. It was possible to increase the yield from 29% to 57% by adding $\mathrm{NO}_{2} \mathrm{NCP}$ (19) over 48 h by hand in small portions. For obvious reasons, an automatic solution for adding the reagent was sought. Using Rondomatic 400°, an automatic fish-feeding device in combination with cryostatic cooling allowed us to achieve an increased yield of 73% and
97% ee. Gratifyingly, this reaction could be conveniently carried out on a 5 g -scale (entry 10).

In summary, we have carried out a detailed investigation of the organocatalytic α-chlorination of aldehydes. It was possible to isolate and characterize the off-cycle intermediates for the first time, elucidate their role in the catalytic cycle and to suppress their accumulation. Remarkably, the catalyst loading was reduced from $20-30 \mathrm{~mol} \%^{[6,8]}$ to $5 \mathrm{~mol} \%$. The new catalytic system was applied to a variety of substrates where it demonstrated good functional group tolerance with excellent enantio- and diastereoselectivity. For electron-rich olefins, allylic chlorination could be supressed with a modified reaction procedure capitalizing on the higher reactivity of enamines.

Conflict of interest

The authors declare no conflict of interest.
Keywords: asymmetric synthesis • chlorination • enamine catalysis • organocatalysis • reaction mechanisms

How to cite: Angew. Chem. Int. Ed. 2018, 57, 11683-11687
Angew. Chem. 2018, 130, 11857-11861
[1] N. Halland, A. Braunton, S. Bachmann, M. Marigo, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 4790.
[2] M. Amatore, T. D. Beeson, S. P. Brown, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2009, 48, 5121; Angew. Chem. 2009, 121, 5223.
[3] N. Kaplaneris, C. Spyropoulos, M. G. Kokotou, C. G. Kokotos, Org. Lett. 2016, 18, 5800.
[4] M. P. Brochu, S. P. Brown, D. W. C. MacMillan, J. Am. Chem. Soc. 2004, 126, 4108.
[5] a) V. Dhand, J. A. Draper, J. Moore, R. Britton, Org. Lett. 2013, 15, 1914; b) B. Kang, S. Chang, S. Decker, R. Britton, Org. Lett. 2010, 12, 1716; c) S. Chang, S. Hur, R. Britton, Chem. Eur. J. 2015, 21, 16646; d) M. Bergeron-Brlek, T. Teoh, R. Britton, Org. Lett. 2013, 15, 3554; e) J. A. Draper, R. Britton, Org. Lett. 2010, 12, 4034; f) M. Bergeron-Brlek, M. Meanwell, R. Britton, Nat. Commun. 2015, 6, 6903; g) S. D. Halperin, R. Britton, Org. Biomol. Chem. 2013, 11, 1701.
[6] P. Winter, J. Schwatschek, M. Willot, L. Radtke, T. Olbrisch, A. Schäfer, M. Christmann, Chem. Commun. 2011, 47, 12200.
[7] T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton, D. W. C. MacMillan, Science 2007, 316, 582.
[8] a) P. Winter, W. Hiller, M. Christmann, Angew. Chem. Int. Ed. 2012, 51, 3396 ; Angew. Chem. 2012, 124, 3452; b) J. Swatschek, L. Grothues, J. O. Bauer, C. Strohmann, M. Christmann, J. Org. Chem. 2014, 79, 976.
[9] M. Johannes, M. Brimble, J. Org. Chem. 2013, 78, 12809.
[10] N. Halland, M. A. Lie, A. Kjærsgaard, M. Marigo, B. Schiøtt, K. A. Jørgensen, Chem. Eur. J. 2005, 11, 7083.
[11] a) J. Burés, A. Armstrong, D. G. Blackmond, J. Am. Chem. Soc. 2012, 134, 6741; b) J. Burés, A. Armstrong, D. G. Blackmond, Chem. Sci. 2012, 3, 1273; c) J. Burés, A. Armstrong, D. G. Blackmond, Acc. Chem. Res. 2016, 49, 214.
[12] S. Bertelsen, K. A. Jørgensen, Chem. Soc. Rev. 2009, 38, 2178.
[13] T. Földes, Á. Madarász, Á. Révész, Z. Dobi, S. Varga, A. Hamza, P. R. Nagy, P. Pihko, I. Pápai, J. Am. Chem. Soc. 2017, 139, 17052.
[14] Z. I. Horii, C. Iwata, Y. Tamura, J. Org. Chem. 1961, 26, 2273.
[15] T. H. Graham, B. D. Horning, D. W. C. MacMillan, Org. Synth. 2011, $88,42$.
[16] a) A. Shiri, A. Khoramabadi-zad, Synthesis 2009, 2797; b) D. C. Powers, D. Y. Xiao, M. A. L. Geibel, T. Ritter, J. Am. Chem. Soc. 2010, 132, 14530.
[17] X.-S. Xue, Y. Wang, M. Li, J.-P. Cheng, J. Org. Chem. 2016, 81, 4280.
[18] Interestingly, Blackmond et al. observed a strong correlation between the d.r. of the aminal and the e.r. of the chlorinated product (Ref. [11], Table 1). They imply from these data that aminal intermediates are "directly involved in catalyst turnover, rather than existing as parasitic off-cycle reservoirs." We would argue that their observed correlation is in no conflict with an offcycle intermediate as the product as well the aminal emerge from the same iminium ion.
[19] J. P. Vigneron, M. Dhaenens, A. Horeau, Tetrahedron 1973, 29, 1055.
[20] a) R. M. de Figueiredo, R. Berner, J. Julis, T. Liu, D. Türp, M. Christmann, J. Org. Chem. 2007, 72, 640; b) R. M. de Figueiredo, R. Fröhlich, M. Christmann, Angew. Chem. Int. Ed. 2008, 47, 1450; Angew. Chem. 2008, 120, 1472.
[21] L. S. Pimenta, E. V. Gusevskaya, E. E. Alberto, Adv. Synth. Catal. 2017, 359, 2297.

Manuscript received: May 31, 2018
Accepted manuscript online: July 12, 2018
Version of record online: August 3, 2018

1.3.2. On Stereocontrol in Organocatalytic α-Chlorinations of Aldehydes

Sebastian Ponath, Chetan Joshi, Amy T. Merrill, Volker Schmidts, Kim Greis, Maike Lettow, Manuela Weber, Simon Steinhauer, Kevin Pagel, Christina Thiele, Dean J. Tantillo, Mathew J. Vetticatt, Mathias Christmann

ChemRxiv (Preprint) https://doi.org/10.26434/chemrxiv.14229875.v1.

Submitted to J. Am. Chem. Soc. (March 18, 2021).

Abstract

:

A comprehensive analysis of the organocatalytic α-chlorination of aldehydes with N-chloroimides and different catalysts is presented. For this reaction, alternate mechanisms were proposed that differ in the role of resting state intermediates and the rationalization of the observed enantioselectivity. This manuscript aims at resolving these fundamental questions on the basis of rigorous structural characterization of intermediates (configuration and conformation), NMR studies, ion mobility-mass spectrometry, concentration profiles, isotope studies, and DFT calculations

Author Contribution

In this publication, the organic synthetic work was performed by me. This includes the synthesis, isolation, and full characterization of the aminals derived from the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ generation MacMillan catalysts and the Jørgensen catalyst. The improved synthesis, characterization and follow-up reactions with the highly unstable Blackmond aminals were developed and performed by me. In addition, all synthetic preparations for the NMR and decomposition experiments were prepared, partially performed and evaluated by me. Deuterium incorporation studies, isotope competition experiments, and the KIE experiments planned in consultation with the Vetticatt group were also performed by me. The interpretation of the results and the preparation of the manuscript were performed in collaboration with Prof. Dr. Mathias Christmann and the other authors

On Stereocontrol in Organocatalytic a-Chlorinations of Aldehydes

Sebastian Ponath ${ }^{\S \ddagger}$, Chetan Joshi ${ }^{\ddagger \ddagger}$, Amy T. Merrill ${ }^{\dagger}$, Volker Schmidts ${ }^{\times}$, Kim Greis ${ }^{\S \#}$, Maike Lettow $^{\S \#}$, Manuela Weber ${ }^{\S}$, Simon Steinhauer ${ }^{\S}$, Kevin Pagel ${ }^{\S \# *}$, Christina Thiele ${ }^{\times *}$, Dean J. Tantillo ${ }^{+*}$, Mathew J. Vetticatt ${ }^{\ddagger^{*}}$, Mathias Christmann ${ }^{\S *}$
${ }^{\text {§ Institute of Chemistry and Biochemistry, Freie Universität Berlin, } 14195 \text { Berlin, Germany }}$
\ddagger Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
${ }^{\dagger}$ Department of Chemistry, University of California - Davis, Davis, California 95616, United States
*Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
"Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany

KEYWORDS: Organocatalysis, Chlorination, Reaction Mechanism, Computational Chemistry, Kinetic Isotope Effect

Abstract

A comprehensive analysis of the organocatalytic α-chlorination of aldehydes with N-chloroimides and different catalysts is presented. For this reaction, alternate mechanisms were proposed that differ in the role of resting state intermediates and the rationalization of the observed enantioselectivity. This manuscript aims at resolving these fundamental questions on the basis of rigorous structural characterization of intermediates (configuration and conformation), NMR studies, ion mobility-mass spectrometry, concentration profiles, isotope studies, and DFT calculations.

- INTRODUCTION

The development of novel concepts to exert stereochemical control over chemical reactions constitutes a fundamental challenge. ${ }^{1}$ Toward this goal, catalytic strategies that avoid expensive catalysts, toxic reagents and byproducts are considered among the most desirable. In order to improve on the selectivity and efficiency of a given transformation, ${ }^{2}$ it is important to align experimental results with consistent models.
Enantioselective organocatalytic reactions ${ }^{3}$ via enamines commence with a condensation of a carbonyl compound and a chiral amine catalyst. In the selectivity-determining step (Scheme 1), the electrophile reacts preferentially with either of the two diastereotopic faces of the most reactive enamine conformer. The relative rates of formation $\quad\left(k_{\mathrm{ma}}-\right.$ $\mathrm{jor} / \mathrm{k}_{\text {minor }}$) of the diastereomeric iminium intermediates \mathbf{I} (d.r.) and the enantiomeric ratio (e.r.) of the hydrolysis products \mathbf{P} are usually rationalized by the relative energies of the respective transition states of the enamine-electrophile reaction. In a study on enantioselective fluorinations published in 2005, Jorgensen ${ }^{4}$ showed for the first time that processes downstream to the formations of the stereogenic center may result in a product e.r. that is different from the d.r. of the two iminium intermediates (d.r. \neq e.r.).

In 2012, Blackmond, Bures, and Armstrong5,6 investigated two reactions catalyzed by Jørgensen-Hayashi diarylprolinol silyl ethers: ${ }^{7,8}$ the addition of aldehydes to nitroolefins, and the α-chlorination of isovaleraldehyde.

They arrived at the conclusion that "selectivity in these examples is rationalized not by comparison of transition states for formation of the stereogenic center but by the relative stability and reactivity of equilibrated downstream intermediates and in the separate branches of a competitive reaction network".
Scheme 1. Stereopredictive Models

It was further suggested that their concept coined "CurtinHammett stereocontrol" may "represent a general phenomenon for amine catalysts lacking an acidic directing proton". This projection is no exaggeration because if true, the design of enantioselective catalysts in these cases
should be augmenting the relative thermodynamic stability of intermediates rather than relative energies of transition states. In the following study, we will validate both models ${ }^{9}$ against new experimental data for the α-chlorination of aldehydes with different N-chloroimides, catalysts and substrates. To facilitate the reading, we will commence by framing the mechanistic discussion in the historical context.

- BACKGROUND

Asymmetric Aldehyde Chlorinations

Over the last years, chiral α-haloaldehydes ${ }^{10,11}$ have emerged as important building blocks. The first direct asymmetric α-chlorinations of aldehydes ${ }^{12}$ were independently developed by two groups (Scheme 2). In the chlorination of octanal (1), MacMillan ${ }^{13}$ and co-workers employed 1.2 equiv of Lectka's chloroketone (2) $)^{14}$ at $-30^{\circ} \mathrm{C}$ in acetone in the presence of $5 \mathrm{~mol} \%$ of imidazolidinone 3 a ($\mathrm{X}=\mathrm{Y}=\mathrm{Me}$) to give chloroaldehyde (S)-4 in good yield and high enantiomeric excess.
Scheme 2. α-Chlorination of Aldehydes (2004-2009)

They noted that under these conditions, "product epimerization, formation of 2,2-dichlorooctanal, or octanal aldol dimerization were comprehensively suppressed". As the byproduct, pentachlorophenol (5), is a probable human carcinogen, alternative chlorinating agents were considered. Using N-chlorosuccinimide ($6, \mathrm{NCS}$) as an alternative Cl^{+}source at $4^{\circ} \mathrm{C}$, MacMillan observed almost racemic product. By monitoring the chlorination at $23^{\circ} \mathrm{C}$, Brown (MacMillan group) noticed an erosion of the product ee over time. ${ }^{15}$ Taken together with the concomitant formation of 2,2-dichlorooctanal, this behavior was ascribed to the reversible formation of a chloroenamine intermediate subsequent to the formation of the stereogenic center. Racemization of the chiral chloroaldehyde can be effected by catalysts $3 \mathbf{a}$ and $\mathbf{3} \mathbf{b}\left(X={ }^{t} \mathrm{Bu}, \mathrm{Y}=\mathrm{H}\right)$ in or without the presence of a chlorinating reagent. ${ }^{16}$ It is suppressed effectively at $-30^{\circ} \mathrm{C}$. Interestingly, Jørgensen et al. reported that C_{2} -
symmetric (R, R)-2,5-diphenylpyrrolidine (7) (10 mol\%) catalyzed the chlorination of aldehydes with NCS (1.3 equiv) at room temperature without noticeable racemization. ${ }^{17}$ In order to inhibit chloroenamine formation at room temperature, MacMillan designed imidazolidinone catalyst 3c with loosely C_{2}-like symmetry. ${ }^{18}$ This catalyst and Lectka's chloroketone constitute a highly effective combination for chlorinations at elevated temperatures ${ }^{15}$ and subsequent follow-up transformations. ${ }^{19}$ In 2009, MacMillan demonstrated that 3c can be used for the SOMO chlorination of aldehydes. ${ }^{18} \mathrm{We}$ started our own investigations in 2011 by initially using the MacMillan's SOMO protocol ${ }^{20}$ but later moved to the combination of 3 C ($20 \mathrm{~mol} \%$) and NCS in acetonitrile ${ }^{21}$ due to side reactions ${ }^{22}$ of radical intermediates in the SOMO chlorination of terpene aldehydes.

Chlorinations with Jørgensen-Hayashi-type Catalysts

The 2-substituted pyrrolidine scaffold 9 was first employed in enamine chlorinations of isovaleraldehyde 10 by Jørgensen et al. in 2004 (Scheme 3). Using 9a ($20 \mathrm{~mol} \%$) in 1,2dichloroethane afforded (S)-2-chloroisovaler-aldehyde 12 with moderate enantioselectivity. (e.r. 82:18). ${ }^{17}$ The corresponding diarylprolinol silyl ethers $\mathbf{9 b}$ and $\mathbf{9 c}(R=H$, X=OTMS) had not been disclosed by that time. ${ }^{8}$ In 2012, Blackmond et al. studied the α-chlorination of isovaleraldehyde with NCS in CDCl_{3} using these two catalysts achieving enantioselectivities in the same ballpark. ${ }^{6}$ With the aid of reaction calorimetry, they showed that "a rapid initial rate corresponding to ca. one turnover of the catalyst was followed by a slower zero-order regime, demonstrating that the reaction does not depend on the concentration of either of the two reactants." The observation of two sets of NMR signals at $-54^{\circ} \mathrm{C}$ featuring EXSY cross peaks led the authors to suggest that those correspond to two interconverting diastereomeric aminals 11 as resting states of the catalytic system. The two species were proposed to be constitutionally "analogous to a species reported by Jørgensen using pyrrolidine" and diastereomeric at C . Surprisingly, no attempt was reported to directly determine the structure, yet the major species was assigned to be the anti-configurated. An inductive reasoning for the structural assignment implies an enamine-NCS reaction occurring with "near perfect facial selectivity" which was derived from the observation of "only two out of four possible diastereomers". In the mechanistic proposal (Scheme 3), stereoselective enamine (13)/NCS reaction followed by reversible addition of succinimide to the iminium carbon of the chloroiminium ion affords two aminals 11, "which equilibrate between one of the two possible syn and one of the two possible anti diastereomers". ${ }^{23}$ Two separate stereospecific E2 eliminations proceeding at identical rates ($\mathrm{k}_{\text {syn }}$ $\approx \mathrm{k}_{\text {anti }}$) would provide an E-chloroenamine (E-15) from the major anti-aminal and a Z-chloroenamine (Z-15) from the minor syn-aminal. A stereospecific protonation/hydrolysis which, was not further detailed, would lead to the chloroaldehydes in an enantiomeric ratio identical to the ratio of the observed aminals. ${ }^{24}$ The apparent correlation between the ratio of two rapidly equilibrating species (cause) and
the ratio of two product enantiomers (effect) led the authors to formalize a new concept for stereochemical control in organocatalysis entitled the "Curtin-Hammett paradigm".

Scheme 3. On-Cycle Mechanism for Chlorinations with Monosubstituted Pyrrolidine Catalysts

- RESULTS AND DISCUSSION

Chlorinations with Imidazolidinone Catalysts

In 2018, our group reported an investigation of the α-chlorination of aldehyde 16 using catalyst 3c-TFA ($20 \mathrm{~mol} \%$) with different N-chloroimides in acetonitrile. ${ }^{25}$ The aim was to improve on the catalytic efficiency and to decrease the catalyst loading. We quickly realized that the main obstacle for good turnover is catalyst accumulation within stable aminals similar to those previously proposed. Gratifyingly, we were able to isolate aminal intermediates $\mathbf{1 8}$ in pure form and to obtain several X-ray crystal structures for the first time (Scheme 4). Each of the isolated species was obtained as a single diastereomer with syn-configuration. With N-chlorophthalimide (NCP) as the chlorinating reagent, opening of the phthalimide moiety was observed to give 18a upon reductive quenching/work-up. Merging the absolute configuration of the chloroaldehyde product 19 and the aminal 18, we concluded that both compounds would be derived from iminium ion precursors possessing identical configurations at the chlorine substituted stereogenic center (C2).

Scheme 4. Isolation of Aminal Intermediates Using MacMillan-Type Catalyst 3c

In our mechanistic proposal (Scheme 5), high facial selec tivity for the depicted chloroiminium ion 19 was rationalized by the standard steric shielding model. In contrast to the previously discussed on-cycle model, we placed the aminal species syn-18 and anti-18 off the catalytic cycle. As a major consequence of the model, neither kinetic nor thermodynamic ratios of aminal C_{1} epimers affect the enantiomeric ratio of the chloroaldehyde. Yet, the accumulation of the catalysts within stable aminals is the major negative influence for diminished catalytic efficiency.
Scheme 5. Chlorination Using MacMillan-Type Catalyst 3c with Off-Cycle Aminal Intermediates

The problem was overcome by using N-chloro-4-nitrophthalimide as NCS surrogate. The on-cycle model proposes the stereochemical outcome to be thermodynamically controlled, i.e. the formation of the major enantiomer must proceed through the most stable aminal. In that sense, the on-cycle mechanism predicts a formal inversion of the initially generated stereogenic center for the ($2 S$)-syn-aminal to give the $(2 R)$-chloroaldehyde product under the premise that chlorination and protonation occur with the same sense of stereocontrol imposed by the catalyst. Importantly, due to the C_{2}-like symmetry of the catalyst, a 180° rotation along the enamine and the chloroenamine C N bond axis does not change the facial shielding significantly. Summarizing the stereochemical considerations, only the off-cycle mechanism aligns the configuration of
the most stable aminal with the observed (S)-configuration of the product, whereas the on-cycle model predicts the (R)-enantiomer as the major product.
In case of the first and second generation MacMillan catalysts $3 \mathbf{a}$ and 3b, similar aminals were proposed. ${ }^{26,27,28}$ The syn/anti ratio of respective aminals had been correlated to the enantiomeric ratio, and the anti-diastereomer was suggested to lead to the major product enantiomer. It is somewhat puzzling that to the best of our knowledge not a single aminal structure was established directly either by NMR or by X-ray crystallography. Repeating the experiments described for chlorination of isovaleraldehyde using catalysts $3 \mathbf{a}$ and $\mathbf{3 b}$ and NCS as the chlorinating reagent, we have been able to isolate most of the respective stable aminals which are separable chromatographically with no subsequent equilibration being observed. For each of those aminals, single crystals were grown and analyzed.

Figure 1. ${ }^{1} \mathrm{H}$-NMR spectrum of the reaction (in accordance with the literature ${ }^{28}$) (top). Crystal structure and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the isolated aminal bearing MacMillan-catalyst 3 a (bottom).

The obtained crystal structures reveal two surprising findings: first, the major aminal diastereomers syn-20 and syn21 for the imidazolidinone catalysts $3 \mathbf{a}$ and $\mathbf{3 b}$ possess the syn- and not anti-configuration; second, in case of catalyst 3b, we also isolated a third aminal, clearly visible in the crude NMR data that was previously overlooked (see SI for details). This third aminal also bears syn-configuration and is present in higher concentrations than the minor aminal in Blackmond's assignment (Figures 1 and 2).

The conformations of the diastereomeric aminals are reflective of steric and stereoelectronic interactions between the catalyst and the chloroaminal substructures and within the chloroaminal substructure itself. In all crystal structures, both syn- and anti-aminals adopt an antiperiplanar orientation of $\mathrm{C}_{1}-\mathrm{H}$ and $\mathrm{C}_{2}-\mathrm{H}$ (Scheme 6). Such an arrangement constitutes the only staggered conformation along the $\mathrm{C}_{1}-\mathrm{C}_{2}$ axis where each non-hydrogen substituent (N , Cl, R) possesses only one synclinal interaction with another non-hydrogen substituent. A similar conformational preference in solution is indicated by the observation of large ${ }^{3} \mathrm{C}_{\mathrm{C}-\mathrm{H}, \mathrm{C} 2-\mathrm{H}}$ coupling constants ($10-11 \mathrm{~Hz}$).

Figure 2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the reaction (in accordance with the literature ${ }^{27,28}$) (top). Crystal structures and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of different isolated aminal diastereoisomers bearing MacMillan-catalyst 3b (bottom).
The stability of the aminals can be rationalized by a synergistic interplay of anomeric stabilization and gauche effects. In the syn-diastereomer, the two best $\sigma \rightarrow \sigma^{*}$ acceptors (C-Cl, C-N-imide) are in a gauche orientation whereas in the anti-diastereomer, the succinimide and the chlorine substituent are antiperiplanar. As previously noted by others, ${ }^{29}$ the catalyst's aminal nitrogen lone pair prefers to be cis to the bulkiest substituent (to minimize strain) and antiperiplanar to a C-C or a $\mathrm{C}-\mathrm{X}(\mathrm{X}=\mathrm{O}, \mathrm{N}, \mathrm{S})$ bond (allowing for $n \rightarrow \sigma^{*}$ stabilization).
Curtin-Hammett conditions refer to situations where each of two rapidly interconverting conformational isomers reacts irreversibly to a different product. The Curtin-Hammett principle ${ }^{30}$ issues a warning not to relate a conformer ratio directly to the product ratio if the rate of product formation is small relative to the rate of interconversion. Diastereomers must not be treated as individual reactive conformers but as an ensemble of conformations. Diastereomer stability is dominated by the lowest energy conformers but not necessarily by reactive conformations relevant to an ensuing transformation (Scheme 6) let alone the standard free energies $\left(\Delta \Delta G^{\ddagger}\right)$ of the respective transition states. The "Curtin-Hammett paradigm for stereocontrol" suggests a quantitative relationship between the ratio of two equilibrating diastereomeric aminals and the ratio of their respective E2 elimination products. However, the rel-
ative stability of aminal conformations with $\mathrm{C}_{2}-\mathrm{H}$ and succinimide in an antiperiplanar orientation (the basis for the stereospecificity of the E2 elimination) is not directly related to the lowest energy conformation. It is also worth noting that the rate of E2 eliminations is expected to be sensitive towards the size of the substituents and other parameters (base, solvent).
Scheme 6. Lowest Energy and Reactive Conformations of Syn- and Anti-Aminals

Kinetic Isotope Effects and DFT Calculations

In order to evaluate the first irreversible step in the catalytic cycle, we performed the reaction of 16 and 6 using $20 \mathrm{~mol} \% 3 \mathrm{c} \cdot$ TFA for determination of ${ }^{13} \mathrm{C}$ kinetic isotope effects (KIEs) at natural abundance. ${ }^{31}$ By using 6 as a limiting reagent, the reaction was taken to 77% conversion of $\mathbf{1 6}$. The unreacted $\mathbf{1 6}$ was re-isolated from the reaction mixture as the corresponding alcohol following a reductive workup (see SI for full experimental details). The ${ }^{13} \mathrm{C}$ isotopic composition of this re-isolated sample was compared to that of a standard sample of reduced 16 (taken from the same batch used for the high conversion reaction) using quantitative NMR methodology. From the relative isotopic composition and the fractional conversion, ${ }^{13} \mathrm{C}$ KIEs for 16 were determined in a standard way. ${ }^{11}$ The resulting ${ }^{13} \mathrm{C}$ KIE measurements, from duplicate runs of this experiment, are shown in Figure 3A. There is a normal KIE of ~ 1.015 on the former carbonyl carbon and unity KIEs on all other carbon atoms of 16. The qualitative interpretation of the experimental KIEs is that only the carbonyl carbon is involved in the first irreversible step for 16 in the catalytic cycle. There are several steps in the catalytic cycle that involve the carbonyl carbon atom and the exact step that accounts for the experimental KIE is not immediately clear. For the quantitative interpretation of experimental KIEs, we modeled the key steps in the catalytic cycle using B3LYP/6-31+G** with a PCM solvent model for acetonitrile as executed in Gaussian ' $16 .{ }^{32,33,34,35}$ High-level single point energy calculations that include dispersion corrections were performed for all stationary points using $\mathrm{B}_{3} \mathrm{LYP}-\mathrm{D}_{3}(\mathrm{BJ})^{36} / 6-311+\mathrm{G}^{* *} \mathrm{PCM}$ (acetonitrile). The reported Gibbs free energies were obtained by adding the free energy correction from the optimizations to the high-level single point energy calculations. The free energies were corrected using Grimme's quasi rigid rotor -harmonic oscillator (qRRHO) approach, which raises vibrational frequencies that are below $100 \mathrm{~cm}^{-1}$ to
$100 \mathrm{~cm}^{-1} .37$ This approach is routinely utilized and is wellestablished for evaluating reactivity and selectivity in similar catalytic systems. ${ }^{38,39}$ The reaction coordinate diagram for the reaction of 16 and 6 catalyzed by 3c-TFA leading up to the formation of the chloroiminium ion Int4 is shown in Figure 3B. The trifluoroacetate counterion of the catalyst salt is included in these calculated structures to either act as a proton shuttle or to stabilize positively charged transition structures/intermediates. The reported free energy barriers ($\Delta \mathrm{G}^{\ddagger}$) are computed with respect to the sum of the energies of neutral 3c, trifluoroacetic acid, 6, and 16. The computed free energy profile reveals that the transition structures (TSs) for initial formation of the carbinol amine intermediate Int 1 (TS1, $\Delta \mathrm{G}^{\ddagger}=10.2 \mathrm{kcal} \mathrm{mol}^{-1}$), loss of water to form the iminium ion Int2 (TS2, $\Delta \mathrm{G}^{\ddagger}=10.1 \mathrm{kcal} \mathrm{mol}^{-1}$), and deprotonation of Int2 to form the enamine Int3 (TS3, $\Delta \mathrm{G}^{\ddagger}=10.4 \mathrm{kcal} \mathrm{mol}^{-1}$) all lie within $0.7 \mathrm{kcal} \mathrm{mol}^{-1}$ of each other. The TS for chlorination of Int3 by 6 (TS4) has a $\Delta \mathrm{G}^{\ddagger}$ of $9.3 \mathrm{kcal} \mathrm{mol}^{-1}$ and this step is an exergonic process resulting in a α-chloroiminium ion intermediate Int4 that is $25.1 \mathrm{kcal} \mathrm{mol}^{-1}$ below separated starting materials. The experimental ${ }^{13}$ C KIE determined for $\mathbf{1 6}$ reports on TS for the first irreversible step in the catalytic cycle for $\mathbf{1 6}$. Since the ΔG^{\ddagger} for TSı-TS 4 lie within $1.1 \mathrm{kcal} \mathrm{mol}^{-1}$ of each other, the prediction of ${ }^{13} \mathrm{C}$ KIEs for the interpretation of our experimental KIE values is complicated - each of these TSs contribute to the observed KIE, with the highest energy transition structure (TS_{3}) contributing the most followed by $\mathrm{TS}_{1}, \mathrm{TS}_{2}$, and TS_{4}. Figure 4 C shows the predicted ${ }^{13} \mathrm{C}$ KIEs for TS1-4 assuming each to be the sole first irreversible step for 16. The percentage contribution of each TS (based on relative $\Delta \mathrm{G}^{\ddagger}$) to the observed KIEs is also indicated in parentheses. Based on the predicted ${ }^{13} \mathrm{C}$ KIE values for TSi-4, the energy-weighted predicted ${ }^{13} \mathrm{C}$ KIEs for C_{1} and C_{2} of 16 are computed (Figure 3 C , last row). Comparison of experimental (Figure 3A) and energy-weighted predicted ${ }^{13} \mathrm{C}$ KIEs reveals a good agreement between the two - lending support to the computed reaction coordinate diagram. ${ }^{40}$ Next, we computed the steps from the chloroiminium ion intermediate Int4a to the final α-chloroaldehyde product 19 (Int4a is a complex between the chloroiminium ion-TFA salt and a molecule of water and differs from Int 4 which is a complex between the chloroiminium ion-TFA salt and a molecule of succinimide). In the resulting reaction coordinate diagram (Figure 4A), the reported free energy barriers $\left(\Delta G^{\ddagger}\right)$ are computed with respect to Int 4 a (the global minimum on this reaction coordinate). The hydrolysis of Int4a proceeds via two lower barrier steps - TS6 $\left(\Delta \mathrm{G}^{\ddagger}=8.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and $\mathrm{TS}_{7}\left(\Delta \mathrm{G}^{\ddagger}=8.3 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ - to deliver the product aldehyde 19 and regenerate $3 c$ and trifluoroacetic acid. Based on the observation of syn- and anti-aminal intermediates in this reaction (Figure 6 and 7), we also computed transition structures for the conversion of Int4 to syn-18b (TS5) and anti-18b (TS5'). The transition structures TS_{5} and TS_{5} ' face a free energy barrier of 11.1 and $8.9 \mathrm{kcal} \mathrm{mol}^{-1}$ (relative to Int4). The syn-aminal syn-18b was found to be thermodynamically favored over the anti-

FIGURE 3. Experimental ${ }^{13} \mathrm{C}$ KIE studies and supporting DFT calculations. (A) Experimental ${ }^{13} \mathrm{C}$ KIEs for the α-chlorination of 16 with the MacMillan Catalyst $3 \mathrm{C} \cdot$ TFA. (B) Reaction coordinate diagram for the reaction of $\mathbf{1 6}$ and $\mathbf{6}$ catalyzed by $3 \mathrm{c} \cdot$ TFA up to the formation of the chloroiminium ion Int 4 calculated at the $\mathrm{B}_{3} \mathrm{LYP}-\mathrm{D}_{3}(\mathrm{BJ}) / 6-311+\mathrm{G}^{* *} \mathrm{PCM}$ (acetonitrile)//B3LYP/6-31+G** PCM (acetonitrile) level of theory. Some hydrogen atoms have been removed for clarity in the 3D representation of the key transition structures. Key bond-forming and bond-breaking distances are in angstroms (\AA). (C) Predicted KIEs at C_{1} (aldehyde-carbon) and C_{2} (α-carbon) of 16 for TS1-4 along with energy-weighted predictions for comparison to experimental KIEs.
aminal anti-18b by $1.7 \mathrm{kcal} \mathrm{mol}^{-1}$. These computed free energies are consistent with the experimental observation of anti-18b in the initial 5 minutes of the reaction (kinetic aminal) and subsequent accumulation of syn-18b (thermodynamic aminal) (Figure 7).Our calculations suggest that syn-18b is a parasitic off-cycle intermediate that has only one path to product 19 - by re-entering the catalytic cycle via $\mathrm{TS}_{5}\left(\Delta \mathrm{G}^{\ddagger}=15.3 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ to form Int4 followed by the previously described hydrolysis via TS6 and TS7. If this pathway is operational for the conversion of syn-18b to $\mathbf{1 9}$, re-entry of the syn-18b into the catalytic cycle via TS_{5} represents the largest change in free energy in the conversion of syn-18b to $\mathbf{1 9}$ (see Supporting Information for a discussion and supporting calculations for the conversion of anti$\mathbf{1 8 b}$ to 19). Alternatively, syn-18b could be an on-cycle intermediate (Curtin-Hammett paradigm ${ }^{6}$) and could undergo an E2-elimination to yield a chloroenamine intermediate. Protonation and subsequent hydrolysis of this chloroenamine intermediate would deliver the product and regenerate the catalyst. In order to evaluate this alternative mechanism, we explored transition state models for the formation of the chloroenamine intermediate utilizing either trifluoroacetate or succinimide anion leaving group as the base that effects the deprotonation with concomitant loss of the succinimide anion. All attempts to locate this TS resulted in an Ei-type structure where the succinimide anion is completely dissociated and the base deprotonates a
structure resembling a chloroiminium ion (Figure 4A, TS$\mathrm{Et} ; \Delta \mathrm{G}^{\ddagger}=28.2 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to syn-18b). This is because the incipient carbocation, that forms as the succinimide leaving group departs, is stabilized by the lone pair of electrons on the catalyst nitrogen before deprotonation can occur. Based on this result we hypothesized that disengaging this lone pair from the reaction coordinate by protonation, could result in the identification of an E2elimination TS. ${ }^{41}$ Accordingly, we explored the α-deprotonation of N-protonated syn-18b (with concomitant loss of the succinimide anion) using trifluoroacetate as the base to generate the protonated chloroenamine intermediate. These explorations resulted in the identification of TS-E2 ($\Delta \mathrm{G}^{\ddagger}=50.3 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to syn-18b), for the direct conversion of N-protonated syn-18b to the protonated chloroenamine intermediate. Clearly, the barriers for the E2-elimination and El-elimination pathways are significantly higher than the pathway involving re-entry of syn$\mathbf{1 8 b}$ into the catalytic cycle as Int4 (Figure 4D, TS5; $\Delta \mathrm{G}^{\ddagger}=14.2 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to syn-18b). In order to gain experimental evidence on the catalytic role of syn-18b, we envisioned that determination of ${ }^{13} \mathrm{C}$ KIEs for the stoichiometric conversion of syn-18b to product 19 could probe the first irreversible step in the pathway for this reaction (Figure 4 B). If the reaction proceeded via turnoverlimiting re-entry into the catalytic cycle, a normal ${ }^{13} \mathrm{C}$ KIE would be expected only on C . However, if either the Ei- or
A. Alternative pathways for decomposition of syn-18b

B. Experimental ${ }^{13} \mathrm{C}$ KIEs for conversion of syn-18b to 19

C. Comparison of experimental and predicted ${ }^{13} \mathrm{C}$ KIEs

carbon atom	TS5	TS-E2	TS-E1	exp. KIEs
C1	1.009	1.037	1.000	$\mathbf{1 . 0 0 8}$
C2	1.001	1.017	1.013	$\mathbf{1 . 0 0 1}$

D. Free energy profile for hydrolysis of chloroiminium ion

Reaction coordinate

FIGURE 4. Hydrolysis of chloroiminium ion and investigation of the role of experimentally observed aminal intermediates. (A) Calculated transition structures for alternative pathways for re-entry of syn-18b (as a chloroenamine) into the catalytic cycle. (B) Experimental ${ }^{13} \mathrm{C}$ KIEs determined for the stoichiometric conversion of syn-18b to 19. (C) Comparison of experimental ${ }^{13} \mathrm{C}$ KIEs for the conversion of syn-18b to $\mathbf{1 9}$ with the predicted ${ }^{13} \mathrm{C}$ KIE for the rate-determining step in each pathway that converts syn-18b to 19. (D) Reaction coordinate diagram for the conversion of the chloroiminium ion Int 4 to the final product 19 calculated at the $\mathrm{B}_{3} \mathrm{LYP}-\mathrm{D}_{3}(\mathrm{BJ}) / 6-311+\mathrm{G}^{* *}$ PCM(acetonitrile)// B3LYP/6-31+G** PCM(acetonitrile) level of theory. Also shown is the calculated pathway for the parasitic off-cycle aminal intermediates $s y n-\mathbf{1 8 b}$ and anti-18b. Some hydrogen atoms have been removed for clarity in the 3D representation of the key transition structures. Key bond-forming and bond-breaking distances are in angstroms (\AA).

E2-Elimination pathway is operational, a normal ${ }^{13} \mathrm{C}$ KIE would be expected on C_{2} or both C_{1} and C_{2}, respectively. The conversion of syn-18b to $\mathbf{1 9}$ was initiated using 5 equivalents each of trifluoroacetic acid and water (Figure 4B). The ${ }^{13} \mathrm{C}$ KIEs were determined by product analysis ${ }^{42}$ - by comparison of samples of reduced 19 isolated from 24% and 100% conversion reactions. The key result from this experiment was a 1.008 (2) KIE on C_{1} and a 1.001 (4) KIE on C_{2} (Figure 4 B) - in qualitative agreement with a mechanism involving turnover-limiting re-entry of syn-18b into the catalytic cycle. A comparison of this experimental KIE and theoretical KIEs for TS_{5}, TS-E2, and TS-E1 reveals that the experimental values are in excellent agreement with predicted values for TS_{5} and in poor agreement with those for TS-E2 and TS-E1 (Figure 4C). Thus, evaluation of the reaction energetics and KIEs for the conversion of syn-18b to $\mathbf{1 9}$ supports the role of syn-18b as a parasitic, off-cycle intermediate that can re-enter the catalytic cycle via turn-over-limiting formation of Int4. Finally, from the computed reaction coordinate diagram shown in Figure 3B, the chlorination of the enamine intermediate (TS_{4}) is irreversible, and the enantioselectivity-determining step of the reaction. Accordingly, we performed a thorough confor-
mational search for the formation of both R and S chloroiminium ion via chlorination of the Si - and Re - faces, respectively, of all possible enamine geometries. The $\Delta \Delta \mathrm{G}^{\ddagger}$ between the lowest energy transition structures leading to R and S chloroiminium ion is $2.9 \mathrm{kcal} \mathrm{mol}^{-1}$ (favoring S) - a value that is qualitatively consistent with the $>90 \%$ ee observed for this reaction. The full details of these explorations are included in the Supporting Information. Thus, our experimental KIE results along with a comprehensive DFT analysis of the entire reaction coordinate supports a scenario where the enantioselectivity-determining step is the initial formation of the chloroiminium ion and not any downstream processes.

Deuterium Incorporation Studies

In a deuterium incorporation study, aldehyde 16 was subjected to a chlorination reaction with the MacMillan catalysts $\mathbf{3 b}$ and $\mathbf{3 c}$ and the Jørgensen-Hayashi catalyst $\mathbf{9 c}$ and NCS at two different temperatures. The obtained chloroaldehyde was reduced to alcohol 22 (to avoid racemization) and submitted to NMR measurements. At $-30^{\circ} \mathrm{C}$, all catalysts showed little to no incorporation of deuterium. At $20^{\circ} \mathrm{C}$, the MacMillan catalyst $\mathbf{3} \mathbf{b}$ shows significant deuterium incorporation (Figure 5). This observation is in line
with the racemization MacMillan observed for 3b but not for 3c (vide supra). Our results also rule out the protonation of fleeting chloroenamine intermediates due to the absence of significant deuterium incorporation at low temperature. While the intermediacy of chloroenamine intermediates cannot be studied by these experiments, their presence is not unlikely as chlorination might account for the formation of significant amounts dichloroaldehyde products for catalysts 9c, 3a, and $\mathbf{3 b}$.

A.

B.

c.

Figure 5. Deuterium incorporation of 16 with different catalysts and temperatures with exemplary ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{A})$ and ${ }^{13} \mathrm{C}$ NMR (B) spectra; C) Quantification of deuterium incorporation under different conditions.

NMR Reaction Progress

We interrogated concentration profiles in order to assess whether the two mechanisms are kinetically distinguishable. Gratifyingly, aldehyde $\mathbf{1 6}$ (the substrate), the chloroaldehyde product 19 and the corresponding crystallographically characterized aminal syn-18b possess separate, nonoverlapping NMR resonances (see SI). Monitoring their concentrations over time, it is apparent that the initial rate of chloroaldehyde formation exceeds the build-up of the aminal (Figure 6A). This observation eliminates the possibility of the catalyst being turned over through the thermodynamically most stable aminal. The alternate off-cycle mechanism provides a scenario where the rate of iminium hydrolysis exceeds that of aminal formation. From the iminium ion intermediate, part of the catalyst is diverted into a stable aminal resting state. To identify these subtleties, it is essential to follow individual concentrations over
time (NMR spectroscopy) rather than observing a single value for the whole system, for example, the amount of energy released (reaction calorimetry).

Figure 6. α-Chlorination of aldehyde 16 with catalyst 3c and NCS (6) with concentration/time profile (A) and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with characteristic aminal signals for the first 15 min of the reaction (B).

Caution is due when arguing based on the presence or absence of intermediates in the NMR spectrum. Fleeting species, e.g. enamines ${ }^{43}$ and iminium ions, ${ }^{44}$ are difficult to observe and reversibly forming aminal diastereomers are certainly no exception. When reanalyzing our data for this reaction, we noted additional, previously overlooked resonances in the NMR spectrum at $t=5 \mathrm{~min}$ (Figure 6B) (quickly disappearing thereafter). The possibility of the corresponding species to be the elusive aminal anti-18b is supported by comparison of the observed and computed ${ }^{1} \mathrm{H}$ chemical shifts (Figure 7).

Figure 7. Calculated syn-18b and anti-18b lowest energy conformations of the aminal $\mathbf{1 8 b}$ (top). Key ${ }^{1} \mathrm{H}$ chemical shifts calculated at PCM(ACN)-mPWiPW91/6-311+G(2d,p)//PCM (ACN)-B3LYP-D3(BJ)/6-31G+(d,p) level of theory (bottom) (for additional details see SI).

This hypothesis is in line with the calculated reaction path as the thermodynamically more stable aminal syn-18b accumulates in favor of anti-18b. While minor anti-18b will continue to be formed at an (unknown) kinetic ratio, its concentration quickly becomes too small to be observed by NMR as the amount of available catalyst diminishes rapidly into the syn-18b aminal reservoir. It is worth noting that under Curtin-Hammett conditions, the equilibrium distribution of the equilibrating species and the product distribution must be time-invariant. 45

The Role of Chloroenamine Intermediates

The DFT calculations for catalyst 3c demonstrated that chloroenamine formation - either by iminium deprotonation or by E2 elimination from the aminal intermediate - is energetically disfavored compared to the alternative hydrolysis pathway. This assessment is supported by the notable lack of evidence of protonation (no deuterium incorporation) and the absence of dichlorination products. For catalyst 3a, erosion of the ee was shown upon complete turnover of the substrate in a chlorination reaction. ${ }^{15}$ In a direct comparison, MacMillan et al. ${ }^{18}$ also showed that in the absence of NCS, catalyst $\mathbf{3} \mathbf{b}$ effects rapid racemization of chloroaldehydes. This result suggests that chloroenamines are accessible even in the absence of chloroaminals, i.e. from the iminium ions by deprotonation. During our efforts to separate aminals from reaction mixtures, we also have been able to characterize the first dichloroaminal 24 a from catalyst 3a, which we suspect to be derived from the corresponding dichloroiminium intermediate (Scheme 7). In case of the Jørgensen-Hayashi catalyst or unsubstituted pyrrolidine, it was shown that chloroenamine formation is competing ${ }^{46}$ with the hydrolysis thus leading to the observation of significant amounts of dichlorination byproduct in both cases. This problem can be overcome by accelerating the hydrolysis step via intramolecular (proline ${ }^{47 \text {) or in- }}$ termolecular assistance (2,6 -lutidine and $\mathrm{H}_{2} \mathrm{O}^{46}$).

Scheme 7. Chloroenamines can Competitively Lead to Racemization and Dichlorination

Ion Mobility-Mass Spectrometry Studies

Aminals can be subjected to electrospray ionization followed by collision-induced dissociation. For each aminal, diastereomeric iminium ions can be formed as E - and Z isomers. In a feasibility study, we aimed to find out
whether iminium ions derived from two isolated C2-epimeric aminals would be separable due their different ion mobilities in a drift gas (He).

Figure 8. Separate ionization of the diastereomeric aminals syn-25 and anti-25 with arrival time distributions and experimental CCSs of the generated diastereomeric iminium ions (blue and red traces). The trace of the mixture of both diastereomers is depicted in grey. The four possible chloroiminium ions and their calculated CCSs and relative free energies are shown on the right.

Toward this end, instrument-independent collision cross sections (CCSs) were determined by ion mobility-mass spectrometry experiments on a custom-built instrument. ${ }^{48}$ The arrival time distributions (ATDs) of the selectively dissociated aminals are represented in Figure 8. The conformational space of the iminium ions 26 was sampled using a genetic algorithm ${ }^{49}$ and promising candidate structures were reoptimized at the $\mathrm{PBEoD}_{3} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory. ${ }^{\circ}$ Computed CCSs were obtained using the trajectory method. 5° The combined approach was successfully used to make a prediction whether E - or Z- iminium ions are formed in the decomposition process of the two diastereomeric aminals syn-25 and anti-25. The ATD traces of the selectively dissociated aminals suggest that the dissociation of each aminal leads to the corresponding E-iminium ion. The comparison of the computed and the experimental CCS value suggests the E-iminium to be formed for both epimers (see SI for details). Future research will involve spectroscopic investigation (e.g., IR spectroscopy) of the separate iminium ions and following the iminium ion distribution over the course of the reaction.

Aminals with Jørgensen-Hayashi-Type Catalysts

In light of the observations described above for the MacMillan catalysts, we decided to reinvestigate the JørgensenHayashi system for which we have not been able to obtain crystals of sufficient quality. Toward this end, we prepared a reaction mixture using isovaleraldehyde, catalyst $\mathbf{9 b}$ and N-chlorophthalimide (NCP) as previously described. ${ }^{6}$ In order to obtain cleaner spectra than those reported, we removed all volatile constituents by evaporation. In the ${ }^{1} \mathrm{H}-$ NMR spectrum, $\mathbf{1 1}$ showed rather broad resonances at room temperature which split up at around $-20^{\circ} \mathrm{C}$ and at $-54^{\circ} \mathrm{C}$ two sharp signal sets with a 3:1 ratio were observed.

The presence of EXSY exchange peaks between the two signal groups indicated two rapidly interconverting species. These observations had been previously interpreted as $\mathbf{1 1}$ being a mixture of interconverting diastereomers at the aminal carbon with the anti-diastereomer as the major and the syn-diastereomer as the minor constituent. ${ }^{6}$ Interestingly, in both species the large ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling indicates an antiperiplanar arrangement of the H -atoms along the Cl^{\prime} C2' bond. In order to elucidate the structures of the two species from NOE data, we aimed for minimizing exchange contributions to the NOE. This was largely achieved by changing the solvent from CDCl_{3} to $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, which allows cooling to $-83^{\circ} \mathrm{C}$. We managed to assign most signals of both species and obtained a rather large body of distance data from the NOE of the major species and far less of the minor (see SI). The challenge now is to find out, why two signal sets are obtained and whether we can assign the two signal sets to possible structures of species. It is conceivable that these are interconverting diastereoisomers (syn and anti) as proposed previously by Blackmond et al. ${ }^{6}$ (Scheme 9). An alternative explanation would involve interconverting conformational isomers. For the major species, a comparison of distances with calculated structures allowed the assignment of syn-configuration (Figure 9). This is in contrast to what has been claimed previously. ${ }^{6}$ The key question now is whether the minor species is a diastereomer or a conformational isomer. For both species, only small difference in the distances were observed indicating a very similar relative orientation of the pyrrolidine ring to the chlorinated substrate; the antiperiplanar arrangement of Hr^{\prime} and H_{2} ' is conserved (see above). While our recently published pure shift ROE experiment (F_{1} PSYCHE EASY ROESY ${ }^{51}$) afforded additional distance data, still no safe assignment of the minor species was possible. From the ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling data in the pyrrolidine ring, it is not unlikely that multiple envelope conformations are present. The "averaged" pucker of the pyrrolidine is different for the major and minor species, which we consider unlikely for the ap arrangement of Hr^{\prime} and H_{2} ' in syn vs. anti-diastereoisomers. Thus we considered hindered rotation as being a plausible cause. From J-coupling analysis (see above and data in the SI) it is quite unlikely, that the pyrrolidine puckers are the reason for the separate signal sets; thus we focused our attention to the orientation of the diarylsilylether group. This hypothesis seems plausible as a structure search in the CCDC data base for Jørgensen-Hayashi catalysts with the pyrrolidine nitrogen bound to stereogenic sp ${ }^{3}$ hybridized carbon reveals striking similarities concerning the catalyst structure (see SI). ${ }^{29,52}$ Each structure in the database had the pyrrolidine ring in an envelope conformation with the γ-carbon tilted out of plane toward the diarylsilylether moiety and the nitrogen lone pair (down conformation). For the orientation of the diarylsilylether group, two distinct conformational minima are observed. In 7/10 crystal structures, the N - and O -substituent at the exocyclic C-C bond of the catalyst possess an antiperiplanar (ap) relationship whereas in three cases an exosynclinal (exo-sc) conformation was adopted.

As NOE data was not entirely conclusive on the nature of the minor species and the process of the two interconverting aminal species 14 at $-54{ }^{\circ} \mathrm{C}$, a calculation of the NMR shifts for several conformational isomers and stereoisomers was performed (see SI for details). When the predicted conformers for 14 were separated into the ap and exo-sc classifications the ap chemical shifts corresponded to the major product (mean average deviation (MAD): $1.4 \mathrm{ppm}{ }^{13} \mathrm{C}$, o.10 ppm ${ }^{1} \mathrm{H}$) and the exo-sc chemical shifts were in excellent agreement with the minor product (MAD: $1.5 \mathrm{ppm}{ }^{13} \mathrm{C}, 0.13 \mathrm{ppm}{ }^{1} \mathrm{H}$) for key chemical shifts (Figure 9).

major (syn-ap-14)						
Nuc.\#	Calc. δ	Exp. δ	Abs. Dev.	Calc. δ	Exp. $\overline{\text { \% }}$	Abs. Dev.
C1'	75.2	76.3	1.1	74.6	76.1	1.5
C2	67.9	68.6	0.7	67.1	68.6	1.5
C2'	72.9	65.6	7.3	74.1	66.8	7.3
C3'	32.2	29.3	2.9	32.1	29.0	3.1
C4	25.2	24.3	0.9	25.4	24.1	1.3
C4'	19.9	21.3	1.4	19.7	21.4	1.7
C5	48.4	48.8	0.4	47.9	48.5	0.6
C5'	12.3	12.2	0.1	16.2	15.7	0.5
C6	82.7	82.4	0.3	84.3	84.2	0.1
MAD			1.4			1.5
H1'	5.24	5.16	0.08	6.04	5.81	0.23
H2	4.80	4.60	0.20	4.24	4.15	0.09
H2'	5.25	4.98	0.27	5.28	5.05	0.23
H3'	2.39	2.13	0.26	2.67	2.35	0.32
H3a	1.76	1.71	0.05	1.81	1.82	0.01
H3b	1.80	1.71	0.09	1.32	1.38	0.06
H4'	1.07	0.95	0.12	1.20	1.06	0.14
H4a	1.18	1.20	0.02	1.25	1.28	0.03
H4b	0.08	0.09	0.01	0.63	0.63	0.00
H5'	0.05	-0.01	0.06	1.50	1.28	0.22
H5a	3.37	3.29	0.08	3.44	3.27	0.17
H5b	1.97	1.97	0.00	2.16	2.16	0.00
MAD			0.10			0.13

Figure 9. Calculcated ap (top left) and exo-sc (top right) conformations of the Jørgensen-Hayashi aminal syn-14 ($\mathrm{R}=\mathrm{C}\left(3,5^{-}\right.$ $\left.\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{OTMS}$). Bottom: key chemical ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts calculated with the $\mathrm{mPW}_{1} \mathrm{PW} 91 / 6-$ $311+G(2 d, p)\left(G I A O ;\right.$ PCM, $\left.\mathrm{CHCl}_{3}, 219.15 \mathrm{~K}\right) / / \mathrm{B}_{3} \mathrm{LYP}-\mathrm{D}_{3}(\mathrm{BJ}) / 6-$ $31 \mathrm{G}+(\mathrm{d}, \mathrm{p})(219.15 \mathrm{~K})$ level of theory (indicative atoms are highlighted in bold).

From the integration of the exchange signals in 1D NOE series a barrier of $12.8(4) \mathrm{kcal} \mathrm{mol}^{-1}$ can be determined at $-54{ }^{\circ} \mathrm{C}$. Investigation into the rotational barrier from the $a p$
to the exo-sc for syn-14 using DFT calculations (see SI for additional details), revealed the barrier of rotation to be $\sim 13.9 \mathrm{kcal} \mathrm{mol}^{-1}$, within the error expected for this method to compare to the experimental $12.8 \mathrm{kcal} \mathrm{mol}^{-1}$ barrier between the major and minor products at $-54{ }^{\circ} \mathrm{C}$. Further separation of the conformers into concave and convex pyrrolidine ring puckering, led to worse predicted chemical shifts for both the major and minor products, suggesting an averaging of the ring puckering in the NMR solution (barrier of $\sim 1 \mathrm{kcal} \mathrm{mol}^{-1}$ for the major ($a p$) product). The H_{5}, proton shift appears to be diagnostic of ap and exo-sc conformations with the shift at -0.01 ppm for the major product and at 1.28 ppm for the minor product. In the lowest energy conformer calculated for the ap product, a C-H $\cdots \pi$ interaction can be seen shielding this methyl group proton, which does not occur in the exo-sc product (Figure 9).
Additionally, NMR calculations to determine the major and minor products bearing a succinimide (aminal 11) substituent instead of phthalimide (aminal 14) found by Blackmond and co workers ${ }^{6}$ at -54 C were performed. The experimental chemical shifts were compared to the syn-11 ap and exo-sc, anti(C^{\prime}) ap and exo-sc, and anti($\left.\mathrm{Cz}^{\prime}\right)-\mathbf{1 1}$ ap calculated chemical shifts. The syn-ap-11 calculated chemical shifts were in good agreement with the major product, while the syn-exo-sc-11 produced some shifts above the expected deviation ($<0.3 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ shifts and $\leq 3.1 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ shifts - with the exception of 7.3 ppm for C 2 '-Cl). ${ }^{53}$ The anti Cl^{\prime} and C_{2} ' aminals were found to have greater mean average deviations (MADs) for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts when compared to the minor product chemical shifts than the syn-exo-sc-11 aminal. These results, along with the agreement of syn-exo-sc-14 calculated chemical shifts with the minor product experimental chemical shifts, suggest further analysis of the minor product experimental chemical shifts for 11 at $-54{ }^{\circ} \mathrm{C}$ may be needed to confirm the chemical shift assignment.
The computationally and NMR spectroscopically derived ($2 S, 1^{\prime} R, 2^{\prime} S$)-configuration and the conformation of the synaminal 14 share several structural features with the crystallographically determined aminals of the MacMillan catalysts including an antiperiplanar orientation of C1'-H and C2'-H and the lone pair of aminal nitrogen from the catalysts being antiperiplanar to the imide nitrogen. The stabilization energy of this $\mathrm{n}_{\mathrm{N}(\mathrm{cat})} \rightarrow \sigma^{*} \mathrm{C-N(} \mathrm{imide} \mathrm{)}$ interaction (Scheme 8) is predicted to be $16.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for the ap product and $16.0 \mathrm{kcal} \mathrm{mol}^{-1}$ for exo-sc product. This interaction is even stronger when the succinimide substituent is present 17.5 ($a p$) and 17.2 (exo-sc) $\mathrm{kcal} \mathrm{mol}^{-1}$; and it decreases to $\sim 8.0 \mathrm{kcal} \mathrm{mol}^{-1}$ in the lowest energy conformer of the anti-aminal (see SI for details). ${ }^{54}$
In summary, only the syn-diastereomer ($2 S, 1^{\prime} R, 2^{\prime} S$)-14 allows for an optimal synergistic interplay of stereoelectronic effects and minimized steric interactions.
As additional and independent supporting evidence for the structural assignment, aminal 14 was reduced and the resulting alcohol was converted to the crystalline dinitrobenzoate $\mathbf{1 5}$. After a thorough isolation process only one diastereomer could be isolated. Crystal structure analysis confirmed the syn-configuration of aminal 15 (Scheme 8).

Scheme 8. Stereochemical Assignment of Aminal 14
 $\left.\begin{gathered}\text { NMR and } \\ \text { computational } \\ \text { studies }\end{gathered} \right\rvert\,$

When substituting isovaleraldehyde with propanal, the analogous aminal could be obtained along with the chloroaldehyde being formed in a 57:43 enantiomeric ratio. NMR spectroscopic analysis of the aminal at $-54^{\circ} \mathrm{C}$ showed the presence two separate sets of sharp signals in a 68:32 ratio. Decomposition of the aminal into the corresponding chloroaldehyde was promoted by addition of 2 equivalents of water and TFA. Determination of the enantiomeric excess revealed high enantiomeric excess for the chloroaldehyde product (1-120 min: 95-93\% ee). Additionally, almost no deuterium incorporation was observed when the decomposition of the propanal-derived aminal or aminal $\mathbf{1 4}$ was promoted by $\mathrm{D}_{2} \mathrm{O}$ with or without TFA- d_{1}. These observations suggest that only one out of four possible aminal diastereomers is present in sufficient concentration to be detected and isolated. Thus, aminal accumulation solely depends on thermodynamic stability.

- CONCLUSION

A comparative analysis of the Curtin-Hammett model for stereocontrol and the steric shielding model showed only the latter to be consistent with experimental evidence. Using crystallography, NMR spectroscopy and computational NMR shift prediction, we have elucidated the configuration and conformation of several aminal intermediates of different catalysts in the organocatalytic α-chlorination of aldehydes. Their relative stability was rationalized by minimizing steric interactions and maximizing stabilizing stereoelectronic effects.
In the case of the Jørgensen-Hayashi catalyst $\mathbf{9 b}$, the underlying assumption of two equilibrating C_{1}-aminal diastereomers 14 with the anti-diastereomer being the major and the syn-diastereomer being the minor species ${ }^{6}$ was shown to be incorrect. Instead, the two interconverting species, found upon cooling, are proposed to be conformational isomers of the syn-diastereomer (Scheme 9). Moreover, the suggested formation of the C_{2}-stereogenic center
by chloroenamine protonation was excluded by the absence of deuterium incorporation under the reaction conditions.
Scheme 9. Structural Revision of Aminal 14

In the case of the MacMillan catalyst 3c, a combination of ${ }^{13} \mathrm{C}$ KIE studies and DFT calculations demonstrated enamine chlorination not to be the first irreversible step. It also provided complementary evidence to rule out decomposition of the aminal intermediates by an E2 elimination. The calculated transition structures for the enamine chlorination not only correctly predict the stereochemical outcome but also demonstrate that enamine chlorination is faster than (re-)protonation. This in an important finding as it shows that enamine formation in this case is not reversible, i.e. it is not thermodynamically controlled. This observation is supported by the chlorination product lacking significant amounts of deuterium incorporation. With respect to the C1 diastereomeric aminals, DFT calculations predicted the anti-aminal as the kinetic and the syn-aminal as the thermodynamic intermediate.
Following the concentration/time profile by NMR spectroscopy, we were able to identify the previously overlooked anti-aminal being formed within the first 5 minutes of the reaction. It quickly disappears due to accumulation of the catalyst in the syn-aminal resting state. The structure of the anti-aminal was determined by NMR shift computations and the method was validated against the crystallographically characterized syn-aminal diastereomer. These observations rule out a Curtin-Hammett scenario for two reasons. First, Curtin-Hammett conditions require the ratio of the two interconverting intermediates to be time-invariant. Secondly, the dominant conformational minima of the two diastereomeric aminals are unrelated to the reactive conformations for an E2 elimination let alone the respective transition states.
Additionally, we were able to isolate and characterize most of the relevant aminals for the MacMillan catalyst 3a and 3b by crystal structure analysis for the first time and to reevaluate the incorrect assignment made in the literature. We also isolated and characterized an intermediate relevant to formation of dihalogenation byproducts. Similar to
the fluorination reaction described by Jørgensen, formation of dichlorinated intermediates also could change the initial stereoisomeric ratio of the monochlorination product.
Regarding the iminium intermediates, we have for the first time been able to separate diastereomeric iminium ions in an organocatalytic reaction by ion mobility-mass spectrometry. Future research will involve spectroscopic characterization of the separated iminium ions.
These results highlight the added value of combined computational work and experimentation. They also demonstrate the importance of a careful characterization of reaction intermediates to the understanding of complex reaction networks. Understanding and countering the stabilizing interactions within stable intermediates may provide clues to the design of more efficient catalytic systems.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures, computational details, characterization data of all compounds, NMR spectra, crystallographic data, HPLC and GC traces. This material is available free of charge via the Internet at http://pubs.acs.org.
Accession Codes. 2041073-2041078, 2043370, 2045387 and 2049431 contain supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

AUTHOR INFORMATION

Corresponding Authors

Mathias Christmann - Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; ORCiD: oooo-ooo1-9313-2392; Email: mathias.christmann@fu-berlin.de
Mathew J. Vetticatt - Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States; ORCiD: oooo-ooo1-5709-o885; Email: vetticatt@binghamton.edu
Dean J. Tantillo - Department of Chemistry, University of California - Davis, Davis, California 95616, United States; ORCiD: oooo-ooo2-2992-8844; Email: djtantillo@ucdavis.edu
Christina Thiele - Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; ORCiD: oooo-oool-7876536X; Email: cthiele@thielelab.de
Kevin Pagel - Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany; ORCiD: oooo-ooo1-8054-4718; Email: kevin.pagel@fu-berlin.de

Authors

Sebastian Ponath - Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; ORCiD: oooo-0003-2763-0443;

Chetan Joshi - Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States;
Amy T. Merrill - Department of Chemistry, University of California - Davis, Davis, California 95616, United States; ORCiD: oooo-0003-4801-1721;
Volker Schmidts - Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; ORCiD: 0000-0002-7195312X;
Kim Greis - Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany; ORCiD: oooo-0002-9107-2282;
Maike Lettow - Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany;
Manuela Weber - Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
Simon Steinhauer- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; ORCiD: oooo-ooo1-7420-1153;

Author Contributions

\ddagger These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

K.G. thanks the Fonds National de la Recherche (FNR), Luxembourg for funding for the project GlycoCat (13549747). C.M.T. thanks the DFG for funding the project TH1115/12-1. D. J. T. is thankful for the support from the US National Science Foundation (CHE-1856416 and the XSEDE program (CHE030089)). We thank Patrick Voßnacker (FU Berlin) for crystallographic support.

REFERENCES

(1) Carreira, E. M.; Kvaerno, L. Classics in Stereoselective Synthesis; Wiley-VCH, Weinheim, 2009.
(2) Carlson, R.; Carlson, J. E. Design and optimization in organic synthesis, 2nd rev. and enl. ed.; Elsevier, Amsterdam, San Diego, CA, 2005.
(3) List, B.; Maruoka, K. Science of Synthesis, Asymmetric Organocatalysis Vol. 1; Georg Thieme, Stuttgart, New York, 2012.
(4) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjaersgaard, A.; Jørgensen, K. A. Enantioselective Formation of Stereogenic Car-bon-Fluorine Centers by a Simple Catalytic Method. Angew. Chem. Int. Ed. 2005, 44, 3703-3706.
(5) Burés, J.; Armstrong, A.; Blackmond, D. G. The Interplay of Thermodynamics and Kinetics in Dictating Organocatalytic Reactivity and Selectivity. Pure Appl. Chem. 2013, 85, 1919-1934.
(6) a) Burés, J.; Armstrong, A.; Blackmond, D. G. Curtin-Hammett Paradigm for Stereocontrol in Organocatalysis by Diarylprolinol Ether Catalysts. J. Am. Chem. Soc. 2012, 134, 6741-6750; b) Burés, J.; Armstrong, A.; Blackmond, D. G. Correction to CurtinHammett Paradigm for Stereocontrol in Organocatalysis by Diarylprolinol Ether Catalysts. J. Am. Chem. Soc. 2012, 134, 14264.
(7) a) Reyes-Rodríguez, G. J.; Rezayee, N. M.; Vidal-Albalat, A.; Jørgensen, K. A. Prevalence of Diarylprolinol Silyl Ethers as Catalysts in Total Synthesis and Patents. Chem. Rev. 2019, 119, 42214260; b) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Enantioselective Organocatalyzed α Sulfenylation of Aldehydes. Angew. Chem. Int. Ed. 2005, 44, 794-797.
(8) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angew. Chem. Int. Ed. 2005, 44, 4212-4215.
(9) Földes, T.; Madarász, Á.; Révész, Á.; Dobi, Z.; Varga, S.; Hamza, A.; Nagy, P. R.; Pihko, P. M.; Pápai, I. Stereocontrol in Diphenylprolinol Silyl Ether Catalyzed Michael Additions: Steric Shielding or Curtin-Hammett Scenario. J. Am. Chem. Soc. 2017, 139, 17052-17063.
(10) Oestreich, M. Strategies for Catalytic Asymmetric Electrophilic α Halogenation of Carbonyl Compounds. Angew. Chem. Int. Ed. 2005, 44, 2324-2327.
(11) Britton, R.; Kang, B. α-Haloaldehydes: Versatile Building Blocks for Natural Product Synthesis. Nat. Prod. Rep. 2013, 30 , 227-236.
(12) Shibatomi, K.; Narayama, A. Catalytic Enantioselective α Chlorination of Carbonyl Compounds. Asian J. Org. Chem. 2013, 2, 812-823.
(13) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. Direct and Enantioselective Organocatalytic α-Chlorination of Aldehydes. J. Am. Chem. Soc. 2004, 126, 4108-4109.
(14) Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Lectka, T. Catalytic, Asymmetric α-Halogenation. J. Am. Chem. Soc. 2001, 123, 1531-1532.
(15) Brown S. P. Iminium and Enamine Activation: Methods for Enantioselective Organocatalysis; California Institute of Technology, Pasadena, California, 2005.
(16) Duan, X.-H.; Mayr, H. Electrophilicities of α-Chlorinating Agents Used in Organocatalysis. Org. Lett. 2010, 12, 2238-2241.
(17) Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K. A. Direct Organocatalytic Asymmetric α-Chlorination of Aldehydes. J. Am. Chem. Soc. 2004, 126, 4790-4791.
(18) Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. C. Enantioselective Linchpin Catalysis by SOMO Catalysis: An Approach to the Asymmetric α-Chlorination of Aldehydes and Terminal Epoxide Formation. Angew. Chem. Int. Ed. 2009, 48, 5121-5124.
(19) a) Bourboula, A.; Limnios, D.; Kokotou, M. G.; Mountanea, O. G.; Kokotos, G. Enantioselective Organocatalysis-Based Synthesis of 3 -Hydroxy Fatty Acids and Fatty γ-Lactones. Molecules 2019, 24, 2081; b) Mountanea, O. G.; Limnios, D.; Kokotou, M. G.; Bourboula, A.; Kokotos, G. Asymmetric Synthesis of Saturated Hydroxy Fatty Acids and Fatty Acid Esters of Hydroxy Fatty Acids. Eur. J. Org. Chem. 2019, 2010-2019; c) Kaplaneris, N.; Spyropoulos, C.; Kokotou, M. G.; Kokotos, C. G. Enantioselective Organocatalytic Synthesis of 2-Oxopiperazines from Aldehydes: Identification of the Elusive Epoxy Lactone Intermediate. Org. Lett. 2016, 18, 5800-5803.
(20) Winter, P.; Vaxelaire, C.; Heinz, C.; Christmann, M. Transforming Terpene Feedstock into Polyketide Architecture. Chem. Commun. 2011, 47, 394-396.
(21) a) Winter, P.; Swatschek, J.; Willot, M.; Radtke, L.; Olbrisch, T.; Schäfer, A.; Christmann, M. Transforming Terpene-Derived Aldehydes into 1,2-Epoxides via Asymmetric α-Chlorination: Subsequent Epoxide Opening with Carbon Nucleophiles. Chem. Commun. 2011, 47, 12200-12202; b) Winter, P.; Hiller, W.; Christmann, M. Access to Skipped Polyene Macrolides through Ring-Closing

Metathesis: Total Synthesis of the RNA Polymerase Inhibitor Ripostatin B. Angew. Chem. Int. Ed. 2012, 51, 3396-3400; c) Swatschek, J.; Grothues, L.; Bauer, J. O.; Strohmann, C.; Christmann, M. A Formal, One-Pot β-Chlorination of Primary Alcohols and Its Utilization in the Transformation of Terpene Feedstock and the Synthesis of a C_{2}-Symmetrical Terminal Bis-Epoxide. J. Org. Chem. 2014, 79, 976-983.
(22) Comito, R. J.; Finelli, F. G.; MacMillan, D. W. C. Enantioselective Intramolecular Aldehyde α-Alkylation with Simple Olefins: Direct Access to Homo-Ene Products. J. Am. Chem. Soc. 2013, 135, 9358-9361.
(23) The succinimide anion/iminium ion pair must be considered inert toward water as direct hydrolysis of the iminium ion (a.k.a. the "classical" pathway) or proton transfer to the succinimide anion would bypass the aminal intermediate.
(24) A publication on organocatalytic selenylations ${ }^{27}$ suggested that an exclusive stereospecific reaction of either enamine with water (pKa 14) may "lead selectively and irreversibly" to the two enantiomeric products via iminium ions "being counter-balanced by a hydroxy group [sic]".
(25) Ponath, S.; Menger, M.; Grothues, L.; Weber, M.; Lentz, D.; Strohmann, C.; Christmann, M. Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates. Angew. Chem. Int. Ed. 2018, 57, 1168311687.
(26) Burés, J.; Armstrong, A.; Blackmond, D. G. Explaining Anomalies in Enamine Catalysis: "Downstream Species" as a New Paradigm for Stereocontrol. Acc. Chem. Res. 2016, 49, 214-222.
(27) a) Burés, J.; Dingwall, P.; Armstrong, A.; Blackmond, D. G. Rationalization of an Unusual Solvent-Induced Inversion of Enantiomeric Excess in Organocatalytic Selenylation of Aldehydes. Angew. Chem. Int. Ed. 2014, 53, 8700-8704.
(28) Wiest, J. The Role of Charged and Uncharged Intermediates in Organocatalysis, MS Thesis, 2012, Universität Basel (conducted in the Blackmond group at The Scripps Research Institute).
(29) a) Alamillo-Ferrer, C.; Nielsen, C. D.-T.; Salzano, A.; Companyó, X.; Di Sanza, R.; Spivey, A. C.; Rzepa, H. S.; Burés, J. Understanding the Diastereopreference of Intermediates in Aminocatalysis: Application to the Chiral Resolution of Lactols. J. Org. Chem. 2021, 86, 4326-4335; b) Seebach, D.; Sun, X.; Ebert, M.-O.; Schweizer, W. B.; Purkayastha, N.; Beck, A. K.; Duschmalé, J.; Wennemers, H.; Mukaiyama, T.; Benohoud, M.; Hayashi, Y.; Reiher, M. Stoichiometric Reactions of Enamines Derived from Diphenylprolinol Silyl Ethers with Nitro Olefins and Lessons for the Corresponding Organocatalytic Conversions - a Survey. Helv. Chim. Acta 2013, 96, 799-852; c) Seebach, D.; Grošelj, U.; Badine, D. M.; Schweizer, W. B.; Beck, A. K. Isolation and X-Ray Structures of Reactive Intermediates of Organocatalysis with Diphenylprolinol Ethers and with Imidazolidinones. Helv. Chim. Acta 2008, 91, 1999-2034.
(30) a) Seeman, J. I. Effect of Conformational Change on Reactivity in Organic Chemistry. Evaluations, Applications, and Extensions of Curtin-Hammett Winstein-Holness Kinetics. Chem. Rev. 1983, 83, 83-134; b) Seeman, J. I. The Curtin-Hammett Principle and the Winstein-Holness Equation: New Definition and Recent Extensions to Classical Concepts. J. Chem. Educ. 1986, 63, 42-48; c) Chakraborty, S.; Saha, C. The Curtin-Hammett Principle. A Qualitative Understanding. Resonance 2016, 21, 151-171.
(31) Singleton, D. A.; Thomas, A. A. High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance. J. Am. Chem. Soc. 1995, 117, 9357-9358.
(32) a) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652;
b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623-11627; c) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785-789.
(33) Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theoret. Chim. Acta 1973, 28, 213-222.
(34) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999-3093.
(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.oı; Gaussian, Inc., Wallingford CT, 2016.
(36) a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104; b) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456-1465.
(37) Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. Eur. J. 2012, 18, 9955-9964.
(38) a) Zhu, H.; Clemente, F. R.; Houk, K. N.; Meyer, M. P. Rate Limiting Step Precedes C-C Bond Formation in the Archetypical Proline-Catalyzed Intramolecular Aldol Reaction. J. Am. Chem. Soc. 2009, 131, 1632-1633; b) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N. Asymmetric Cooperative Catalysis of Strong Brønsted Acid-Promoted Reactions Using Chiral Ureas. Science 2010, 327, 986-990; c) Klausen, R. S.; Kennedy, C. R.; Hyde, A. M.; Jacobsen, E. N. Chiral Thioureas Promote Enantioselective PictetSpengler Cyclization by Stabilizing Every Intermediate and Transition State in the Carboxylic Acid-Catalyzed Reaction. J. Am. Chem. Soc. 2017, 139, 12299-12309; d) Roytman, V. A.; Karugu, R. W.; Hong, Y.; Hirschi, J. S.; Vetticatt, M. J. ${ }^{13} \mathrm{C}$ Kinetic Isotope Effects as a Quantitative Probe To Distinguish between Enol and Enamine Mechanisms in Aminocatalysis. Chem. Eur. J. 2018, 24, 8098-8102.
(39) Ashley, M. A.; Hirschi, J. S.; Izzo, J. A.; Vetticatt, M. J. Isotope Effects Reveal the Mechanism of Enamine Formation in L-Pro-line-Catalyzed α-Amination of Aldehydes J. Am. Chem. Soc. 2016, 138, 1756-1759.
(40) Considering that there are errors ($\sim 0.5 \mathrm{kcal} \mathrm{mol}^{-1}$) associated with the computed energetics of the reaction coordinate, the slight discrepancy between experimental and predicted KIEs for the carbonyl carbon is not significant.
(41) See reference (39) for a similar E2-elimination step in an α amination reaction catalyzed by L-proline.
(42) a) Frantz, D. E.; Singleton, D. A.; Snyder, J. P. ${ }^{13}$ C Kinetic Isotope Effects for the Addition of Lithium Dibutylcuprate to Cyclohexenone. Reductive Elimination Is Rate-Determining. J. Am. Chem. Soc. 1997, 119, 3383-3384; b) Singleton, D. A.; Schulmeier, B. E. Evidence for a Concerted Mechanism in a Palladium Trimethylenemethane Cycloaddition. J. Am. Chem. Soc. 1999, 121, 9313-9317; c) Frantz, D. E.; Singleton, D. A. Isotope Effects and the Mechanism of Chlorotrimethylsilane-Mediated Addition of Cuprates to Enones. J. Am. Chem. Soc. 2000, 122, 3288-3295; d) Bandar, J. S.; Sauer, G. S.; Wulff, W. D.; Lambert, T. H.; Vetticatt, M. J. Transition State Analysis of Enantioselective Brønsted Base Catalysis by Chiral Cyclopropenimines. J. Am. Chem. Soc. 2014, 136, 10700-10707.
(43) a) Schmid, M. B.; Zeitler, K.; Gschwind, R. M. The Elusive Enamine Intermediate in Proline-Catalyzed Aldol Reactions: NMR Detection, Formation Pathway, and Stabilization Trends. Angew. Chem. Int. Ed. 2010, 49, 4997-5003; b) Schmid, M. B.; Zeitler, K.; Gschwind, R. M. Distinct Conformational Preferences of Prolinol and Prolinol Ether Enamines in Solution Revealed by NMR. Chem. Sci. 2011, 2, 1793-1803.
(44) Mayr, H.; Ofial, A. R.; Würthwein, E.-U.; Aust, N. C. NMR Spectroscopic Evidence for the Structure of Iminium Ion Pairs. J. Am. Chem. Soc. 1997, 119, 12727-12733.
(45) Seeman, J. I.; Farone, W. A. Analytical Solution to the Cur-tin-Hammett/Winstein-Holness Kinetic System. J. Org. Chem. 1978, 43, 1854-1864.
(46) Jimeno, C.; Cao, L.; Renaud, P. Trichloromethanesulfonyl Chloride: A Chlorinating Reagent for Aldehydes. J. Org. Chem. 2016, 81, 1251-1255.
(47) Hayes, M. D.; Rodríguez-Alvarado, M.; Brenner-Moyer, S. E. An Organocascade Approach to α, α-Chlorofluoroalcohols. Tetrahedron Lett. 2015, 56, 4718-4720.
(48) a) Warnke, S.; Helden, G. von; Pagel, K. Analyzing the Higher Order Structure of Proteins with Conformer-Selective Ultraviolet Photodissociation. Proteomics 2015, 15, 2804-2812; b) Hoffmann, W.; Langenhan, J.; Huhmann, S.; Moschner, J.; Chang, R.; Accorsi, M.; Seo, J.; Rademann, J.; Meijer, G.; Koksch, B.; Bowers, M. T.; Helden, G. von; Pagel, K. An Intrinsic Hydrophobicity Scale for Amino Acids and Its Application to Fluorinated Compounds. Angew. Chem. Int. Ed. 2019, 58, 8216-8220.
(49) Supady, A.; Blum, V.; Baldauf, C. First-Principles Molecular Structure Search with a Genetic Algorithm. J. Chem. Inf. Model. 2015, 55, 2338-2348.
(50) a) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBEo Model. J. Chem. Phys. 1999, 110, 6158-6170; b) Mesleh, M. F.; Hunter, J. M.; Shvartsburg; Schatz G. C.; Jarrold, M. F. Structural Information
from Ion Mobility Measurements: Effects of the Long-Range Potential. J. Phys. Chem. 1996, 100, 16082-16086.
(51) a) Ilgen, J.; Kaltschnee, L.; Thiele, C. M. PerfectBASH: BandSelective Homonuclear Decoupling in Peptides and Peptidomimetics. Magn. Reson. Chem. 2018, 56, 918-933; b) Ilgen, J.; Nowag, J.; Kaltschnee, L.; Schmidts, V.; Thiele, C. M. Gradient Selected Pure Shift EASY-ROESY Techniques Facilitate the Quantitative Measurement of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-Distance Restraints in Congested Spectral Regions. J. Magn. Reson. 2021, 324, 106900
(52) a) Seebach, D.; Sun, X.; Sparr, C.; Ebert, M.-O.; Schweizer, W. B.; Beck, A. K. 1,2-Oxazine N-Oxides as Catalyst Resting States in Michael Additions of Aldehydes to Nitro Olefins Organocatalyzed by α, α-Diphenylprolinol Trimethylsilyl Ether. Helv. Chim. Acta 2012, 95, 1064-1078; b) Cassani, C.; Melchiorre, P. Direct Catalytic Enantioselective Vinylogous Aldol Reaction of α-Branched Enals with Isatins. Org. Lett. 2012, 14, 5590-5593; c) Weber, A. K.; Schachtner, J.; Fichtler, R.; Leermann, T. M.; Neudörfl, J. M.; von Wangelin, A. J. Modular Synthesis of Cyclic cis- and trans-1,2-Diamine Derivatives. Org. Biomol. Chem. 2014, 12, 5267-5277; d) Gurubrahamam, R.; Chen, Y. M.; Huang, W.-Y.; Chan, Y.-T.; Chang, H.-K.; Tsai, M.-K.; Chen, K. Dihydrooxazine N-Oxide Intermediates as Resting States in Organocatalytic Kinetic Resolution of Functionalized Nitroallylic Amines with Aldehydes. Org. Lett. 2016, 18, 3046-3049; e) Boeckman Junior, R. K.; Wang, H.; Rugg, K. W.; Genung, N. E.; Chen, K.; Ryder, T. R. A Scalable Total Synthesis of (-)-Nakadomarin A. Org. Lett. 2016, 18, 6136-6139.
(53) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Computational Prediction of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Chemical Shifts: a Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112, 1839-1862.
(54) References NBO method: (B3LYP-D3(BJ)/6-31g(d,p), io(3/32=2), 219.15 K, with a Fine grid); a) Foster, J. P.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980,102, 7211-7218; b) Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near-Hartree-Fock Water Dimer. J. Chem. Phys. 1983, 78, 4066-4073; c) Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735-746; d) Reed, A. E.; Weinhold, F. Natural Localized Molecular Orbitals. J. Chem. Phys. 1985, 83, 1736-1740; e) J. E. Carpenter, Extension of Lewis structure concepts to open-shell and excited-state molecular species, Ph.D. thesis, University of Wisconsin, Madison, WI, 1987; f) Carpenter, J. E.; Weinhold, F. Analysis of the Geometry of the Hydroxymethyl Radical by the "Different Hybrids for Different Spins" Natural Bond Orbital Procedure. J. Mol. Struct. THEOCHEM 1988, 139, 4162; g) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926; h) Weinhold, F. and Carpenter, J. E. in The Structure of Small Molecules and Ions, Naaman, E. R.; Vager, Z. Plenum, 1988, 227-236.

1.4. Summary and Outlook

The two previously mentioned publications made a decisive contribution to the understanding of the reaction mechanism of the organocatalyzed α-chlorination of aldehydes. A better understanding of the stabilizing interactions within stable aminal intermediates was achieved by rigorous characterization and follow-up experiments with these species. Moreover, the synthetic value of this reaction was demonstrated by its application in the synthesis of chiral compounds.

A first mechanistic idea allowed the definition of factors whose modification could have an influence on the reaction mechanism. The modified steric environment of newly designed and synthesized imidazolidinone-based catalysts did not lead to the desired result. The reaction accelerating effect of Brønsted acid could be confirmed as expected. Interestingly, the choice and combination of acids plays a crucial role. Thus, a 1:2 mixture of TFA and acetic acid was slightly superior to pure TFA. This observation suggests that acetic acid plays a role beside only being a proton source. However, the most significant effect was obtained by modifying the chlorinating agent. By comparing electron-rich imides such as the tetramethylated analog of $\mathrm{NCS}\left(\mathrm{Me}_{4} \mathrm{NCS}\right)$ and electron-poor derivatives such as nitrated $\mathrm{NCP}\left(\mathrm{NO}_{2} \mathrm{NCP}\right)$, the notion postulated at the outset was confirmed. Electron-deficient chlorinating reagents almost completely suppressed the accumulation of the parasitic intermediates and allowed the reaction to proceed in a much shorter reaction time. On the other hand, electron-rich derivatives provided rapid accumulation of much more stable aminals. ${ }^{1} \mathrm{H}$ NMR studies could proof that the maximum product concentration was significantly lower than with electron-deficient chlorinating reagents. In combination with a slightly modified imidazolidinone catalyst and additives, an improved catalytic system with significantly reduced catalyst loading was presented, showing broad functional group tolerance. In addition, aminal intermediates previously identified only by NMR spectroscopy ${ }^{[28,30]}$ could be isolated and fully characterized. Single crystal structure analysis allowed the relative and absolute stereoconfiguration to be elucidated for the first time. The isolation of this species also allowed decomposition experiments to be carried out, thus defining its role in the catalytic cycle. For this purpose, the intermediate was first exposed to standard reaction conditions. As in the previously performed time-dependent NMR studies, almost no decomposition was observed even with longer reaction times. Only after increasing the equivalents of TFA and water, the aminal decomposes effectively. By using deuterated TFA and deuterated water, the decomposition mechanism could be further studied. Initially, no deuterium incorporation into the α-position could be detected. This finding rules out decomposition via E2 elimination to chloroamine as postulated by Blackmond ${ }^{[30]}$ and supports the decomposition mechanism via a chloroiminium ion.

Subsequent intensive scientific discussion with Burés, Armstrong, and Blackmond led to a thorough examination and reflection of all previous research results and motivated us to once again question the interpretation of our own research and to conduct renewed mechanistic studies. In addition to the already studied MacMillan aminals, the Jørgensen aminals, which were considered in the publication "Curtin-Hammett Paradigm for Stereocontrol in Organocatalysis by Diarylprolinol Ether Catalysis", ${ }^{[30]}$ were comprehensively investigated.

(S)-16

$\|$

54a

54c

Scheme 17: Final concept of the catalytic cycle for imidazolidinone catalysts.

For the MacMillan catalyst 18, a combination of isotopic competition experiments, calculated and experimental KIE values, and calculated transition states surprisingly demonstrated that the first irreversible step precedes the $\mathrm{C}-\mathrm{Cl}$ bond formation. The stereoinducing step in this scenario is represented by the nucleophilic attack of the enamine 52 to the electrophilic chlorinating reagent $Y-C l$. The rotational preference of the (E)-enamine 52 is defined by the choice of catalyst $\left(\mathrm{R}^{2}, \mathrm{R}^{3}\right.$ and $\left.\mathrm{R}^{4}\right)$ and thus by the relative energies of the rotamers. Which rotamer reacts in the subsequent step depends on the energies of the transition states for the $\mathrm{C}-\mathrm{Cl}$ bond linkage. The four possible diastereomeric chloroiminium ions 53a-d are trifurcation points. First, direct hydrolysis to the desired products $(S)-16$ and $(R)-16$ can occur. Here, the accelerating influence of Brønsted acids as additives can be particularly emphasized. Depending on the reaction conditions and the type of catalyst, a reverse reaction can take place, which can lead to racemization (rac-16) or double chlorination (24) of
the aldehyde via the formation of the planar enamine 55. By addition of the anion of the chlorinating reagent $\left(Y^{-}\right)$, the chloroiminium ions can generate the four diastereomeric aminals 54a-d. Whether and to what extent the formation of the different aminals proceeds can be influenced by the modification of the chlorinating agent $(\mathrm{Y}-\mathrm{Cl})$, the structure of the catalyst and additives. Moreover, this reactivity is in direct competition to the hydrolysis of the chloroiminium ions. Consequently, favored hydrolysis can also suppress accumulation of the intermediates. For the entire catalytic cycle to proceed efficiently, all of the processes shown in grey (Scheme 17) should be suppressed. Which of the processes discussed here really proceeds is dependent on the selected reaction conditions. The nature of the catalyst, the chlorinating reagent, additives or the temperature can have an enormous influence on the reaction events and thus, for example, suppress or favor dichlorination, racemization or the formation of one or more diastereomeric aminals.

Numerous aminals with the $1^{\text {st }}(14), 2^{\text {nd }}(19)$ and $3^{\text {rd }}(18)$ generation MacMillan catalysts could be isolated, the respective diastereomers separated and all compounds fully characterized for the first time. This made it possible to revise the syn and anti assignment of MacMillan aminal diastereomers made in the literature and to characterize additional diastereomers that had previously been overlooked. ${ }^{[21,41]}$ Ion mobility mass spectrometry with aliquots from the reaction mixture and with isolated aminals shed more light on the stereochemical course of the reaction and the decomposition process of the aminals. In combination with the previously mentioned experiments and a comprehensive consideration of the kinetic profile, a Curtin-Hammett scenario for the reaction with MacMillan catalysts could be ruled out. Most of the corresponding aminals are stable off-cycle intermediates, as anticipated at the beginning of these studies. Interconversion processes, according to the Curtin-Hammett scenario could be excluded beyond doubt.

Aminals arising from the Jørgensen catalysts showed significantly lower stability than the corresponding MacMillan aminals. Decomposition experiments were able to rule out E2 elimination in analogy to the MacMillan aminals. In addition, these experiments could show that only one enantiomer of the chloroaldehyde emerges from the two aminal species and not both, as in the CurtinHammett scenario. In situ reduction and functionalization of the formed aminals (42a) led to increased stability and made the isolation of the Jørgensen aminals possible for the first time. Subsequent X-ray crystal structure analysis revealed a syn configuration of the major aminal isomer, in contrast to the anti assignment made in the Curtin-Hammett scenario. A comparison between the calculated NMR data of a wide range of isomers, which were also calculated, and the experimental NMR data of the two aminal species could refute the anti configuration of the major isomer anti-42a and confirm a syn configuration between the chlorine atom and the phthalimide substituent. Additionally, the combination of calculated isomers and NMR-data revealed a syn configuration also for the minor
aminal. Interestingly the major and minor species turned out to be rotamers (ap-syn-42a and sc-exo-syn-42a) at the bulky substituent of the pyrrolidine catalyst. These findings are summarized in Scheme 18.

Scheme 18: Assignment of the two aminal species according to Blackmond ${ }^{[30,41]}$ and revised structures according to the present work.

The sum and diversity of all experiments and the unambiguous results for both, the MacMillan and the Jørgensen system, leaves no doubt about the incorrect assignment of numerous aminal intermediates ${ }^{[30,41]}$ and the absence of a Curtin-Hammett scenario.

This work shows how powerful a reasonable combination of diverse chemical methods can be. Approved synthetic methods, such as the isolation of intermediates for crystal structure analysis or decomposition experiments, go hand in hand with various modern techniques such as KIE measurements and ion mobility spectrometry. These experimental methods were complemented at various points by DFT-based calculations. The reliability of the interpretation is increased by the combination of the methods and their consistent results. Any misinterpretations thus become much less likely. This approach also promotes exchange between related disciplines and research groups and can be exemplary for the future elucidation of unknown or controversial reaction mechanisms. A deeper understanding of the chemical processes involved can improve manufacturing processes and, in some cases, make them possible in the first place.

1.5. Further Results

The previously developed Cl^{+}species and their halogen analogues, were shown to have profitable properties over the traditionally used reagents NXS and NXP $(X=C l, B r, I)$ in further work by the group of Christmann and Heretsch. In addition, the applicability of the modified organocatalytic α chlorination of aldehydes was demonstrated in the synthesis of chiral organic molecules.

Triazoles

Triazoles as structural motifs can be found in numerous products such as drugs, functional materials or agrochemicals. ${ }^{[50]}$ The properties and uses as ligands in coordination chemistry have also been extensively studied. ${ }^{[51]}$ As shown in Scheme 19, two regioisomeric bistriazoles should be synthesized from one common chiral precursor (in the course of the synthesis two different pseudo-enantiomeric catalysts (62 and ent-18), which generate the enantiomeric bis-chlorohydrins 57 and ent-57 were used; the use of one catalyst would generate one common chiral precursor).

Scheme 19: Synthesis of the two chiral bistriazoles 60 and 61.

The previously investigated α-chlorination of aldehydes should ensure the correct installation of the two stereocenters and prove its potential as an efficient transformation. The subsequent bifurcation, leading to the regioisomeric bistriazoles 60 and 61 , should be accomplished by direct azide substitution or epoxidation and epoxide opening of the chiral bis-chlorohydrin 57. Part of the synthetic route to regioisomer 60 was inspired by a publication of Mekni and Baklouti. ${ }^{[52]}$

$\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}, 3 \mathrm{~d} \downarrow$

58

ent-59

toluene, $80^{\circ} \mathrm{C}, 3 \mathrm{~d} \mid 68 \%$

ent-61

Scheme 20: Synthesis of the two chiral bistriazoles $\mathbf{6 0}$ and 61

As shown in Scheme 20, the two bistriazoles 60 and ent-61 could be successfully synthesized in four and five steps, starting from inexpensive glutaraldehyde 56. In the first step, chiral chlorohydrin ent57 was obtained by an organocatalytic α-chlorination of aldehydes followed by reduction in moderate yield of 38% and excellent diastereo- and enantioselectivity. The use of the modified catalytic system consisting of catalyst 62 and the chlorinating reagent $\mathrm{NO}_{2} \mathrm{NCP}(67)$ allowed a reduction of the catalyst loading from 20 to 10 mol\% per functional group with almost identical yield (35\%). At this bifurcation point diazide 58 could first be synthesized by twofold inversion of the stereocenters in a one-pot
reaction (epoxidation and epoxide opening) with a yield of 63\%. The regioisomeric diazide ent-59 was accessed by TBS protection of the free alcohols followed by a one-pot azide substitution and deprotection in a good overall yield of 63\%. Unfortunately, the direct substitution of chlorohydrin ent57 was not possible. It was suspected that the harsh conditions of the azide substitution could lead to ring closure reactions. ${ }^{[53]}$ Subsequent propargylation generated the two regioisomeric propargyl ethers 64 and 66 in 63% and 76% yield, respectively. In the last step, an intramolecular 1,3-dipolar cycloaddition afforded the two regioisomeric bistriazoles 60 and ent-61 in 88% and 68% yields, respectively. The absolute configuration of the two compounds could be confirmed by single crystal structure analysis.

Both triazoles 60 and ent-61 can also be precursors for carbenes and offer subsequent coordination to metal-centers (Scheme 21). ${ }^{[54]}$ The presented synthesis enables multiple variations to modify the bistriazoles. The large bite angle (α) of mesionic carbene 68 can in priciple be compressed by two additional substituents (R^{1}) on the carbon backbone (Thorpe-Ingold effect ${ }^{[55]}$) (Scheme 21, 70). Using a suitable starting material would be the easiest way to introduce these substituents. The same compressing effect might be achieved by shortening the connection between the oxygen atom and the triazole scaffold (Scheme 21, 69). Thus the previously performed propargylation of the free alcohols should be substituted by alkynylation of the two hydroxyl groups. ${ }^{[56]}$ In future studies bistriazoles and mesoionic carbenes with different bite angles can be investigated by means of coordination modes to different sized metal centers.

68

69

68

Scheme 21: Possibilities for tuning of the bite angle of mesoionic carbene 68 ($\alpha>\beta>\gamma$).

Allylic Chlorination

The strongly electrophilic chlorinating reagent $\mathrm{NO}_{2} \mathrm{NCP}$ (67) showed significantly increased reactivity (compared to NCS and NCP) toward unsaturated compounds. For example, in the organocatalytic α -
chlorination of citronellal, it was observed that the electron-rich double bond of this substrate generates the corresponding allyl chloride 72 as a side reaction (Scheme 22, top). In a bachelor thesis supervised by me, it was subsequently shown that numerous olefins react to the corresponding allyl chlorides without further activation. ${ }^{[57]}$ Using the electron-rich aromatic 1,3,5-trimethoxybenzene (73) as an internal standard in a ${ }^{1} \mathrm{H}$ NMR kinetic measurement, electrophilic aromatic substitution was observed over time. The three aromatic protons were substituted successively by the chlorine atoms of $\mathrm{NO}_{2} \mathrm{NCP}$ in the course of the reaction (Scheme 22 , bottom). The corresponding iodine and bromine derivatives of $\mathrm{NO}_{2} \mathrm{NCP}$ were also successfully synthesized and a similar reactivity towards olefins was demonstrated.

Scheme 22: Allylic chlorination of olefins (top) and $S_{E} A r$ for electron-rich aromatic compounds (bottom).

Total Synthesis of Dichrocephon A and B

In the course of the first total syntheses of dichrocephon A and B, a chemoselective bromination of the terminal alkyne of compound 75 was envisioned (Scheme 23). ${ }^{[58]}$ With NBS as a brominating reagent, good yields could only be obtained by using stoichiometric amounts of AgNO_{3}. Lowering the catalyst loading to 0.5 equivalents led to a significant drop of the yield and the formation of side products. Only by using $\mathrm{NO}_{2} \mathrm{NBP}(77)$ it was possible to reduce the amount of silver salt to a catalytic value of $5 \mathrm{~mol} \%$. In addition, the yield could be increased from 32% to $91 \% .{ }^{[59]}$

Scheme 23: NO_{2} NBP as a superior alternative to NBS in the chemoselective bromination of terminal alkynes.

Photocatalytic C-H-Functionalization

In a recent publication by the two groups of Heretsch and Christmann on the design and use of a selfdeveloped flow system, a regioselective, photocatalytic C-H chlorination of (+)-sclareolide was investigated as a feasibly application (Scheme 24). ${ }^{[60]}$ The commercially available reagents NCS and NCP initially generated yields in the range of $11-24 \%$. The use of $\mathrm{NO}_{2} \mathrm{NCP}$ resulted in a further drop of the yield (6\%). Good results (41\% yield) were finally achieved with the electron-rich chlorine source $\mathrm{Me}_{4} \mathrm{NCS}$ (79). The beneficial behavior of electron rich chlorinating reagents can be attributed to the more stable $\mathrm{N}-\mathrm{H}$ bond of the corresponding imides. ${ }^{[61]}$ The superiority of the newly developed chlorinating reagent 79 could also be reproduced on a gram scale.

Scheme 24: Photocatalytic C-H-functionalization of (+)-sclareolide.

2. Application of Novel Polyinterhalides in Organic Synthesis

2.1. Introduction

2.1.1. Halogen Bonding

Defined in 2013 by IUPAC, ${ }^{[62]}$ halogen bonding was initially considered to be the interaction between a halogen and a Lewis base. In contrast to the traditional nomenclature, the halogens are considered as Lewis acidic halogen bridge donors. The Lewis bases act as halogen bridge acceptors by providing their electron density. Halogen bridges are not only formed between halogens and Lewis bases but also between two halogen species. Halogen bonding can be explained similarly to hydrogen bonding. The main difference, however, is the directional nature of the bond. While hydrogen bonds are nondirectional, the halogen bond is formed at a bond angle of 90° or 180°. The reason for the special bonding situation is the σ-hole. ${ }^{[63]}$

Figure 8: Electrostatic potential of $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$, and BrCl (red: high electron density, blue: low electron density). ${ }^{[64]}$

As shown in Figure 8, the electrostatic potential, which reflects the electron distribution in the molecule, is unevenly distributed across the halogen molecules. Rings with areas of larger negative partial charges are formed perpendicular to the bond axis. At the ends, along the bond axis, regions of positive partial charges, the σ-holes, are formed. This anisotropy leads to directional non-covalent halogen bonding with nucleophiles along the bond axis of the halogen species $\left(180^{\circ}\right)$. With electrophiles, interaction occurs perpendicular $\left(90^{\circ}\right)$ to the bond axis. As shown in Figure 8, the intensity of the σ-hole, and thus the electron accepting ability, increases with the atomic radius from chlorine to bromine. While homoatomic dihalogens $\left(\mathrm{Br}_{2}\right.$ or $\left.\mathrm{Cl}_{2}\right)$ show an identical σ-hole at both halogen atoms, interhalogens (BrCl) show a much more pronounced σ-hole at the more electropositive atom. ${ }^{[63]}$ Figure 9 illustrates the different bonding situations between halogen species and nucleophiles or electrophiles and between two halogen species. ${ }^{[65]}$

Figure 9: Interaction between halogen and nucleophile (left), between halogen and electrophile (center), and between two halogens (right).

2.1.2. Polyhalides

The importance of halogens and halogenated compounds in the $21^{\text {st }}$ century can hardly be overestimated. ${ }^{[63]}$ Chlorine gas, which comes almost exclusively from the chlorine-alkali electrolysis, is one of the ten most produced inorganic substances worldwide in terms of volume. ${ }^{[66]}$ Chlorine or chlorine-containing compounds play an irreplaceable role in manufacturing processes and end products in most cases. Plastics such as PVC, pharmaceutical products and agrochemicals are just a few examples. ${ }^{[67]}$ The increasing importance of fluorinated products, especially in the field of materials and pharmaceuticals, should also be emphasized here. ${ }^{[68]}$ Beside these substances, which are mostly classified as organohalogen compounds, the interesting class of polyhalogens exists. Polyhalogen compounds can be divided into three categories; neutral ($\mathrm{BrCl}, \mathrm{IF}_{7}, \mathrm{BrF}_{3}$), cationic ($\left[\mathrm{I}_{3}\right]^{+},\left[\mathrm{Br}_{3} \mathrm{~F}_{8}\right]^{+},\left[\mathrm{Br}_{5}\right]^{+}$) and anionic $\left(\left[\mathrm{Br}_{9}\right]^{-},\left[\mathrm{Br}_{4}\right]^{2-},\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}\right)$polyhalogens. ${ }^{[63]} \mathrm{A}$ further distinction is made between homoatomic species such as $\left[\mathrm{I}_{3}\right]^{+},\left[\mathrm{Br}_{5}\right]^{+}$or $\left[\mathrm{Br}_{4}\right]^{2-}$ and heteroatomic species (polyinterhalogens) such as $\left[\mathrm{Br}_{3} \mathrm{~F}_{8}\right]^{+}$or $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$. The anionic polyinterhalogens will be referred to as polyinterhalides in the following. Among the polyinterhalides, a distinction is made between classical and non-classical species. The former bear an electropositive central atom surrounded by more electronegative halogens $\left(\left[\mathrm{IF}_{6}\right]^{-}\right.$or $\left[\mathrm{ICl}_{4}\right]^{-}$). In non-classical polyinterhalides, the central atom is more electronegative than the coordinating diatomic halogen molecules $\left(\left[\mathrm{Cl}_{\left.\left(I_{2}\right)_{4}\right]^{-}}\right.\right.$or $\left.\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{-}\right)$. The distinction is often not clear-cut. For example, the $\left[\mathrm{IBr}_{2}\right]^{-}$anion can be considered as $[\mathrm{Br}-\mathrm{I}-\mathrm{Br}]^{-}$(3-center 4-electron bond analogous to the I^{3-} anion) or as Br^{-}coordinated by a IBr -molecule (donor-acceptor bond). The choice of the counter cation can influence decisively the structure and geometry of the anion as well as the physical properties of the compound. ${ }^{[63]}$ The structural features of polyinterhalides can be explained by the already mentioned anisotropy of the charge distribution. The exact bonding situation of the non-classical polyinterhalides can be illustrated by the molecular orbital (MO) theory. In Figure 10, the MO scheme for molecular BrCl is shown on the left. It largely corresponds to the MO schemes of the homoatomic dihalogens. The greater electronegativity of chlorine results in the atomic orbitals of chlorine being lower than those of bromine. Unlike homoatomic dihalogens, in this case atomic orbitals of different periods are combined (bromine: $4^{\text {th }}$ period, chlorine: $3^{\text {rd }}$ period). The formation of a non-
classical polyinterhalide such as [$\mathrm{Cl}(\mathrm{BrCl})]^{-}$(Figure 10, right) occurs via donating a free electron pair of the chloride anion into the LUMO of BrCl . Since this molecular orbital is antibonding, a bond weakening occurs in the BrCl molecule. This phenomenon can be experimentally demonstrated by both single crystal structure analysis and vibrational spectroscopy. ${ }^{[64]}$ Thus, the bonding situation in the polyinterhalide $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$can be described as a donor-acceptor interaction between Cl^{-}and $\mathrm{BrCl}{ }^{[63]}$

Figure 10: Molecular orbital diagram for the BrCl molecule (left) and for the polyinterhalide $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$(right).

2.1.3. Polyhalides as Reagents in Organic Chemistry

Due to their better handling (liquid physical state, vapor pressure) and the resulting lower toxic exposure compared to dihalogens, polyhalides found their way into organic synthesis. Nonabromides, for example, are reliable bromination reagents with better selectivities compared to elemental bromine. ${ }^{[69]}$ Analogously, the use of trichlorides is also described. ${ }^{[70]}$ The use of BrCl in organic chemistry is mostly limited to its application as an interhalogenation reagent for unsaturated substrates and not widely used. ${ }^{[71]}$ Despite its high reactivity and perfect atomic economy, its gaseous physical state and high toxicity, degrade BrCl to an inconvenient reagent. Another drawback is the limited storability, which is a result of the equilibrium reaction between BrCl and $\mathrm{Br}_{2} / \mathrm{Cl}_{2}$. ${ }^{[64]}$ Due to the different vapor pressures, elemental bromine accumulates, which alters the stoichiometry between bromine and chlorine in the compound and decreases the selectivity for the use as a reagent. Thus, dual brominated and chlorinated by-products are generated in the reaction with olefins.

Figure 11: Gaseous $\mathrm{BrCl}(\mathrm{left})^{[72]}$ and the ionic liquid $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]($ right $){ }^{[73]}$.

Due to the drawbacks of elementary BrCl , two-component systems with common reagents were established as alternatives. ${ }^{[74]}$ Pioneering work on the enantioselective bromochlorination of olefins is known from the group of Burns. ${ }^{[75]}$ Various allylic alcohols (80) were converted into the corresponding chiral bromochlorides (83) in excellent chemo- and enantioselectivities by using NBS (81), chlorotitanium triisopropoxide and the chiral Schiff base 82 as the catalyst (Scheme 25).

Scheme 25: Chemo- und enantioselective bromochlorination according to Burns.

The BrCl molecule has a more distinct σ-hole compared to Br_{2} or Cl_{2} (Figure 8), which favors the formation of halogen bonds. Therefore, the combination of BrCl with a halogen bond acceptor allows a shift of the equilibrium from $\mathrm{Br}_{2} / \mathrm{Cl}_{2}$ to BrCl . Based on this concept, the stabilized interhalide $\left[\mathrm{NEt}_{4}\right][\mathrm{Cl}(\mathrm{BrCl})]$ was first used in the selective bromochlorination of alkenes and dienes in the 1980 's. ${ }^{[71,76]}$ The higher homologues of these interhalides were recently synthesized and characterized in the Riedel group. ${ }^{[77]}$

Figure 12: A selection of different polyinterhalides synthesized and characterized by the Riedel group. ${ }^{\text {[77] }}$

In order to quantify the environmental and economic efficiency of the different interhalogenation reagents the atomic economy factor A will be introduced in the following. Here, the quotient of the molar mass of the reagent and the molar mass of the BrCl equivalents released is formed.

$$
\begin{gathered}
A=\frac{M\left([\text { cation }]\left[\mathrm{Cl}(\mathrm{BrCl})_{x}\right]\right)}{x \cdot M(\mathrm{BrCl})} \\
\text { or } \\
A=\frac{\sum M(\text { reagents })}{M(B r C l)}
\end{gathered}
$$

The factor only reflects the atomic economy theoretically possible from the sum formula of the reagent. The reactivity or actually required equivalents are not taken into account here. In the most ideal case, the use of pure BrCl , no by-products are formed and the factor A becomes 1. Consequently, as the value of A increases, the atomic economy of the reagent decreases. Table 1 lists some interhalogenation reagents and the determined atomic economy factor A. Two-component systems such as NBS and HCl.py ${ }^{[75]}$ or the system used by the group of Burns for the enantioselective bromochlorination of allylic alcohols ${ }^{[75]}$ are usually significantly inferior to the one-component systems. In the latter, a higher substitution with BrCl molecules (compare entries 2 and 4) and a smaller countercation (compare entries 4 and 5) leads to a better atomic economy factor.

Table 1: Reagents for bromochlorination and the corresponding atomic economy factor A.

entry	reagents	BrCl-equivalents	A
1	$\mathrm{BrCl}^{[71]}$	1	1.0
2	$\left[\mathrm{NEt}_{4}\right][\mathrm{Cl}(\mathrm{BrCl})]^{[71,76]}$	1	2.4
3	$\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{[64]}$	2	1.7
4	$\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{[64]}$	3	1.5
5	$\left[\mathrm{AsPh}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{[77]}$	3	2.2
6	$\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{[64]}$	5	1.3
7	$\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~N}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{6}\right]^{[77]}$	6	1.8
8	$\mathrm{NBS}, \mathrm{HCl} \cdot \mathrm{py}^{[75]}$	1	2.5
9	$\mathrm{NBS},\left({ }^{(} \mathrm{PrO}\right)_{3} \mathrm{TiCl}^{[75]}$	1	3.8

2.2. Scientific Goal

Polyinterhalides of the type $[c a t i o n][C l(B r C l) n](n=1-6)$ developed in the Riedel group extend the compound class of non-classical polyinterhalides. In this work, we aimed to test whether the novel compound $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right](\mathrm{A}=1.7)$ can mimic or exceed the reactivity of pure $\mathrm{BrCl}(\mathrm{A}=1.0)$ or the literature-known polyinterhalide $\left[\mathrm{NEt}_{4}\right][\mathrm{Cl}(\mathrm{BrCl})](\mathrm{A}=2.4)$. Good atomic economy combined with high stability and cheap and easy synthesis make $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$ a promising interhalogenation reagent. Unsaturated substrates, such as olefins, alkynes or Michael systems, are known substrates for bromochlorination and will therefore also be tested in this study. Since regio- and chemoselectivity have a significant influence on the general applicability, unsymmetrical olefins and substrates with additional functional groups will also be interhalogenated in the course of the investigations. In addition, the reaction conditions will be varied to investigate the possible influence of solvent, temperature and reaction time (Scheme 26).

Scheme 26: Work plan for the application of $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$ as an interhalogenation reagent.

2.3. Publication

2.3.1. In Situ Synthesis and Applications for Polyinterhalides based on BrCl

Benjamin Schmidt, Sebastian Ponath, Johannes Hannemann, Patrick Voßnacker, Karsten Sonnenberg, Mathias Christmann, Sebastian Riedel*

Chem. Eur. J. 2020, 26, 15183-15189.
doi.org/10.1002/chem. 202001267

Highlighted in ChemistryViews (November 18, 2020)

Permission granted for reproduction in print and electronic format for the purpose of this dissertation by: Chem. Eur. J. 2020, 26, 15183-15189
https://doi.org/10.1002/chem.202001267.
Copyright: 2020 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim
license number: 4963700864814

Abstract

:

The use of neat BrCl in organic and inorganic chemistry is limited due to its gaseous aggregate state and especially its decomposition into Cl_{2} and Br_{2}. The stabilization of BrCl in form of reactive ionic liquids via a novel in situ synthesis route shifts this equilibrium drastically to the BrCl side, which leads to safer and easier to handle interhalogenation reagents. Furthermore, the solid state structures of the hitherto unknown $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$and $\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}$anions were synthesized and characterized by singlecrystal X-ray diffraction (XRD), Raman and IR spectroscopy, as well as quantum chemical calculations.

Author Contribution:

Various novel polyinterhalides were synthesized and extensively characterized in the Riedel group. My task was to investigate the reaction behavior towards organic molecules. In addition, a comparison with the known reactivity of pure BrCl had to be made and advantages or disadvantages had to be pointed out. For this purpose, I first selected nine suitable unsaturated substrates, six of them were accessible via a one-step synthesis. Subsequently, I was able to find suitable reaction conditions (solvent, concentration, temperature, reaction time) and test the reactivity of $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$
towards the nine substrates. The isolation, purification and full characterization of the compounds, some of which were unknown, was also carried out by me. Lastly, I succeeded in preparing single crystals for three interhalogenated compounds. The single crystal structure analysis of a bromochlorinated compound was subsequently carried out by the Riedel group.

(ㄷ) In Situ Synthesis and Applications for Polyinterhalides Based on BrCl

Benjamin Schmidt, ${ }^{[a]}$ Sebastian Ponath, ${ }^{[b]}$ Johannes Hannemann, ${ }^{[a]}$ Patrick Voßnacker, ${ }^{[a]}$ Karsten Sonnenberg, ${ }^{[a]}$ Mathias Christmann, ${ }^{[b]}$ and Sebastian Riedel ${ }^{*[a]}$

Abstract

The use of neat BrCl in organic and inorganic chemistry is limited due to its gaseous aggregate state and especially its decomposition into Cl_{2} and Br_{2}. The stabilization of BrCl in form of reactive ionic liquids via a novel in situ synthesis route shifts this equilibrium drastically to the BrCl side, which leads to safer and easier-to-handle interha-

Abstract

logenation reagents. Furthermore, the crystalline derivatives of the hitherto unknown $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$and $\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}$anions were synthesized and characterized by single-crystal X-ray diffraction (XRD), Raman and IR spectroscopy, as well as quantum chemical calculations.

Introduction

After the discovery of attractive interactions between dihalogens and halide anions in 1819, ${ }^{[1]}$ Chattaway and Hoyle carried out first systematic investigations of polybromides and -chlorides in 1923. ${ }^{[2]}$ These reports marked the starting point of the vast chemistry of polyhalogen compounds. In the last years not only our knowledge of the structural diversity of several polyhalogen anions, but also the possible applications of polyhalogen compounds increased continuously. ${ }^{[3]}$ In general, interhalogen anions can be separated into classical interhalides, which possess an electropositive center that is surrounded by more electronegative halogen atoms, for example, $\left[\mathrm{ICl}_{4}\right]^{-},{ }^{[4]}$ $\left[\mathrm{IF}_{6}\right]^{-},{ }^{[5]}$ and nonclassical interhalides. A nonclassical interhalide can be best described as a central halide ion X^{-}, which is surrounded by dihalogen Y_{2} (e.g., $\left.\left[\mathrm{Cl}\left(\mathrm{I}_{2}\right)_{4}\right]^{-[6]}\right)$ or interhalogen molecules XY/YZ (e.g., $\left.\left[\mathrm{Br}(\mathrm{IBr})_{2} \cdot 2 \mathrm{IBr}\right]^{-}\right) .{ }^{[7]}$ Lately first examples of extraordinarily large polyhalogen anions of the lighter halogens such as the octahedrally coordinated monoanions $\left[\mathrm{Cl}_{13}\right]^{-[8]}$ and $\left[\mathrm{Cl}\left(\mathrm{BrCl}_{6}\right]^{-[9]}\right.$ as well as the highly reactive $\left[\mathrm{Br}_{2} \mathrm{~F}_{7}\right]^{-}$and $\left[\mathrm{Br}_{3} \mathrm{~F}_{10}\right]^{-}$

[^1]anions ${ }^{[10]}$ were reported. Besides the detailed structural investigation of polyhalides, their applications as halogenation reagents, ${ }^{[11]}$ as electrolytes in dye-sensitized solar cells ${ }^{[12]}$ or (redox flow) batteries ${ }^{[13]}$ are well established. Recently further applications as reactive ionic liquids which are able to dissolve noble metals and alloys were reported. These reactive ionic liquids show promise for applications in metal recycling. ${ }^{[14]}$
The formation of polyhalides can be explained by the concept of halogen bonding. According to this concept, the electrostatic potential of a dihalogen molecule is anisotropic and can be divided into two regions: an area of higher electron density, which forms a belt perpendicular to the molecule's bonding axis, and a region of a more positive electrostatic potential, which is situated on the bonding axis, the so-called σ hole. ${ }^{[15]}$ While for symmetrical dihalogens such as Br_{2} and Cl_{2}, the σ-hole is symmetrical on both halogen atoms, for diatomic interhalogens such as IBr and BrCl , the σ-hole is more pronounced at the more electropositive halogen atom, see Figure 1. Owing to their polarized bond and pronounced σ hole, interhalides are expected to form more stable anions and their tendency to form extended polyhalogen networks is lowered.

Figure 1. Electrostatic potential in the range of $-0.01 \mathrm{au}(\mathrm{red})$ to 0.06 au (blue) for the molecules $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and BrCl (view of the Cl or Br atom, isosurface value 0.0035 au); calculated at the B3LYP-D3/def2-TZVPP level of theory.

Results and Discussion

Considering the excellent halogen bonding properties, it is surprising that larger nonclassical interhalides based on bromine monochloride (BrCl) have been reported only recently. ${ }^{[9]}$ The interhalide BrCl exists in an equilibrium with Br_{2} and Cl_{2}, see Scheme 1. ${ }^{[16,17]}$ This hampers its use as a reagent due to side reactions. An equilibrium ratio of approximately 60% for BrCl , and 20% for Cl_{2} and $20 \% \mathrm{Br}_{2}$ was experimentally determined at room temperature. ${ }^{\text {[16] }}$

This in good agreement with quantum chemical calculations at B3LYP-D3(BJ)/def2-TZVPP ${ }^{[18]-[28]}$ and SCS-MP2/def2-TZVPP ${ }^{[29,30]}$ level of theory. This equilibrium makes the stoichiometric usage of neat BrCl nearly impossible. Due to the different vapor pressures ${ }^{[31]}$ of $\mathrm{Br}_{2}, \mathrm{Cl}_{2}$ and BrCl , first mainly chlorine boils off a batch of BrCl while bromine is enriched in the remaining liquid. Due to the pronounced σ-hole, the halogen bonding properties of BrCl are enhanced in comparison to Br_{2} and Cl_{2}. Thus, an addition of a halogen bond acceptor, for example, a chloride salt, yielding BrCl based polyinterhalides such as the pentahalide $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$, should result in a significant shift of the equilibrium to the BrCl side, see Scheme 2. Our calculations show that the equilibrium is almost entirely located on the side of the BrCl based interhalides ($>99.99 \%$, calculated from ΔG°). Therefore, the stabilization of BrCl in form of polyinterhalide compounds provides a convenient BrCl source.

This was partially examined by the use of the trihalide $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$as efficient bromochlorinating agent. ${ }^{[32-34]}$ Nevertheless, further studies regarding the reactivity of higher polyinterhalides based on BrCl are still necessary.

Herein; we report a new synthetic route for polyinterhalides based on BrCl as well as the preparation and characterization of hitherto unknown BrCl interhalide monoanions, which complete the set of possible coordination numbers. These compounds have been characterized by single crystal X-ray diffraction (XRD), Raman and IR spectroscopy as well as quantum chemical calculations.
A new synthetic approach generates the interhalide BrCl in situ, see Scheme 3. In this approach, a chloride salt was provided in a reaction flask and afterwards elemental chlorine and bromine were condensed onto the salt at $-196^{\circ} \mathrm{C}$.

$$
2 \mathrm{BrCl}=\mathrm{Cl}_{2}+\mathrm{Br}_{2}
$$

Scheme 1. Equilibrium of BrCl with Cl_{2} and Br_{2} under ambient conditions; $\Delta G(298.15 \mathrm{~K}, 0.1 \mathrm{MPa})$ values were calculated at B3LYP-D3(BJ)/def2-TZVPP and SCS-MP2/def2-TZVPP (italic) level of theory.

$$
2\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-} \underset{\Delta G=65.9(78.3) \mathrm{kJ} \mathrm{~mol}^{-1}}{=}\left[\mathrm{Cl}\left(\mathrm{Cl}_{2}\right)_{2}\right]^{-}+\left[\mathrm{Cl}\left(\mathrm{Br}_{2}\right)_{2}\right]^{-}
$$

Scheme 2. Equilibrium of stabilized BrCl under ambient conditions; ΔG ($298.15 \mathrm{~K}, 0.1 \mathrm{MPa}$) values were calculated at B3LYP-D3(BJ)/def2-TZVPP and SCS-MP2/def2-TZVPP (italic) level of theory.
$[\mathrm{Cat}] \mathrm{Cl}+n \mathrm{Cl}_{2}+n \mathrm{Br}_{2} \longrightarrow[\mathrm{Cat}]\left[\mathrm{Cl}(\mathrm{BrCl})_{2 n}\right]$
Scheme 3. In situ synthesis of interhalogen compounds based on BrCl .

Condensing Br_{2} and Cl_{2} as starting materials guarantees the exact stoichiometry compared to the usage of a previously prepared BrCl batch. Warming up to ambient temperature leads to the formation of BrCl , which immediately reacts with the chloride to afford the desired polyinterhalide species. Due to this in situ generation of BrCl the undesired impurities of Br_{2} and Cl_{2} are minimized and consequently a clean product is obtained. These interhalide compounds offer themselves as an easy-to-handle and safer alternative to neat BrCl for applications in organic and inorganic chemistry.
To demonstrate the advantages of the new synthesis route, a complete set of the possible BrCl interhalides with one to six coordinating BrCl molecules was synthesized and fully characterized, see Figure 2.

To receive the trihalide $[\mathrm{Cl}(\mathrm{BrCl})]^{-}, 0.5$ equivalents of Br_{2} and Cl_{2} were condensed onto $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$ in dichloromethane (DCM). Slowly cooling the reaction mixture to $-24^{\circ} \mathrm{C}$ yields single crystals suitable for XRD analysis. The obtained crystal structure of 1 was already published in 1974. ${ }^{[35]}$ The structural motif of the $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$trihalide was discussed several times in literature. ${ }^{[36]}\left[\mathrm{NEt}_{4}\right][\mathrm{Cl}(\mathrm{BrCl})]$ contains two crystallographically independent anions in the asymmetric unit. In the following, the structural data of the more symmetrical anion is discussed. The trihalide is almost linear (179.1(1) ${ }^{\circ}$) and symmetrical ($\mathrm{Cl} 1-\mathrm{Br} 1$ 240.4(1), $\mathrm{Cl} 2-\mathrm{Br} 1$ 239.1(1) pm). The bonding situation can be best described as a three-center four-electron ($3 c-4 e$) bond and can be compared with other symmetrical trihalides such as $\left[\mathrm{Br}_{3}\right]^{-}$or $\left[\mathrm{Cl}_{3}\right]^{-}{ }^{[3,37]}$ The $3 \mathrm{c}-4 \mathrm{e}$ bond results in a bond order

(1)

(2)

(3)

(6)

Figure 2. Molecular structures in the solid state of the interhalide salts [Cat] $\left[\mathrm{Cl}(\mathrm{BrCl})_{n}\right]\left(\right.$ for $n=1,2,3,5[\mathrm{Cat}]^{+}=\left[\mathrm{NEt}_{4}\right]^{+}$; for $n=4[\mathrm{Cat}]^{+}=\left[\mathrm{NPr}_{4}\right]^{+}$; for $n=6[\mathrm{Cat}]^{+}=[\mathrm{PNP}]^{+[9]}$) with thermal ellipsoids set at 50% probability. The cations and disorders of the anions were omitted for clarity. For the pentahalides (2) two different structures, namely $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right][\mathrm{Cl}(\mathrm{BrCl})]$ and $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$ (bond lengths in italics), were obtained. For detailed structures, see Figures S1-S5, S38. Bond lengths [pm] of the central chloride to the coordinated BrCl molecules: 2: 251.7(1), 262.3(1); 259.6(1), 265.5(1); 3: 266.4(2)-273.0(2); 4: 278.6(1); 5: 281.1(2)-298.6(2); 6: 279.3(1)-291.3(1).
of 0.5 , which explains the most elongated BrCl bond in comparison to the larger interhalides.

The addition of 0.85 equivalents of the dihalogens Br_{2} and Cl_{2} to $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$ in DCM leads to the formation of the hitherto unknown pentahalide $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$. The anion possesses a slightly distorted V-shaped structure, see Figure S38. In the crystal structure a partial substitution of the coordinating BrCl molecules by Br_{2} is observed. Therefore, a small excess of chlorine (0.85 equiv $\mathrm{Br}_{2}, 1.1$ equiv Cl_{2}) was used resulting in crystals of a non-disordered $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$anion and an additional, slightly unsymmetrical $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$, see Figure S 2 . In contrast to the $3 \mathrm{c}-4 \mathrm{e}$ bond of trihalides, the bonding situation of the higher poly(inter)halides can be best described as a donor-acceptor interaction. The central halide ion acts as Lewis base and donates electron density into the LUMO $\left(\sigma^{*}\right)$ of the Lewis acids, namely the coordinating dihalogen molecules. The charge transfer results in a bond weakening and elongation of the coordinating molecules, which can also be observed experimentally. ${ }^{[3]}$ In case of the non-disordered pentahalide 2 the bond lengths of the coordinating BrCl molecules are elongated by 10.5(2)$14.2(2) \mathrm{pm}$ compared to free BrCl (213.6(1) pm). ${ }^{[38]}$ Adding more equivalents of Br_{2} and Cl_{2} to the chloride salt, anions with higher coordination numbers can be obtained. Consequently the heptahalide $\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{-}$(3) crystallized with $\left[\mathrm{NEt}_{4}\right]^{+}$ as the counter ion. The heptahalide was already reported with $\left[\mathrm{AsPh}_{4}\right]^{+}$as the cation. In the reported structure of [AsPh_{4}] $\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]$ two crystallographically independent heptahalides, which slightly interact with each other, can be observed in the asymmetric unit. ${ }^{[9]}$ The $\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{-}$presented here in $\left[\mathrm{NEt}_{4}\right]$ $\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]$ consists of just one discrete anion, which shows no interactions to other halogen atoms and is arranged in a distorted trigonal-pyramidal structure.
Increasing the amount of Br_{2} and Cl_{2} to 2.5 equivalents and changing the cation to $\left[\mathrm{NPr}_{4}\right]^{+}$leads to the formation of the nonahalide $\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}$, which is the first reported BrCl based nonahalide, see Figure 3.

The compound crystallizes in the tetragonal space group I_{4} and its structure can be best described as a distorted tetrahedron. The obtained polyinterhalide compounds is isostructural to the already published $\left[\mathrm{NPr}_{4}\right]\left[\mathrm{Br}\left(\mathrm{Br}_{2}\right)_{4}\right]$ (Figure 3). ${ }^{[39]}$ In comparison to the $\left[\mathrm{Br}\left(\mathrm{Br}_{2}\right)_{4}\right]^{-}$, whose intermolecular distances are about 30 pm shorter than the sum of the van der Waals radii $(370 \mathrm{pm}),{ }^{[40]}$ the $\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}$anion is more discrete. The intermolecular distances of 4 are just 10 pm shorter than the sum

Figure 3. Comparison of the anion structures in the solid state of $\left[\mathrm{NPr}_{4}\right]$ $\left[\mathrm{Br}\left(\mathrm{Br}_{2}\right)_{4}\right]^{-}$and $\left[\mathrm{NPr}_{4}\right]\left[\mathrm{Cl}\left(\mathrm{BrCl}_{4}\right]^{-}\right.$with thermal ellipsoids set at 50% probability. Selected bond lengths [pm] and angles [${ }^{\circ}$: $\left[\mathrm{Br}_{9}\right]^{-}: \mathrm{Br} 1-\mathrm{Br} 2$ 294.3(1), $\mathrm{Br} 2-$ $\mathrm{Br} 1-\mathrm{Br} 2^{\prime}$ 131.2(1), 99.8(1); [Cl(BrCl) $]^{-}$: $\mathrm{Cl} 1-\mathrm{Br} 1$ 278.6(1), $\mathrm{Br} 1-\mathrm{Cl} 1-\mathrm{Br} 1^{\prime}$ 130.1(1), 100.3(1).
of the van der Waals radii (360 pm) , ${ }^{[40]}$ which again shows the lower tendency of BrCl based interhalides to be stabilized by secondary halogen-halogen interactions. Furthermore, the hypothetical square-planar structure $\left(D_{4 h}\right)$ has been quantumchemically investigated at B3LYP-D3(BJ)/def2-TZVPP and SCS-MP2/def2-TZVPP level. Both optimized structures show a transition state for the interconversion of the tetrahedral structure which are 14.6 and $7.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher in energy than the T_{d} structure.

From a reaction mixture of an excess of Br_{2} and Cl_{2} (3.5 equiv each) with $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$, single crystals of the undecainterhalide $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]$ were obtained (5). A similar undecahalide structure was already published earlier with $\left[\mathrm{CCl}\left(\mathrm{NMe}_{2}\right)_{2}\right]^{+}$as the counter ion. With this cation the structural parameter $\tau\left(\tau=(\beta-\alpha) / 60^{\circ}, \beta\right.$ and α are the largest angles in the coordination sphere) was determined to be $\tau=0.25$, which indicated a rather square-pyramidal arrangement. ${ }^{[9,41]}$ With $\left[\mathrm{NEt}_{4}\right]^{+}$as the cation, the structural parameter becomes larger ($\tau=0.38$). This underlines the strong influence of the cation on the structure of the anion. Another reason for the distorted structure of the undecahalide is the bridging between the $\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}$units, which leads to an octahedral coordination sphere for the central chloride Cl 1 , see Figure 4.

As mentioned above, the tendency to form extended networks is lowered for BrCl due to its asymmetrical σ-hole in comparison to the symmetrical Br_{2}. The solid state structure of $\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}$(5) possesses one disordered coordinating dihalogen unit ($\mathrm{Br} 5-\mathrm{Cl} 6 / \mathrm{Br} 6$), which is bridging between two anions, see Figure 4. The interaction of the bromine with the two central chloride ions leads to the formation of a chain.

It was possible to synthesize and crystallize interhalides based on BrCl with tetraalkylammonium as the cation with coordination numbers going from one up to five. The hexa-coordinated tridecainterhalide could not be isolated with tetraalkylammonium cations, even an excess of BrCl leads to the formation of the $\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}$anion. This underlines the great influ-

Figure 4. Molecular structures in the solid state of the $\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}$anions in $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]$ with thermal ellipsoids set at 50% probability. $\mathrm{A} \mathrm{Br}_{2} / \mathrm{BrCl}$ ($\mathrm{Br} 5-\mathrm{Br} 6 / \mathrm{Br} 5-\mathrm{Cl} 6: 60 \% / 40 \%$ occupation) interacts with two central chloride ions to form a chain $\left(d\left(\mathrm{Cl} 1-\mathrm{Br} 6^{\prime}\right)=326.7(5) \mathrm{pm}, d\left(\mathrm{ClI}^{\left.-\mathrm{Cl}^{\prime}\right)}=340.6(17) \mathrm{pm}\right)\right.$. Selected bond lengths [pm] and angles [${ }^{\circ}$]: $\mathrm{Cl} 1-\mathrm{Br} 1$ 286.4(2), $\mathrm{Cl} 1-\mathrm{Br} 2$ 281.6(2), Cl1-Br3 281.4(2), Cl1-Br4 281.1(2), Cl1-Br5 298.6(2), $\mathrm{Br} 1-\mathrm{Cl} 2$ 218.0(2), $\mathrm{Br} 2-\mathrm{Cl} 3219.4(2), \mathrm{Br} 3-\mathrm{Cl} 4$ 219.1(2), $\mathrm{Br} 4-\mathrm{Cl} 5$ 218.9(2), $\mathrm{Br} 5-\mathrm{Cl} 6$ 218.4(16), $\mathrm{Br} 5-\mathrm{Br} 6231.4(5)$; $\mathrm{Cl} 1-\mathrm{Br} 1-\mathrm{Cl} 2$ 176.7(1), $\mathrm{Cl} 1-\mathrm{Br} 2-\mathrm{Cl} 3174.9(1), \mathrm{Cl} 1-$ $\mathrm{Br} 3-\mathrm{Cl} 4$ 175.3(1), Cl1-Br4-Cl5 176.1(1), $\mathrm{Cl} 1-\mathrm{Br} 5-\mathrm{Cl} 6$ 174.8(8), $\mathrm{Br} 3-\mathrm{Cl} 1-\mathrm{Br} 1$ 148.7(1), Br2-Cl1-Br4 171.5(1).
ence of the counter ions size on the obtained anion. Using the large bis(triphenylphosphoranylidene)iminium ([PNP] ${ }^{+}$) as the cation leads to the formation of the tridecainterhalide, which was already published. ${ }^{[9]}$ In this series of polyinterhalides the $\mathrm{Br}-\mathrm{Cl}$ bond length of the terminal BrCl molecules is decreasing with the increase of BrCl molecules coordinating to the central atom.

As mentioned before, the $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$anion exhibits the longest BrCl bond due to the $3 \mathrm{c}-4 \mathrm{e}$ bond. From the pentahalide to the tridecahalide the bonds of the coordinating BrCl molecules are less weakened and therefore less elongated compared to the trihalide and free $\mathrm{BrCl}(213.6(1) \mathrm{pm}) .{ }^{[38]}$ The bonding situation of higher polyinterhalides can be described as donor/acceptor interaction between the central chloride ion, the Lewis base, and the surrounding BrCl molecules, which function as Lewis acids.
The higher the coordination number of the central chloride the less electron density can be donated into each LUMO (σ^{*}) of each coordinating BrCl molecule. This leads to less weakening of the BrCl bond accompanied with shorter bond lengths, see Figure 2. Quantum chemical calculations for the minima structures in the gas phase of the polyinterhalide species (at the B3LYP-D3(BJ)/def2-TZVPP and SCS-MP2/def2-TZVPP level of theory) are in good agreement with the experimental data and verify the described trend, see Figure 5.

Due to their strong Raman scattering, Raman spectroscopy is highly instructive for further analysis of polyinterhalide compounds. Therefore, low temperature Raman spectra of single crystals of each polyinterhalide salt were recorded and compared with quantum chemical calculations, see Figure 6. The trend of decreasing bond weakening of the BrCl units leads to a shift of the BrCl stretching frequencies to higher wavenumbers in the corresponding Raman spectra. Due to the almost inversion-symmetrical structure of trihalides, only the symmetric stretching vibration possesses significant Raman intensity. In the spectrum of $\left[\mathrm{NEt}_{4}\right]_{2}[\mathrm{Cl}(\mathrm{BrCl})]_{2}$, two bands can be observed at 285 and $271 \mathrm{~cm}^{-1}$ respectively. These two bands can be explained by two symmetric stretching vibrations of two crystallographically independent $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$anions, which differ

$D_{\text {oh }}$

$\mathrm{C}_{2 \mathrm{v}}$

$D_{3 h}$

$C_{3 v}$

O_{h}

Figure 5. Optimized minima structures of $\left[\mathrm{Cl}(\mathrm{BrCl})_{n}\right]^{-}(n=1-6)$. Calculated bond lengths in pm at the B3LYP-D3(BJ)/def2-TZVPP level (SCS-MP2/def2TZVPP level in italics) are indicated.

Figure 6. Low temperature Raman spectra of single crystals of the polyinterhalide salts (black) as well as calculated Raman spectra at the SCS-MP2/def2TZVPP (blue) and B3LYP-D3(BJ)/def2-TZVPP (red) level of theory. The band at $281 \mathrm{~cm}^{-1}$ associated with $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$is indicated by asterisks; the band for the bridging Br_{2} molecule is indicated by a dagger.
in bond lengths and angles (241.8(1), 235.7(1) pm, 174.8(1) ; 240.4(1), 239.1(1) pm, 179.1(1) ${ }^{\circ}$). These bands are most shifted to lower wavenumbers in comparison to free $\operatorname{BrCl}\left(434 \mathrm{~cm}^{-1}\right)^{[42]}$ due to the $3 \mathrm{c}-4 \mathrm{e}$ bond in the trihalide. Quantum chemical calculations for the trihalide in $D_{\infty h}$ symmetry at the SCS-MP2/ def2-TZVPP level of theory predict one band for the symmetrical stretching vibration at $270 \mathrm{~cm}^{-1}\left(A_{19}\right)$, which agrees well with the experimental results.

As described above, the bond weakening decreases with increasing number of coordinating BrCl molecules. The corresponding bands shift to higher wavenumbers and almost reach the frequency of free BrCl . In case of the larger polyinterhalide compounds two major bands in the $\mathrm{Br}-\mathrm{Cl}$ stretching region can be observed, the symmetric and asymmetric stretch of the coordinating BrCl molecules.
In the spectra of the three and four times coordinated interhalogen compounds, an additional band at $281 \mathrm{~cm}^{-1}$ is observed, which can be assigned to a $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$species, that results from residual mother liquor. The stretching frequency of
the bridging Br_{2} molecule in the solid state structure of the undecainterhalide 5 is observed at $290 \mathrm{~cm}^{-1}$. In the Raman spectrum of the pentainterhalide $\mathbf{2}$, the intensities of the symmetric and asymmetric stretching modes are inverted with respect to the calculations. This can be explained by interactions in the solid state, as shown by Raman spectra of compound 2 in a DCM solution and in bulk, see Figure S42. All experimental spectra are in good agreement with quantum-chemical calculations, see Figure 6.

Additionally, room-temperature ionic liquids (RT-ILs) containing 1-3 equiv of BrCl were prepared and analyzed by IR spectroscopy (Figure S12). The described trend of bond weakening and shift of vibrational frequencies is also visible in the IR spectra, however Raman spectroscopy is more suited to characterize the polyinterhalide species due to the superior signal to noise ratio.

The usage of poly(inter)halide compounds in organic and inorganic synthesis is growing over the last years.

The bromochlorinating agent $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$was already reported in the 1980s. ${ }^{[32-34]}$ To demonstrate the reactivity of the polyinterhalide ionic liquid, a variety of substrates including several alkenes, Michael systems and an alkyne was reacted with $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$, see Scheme 4 (and Supporting Information, chapters f and g).

Scheme 4. Interhalogenation of alkenes, Michael systems and alkynes using the reactive ionic liquid based on BrCl (for a detailed substrate scope see Table S4).

The reactions were performed in dichloromethane (DCM) at $-78^{\circ} \mathrm{C}$ to provide the bromochlorinated product within 60 min reaction time in yields between 71 and 91%. The interhalogenation of several alkenes and Michael systems was achieved even at low temperatures in very short reaction times and good yields. To investigate the long-term stability of these reactive interhalogenation reagents, Raman spectra of two BrCl based ionic liquids were measured continuously over a period of one year, see Figures S36-37. The prepared ILs ([NMe $] \mathrm{Cl}+$ 4.5 equiv $\mathrm{BrCl},\left[\mathrm{NPr}_{4}\right] \mathrm{Cl}+4.5$ equiv BrCl) were stored under the exclusion of light in sealed glass ampules. Both ILs are stable against halogenation for at least one year, which proofs that tetraalkylammonium cations $\left(\left[\mathrm{NR}_{4}\right]^{+}, \mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}\right)$ are suitable counter ions for these polyinterhalide reagents.

Conclusions

In summary, we have presented a novel in situ synthesis route for BrCl based interhalides. The addition of a halogen bond ac-
ceptor, for example, a chloride salt, results in an almost entire shift of the equilibrium to the BrCl side ($>99.99 \%$). This stabilization of the reactive BrCl provides safer and easy-to-handle polyinterhalide ILs for further applications such as interhalogenation reactions of alkenes, alkynes and Michael systems in organic synthesis. Furthermore, we were able to synthesize via this new route a complete set of the possible BrCl interhalides with coordination numbers of one to six coordinating BrCl molecules, showing that the average $\mathrm{Cl}-\mathrm{Br}$ distances of the central chloride to the surrounding BrCl molecule correlate well with the coordination number. Within this set, the hitherto unknown V-shaped $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$and the distorted tetrahedral $\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}$anion were reported for the first time. All structures were characterized by single-crystal X-ray diffraction, singlecrystal Raman spectroscopy as well as quantum chemical calculations. Hence, our results not only complete the variety of BrCl based interhalides, they also provide a new syntheses route to stabilize the gaseous BrCl for promising synthetic applications.

Experimental Section

Materials, instruments, and methods: All preparative work was carried out using standard Schlenk techniques. Chlorine (Linde, purity 2.8) was passed through calcium chloride before use to remove traces of water. Bromine (purity $>99 \%$) was distilled and stored over activated molecular sieve. The $\left[\mathrm{NR}_{4}\right] \mathrm{Cl}$ salts were obtained from commercial sources, dried for two days at $80^{\circ} \mathrm{C}$ at reduced pressure and stored under inert conditions. Dichloromethane was stored over activated $3 \AA$ molecular sieve. Raman spectra were recorded on a Bruker (Karlsruhe, Germany) MultiRAM II equipped with a low-temperature Ge detector ($1064 \mathrm{~nm}, 60 \mathrm{~mW}$, resolution of $4 \mathrm{~cm}^{-1}$). Spectra of single crystals were recorded at $-196^{\circ} \mathrm{C}$ using the Bruker RamanScope III. ATR-IR spectra of the ILs were recorded with a resolution of $4 \mathrm{~cm}^{-1}$ on a Thermo Scientific Nicolet iS50 FT-IR with DTGS-polyethylene detector for the FIR range and for the halogenated alkene on a JASCO FT/IR-4100 spectrometer. NMR spectra were recorded at RT on a JEOL Eclipse + 500 spectrometer. Mass spectroscopy was performed on an Agilent Technologies 6210 ESI-TOF spectrometer. X-ray diffraction data were collected on a Bruker D8 Venture CMOS area detector (Photon 100) diffractometer with MoK α radiation, see Table S1-S2. Deposition numbers 1965314, 1965315, 1965317, 1965318, 1971174, 1984581, and 1984909 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Single crystals were coated with perfluoroether oil at low temperature $\left(-40^{\circ} \mathrm{C}\right)$ and mounted on a 0.2 mm Micromount. The structure was solved with the ShelXT ${ }^{[43]}$ structure solution program using intrinsic phasing and refined with the ShelXL ${ }^{[44]}$ refinement package using least squares on weighted F2 values for all reflections using OLEX2. ${ }^{[45]}$
On the one hand, structure optimizations of the polyinterhalide anions were performed at DFT level using the RI-B3LYP hybrid functional with Grimme's dispersion correction D3 and BJ-damping together with the def2-TZVPP basis set. ${ }^{[8]-[28]}$ On the other hand, further optimizations were performed at SCS-MP2 level using the def2-TZVPP basis set. ${ }^{[29,30]}$ All calculations were carried out using the TURBOMOLE V7.3 program. ${ }^{[46]}$ Minima on the potential energy
surface were characterized by harmonic vibrational frequency analyses. Thermochemistry was provided with zero-point vibrational correction, ΔG values were calculated at 298.15 K and 1.0 bar.
[$\left.\mathrm{NEt}_{4}\right][\mathrm{Cl}(\mathrm{BrCl})]$: Bromine ($113 \mathrm{mg}, 0.71 \mathrm{mmol}, 0.5$ equiv), chlorine ($50.1 \mathrm{mg}, 0.71 \mathrm{mmol}, 0.5$ equiv) and dichloromethane (0.15 mL) were condensed at $-196^{\circ} \mathrm{C}$ onto $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}(234 \mathrm{mg}, 1.41 \mathrm{mmol}$, 1.0 equiv). Thawing to room temperature and slowly cooling to $-24^{\circ} \mathrm{C}$ resulted in the formation of crystals of $\left[\mathrm{NEt}_{4}\right][\mathrm{Cl}(\mathrm{BrCl})]$. Raman ($1064 \mathrm{~nm}, 77 \mathrm{~K}, 150 \mathrm{~mW}$): 3000(w), 2993(w), 2985(w), 2943(m), 1472(vw), 1457(vw), 1439(vw), 1299(vw), 1124(vw), 1001(vw), 917(vw), 734(vw), 674(w), 417(vw), 285(vs., $\left.v_{\mathrm{s}} \mathrm{Br}-\mathrm{Cl}\right)$, $271\left(v s ., v_{\mathrm{s}} \mathrm{Br}-\mathrm{Cl}\right), 238(\mathrm{vw}) \mathrm{cm}^{-1}$.
$\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right][\mathrm{Cl}(\mathrm{BrCl})]: \quad$ Bromine $(225 \mathrm{mg}, 1.411, \mathrm{mmol}$, 0.85 equiv), chlorine ($129 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.1$ equiv) and dichloromethane $(0.20 \mathrm{~mL})$ were condensed at $-196^{\circ} \mathrm{C}$ onto $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$ ($325 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.0$ equiv). Thawing to room temperature and slowly cooling to $-24^{\circ} \mathrm{C}$ resulted in the formation of crystals of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$. Raman ($1064 \mathrm{~nm}, 77 \mathrm{~K}, 150 \mathrm{~mW}$): $\tilde{v}=3013(\mathrm{vw})$, 2990(w), 2983(w), 2939(w), 1470(vw), 1457(vw), 1300(vw), 1123(vw), 998(vw), 890(vw), 673(vw), 468(vw), 416(w), 340(m, $\left.v_{\mathrm{s}} \mathrm{Br}-\mathrm{Cl}\right)$, $312\left(\mathrm{vs} ., v_{\text {as }} \mathrm{Br}-\mathrm{Cl}\right), 281\left(\mathrm{~m}, v_{\mathrm{s}} \mathrm{Br}-\mathrm{Cl}\right.$ of $\left.[\mathrm{Cl}(\mathrm{BrCl})]^{-}\right), 190(\mathrm{w}), 158(\mathrm{w})$, 133(w) cm ${ }^{-1}$.
$\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]$: Bromine ($363 \mathrm{mg}, 2.27 \mathrm{mmol}, 1.5$ equiv), chlorine ($161 \mathrm{mg}, 2.27 \mathrm{mmol}, 1.5$ equiv) and dichloromethane $(0.15 \mathrm{~mL}$) were condensed at $-196^{\circ} \mathrm{C}$ onto $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}(251 \mathrm{mg}, 1.51 \mathrm{mmol}$, 1.0 equiv). Thawing to room temperature and slowly cooling to $-24^{\circ} \mathrm{C}$ resulted in the formation of crystals of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]$. Raman (1064 nm, $77 \mathrm{~K}, 150 \mathrm{~mW}$): $\tilde{v}=$ 2992(vw), 2981(vw), 2952(vw), 2938(vw), 1456(vw), 1299(vw), 1120(vw), 1000(vw), 679(vw), 493(vw), 387(m, $\left.v_{\mathrm{s}} \mathrm{Br}-\mathrm{Cl}\right)$, 365(vs., $\left.v_{\mathrm{as}} \mathrm{Br}-\mathrm{Cl}\right)$, 281(vs., $v_{\mathrm{s}} \mathrm{Br}-$ Cl of $\left.[\mathrm{Cl}(\mathrm{BrCl})]^{-}\right), 177(\mathrm{vw}), 137(\mathrm{w}) \mathrm{cm}^{-1}$.
$\left[\mathrm{NPr}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]$: Bromine ($406 \mathrm{mg}, 2.54 \mathrm{mmol}, 2.5$ equiv), chlorine ($180 \mathrm{mg}, 2.54 \mathrm{mmol}, 2.5$ equiv) and dichloromethane $(0.15 \mathrm{~mL}$) were condensed at $-196^{\circ} \mathrm{C}$ onto $\left[\mathrm{NPr}_{4}\right] \mathrm{Cl}(225 \mathrm{mg}, 1.01 \mathrm{mmol}$, 1.0 equiv). Thawing to room temperature and slowly cooling to $-20^{\circ} \mathrm{C}$ resulted in the formation of crystals of $\left[\mathrm{NPr}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]$. Raman (1064 nm, $77 \mathrm{~K}, 150 \mathrm{~mW}$): $\tilde{v}=$ 2980(vw), 2955(vw), 2939(vw), 2922(vw), 2897(vw), 1457(vw), 1448(vw), 1316(vw), 385(s, $\left.v_{\mathrm{s}} \mathrm{Br}-\mathrm{Cl}\right), 369\left(\mathrm{vs} ., v_{\mathrm{as}} \mathrm{Br}-\mathrm{Cl}\right), 282\left(\mathrm{w}, v_{\mathrm{s}} \mathrm{Br}-\mathrm{Cl}\right.$ of $\left.[\mathrm{Cl}(\mathrm{BrCl})]^{-}\right), 170(\mathrm{vw}$, sh), 153(w, sh), $142(\mathrm{~m}) \mathrm{cm}^{-1}$.
$\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]$: Bromine ($834 \mathrm{mg}, 5.22 \mathrm{mmol}, 5.0$ equiv), chlorine ($370 \mathrm{mg}, 5.22 \mathrm{mmol}, 5.0$ equiv) and dichloromethane $(0.15 \mathrm{~mL}$) were condensed at $-196{ }^{\circ} \mathrm{C}$ onto $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}(173 \mathrm{mg}, 1.04 \mathrm{mmol}$, 1.0 equiv). Thawing to room temperature and slowly cooling to $-40^{\circ} \mathrm{C}$ resulted in the formation of crystals of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]$. Raman (1064 nm, $77 \mathrm{~K}, 150 \mathrm{~mW}$): $\tilde{v}=$ 2987(vw), 2949(vw), 2937(vw), 1456(vw), 1295(vw), 1117(vw), 673(vw), 506(vw), 399(s, v_{s} $\mathrm{Br}-\mathrm{Cl}), 383\left(\mathrm{vs} ., v_{\mathrm{as}} \mathrm{Br}-\mathrm{Cl}\right), 290(\mathrm{vs} ., v \mathrm{Br}-\mathrm{Br}), 154(\mathrm{vw}), 138(\mathrm{vw}) \mathrm{cm}^{-1}$. [PNP][CI(BrCl$)_{6}$]: Bromine ($618 \mathrm{mg}, 3.87 \mathrm{mmol}, 7.5$ equiv), chlorine ($274 \mathrm{mg}, 3.87 \mathrm{mmol}, 7.5$ equiv) and dichloromethane $(0.15 \mathrm{~mL}$) were condensed at $-196^{\circ} \mathrm{C}$ onto [PNP]Cl ($296 \mathrm{mg}, 0.52 \mathrm{mmol}$, 1.0 equiv). Thawing to room temperature and slowly cooling to $-40^{\circ} \mathrm{C}$ resulted in the formation of crystals of $[\mathrm{PNP}]\left[\mathrm{Cl}(\mathrm{BrCl})_{6}\right]$. Raman (1064 nm, 77 K, 150 mW): $\tilde{v}=3062(\mathrm{w})$, 2987(vw), 1590(vw), 1112(vw), 1028(vw) 1001(w) 702(vw), 668(vw), 617(vw), 406(m, v_{s} $\mathrm{Br}-\mathrm{Cl}), 390\left(\mathrm{vs} ., v_{\mathrm{as}} \mathrm{Br}-\mathrm{Cl}\right), 296(\mathrm{vw}), 269(\mathrm{vw}) \mathrm{cm}^{-1}$.

Standard procedure of the interhalogenation: The substrate ($0.32 \mathrm{mmol}, 1.0$ equiv) was dissolved in dry $\operatorname{DCM}(3.2 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. The ionic liquid $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$ was added ($60.4 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.50$ equiv) and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ until thin layer chromatography showed conversion of the substrate (alkenes: $<1 \mathrm{~min}$; alkyne and α, β-unsaturated
compounds: $30-60 \mathrm{~min}$). Thereafter water (3.0 mL) was added and the reaction mixture was warmed to RT. The aqueous phase was extracted with DCM $(3 \times 5.0 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO_{2}, n-pentane/EtOAc). For a detailed assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic shifts see Supporting Information (Table S4, Figures S13-S30).
6-Bromo-7-chloro-2,2,3,3,10,10,11,11-octamethyl-4,9-dioxa-3,10disiladodecane (A): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=4.48$ (ddd, $\left.{ }^{3} \mathrm{~J}=9.2,5.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.26$ (ddd, $\left.{ }^{3} \mathrm{~J}=8.7,5.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.98-$ $3.83(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.76(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.10-0.09(\mathrm{~m}, 12 \mathrm{H})$; see Figure S13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=65.2,64.3$, 59.4, 53.9, $25.9(6 \times C), 18.4(2 \times C),-5.2(4 \times C)$; see Figure S14. ATRIR: $\tilde{v}=2954,2930,2858,1471,1257,1096,839,777 \mathrm{~cm}^{-1}$. HR-MS $(\mathrm{ESI}+): ~ m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{BrClO}_{2} \mathrm{Si}_{2}+\mathrm{H}^{+}: 431.1199[\mathrm{M}+\mathrm{H}]^{+}$; found: 431.1192.
(2-Bromo-3-chloro-3-methylbutoxy)triisopropylsilane (B): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=4.36$ (dd, $J=11.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18 (dd, $J=$ $6.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, J=11.1, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.12-1.07(\mathrm{~m}, 21 \mathrm{H})$.; see Figure $\mathrm{S} 15 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}, \mathrm{RT}$, $\left.\mathrm{CDCl}_{3}\right): \delta=70.6,66.1,65.7,33.2,29.0,18.1,12.1$; see Figure S 16. ATR-IR: $\tilde{v}=2942,2867,2190,1461,1387,1123,1104,882$, $773 \mathrm{~cm}^{-1}$. HR-MS (ESI +): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{BrClOSi}+\mathrm{Na}^{+}$: $379.0830[\mathrm{M}+\mathrm{Na}]^{+}$; found: 379.0829.
(4-Bromo-3-chloro-3-methylbutoxy)triisopropylsilane (C): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=3.99-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67$ (d, J=10.3 Hz, 1H), 2.20-2.12 (m, 2H), 1.72 (s, 3H), 1.13$1.02(\mathrm{~m}, 21 \mathrm{H})$; see Figure $\mathrm{S} 17 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=70.2,60.2,43.7,43.0,29.8,18.2,12.1$; see Figure S18. ATR-IR: $\tilde{v}=2943,2891,2867,1737,1463,1379,1217,1105,882,738 \mathrm{~cm}^{-1}$. HR-MS (ESI +): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{BrClOSi}+\mathrm{Na}^{+}$: 379.0830 $\left[_{M+N a}{ }^{+}\right.$; found: 379.0840.
(2-Bromo/chloro-3-chloro/bromopropoxy)triisopropylsilane, regioisomeric ratio $=1: 1(\mathrm{D}):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=4.18-$ $4.13(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{q}, \mathrm{J}=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=10.5,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67$ (dd, $J=10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15-1.00(\mathrm{~m}, 42 \mathrm{H})$; see Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}\right): \delta=64.8,64.1,60.2,52.3$, 45.0, 33.4, $18.1(2 \times \mathrm{C}), 12.1(2 \times \mathrm{C})$; see Figure S20. ATR-IR: $\tilde{v}=$ 2944, 2892, 2867, 1737, 1461, 1380, 1143, 1110, 1069, 1000, 881, $792 \mathrm{~cm}^{-1}$. HR-MS (ESI +): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{BrClOSi}+\mathrm{Na}^{+}$: $351.0517\left[^{2}+\mathrm{Na}\right]^{+}$; found: 351.0520.
2-Bromo-3-chloro-3-methylbutyl-3,5-dinitrobenzoate (E): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=9.24(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, 2 H), 5.13 (dd, $J=12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (dd, $J=12.1,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.51 (dd, J=8.8, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87 ($\mathrm{s}, 3 \mathrm{H}$), $1.78(\mathrm{~s}, 3 \mathrm{H})$; see Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=162.2,148.9,133.4$, 129.7, 122.8, 69.0, 68.1, 59.3, 33.2, 28.1; see Figure S22. ATR-IR: $\tilde{v}=$ 3098, 2955, 2925, 1735, 1542, 1343, 1274, 1159, $921,719 \mathrm{~cm}^{-1}$. HRMS (ESI +): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrClN}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}: 416.9459[\mathrm{M}+\mathrm{Na}]^{+}$; found: 416.9463.

3-Bromo-4-chloro-4-phenylbutan-2-one (F): ${ }^{1} \mathrm{H}$ NMR (500 MHz , RT, $\left.\mathrm{CDCl}_{3}\right): \delta=7.44-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.25(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$; see Figure $\mathrm{S} 23 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}, \mathrm{RT}$, $\left.\mathrm{CDCl}_{3}\right): \delta=198.7,137.4,129.6,128.9,128.1,59.9,53.7,27.0$; see Figure S24. ATR-IR: $\tilde{v}=3066,3032,2970,1722,1455,1362,1218$, $733 \mathrm{~cm}^{-1}$. HR-MS (ESI +): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrClO}+\mathrm{Na}^{+}: 282.9496$ $[M+\mathrm{Na}]^{+}$; found: 282.9489; m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrClO}+\mathrm{K}^{+}$: $298.9236[M+K]^{+}$; found: 289.9227.
Ethyl-2-bromo-3-chloro-3-phenylpropanoate (G): ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=7.43-7.36$ (m, 5 H), $5.27(\mathrm{~d}, J=11.3 \mathrm{~Hz}$,

1 H), 4.62 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.37 (t, J= $7.1 \mathrm{~Hz}, 3 \mathrm{H})$; see Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=$ 167.8, 137.2, 129.6, 128.9, 128.1, 62.7, 61.0, 47.7, 14.0; see Figure S26. ATR-IR: $\tilde{v}=3034,2982,2936,1739,1455,1266,1143$, 1017, 869, $772 \mathrm{~cm}^{-1}$. HR-MS (ESI +): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrClO}_{2}+$ $\mathrm{Na}^{+}: 312.9601\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found: 312.9604 .
2-Bromo-3-chloro-1,3-diphenylpropan-1-one (H): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=8.12-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H})$, $7.57-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H})$; see Figure S27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=191.3,137.9,134.6,134.3$, $129.5,129.1,129.0,128.9,128.3,59.9,47.6$; see Figure S28. ATR-IR: $\tilde{v}=3063,3033,1685,1448,1269,1229,976,776,731 \mathrm{~cm}^{-1}$. HR-MS $(\mathrm{ESI}+): m / z$ calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrClO}+\mathrm{Na}^{+}: 344.9652[\mathrm{M}+\mathrm{Na}]^{+}$; found: 344.9656; m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrClO}+\mathrm{K}^{+}: 360.9392[\mathrm{M}+\mathrm{K}]^{+}$; found: 360.9394.

(E)-6-Bromo-7-chloro-2,2,3,3,10,10,11,11-octamethyl-4,9-dioxa-

3,10-disiladodec-6-ene (I): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=4.55-$ $4.50(\mathrm{~m}, 4 \mathrm{H}), 0.92-0.91(\mathrm{~m}, 18 \mathrm{H}), 0.12-0.10(\mathrm{~m}, 12 \mathrm{H})$; see Figure S29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{RT}, \mathrm{CDCl}_{3}$): $\delta=130.7,122.4,66.0$, 64.7, 26.0, 18.5, -5.03 ; see Figure S30. ATR-IR: $\tilde{v}=2953,2930$, 2886, 2858, 1738, 1471, 1363, 1254, 1111, $836,777 \mathrm{~cm}^{-1}$. HR-MS $(\mathrm{ESI}+): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{BrClO}_{2} \mathrm{Si}_{2}+\mathrm{Na}^{+}: 451.0861[\mathrm{M}+\mathrm{Na}]^{+}$; found: 451.0869; m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{BrClO}_{2} \mathrm{Si}_{2}+\mathrm{K}^{+}$: 467.0601 $\left[^{2}+K\right]^{+}$; found: 467.0616.

Acknowledgements

We gratefully acknowledge the Zentraleinrichtung für Datenverarbeitung (ZEDAT) of the FU Berlin for computational resources. B.S. thanks the BMBF (project IL-RFB, FKZ: 03SF0526B) for financial support. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: bromine monochloride • halogen bonding halogenation • polyhalides

[1] J. Pelletier, J. B. Caventou, Ann. Chim. Phys. 1819, 142.
[2] F. D. Chattaway, G. Hoyle, J. Chem. Soc. Trans. 1923, 123, 654.
[3] K. Sonnenberg, L. Mann, F. A. Redeker, B. Schmidt, S. Riedel, Angew. Chem. Int. Ed. 2020, 59, 5464; Angew. Chem. 2020, 132, 5506.
[4] R. J. Elema, J. L. de Boer, A. Vos, Acta Crystallogr. A 1963, 16, 243.
[5] A. R. Mahjoub, K. Seppelt, Angew. Chem. Int. Ed. Engl. 1991, 30, 323; Angew. Chem. 1991, 103, 309.
[6] C. Walbaum, M. Richter, U. Sachs, I. Pantenburg, S. Riedel, A.-V. Mudring, G. Meyer, Angew. Chem. Int. Ed. 2013, 52, 12732; Angew. Chem. 2013, 125, 12965.
[7] L. Mann, P. Voßnacker, C. Müller, S. Riedel, Chem. Eur. J. 2017, 23, 244.
[8] K. Sonnenberg, P. Pröhm, N. Schwarze, C. Müller, H. Beckers, S. Riedel, Angew. Chem. Int. Ed. 2018, 57, 9136; Angew. Chem. 2018, 130, 9274.
[9] B. Schmidt, K. Sonnenberg, H. Beckers, S. Steinhauer, S. Riedel, Angew. Chem. Int. Ed. 2018, 57, 9141; Angew. Chem. 2018, 130, 9279.
[10] S. I. Ivlev, A. J. Karttunen, R. V. Ostvald, F. Kraus, Chem. Commun. 2016, 52, 12040.
[11] a) T. M. Beck, H. Haller, J. Streuff, S. Riedel, Synthesis 2014, 46, 740; b) T. Schlama, K. Gabriel, V. Gouverneur, C. Mioskowski, Angew. Chem. Int. Ed. Engl. 1997, 36, 2342; Angew. Chem. 1997, 109, 2440.
[12] a) G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 2009, 42, 1819; b) K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, M. Hanaya, Chem. Commun. 2013, 49, 179.
[13] a) G. Bauer, J. Drobits, C. Fabjan, H. Mikosch, P. Schuster, J. Electroanal. Chem. 1997, 427, 123; b) W. Kautek, A. Conradi, C. Fabjan, G. Bauer, Electrochim. Acta 2001, 47, 815.
[14] a) A. van den Bossche, E. de Witte, W. Dehaen, K. Binnemans, Green Chem. 2018, 20, 3327; b) X. Li, A. van den Bossche, T. Vander Hoogerstraete, K. Binnemans, Chem. Commun. 2018, 54, 475; c) X. Li, Z. Li, M. Orefice, K. Binnemans, ACS Sustainable Chem. Eng. 2019, 7, 2578; d) B. Schmidt, B. Schröder, K. Sonnenberg, S. Steinhauer, S. Riedel, Angew. Chem. Int. Ed. 2019, 58, 10340; Angew. Chem. 2019, 131, 10448.
[15] a) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimägi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478; b) T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291.
[16] A. Popov, J. Mannion, J. Am. Chem. Soc. 1952, 74, 6315.
[17] a) H. Lux, Ber. Dtsch. Chem. Ges. 1930, 63, 1156; b) N. O. Thiel, J. F. Teichert, Nachr. Chem. 2017, 65, 772; c) R. E. Buckles, J. W. Long, J. Am. Chem. Soc. 1951, 73, 998; d) J. F. Mills, J. A. Schneider, Ind. Eng. Chem. Prod. Res. Dev. 1973, 12, 160.
[18] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics 1996, 14, 33.
[19] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
[20] P. Deglmann, F. Furche, J. Chem. Phys. 2002, 117, 9535.
[21] P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511.
[22] P. Deglmann, K. May, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2004, 384, 103.
[23] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[24] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[25] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
[26] A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 123, 154101.
[27] E. R. Johnson, A. D. Becke, J. Chem. Phys. 2005, 123, 024101.
[28] E. R. Johnson, A. D. Becke, J. Chem. Phys. 2006, 124, 174104.
[29] S. Grimme, J. Chem. Phys. 2003, 118, 9095.
[30] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143.
[31] D. R. Stull, Ind. Eng. Chem. 1947, 39, 540.
[32] T. Negoro, Y. Ikeda, Bull. Chem. Soc. Jpn. 1984, 57, 2111.
[33] T. Negoro, Y. Ikeda, Bull. Chem. Soc. Jpn. 1986, 59, 3515.
[34] T. Sotokawa, T. Noda, S. Pi, M. Hirama, Angew. Chem. Int. Ed. 2000, 39, 3430; Angew. Chem. 2000, 112, 3572.
[35] W. Gabes, K. Olie, Cryst. Struct. Comm. 1974, 3, 753.
[36] a) F. Zobi, O. Blacque, G. Steyl, B. Spingler, R. Alberto, Inorg. Chem. 2009, 48, 4963; b) M. Ghassemzadeh, B. Neumuller, K. Dehnicke, CCDC 790138: Experimental Crystal Structure Determination, Cambridge Crystallographic Data Centre, 2014; c) G. L. Breneman, R. D. Willett, Acta Crystallogr. 1967, 23, 334.
[37] G. A. Landrum, N. Goldberg, R. Hoffmann, J. Chem. Soc. Dalton Trans. 1997, 3605.
[38] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure-VI. Constants of Diatomic Molecules, 2nd ed., Springer, Boston, 1979.
[39] H. Haller, M. Ellwanger, A. Higelin, S. Riedel, Angew. Chem. Int. Ed. 2011, 50, 11528; Angew. Chem. 2011, 123, 11732.
[40] A. Bondi, J. Phys. Chem. 1964, 68, 441.
[41] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. 1984, 1349.
[42] H. Stammreich, R. Forneris, Y. Tavares, Spectrochim. Acta 1961, 17, 1173.
[43] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
[44] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
[45] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
[46] TURBOMOLE GmbH, TURBOMOLE V7.3. a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2018.

[^2]
2.4. Summary and Outlook

The novel polyinterhalide $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$ was successfully established as an atom-economical interhalogenation reagent for a wide variety of unsaturated substrates. The very short reaction times and good yields reflect the high reactivity with simultaneous selectivity towards other functional groups.

Figure 13: X-ray crystal structure of bromochlorinated (E)-chalcon. ${ }^{[64]}$

The regioselectivity of the reaction with asymmetric olefins (84) or 1,4-unsaturated systems (89) is a result of the polarization of the two halogen atoms. Together with the trans-position of the two halides confirmed by single crystal structure analysis (Figure 13), a reaction mechanism in analogy to the electrophilic bromination of olefins can be postulated.

Scheme 27: Explanation of the regioselectivity in the interhalogenation of unsymmetrical olefins (top) and Michael systems (bottom).

The positively polarized bromine atom of the polyinterhalide forms a halonium ion with the double bond of an olefin (84) or Michael system (89). By plotting the possible mesomeric boundary formulas, the more stable carbenium ion and thus the most reactive site for the subsequent nucleophilic opening of the halonium ion can be identified. For asymmetric olefins (84), the Markownikov rule applies and the attack of the chloride will occur at the more highly substituted carbon of the halonium ion 85 . For

Michael systems (89), α-carbenium ions (92) are energetically less favorable than β-carbenium ions (93) due to the electron-withdrawing effects of the carbonyl group. Here, the opening of the halonium ion 90 occurs in the β-position to the carbonyl group (Scheme 27).

The liquid aggregate state and low vapor pressure of the reagent reduce potential risks from exposure, simplify handling, and thus provide a reasonable alternative to pure BrCl . The atomic economy and reactivity of $\left[\mathrm{NEt}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right](\mathrm{A}=1.7)$ is increased compared to the literature known reagent $\left[\mathrm{NEt}_{4}\right][\mathrm{Cl}(\mathrm{BrCl})](\mathrm{A}=2.4)$ and the previously mentioned two-component systems ($\mathrm{A}=2.5$ to 3.8), making it ecologically as well as economically superior. A further increase could be achieved by using the higher coordinated polyinterhalides such as $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right](\mathrm{A}=1.3)$.

A direct bromocyanidation would have enormous potential for organic chemistry. For this purpose, the corresponding BrCN analogues, which were also recently developed in the Riedel group, ${ }^{[78]}$ can be investigated as reagents. If the polarization and reactivity of these polypseudohalides correspond to the polyinterhalides discussed earlier, bromo-cyanide addition to double bonds would be conceivable. This reactivity with pure BrCN is known so far only for the much more reactive enamines ${ }^{[79]}(96)$ and silyl enol ethers ${ }^{[80]}$ (94) (Scheme 28).

Scheme 28: Literature known reactivities of BrCN with unsaturated substrates.

By weakening the $\mathrm{Br}-\mathrm{CN}$ bond in the polypseudohalide, its reactivity could be increased and nonactivated alkenes (98) could also be accessible as substrates. The β-brominated nitrile 99 thus generated is a valuable synthetic building block due to its numerous downstream transformation possibilities. Base-induced elimination of HBr , for example, can generate α, β-unsaturated nitriles (100). ${ }^{[81]}$ These can subsequently be further reduced, esterified or hydrolyzed (101) (Scheme 29).

Scheme 29: Bromocyanidation of olefins and possible follow up transformations.

3. Studies on the Total Synthesis of Hypatulin A and B

3.1. Introduction

3.1.1. Natural Products and the Importance for Humanity

Biogenic natural products can be divided into two groups according to their origin. ${ }^{[82]}$

1. Primary Natural Products

All organisms have a primary or basic metabolism that is responsible for essential processes such as growth or reproduction. The primary natural products produced for this purpose are, for example, proteins, carbohydrates or lipids, which are responsible for energy production or the construction of new cells. Despite the omnipresence of these molecules, the respective structures can vary greatly between different organisms.

2. Secondary Natural Products

The processes of the secondary metabolism, on the other hand, unfold as a continuous response to biotic and abiotic environmental influences and can thus achieve an evolutionary advantage. The secondary metabolism is adaptive and extremely diverse. Thus, it may differ even among several populations of one species. The biosynthesis of defensive secretions or sexual attractants are examples of products emerging from the secondary metabolism. Secondary natural products can be found in the substance classes of terpenes, steroids or alkaloids for example.

Plant metabolism has been used as a rich source of active substances since the dawn of civilization. The use of herbal medicines has been known for 60000 years ${ }^{[83]}$ and the first documented uses of plantbased pharmaceuticals date back almost 5000 years ${ }^{[84]}$. The importance of natural or nature-derived medicines did not stop in modern times. A milestone in natural product research is the discovery and first synthesis of the analgesic morphine from the opium poppy, whose importance as a cultivated plant in Europe dates back to the Neolithic. ${ }^{[85]}$ In 1804, morphine was isolated for the first time from the opium poppy (Papaver somniferum) by the pharmacist's assistant Sertürner. ${ }^{[86]}$ Robinson finally succeeded in determining the structure in $1925 .{ }^{[86]}$ It took further 27 years before Gates was able to carry out the first total synthesis and confirm the structure proposal by Robinson. ${ }^{[87]}$ Furthermore, acetylsalicylic acid, which has been on the WHO's list of essential medicines since 1977, is of enormous importance to mankind as an analgesic, anti-inflammatory and antipyretic drug. ${ }^{[88]}$ The use of willow bark and other plants has been known for thousands of years and is partially based on the pharmacological properties of the salicylic acid and its derivatives. ${ }^{[89]}$ The first synthesis of acetylsalicylic acid was achieved in 1897 at the former Farbenfabriken Friedr. Bayer \& Co and was
patented in 1899 under the name Aspirin ${ }^{\oplus} .{ }^{[88]}$ Penicillin is another prominent example which confirms the enormous importance of natural substances for human history. The antibiotic effect of the fungus Penicillium, described already 1874 by Billroth, initiated one of the most important developments in medical history with the discovery of penicillin by Fleming in the following century. ${ }^{[90]}$

morphine

acetylsalicylic acid

penicillins

Figure 14: Morphine, acetylsalicylic acid and penicillins as exemplary milestones in natural product research.

In ancient times, preparations from plant or, more rarely, animal materials were mostly used to treat diseases. After it was recognized that defined active ingredients or active ingredient compositions thereof were responsible for the pharmacological activity, the focus shifted to the isolation and later also to the synthetic production of these compounds. Targeted synthetic access to an active ingredient has several advantages over the use of whole plant or animal materials. For one, a more targeted therapy can be achieved by eliminating mixing with useless or even toxic components of the plant or animal. In terms of animal and environmental protection, it is also ethically questionable to exploit enormous quantities of sometimes rare and protected species from the environment and to isolate minute amounts of the active ingredient. Thus, organic synthesis displays an indispensable alternative to provide large quantities of active ingredients.

The synthetic access of active ingredients, can be devided into semisyntheses and total syntheses. Semisyntheses start from an already complex natural substance, which builds up the desired target through further transformations. One of the most prominent examples is the semisynthesis of paclitaxel, which is used to treat cancer. In this process, baccatin III, which is more readily available from the European yew tree (Taxus baccata), is converted into paclitaxel in a few steps. ${ }^{[91]}$ The total synthesis of natural products, on the other hand, can be traced back to the simplest commercially available chemicals. The advantage of total synthesis is the ability to generate numerous derivatives that may have higher activity or lower toxicity. Total synthesis is often used to elucidate the structure or structure-activity relationship of newly discovered natural products. Additionally, an academic and industrial interest lies in the development of new efficient synthetic methods to access highly complex structural motifs.

Figure 15: Categorization of all approved drugs (1981-2019) ${ }^{[92]}$ (NP = natural product).

As shown in Figure 15 more than two-thirds of all drugs approved since 1981 have their origin in natural products either as a derivative or imitation of the original structure (presented in different shades of green). Less than 25% of these drugs are not based on any known natural product structure and have a purely synthetic origin (blue). Most of them are products of random screening or modification of already known drugs. ${ }^{[92]}$ Today, drug discovery focuses on circumventing resistance, combating novel pathogens, or treating diseases more effectively. Far less than 10% of the world's biodiversity has been tested for its biological activity to date. ${ }^{[93]}$ Thus, nature as whole can still be seen as an almost inexhaustible source of novel lead structures for the development of new active substances.

3.1.2. The Plant Genus Hypericum

With over 500 species, Hypericum is the largest plant genus within the plant family Hypericaceae. The most famous representative is the St. John's wort (Hypericum perforatum) (Figure 16). The distribution of this species, native to Europe, Africa and Western Asia, nowadays covers the entire American continent, East Asia and Australia. ${ }^{[94]}$ Since more than 2000 years St. John's wort enjoyed great popularity as a medicinal plant against a variety of ailments. ${ }^{[94]}$ Already during the Han Dynasty (206 B.C. to 220 A.D.), various Hypericum species were used in Asia and Europe to treat depression, wounds, burns, diarrhea, and animal bites or stings. ${ }^{[94]}$ Pliny the Elder also mentions Hypericum in his encyclopedia Naturalis historia from 77 A.D. ${ }^{[94]}$ Especially due to the increasing number of depressive disorders, St. John's wort preparations have been experiencing a renaissance as medicinal products since the 1990s. ${ }^{[94]}$

Figure 16: Inflorescence of St. John's wort (Hypericum perforatum) ${ }^{[95]}$

In recent decades, numerous pharmacological studies have confirmed the antidepressant, antitumor, antimicrobial, and anti-inflammatory effects of Hypericum species. ${ }^{[96]}$ St. John's wort is one of the beststudied medicinal plants to date. ${ }^{[96]}$

3.1.3. Polyprenylated Acylphloroglucinols

Figure 17: Polyprenylated acylphloroglucinols isolated from Hypericum.

In addition to mono- and sesquiterpenes (pinenes, α-humulene, germacrene D), flavonoids (quercitin, biapigenin), naphthodianthrone derivatives (hypericin, pseudohypericin) and other compounds, numerous representatives of the so-called polyprenylated acylphloroglucinols (PAPs) (Figure 17) could be isolated and characterized from the genus Hypericum. ${ }^{[97]}$ Hypericum is considered to be the main source of the more than 700 known PAPs. ${ }^{[97]}$ This category of natural products belongs to the class of meroterpenes, which means they have a terpenoid structure supplemented by other structural elements (mostly phenol derivatives) (Figure 18). ${ }^{[97]}$ PAPs have innumerable different functions and properties. Cyctotoxic activity against various cancer cell lines is already known for over 50 phloroglucinols. ${ }^{[97]}$ Humolones and lupolones are amaroids that give hops their characteristic flavor profile. ${ }^{[97]}$ Other PAPs exhibit anti-inflammatory properties through inhibition of cyclooxygenases. ${ }^{[97]}$

Another subgroup is represented by the polycyclic polyprenylated polycyclic acylphloroglucinols (PPAPs). Figure 18 shows the structural features of PPAPs based on hyperforin. The core (red) can be traced back to 1,3,5-trihydroxybenzene (phloroglucinol) and is decorated with a varying number of prenyl residues (green). One additional acyl group (blue), which can be highly variable, can also be found in the molecule. For the hypatulin and hyperibon families these are benzoyl groups, whereas for hyperforin, adhyperforin or hypercalin A, they are a wide variety of acyl groups with branched alkyl chains. In addition, further formal isoprene units (orange) can be added, which enlarge the molecule and increase its complexity.

Figure 18: Hyperforin as an example for the structural features of PPAPs.

In analogy to steroids, ${ }^{[98]}$ the basic structure of PPAPs can be altered by rearrangements or oxidations to such an extent that identification becomes difficult. A descriptive example is hypatulon A, which was isolated in 2018 and structurally revised in 2020.

Scheme 30: Proposed structure by Kong and Luo (left) and the revised structure by Yang and Grossman (right) for hypatulon A (the deviating connectivities and configurations are highlighted in red and blue).

Luo and Kong initially postulated a core structure consisting of two five-membered rings connected to a homoadamantane center. ${ }^{[99]}$ The resulting 5/5/7/6/6-pentacyclic structure was subsequently challenged by Yang and Grossman. By renewed NMR spectroscopic evaluation and DFT-based calculations, the authors corrected the previously presented structural proposal and postulated a 5/6/6/5/6-pentacyclic core with divergent connectivity (Scheme 30). ${ }^{[100]}$ Due to their often unique structure and biological activity, numerous PPAPs have become the subject of total syntheses.

Hyperforin occupies a central role among the active ingredients in St. John's wort, and most of the pharmacological properties of the plant extracts are closely related to the properties of hyperforin. For example, antibacterial activity against the gram-positive bacteria of the Staphylococcus aureus strain, which have already formed resistance to penicillin or methicillin, has been documented ${ }^{[101]}$ Antitumor properties have been demonstrated both in vitro and in vivo. Inhibition of cyclooxigenase-1 and 5lipoxygenase also reduces the formation of proinflammatory eicosanoids. In particular, its effect as a natural antidepressant has been extensively studied. Thus, like synthetic antidepressants, hyperforin increases the concentration of neurotransmitters in the synaptic cleft. In doing so, hyperforin activates ion channels of the TRPC6 type. This leads to a reduction of the Na^{+}gradient, which controls the reuptake of neurotransmitters. St. John's wort, and hyperforin in particular, can thus make a contribution to combating the growing numbers of people suffering from depression. ${ }^{[101]}$

Scheme 31: Biosynthesis of hyperforin according to Beerhues. ${ }^{[101]}$

The intensively discussed biosynthesis of hyperforin was summarized by Beerhues in 2006 (Scheme 31). ${ }^{[101]}$ First, the polyketide synthase isobutyrophenone synthase (BUS) catalyzes the condensation of three molecules of malonyl-CoA (102) and isobutyryl-CoA (103). The resulting phloroisobutyrophenone (104) is subsequently functionalized twice with prenyl pyrophosphate (105) by aromatic prenyltransferases (aPTases). Further alkylation of the aromatic core of $\mathbf{1 0 6}$ by geranyl pyrophosphate (107) generates diketone 108. Activation of the double bond of the geranyl side chain by prenyl pyrophosphate (105) initiates the subsequent ring closure and generates the bicyclic hyperforin.

Due to its exceptionally broad pharmacological spectrum, hyperforin has become the motivation of numerous total syntheses since its isolation in 1975. ${ }^{[102]}$ Pioneering work on the synthesis of the core structure was published 2005 by the research group of Nicolaou. ${ }^{[103]}$ In this work, a general approach to medium-sized bridged ring systems, as found in hyperforin, was presented. As a key step, an anullation of cyclic ketones with methacrolein was presented. In another publication by Mehta and Bera in 2009, both the bicyclic backbone and the four prenyl or homoprenyl residues could be installed. ${ }^{[104]}$ One year later, Shibasaki and co-workers succeeded in the synthesis of ent-hyperforin in 52 steps. ${ }^{[105]}$ The first enantioselective total synthesis of hyperforin was finally completed in 2013 by the group of Shair. An enantiomerically enriched epoxide which was traced back to geraniol determined further stereoselectivities in this 18 -step synthesis. ${ }^{[106]}$ In the following years, three additional racemic syntheses were presented by the groups of Nakada (2013), ${ }^{[107]}$ Barriault (2014), ${ }^{[108]}$ and Maimone (2015) ${ }^{[109]}$.

3.1.4. Hypatulin A and B and other Polyprenylated Benzophenones

Another species of the Hypericum genus is the goldencup St. John's wort (Hypericum patulum). The original distribution area is located in the central Chinese provinces of Guizhou and Sichuan. ${ }^{[110]}$ However, due to its use as a decorative garden plant, this species can now be found almost all over the world. ${ }^{[111]}$ In recent years, goldencup St. John's wort has also proven to be a rich source of biologically active and structurally interesting compounds.

Figure 19: Hypericum patulum. ${ }^{[112]}$

In 2016, Tanaka and Kashiwada were able to isolate the two meroterpenes hypatulin A and B from the dried leaves of Hypericum patulum. 1.48 kg of the starting material was extracted and purified by column chromatography. After separation by HPLC technique, 36.9 mg of hypatulin A and 3.6 mg of hypatulin B were obtained. From the determination of the molecular formula by HRESIMS and the
constitution and relative stereoinformation by 2D NMR spectroscopy (COSY, HSQC, HMBC and NOESY), the authors were able to deduce the structures of hypatulin A and B (Figure 20). The absolute stereoinformation of hypatulin A was confirmed by ECD spectroscopy. ${ }^{[113]}$

Hypatulin A possesses an unique highly substituted tricyclic octahydro-1,5-methanpentalene core (green). The three linear and flexible prenyl side chains form a strong contrast to the dense and rigid core structure. Together with the four closely spaced quaternary stereocenters, hypatulin A constitutes a challenging target molecule for total synthesis. In hypatulin B, a bicyclo[3.2.1]octane core (green) can be found. Both substances belong to the diverse group of PAPs. Since the acyl group in this case is a benzoyl group, the two hypatulins are assigned to the class of polyprenylated benzophenones (PBPs).

Figure 20: Structural proposal for hypatulin A and B according to Tanaka and Kashiwada. ${ }^{[113]}$
For hypatulin A, an antimicrobacterial effect against Bacillus subtilis could be demonstrated. ${ }^{[113]}$ Whether the isolated compounds, like their close relatives hyperforin or hypercalin C , possess other interesting pharmacological properties has not been reported and could be the subject of future research. In addition to the two previously mentioned hypatulins, other PBPs, some of them much more complex, could be isolated from Hypericum patulum. In 2020, Tanaka and Kashiwada, who have already identified hypatulin A and B, were able to isolate another member of the PBP family from Hypericum patulum. ${ }^{[114]}$ Hypatulin C has an octahydro-1H-1,5-methanoindene core decorated by four prenyl residues. No biological activity is known at this time. In the same publication, the authors also report the isolation and characterization of hypelodin B , which has been known since 2014. ${ }^{[115]}$ In the 2020 and 2014 publications, the authors propose a joint biosynthesis of hypatulin C, hypelodin A, and hypelodin B (Scheme 32). The first steps are in analogy to the biosynthesis of hyperforin shown in Scheme 31. Three equivalents of malonyl-CoA (102) and benzoyl-CoA (109) form benzophenone $\mathbf{1 1 0}$ by condensation. Dual prenylation followed by geranylation generates polyene 111. Downstream prenylation of the geranyl side chain forms the common cyclization precursor 112. Addition of the hydroxyl group to the internal double bond (blue) of the geranyl side chain generates hypelodin A. Alternatively, compound $\mathbf{1 1 2}$ can form hypatulin \mathbf{C} by a cyclization cascade (green), which can react to
hypelodin B by a further cyclization process. Consideration of the biosyntheses illustrates the common origin of the prenylated acylphloroglucinols and explains the diversity of this distinctly interesting class of compounds.

Scheme 32: Proposed biosynthesis of the meroterpenes hypatulin C, hypelodin A and hypelodin B according to Kashiwada. ${ }^{[114,115]}$

3.2. Scientific Goal

The unique structures of hypatulin A and B, the possible common synthetic strategy and the often interesting and versatile pharmacological properties of related PBPs, make the enantioselective total synthesis of the two meroterpenes a precious project. The retrosynthetic analysis of the two natural products is shown in Scheme 33.

Scheme 33: Retrosynthetic analysis of hypatulin A and hypatulin B.

It was theorized, that Hypatulin A can be accessed by an intramolecular substitution from hypatulin B. The latter can be traced back to triketone 113 by triple olefin metathesis and methoxycarbonylation. Installation of the last allyl group on enone 115 can be realized by a Hosomi-Sakurai reaction. The silyl enol ether 114 formed in situ can subsequently set up the second ring system via an intramolecular Mukaiyama aldol reaction. Enone 115 can itself also be synthesized from the two fragments 116 and 117 via a Mukaiyama aldol reaction followed by elimination. Silyl enol ether $\mathbf{1 1 7}$ can be obtained from β-keto ester 118 via an enantioselective allylation process. The synthesis of the latter β-keto ester can be accessed via an enantioselective Brown allylation and oxy-Cope rearrangement followed by methoxycarbonylation from the iodinated enone 119.

As shown in Scheme 34, the common precursor 115 can also be prepared from diketone 120 by double functionalization (allylation, methoxycarbonylation). This diketone $\mathbf{1 2 0}$ can be traced back to aldehyde

116 and silyl enol ether 121 via intermolecular Mukaiyama aldol reaction. As before, silyl enol ether 121 can be available from the iodinated enone 119 via an enantioselective Brown allylation followed by oxy-Cope rearrangement.

Scheme 34: Alternative retrosynthetic analysis of the common precursor 115.

3.3. Results

The studies on the total synthesis of hypatulin A and B were planned and carried out in collaboration with Stefan Leisering. After initial retrosynthetic considerations and first successful experiments, two different synthetic routes to enone 115 were pursued. In Leisering's approach (Scheme 34), the intermolecular Mukaiyama-aldol coupling was carried out at an early stage of the synthesis. The second allyl group and the methyl ester on the cyclopentanone scaffold should be installed subsequently. For the synthetic approach detailed in this thesis (Scheme 33), the cyclopentanone scaffold was first fully functionalized before silyl enol ether 117 and aldehyde 116 can generate the common precursor 115. The execution of both synthetic pathways should reveal which is the most effective route to enone 115.

Starting from the commercially available enone 119 (due to the high price, the substance was synthesized via a Baylis-Hillman-type α-iodination from cyclopent-2-en-1-one ${ }^{[121]}$ on a large scale), the first stereocenter was introduced by an organocatalytic enantioselective Brown allylation ${ }^{[116]}$ and alcohol 122 was obtained in excellent yield (88\%) and enantioselectivity (94\%). Subsequent Kumada reaction ${ }^{[117]}$ introduced the methyl group in almost quantitative yield. Unfortunately all attempts to introduce the first allyl group by using 2-methylcyclopent-2-en-1-one as the substrate failed. The iodide substituent on the halogenated enone 119 turned out to be crucial for the reactivity and selectivity of the applied Brown allylation. β-Keto ester 118 was synthesized by a self-developed onepot reaction consisting of an oxy-Cope rearrangement ${ }^{[116]}$ and methoxycarbonylation, again in almost quantitative yield (Scheme 35).

Scheme 35: Introduction of the first stereocenter and follow up synthesis of β-keto ester 118.

Numerous attempts to introduce the second allyl group in a diastereoselective way via a direct Callylation failed, yielding only the epimer of compound 125a. An enantioselective version of the C allylation ${ }^{[118]}$ could not efficiently counteract the substrate-induced diastereoselectivity as well. By combining a Mitsunobu-like O-allylation ${ }^{[119]}$ and subsequent diastereoselective oxy-Cope rearrangement ${ }^{[120]}$ of the β-keto ester 118, the synthesis of the twofold allylated cyclopentenone 125a was achived in a satisfactory yield of 33% over two steps and a good diastereoselectivity of 10:1
(Scheme 36). The moderate yield of the O-allylation is due to the competitive C-allylation, a problem known in the literature. ${ }^{[119]}$

Scheme 36: Stereoselective installation of the second allyl group.

The configuration of the newly generated quaternary stereocenter was confirmed first by ring closing metathesis and later by single crystal structure analysis. ${ }^{[121]}$ Scheme 37 shows that only the desired epimer of the β-keto ester $125 a / b$ is able to undergo a ring closing metathesis due to the cis-position of both allyl groups. The good yield of 68% for the metathesis product 126 suggests that the major isomer of the two β-keto esters must be compound 125a.

Scheme 37: Verification of the second stereocenter by ring closing metathesis.

In order to achieve near quantitative yields of silyl enol ether 117, the use of potassium hydride as a base was essential. Other bases such as lithium diisopropylamide, potassium hexamethyldisilazide or triethylamine failed to generate complete conversion. The subsequent Mukaiyama aldol reaction of silyl enol ether 117 and literature known aldehyde 116 gave a mixture of ketone 127 and acetal 128 in a good overall yield of 60\% (Scheme 38).

Scheme 38: Mukaiyama aldol reaction of the two fragments 117 and 116.

Ketone 127 and acetal 128 were initially separated by column chromatography for characterization. For the synthetic route, separation was not necessary, since both compounds led quantitatively to the same enone 115 under acidic conditions (Scheme 39).

Scheme 39: Acid-catalyzed elimination of the two aldol products 127 und 128.

The diastereoselective introduction of the third allyl group proved to be challenging. Classic coppercatalyzed conditions invariably afforded the 1,2-adduct. ${ }^{[121]}$ Screening of a wide variety of Lewis acids (titanium tetrachloride, boron trifluoride diethyl etherate, ferric(III) chloride, iodine, indium, indium(III) chloride) finally led to the application and optimization of an indium(III)-catalyzed HosomiSakurai reaction ${ }^{[122]}$ with a good yield of almost 60%. Subsequently, the addition of triethylamine to the reaction mixture also made the two corresponding silyl enol ethers 130a and 130b accessible (Scheme 40). The poor diastereoselectivity could not be improved even by intensive optimization experiments. The column chromatographic separation and assignment of the two diastereomeric species was carried out at a later stage of the synthesis. ${ }^{[121]}$

Scheme 40: Hosomi-Sakurai reaction of enone 115.

All attempts to build up the six-membered ring of the hypatulin scaffold under basic conditions via a Dieckmann-type ring closure failed. Here, only the decarboxylation product 131 could be identified. It was speculated that the keto group adjacent to the ester functionality enabled decarboxylation. Therefore, reduction of the cyclopentanone scaffold converted the ketone to a secondary alcohol and the aldol precursor 132 was obtained. Analysis of the reaction products after a subsequent intramolecular aldol reaction indicated only the existence of the aldol condensation product 134 (Scheme 41).

Scheme 41: First attempts to build the bicyclic scaffold of hypatulin B.

Leisering's alternative synthetic route to enone 115 involved a late stage introduction of the allyl and ester group. Initial experiments clarified that the order of functionalization was crucial for the stereoselective arrangement of the two functional groups. It was also observed that the allylation carried out first performed significantly worse than the subsequent methoxycarbonylation. A twofold functionalization that could be carried out as a one-pot reaction seemed favourable at this point. This reaction was carried out and optimized by me. The use of HMPA as an additive was essential here, allowing the allylation to proceed much more efficiently and enone 115 to be obtained as a single diastereomer with a satisfactory yield of 54\% (Scheme 42).

Scheme 42: One-pot procedure for the twofold functionalization of enon 120.

3.4. Summary and Outlook

In the previously discussed studies on the total synthesis of hypatulin A and B, three of five (hypatulin B) or six (hypatulin A) stereocenters were correctly installed. Moreover, all functional groups, except for the ester functionality in hypatulin B, were successfully introduced. As a result, a nine-step synthesis of silyl enol ether 130a/b can be presented. Leisering could further show that after two more steps the assembly of the carbocyclic backbone of hypatulin B can already be accomplished. ${ }^{[121]}$

Scheme 43: Summarized synthesis of silyl enol ether 130a/b.

A summarized presentation of the synthetic approach towards silyl enol ether $\mathbf{1 3 0}$ is shown in Scheme 43. Starting from commercially available enone 119, the stereoselective synthesis of silyl enol ether 117 succeeded in six steps with a total yield of 26%. Five steps proceeded in $\geq 88 \%$ yield. The introduction of the first stereocenter by combining an organocatalytic Brown allylation with a one-pot oxy-Cope rearrangement/methoxycarbonylation should be highlighted here. The second stereocenter could also be introduced in a highly selective fashion by a combination of two reactions (Mitsunobulike O-allylation and diastereoselective oxy-Cope rearrangement). The subsequent intermolecular Mukaiyama-aldol reaction succeeded in both the efficient coupling of the two fragments 116 and 117 and the correct installation of the third stereocenter. The introduction of the last allyl group could be realized under Hosomi-Sakurai conditions with good yields but insufficient diastereoselectivity.

Scheme 44: Continued synthesis by Leisering. ${ }^{[121]}$

In the further process, Leisering succeeded in building up the carbocyclic backbone of hypatulin B via an intramolecular Mukaiyama-aldol reaction (Scheme 44). Subsequent attempts to introduce the ester functionality failed either due to the lack of reactivity or the wrong stereoselectivity of the reaction. ${ }^{[121]}$

Scheme 45: Required transformations to arrive at the natural products hypatulin A and B.

In order to complete the synthesis of hypatulin B, a way should first be found to introduce the last allyl group and the ester group of hypatulin B stereoselectively. A metathesis should convert the three terminal alkenes into prenyl groups and complete the total synthesis of hypatulin B. Similar examples of late-stage prenylations are numerous in the literature ${ }^{[107,108,123]}$ and should work as expected here. Finally, the conversion of hypatulin B to hypatulin A could be realized by an intramolecular nucleophilic substitution (Scheme 45).

After successful completion of the synthesis, it would first be useful to verify the postulated structures of the two meroterpenes by comparing the spectroscopic data and, if possible, by single crystal structure analysis

Since the family of polyprenylated acylphloroglucinols represents numerous candidates with highly interesting pharmacological properties, these two new representatives should also be subjected to extended pharmacological tests. The total synthesis approach can enable a wide variety of derivatizations in the further course of the development.

4. References

[1] Brown, T. L.; LeMay, H. E.; Bursten, B. E. Chemie Studieren kompakt; Pearson, München, 2011.
[2] Atkins, P. W.; de Paula, J. Physikalische Chemie; Wiley-VCH, Weinheim, 2006.
[3] List, B. Chem. Rev. 2007, 107, 5413-5415.
[4] a) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416-5470; b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471-5569.
[5] Barik, S.; Biju, A. T. Chem. Commun. 2020, 56, 15484-15495.
[6] Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antillan, J. C. J. Am. Chem. Soc. 2005, 127, 15696-15697.
[7] Fuerst, D. E.; Jacobson, E. N. J. Am. Chem. Soc. 2005, 127, 8964-8965.
[8] Jungbauer, S. H.; Huber, S. M. J. Am. Chem. Soc. 2015, 137, 12110-12120.
[9] MacMillan, D. W. C. Nature 2008, 455, 304-308.
[10] Wöhler, F.; Liebig, J. Ann. Pharm. 1832, 3, 249-282.
[11] Liebig, J. Liebigs Ann. 1860, 113, 246-247.
[12] Bredig, G.; Fiske, P. S. Biochem. Z. 1912, 46, 7-23.
[13] a) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615-1621; b) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. Engl. 1971, 10, 496-497.
[14] SciFinder-entries on the research topic organocatalysis ("containg" or "containing the concept") from the years 2000 to 2020.
[15] Beeson, T. B.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582-585.
[16] Schalley, C. A.; Leisering, S. Tutorium Reaktivität und Synthese. Mechanismen synthetisch wichtiger Reaktionen der Organischen Chemie; Springer Spektrum, Berlin, 2017.
[17] Tajbakhsh, M.; Hosseinzadeh, R.; Alinezhad, H.; Ghahari, S.; Heydari, A.; Khaksar, S. Synthesis 2011, 490-496.
[18] a) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295-1298; b) Fischer, E.; Speier, A. Ber. Dtsch. Chem. Ges. 1895, 28, 3252-3258.
[19] Brandau, S.; Landa, A.; Franzén, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2006, 45, 4305-4309.
[20] Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2009, 48, 5223-5226.
[21] Wiest, J. The Role of Charged and Uncharged Intermediates in Organocatalysis, Master thesis, The Scripps Research Institute, La Jolla, 2012.
[22] Fuson, R. C. Chem. Rev. 1935, 16, 1-27.
[23] Hepburn, H. B.; Dell'Amico, L.; Melchiorre, P. Chem. Rec. 2016, 16, 1787-1806.
[24] Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108-4109.
[25] Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 4790-4791.
[26] Brown, S. P. Iminium and Enamine Activation: Methods for Enantioselective Organocatalysis, Dissertation, California Institute of Technology, Pasadena, 2005.
[27] Marigo, M.; Fielenbach, D.; Braunton, A., Kjærsgaard, A., Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 3703-3706.
[28] Halland, N.; Lie, M. A., Kjærsgaard, A., Marigo, M.; Schiøtt, B.; Jørgensen, K. A. Chem. Eur. J. 2005, 11, 7083-7090.
[29] Marquez, C. A., Fabbretti, F.; Metzger, J. O. Angew. Chem. Int. Ed. 2007, 46, 6915-6917.
[30] Burés, J.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2012, 134, 6741-6750.
[31] Jimeno, C.; Cao, L.; Renaud, P. J. Org. Chem. 2016, 81, 1251-1255.
[32] a) An, F.; Maji, B.; Min, E.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2020, 142, 1526-1547; b) Lakhdar, S.; Maji, B.; Mayr, H. Angew. Chem. Int. Ed. 2012, 51, 5739 -5742.
[33] Schnitzer, T.; Möhler, J. S.; Wennemers, H. Chem. Sci. 2020, 11, 1943-1947.
[34] Carneros, H.; Sánchez, D.; Vilarrasa, J. Org. Lett. 2014, 16, 2900-2903.
[35] Winter, P.; Swatschek, J.; Willot, M.; Radtke, L.; Olbrisch, T.; Schäfer, A.; Christmann, M. Chem. Commun. 2011, 47, 12200-12202.
[36] Graham, T. H.; Horning, B. D.; MacMillan, D. W. C. Org. Synth. 2011, 88, 42-53. https://abcr.com/de_de/catalogsearch/advanced/result/?cas=21306-21-8 (10.02.21) https://www.umweltbundesamt.de/sites/default/files/medien/377/dokumente/ pcpmono.pdf (10.02.2021)
[39] Reed, C. W.; Lindsley, C. W. Tetrahedron Lett. 2019, 60, 151104-151108.
[40] https://abcr.com/de_de/catalogsearch/advanced/result/?cas=128-09-6+ (10.02.21)
[41] Burés, J.; Armstrong, A.; Blackmond, D. G. Acc. Chem. Res. 2016, 49, 214-222.
[42] Grothues, L. Studien zur Totalsynthese von Caylobolid A, Master thesis, Freie Universität Berlin, Berlin, 2013.
[43] Kortet, S.; Claraz, A.; Pihko, P. M. Org. Lett. 2020, 22, 3010-3013.
[44] Fadeyi, O. O.; Schulte, M. L.; Lindsley, C. W. Org. Lett. 2010, 12, 3276-3278.
[45] Shemet, A.; Sarlah, D.; Carreira, E. M. Org. Lett. 2015, 17, 1878-1881.
[46] Halperin, S. D.; Britton, R. Org. Biomol. Chem. 2013, 11, 1702-1705.
[47] a) Dhand, V.; Draper, J. A.; Moore, J.; Britton, R. Org. Lett. 2013, 15, 1914-1917; b) Chang, S.; Hur, S.; Britton, R.; Chem. Eur. J. 2015, 21, 16646-16653; c) Bergeron-Brlek, M.; Teoh, T.; Britton, R. Org. Lett. 2013, 15, 3554-3557; d) Draper, J. A.; Britton, R. Org. Lett. 2010, 12, 4034-4037; e) Bergeron-Brlek, M.; Meanwell, M.; Britton, R. Nat. Commun. 2015, 6, 6903.
[48] Kaplaneris, N.; Spyropoulos, C.; Kokotou, M. G.; Kokotos, C. G. Org. Lett. 2016, 18, 58005803.
[49] Winter, P.; Hiller, W.; Christmann, M. Angew. Chem. Int. Ed. 2012, 51, 3396-3400.
[50] a) Huo, J.; Hu, H.; Zhang, M.; Hu, X.; Chen, M.; Chen, D.; Liu, J.; Xiao, G.; Wang, Y.; Wen, Z. RSC Adv. 2017, 7, 2281-2287; b) Dheer, D.; Singh, V.; Shankar, R. Bioorg. Chem. 2017, 71, 30-54; c) Sahu, A.; Sahu, P.; Agrawal, R. Curr. Chem. Biol. 2020, 14, 71-87; d) Dai, Z.-C.; Chen, Y.-F.; Zhang, M.; Li, S.-K.; Yang, T.-T.; Shen, L.; Wang, J.-X.; Qian, S.-S.; Zhu, H.-L.; Ye, Y.-H. Org. Biomol. Chem. 2015, 13, 477-486.
[51] Schweinfurth, D.; Hettmanczyk, L.; Suntrup, L.; Sarkar, B. Z. Anorg. Allg. Chem. 2017, 643, 554-584.
[52] Mekni, N. H.; Baklouti, A. Heterocycles 2012, 85, 1727-1733.
[53] Kang, B.; Chang, S.; Decker, S.; Britton, R. Org. Lett. 2010, 12, 1716-1719.
[54] Klenk, S.; Suntrup, L.; Sarkar, B. Nachr. Chem. 2018, 66, 717-721.
[55] Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735-1766.
[56] Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.; Rominger, F.; Oeser, T. Chem. Eur. J. 2008, 14, 6672-6678.
[57] Meyer, D. F. Studien zur Alkenhalogenierung durch 5-Nitroisoindolin-1,3-dionderivate, Bachelor thesis, Freie Universität Berlin, Berlin, 2018.
[58] Schmiedel, V. M.; Hong, Y. J.; Lentz, D.; Tantillo, D. J.; Christmann, M. Angew. Chem. Int. Ed. 2018, 57, 2419-2422.
[59] Schmiedel, V. M. Strained Terpenes as Targets: Total Synthesis of the Dichrocephone Sesquiterpenes and Studies towards Xenicane Diterpenes, Dissertation, Freie Universität Berlin, Berlin, 2018.
[60] Kleoff, M.; Schwan, J.; Christmann, M.; Heretsch, P. Org. Lett. 2021, 23, 2370-2374.
[61] Tierney, M. M.; Crespi, S.; Ravelli, D.; Alexanian, E. J. J. Org. Chem. 2019, 84, 12983-12991.
[62] Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Pure Appl. Chem. 2013, 85, 1711-1713.
[63] Sonnenberg, K.; Mann, L.; Redeker, F. A.; Schmidt, B.; Riedel, S. Angew. Chem. Int. Ed. 2020, 59, 5464-5493.
[64] Schmidt, B.; Ponath, S.; Hannemann, J.; Voßnacker, P.; Sonnenberg, K.; Christmann, M.; Riedel, S. Chem. Eur. J. 2020, 26, 15183-15189. Permission granted for reproduction in print
and electronic format for the purpose of this dissertation; Copyright: 2020 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim; license number: 4963700864814
[65] Halli, J.; Manolikakes, G. Nachr. Chem. 2016, 64, 131-134.
[66] Janiak, C. Nichtmetallchemie-Grundlagen und Anwendungen; Shaker Verlag, Aachen, 2007.
[67] a) Jayaraj, R.; Megha, P.; Sreedev, P. Interdiscip. Toxicol. 2016, 9, 90-100; b)
https://www.icis.com/explore/resources/news/2009/10/12/9253580/chlorine-plays-key-role-in-manufacture-of-drugs/ (11.02.21); c) Naumann, K. Pest Manag. Sci. 2000, 56, 3-12; d) Fang, W.-Y.; Ravindar, L.; Rakesh, K. P.; Manukumar, H. M.; Shantharam, C. S.; Alharbi, S.; Qin, H.-L. Eur. J. Med. Chem. 2019, 173, 117-153.
[68] a) Ragni, R.; Punzi, A.; Babudri, F.; Farinola, G. M. Eur. J. Org. Chem. 2018, 3500-3519; b) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Chem. Soc. Rev. 2011, 40, 34963508; c) Liu, Y.; Jiang, L.; Wang, H.; Wang, H.; Jiao, W.; Chen, G.; Zhang, P.; Hui, D.; Jian, X. Nanotechnol. Rev. 2019, 8, 573-586; d) Wang, J.; Sánchez-Roselló, M.; Acenã, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432-2506; e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acenã, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422-518.
[69] Beck, T. M.; Haller, H.; Streuff, J.; Riedel, S. Synthesis, 2014, 46, 740-747.
[70] Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C. Angew. Chem. Int. Ed. Engl. 1997, 36, 2342-2344.
[71] a) Negoro, T.; Ikeda, Y. Bull. Chem. Soc. Jpn. 1986, 59, 2547-2551; b) Shellhamer, D. F.; Allen, J. L.; Allen, R. D.; Bostic, M. J.; Miller, E. A.; O'Neill, C. M.; Powers, B. J.; Price, E. A.; Probst, J. W.; Heasley, V. L. J. Fluor. Chem. 2000, 106, 103-112; c) Shellhamer, D. F.; Davenport, K. J.; Forberg, H. K.; Herrick, M. P.; Jones, R. N.; Rodriguez, S. J.; Sanabria, S.; Trager, N. N.; Weiss, R. J.; Heasley, V. L.; Boatz, J. A. J. Org. Chem. 2008, 73, 4532-4538.
[72] http://woelen.homescience.net/science/index.html (12.02.21); copyright by W. Oelen; creative commons license: https://creativecommons.org/licenses/by-sa/3.0/deed.en
[73] with kind permission of Benjamin Schmidt (12.02.21)
[74] a) Reimann, H.; Oliveto, E. P.; Neri, R.; Eisler, M.; Perlman, P. J. Am. Chem. Soc. 1960, 82, 2308-2311; b) Iwata, C.; Akiyama, T.; Miyashita, K. Chem. Pharm. Bull. 1988, 36, 2878-2886; c) Miyashita, K.; Yoneda, K.; Akiyama, T.; Koga, Y.; Tanaka, M.; Yoneyama, T.; Iwata, C. Chem. Pharm. Bull. 1993, 41, 465-470.
[75] Hu, D. X.; Seidl, F. J.; Bucher, C.; Burns, N. Z. J. Am. Chem. Soc. 2015, 137, 3795-3798.
[76] Negoro, T.; Ikeda, Y. Bull. Chem. Soc. Jpn. 1984, 57, 2111-2115.
[77] Schmidt, B.; Sonnenberg, K.; Beckers, H.; Steinhauer, S.; Riedel, S. Angew. Chem. Int. Ed. 2018, 57, 9141-9145. Permission granted for reproduction in print and electronic format for the purpose of this dissertation; Copyright: 2021 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim; license number: 5012440886952
[78] Schmidt, B.; Schröder, B.; Sonnenberg, K.; Steinhauer, S.; Riedel, S. Angew. Chem. Int. Ed. 2019, 58, 10340-10344.
[79] De Kimpe, N.; Verhk, R.; De Buyck, L.; Schamu, N. Chem. Ber. 1983, 116, 3846-3857.
[80] Nagata, T.; Matsubara, H.; Kiyokawa, K.; Minakata, S. Org. Lett. 2017, 19, 4672-4675.
[81] Matsumoto, T.; Masu, H.; Yamaguchi, K.; Takeda, K. Org. Lett. 2004, 6, 4367-4369.
[82] Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Mar. Drugs 2014, 12, 1066-1101.
[83] Solecki, R. S. Science 1975, 190, 880-881.
[84] Hassan, H. M. A. Chimia 2015, 69, 622-623.
[85] Bakels, C. C. Der Mohn, die Linearbandkeramik und das Mittelmeergebiet. Archäologisches Korrespondenzblatt 12, 1982, 11-13.
[86] Brook, K.; Bennett, J.; Desai, S. P. J. Anesth. Hist. 2017, 3, 50-55.
[87] Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1956, 78, 1380-1393.
[88] https://www.bayer.com/de/produkte/aspirin (15.02.21)
[89] Schmid, B.; Kötter, I.; Heide, L. Eur. J. Clin. Pharmacol. 2001, 57, 387-391.
[90] a) Fleming, A. Br. J. Exp. Pathol. 1929, 10, 226-236; b) Favara, D. M. Am. Surg. 2014, 80, 1192-1195.
[91] a) Gennari, C.; Vulpetti, A.; Donghi, M.; Mongelli, N.; Vanotti, E. Angew. Chem. Int. Ed. Engl. 1996, 35, 1723-1725; b) Ojimam, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. Tetrahedron 1992, 48, 6985-7012.
[92] Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770-803.
[93] Dias, D. A.; Urban, S.; Roessner, U. Metabolites 2012, 2, 303-336.
[94] a) Greeson, J. M.; Sanford, B.; Monti, D. A. Psychopharmacology 2001, 153, 402-414; b) Dauncey, E. A.; Irving, J. T. W.; Allkin, R. J. Pharm. Pharmacol. 2019, 71, 4-14; c) Silva, A. R.; Taofiq, O.; Ferreira, I. C. F. R.; Barros, L. Ind. Crops Prod. 2021, 159, 113053; d) Istikoglou, C. I.; Mavreas, V.; Geroulanos, G. Psychiatriki 2010, 21, 332-338; e) Zhang, R.; Ji, Y.; Zhang, X.; Kennelly, E. J.; Long, C. J. Ethnopharmacol. 2020, 254, 112686; f) Galeotti, N. J. Ethnopharmacol. 2017, 200, 136-146.
[95] Pixabay free license (18.02.21)
[96] a) Wurglics, M.; Schubert-Zsilavecz, M. Clin. Pharmacokinet. 2006, 45, 449-468; b) Caccia, S. Curr. Pharm. Anal. 2006, 2, 59-68; c) Nohrstedt, A.; Butterwerck, V. Pharamacopsychiat. 1997, 30, 129-134; d) Pirbalouti, A. G.; Fatahi-Vanani, M.; Craker, L.; Shirmardi, H. Pharm. Biol. 2014, 52, 175-181.
[97] a) Ciochina, R.; Grossman, R. B. Chem. Rev. 2006, 106, 3963-3986; b) Yang, X.-W.; Grossman, R. B.; Xu, G. Chem. Rev. 2018, 118, 3508-3558; c) Decosterd, L. A.; Stoeckli-Evans, H.; Chapuis, J. C.; Sordat, B.; Hostettmann, K. Helv. Chim. Acta 1989, 72, 1833-1845; d) Orth, H. C. J.; Rentel, C.; Schmidt, P. C. J. Pharm. Pharmacol. 1999, 51, 193-200; e) Matsuhisa, M.; Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Shibata, H.; Higuti, T.; Kodzhimatov, O. K.; Ashurmetov, O. J. Nat. Prod. 2002, 65, 290-294.
[98] Duecker, F. L.; Reuß, F.; Heretsch, P. Org. Biomol. Chem. 2019, 17, 1624-1633.
[99] Liu, Y.-Y.; Ao, Z.; Xue, G.-M.; Wang, X.-B.; Luo, J.-G.; Kong, L.-Y. Org. Lett. 2018, 20, 79537956.
[100] Yang, X.-W.; Grossman, R. B. Org. Lett. 2020, 22, 760-763.
[101] Beerhues, L. Phytochemistry 2006, 67, 2201-2207.
[102] Bystrov, N. S.; Chernov, B. K.; Dobrynin, V. N.; Kolosov, M. N. Tetrahedron Lett. 1975, 16, 2791-2794.
[103] Nicolaou, K. C.; Carenzi, G. E. A.; Jeso, V. Angew. Chem. Int. Ed. 2005, 44, 3895-3899.
[104] Mehta, G.; Bera, M. K. Tetrahedron Lett. 2009, 50, 3519-3522.
[105] Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2010, 49, 1103-1106.
[106] Sparling, B. A.; Moebius, D. C.; Shair, M. D. J. Am. Chem. Soc. 2013, 135, 644-647.
[107] Uwamori, M.; Nakada, M. Tetrahedron Lett. 2013, 54, 2022-2025.
[108] Bellavance, G.; Barriault, L. Angew. Chem. Int. Ed. 2014, 53, 6701-6704.
[109] Ting, C. P.; Maimone, T. J. J. Am. Chem. Soc. 2015, 137, 10516-10519.
[110] http://www.plantsoftheworldonline.org/taxon/urn:Isid:ipni.org:names:927423-1 (15.02.20)
[111] https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=19598 (15.02.20)
[112] Pixabay free license (18.02.21)
[113] Tanaka, N.; Yano, Y.; Tatano, Y.; Kashiwada, Y. Org. Lett. 2016, 18, 5360-5363.
[114] Tanaka, N.; Niwa, K.; Yano, Y.; Kashiwada, Y. J. Nat. Med. 2020, 74, 264-268.
[115] Hashida, C.; Tanaka, N.; Kawazoe, K.; Murakami, K.; Sun H.-D.; Takaishi, Y.; Kashiwada, Y. J. Nat. Med. 2014, 68, 737-742.
[116] a) Barnett, D. S.; Moquist, P. N.; Schaus, S. E. Angew. Chem. Int. Ed. 2009, 48, 8679-8682; b) Taber, D. F.; Gerstenhaber, D. A., Berry, J. F. J. Org. Chem. 2011, 76, 7614-7617.
[117] Taber, D. F.; Berry, J. F. J. Org. Chem. 2013, 78, 8437-8441.
[118] Yoshida, M. J. Org. Chem. 2017, 82, 12821-12826.
[119] Uyeda, C.; Rötheli, A. R.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2010, 49, 9753-9756.
[120] Liu, Y.; Hu, H.; Zheng, H.; Xia, Y.; Liu, X.; Lin, L.; Feng, X. Angew. Chem. Int. Ed. 2014, 53, 11579-11582.
[121] Leisering, S. unpublished results
[122] Lee, P. H.; Lee, K.; Sung, S.-Y.; Chang, S. J. Org. Chem. 2001, 66, 8646-8649.
[123] Lindermayr, K.; Plietker, B. Angew. Chem. Int. Ed. 2013, 52, 12183-12186.
[124] Brown, H. C.; Racherla, U. S.; Pellechia, P. J. J. Org. Chem. 1990, 55, 1868-1874.
[125] Kim, J. G.; Waltz, K. M.; Garcia, I. F.; Kwiatkowski, D.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 12580-12585.
[126] Vorberg, R.; Trapp, N.; Zimmerli, D.; Wagner, B.; Fischer, H.; Kratochwil, N. A.; Kansy, M.; Carreira, E. M.; Müller, K. ChemMedChem 2016, 11, 2216-2239.
[127] Zheng, J.; Lin, L.; Kuang, Y.; Zhao, J.; Liu, X.; Feng, X. Chem. Commun. 2014, 50, 994-996.
[128] Ueki, T.; Doe, M.; Tanaka, R.; Morimoto, Y.; Yoshihara, K.; Kinoshita, T. J. Heterocyclic Chem. 2001, 38, 165-172.
[129] Davis, F. A.; Zhang, H.; Lee, S. H. Org. Lett. 2001, 3, 759-762.

5. Appendix

5.1. Abbreviations

Å Ångström
Ac acetyl
$\mathrm{A}_{N} \quad$ nukleophilic addition
ap antiperiplanar
aq. aqueous
Ar aryl
BINOL 1,1'-bi-2-naphthol
Bn benzyl
Boc tert-butyloxycarbonyl
2,2'-bpy 2,2'-bipyridine
BTEABr benzyltriethylammonium bromide
$C_{\text {max }}$ maximum concentration
COSY correlated spectroscopy (NMR)
d doublet, day
$\delta \quad$ chemical shift
de diastereomeric excess
DEAD diethyl azodicarboxylate
DFT density functional theory
DIBAL-H diisobutylaluminium hydride
DIPEA diisopropylethylamine
4-DMAP 4-dimethylaminopyridine
DME 1,2-dimethoxyethane
DMF dimethylformamide
DMP Dess-Martin periodinane
DMSO dimethyl sulfoxide
dr diastereomeric ratio
dppp 1,3-bis(diphenylphosphino)propane
ECD electronic circular dichroism
ee enantiomeric excess
equiv. equivalents
er enantiomeric ratio
ESI electron spray ionization

Et	ethyl
EWG	electron withdrawing group
EXSY	exchange spectroscopy (NMR)
GC	gas chromatography
h	hour
HMBC	heteronuclear multiple bond correlation
HMPA	hexamethylphosphoramide
HMQC	heteronuclear multiple-quantum correlation
HOMO	highest occupied molecular orbital
HPLC	high performance liquid chromatography
HR	high resolution
HWE	Horner-Wadsworth-Emmons(-reaction)
Hz	Hertz
${ }^{\text {i Pr }}$	isopropyl
IR	infrared
J	coupling constant
k	reaction rate constant
KH	potassium hydride
KIE	kinetic isotope effect
LDA	lithium diisopropylamide
LUMO	lowest unoccupied molecular orbital
m	multiplet
M	molar mass
mCPBA	meta-chloroperoxybenzoic acid
Me	methyl
Me ${ }_{4} \mathrm{NCS}$	1-chloro-3,3,4,4-tetramethylpyrrolidine-2,5-dione
min	minute
MOM	methoxymethyl ether
MS	mass spectrometry
mp	melting point
NFSI	N-fluorobenzenesulfonimide
NMI	1-methylimidazole
NMR	nuclear magnetic resonance
$\mathrm{NO}_{2} \mathrm{NXP}$	2-halo-5-nitroisoindoline-1,3-dione ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$)
NOE	nuclear Overhauser effect

NXS	N-halosuccinimide (X $=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$)
NXP	N-halophthalimide ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$)
p	pentet
PAP	polyprenylated acylphloroglucinols
PBP	polyprenylated benzophenones
PCP	pentachlorophenol
Ph	phenyl
pK_{A}	negative decadic logarithm of the acid constant
PPAP	polycyclic polyprenylated acylphloroglucinols
ppm	parts per million
q	quartet
rt	room temperature
R_{f}	retarding front or relate to front
S	singulet
SC	synclinal
$\mathrm{SE}_{\mathrm{E}} \mathrm{Ar}$	electrophilic aromatic substitution
SDS	stereodetermining step
$\mathrm{S}_{\mathrm{N} 2}$	nucleophilic substitution of $2^{\text {nd }}$ kinetic order
SOMO	single occupied molecular orbital
t	triplet
${ }^{t} \mathrm{Bu}$	tert-butyl
TBAF	tetrabutylammonium fluoride
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
TCCA	trichloroisocyanuric acid
TEMPO	(2,2,6,6-tetramethylpiperidin-1-yl)oxyl
Tf	triflyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TLS	turnover limiting step
TMS	trimethylsilyl
UV	ultraviolet
\tilde{v}	wavenumber

5.2. Supporting Information: Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates

Angewandte Chemie

Supporting Information

Mechanistic Studies on the Organocatalytic α-Chlorination of Aldehydes: The Role and Nature of Off-Cycle Intermediates
Sebastian Ponath, Martina Menger, Lydia Grothues, Manuela Weber, Dieter Lentz, Carsten Strohmann, and Mathias Christmann*

anie_201806261_sm_miscellaneous_information.pdf

Author Contributions

M. Weber, Dieter Lentz, Prof. Dr. Carsten Strohmann: X-ray crystal structure analysis.

1. GENERAL INFORMATION 3
2. EXPERIMENTAL PROCEDURES AND COMPOUND CHARACTERIZATION 4
2.1. ORGANOCATALYSTS 4
2.2. CHLORINATING REAGENTS. 12
2.3. OFF-CYCLE INTERMEDIATES 15
2.4. SYNTHESIS OF SUBSTRATES 18
2.5. SUBSTRATE SCOPE 25
3. MECHANISTIC STUDIES 30
3.1. GCMS KINETIC EXPERIMENTS 30
3.2. ${ }^{1}$ HNMR KINETIC EXPERIMENTS 34
4. ${ }^{1}$ HNMR AND ${ }^{13}$ CNMR SPECTRA 37
5. HPLC / GC SPECTRA 63
6. CRYSTALLOGRAPHIC DATA 74

Anhydrous solvents were provided by purification with MBraun SPS-800 solvent system using solvents of HPLC grade purchased from Fischer Scientific. Triethylamine was distilled from calcium hydride and stored under argon over KOH. Solvents for extraction, crystallization and flash column chromatography were purchased in technical grade and distilled under reduced pressure prior to use. Unless otherwise indicated, all starting materials and reagents were purchased from commercial distributors and used without further purification.
Products were purified by flash column chromatography on silica gel 60 M (0.040-0.063 mm, 230-400 mesh, Macherey-Nagel). TLCanalyses was performed on silica gel coated aluminum plates $A L U G R A M{ }^{\circledR}$ Xtra SIL G/UV 254 purchased from Macherey-Nagel. Products were detected by UV light at 254 nm and by using staining reagents based on KMnO_{4}, Anisaldeyde, Molybdophosphoric acid and Ceriumsulfate.
${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ spectral data were recorded on Bruker (AC 500, AVIII 700) and JEOL (ECX 400, Eclipse 500) spectrometers. The chemical shifts (δ) are listed in parts per million (ppm) and are reported relative to the corresponding residual solvent signal (CDCl_{3} : $\delta_{H}=7.26 \mathrm{ppm}, \delta_{C}=77.16 \mathrm{ppm}, \mathrm{DMSOd}_{6}: \delta_{H}=2.50 \mathrm{ppm}, \delta_{\mathrm{C}}=39.52 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}: \delta_{H}=3.31 \mathrm{ppm}, \delta_{\mathrm{C}}=49.00 \mathrm{ppm}, \mathrm{CD}{ }_{3} \mathrm{CN}: \delta_{\mathrm{H}}=1.94$ ppm, $\left.\delta_{C}=118.26{\text {, } \mathrm{DMFd}_{7}: ~} \delta_{H}=8.03 \mathrm{ppm}, \delta_{C}=163.15 \mathrm{ppm}\right)$. Integrals are in accordance with assignments; coupling constants (J) are given in Hz. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), etc. ${ }^{13} \mathrm{CNMR}$ spectra are ${ }^{1} \mathrm{H}$-broadband decoupled. For detailed peak assignments 2D spectra were measured (COSY, HMQC, HMBC). IR spectra were measured with a Jasco spectrometer (FT/IR-4100) equipped with an ATR unit. High resolution mass spectra were measured with an Agilent $6210 \mathrm{ESI}-\mathrm{TOF}(10 \mu \mathrm{~L} / \mathrm{min}, 1.0 \mathrm{bar}, 4 \mathrm{kV}$) instrument. Melting points were determined by digital melting point apparatus (Stuart SMP30) and are uncorrected. Optical rotations values were determined with a Jasco P-2000 polarimeter at the temperatures given. Diastereomeric ratios were determined by ${ }^{1}$ HNMR. Enantiomeric ratios were determined by chiral HPLC (Agilent Series 1200 with DAD) or by GC (Agilent 7890B) on a chiral column. The specific conditions are given in each case.

2.1. ORGANOCATALYSTS

All imidazolidinone derivatives were synthesized following a procedure described by Graham et al. ${ }^{[1]}$

1-Methylcyclohexane-1-carbaldehyde S1

Aldehyde S1 was synthesized according to a literature-known procedure. ${ }^{[2]} \mathrm{KO}{ }^{t} \mathrm{Bu}(6.50 \mathrm{~g}, 57.9 \mathrm{mmol}, 1.3$ equiv) was added slowly to an ice-cooled solution of cyclohexanecarbaldehyde ($5.00 \mathrm{~g}, 44.6 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (170 mL). Methyliodid (8.50 $\mathrm{mL}, 134 \mathrm{mmol}, 3.0$ equiv) was added dropwise and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After stirring at room temperature over night the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc, 100:1) and aldehyde S1 ($2.45 \mathrm{~g}, 19.3 \mathrm{mmol}, 43 \%$) was obtained as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.36(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.14(\mathrm{~m}, 8 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[2]}$

Adamantane-1-carbaldehyde S2

Aldehyde $\mathbf{S 2}$ was synthesized according to a literature-known procedure. ${ }^{[3]}$ Oxalylchloride ($6.70 \mathrm{~mL}, 76.8 \mathrm{mmol}, 1.3$ equiv) was added dropwise to a solution of anhydrous DMSO ($10.3 \mathrm{~mL}, 145 \mathrm{mmol}, 2.5$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for 15 min at the same temperature. A solution of 1 -adamantanemethanol ($9.67 \mathrm{~g}, 58.0 \mathrm{~mol}, 1.0$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred for 60 min at $-78^{\circ} \mathrm{C}$. The resulting mixture was then treated with anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ ($40.5 \mathrm{~mL}, 290 \mathrm{mmol}, 5.0$ equiv) and stirring was continued for 30 min at room temperature. Aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}(20 \mathrm{wt} \%, 25 \mathrm{~mL}$) and water (150 mL) were added subsequently and stirring was continued for additional 15 min at room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$, the layers were separated and the organic layer was washed with ice-cooled aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}(10 \mathrm{w} \%, 3 \times 150$ mL), brine (100 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Aldehyde $\mathbf{S 2}(8.60 \mathrm{~g}, 52.4 \mathrm{mmol}, 90 \%)$ was obtained as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.31(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{p}, \mathrm{J}=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[3]}$

Methyl L-alaninate hydrochloride S3

Ester S3 was synthesized according to a literature-known procedure. ${ }^{[4]}$ L-Alanine ($10.0 \mathrm{~g}, 112 \mathrm{mmol}, 1.0$ equiv) was suspended in methanol (100 mL) and cooled down to $-20^{\circ} \mathrm{C}$. After thionylchloride ($8.60 \mathrm{~mL}, 118 \mathrm{mmol}, 1.1$ equiv) was added dropwise, the reaction mixture was stirred for 60 min at $0^{\circ} \mathrm{C}$ and 48 h at room temperature. The solvent was removed under reduced pressure, the participating solid was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$. After the product was dried under vacuum, ester $\mathbf{S 3}$ (15.7 g , quant.) was received as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta=8.67(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[4]}$

Methyl L-valinate hydrochloride S4

Ester S4 was synthesized based on a literature-known procedure. ${ }^{[4]}$ L-Valine ($2.00 \mathrm{~g}, 17.1 \mathrm{mmol}, 1.0$ equiv) was suspended in MeOH $(10 \mathrm{~mL})$ and cooled down to $0{ }^{\circ} \mathrm{C} . \mathrm{SOCl}_{2}(2.50 \mathrm{~mL}, 34.1 \mathrm{mmol}, 2.0$ equiv) was added dropwise and the suspension was stirred for 10 min at $0^{\circ} \mathrm{C}$ before the ice-bath was removed and the reaction mixture was refluxed for 4 h . The solvent was removed under reduced pressure and the residue was dissolved in minimal amount of MeOH . $\mathrm{Et}_{2} \mathrm{O}$ was added and the crude product was recrystallized in the freezer overnight. The product was then filtered through a sintered funnel and washed with cold $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dried under vacuum. The procedure was repeated and ester $\mathbf{S 4}(2.61 \mathrm{~g}, 15.5 \mathrm{mmol}, 90 \%)$ was obtained as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.85(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{pd}, J=6.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm}$.

Methyl L-isoleucinate hydrochloride S5

Ester $\mathbf{S 5}$ was synthesized based on a literature-known procedure. ${ }^{[4]}$ L-Isoleucin ($2.00 \mathrm{~g}, 15.3 \mathrm{mmol}, 1.0$ equiv) was suspended in MeOH $(10 \mathrm{~mL})$ and cooled down to $0^{\circ} \mathrm{C}$. $\mathrm{SOCl}_{2}(2.20 \mathrm{~mL}, 30.5 \mathrm{mmol}, 2.0$ equiv) was slowly added and the solution was stirred for 10 min at $0^{\circ} \mathrm{C}$ before the ice-bath was removed and the reaction mixture was refluxed for 4 h . The solvent was removed under reduced pressure and the obtained solid was dissolved in a minimal amount of MeOH . $\mathrm{Et}_{2} \mathrm{O}$ was added and recrystallization was performed overnight in the freezer. The crystalline solid was filtered off and the filtrate was concentrated again, treated with $\mathrm{MeOH}^{\text {and }} \mathrm{Et}_{2} \mathrm{O}$ and recrystallized again. Ester $\mathbf{S} \mathbf{5}(2.50 \mathrm{~g}, 13.8 \mathrm{mmol}, 90 \%)$ was obtained as colorless solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.79(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{ddd}, \mathrm{J}=13.1,7.4,5.6 \mathrm{~Hz}$, 1 H), 1.44 (ddd, $J=13.8,8.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

(S)-2-Amino-N-methylpropanamide hydrochloride S6

Ester S3 ($15.7 \mathrm{~g}, 113 \mathrm{mmol}, 1.0$ equiv) was added to a solution of methylamine in ethanol ($33 \mathrm{wt} \%, 44.8 \mathrm{~mL}, 338 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred for 12 h at room temperature. The solvent was removed under reduced pressure and toluene (20 mL) was added to the white precipitate, stirred for 10 min and removed again. The procedure was repeated five times and the solid was dried at $50{ }^{\circ} \mathrm{C}$ overnight, receiving amide $\mathbf{S 6}\left(14.8 \mathrm{~g}, 107 \mathrm{mmol}, 95 \%, 10 \% \mathrm{MeNH}_{2} \cdot \mathrm{HCl}\right)$ as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta=3.90(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[1]}$

(S)-2-Amino-N,3-dimethylbutanamide hydrochloride S7

Ester S4 ($2.57 \mathrm{~g}, 15.3 \mathrm{mmol}, 1.0$ equiv) was added to a solution of methylamine in ethanol ($33 \mathrm{wt} \%, 5.70 \mathrm{~mL}, 46.0 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred for 16 h at room temperature and then concentrated under reduced pressure. The solid was suspended in toluene and concentrated again. The procedure was repeated four times and amide $\mathbf{S 7}(1.64 \mathrm{~g}, 9.84 \mathrm{mmol}$, 64%) was obtained as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right): \delta=3.65(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.99$ (d, J = 7.0 Hz, 3H), $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
(2S,3S)-2-Amino-N,3-dimethylpentanamide S8

Ester S5 ($2.50 \mathrm{~g}, 13.8 \mathrm{mmol}, 1.0$ equiv) was added to a solution of methylamine in ethanol ($33 \mathrm{wt} \%, 5.11 \mathrm{~mL}, 41.3 \mathrm{mmol}, 3.0$ equiv) and the suspension was stirred for 4 d at room temperature. The reaction mixture was concentrated under reduced pressure, the solid was suspended in toluene and concentrated again. The procedure was repeated four times and amide S8 (564 mg, $3.12 \mathrm{mmol}, 23 \%$) was obtained as a colorless solid
${ }^{1} \mathrm{HNMR}\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right): \delta=3.35(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.10$ $(\mathrm{m}, 1 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
(S)-N-Methyl-2-(((1-methylcyclohexyl)methylene)amino)propanamide S9

Triethylamine ($5.00 \mathrm{~mL}, 36.1 \mathrm{mmol}, 1.5$ equiv) and aldehyde $\mathbf{S 1}(3.04 \mathrm{~g}, 24.1 \mathrm{mmol}, 1.0$ equiv) were added subsequently to a suspension of amide $\mathbf{S 3}\left(5.00 \mathrm{~g}, 36.1 \mathrm{mmol}, 1.5\right.$ equiv) and $\mathrm{MgSO}_{4}(2.30 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$. The reaction mixture was stirred for 4 h at room temperature and then diluted with toluene $(15 \mathrm{~mL})$. The solids were filtered off and washed with toluene. The filtrate was concentrated under reduced pressure and the solids were filtered off again. The solvent was completely removed under reduced pressure and imin S9 ($4.02 \mathrm{~g}, 19.1 \mathrm{mmol}, 79 \%$) was obtained as a colorless oil. The product was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.45(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.39(\mathrm{~m}, 10 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
(2S)-(2-Adamantan-1-ylmethylene)amino- N -methylpropanamide S10

Triethylamine ($1.50 \mathrm{~mL}, 10.8 \mathrm{mmol}, 2.7$ equiv) and aldehyde $\mathbf{S 2}(0.649 \mathrm{~g}, 3.95 \mathrm{mmol}, 1.0$ equiv) were added subsequently to a suspension of amide $\mathbf{S 3}$ ($1.00 \mathrm{~g}, 7.22 \mathrm{mmol}, 1.8$ equiv) and $\mathrm{MgSO}_{4}(1.00 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred for 4 h at room temperature and then diluted with toluene $(15 \mathrm{~mL})$. The Solids were filtered off and washed with toluene. The filtrate was concentrated under reduced pressure and the solids were filtered off again. The solvent was completely removed under reduced pressure and imin S10 ($889 \mathrm{mg}, 3.58 \mathrm{mmol}, 91 \%$) was obtained as pale yellow oil. The product was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz},\right) \delta=7.35(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{p}, \mathrm{J}=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.62(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{H}-7), 1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
(S)-2-((2,2-Dimethylpropylidene)amino)-N,3-dimethylbutanamide S11

Amide S4 ($1.64 \mathrm{~g}, 9.84 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{MgSO}_{4}(1.90 \mathrm{~g})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(1.64 \mathrm{~mL}, 11.8 \mathrm{mmol}$, 1.2 equiv) and pivaldehyde ($1.18 \mathrm{~mL}, 10.8 \mathrm{mmol}, 1.1$ equiv) were added subsequently. The suspension was warmed to room temperature and stirred for 11 h . Additional $\mathrm{MgSO}_{4}(0.20 \mathrm{~g})$ and pivaldehyde ($1.18 \mathrm{~mL}, 10.8 \mathrm{mmol}, 1.10$ equiv) were added and stirring was continued for 5 h . The reaction mixture was treated with $\mathrm{Et}_{2} \mathrm{O}$ to induce precipitation. The solids were filtered off and the filtrate was concentrated under reduced pressure. Imine S11 ($1.90 \mathrm{~g}, 9.58 \mathrm{mmol}, 97 \%$) was obtained as colorless oil and was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.41(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.38-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.08$ (s, 9H), $0.81(\mathrm{t}, \mathrm{J}=6.9,6.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
(2S,3R)-2-((2,2-dimethylpropylidene)amino)-N,3-dimethylpentanamide S12

Amide $\mathbf{S 5}\left(700 \mathrm{mg}, 4.85 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{MgSO}_{4}(0.90 \mathrm{~g})$ were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(0.81 \mathrm{~mL}, 5.82 \mathrm{mmol}$, 1.2 equiv) and pivaldehyde ($0.58 \mathrm{~mL}, 5.34 \mathrm{mmol}, 1.1$ equiv) were added subsequently and the suspension was warmed to room temperature for 11 h . Additional $\mathrm{MgSO}_{4}(0.50 \mathrm{~g})$ and pivaldehyde ($0.58 \mathrm{~mL}, 5.34 \mathrm{mmol}, 1.1$ equiv) were added and stirring was continued for 5 h . $\mathrm{Et}_{2} \mathrm{O}$ was added to induce precipitation. The solids were filtered off and the filtrate was concentrated under reduced pressure. Imine $\mathbf{S 1 2}$ ($990 \mathrm{mg}, 4.66 \mathrm{mmol}, 96 \%$) was obtained as colorless oil and was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta=7.42(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.52$ $-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
(2R,5S)-3,5-Dimethyl-2-(1-methylcyclohexyl)imidazolidin-4-one hydrochloride S13

Acetylchloride ($1.50 \mathrm{~mL}, 21.0 \mathrm{mmol}, 1.1$ equiv) was added dropwise to anhydrous ethanol (10 mL) at $0^{\circ} \mathrm{C}$. Imin $\mathbf{S 9}(4.01 \mathrm{~g}, 19.1 \mathrm{mmol}$, 1.0 equiv) was added and the solution was stirred for 1 h at $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ at $70^{\circ} \mathrm{C}$ and finally 4 h at room temperature. The solids were filtered off and washed with a small portion of cold ethanol. The filtrate was concentrated under reduced pressure and the precipitate was filtered off again. After drying under vacuum hydrochloride $\mathbf{S 1 3}$ ($2.62 \mathrm{~g}, 10.6 \mathrm{mmol}, 56 \%$, single diastereoisomer) was obtained as a colorless solid. Trans-isomerism was confirmed by NOE-spectroscopy.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta=4.76(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~d}, \mathrm{~J}$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{td}, J=12.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{td}, J=10.0,8.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
(2R,5S)-2-(Adamantan-1-yl)-3,5-dimethylimidazolidin-4-one S14

Acetylchloride ($0.34 \mathrm{~mL}, 3.95 \mathrm{mmol}$, 1.1 equiv) was added dropwise to anhydrous ethanol (5 mL) at $0{ }^{\circ} \mathrm{C}$. Imin $\mathbf{S 1 0}$ ($889 \mathrm{mg}, 3.59$ mmol, 1.0 equiv) was added and the solution was stirred for 1 h at $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ at $70^{\circ} \mathrm{C}$ and finally 4 h at room temperature. The precipitate was filtered off and washed with a small portion of cold ethanol. The filtrate was concentrated under reduced pressure and the solids were filtered off again. After drying under vacuum hydrochloride $\mathbf{S 1 4}$ was obtained as a colorless solid (d.r. 1:0.7, trans:cis). Subsequently the product was stirred in EtOH for 5 h at $70^{\circ} \mathrm{C}$ to shift the thermodynamic equilibrium to 10:1 ratio of trans:cis isomers as indicated by TLC. ${ }^{[1]}$ After removal of all solvents under reduced pressure hydrochloride S14 was obtained as a colorless solid (553 mg, 1.94 mmol, 54\%, d.r. 10:1, trans:cis).
${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta=4.56(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.08$ $(\mathrm{m}, 6 \mathrm{H}), 1.91-1.66(\mathrm{~m}, 24 \mathrm{H}), 1.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
(2R,5S)-2-(tert-Butyl)-5-isopropyl-3-methylimidazolidin-4-one hydrochloride S15

$\mathrm{AcCl}\left(0.72 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.1\right.$ equiv) was added dropwise to anhydrous $\mathrm{EtOH}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 15 min and a solution of imin $\mathbf{S 1 1}$ ($1.80 \mathrm{~g}, 9.12 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{EtOH}(1 \mathrm{~mL})$ was added. The reaction mixture was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$ and 30 min at $75^{\circ} \mathrm{C}$. After cooing to room temperature, the solution was concentrated under reduced pressure and the mixture was crystallized in the freezer overnight. After filtration hydrochloride $\mathbf{S 1 5}$ ($1.00 \mathrm{~g}, 4.26 \mathrm{mmol}, 47 \%$, single diastereoisomer) was obtained as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}\right): \delta 4.84(\mathrm{~s} .1 \mathrm{H}), 4.10(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.15(\mathrm{~s}, 12 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
(2R,5S)-5-((S)-sec-Butyl)-2-(tert-butyl)-3-methylimidazolidin-4-one hydrochloride S16

$\mathrm{AcCl}\left(0.36 \mathrm{~mL}, 5.08 \mathrm{mmol}, 1.1\right.$ equiv) was added dropwise to anhydrous $\mathrm{EtOH}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 15 min at the same temperature and a solution of imin $\mathbf{S 1 2}$ ($989 \mathrm{mg}, 4.61 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{EtOH}(1 \mathrm{~mL})$ was added. The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and 30 min at $75^{\circ} \mathrm{C}$. After cooling to room temperature, the solution was concentrated under reduced pressure and the mixture was crystallized in the freezer overnight. After filtration hydrochloride S16 was obtained as a colorless solid (417 mg, $1.68 \mathrm{mmol}, 36 \%$, single diastereoisomer)
${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}\right): \delta 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.46$ (m, 1H), 1.16 (s, 9H), 1.09 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
(2R,5S)-3,5-Dimethyl-2-(1-methylcyclohexyl)imidazolidin-4-one 12

Aqueous saturated NaHCO_{3}-solution (2 mL) was added dropwise to hydrochloride $\mathbf{S 1 3}(210 \mathrm{mg}, 851 \mu \mathrm{~mol})$ and the reaction mixture was stirred for 15 min at room temperature. The free base was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Imidazolidinone 12 (172 mg, $817 \mu \mathrm{~mol}$, 96%, single diastereoisomer) was obtained as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{EtOAc})$
$[\alpha]_{D}^{23}=+17.9^{\circ}\left(c=0.80, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=4.07(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.52(\mathrm{~m}$, $2 H), 1.48-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} \mathbf{C N M R}^{(} \mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=177.2,83.9,54.4,41.0,34.2,34.0,32.2,26.1,21.7,21.6,18.8,17.9 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3313,2967,2920,2857,1683,1396,745 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 211.1805$, found 211.1795; m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 233.1624, found 233.1613 .
(2R,5S)-2-(Adamantan-1-yl)-3,5-dimethylimidazolidin-4-one 13

Aqueous saturated NaHCO_{3}-solution (5 mL) was added dropwise to hydrochloride $\mathbf{S 1 4}(553 \mathrm{mg}, 1.94 \mathrm{mmol})$ and the reaction mixture was stirred for 15 min at room temperature. The free base was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The free base of compound S 14 was obtained as a white solid ($459 \mathrm{mg}, 1.85 \mathrm{mmol}, 96 \%$). After column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O}\right)$, the trans-isomer 13 (169 mg, 680 $\mu \mathrm{mol}, 37 \%)$ was obtained as a colorless solid. Trans-isomerism was confirmed by NOE-spectroscopy.
$\mathbf{m p}=115-117{ }^{\circ} \mathrm{C}$
$\mathbf{R}_{\mathbf{f}}($ trans $)=0.2\left(\mathrm{Et}_{2} \mathrm{O}\right) \quad \mathbf{R}_{\mathbf{f}}($ cis $)=0.1\left(\mathrm{Et}_{2} \mathrm{O}\right)$
$[\alpha]_{D}^{22}=+21.7^{\circ}\left(c=0.80, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=3.84(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{p}, \mathrm{J}=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.53(\mathrm{~m}, 12 \mathrm{H}), 1.28$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{2}$ CNMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=177.2,83.7,54.5,40.3,38.2,37.1,32.5,28.2,18.6 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3402,3285,2897,2846,2362,1669,766 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 249.1962$, found $249.1967 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 271.1781, found 271.1766.
(2R,5S)-2-(tert-Butyl)-5-isopropyl-3-methylimidazolidin-4-one trifluoroacetate 11•TFA

Hydrochloride $\mathbf{S 1 5}$ ($1.13 \mathrm{~g}, 5.67 \mathrm{mmol}, 1.0$ equiv) was treated with aqueous saturated NaHCO_{3}-solution (5 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic phases were concentrated under reduced pressure. The obtained oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and TFA ($440 \mu \mathrm{~L}, 5.67 \mathrm{mmol}, 1.0$ equiv) was added dropwise. The mixture was crystallized in the freezer overnight and imidazolidinone $11 \cdot$ TFA ($1.61 \mathrm{~g}, 5.15 \mathrm{mmol}, 91 \%$, single diastereoisomer) was obtained as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=4.72(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{heptd}, J=6.9,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.13-1.11(\mathrm{~m}, 12 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=170.9,82.8,63.8,37.8,31.8,31.1,25.1,18.1,17.5 \mathrm{ppm}$.
(2R,5S)-5-((S)-sec-Butyl)-2-(tert-butyl)-3-methylimidazolidin-4-one trifluoroacetate 10•TFA

Hydrochloride $\mathbf{S 1 6}$ ($335 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.0$ equiv) was treated with aqueous saturated NaHCO_{3}-solution (2 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic phases were concentrated under reduced pressure. The obtained oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and TFA ($120 \mu \mathrm{~L}, 1.58 \mathrm{mmol}, 1.0$ equiv) was added dropwise. The mixture was crystallized in the freezer overnight and imidazolidinone $10 \cdot$ TFA ($457 \mathrm{mg}, 1.46 \mathrm{mmol}, 92 \%$, single diastereoisomer) was obtained as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=4.72(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.46-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

2.2. CHLORINATING REAGENTS

The following N -chlorinations were performed based on a literature-known procedure. ${ }^{[6]}$

3,3,4,4-Tetramethylpyrrolidine-2,5-dione S17

Imid S17 was synthesized according to a literature-known procedure. ${ }^{[5]}$ A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water ($30 \mathrm{w} \%$, $11.8 \mathrm{~mL}, 106 \mathrm{mmol}$, 2.9 equiv) was added to a solution of 2,2,3,3-tetramethylsuccinonitrile ($5.00 \mathrm{~g}, 36.7 \mathrm{mmol}, 1.0$ equiv) in ethanol (25 mL) at $0{ }^{\circ} \mathrm{C}$ and stirred for 3 h under reflux. The reaction mixture was cooled to room temperature and quenched with hydrochloric acid (1 M). The product was extracted with toluene ($3 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Imid S17 $(1.65 \mathrm{~g}, 10.6 \mathrm{mmol}, 29 \%)$ was obtained as a colorless solid and was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=8.57(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[5]}$

1-Chloro-3,3,4,4-tetramethylpyrrolidine-2,5-dione 20

Trichloroisocyanuric acid ($725 \mathrm{mg}, 3.12 \mathrm{mmol}, 0.33$ equiv) was added to a suspension of imide $\mathbf{S 1 7}$ ($1.47 \mathrm{~g}, 9.45 \mathrm{mmol}, 1.0$ equiv), acetic acid ($3.20 \mathrm{~mL}, 56.0 \mathrm{mmol}, 5.9$ equiv) and water (20 mL) and the reaction mixture was stirred for 1 h at room temperature. The product was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Compound $20(1.63 \mathrm{~g}, 8.62 \mathrm{mmol}, 91 \%)$ was obtained as a colorless solid and was used without further purification.
mp: $82-84^{\circ} \mathrm{C}$
$\mathbf{R}_{\mathbf{f}}=0.8$ (pentane:EtOAc $=5: 1$)
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=1.24(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ CNMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=177.7,48.0,21.8 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=2978,1743,1722,1396,1382 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{CINO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 190.0630$, found 190.0626 .

1-Chloro-5-nitroisoindoline-1,3-dione 19

Trichloroisocyanuric acid ($121 \mathrm{mg}, 521 \mu \mathrm{~mol}, 0.33$ equiv) was added to a suspension of 4-nitrophthalimide ($300 \mathrm{mg}, 1.56 \mathrm{mmol}$, 1.0 equiv) in water (10 mL) and the reaction mixture was stirred for 1 h at room temperature. The solid was filtered off and dried at $50^{\circ} \mathrm{C}$ over night. Compound 19 ($339 \mathrm{mg}, 1.50 \mathrm{mmol}, 96 \%$) was obtained as a colorless solid and was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right) \delta=8.63(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=2.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[7]}$

5-Fluoroisoindoline-1,3-dione S18

Formamide ($15.0 \mathrm{~mL}, 377 \mathrm{mmol}, 12.5$ equiv) was added to 5 -Fluoroisobenzofuran-1,3-dione ($5.00 \mathrm{~g}, 30.0 \mathrm{mmol}, 1.0$ equiv) at room temperature and the suspension was stirred for 2.5 h at $120^{\circ} \mathrm{C}$ (caution: CO evolution!). After cooling to room temperature, the reaction mixture was poured into water (120 mL). The solids were filtered off, washed with water and dried at $50^{\circ} \mathrm{C}$ overnight. Imid $\mathbf{S 1 8}(3.10 \mathrm{~g}$, $18.8 \mathrm{mmol}, 63 \%$) was obtained as a colorless solid and was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{DMFd}_{7}, 500 \mathrm{MHz}\right) \delta=11.43(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.66(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[8]}$

2-Chloro-5-fluoroisoindoline-1,3-dione 17

Trichloroisocyanuric acid ($1.44 \mathrm{~g}, 6.19 \mathrm{mmol}, 0.33$ equiv) was added to a suspension of imide $\mathbf{S 1 8}(3.10 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.00$ equiv) in water (200 mL) and the reaction mixture was stirred for 1 h at room temperature. The solids were filtered off and purified by recrystallization (CHCl_{3}, reflux). Compound $17(3.00 \mathrm{~g}, 15.0 \mathrm{mmol}, 80 \%$) was obtained as a colorless solid.
mp: $155-156^{\circ} \mathrm{C}$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=7.92(\mathrm{dd}, J=8.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=6.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ CNMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=166.7(\mathrm{~d}, J=259.6 \mathrm{~Hz}), 162.4,162.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.9(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}), 127.0(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz})$, 126.7 (d, $J=9.7 \mathrm{~Hz}), 121.9(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 112.1$ (d, $J=25.3 \mathrm{~Hz}) \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3079,1785,1729,1481,1224,1168 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{CIFNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 221.9728$, found 221.9732.

4,5,6,7-Tetrachloroisoindoline-1,3-dione S19

Formamide ($8.70 \mathrm{~mL}, 219 \mathrm{mmol}, 12.5$ equiv) was added to $4,5,6,7$-Tetrachloroisobenzofuran-1,3-dione ($5.00 \mathrm{~g}, 17.5 \mathrm{mmol}, 1.0$ equiv) at room temperature and the suspension was stirred for 2.5 h at $120^{\circ} \mathrm{C}$ (caution: CO evolution!). After cooling to room temperature the reaction mixture was poured into water (120 mL). The solids were filtered off, washed with water and dried at $50^{\circ} \mathrm{C}$ over night. Imid S19 ($4.71 \mathrm{~g}, 16.5 \mathrm{mmol}, 94 \%$) was obtained as a colorless solid and was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{DMFd}_{7}, 500 \mathrm{MHz}\right) \delta=11.93(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ CNMR (DMFd $\left.{ }_{7}, 126 \mathrm{MHz}\right) \delta=164.8$, 138.8, 129.7, 128.8 ppm .

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Cl}_{4} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 283,8834$, found 283,8841

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{HCl}_{4} \mathrm{NO}_{2}$ (284.90): C 33.73, H 0.35 , N 4.92 ; found: $\mathrm{C} 33.75, \mathrm{H} 0.36, \mathrm{~N} 4.98$.

2,4,5,6,7-Pentachloroisoindoline-1,3-dione 18

Trichloroisocyanuric acid ($869 \mathrm{mg}, 3.74 \mathrm{mmol}, 0.33$ equiv) was added to a suspension of imide $\mathbf{S 1 9}$ ($3.00 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.0$ equiv) in water (110 mL) and the reaction mixture was stirred for 1 h at room temperature. The solids were filtered off, dried and compound 18 ($3.02 \mathrm{~g}, 9.46 \mathrm{mmol}, 90 \%$) was obtained as a colorless solid.
${ }^{13}$ CNMR (DMFd7, 126 MHz) $\delta=160.0,139.5,129.1,128.5 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=1746,1038 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{8} \mathrm{HCl}_{5} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 317.8445$ found 317.8453 .

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{Cl}_{5} \mathrm{NO}_{2}$ (319.34): $\mathrm{C} 30.03, \mathrm{H} 0.00, \mathrm{~N} 4.39$; found: $\mathrm{C} 30.23, \mathrm{H} \mathrm{0.00}, \mathrm{~N} 4.44$.

1-((1R,2S)-1-((2R,5S)-2-(tert-Butyl)-3,5-dimethyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione 5

Catalyst 2•TFA ($4.24 \mathrm{~g}, 14.9 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and N-chlorosuccinimide ($11.9 \mathrm{~g}, 89.4 \mathrm{mmol}, 1.2$ equiv) were added subsequently to a solution of hydrocinnamic aldehyde ($10.0 \mathrm{~g}, 74.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(250 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. After stirring for 1 h , silica was added to the reaction mixture, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc, $5: 1$ to $\left.1: 10\right)$. Parasitic intermediate $5(2.84 \mathrm{~g}, 6.76 \mathrm{mmol}, 9 \%)$ was obtained as a white solid.
$\mathbf{R}_{\mathrm{f}}=0.4$ (pentane: $\mathrm{EtOAc}=1: 5$)
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=10.7,1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{td}, J=10.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{q}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=14.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}$, 9H) ppm.
${ }^{13}{ }^{1} \mathbf{C N M R}\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=179.5,176.7,175.6,137.1,129.4,128.5,127.1,84.8,71.5,60.5,58.3,38.6,31.8,28.1,28.0,11.6 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3031,2957,2871,1778,1708,1455,1432,1396,1375,1252,1201,816,751,701 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{CIN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 442.1868, found 442.1880.

The following three off-cycle intermediates $\mathbf{6 , 7} \mathbf{7}$ and $\mathbf{8}$ were synthesized according to the procedure described above.

1-((1R,2S)-1-((2R,5S)-2-(tert-Butyl)-3,5-dimethyl-4-oxoimidazolidin-1-yl)-2-chlorooctyl)pyrrolidine-2,5-dione 6

Yield: $120 \mathrm{mg}, 330 \mu \mathrm{~mol}, 18 \%$
$\mathbf{R}_{\mathbf{f}}=0.4$ (pentane: $\mathrm{EtOAc}=1: 6$)
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=4.97(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{td}, J=10.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (s, 3H), $2.74-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.41$ (tdd, $J=11.4,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.38-1.25(\mathrm{~m}, 7 \mathrm{H}), 0.99,(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=179.5,176.8,175.7,84.7,71.6,61.0,58.1,38.5,36.3,31.8,31.8,29.1,28.1,28.0,27.8,26.6,22.7$, 14.2, 11.5 ppm.

IR: $\tilde{v}=2950,2870,1780,1710,1680,1480,1440,1400,1370,1340,1260,1170,1150,790 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{CIN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 414.2577$, found: 414.2524 ; m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{CIN}_{3} \mathrm{NaO}_{3}$ $\left[^{M}+\mathrm{Na}\right]^{+}: 436.2409$, found: 436.2343.

1-((1R,2S)-1-((2R,5S)-2-(tert-butyl)-3,5-dimethyl-4-oxoimidazolidin-1-yl)-2-chloropentyl)pyrrolidine-2,5-dione 7

Yield: $72.1 \mathrm{mg}, 194 \mathrm{mmol}, 10 \%$
$\mathbf{R}_{\mathbf{f}}=0.4$ (pentane:EtOAc $=1: 6$)
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=4.96(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{td}, J=10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}$, $3 \mathrm{H}), 2.74-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{dd}, J=3.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} \mathrm{CNMR}^{(} \mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=179.5,176.8,175.7,84.7,71.6,60.6,58.1,38.5,38.2,31.7,28.1,28.0,27.7,20.0,13.8,11.4 \mathrm{ppm}$.

IR: $\tilde{v}=2960,2930,2870,1780,1710,1460,1440,1400,1370,1350,1280,1250,1200,1150,820 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 372.2049$, found: 372.2066.

2-((1R,2S)-1-((2R,5S)-2-(tert-butyl)-3,5-dimethyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)isoindoline-1,3-dione 8

Yield: $99.0 \mathrm{mg}, 234 \mu \mathrm{~mol}, 16 \%$
$\mathbf{R}_{\mathbf{f}}=0.7$ (pentane: $\mathrm{EtOAc}=1: 6$)
${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 700 \mathrm{MHz}\right) \delta=7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 4 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{td}, J=10.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=14.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.55$ (d, J = 7.4 Hz, 3H), 1.13 (s, 9H) ppm.
${ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 176 \mathrm{MHz}\right) \delta=175.03,170.4,168.3,137.4,134.7,134.6,131.4,130.8,129.3,128.4,126.8,123.9,123.5,84.7$, $70.9,61.7,58.4,41.9,38.5,31.5,27.5,11.4 \mathrm{ppm}$.

IR: $\tilde{v}=2950,2870,1780,1710,1680,1480,1470,1400,1370,1340,1260,1170,1150,1060,720 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{CIN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 468.2049 found: 468.2020 ; m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{CIN}_{3} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 490.1868$, found: 490.1853.

1-((1R,2S,6S)-1-((2R,5S)-2-(tert-Butyl)-3,5-dimethyl-4-oxoimidazolidin-1-yl)-2,6-dichloro-7-hydroxyheptyl)pyrrolidine-2,5dione 9

1,7-Heptanediol ($5.00 \mathrm{~g}, 37.8 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(380 \mathrm{~mL}) .\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{OTf}(1.07 \mathrm{~g}, 2.84 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$), 2,2'-bpy ($443 \mathrm{mg}, 2.84 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$), TEMPO ($443 \mathrm{mg}, 2.84 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$) and $\mathrm{NMI}(450 \mu \mathrm{~L}, 5.67 \mathrm{mmol}, 15 \mathrm{~mol} \%$) were added subsequently at room temperature and stirring was continued for 3 h under oxygen atmosphere. Catalyst 2•TFA ($4.32 \mathrm{~g}, 15.1 \mathrm{mmol}$, $40 \mathrm{~mol} \%$), N-chlorosuccinimide ($12.6 \mathrm{~g}, 94.5 \mathrm{mmol}$, 2.5 equiv) and $\mathrm{CH}_{3} \mathrm{CN}(380 \mathrm{~mL})$ were added and the reaction mixture was stirred for 18 h at $-30^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}\left(7.15 \mathrm{~g}, 189 \mathrm{mmol}, 5.0\right.$ equiv) and $\mathrm{EtOH}(380 \mathrm{~mL})$ were added and stirring was continued for 30 min at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$-solution, concentrated under reduced pressure and the aqueous phase was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. After removal of all solvents under reduced pressure, the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane: $\left.\mathrm{Et}_{2} \mathrm{O}=1: 5\right)$. Intermediate $9(587 \mathrm{mg}, 1.30 \mathrm{mmol}, 3 \%)$ was obtained as a colorless solid.
$\mathbf{R}_{\mathrm{f}}=0.4$ (EtOAc)
mp: $116{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{HNMR}^{2}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=4.98(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79$ (dd, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.73$ (m, 3H), $1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{3} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=179.4,176.6,175.5,84.5,71.3,66.9,64.5,60.2,57.9,38.4,35.6,33.9,31.6,28.0,27.9,27.6,23.6$, 11.3 ppm.

IR: $\tilde{v}=3388,2945,1709,1672,1338,1144,1033,776,680,627,581 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 450.1921$ found: 450.1921 ; m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{NaO}_{4}$ [$\mathrm{M}+\mathrm{Na}]^{+}$: 472.1740, found: 472.1736.

2.4. SYNTHESIS OF SUBSTRATES

The following aerobic oxidations were performed according to a literature-know procedure. ${ }^{[9]}$

Decanedial S20

Decane-1,10-diol ($2.00 \mathrm{~g}, 11.5 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL}) .\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{OTf}(433 \mathrm{mg}, 1.15 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, 2,2'-bpy ($180 \mathrm{mg}, 1.15 \mathrm{mmol}, 10 \mathrm{~mol} \%$), 4-acetamido-TEMPO ($245 \mathrm{mg}, 1.15 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 4-DMAP (281 mg, 2.30 mmol , $20 \mathrm{~mol} \%$) were added subsequently at room temperature and stirring was continued for 1.5 h under oxygen atmosphere. The reaction mixture was quenched with water and the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 8:1) yielding dialdehyde $\mathbf{S} 20(1.51 \mathrm{~g}, 8.86 \mathrm{mmol}, 77 \%)$ as a colorless solid.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.76(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{td}, J=7.3,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.62(\mathrm{p}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[10]}$

5-Bromopentanal S21

Aldehyde S21 was synthesized according to literature-known procedure. ${ }^{[11]}$ DIBAL-H (1 m in hexane, $11.0 \mathrm{~mL}, 11.0 \mathrm{mmol}, 1.1$ equiv) was added dropwise to a $-78^{\circ} \mathrm{C}$ cooled solution of ethyl-5-bromopentanoate ($2.09 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ under argon-atmosphere and the reaction mixture was stirred for 3 h at the same temperature. The reaction was quenched with $\mathrm{Et}_{2} \mathrm{O}$ and brine, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/Et $\mathrm{t}_{2} \mathrm{O} 20: 1$), aldehyde $\mathbf{S 2 1}(1.24 \mathrm{~g}, 7.51 \mathrm{mmol}, 75 \%)$ was obtained as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.78(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{td}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.84-$ 1.75 (m, 2H) ppm.

10-((tert-Butyldiphenylsilyl)oxy)decan-1-ol S22

Alcohol S22 was synthesized according to a literature-known procedure. ${ }^{[12]}$ 1,10-Decanediol ($3.00 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.20 mL , 8.61 mmol , 0.5 equiv) and 4-DMAP ($69.6 \mathrm{mg}, 570 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$. TBDPSCI (1.47 mL , $5.68 \mathrm{mmol}, 0.3$ equiv) was added dropwise and stirring was continued for 20 h at room temperature. The reaction mixture was concentrated under reduced pressure, diluted with hexane and the solids were filtered off. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 10:1 to $5: 1$) and alcohol $\mathbf{S 2 2}(1.25 \mathrm{~g}, 3.02 \mathrm{mmol}, 53 \%)$ was obtained as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 6 \mathrm{H}), 3.69-3.60(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.22(\mathrm{~m}, 13 \mathrm{H})$, 1.05 (s, 9H) ppm.

Spectroscopic data were in accordance with published data. ${ }^{[12]}$

10-((tert-Butyldiphenylsilyl)oxy)decanal S23

$\xrightarrow[\mathrm{CH}_{3} \mathrm{CN}, 22^{\circ} \mathrm{C}, 2.5 \mathrm{~h}]{\begin{array}{c}{\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{OOTf}, 2,2^{\prime}-\mathrm{bpy},\right.}\end{array}}$
Alcohol S22 ($1.24 \mathrm{~g}, 3.01 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$. $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{OTf}(56.5 \mathrm{mg}, 150 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), 2,2^{\prime}$-bpy ($23.0 \mathrm{mg}, 150 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), 4-acetamido-TEMPO ($32.0 \mathrm{mg}, 150 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and 4-DMAP ($37.0 \mathrm{mg}, 300 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were added subsequently at room temperature and stirring was continued for 2.5 h under oxygen atmosphere. The reaction mixture was quenched with water and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 20:1). Aldehyde $\mathbf{S} 23(1.10 \mathrm{~g}, 2.67 \mathrm{mmol}, 89 \%)$ was obtained as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.76(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{td}, J=$ $7.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.19(\mathrm{~m}, 10 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[13]}$

10-Hydroxydecylacetate S24

Alcohol S24 was synthesized according to a literature-known procedure. ${ }^{[14]} 1,10$-Decanediol ($3.00 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, silica (50 g) was added and the solvent was removed again under reduced pressure. Cyclohexane (80 mL) and $\mathrm{AcCl}(3.07 \mathrm{~mL}, 43.0 \mathrm{mmol}$, 2.5 equiv) were added and the reaction mixture was stirred for 3 h under reflux and then cooled to room temperature. The solvent was removed under reduced pressure and the silica-adsorbent was washed with EtOAc. After removal of all solvents under reduced pressure, the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc 20:1 to 3:1). The alcohol S24 ($701 \mathrm{mg}, 3.24 \mathrm{mmol}, 19 \%$) was obtained as a white solid. Undesired diprotected alcohol ($2.32 \mathrm{~g}, 8.98 \mathrm{mmol}, 52 \%$) was obtained as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=4.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 13 \mathrm{H})$ ppm.

[^3]

Alcohol $\mathbf{S 2 4}$ ($700 \mathrm{mg}, 3.22 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL}) . \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{OTf}(60.7 \mathrm{mg}, 161 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, 2,2-bpy ($25.1 \mathrm{mg}, 161 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), TEMPO ($25.2 \mathrm{mg}, 161 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and 4-DMAP ($39.3 \mathrm{mg}, 322 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were added subsequently at room temperature and stirring was continued for 1 h under oxygen atmosphere. The reaction mixture was quenched with water and the aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc $20: 1$ to $15: 1$) yielding aldehyde $\mathbf{S} 25$ ($557 \mathrm{mg}, 2.60 \mathrm{mmol}, 81 \%$) as a colorless oil
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.76(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{td}, J=7.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.51$ (m, 4H), $1.40-1.24(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[16]}$

10-(Methoxymethoxy)decan-1-ol S26

Alcohol S26 was synthesized according to literature-known procedure. ${ }^{[17]}$ DIPEA ($8.78 \mathrm{~mL}, 51.6 \mathrm{mmol}, 3.0$ equiv) and MOMCl (1.31 mL , 17.2 mmol, 1.0 equiv) were added subsequently to an ice-cold solution of 1,10 -decanediol ($3.00 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$. The reaction mixture was stirred for 14 h at room temperature and finally poured into aqueous $\mathrm{HCl}(0.5 \mathrm{~m})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 20:1 to $2: 1$) yielding alcohol $\mathbf{S 2 6}(1.62 \mathrm{~g}, 7.44 \mathrm{mmol}, 43 \%)$ as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=4.62(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.42-$ 1.22 (m, 13H) ppm

Spectroscopic data were in accordance with published data. ${ }^{[17]}$

10-(Methoxymethoxy)decanal S27

Alcohol S26 (1.62 g, $7.42 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL}) .\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{OTf}(140 \mathrm{mg}, 371 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), 2,2^{\prime}-\mathrm{bpy}$ ($57.9 \mathrm{mg}, 371 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), TEMPO ($58.0 \mathrm{mg}, 371 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and 4-DMAP ($90.1 \mathrm{mg}, 742 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were added subsequently at room temperature and stirring was continued for 1 h under oxygen atmosphere. The reaction mixture was quenched with water and the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc

$\mathbf{R}_{\mathbf{f}}=0.4$ (pentane:EtOAc $=1: 5$)
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=9.74(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{td}, J=7.4,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.64-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=203.0,96.5,68.0,55.2,44.0,29.8,29.5(2 \mathrm{C}), 29.4,29.3$, 26.3, 22.2 ppm.

IR (ATR): $\tilde{v}=2926,2855,1725,1464,1146,1110,721 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 239.1617$, found 239.1625.

tert-Butyl-(6-hydroxyhexyl)carbamate S28

Alcohol S28 was synthesized according to literature-known procedure. ${ }^{[18]} \mathrm{Boc}_{2} \mathrm{O}(4.10 \mathrm{~g}, 18.8 \mathrm{mmol}, 1.1$ equiv $)$ was added to an icecold solution of 6 -aminohexan- $1-\mathrm{ol}\left(2.00 \mathrm{~g}, 17.1 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ and the reaction mixture was stirred for 15 h at room temperature. After the solvent was removed under reduced pressure, the crude product was dissolved in EtOAc. The organic phase was washed with saturated aqueous citric acid, NaHCO_{3}-solution and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The protected amine $\mathbf{S 2 8}(3.72 \mathrm{~g}, 17.1 \mathrm{mmol}$, quant.) was obtained as a yellowish oil and was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=4.51(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 1 \mathrm{H}), 1.51-1.45$ (m, 2H), $1.44(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[18]}$
tert-Butyl(6-oxohexyl)carbamate S29

Alcohol S28 ($3.93 \mathrm{~g}, 18.1 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$. $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{OTf}(341 \mathrm{mg}, 905 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), 2,2^{\prime}$-bpy ($141 \mathrm{mg}, 905 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), 4 -acetamido-TEMPO ($193 \mathrm{mg}, 905 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and 4-DMAP ($221 \mathrm{mg}, 1.81 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added subsequently at room temperature and stirring was continued for 3.5 h under oxygen atmosphere. The reaction mixture was quenched with water and the aqueous phase was extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 5:1), yielding aldehyde S29 ($1.30 \mathrm{~g}, 6.04 \mathrm{mmol}, 33 \%$) as a colorless oil.
${ }^{1} \mathrm{HNMR}^{2}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.76(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{td}, J=7.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{p}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 8 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[18]}$

4-Bromobutanal S30

Aldehyde S30 was synthesized according to a literature-known procedure. ${ }^{[19]}$ DIBAL-H (1 M in hexane, $110 \mathrm{~mL}, 110 \mathrm{mmol}, 1.1$ equiv) was added dropwise to a $-78{ }^{\circ} \mathrm{C}$ cooled solution of ethyl 4-bromobutanoate ($19.5 \mathrm{~g}, 100 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$ over 2 h . The solution was stirred for additional 2.5 h at the same temperature and then quenched with aqueous $\mathrm{HCl}(10 \mathrm{wt} \%$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic phases were washed with saturated aqueous NaHCO_{3}-solution and brine. The organic phase was dried over MgSO_{4}, the solvent was removed under reduced pressure and the crude product S30 was used without further purification.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.82(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[19]}$

2-(3-Bromopropyl)-1,3-dioxolane S31

Acetal S31 was synthesized according to a literature-known procedure. ${ }^{[20]}$ The crude aldehyde $\mathbf{S 3 0}$ was dissolved in benzene (100 mL), ethylene glycol ($22.6 \mathrm{~mL}, 400 \mathrm{mmol}, 4.0$ equiv) and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.17 \mathrm{~g}, 6.15 \mathrm{mmol}, 6 \mathrm{~mol} \%)$ were added at room temperature and the reaction mixture was stirred for 3 h at $120^{\circ} \mathrm{C}$ using a Dean-Stark-trap to remove water. The reaction mixture was cooled to room temperature, washed with saturated aqueous NaHCO_{3}-solution and brine and the organic phase was dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by distillation (4 mbar, $90^{\circ} \mathrm{C}$). Acetal $\mathbf{S 3 1}$ ($16.5 \mathrm{~g}, 84.6 \mathrm{mmol}$, 85% over two steps) was obtained as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=4.90(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.78$ (m, 2H) ppm.

Spectroscopic data were in accordance with published data. ${ }^{[20]}$

2-(Hex-5-en-1-yl)-1,3-dioxolane S32

A solution of acetal $\mathbf{S 3 2}$ ($28.4 \mathrm{~g}, 146 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF (150 mL) was added to a mixture of manganese cuttings ($5.46 \mathrm{~g}, 225 \mathrm{mmol}, 2.3$ equiv), one iodine-crystal and THF (50 mL) under argon atmosphere at room temperature. The mixture was stirred for 2 h at $60^{\circ} \mathrm{C}$. The Grignard-reagent was cooled to $0^{\circ} \mathrm{C}$ and diluted with anhydrous THF (100 mL). $\mathrm{Li}_{2} \mathrm{CuCl}_{4}(0.1 \mathrm{M}$ in THF, $40 \mathrm{~mL}, 4.00 \mathrm{mmol}, 0.04$ equiv) was added to a solution of allyl acetate ($10.0 \mathrm{~g}, 99.9 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (500 mL) and the mixture was cooled to $-20^{\circ} \mathrm{C}$. The Grignard-reagent was added dropwise over 2 h and stirring was continued for 30 min at the same temperature and additional 1 h at room temperature. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/Et ${ }_{2} \mathrm{O}$ 1:0 to $20: 1$) yielding alkene $\mathbf{S 3 2}$ (13.7 g , $87.7 \mathrm{mmol}, 88 \%$) as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=5.80(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01-3.80(\mathrm{~m}, 4 \mathrm{H}), 2.15-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[21]}$

Hept-6-enal S33

Aqueous $\mathrm{HCl}(3 \mathrm{M}, 66.8 \mathrm{~mL}, 192 \mathrm{mmol}, 6.0$ equiv) was added to solution of acetal $\mathbf{S 3 2}(5.00 \mathrm{~g}, 32.0 \mathrm{mmol}, 1.0$ equiv) in THF (115 mL) and water (75 mL). The reaction mixture was stirred for 4 h at $90^{\circ} \mathrm{C}$ and then cooled to room temperature. The aqueous phase was extracted with pentane ($3 \times 150 \mathrm{~mL}$), the combined organic phases were washed with saturated aqueous NaHCO_{3}-solution and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/Et ${ }_{2} \mathrm{O}$ 1:0 to $18: 1$) yielding aldehyde $\mathbf{S 3 3}(2.28 \mathrm{~g}, 20.3 \mathrm{mmol}, 64 \%)$ as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.77(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.94(\mathrm{~m}$, $1 \mathrm{H}), 2.44(\mathrm{td}, J=7.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[22]}$

$$
\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{OTf}, 2,2^{2}-\mathrm{bpy},
$$

(S)-Citronellol (10.0 g , $64.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(400 \mathrm{~mL})$. $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$ OTf ($1.21 \mathrm{~g}, 3.20 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $2,2^{\prime}$-bpy ($500 \mathrm{mg}, 3.20 \mathrm{mmol}, 5 \mathrm{~mol} \%$), 4 -acetamido-TEMPO ($683 \mathrm{mg}, 3.20 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 4-DMAP ($782 \mathrm{mg}, 6.40 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added subsequently at room temperature and stirring was continued for 1 h under oxygen atmosphere. The reaction mixture was quenched with water and the aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 60:1) yielding aldehyde $\mathbf{S 3 4}(8.33 \mathrm{~g}, 54.0 \mathrm{mmol}, 84 \%$) as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.75(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=16.0,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=16.1$, $8.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.14-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Spectroscopic data were in accordance with published data. ${ }^{[23]}$

Hex-4-yn-1-ol S35

Alcohol S35 was synthesized according to literature-known procedure. ${ }^{[24]} \mathrm{KO}{ }^{t} \mathrm{Bu}(5.03 \mathrm{~g}, 44.8 \mathrm{mmol}, 2.0$ equiv) was added to a solution of hex-5-yn-1-ol ($2.20 \mathrm{~g}, 22.4 \mathrm{mmol}, 1.0$ equiv) in anhydrous DMSO (65 mL) and the reaction mixture was stirred for 12 h at room temperature. After addition of aqueous $\mathrm{HCl}(2 \mathrm{M}, 20 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{Et} 2 \mathrm{O}(5 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO_{2}, pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 3:1) yielding alcohol $\mathbf{S 3 5}(1.84 \mathrm{~g}, 18.7 \mathrm{mmol}, 84 \%)$ as a colorless oil.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=3.74(\mathrm{td}, \mathrm{J}=6.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{td}, \mathrm{J}=2.6,0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H})$, 1.67 (s, 1H) ppm.

Spectroscopic data were in accordance with published data. ${ }^{[24]}$

Hex-4-ynal S36

Aldehyde S36 was synthesized according to literature-known procedure. ${ }^{[24]}$ Anhydrous DMSO ($2.90 \mathrm{~mL}, 41.1 \mathrm{mmol}, 2.2$ equiv) was dissolved in anhydrous DCM (330 mL) under argon atmosphere and cooled down to $-78^{\circ} \mathrm{C}$. (COCl$)_{2}(1.80 \mathrm{~mL}, 20.6 \mathrm{mmol}, 1.1$ equiv) was added dropwise and stirring was continued for 20 min . A solution of alcohol $\mathbf{S 3 5}(1.84 \mathrm{~g}, 18.7 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (18 ml) was added and stirring was continued for 30 min . After the addition of anhydrous $\mathrm{Et}_{3} \mathrm{~N}(12.7 \mathrm{~mL}, 91.6 \mathrm{mmol}, 4.9$ equiv) and stirring for 2 h at room temperature, the reaction was quenched with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and after column

${ }^{1} \mathrm{HNMR}^{\prime}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=9.78(\mathrm{td}, \mathrm{J}=1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{td}, \mathrm{J}=2.6,0.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.

Spectroscopic data were in accordance with published data. ${ }^{[24]}$

2.5. SUBSTRATE SCOPE

The following procedure was applied for all α-chlorination experiments. The subsequent reduction to β-chloro-alcohols was applied due to more comfortable purification, stable stereoinformation and higher boiling points compared to α-chloro-aldehydes. The catalyst was used as a free base, due to the fact that it was not possible to synthesize the TFA-salt. ${ }^{[25]}$
α-Chlorination with Subsequent Reduction

Catalyst 13 ($4.67 \mathrm{mg}, 18.8 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), TFA ($1.40 \mu \mathrm{~L}$, $18.8 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), $\mathrm{AcOH}\left(2.20 \mu \mathrm{~L}, 37.6 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%\right.$) and Cl^{+}-source 19 ($103 \mathrm{mg}, 456 \mu \mathrm{~mol}, 1.2$ equiv) were added subsequently to a $-30^{\circ} \mathrm{C}$ cooled solution of corresponding aldehyde ($376 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ and the reaction mixture was stirred for 48 h at the same temperature. $\mathrm{NaBH}_{4}(35.6 \mathrm{mg}, 940 \mu \mathrm{~mol}, 2.5$ equiv) and $\mathrm{EtOH}(0.5 \mathrm{~mL})$ were added and stirring was continued for 30 min at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}-$ solution and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography.
Entry
[a] isolated yields. [b] $10 \mathrm{~mol} \%$ of catalyst and TFA, $20 \mathrm{~mol} \%$ of $\mathrm{AcOH}, 2.4$ equiv of $\mathrm{NO}_{2} \mathrm{NCP}$; $\mathrm{dr}=95: 5$. [c] 97% ee for the starting material (S)-citronellal; Upscaling $5.00 \mathrm{~g}, 32.4 \mathrm{mmol}$ (S)-citronellal, Rondomatic 400 ${ }^{\circledR}$, cryostat; $\mathrm{dr}=97: 3$.
catalyst 13 ($5 \mathrm{~mol} \%), \mathrm{NO}_{2} \mathrm{NCP} 19$ (24×0.05 equiv),

Catalyst 13 ($402 \mathrm{mg}, 162 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), TFA ($125 \mu \mathrm{~L}, 162 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and $\mathrm{AcOH}(186 \mu \mathrm{~L}, 324 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were added subsequently to a $-30^{\circ} \mathrm{C}$ (cryostat) cooled solution of (S)-citronellal ($5.00 \mathrm{~g}, 32.4 \mathrm{mmol}, 1.0$ equiv, 97% ee) in $\mathrm{CH}_{3} \mathrm{CN}(130 \mathrm{~mL}) . \mathrm{Cl}^{+}-$ source 19 ($8.81 \mathrm{~g}, 38.9 \mathrm{mmol}, 1.2$ equiv) was distributed equally ($24 \times 367 \mathrm{mg}, 24 \times 5 \mathrm{~mol} \%$) to the white reservoirs of the fish-feeding device Rondomatic 400^{\circledR}. The timer was adjusted so that every 2 hours one reservoir adds the Cl^{+}-source to the reaction mixture. After 48 h stirring at $-30^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(3.07 \mathrm{~g}, 81.0 \mathrm{mmol}, 2.5$ equiv) and $\mathrm{EtOH}(45 \mathrm{~mL})$ were added and stirring was continued for 30 min at 0 ${ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$-solution and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150$ mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/ $\mathrm{Et}_{2} \mathrm{O} 10: 1$), alcohol $\mathrm{S} 46(4.51 \mathrm{~g}, 23.7 \mathrm{mmol}, 73 \%$, 97% ee, d.r. $97: 3$) was obtained as a colorless oil.

Substrate Scope

(S)-2-Chlorooctan-1-ol S37

Spectroscopic data were in accordance with published data. ${ }^{[26]}$
(2S,9S)-2,9-Dichlorodecane-1,10-diol S38

$\mathbf{R}_{\mathbf{f}}=0.3$ (pentane/EtOAc 2:1)
$[\alpha]_{D}^{25}=-23.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=4.02$ (dddd, $\left.J=8.5,6.8,5.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.79$ (ddd, $\left.J=12.0,3.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.67$ (ddd, $J=12.0,7.1$, $0.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 2 \mathrm{H}), 1.84-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=67.2,65.4,34.3,29.0,26.3 \mathrm{ppm}$.
IR (ATR): $\tilde{v}=3353,1459,1047,730,679 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 265.0692$, found 265.0703.

(S)-5-Bromo-2-chloropentan-1-ol S39

$\mathbf{R}_{\mathbf{f}}=0.3$ (pentane/Et $\mathrm{O}_{2} \mathrm{O}$:1)
$[\alpha]_{D}^{25}=-24.9^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=4.07-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=12.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, 2H), 2.19-2.10 (m, 1H), 2.05-1.95 (m, 3H), $1.89-1.79(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ CNMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=67.1,64.0,32.9,32.8,29.5 \mathrm{ppm}$.
IR (ATR): $\tilde{v}=3366,1453,766,733,680,661 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{BrClNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 222.9492, found 222.9496.
(S)-10-((tert-Butyldiphenylsilyl)oxy)-2-chlorodecan-1-ol S40

$\mathbf{R}_{\mathrm{f}}=0.3$ (pentane/EtOAc 10:1)
$[\alpha]_{D}^{25}=-9.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=7.71-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.03(\mathrm{dddd}, J=8.6,7.0,5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=12.0$,
$3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{3} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=135.7,134.3,129.6,127.7,67.2,65.6,64.1,34.4,32.7,29.5,29.4,29.2,27.0,26.5,25.9,19.4 \mathrm{ppm}$. IR (ATR): $\tilde{v}=3399,3015,2929,2856,1463,1110,823,754,701 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{CINaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 469.2292$, found 469.2290.
(S)-9-Chloro-10-hydroxydecylacetate S41

$\mathbf{R f}_{\mathbf{f}}=0.3$ (pentane/EtOAc 5:1)
$[\alpha]_{D}^{25}=-18.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=4.05(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=12.0,7.1 \mathrm{~Hz}$, 1 H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ CNMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=171.4,67.2,65.5,64.7,34.4,29.4,29.2,29.1,28.7,26.4,26.0,21.2 \mathrm{ppm}$.
IR (ATR): $\tilde{v}=3437,2927,2856,1737,1719,1038,725,676 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 273.1192 , found 273.1205.
(S)-2-Chloro-10-(methoxymethoxy)decan-1-ol S42

$\mathbf{R}_{\mathbf{f}}=0.3$ (pentane/EtOAc 5:1)
$[\alpha]_{D}^{25}=-18.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=4.62(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{dddd}, J=8.7,7.1,5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=12.0$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.46-$ 1.23 (m, 9H) ppm.
$\left.{ }^{13} \mathbf{C N M R}^{(} \mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=96.6,68.0,67.2,65.6,55.3,34.4,29.9,29.5,29.4,29.2,26.5,26.3 \mathrm{ppm}$.
IR (ATR): $\tilde{v}=3424,1465,1146,1110,1041,725,674 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 275.1392$, found 275.1398.
tert-Butyl-(S)-(5-chloro-6-hydroxyhexyl)carbamate S43

$\mathbf{R}_{\mathbf{f}}=0.3$ (pentane/Et $\mathrm{t}_{2} \mathrm{O}$ 1:2)
$[\alpha]_{D}^{25}=-15.3^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=4.56(\mathrm{~s}, 1 \mathrm{H}), 4.09-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, \mathrm{J}=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=12.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (q, J = $6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.87-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ CNMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=156.3,79.4,66.7,64.6,40.2,33.7,29.7,28.5,23.3 \mathrm{ppm}$.
IR (ATR): $\tilde{v}=3341,2934,1769,1684,1455,731,682 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CINO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 252.1373$, found $2521364 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{ClNNaO} 3[\mathrm{M}+\mathrm{Na}]^{+}$: 274.1192, found 274.1194.

(S)-2-Chloro-3-phenylpropan-1-ol S44

Spectroscopic data were in accordance with published data. ${ }^{[26]}$
(S)-2-Chlorohept-6-en-1-ol S45

$\mathbf{R}_{\mathbf{f}}=0.5$ (pentane/EtOAc 5:1)
$[\alpha]_{D}^{25}=-25.4^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=5.78(\mathrm{ddt}, J=17.0,10.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=10.2,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=12.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{dddd}, J=12.3,7.6,6.2,1.2 \mathrm{~Hz}$, 2 H), $1.88-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 1 \mathrm{H})$ ppm.
${ }^{13}{ }^{3} \mathbf{C N M R}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=138.1,115.3,67.1,65.2,33.7,33.2,25.6 \mathrm{ppm}$.
IR (ATR): $\tilde{v}=3356,3078,1641,1458,993,733,678 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 171.0592$, found 171.0596
(2S,3S)-2-Chloro-3,7-dimethyloct-6-en-1-ol S46

Spectroscopic data were in accordance with published data. ${ }^{[27]}$

(S)-2-Chlorohex-4-yn-1-ol S47

$\mathbf{R}_{\mathbf{f}}=0.4$ (pentane/Et O_{2} 2:1)
$[\alpha]_{D}^{25}=+8.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=4.12-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=12.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{q}, \mathrm{J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65(\mathrm{q}, J=2.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ CNMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta=78.9,74.0,65.7,61.3,24.9,3.5 \mathrm{ppm}$.
IR (ATR): $\tilde{v}=3365,2952,2921,2851,1457,814,673 \mathrm{~cm}^{-1}$.
HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{CIO}[\mathrm{M}+\mathrm{H}]^{+}: 133.0373$, found 133.0370.
3. Mechanistic Studies

3.1. GCMS Kinetic Experiments

Catalysts

Catalyst 2,12 or $\mathbf{1 3}$ ($570 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), TFA ($42.0 \mu \mathrm{~L}, 570 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) and N-chlorosuccinimide ($1.00 \mathrm{~g}, 7.34 \mathrm{mmol}, 1.2$ equiv) were added subsequently to a $-30^{\circ} \mathrm{C}$ cooled solution of hydrocinnamic aldehyde ($765 \mathrm{mg}, 5.70 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(23 \mathrm{~mL}$) and the reaction mixture was stirred at the same temperature. Samples (1 mL) were taken from the reaction mixture after defined points of time and purified by a short silica-pad (pentane/EtOAc 5:1). GCMS-measurements indicated the conversion.

A catalyst 12

catalyst 13

SUPPORTING INFORMATION

Chlorinating reagents I

Catalyst 2 ($142 \mathrm{mg}, 570 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), TFA ($42.0 \mu \mathrm{~L}, 570 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) and chlorinating reagents NCS 3, Me4NCS 20, N -chlorophthalimide or $\mathrm{NO}_{2} \mathrm{NCP} 19$ ($7.34 \mathrm{mmol}, 1.2$ equiv) were added subsequently to a $-30^{\circ} \mathrm{C}$ cooled solution of hydrocinnamic aldehyde ($765 \mathrm{mg}, 5.70 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(23 \mathrm{~mL}$) and the reaction mixture was stirred at the same temperature. Samples $(1 \mathrm{~mL})$ were taken from the reaction mixture after defined points of time and purified by a short silica-pad (pentane/EtOAc 5:1). GCMSmeasurements indicated the conversion.

[^4]
Additives

Catalyst $2(71.0 \mathrm{mg}, 285 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, \mathbf{A} : $\mathrm{AcOH}(51.0 \mu \mathrm{~L}, 855 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ or \mathbf{B} : TFA ($63.0 \mu \mathrm{~L}, 855 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%)$ or \mathbf{C} : TFA $(21.0 \mu \mathrm{~L}, 285 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and $\mathrm{AcOH}(34.0 \mu \mathrm{~L}, 570 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) and chlorinating reagent $19(1.66 \mathrm{~g}, 7.34 \mathrm{mmol}, 1.2$ equiv) were added subsequently to $\mathrm{a}-30^{\circ} \mathrm{C}$ cooled solution of hydrocinnamic aldehyde ($765 \mathrm{mg}, 5.70 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(23 \mathrm{~mL}$) and the reaction mixture was stirred at the same temperature. Samples (1 mL) were taken from the reaction mixture after defined points of time and purified by a silica-pad (pentane/EtOAc $5: 1$). GCMS-measurements indicated the conversion.

Chlorinating reagents II

Catalyst 13 ($71.0 \mathrm{mg}, 285 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), TFA ($21.0 \mu \mathrm{~L}, 285 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and chlorinating reagent $\mathbf{1 7}$, 18 or 19 ($7.34 \mathrm{mmol}, 1.2$ equiv) were added subsequently to a $-30^{\circ} \mathrm{C}$ cooled solution of hydrocinnamic aldehyde ($765 \mathrm{mg}, 5.70 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(23 \mathrm{~mL}$) and the reaction mixture was stirred at the same temperature. Samples (1 mL) were taken from the reaction mixture after defined points of time and purified by a short silica-pad (pentane/EtOAc 5:1). GCMS-measurements indicated the conversion.

3.2. ${ }^{1}$ HNMR-Kinetic Experiments

Parasitic Intermediates

Catalyst 2•TFA ($5.70 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) was added to a solution of hydrocinnamic aldehyde ($13.4 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0 \mathrm{equiv}$) in $\mathrm{MeCN}-d_{3}(1 \mathrm{~mL})$ and the solution was stirred for 5 min . Chlorinating reagent 3,19 or $\mathbf{2 0}(120 \mu \mathrm{~mol}, 1.2$ equiv) was added subsequently and ${ }^{1} \mathrm{HNMR}$-spectra were recorded every five minutes. Integration of proton-signals for starting material, product, free catalyst and parasitic intermediate was calculated with MeCN- d_{3}-signal as reference (I=1).

Decomposition / Racemization

Catalyst 2•TFA ($4.24 \mathrm{~g}, 14.9 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and NCS ($11.9 \mathrm{~g}, 89.4 \mathrm{mmol}, 1.2$ equiv) were added subsequently to a solution of hydrocinnamic aldehyde ($10.0 \mathrm{~g}, 74.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(250 \mathrm{~mL})$ and the reaction mixture was stirred for 45 min at room temperature. After cooling to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(7.05 \mathrm{~g}, 186 \mathrm{mmol}, 2.5$ equiv) and $\mathrm{EtOH}(80 \mathrm{~mL})$ were added and stirring was continued for 30 min at the same temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and the aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc $5: 1$ to $1: 10$) yielding parasitic intermediate 5 as a colorless solid ($2.84 \mathrm{~g}, 6.76 \mathrm{mmol}, 9 \%$) and β-chloroalcohol S44 as a colorless oil (83% ee).

A: Parasitic intermediate $5\left(2.41 \mathrm{~g}, 5.73 \mathrm{mmol}, 1.0\right.$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(70 \mathrm{~mL})$. Water ($0.21 \mathrm{~mL}, 11.5 \mathrm{mmol}, 2.0$ equiv) and TFA ($0.88 \mathrm{~mL}, 11.5 \mathrm{mmol}, 2.0$ equiv) were added and the reaction mixture was stirred for 12 h (or 66 h) at room temperature. After cooling to $0{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(1.08 \mathrm{~g}, 28.7 \mathrm{mmol}, 5.0$ equiv) and $\mathrm{EtOH}(15 \mathrm{~mL})$ were added and stirring was continued for 30 min at the same temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and the aqueous phase was extracted with EtOAc (3 $\times 50 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $\left.5: 1\right)$ yielding β-chloroalcohol $\mathbf{S} 44$ as a colorless oil (12 h: 37% ee; 66 h: 2\% ee).

B: Parasitic intermediate $5\left(210 \mathrm{mg}, 500 \mu \mathrm{~mol}, 1.0\right.$ equiv) was dissolved in $\mathrm{CD}_{3} \mathrm{CN}(6 \mathrm{~mL}) . \mathrm{D}_{2} \mathrm{O}(18.1 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ equiv $)$ and $\operatorname{TFAd}_{1}\left(77.0 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0\right.$ equiv) were added and the reaction mixture was stirred at room temperature. ${ }^{1} \mathrm{HNMR}$-spectra were recorded after defined points of time to follow the decomposition and deuteration process. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ was recorded after 66 h reaction time and follow up reduction with NaBH_{4} in EtOH and purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $\left.5: 1\right)$.

H-NMR:

(

$H^{c}: d$
H^{d} : dd

H^{e} : s
$\mathrm{H}^{\mathrm{f}}: \mathrm{d}$
$H^{a}: d$
$H^{\text {b }}$: dt
4. ${ }^{1}$ HNMR AND ${ }^{13}$ CNMR SPECTRA

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

另
$\stackrel{\circ}{\circ}$


```
Cl
```

```
Cl
```


SUPPORTING INFORMATION

```
NO
```


SUPPORTING INFORMATION

(

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

~noy

200	190	$\stackrel{1}{180}$	170	160	150	140	130	120	110	100	90	80	70	60	50	10	30	20	10	0
										f1 (ppm)										

SUPPORTING INFORMATION

SUPPORTING INFORMATION

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
20	190	180	170	160	150	140	130	120		1 shift		8	7	60	5	40	30	2	10	

2-Chlorooctan-1-ol

GC: Column: Hydrodex β-6TBDAc; isotherm $110^{\circ} \mathrm{C}$; flow $1,1 \mathrm{ml}$; split $50: 1$; 2μ; FID $200^{\circ} \mathrm{C}$

2,9-Dichlorodecane-1,10-diol
[measured for the di-(3-nitrobenzoate)-derivative]
HPLC: 0,8 ml/min, 20 \% ethanol/hexane, 36 bar, Chiralpak IC

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	65.161	MM	1.6901	693.54321	6.83933	4.7437
2	73.908	MM	2.3574	1.39268 e 4	98.46339	95.2563

5-Bromo-2-chloropentan-1-ol
GC: Hydrodex- β-6TBDAc, $170^{\circ} \mathrm{C} 1,1 \mathrm{ml} / \mathrm{min} \mathrm{He} ;$ FID300 ${ }^{\circ}$, Split 50:1

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.958	MM	0.0818	4.17760	$8.50743 \mathrm{e}-1$	0.66755
2	8.247	MM	0.1977	621.63721	52.39968	99.33245

10-((tert-Butyldiphenylsilyl)oxy)-2-chlorodecan-1-ol

[measured for the di-(3-nitrobenzoate)-derivative]
HPLC: $0,8 \mathrm{ml} / \mathrm{min}, 2 \%$ ethyl acetate/hexane, 28 bar, Chiralpak IA

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	15.992	BB	0.5122	666.73358	20.24400	98.0010
2	17.488	MM	0.4768	13.59995	. $75433 \mathrm{e}-1$	1.9990

9-Chloro-10-hydroxydecylacetate
GC: Hydrodex- $\beta-6$ TBDAc, $160^{\circ} \mathrm{C} 1,1 \mathrm{ml} / \mathrm{min} \mathrm{He}$; FID200 ${ }^{\circ}$, Split $50: 1 ; 2 \mu \mathrm{l}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	71.536	MM	0.5212	56.76500	1.81531	1.74957
2	72.668	MM	1.5169	3187.74097	35.02524	98.25043

2-Chloro-10-(methoxymethoxy)decan-1-ol
GC: Hydrodex- β-6TBDAc, $155^{\circ} \mathrm{C}, 1,1 \mathrm{ml} / \mathrm{min}$, He, FID200 ${ }^{\circ}$, Split 50:1, $2 \mu \mathrm{l}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	56.126		0.4422	54.47081	2.05319	1.89038
2	56.981		0.9768	2827.00879	48.23423	98.10962

GC: Hydrodex- $\beta-6$ TBDAc, $180^{\circ} \mathrm{C} 1,1 \mathrm{ml} / \mathrm{min} \mathrm{He}$, FID300 ${ }^{\circ}$, Split $50: 1$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area
1	33.548		0.3988	32.44061	1.35589	1.98103
2	34.640	MM	0.6910	1605.11829	38.71623	98.018

HPLC: 5% ethanol/hexane, Chiralpak IA, $0,8 \mathrm{ml} / \mathrm{min}, 29 \mathrm{bar}$

| Peak
 RetTime
 [min] | Width
 [min] | Area
 [mAU*s] | Height
 [mAU] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \% | | | | |

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	72.265	MM	0.8663	25.17089	$4.84287 e-1$	1.63792
2	79.735	MM	2.5801	1511.59119	9.76456	98.36208

GC: Hydrodex- β-TBDA, isotherm $180^{\circ} \mathrm{C}, 0,6 \mathrm{ml} / \mathrm{min} \mathrm{He}$, FID200 ${ }^{\circ}$, Split $50: 1,2 \mu \mathrm{l}$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	23.973	MM	0.2614	63.91455	4.07456	1.64263
2	26.467	MM	0.1815	42.11958	3.86717	1.08249
3	26.944	MM	0.7951	84.96606	79.33694	97.27489

SUPPORTING INFORMATION

2-Chlorohex-4-yn-1-ol
GC: Hydrodex- $\beta-6$ TBDAc, Tempgrad $50-180^{\circ} \mathrm{C}$ mit $5^{\circ} \mathrm{C} / \mathrm{min}, 1,1 \mathrm{ml} / \mathrm{min}, \mathrm{He}$, FID300 ${ }^{\circ}$, Split $50: 1$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA*} \text { s }]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	18.794	MM	0.0491	43.82376	14.88727	1.79600
2	19.195	MM	0.1111	2396.24756	359.33508	98.20400

6. CRYSTALLOGRAPHIC DATA

Intermediate 5:

ORTEP-structure with 20% probability level:

Crystal system

Space group

Cell a $[\AA$]

Cell $b[\AA]$

Cell c [Å]

Cell $\alpha\left[{ }^{\circ}\right.$]

Cell $\beta\left[{ }^{\circ}\right]$

Cell $\mathrm{Y}\left[{ }^{\circ}\right.$]

Volume $\left[\AA^{3}\right]$

Z

Temperature [K]

AbsCorr

Absorption coefficient $\left[\mathrm{mm}^{-1}\right.$]

Nref
R (reflections)
wR2 (reflections)

GooF
0.0647
monoclinic

P 21
10.0695(2)
8.8228(2)
12.1525(2)

90
93.107

90
1078.06(4)

2

100

Multi-Scan
0.205

4406
0.0288
1.045

Intermediate 6:

ORTEP-structure with 20\% probability level

Crystal system

Space group
P 21

Cell a [\AA]
10.1613(5)

Cell b $[\AA$]
8.8290(3)

Cell c $[\AA ̊] \quad 13.3188(6)$

Cell $\alpha\left[{ }^{\circ}\right] \quad 90$
Cell $\beta\left[^{\circ}\right] \quad 108.294$
Cell y [${ }^{\circ}$ 年 90

Volume $\left[\AA^{3}\right]$

Z

Temperature [K]
100

AbsCorr
Multi-Scan

Absorption coefficient [mm^{-1}]
0.194

Nref
4621
R (reflections)
0.0303
wR2 (reflections)
0.0675

GooF
1.067

Intermediate 7:

ORTEP-structure with 20% probability level:

Crystal system	monoclinic
Space group	P 21
Cell a $[\AA]$	$9.8217(2)$
Cell b $[\AA]$	$8.9668(1)$
Cell c $[\AA]]$	$11.1680(2)$
Cell $\alpha\left[{ }^{\circ}\right]$	90
Cell $\beta\left[{ }^{\circ}\right]$	107.207
Cell $\mathrm{Y}\left[{ }^{\circ}\right]$	90
Volume $\left[\AA^{3}\right]$	
Z	$939.54(3)$
Temperature $[\mathrm{K}]$	2
AbsCorr	100
Absorption coefficient $\left[\mathrm{mm}^{-1}\right]$	0.226
Nref	3845
R (reflections)	0.0263
wR2 (reflections)	0.0616
GooF	1.044

Intermediate 8:

ORTEP-structure with 20\% probability level

Crystal system	monoclinic
Space group	P 21
Cell a $[\AA]$	$10.6107(2)$
Cell b $[\AA]$	$28.3703(6)$
Cell c $[\AA]$	$12.8872(3)$
Cell $\alpha\left[{ }^{\circ}\right]$	90
Cell $\left.\beta{ }^{\circ}\right]$	91.688
Cell $\mathrm{y}\left[{ }^{\circ}\right]$	90
Volume $\left[\AA \AA^{3}\right]$	$3877.73(14)$
Z	6
Temperature $[\mathrm{K}]$	100
AbsCorr	Multi-Scan
Absorption coefficient $\left[\mathrm{mm}^{-1}\right]$	0.179
Nref	15923
R (reflections)	0.0357
wR2 (reflections)	0.0739
GooF	1.028

Intermediate 9:

ORTEP-structure with 20\% probability level

Crystal system	orthorhombic
Space group	P $2_{1} 2_{1} 2_{1}$
Cell a $[\AA$]	10.0393(9)
Cell b [\AA]	12.5148(9)
Cell c [\AA]	18.3306(13)
Cell $\left.\alpha{ }^{\circ}{ }^{\circ}\right]$	90
Cell β [${ }^{\text {] }}$	90
Cell Y [${ }^{\text {] }}$	90
Volume [\AA^{3}]	2303.1(3)
Z	4
Temperature [K]	173(2)
AbsCorr	?
Absorption coefficient [mm^{-1}]	0.312
$\mathrm{N}_{\text {ref }}$	4532
R (reflections)	0.0443
wR2 (reflections)	0.1209
GooF	1.000

Catalyst 13:

ORTEP-structure with 20% probability level:

Crystal system	trigonal
Space group	P 321
Cell a $[\AA]$	6.7315(2)
Cell b [\AA]	6.7315(2)
Cell c [\AA]	52.4761(14)
Cell α [${ }^{\circ}$]	90
Cell β [${ }^{\circ}$	90
Cell Y [${ }^{\circ}$]	120
Volume [\AA^{3}]	2059.28(13)
Z	6
Temperature [K]	100
AbsCorr	Multi-Scan
Absorption coefficient [mm^{-1}]	0.631
$\mathrm{N}_{\text {ref }}$	2972
R (reflections)	0.0363
wR2 (reflections)	0.0886
GooF	1.136

References

[1] T. H. Graham, B. D. Horning, D. W. C. MacMillan, Org. Synth. 2011, 88, 42-53.
[2] J. M. Allen, T. H. Lambert, J. Am. Chem. Soc. 2011, 133, 1260-1262.
[3] D. J. Augeri et al., J. Med. Chem., 2005, 48, 5025-5037.
[4] T. Rehm, V. Stepanenko, X. Zhang, F. Würthner, F. Gröhn, K. Klein, C. Schmuck, Org. Lett. 2008, 10, 1469-1472.
[5] D. C. Powers, D. Y. Xiao, M. A. L. Geibel, T. Ritter, J. Am. Chem. Soc. 2010, 132, 14530-14536.
[6] A. Shiri, A. Khoramabadi-zad, Synthesis 2009, 16, 2797-2801.
[7] R. Yousefi, D. C. Whitehead, J. M. Mueller, R. J. Staples, B. Borhan, Org. Lett. 2011, 13, 608-611.
[8] X. Yu, K. Chen, S. Guo, P. Shi, C. Song, J. Zhu, Org. Lett 2017, 19, 5348-5351.
[9] J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 16901-16910
[10] L. Guillonneau, D. Tadddei, C. J. Moody, Org. Lett. 2008, 10, 4505-4508.
[11] X. Wang et al., ACS Med. Chem. Lett. 2016, 7, 1044-1049.
[12] J. M. Tinsley, W. R. Roush, J. Am. Chem. Soc. 2005, 127, 10818-10819.
[13] A. Yamamoto et al., Chem Biol Drug Des 2015, 86, 1304-1322.
[14] H. Ogawa, M. Amano, T. Chihara, Chem. Commun. 1998, 0, 495-496.
[15] H. Tan, J. Li, J. Luo, X. Xie, Y. Zhong, Q. Fu, Eur. Polym. J. 2005, 41, 1893-1900.
[16] M. Gaydou, T. Moragas, F. Juliá-Hernández, R. Martin, J. Am. Chem. Soc. 2017, 139, 12161-12164.
[17] H. Kikuchi, K. Sasaki, J. Sekiya, Y. Maeda, A. Amagai, Y. Kubohara, Y. Oshima, Bioorg. Med. Chem. 2004, 12, 3203-3214.
[18] B. F. Fisher, S. H. Gellman, J. Am. Chem. Soc. 2016, 138, 10766-10769.
[19] S. Rajkumar, K. Shankland, G. D. Brown, A. J. A. Cobb, Chem. Sci. 2012, 3, 584-588.
[20] P. D. Brown, A. C. Willis, M. S. Sherburn, A. L. Lawrence, Angew. Chem. Int. Ed. 2013, 52, 13273-13275.
[21] V. B. Phapale, E. Buñuel, M. Garcías-Iglesias, D. J. Cárdenas, Angew. Chem. Int. Ed. 2007, 46, 8790-8795.
[22] M. Rosillo, E. Arnáiz, D. Abdi, J. Blanco-Urgoiti, G. Domínguez, J. Pérez-Castells, Eur. J. Org. Chem. 2008, 23, 3917-3927.
[23] M. Benohoud, S. Tuokko, P. M. Pihko, Chem. Eur. J. 2011, 17, 8404-8413.
[24] S. Hötling, B. Haberlag, M. Tamm, J. Collatz, P. Mack, J. L. M. Steidle, M. Vences, S. Schulz, Chem. Eur. J. 2014, 20, 3183-3191.
[25] M. Johannes, M. A. Brimble, J. Org. Chem. 2013, 78, 12809-12813.
[26] M. Amatore, T. D. Beeson, S. P. Brown, D. W. C. MacMillan, Angew. Chem. 2009, 121, 5223-5226.
[27] J. Swatschek, L. Grothues, J. O. Bauer, C. Strohmann, M. Christmann, J. Org. Chem. 2014, 79, 976-983.
5.3. Supporting Information: On Stereocontrol in Organocatalytic α-Chlorinations of Aldehydes

Supporting Information

On Stereocontrol in Organocatalytic α-Chlorinations of Aldehydes

Sebastian Ponath ${ }^{\S \ddagger}$, Chetan Joshi ${ }^{\ddagger \ddagger}$, Amy T. Merrill ${ }^{\dagger}$, Volker Schmidts ${ }^{\times}$, Kim Greis ${ }^{\S \#}$, Maike Lettow ${ }^{\S \#}$, Manuela Weber , Simon Steinhauer ${ }^{\S}$, Kevin Pagel| ${ }^{\S \# *}$, Christina Thiele ${ }^{\times *}$, Dean J. Tantillo ${ }^{\dagger \star}$, Mathew J. Vetticatt ${ }^{\ddagger \star}$, Mathias Christmann ${ }^{\S *}$
SInstitute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
\ddagger Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
${ }^{\dagger}$ Department of Chemistry, University of California - Davis, Davis, California 95616, United States
${ }^{\times}$Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
\#Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany

TABLE OF CONTENTS

1. GENERAL INFORMATION 1
2. CHLORINATIONS WITH MACMILLAN-TYPE CATALYSTS 5
2.1. Aminals Derived from $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ Generation MacMillan Catalysts 5
2.2. NMR Reaction Progress (3 ${ }^{\text {rd }}$ Generation MacMillan Catalyst) 25
2.3. KIEs and DFT Calculations (3 ${ }^{\text {rd }}$ Generation MacMillan Catalyst) 31
2.4. Ion Mobility-Mass Spectrometry with Aminals (2 ${ }^{\text {nd }}$ Generation MacMillan Catalyst) 123
3. CHLORINATIONS WITH THE JØRGENSEN-HAYASHI-TYPE CATALYST 131
3.1. Aminals Derived from Isovaleraldehyde 131
3.1.1. Synthesis and Derivatization 131
3.1.2. Structural Analysis 143
3.1.3. Decomposition and Deuterium Incorporation Studies 181
3.2. Aminals Derived from Propanal 190
3.2.1. Synthesis 190
3.2.2. Decomposition and Deuterium Incorporation Studies 196
4. FURTHER RESULTS 200
5. REFERENCES 204
6. APPENDIX 206
6.1. NMR Spectra 206
6.2. HPLC/GC Traces 234
6.3. Crystallographic Data 254

1. GENERAL INFORMATION

Anhydrous solvents were provided by purification with MBraun SPS-800 solvent system using solvents of HPLC grade purchased from Fischer Scientific. Solvents for extraction, crystallization and flash column chromatography were purchased in technical grade and distilled under reduced pressure prior to use. Unless otherwise indicated, all starting materials and reagents were purchased from commercial distributors and used without further purification. Products were purified by flash column chromatography on silica gel 60 M (0.040-0.063 mm, 230-400 mesh, Macherey-Nagel). TLC-analysis was performed on silica gel coated aluminum plates ALUGRAM ${ }^{\circledR}$ Xtra SIL G/UV ${ }_{254}$ purchased from Macherey-Nagel. Products were detected by UV light at 254 nm and by using staining reagents based on KMnO_{4}, anisaldehyde, molybdophosphoric acid and cerium sulfate. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral data were recorded on Bruker (AC 500, AVIII 700) and JEOL (ECX 400, Eclipse 500, ECZ 600) spectrometers. The chemical shifts (δ) are listed in parts per million (ppm) and are reported relative to the corresponding residual solvent signal $\left(\mathrm{CDCl}_{3}: \delta_{H}=7.26 \mathrm{ppm}, \delta_{c}=77.16 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}}=5.32\right.$ $\mathrm{ppm}, \delta_{c}=53.84 \mathrm{ppm}$, DMSOd $_{6}: \delta_{H}=2.50 \mathrm{ppm}, \delta_{c}=39.52 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}: \delta_{H}=3.31 \mathrm{ppm}, \delta_{c}=49.00$ ppm, $\mathrm{CD}_{3} \mathrm{CN}: \delta_{H}=1.94 \mathrm{ppm}, \delta_{c}=118.26, \mathrm{DMFd}_{7}: \delta_{H}=8.03 \mathrm{ppm}, \delta_{C}=163.15 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{H}=7.16$ ppm, $\delta c=128.06 \mathrm{ppm})$. Integrals are in accordance with assignments; coupling constants (\mathcal{J}) are given in Hz . Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), etc. ${ }^{13} \mathrm{CNMR}$ spectra are ${ }^{1} \mathrm{H}$-broadband decoupled. For detailed peak assignments 2D spectra were measured (COSY, HMQC, HMBC). IR spectra were measured with a Jasco spectrometer (FT/IR-4100) equipped with an ATR unit. High resolution mass spectra were measured with an Agilent 6210 ESI-TOF ($10 \mu \mathrm{~L} / \mathrm{min}, 1.0 \mathrm{bar}, 4 \mathrm{kV}$) instrument. Melting points were determined by digital melting point apparatus (Stuart SMP30) and are uncorrected. Optical rotations values were determined with a Jasco P-2000 polarimeter at the temperatures given. Diastereomeric ratios were determined by ${ }^{1}$ HNMR. Enantiomeric ratios were determined by chiral HPLC (Agilent Series 1200 with DAD) or by GC (Agilent 7890B) on a chiral column. The specific conditions are given in each case.

NMR Methods for NOE and J-Coupling Analysis

NMR spectra for ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOE and J-coupling analysis were recorded on a Bruker AVIII 600 MHz spectrometer equipped with a 5 mm triple-resonance broadband inverse probe ($\left.{ }^{1} \mathrm{H} /{ }^{31} \mathrm{P}-\mathrm{BB}-{ }^{2} \mathrm{H}\right)$ with z gradient ($0.494 \mathrm{~T} \cdot \mathrm{~m}^{-1}$ maximum gradient strength). Sample temperature was regulated between 190 K and 300 K using a liquid nitrogen evaporator. Experiments were recorded and analyzed with TopSpin 3.5pl7. Assignment spectra at 190 K were recorded using the standard library sequences for HSQC, ${ }^{1}$ $H_{M B C}{ }^{2}$ and EASY-ROESY3 . Selective 1D NOE measurements supplemented with a Thrippleton-Keeler filter ${ }^{4}$ to suppress unwanted zero-quantum contributions of J-coupled nuclei were performed using the standard library selnogpzs sequence with a spectral width of 12 ppm and 65536 complex points with 32 scans. Sufficient relaxation was ensured by setting the recovery delay to 15 s , which is larger than $5^{*} \mathrm{~T}_{1}$ for every signal as determined by an inversion recovery experiment. The carrier frequency offset was set to 4.7 ppm and the selective pulse offset to the respective signal. The RSnob ${ }^{5}$ shape was used for the selective pulse with bandwidths of 15,25 or 50 Hz , depending on the required selectivity. A mixing time series of 8 independent time points was acquired between 50 and 400 ms in 50 ms steps for each
selected resonance. Spectra were processed by zero-filling once and apodization with exponential broadening with 0.1 Hz . Manual phase correction and automatic baseline correction were applied for each spectrum before integrating the series using the intser command. Additionally, a 2D gradientselected F1-PSYCHE-EASY-ROESY ${ }^{6}$ was acquired with spectral widths of 12 ppm in both dimensions and 4096 and 512 complex points, respectively, with 8 scans. The recovery delay was not sufficient for full relaxation to equilibrium. PSYCHE 7 homonuclear decoupling in the indirect dimension was applied with a 30 ms element consisting of two low power chirp pulses with 25° flip angle, 10 kHz sweep width and 15 ms durations each. The pair of spin-locks were set to a tilt angle of 45° and an RF field of 6500 Hz . Gradient strengths were set to the values given in the original publication. The spectrum was processed by zero-filling once in the indirect dimension and applying a 90° shifted squared sine bell apodization. While the quantification may show larger deviations due to the insufficient recovery delay, volume integrals were nevertheless collected for all diagonal peaks, where they were sufficiently resolved by the PSYCHE homodecoupling, and all associated cross-peaks. Integrals were normalized using the PANIC ${ }^{8}$ approach: within each spectrum, the cross-peak integrals were divided by the integrals of the selected peak for the 1D spectra or the corresponding diagonal peak at the same chemical shift in F1 for the 2D spectrum. The normalized peak integrals are subjected to a linear fit versus the mixing time. The slope of this fit gives the cross-relaxation rate for NOE cross-peaks or the exchange rate for cross-peaks generated by chemical exchange. The fit usually shows (very) high correlation coefficients (Pearson $\mathrm{R}>0.9$), with only two exceptions: in some spectra the very last mixing time data point (400 ms) apparently no longer fulfilled the initial rate approximation and had to be excluded from the fitting process to achieve a sufficiently high correlation coefficient. Secondly, for the NOE from the neighboring nuclei 1 ' and 2 ' in the aminal part, the fit showed larger deviations resulting in lower apparent cross-relaxation rates, presumably due to insufficient suppression of J-coupling contributions and/or strong-coupling effects between these two nuclei. ${ }^{9}$ The individual cross-relaxation rates $\sigma_{I S}$ were converted to NOE derived distances $r_{I S}$ by internal calibration with the cross-relaxation rate of the diastereotopic proton pair $\mathrm{H} 5 \mathrm{a} / \mathrm{b}$ (denoted " $r e f$ ", set to $1.76 \AA$ A) using equation (1). For methyl groups, the three internuclear distances to individual protons were averaged using " r " averaging" as described in equation (2). ${ }^{10,11}$ Conformational averaging for different conformers was performed using " r " averaging" using equation (3), ${ }^{10}$ where p_{i} are the individual conformer populations of the M total conformations. Uncertainties were estimated by Gaussian error propagation. ${ }^{11}$ In cases where both protons could be selected individually by the selective pulse, the NOE derived distances were averaged and the larger value between the deviations of the individual NOE distances to the average distance or the individual estimated uncertainties are used as an error estimate for the NOE distance. While in some cases the error from Gaussian error propagation is as low as 0.01 A , we assume a reasonable estimate to be at least $0.1 \AA$ in 1D NOE spectra and $0.4 \AA$ in the semiquantitative PSYCHE-EASY ROESY spectra.

$$
\begin{align*}
& r_{I S}=r_{\text {ref }}\left(\sigma_{\text {ref }} / \sigma_{I S}\right)^{-1 / 6} \tag{1}\\
& r_{I S, a v e}^{M \text { eethl }}=\left(\sum_{i=1}^{3} \frac{1}{3} \times r_{I S, i}^{-3}\right)^{-1 / 3} \tag{2}\\
& r_{I S, \text { ave }}=\left(\sum_{i=1}^{M} p_{i} \times r_{I S, i}^{-6}\right)^{-1 / 6} \tag{3}
\end{align*}
$$

J-coupling constants were determined either by lineshape analysis in the 1D spectrum or by a 2D (non-pure-shift) version of the PSYCHEDELIC ${ }^{12}$ experiment with spectral widths of 7211 Hz and 50 Hz over 16384 and 128 complex points with 16 scans. As for the 1D sel. NOE, the carrier frequency offset was set to 4.7 ppm and the selective pulse offset to the respective signal. The RSnob shape was used for the selective pulse with bandwidths of 15,25 or 50 Hz , depending on the required selectivity. Spectra were processed by zero-filling to 512 points and apodization with exponential broadening with 1 Hz . Manual phase correction was applied before tilting the spectrum with a shear transformation $\left(45^{\circ}\right)$. Coupling constants were extracted from the peak maxima along the column with the highest sensitivity of the multiplet.

Computational NMR Methods

The NMR chemical shifts for syn-11, iminium ion derived from syn-11, anti(C1')-11, anti(C2')-11, and syn-14 were calculated using the GIAO method with PCM(chloroform)-mPW1PW91/6-311+G(2d,p)// B3LYP-D3(BJ)/6-31G+(d,p) ${ }^{13}$ at 219.15 K using Gaussian16 ${ }^{14}$ Revision C.01. Conformational searching was performed using Grimme's CREST tool in xTB, using version 2.9 (syn-11; anti(C1')-11; anti(C2')11; syn-14) and version 2.10 .2 (iminium ion derived from syn-11) with the gfn-ff method and chloroform as the solvent (force constant of 1.0). ${ }^{15,16}$ Conformers generated from CREST were optimized with B3LYP-D3(BJ)/3-21 and then any conformers within $5 \mathrm{kcal} \mathrm{mol}^{-1}$ from the lowest free energy conformer were reoptimized with B3LYP-D3(BJ)/6-31G+(d,p). If more than 100 conformers were generated from CREST, only the conformers within $5 \mathrm{kcal} \mathrm{mol}^{-1}$ from the conformer search were used for DFT optimization. Any conformers within $3 \mathrm{kcal} \mathrm{mol}^{-1}$ of the lowest energy conformer at this level of theory were reoptimized with the same level of theory at the lower. Unique conformers from this third optimization were used for the NMR calculations. The scaling factors used to convert the isotropics from the NMR calculations to chemical shifts were a slope $=-1.0719$, intercept $=31.8733$ for ${ }^{1} \mathrm{H}$ shifts and slope $=-1.0420$, intercept $=186.3567$ for ${ }^{13} \mathrm{C}$ shifts. ${ }^{17,18}$ The NMR chemical shifts were calculated by averaging the conformer chemical shifts with weights, or percentages, for each conformer determined by minimizing the deviation between the experimental and theoretical shifts using the excel solver function. The barrier of rotation between syn-14 ap and exo-sc was calculated with optimizing using modredundant and the PCM(chloroform-B3LYP/3-21G (219.15 K) level of theory using Gaussian16, Revision C. 01 for the 11, 2, 33, 56 atom dihedral angle with 36 steps of 10°. The j-coupling values (Hz) were calculated using the fermi contact (FC) values from reoptimizing relevant conformers from the NMR calculations with B3LYP/6-31G(d) and then calculating coupling using B3LYP/6-31G(d,p) nmr= (FCOnly,Atoms=H,MixedH). The FC values were scaled to j-coupling constants (Hz) values were scaled by 0.9155 as recommended on CHESHIRE. ${ }^{17,18}$ The NMR calculations for $\mathbf{1 8 b}$ were performed using the GIAO method with PCM(acetonitrile)-mPW1PW91/6-311+G(2d,p) from the lowest energy conformer from the mechanistic calculations (Section \#) using Gaussian16, Revision C.01. The scaling factors used were slope $=-1.0681$ and intercept $=31.7773$ for ${ }^{1} \mathrm{H}$ shifts and slope $=-1.0502$ and intercept=186.9263 for ${ }^{13} \mathrm{C}$ shifts. ${ }^{17,18}$ The NBO calculations ${ }^{19}$ were performed with B3LYP-D3(BJ)/6$31 \mathrm{G}_{+}(\mathrm{d}, \mathrm{p})$ with the keywords: pop=(full,nbo) int=finegrid, iop(3/32=2), scf=tight, temperature=219.15 with Gaussian16, Revision A.03. Molecular images were generated using CylView. ${ }^{20}$ The optimized
geometries for 11 and 14 are deposited in ioChem-BD (doi:10.19061/iochem-bd-6-83; http://dx.doi.org/10.19061/iochem-bd-6-83). ${ }^{21}$

2. CHLORINATIONS WITH MACMILLAN-TYPE CATALYSTS

2.1. Aminals Derived from $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ Generation MacMillan Catalysts

Motivated by the isolation and X-ray crystal structure analysis of several aminals derived from the $3^{\text {rd }}$ generation MacMillan catalyst 3 c, ${ }^{22}$ we aimed at extending the structure determination to the $1^{\text {st }}$ and $2^{\text {nd }}$ generation MacMillan catalysts $\mathbf{3 a}$ and $\mathbf{3 b}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the isolated and crystallographically characterized aminals were compared to the NMR spectra recorded during the reactions and our stereochemical assignments were compared to those reported in the literature. ${ }^{23,24}$

Aminals Derived from Isovaleraldehyde, NCS and the $1^{\text {st }}$ Generation MacMillan Catalyst ent-3a (NMR Experiment)

The TFA-salt of catalyst ent-3a ($6.64 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) or catalyst ent-3a as the free base $(4.36 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$ or $21.8 \mathrm{mg}, 100 \mu \mathrm{~mol}, 100 \mathrm{~mol} \%$) and NCS ($16.0 \mathrm{mg}, 120 \mu \mathrm{~mol}$, 1.2 equiv) were added successively to an NMR-tube containing a solution of isovaleraldehyde ($10.8 \mu \mathrm{~L}$, $100 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{CDCl}_{3}(0.70 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded after 30 min . The ratio of aminal diastereoisomers is $20: 1$ for the TFA-salt of the catalyst and $2: 1$ for the free base. The diastereomeric ratios and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for the reaction with the free base of the catalyst is in agreement with the literature. ${ }^{25}$

Figure SI-1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the α-chlorination reaction (isovaleraldehyde, NCS, catalyst ent-3a or ent-3a•TFA) after 30 min .

1-((1S,2R)-1-((R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)-pyrrolidine-2,5-dione (syn-20)

The TFA-salt of catalyst ent-3a ($0.770 \mathrm{~g}, 2.32 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($1.55 \mathrm{~g}, 11.6 \mathrm{mmol}, 1.0$ equiv) were added successively to a solution of isovaleraldehyde ($1.25 \mathrm{~mL}, 11.6 \mathrm{mmol}, 1.0$ equiv) in CHCl_{3} (46 $\mathrm{mL})$. The reaction was stirred for 60 min and quenched with aqueous saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over NaSO_{4}, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO_{2}, pentane/EtzO/EtOAc, 1:1:1 to 0:1:1 to 0:0:1). Aminal syn-20 was obtained as a colorless solid ($0.664 \mathrm{~g}, 1.58 \mathrm{mmol}, 68 \%$). The absolute configuration was determined by X-ray crystal structure analysis.

The ${ }^{1} \mathrm{H}$-NMR-spectrum of the major species is consistent with that reported literature, which was tentatively assigned the syn-coniguration. ${ }^{23,25}$
$m p=107^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-40.8^{\circ}(c=1.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta=7.26-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17 (dd, $J=7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=14.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=14.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-$ $2.71(\mathrm{~m}, 7 \mathrm{H}), 2.34(\mathrm{hept}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=179.4,177.6,170.8,137.7,129.8,128.1,126.4,79.9,67.9,67.3,60.7$, 39.7, 28.6, 28.4, 27.8, 27.1, 25.4, 23.1, 21.4, 15.1 ppm.

IR (ATR): $\tilde{v}=2969,2930,1773,1704,1364,1291,1173,911,818,728 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 420.2049 , found $420.2044 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 442.1868$, found 442.1865 ; m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{CIKN}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{K}]^{+}: 458.1608$, found 458.1598 .

1-((S)-1-((R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-yl)-2,2-dichloro-3-methylbutyl)-pyrrolidine-2,5-dione (24a)

Catalyst ent-3a ($2.23 \mathrm{~g}, 10.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and NCS ($1.64 \mathrm{~g}, 12.3 \mathrm{mmol}, 1.2$ equiv) were added successively to a solution of isovaleraldehyde ($1.10 \mathrm{~mL}, 10.2 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and the reaction was stirred for 30 min at $22^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO_{2}, EtOAc). Aminal syn-20 was obtained as a colorless solid ($1.94 \mathrm{~g}, 4.62 \mathrm{mmol}, 45 \%$). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a mixed fraction showed the existence of the diastereomeric aminal minor-20. After a second chromatographic separation attempt ($\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O}$ then EtOAc), aminal minor-20 was not detectable anymore. Gratifyingly, a previously unknown dichloroaminal 24 a ($96.0 \mathrm{mg}, 0.211 \mathrm{mmol}, 2 \%$) could be obtained as a colorless solid. The absolute configuration was confirmed by X-ray crystal structure analysis.

The ${ }^{1} \mathrm{H}$-NMR-spectrum of aminal syn-20 is in accordance with the previous experiment.

Aminal 24a:

$\mathrm{mp}=116^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-53.9^{\circ}(c=0.85$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta=7.31-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=8.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-$ $3.45(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dt}, J=13.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.70$ (s, 3H), $1.34(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=178.1,176.8,172.1,138.3,129.7,128.2,126.5,101.0,80.6,73.5,62.2$, 41.3, 39.5, 28.6, 28.2, 28.1, 25.4, 24.7, 19.2, 18.7 ppm.

IR (ATR): $\tilde{v}=3058,2978,1777,1710,1431,1398,1309,1266,1181,1141,947,818,768,732 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 454.1659, found 454.1666; m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1478$, found 476.1489 ; m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{KN}_{3} \mathrm{O}_{3}$ [M+K]+: 492.1218, found 492.1231.

Assignment of Aminal Diastereoisomers Derived from the $1^{\text {st }}$ Generation MacMillan Catalyst

Figure SI-2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the reaction with $100 \mathrm{~mol} \%$ ent-3a after 30 min (according to Blackmond et al..23,25 (top). ${ }^{1} \mathrm{H}$-NMR spectrum of the reaction with $100 \mathrm{~mol} \%$ ent-3a•TFA after 30 min (middle). Crystal structure and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the isolated aminal syn-20 (bottom).

In their publication "Explaining Anomalies in Enamine Catalysis: "Downstream Species" as a New Paradigm for Stereocontrol" 23 the authors correlated species described as "major" and "minor" for the $1^{\text {st }}$ generation MacMillan catalyst to the major and minor product enantiomer. According to their model, the major diastereoisomer of the corresponding aminal was suggested to possess the anti-configuration whereas the minor diastereoisomer was suggested to possess the syn-configuration. We were able to isolate and characterize the major species by X-ray analysis and determined it to possess the synconfiguration. Moreover, the authors correlated the enantiomeric ratio of the product (α-chloroaldehyde) to the diastereomeric ratio of the aminals. ${ }^{23}$ The e.r.-value of the α-chloroaldehyde (40:60) was cited from the original MacMillan publication ${ }^{26}$ and the d.r.-value (33:67) of the aminal refers to experiments done by the authors ${ }^{25}$. These two values however are not directly comparable, since MacMillan and coworkers used the TFA-salt and Blackmond and co-workers used the free base of the catalyst to generate a 33:67 ratio of diastereomers. The different diastereomeric ratios of the aminals are a consequence of the presence or absence of TFA as apparent in the ${ }^{1} \mathrm{H}-\mathrm{HNMR}$ spectra shown above. Therefore, a correlation between enantiomeric ratio of the product and diastereomeric ratio of the aminal incorrectly compares two different situations.

Aminals Derived from Isovaleraldehyde, NCS and the $\mathbf{2}^{\text {nd }}$ Generation MacMillan Catalyst ent-3b (NMR Experiment)

The TFA-salt of catalyst ent-3b ($7.20 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) and NCS ($13.3 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0$ equiv) were added successively to an NMR-tube containing a solution of isovaleraldehyde ($10.8 \mu \mathrm{~L}, 100 \mu \mathrm{~mol}$, 1.0 equiv) in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}(0.70 \mathrm{~mL})$ at $22{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded after 60 min . The diastereomeric ratio is approximately 9:1:4 in CDCl_{3} and 3:2 in $\mathrm{CD}_{3} \mathrm{CN}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (CDCl_{3}) is in accordance with that the literature. ${ }^{24,25}$

$\mathrm{CDCl}_{3}:$

CDCl_{3} (zoom):

Figure SI-3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the α-chlorination reaction (isovaleraldehyde, NCS, catalyst ent3b•TFA) in different solvents after 60 min.

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methyl-butyl)pyrrolidine-2,5-dione ((1S,2R)-syn-21),

1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methyl-butyl)pyrrolidine-2,5-dione ((1S,2S)-anti-21),
1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methyl-butyl)pyrrolidine-2,5-dione ((1R,2S)-syn-21)

The TFA-salt of catalyst ent-3b ($1.26 \mathrm{~g}, 3.48 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($2.33 \mathrm{~g}, 17.4 \mathrm{mmol}, 1.0$ equiv) were added successively to a solution of isovaleraldehyde ($1.88 \mathrm{~mL}, 17.4 \mathrm{mmol}, 1.0$ equiv) in CHCl_{3} (70 mL). The reaction was stirred for 60 min and quenched with aqueous saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$), the combined organic phases were dried over NaSO_{4}, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/Et2O/EtOAc, 1:1:1 to 0:1:1 to 0:0:1). Pure aminal ($1 S, 2 R$)-syn-21 was obtained as a colorless solid ($0.807 \mathrm{~g}, 1.80 \mathrm{mmol}, 52 \%$). Separation of another fraction from the column chromatography by chiral HPLC enabled further separation of aminal (1S,2R)-syn-21 (0.339 $\mathrm{g}, 0.757 \mathrm{mmol}, 22 \%$), ($1 S, 2 S$)-anti-21 ($93.0 \mathrm{mg}, 0.208 \mathrm{mmol}, 6 \%$) and ($1 R, 2 S$)-syn-21 (0.271 g, $0.605 \mathrm{mmol}, 17 \%)$. The absolute configuration of the three aminals was confirmed by X-ray crystal structure analysis.

Aminal (1S,2R)-syn-21:

The spectroscopic data (${ }^{1} \mathrm{H}-$ and $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ are in accordance with the major aminal from the literature. ${ }^{24,25}$
$m p=104{ }^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-32.1^{\circ}(c=1.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta=7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (t, 1H), 4.48 (dd, $J=11.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=14.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.85$ (dd, $J=14.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{~h}, J=7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=179.6,179.2,173.9,138.6,129.3,128.8,126.8,88.5,76.7,65.4,61.8$,
41.1, 37.0, 31.7, 29.1, 28.2, 27.9, 26.9, 21.2, 15.8 ppm.

IR (ATR): $\tilde{v}=2959,2924,2871,1774,1702,1456,1328,1172,1136,820,751 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+: 448.2362$, found 448.2373; m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{CIN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 470.2181$, found 470.2188 ; m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{CIKN}_{3} \mathrm{O}_{3}$ [M+K]+: 486.1921, found 486.1930.

Aminal (1S,2S)-anti-21:

The spectroscopic data (${ }^{1} \mathrm{H}-$ and $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ are in accordance with the minor aminal from the literature. ${ }^{24,25}$
$\mathrm{mp}=86^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-6.5^{\circ}(c=0.40$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=7.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J$ $=14.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.49(\mathrm{~m}$, $1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=179.6,178.9,174.1,139.4,129.6,128.4,126.4,86.2,75.4,66.2,61.7$, 41.2, 38.2, 31.9, 29.8, 28.6, 28.0, 26.3, 21.3, 14.6 ppm.

IR (ATR): $\tilde{v}=2964,2925,2874,1772,1701,1455,1364,1317,1153,819,753,720 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 448.2362, found 448.2352 ; m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{CIN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 470.2181$, found 470.2163 ; m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{CIKN}_{3} \mathrm{O}_{3}$ [M+K]+: 486.1921, found 486.1904.

Aminal (1R,2S)-syn-21:

$m p=136{ }^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-13.1^{\circ}(c=1.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta=7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 7 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.50$ (dd, $J=18.0 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}$, $3 H$), 2.81 (dd, $J=13.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~h}, J=11.8,6.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}$, $9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=179.7,178.6,173.9,138.3,129.6,129.1,127.0,85.9,77.4,67.4,65.6$, $38.6,37.2,32.2,29.7,28.3,28.1,28.0,20.8,14.8 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=2964,2927,2827,1776,1704,1456,1329,1216,1175,1091,908,750,735 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{CIN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 448.2362 , found 448.2362 ; m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{ClN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 470.2181 , found 470.2172 ; m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{CIKN}_{3} \mathrm{O}_{3}$ [M+K]+: 486.1921, found 486.1911. (Isovaleraldehyde as the Substrate)

Figure SI-4. ${ }^{1} \mathrm{H}$-NMR spectrum of the reaction with $20 \mathrm{~mol} \%$ ent-3b•TFA after 60 min (according to Blackmond et al. ${ }^{24,25}$ (top). Crystal structures and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the isolated diastereomeric aminals 21 (below).

In their publication "Rationalization of an Unusual Solvent-Induced Inversion of Enantiomeric Excess in Organocatalytic Selenylation of Aldehydes"24,25 the authors discussed two aminal diastereomers for the $2^{\text {nd }}$ generation MacMillan catalyst but overlooked a third aminal diastereomer (1R,2S)-syn-21) indicated by the green arrows. Their rationale is based on the existence of only two out of four possible aminal
species. Isolation and subsequent X-ray crystal structure analysis reveals syn-configuration for the major aminal ($1 S, 2 R$)-syn-21 and anti-configuration for minor aminal ($1 S, 2 S$)-anti-21. The third, previously overlooked aminal $(1 R, 2 S)$-syn- 21 also has the syn-configuration. It is actually present in higher concentration than the species which was named "minor".

Figure SI-5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the reaction with $20 \mathrm{~mol} \%$ ent-3b-TFA after 60 min with integrated signals (blue: major aminal (1S,2R)-syn-21; red: minor aminal (1S,2S)-anti-21; green: previously overlooked aminal (1R,2S)-syn-21 (according to Blackmond et al. ${ }^{24,25}$

Since the quality of the crystallographic data for aminal (1S,2R)-syn-21 was not optimal and to confirm the previous results and conclusions, the same experiments and isolation procedures were repeated using hydrocinnamic aldehyde instead of isovaleraldehyde.

Aminals Derived from Hydrocinnamic Aldehyde, NCS and the $2^{\text {nd }}$ Generation MacMillan Catalyst ent-3b (NMR experiment)

The TFA-salt of catalyst ent-3b ($7.20 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) and NCS ($13.3 \mathrm{mg}, 100 \mu \mathrm{~mol}, 1.0$ equiv) were added successively to an NMR-tube containing a solution of hydrocinnamic aldehyde ($13.4 \mu \mathrm{~L}$, $100 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{CDCl}_{3}(0.70 \mathrm{~mL})$ at $22{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was recorded after 60 min . The diastereomeric ratio is approximately 5:1:3.

Figure SI-6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the α-chlorination reaction (hydrocinnamic aldehyde, NCS, catalyst ent$\mathbf{3 b} \cdot \mathrm{TFA})$ after 60 min .

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenyl-propyl)pyrrolidine-2,5-dione ((1S,2R)-syn-25),

1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenyl-propyl)pyrrolidine-2,5-dione ((1S,2S)-anti-25),
1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenyl-propyl)pyrrolidine-2,5-dione ((1R,2S)-syn-25)

The TFA-salt of catalyst ent-3b ($0.837 \mathrm{~g}, 2.32 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($1.55 \mathrm{~g}, 11.6 \mathrm{mmol}, 1.0$ equiv) were added successively to a solution of hydrocinnamic aldehyde ($1.54 \mathrm{~mL}, 11.6 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(46 \mathrm{~mL})$. The reaction was stirred for 60 min and quenched with aqueous saturated NaHCO_{3} $(50 \mathrm{~mL})$. The aqueous phase was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$), the combined organic phases were dried over NaSO_{4}, the solvent was removed under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/Et ${ }_{2} \mathrm{O} / \mathrm{EtOAc}, 1: 1: 1$ to $0: 1: 1$ to $\left.0: 0: 1\right)$. Aminal $(1 S, 2 R)$-syn- 25 was obtained as a colorless solid ($0.381 \mathrm{~g}, 0.768 \mathrm{mmol}, 33 \%$). Separation of another fraction from the column chromatography by chiral HPLC enabled further separation of aminal $(1 S, 2 S)$ -anti-25 ($57.0 \mathrm{mg}, 0.115 \mathrm{mmol}, 5 \%$) and aminal ($1 R, 2 S$)-syn- 25 ($0.137 \mathrm{~g}, 0.272 \mathrm{mmol}, 12 \%$). The absolute configuration of the three aminals was determined by X-ray crystal structure analysis.

Aminal (1S,2R)-syn-25:

$m p=158^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-1.96^{\circ}(c=1.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta=7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.00-$ $6.97(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{td}, J=10.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=7.6,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=14.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 5 \mathrm{H}), 1.09$ (s, 9H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=179.5,173.4,138.1,137.0,129.4,129.1,128.8,128.5,127.0,126.8$, 87.8, 79.1, 61.2, 59.6, 42.3, 41.6, 37.7, 31.9, 29.7, 28.1, 26.7 ppm .

IR (ATR): $\tilde{v}=2957,2925,1774,1702,1455,1328,1253,1148,1061,749 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 496.2362, found 496.2350; m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{CIN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 518.2181 , found 518.2160; m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{CIKN}_{3} \mathrm{O}_{3}$ [M+K]+: 534.1921, found 534.1899.

Aminal (1S,2S)-anti-25:

```
mp}=150\mp@subsup{}{}{\circ}\textrm{C
```

$[\alpha]_{D}^{26}=-18.43^{\circ}(c=0.45$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.03-$ $7.01(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{td}, J=10.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{~s}, 1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, \mathrm{J}=14.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.64$ (dd, $J=14.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.11$ (s, 9H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=179.2,174.1,139.3,136.6,129.5,129.1,128.5,128.4,127.1,126.4$, 86.2, 76.9, 61.8, 60.3, 41.2, 41.0, 38.2, 31.9, 29.8, 28.3, 26.3 ppm.

IR (ATR): $\tilde{v}=2955,2925,1772,1702,1455,1363,1255,1156,1079,794,750 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 496.2362, found 496.2381 ; m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{CIN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 518.2181$, found 518.2191 ; m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{CIKN}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{K}]^{+}$: 534.1921, found 534.1935.

Aminal (1R,2S)-syn-25:

$m p=178{ }^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-55.64^{\circ}(c=1.45$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=7.45-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~s}$, $1 \mathrm{H}), 4.85(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=$ $14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, J=14.1,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.58$ (m, 4H), $1.72(\mathrm{~s}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C-NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=179.3,178.2,173.5,138.2,137.2,129.8,128.9,128.7,128.5,126.9$, $126.8,86.2,80.3,67.2,58.9,41.0,38.6,37.2,32.2,28.1,28.0,27.8 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3030,2958,1705,1329,1254,1161,1094,740 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{ClN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 518.2181$, found 518.2184; m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{CIKN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 534.1921$, found 534.1920.

Figure SI-7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the reaction with $20 \mathrm{~mol} \%$ ent-3b•TFA after 60 min (top). Crystal structures and ${ }^{1} \mathrm{H}$-NMR spectra of the isolated diastereomeric aminals 21 (below).

As expected, three diastereomeric species can be detected in the ${ }^{1} \mathrm{H}$-NMR spectrum. All of them could be isolated and fully characterized. The absolute configurations of the three aminals were determined by X-ray crystal structure analysis and are in accordance with the previous experiment (isovaleraldehyde as the substrate).

Decomposition of Aminal syn-18b (Derived from $3^{\text {rd }}$ Generation MacMillan Catalyst)

(S)-22

Aminal syn-18b was synthesized according to the literature procedure. ${ }^{22} \mathrm{H}_{2} \mathrm{O}(85.8 \mu \mathrm{~L}, 4.76 \mathrm{mmol}, 2.0$ equiv) and TFA ($364 \mu \mathrm{~L}, 4.76 \mathrm{mmol}, 2.0$ equiv) were added to a solution of aminal syn-18b ($1.00 \mathrm{~g}, 2.38$ mmol, 1.0 equiv) in $\mathrm{MeCN}(30 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. Aliquots $(6 \mathrm{~mL})$ were taken from the reaction mixture after defined points of time ($5 \mathrm{~min}, 10 \mathrm{~min}, 60 \mathrm{~min}$) and added to a solution of $\mathrm{NaBH}_{4}(75.1 \mathrm{mg}, 1.98 \mathrm{mmol}$, 5.0 equiv) in EtOH (2.0 mL). After 30 min the reactions were quenched by the addition of aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc $(3 x 5 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $10: 1$ to $\left.5: 1\right)$ and the enantiomeric excess was determined by chiral HPLC. The absolute configuration was determined by comparison of the optical rotation with the literature.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum is in accordance with the literature. ${ }^{22}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (ddd, $J=12.1,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dt}, J=12.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=$ $14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

1. aliquot (5 min): 95% ee
2. aliquot (10 min): 95% ee
3. aliquot (60 min): 94% ee

Sample: $[\alpha]_{D}^{24}=-11.4^{\circ}(c=1.00$, dichloromethane $)$
(S)-2-chloro-3-phenylpropan-1-ol (95\% ee): $[\alpha]_{D}^{24}=-13.8^{\circ}$ ($c=1.00$, dichloromethane)
(R)-2-chloro-3-phenylpropan-1-ol (93\% ee): $[\boldsymbol{\alpha}]_{D}^{24}=+14.0^{\circ}$ ($c=1.00$, dichloromethane)
(S)-2-chloro-3-phenylpropan-1-ol (95\% ee): $[\boldsymbol{\alpha}]_{\boldsymbol{D}}=-21.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)^{27}$

Figure SI-8. Only the off-cycle mechanism (right) can rationalize the observed enenatioselectivity ((S)chloroaldehyde) of the α-chlorination reaction and the decomposition pathway. The on-cycle mechanism ${ }^{28}$ (left) predicts the formation of the wrong enantiomer of the chloroaldeyhde ((R)chloroaldehyde).

As observed for most of the aminals derived from the $1^{\text {st }}$ and $2^{\text {nd }}$ generation MacMillan catalyst, aminal syn-18b is bench-stable and can be isolated and characterized. ${ }^{22}$ According to the catalytic cycle of the on-cycle scenario ${ }^{28}$ aminal syn-18b should generate the (R)-enantiomer of the chloroaldehyde product. Decomposition under acidic conditions (TFA and water are also present in the catalytic reaction) clearly shows that aminal syn-18b was converted almost exclusively (95% ee) to the (S)-chloroaldehyde product. This experimental outcome is in accordance with our proposed decomposition pathway via a chloroiminium ion.

(S)-2-chloro-3-phenylpropan-1-ol ((S)-22)

Hydrocinnamic aldehyde ($0.266 \mathrm{~mL}, 2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in MeCN (8.0 mL) and cooled to $-30^{\circ} \mathrm{C}$. Catalyst $3 \mathrm{c}(0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}$, $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Pure chloroalcohol (S)-22 ($0.248 \mathrm{~g}, 1.45 \mathrm{mmol}, 73 \%, 95 \%$ ee) was obtained as a colorless oil.
${ }^{1} \mathrm{H}$-NMR is in accordance with the literature. ${ }^{22}$
$[\alpha]_{D}^{24}=-13.8^{\circ}(c=1.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (ddd, $J=12.1,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dt}, J=12.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=$ $14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

(R)-2-chloro-3-phenylpropan-1-ol ((R)-22)

Hydrocinnamic aldehyde ($0.266 \mathrm{~mL}, 2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in MeCN $(8.0 \mathrm{~mL})$ and cooled to $-30^{\circ} \mathrm{C}$. Catalyst ent- $3 \mathrm{c}(0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}, \mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Pure chloroalcohol (R)-22 ($0.229 \mathrm{~g}, 1.34 \mathrm{mmol}, 67 \%, 93 \%$ ee) was obtained as a colorless oil.
${ }^{1} \mathrm{H}$-NMR is in accordance with the literature. ${ }^{22}$
$[\alpha]_{D}^{24}=+14.0^{\circ}(c=1.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (ddd, $J=12.1,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dt}, J=12.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=$ $14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

2.2. NMR reaction progress (3rd generation MacMillan catalyst)

${ }^{1} \mathrm{H}$-NMR reaction progress

Figure SI-9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ reaction progress of the α-chlorination reaction (hydrocinnamic aldehyde, NCS, catalyst 3c•TFA) according to our previous publication. ${ }^{22}$

Table SI-1. Experimental data of the reaction progress analysis. ${ }^{22}$

$\mathrm{t}[\mathrm{min}]$	$\mathrm{t}[\mathrm{h}]$	aldehyde		Cl-aldehyde		aminal	
0	0	0,7	100,03	0	0	0	0
5	0,08	0,53	75,74	0,13	18,58	0,06	8,57
10	0,17	0,35	50,02	0,25	35,73	0,09	12,86
20	0,33	0,24	34,3	0,36	51,44	0,11	16,15
30	0,5	0,18	25,72	0,39	55,73	0,13	18,58
45	0,75	0,11	15,72	0,43	61,45	0,14	20,01
60	1	0,09	12,86	0,45	64,31	0,14	20,01
90	1,5	0,06	8,57	0,48	68,59	0,14	20,01
150	2,5	0,04	5,72	0,52	74,31	0,13	18,58
210	3,5	0,03	4,29	0,53	75,74	0,12	17,15
375	6,25	0,03	4,29	0,54	77,17	0,11	15,72
1395	23,25	0,03	4,29	0,54	77,17	0,09	12,86

We interrogated concentration profiles in order to assess whether the two mechanisms (steric shielding model and Curtin-Hammett scenario) are kinetically distinguishable. Gratifyingly, aldehyde 16, the
chloroaldehyde product 19 and the corresponding crystallographically characterized aminal syn-18b possess separate, non-overlapping NMR resonances. By monitoring their concentrations over time ${ }^{22}$ it is apparent that the initial rate of chloroaldehyde formation exceeds the build-up of the aminal. This observation eliminates the possibility of the catalyst being turned over through the thermodynamically most stable aminal (Curtin-Hammett scenario). The alternate off-cycle mechanism provides a scenario where the rate of iminium hydrolysis exceeds that of aminal formation. From the iminium ion intermediate, part of the catalyst is diverted into a stable aminal resting state. To further illustrate the absence of an on-cycle-mechanism, the first three ${ }^{1} \mathrm{H}$-NMR-spectra of the previously considered reaction are shown below. The aminal concentration at no point exceeds the product concentration, not even in the initial phase (5 min) of the reaction. This observation strongly supports an off-cycle-scenario, in which the product can be formed without going through the aminal intermediate. When reanalyzing our data for this reaction, we noted additional, previously overlooked resonances in the NMR spectrum at $t=5 \mathrm{~min}$ (quickly disappearing thereafter). The possibility of the corresponding species to be the elusive aminal anti-18b is supported by comparison of the observed and computed ${ }^{1} \mathrm{H}$ chemical shifts.

Figure SI-10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the initial phase of the α-chlorination reaction (hydrocinnamic aldehyde, NCS, catalyst 3c•TFA).

NMR Calculations for syn-18b and anti-18b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR calculations were performed to compare to the major and minor sppecies at $\mathrm{t}=5 \mathrm{~min}$. The key ${ }^{1} \mathrm{H}$ chemical shifts for syn-18b and anti-18b were in good agreement (< 0.3 ppm absolute deviation between experimental and calculated chemical shifts) ${ }^{17,18}$ with the experimental shifts for the major and minor products.

Table SI-2. Calculated ${ }^{13} \mathrm{C}$ NMR δ 's for syn-18b.

Exp. \#	Comp \#	Comp. Isotropic	Comp. ठ
C5	1	98.9366	83.8
C2	2	3.6610	174.5
C3	3	123.1277	60.7
C4	7	153.8751	31.5
C1'	11	113.1924	70.2
C2'	13	111.3355	72.0
C3'	14	142.8361	42.0
C4'	17	175.0080	11.3
C5'	22	143.6420	41.2
	26	-4.5320	182.3
	27	-2.1380	180.0
C5"	28	155.0907	30.3
C2"	29	155.6905	29.7
C6	34	158.5958	27.0
	38	156.9911	28.5
	42	163.1739	22.6
	49	41.0137	138.9
	50	50.0409	130.3
	51	53.6789	126.9
	52	52.7727	127.7
	54	52.5161	128.0
	56	54.4196	126.2

Table SI-3. Comparison of calculated and experimental ${ }^{1} \mathrm{H}$ NMR δ 's for syn-18b.

$\begin{aligned} & \text { Exp. } \\ & \text { C\# } \end{aligned}$	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. δ	Avg. Comp. δ	$\begin{aligned} & \text { Exp. } \\ & \delta \end{aligned}$	Abs. Dev.
8	7	8	28.57	3.00			
8	7	9	29.26	2.36			
8	7	10	29.12	2.49			
9	11	12	26.64	4.81	4.81	5.01	0.20
11	14	15	29.18	2.43	2.43		
10	13	16	26.22	5.20	5.20	5.10	0.10
6	17	18	30.32	1.37			
6	17	19	30.54	1.16			
6	17	20	29.51	2.13	1.55	1.47	0.08
3	3	21	27.65	3.87			
5	1	23	27.27	4.22			
15	28	30	28.99	2.61			
16	29	31	28.98	2.62			
tBu	34	35	30.82	0.89			
tBu	34	36	30.65	1.05			
tBu	34	37	30.79	0.93			
tBu	38	39	30.29	1.39			
tBu	38	40	30.02	1.64			
tBu	38	41	30.58	1.12			
tBu	42	43	30.76	0.95			
tBu	42	H32	26.54	0.80			
tBu	42	45	30.75	0.96	1.08	1.10	0.02
16	29	46	29.03	2.57			
15	28	47	28.96	2.64			
11	14	48	27.41	4.09	4.09	3.96	0.13
	50	53	24.03	7.25			
	51	55	23.81	7.46			
	52	57	23.95	7.33			
	54	58	23.92	7.36			
	56	59	23.99	7.29			
						MAD	0.11

Table SI-4. Calculated ${ }^{13} \mathrm{C}$ NMR δ 's for anti-18b

		Comp.	Comp.
Exp. \#	Comp \#	Isotropic	$\boldsymbol{\delta}$
C5	C	97.8311	84.8
C2	C	2.7976	175.3
C3	C	121.5410	62.3
C4	C	152.4037	32.9
C1'	C	112.1019	71.2
C2'	C	116.7850	66.8
C3'	C	137.7947	46.8
C4'	C	173.1138	13.2
C5'	C	141.3341	43.4
	C	-0.9819	178.9
	C	-3.1036	180.9
C5"	C	155.3086	30.1
C2"	C	156.1731	29.3
C6	C	158.5219	27.0
	C	159.5979	26.0
	C	162.7703	23.0
	C	41.9613	138.0
	C	50.8312	129.6
	C	52.3459	128.1
	C	52.4331	128.1
	C	52.4293	128.1
	C	53.9564	126.6

Table SI-5. Comparison of calculated and experimental ${ }^{1} \mathrm{H}$ NMR δ 's for anti-18b.

$\begin{aligned} & \text { Exp. } \\ & \text { C\# } \end{aligned}$	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. ${ }^{\text {\% }}$	Avg. Comp. δ	$\begin{aligned} & \text { Exp. } \\ & \delta \end{aligned}$	Abs. Dev.
8	7	8	28.48	3.09			
8	7	9	29.02	2.58			
8	7	10	28.98	2.62			
9	11	12	26.27	5.15	5.15	5.27	0.12
11	14	15	28.67	2.91			
11	14	16	28.07	3.47	3.47	3.18	0.29
10	13	17	25.43	5.94	5.94	5.66	0.28
6	18	19	30.11	1.56			
6	18	20	30.13	1.54			
6	18	21	30.26	1.42	1.51	1.50	0.01
3	3	22	27.68	3.83	3.83	3.91	0.08
5	1	24	27.05	4.42	4.42	4.46	0.04
15	29	31	29.62	2.02			
16	30	32	29.70	1.94			
tBu	35	36	30.98	0.75			
tBu	35	37	30.64	1.06			
tBu	35	38	30.79	0.92			
tBu	39	40	30.88	0.84			
tBu	39	41	31.10	0.63			
tBu	39	42	31.21	0.53			
tBu	43	44	26.54	0.86			
tBu	43	45	31.17	0.57			
tBu	43	46	30.97	0.75	0.77	0.91	0.14
16	30	47	30.59	1.11			
15	29	48	29.30	2.32			
	50	53	24.02	7.26			
	51	55	24.26	7.04			
	52	57	23.95	7.33			
	54	58	24.08	7.21			
	56	59	24.07	7.21			
						MAD	0.14

2.3. KIEs and DFT Calculations (3 ${ }^{\text {rd }}$ Generation MacMillan Catalyst)

KIE-experiment (1)

KIE Sample (KIE1\&2): Distilled hydrocinnamic aldehyde ($1.61 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}(40 \mathrm{~mL})$ in a 50 mL graduated flask and cooled to $-30^{\circ} \mathrm{C}$. Catalyst $3 \mathrm{c}(0.682 \mathrm{~g}, 2.40 \mathrm{mmol}, 20$ $\mathrm{mol} \%$) and NCS ($1.20 \mathrm{~g}, 9.00 \mathrm{mmol}, 0.75$ equiv) were added successively, the volume was adjusted to 50 mL by adding MeCN and the solution was stirred for 15 hours at $-30^{\circ} \mathrm{C}$. EtOH (15 mL) and NaBH_{4} $(1.13 \mathrm{~g}, 30.0 \mathrm{mmol}, 2.5$ equiv) were added successively and the reaction mixture was stirred for 1 hour at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, extracted with EtOAc (6×50 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic phases were transferred into a 500 mL graduated flask and the volume was adjusted to 500 mL by adding EtOAc. 10.0 mL were removed from the graduated flask and the solvent was removed under reduced pressure. The crude mixture was taken up with $2 \times 0.50 \mathrm{~mL} \mathrm{MeCNd}_{3}$ and transferred into an NMR-tube containing 10.0 mg of the internal standard ($1,3,5$-trimethoxybenzene). The solvent of the remaining organic phase was removed under reduced pressure and the reduced starting material was purified by column chromatography (Silica, 10:1 to 5:1 pentane/EtOAc).

Standard Sample (STD1\&2): NaBH_{4} ($0.284 \mathrm{~g}, 7.50 \mathrm{mmol}, 2.5$ equiv) was added to a solution of distilled hydrocinnamic aldehyde (from the same batch as in the KIE-experiment) ($0.403 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{EtOH}(3.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 60 min at $0^{\circ} \mathrm{C}$ and subsequently quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($6 \times 5 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (Silica, 10:1 to 5:1 pentane/EtOAc).

This experiment was done in duplicate.

KIE1: $\mathrm{m}=0.349 \mathrm{~g}(2.56 \mathrm{mmol}, 21 \%)$
KIE2: $\mathrm{m}=0.189 \mathrm{~g}(1.39 \mathrm{mmol}, 12 \%)$

STD1: $\mathrm{m}=0.387 \mathrm{~g}$ ($2.84 \mathrm{mmol}, 95 \%)$
STD2: $\mathrm{m}=0.378 \mathrm{~g}(2.78 \mathrm{mmol}, 93 \%)$
${ }^{1} \mathrm{H}$-NMR spectra are in accordance with the literature. ${ }^{29}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.76$ $-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

Calculation of the conversion:

Mass (internal standard): $\mathrm{m}_{\text {is }}=0.010 \mathrm{~g}$
Amount of substance (internal standard): $\mathrm{n}_{\text {is }}=0.060 \mathrm{mmol}$
${ }^{1} \mathrm{H}$-NMR integration (internal standard): $\mathrm{I}_{\text {is }}=3.00 \mathrm{H}$
Integration (reduced starting material (3.52 ppm)): $\mathrm{I}_{\mathrm{rsm}}=1.85 \mathrm{H}: 2=0.93 \mathrm{H}$
Integration (reduced starting material (1.78 ppm)): $\operatorname{Irsm}=1.85 \mathrm{H}: 2=0.93 \mathrm{H}$
Amount of substance (reduced starting material): $\mathrm{n}_{\mathrm{sm}}=0.060 \mathrm{mmol} * 0.93 * 50=2.767 \mathrm{mmol}$
Amount of substance (starting material): $\mathrm{n}_{\mathrm{sm}}=12.00 \mathrm{mmol}-(12.00 \mathrm{mmol} / 50)=11.76 \mathrm{mmol}$ (1/50 of the volume was removed before reductive work-up for H-NMR-analysis!)
Conversion: $2.767 \mathrm{mmol} / 11.76 \mathrm{mmol}-1$) * $(-100)=77 \%$

KIE1 $=77 \%$ conversion
KIE2 $=77 \%$ conversion

internal standard $\delta=6.10 \mathrm{ppm}\left(\mathrm{MeCNd}_{3}\right)$

reduced starting material
$\delta=3.52 \mathrm{ppm}\left(\mathrm{MeCNd}_{3}\right)$
$\delta=1.78 \mathrm{ppm}\left(\mathrm{MeCNd}_{3}\right)$

Figure $\mathbf{S I - 1 1}$. Cutout from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the quenched reaction (for determination of the conversion).

Experimental ${ }^{13} \mathrm{C}$ KIEs for the system were determined from analysis of starting material 3phenylpropanal using NMR methodology at natural abundance. Two independent reactions of starting aldehyde were taken to 77 ± 2 conversion. The unreacted 3 -phenylpropanal was reduced in situ to 3phenylpropanol and reisolated for NMR analysis. The reisolated samples KIE1 and KIE2 were compared to two separate standard samples STD1 and STD2, respectively. The standard samples were prepared by reducing 3-phenylpropanal taken from the same batch used for the KIE experiments. Experimental ${ }^{13} \mathrm{C}$ KIEs were measured from relative isotopic composition of the two samples and fractional conversion in a standard way. The isotope effects were then averaged, and a 95% confidence range (C) was calculated using standard method.

$$
C=\frac{t_{p, v} S}{\sqrt{n}}
$$

\mathbf{S} is the standard deviation, \mathbf{n} is the number of measurements, and $\mathbf{t}_{\mathrm{p}, \mathrm{v}}$ is distribution function corresponding to confidence level $\mathbf{n}-1$.

Figure SI-12. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of the reduced and reisolated starting material (3-phenylpropanol).

STD1/KIE1

The sample for determination of ${ }^{13} \mathrm{C}$ KIEs was prepared from 160 mg of the reisolated sample KIE1, which was quantitatively transferred to a new 5 mm NMR tube using HPLC grade deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ to a height of 5 cm . Likewise, 160 mg of standard sample STD1 was also prepared quantitatively in a 5 mm NMR tube using HPLC grade deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ to a height of 5 cm . For quantitative measurement, ${ }^{13} \mathrm{C}$ spectra were recorded at 150 MHz using inverse gated decoupling with an acquisition time of 10 s , delay time 36 s (5 times T1 of slowest relaxing peak) and 128 transients for acquiring 6 fids for both the samples. A constant integration area was defined for each individual peak which is equal to 10 times the peak-widths at half-height for each peak. The para carbon of 3 phenylpropanol was taken as the standard carbon which was set to an integration value of 1000.0000 . All the integrals for STD1 and KIE1 are listed in the tables below.

STD2/KIE2

Similar to the procedure described above, samples for KIE2 and STD2 were each prepared using 268 mg . For quantitative measurement, ${ }^{13} \mathrm{C}$ spectra were recorded at 150 MHz using inverse gated decoupling with an acquisition time of 10 s , delay time 30 s (5 times T 1 of slowest relaxing peak) and 128 transients for acquiring 6 fids for both the samples. The spectra were processed as described for the above sample. All the integrals for STD2 and KIE2 are listed in the tables below.

Table SI-6. Standard Sample (STD1 $160 \mathrm{mg} / \mathrm{CDCl}_{3}$).

| peak | fid1 | fid2 | fid3 | fid4 | fid5 | fid6 | average | stddev | cuts=10 $\quad \mathrm{X}$
 avg hh |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1000.9305 | 1003.0809 | 1002.0465 | 1009.6958 | 996.4917 | 1006.0323 | 1003.0463 | 4.5072 | $1.5,1.5$ |
| 2 | 2025.1360 | 2035.2550 | 2018.4216 | 2036.3256 | 2025.5118 | 2036.9713 | 2029.6036 | 7.6570 | 2,2 |
| 3 | 2072.8509 | 2068.8465 | 2075.8805 | 2064.7618 | 2080.6641 | 2067.4642 | 2071.7447 | 5.8884 | 2,2 |
| 4 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 0.0000 | 2,2 |
| 5 | 1025.5784 | 1026.0890 | 1024.6846 | 1025.4123 | 1027.1945 | 1023.1769 | 1025.3560 | 1.3542 | $3.5,3.5$ |
| 6 | 1041.1890 | 1042.1708 | 1038.5628 | 1038.6082 | 1040.9270 | 1040.9304 | 1040.3980 | 1.4767 | 4,4 |
| 7 | 996.7377 | 999.2351 | 996.4748 | 1000.5757 | 996.1794 | 1000.3555 | 998.2597 | 2.0267 | 3,3 |

Table SI-7. Reaction taken to 77% conversion (KIE1 $160 \mathrm{mg} / \mathrm{CDCl}_{3}$).

peak	fid1	fid2	fid3	fid4	fid5	fid6	average	stddev	KIE	95\% conf
1	1013.6563	1013.2420	1013.8523	1014.0950	1013.5953	1012.7271	1013.5280	0.4839	1.007	0.004
2	2024.8861	2037.0148	2029.6127	2040.8483	2026.1498	2044.3620	2033.8123	8.0881	1.001	0.005
3	2076.6163	2074.6922	2075.3353	2057.5687	2074.9792	2062.1561	2070.2246	8.1830	1.000	0.004
4	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	0.0000	1.000	0.000
5	1050.1213	1052.8462	1055.0797	1047.5008	1052.0531	1050.8890	1051.4150	2.5751	1.017	0.002
6	1044.5877	1050.5003	1049.9389	1044.8451	1042.4711	1047.6090	1046.6587	3.2104	1.004	0.003
7	992.6145	992.3526	990.7697	985.5134	992.9584	985.9063	990.0192	3.4235	0.994	0.003

Table SI-8. Standard Sample (STD2 $268 \mathrm{mg} / \mathrm{CDCl}_{3}$).

| peak | fid1 | fid2 | fid3 | fid4 | fid5 | fid6 | average | stddev | cuts=10
 avg hh |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1013.1913 | 1015.2475 | 1017.2836 | 1012.6850 | 1014.4221 | 1016.6279 | 1014.9096 | 1.8353 | $2.5,2.5$ |
| 2 | 2057.1301 | 2050.2951 | 2057.6368 | 2052.1572 | 2051.3216 | 2060.7208 | 2054.8769 | 4.1923 | 4,4 |
| 3 | 2100.1524 | 2100.3305 | 2098.9928 | 2101.5752 | 2103.3006 | 2091.8123 | 2099.3606 | 3.9776 | 4,4 |
| 4 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 1000.0000 | 0.0000 | 4,4 |
| 5 | 1015.9678 | 1014.7441 | 1015.3965 | 1015.7316 | 1014.9892 | 1014.8254 | 1015.2758 | 0.5038 | 5,5 |
| 6 | 1032.2505 | 1032.3731 | 1034.0529 | 1031.8139 | 1032.2724 | 1031.1377 | 1032.3168 | 0.9661 | 6,6 |
| 7 | 988.9633 | 988.2676 | 989.7361 | 987.9015 | 989.4858 | 988.0125 | 988.7278 | 0.7814 | 4,4 |

Table SI-9. Reaction taken to 77% conversion (KIE2 268mg/CDCl 3).

peak	fid1	fid2	fid3	fid4	fid5	fid6	average	stddev	KIE	95\% conf
$\mathbf{1}$	1022.9126	1022.9606	1021.5724	1024.8493	1020.9465	1021.8850	1022.5211	1.3821	$\mathbf{1 . 0 0 5}$	$\mathbf{0 . 0 0 2}$
2	2060.4713	2063.4748	2057.1022	2056.2644	2063.5671	2060.5035	2060.2306	3.0759	$\mathbf{1 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
3	2102.8840	2094.4883	2099.5798	2104.5966	2095.5660	2096.5294	2098.9407	4.1225	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 0 0 2}$
4	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	0.0000	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 0 0 0}$
5	1037.2121	1038.4920	1038.6580	1040.5217	1039.7760	1038.1707	1038.8051	1.1789	$\mathbf{1 . 0 1 6}$	$\mathbf{0 . 0 0 1}$
6	1035.0012	1035.9482	1036.6547	1035.4925	1036.0883	1034.6687	1035.6423	0.7347	$\mathbf{1 . 0 0 2}$	$\mathbf{0 . 0 0 1}$
7	991.4310	989.5594	988.8080	992.5506	991.0334	989.8827	990.5442	1.3765	$\mathbf{1 . 0 0 1}$	$\mathbf{0 . 0 0 1}$

KIE-experiment (2)

KIE-Sample: Aminal syn-18b was synthesized according to the literature procedure. ${ }^{22}$ The exact time (20 min) and suitable conditions (equivalents of $\mathrm{H}_{2} \mathrm{O}$ and TFA, concentration) for 20-30\% conversion were defined by a previously performed kinetic ${ }^{1} \mathrm{H}$-NMR-experiment using 1,3,5-trimethoxybenzene as an internal standard. Aminal syn-18b ($3.36 \mathrm{~g}, 8.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in MeCN (200 mL), $\mathrm{H}_{2} \mathrm{O}$ ($0.722 \mathrm{~mL}, 40.0 \mathrm{mmol}, 5.0$ equiv) and TFA ($3.06 \mathrm{~mL}, 40.0 \mathrm{mmol}, 5.0$ equiv) were added subsequently and the solution was stirred for 20 min at $20^{\circ} \mathrm{C}$. After quenching with saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, the aqueous phase was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$ three times. The combined organic phases were dried over NaSO_{4} and the exact volume of the organic phase was adjusted to 1200 ml .12 mL were taken from the solution and added to flask containing 1,3,5-trimethoxybenzene (6.73 $\mathrm{mg}, 40.0 \mu \mathrm{~mol}$) as an internal standard. The solvents were removed under reduced pressure and the residue was taken up by 1.0 mL of MeCNd_{3}. 24% conversion was calculated from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. The solvents from the combined organic phases were removed under reduced pressure and the product was obtained after column chromatography ($5: 1$ pentane/EtOAc). The pure α-chloro aldehyde (0.434 g , $2.57 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{EtOH}(20.0 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(0.243 \mathrm{~g}, 6.43 \mathrm{mmol}$, 2.5 equiv) was added and the reaction mixture was stirred for 60 min at the same temperature. After quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over NaSO_{4} and the solvents were removed under reduced pressure. The pure β-chloroalcohol ($0.350 \mathrm{~g}, 2.05 \mathrm{mmol}, 80 \%$) was obtained after column chromatography (5:1 pentane/EtOAc).

Standard Sample: Aminal syn-18b (from the same batch as KIE-experiment) ($0.840 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.0 equiv) was dissolved in $\mathrm{MeCN}(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.180 \mathrm{~mL})$ and TFA (0.765 mL) were added subsequently and the solution was stirred at $20^{\circ} \mathrm{C}$ until TLC showed complete conversion of the aminal (9 h). After quenching with saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, the aqueous phase was extracted with

EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over NaSO_{4} and the solvents were removed under reduced pressure. ${ }^{1} \mathrm{H}$-NMR of the crude sample confirmed complete conversion of the aminal. The product was obtained after column chromatography ($5: 1$ pentane/EtOAc). The pure α-chloro aldehyde ($0.301 \mathrm{~g}, 1.79 \mathrm{mmol}, 1.0$ equiv) was dissolved in EtOH (15 mL) and cooled to $0^{\circ} \mathrm{C}$. NaBH_{4} ($0.169 \mathrm{~g}, 4.46 \mathrm{mmol}, 2.5$ equiv) was added and the reaction mixture was stirred for 60 min at the same temperature. After quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over NaSO_{4} and the solvents were removed under reduced pressure. The pure β-chloro alcohol ($0.240 \mathrm{~g}, 1.41 \mathrm{mmol}, 79 \%$) was obtained after column chromatography (5:1 pentane/EtOAc).
${ }^{1} \mathrm{H}$-NMRs are in accordance with the literature. ${ }^{22}$

Product KIEs were performed by isolating the product 2-chloro-3-phenylpropanal from a reaction of synaminal (syn-18b) taken to 24% conversion and reduced insitu to 2 -chloro-3-phenylpropanol. The standard sample was prepared by isolating the product taken to 100% conversion and reduced in situ Experimental ${ }^{13} \mathrm{C}$ KIEs were measured from changes in relative isotopic composition and fractional conversion.

STD/KIE

Similar to the procedure described for determination of ${ }^{13} \mathrm{C} \mathrm{KIEs} \mathrm{for} \mathrm{3-phenylpropananol}$, and 100% conversion samples of 2 -chloro-3-phenylpropanol were each prepared using 231 mg . For quantitative measurement, ${ }^{13} \mathrm{C}$ spectra were recorded at 150 MHz using inverse gated decoupling with an acquisition time of 10 s , delay time 30 s (5 times T 1 of slowest relaxing peak) and 128 transients for acquiring 6 fids for both the samples. The spectra were processed as described for the previous samples. A representative spectrum along with integration for both samples are shown in the table below. This experiment was not performed in duplicate due the challenges associated with synthesizing a larger quantities of syn-18b required for the experiment.

Figure SI-13. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of the reduced decomposition product of $\operatorname{syn} \mathbf{n}$-18b (2-chloro-3phenylpropanol).

Table SI-10. Standard Sample (STD $231 \mathrm{mg} / \mathrm{CDCl}_{3}$).

peak	fid1	fid2	fid3	fid4	fid5	fid6	average	stddev	$\begin{aligned} & \text { cuts=10 X avg } \\ & \text { hh } \end{aligned}$
1	1026.0648	1026.8439	1026.4918	1024.7271	1028.6749	1025.2016	1026.3340	1.3930	2,2
2	2002.9656	2004.9762	2001.9009	2000.6530	2004.8393	2002.2518	2002.9311	1.7051	2.5,2.5
3	1999.7604	2000.0493	2000.2890	1998.7059	1999.6764	1997.1237	1999.2675	1.1812	2.5,2.5
4	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	0.0000	3,3
5	994.7805	991.0943	994.3898	995.1336	991.5581	992.6222	993.2631	1.7374	3,3
6	1046.7547	1043.5144	1045.1485	1037.3534	1045.1662	1045.3339	1043.8785	3.3577	10,10
7	997.2385	998.3051	1000.9168	999.3783	998.0785	996.2951	998.3687	1.6234	4,4

Table SI-11. Reaction taken to 24% conversion (KIE $231 \mathrm{mg} / \mathrm{CDCl}_{3}$).

peak	fid1	fid2	fid3	fid4	fid5	fid6	average	stddev	KIE	95\% conf
$\mathbf{1}$	1021.2407	1023.3972	1024.4986	1027.7109	1033.4467	1030.6276	1026.8203	4.6355	$\mathbf{0 . 9 9 9}$	$\mathbf{0 . 0 0 4}$
$\mathbf{2}$	1997.0448	2001.1775	2004.2681	2004.6367	2011.8553	2003.1204	2003.6838	4.8723	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 0 0 2}$
$\mathbf{3}$	1994.1101	1997.2838	1999.9637	1994.5238	2005.8038	1998.4097	1998.3492	4.2877	$\mathbf{1 . 0 0 1}$	$\mathbf{0 . 0 0 2}$
$\mathbf{4}$	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	1000.0000	0.0000	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 0 0 0}$
$\mathbf{5}$	984.5027	985.8564	986.8568	986.6361	988.6683	987.7684	986.7148	1.4548	$\mathbf{1 . 0 0 8}$	$\mathbf{0 . 0 0 2}$
$\mathbf{6}$	1043.8129	1042.6836	1040.2764	1043.1687	1045.8196	1043.1081	1043.1449	1.7913	$\mathbf{1 . 0 0 1}$	$\mathbf{0 . 0 0 3}$
$\mathbf{7}$	997.5046	998.9728	1000.1525	999.9749	1002.1993	998.2256	999.5050	1.6626	$\mathbf{0 . 9 9 9}$	$\mathbf{0 . 0 0 2}$

Theoretical Studies

General Information:

All the DFT calculations presented in the manuscript were performed using B3LYP/6-31+G**PCM (solvent $=$ acetonitrile) level of theory as implemented in Gaussian16. All the starting materials and intermediates were verified as true minima (no imaginary frequencies) whereas all the transition states for the system were characterized by one imaginary frequency. Single point energy calculations were performed separately using B3LYP functional with Grimme's dispersion correction with Becke-Johnson damping (D3-BJ) and a triple-弓 basis set ($\left.6-311+\mathrm{G}^{\star *}\right)$ and a PCM solvent model for acetonitrile was also applied to all single point geometry optimizations. Gibbs free energies were estimated at reaction temperature 243 K and were corrected using Grimme's quasi-RRHO approach. Each intermediate along the reaction coordinate were located by performing Paton's quick reaction coordinate (QRC) procedure from the respective transition states. A thorough conformation search was done for all the optimized transition state and intermediate geometries to identify the lowest energy geometry for each stationary point. Cartesian coordinates of all computed starting materials, intermediates, and transition states are included in the section below. The lowest energy conformation for each transition state reported in the manuscript is highlighted in red. The higher energy conformations for each transition state are also included along with their relative energies.

Exploring the origins of enantioselectivity:

From the computed reaction coordinate diagram shown in Figure 3 of the manuscript, the chlorination of the enamine intermediate (TS4) is irreversible, and the enantioselectivity-determining step of the reaction. Accordingly, we modeled the approach of NCS (6) to either face of the two possible (E)enamine intermediates. After a thorough conformational search, the lowest-energy TS for each distinct approach was identified. The approach of 6 from the Re-face of enamine that is syn-to the t-butyl group of the catalyst $3 \mathbf{c}$ was found to be the lowest-energy TS leading to the formation of the (S)-enantiomer of 19 (TS4-S1). In contrast, the TS for the approach of 6 to the Si-face of the enamine that is anti to the t-butyl group of 3c (TS4-R1) was identified as the lowest energy TS for the formation of the (R)enantiomer of 19. The $\Delta \Delta \mathrm{G}^{\ddagger}$ between these two TSs is $2.9 \mathrm{kcal} \mathrm{mol}^{-1}$ favoring TS4-S1 - a value that is qualitatively consistent with the $>90 \%$ ee observed for this reaction.

TS4-S
$\Delta G^{\ddagger}=9.3 \mathrm{kcal} / \mathrm{mol}$

TS4- R_{1}

TS4-S ${ }_{2}$ $\Delta G^{\ddagger}=10.7 \mathrm{kcal} / \mathrm{mol}$

TS4- R_{2} $\Delta G^{\ddagger}=12.7 \mathrm{kcal} / \mathrm{mol}$

Figure SI-14. Lowest energy transition states for the front and back approach of 6 to the two distinct (E)-enamine intermediates calculated at the B3LYP-D3(BJ)/6-311+G** PCM(acetonitrile)// B3LYP/6$31+G^{* *} \operatorname{PCM}$ (acetonitrile) level of theory. Some hydrogen atoms have been removed for clarity in the 3 D representation of the key transition structures. Key bond-forming and bond-breaking distances are in angstroms (A).

Computed pathways for the formation of all diastereomers of the aminal intermediate:

In the manuscript, we have described the formation of syn-18b and anti-18b from the Z-chloroiminium ion (Int4). We have also computed the formation of diastereomeric aminals (syn-18b' and anti-18b') from the E-chloroiminium ion with the same S-configuration at the α-carbon (Int4'). The reaction coordinate diagram for the formation of all four aminal diastereomers from the respective enamine intermediates (Int3 and Int3') is shown in the Figure below. It is important to note that even though Int4' is lower in energy that Int4, the barrier for its formation from Int3' is $1.4 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than the barrier for formation of Int4 from Int3 (see Figure below). If Int4' forms, then it faces only a $6.2 \mathrm{kcal} \mathrm{mol}^{-1}$ barrier to form anti-18b' via $\mathrm{TS}_{\text {syn-18b' }}$. In contrast, formation of syn-18b' from Int4' faces a much higher barrier of $17.2 \mathrm{kcal} \mathrm{mol}^{-1}$ via $\mathrm{TS}_{\text {anti-18b }}$.

Figure SI-15. Reaction coordinate diagram for the formation of diastereomeric aminals from the respective enamines calculated at the B3LYP-D3(BJ)/6-311+G** PCM(acetonitrile)// B3LYP/6-31+G** PCM (acetonitrile) level of theory. Some hydrogen atoms have been removed for clarity in the 3D representation of the key transition structures. Key bond-forming and bond-breaking distances are in angstroms (Å).

In the manuscript, we show the pathway that converts Int4 to syn-18b and anti-18b via TS5 and TS5'. These transition structures are $\mathrm{TS}_{s y n-18 \mathrm{~b}}$ and $\mathrm{TS}_{\text {anti-18b }}$ respectively in the Figure above. We implied that syn-18b and anti-18b re-entered the catalytic cycle as the Z-chloroiminium ion (Int4) via these same transition states (principle of microscopic reversibility). However, there is a possibility of a C-N bondrotation event that converts syn-18b to syn-18b' and anti-18b to anti-18b' and subsequent re-entry of these intermediates into the catalytic cycle as the E-chloroiminium intermediate (Int4') via $\mathrm{TS}_{\text {syn-18b }}$ and TS antr-18b . This possibility is unlikely for the syn-aminal since $\mathrm{TS}_{\text {syn-18b }}$ is significantly higher in energy that $\mathrm{TS}_{\text {syn-18b. }}$. On the other hand, such a pathway is more than likely for the anti-aminal since $\mathrm{TS}_{\text {anti-18b }}{ }^{\prime}$ is lower in energy that $\mathrm{TS}_{\text {anti-18b }}$. We computed the reaction coordinate for the conversion of anti-18b $\mathbf{1 0}^{\prime}$ the 2-chloroaldehyde product via the three sequential transition states TS anti-18b'. TS6', and TS7 $^{\prime}$ corresponding to re-entry into the catalytic cycle as the E-chloroiminium, hydrolysis, and catalyst regeneration and product release (Figure below). Incidentally, the highest energy barrier for this reaction pathway is re-entry into the catalytic cycle via $\mathrm{TS}_{\text {anti-18b', }}$, which is identical to the relative energetics of the corresponding transition states in the conversion of syn-18b to the product 19 described in Figure 4 of the manuscript.

Figure SI-16. Reaction coordinate diagram for the conversion of anti-18b' to 19 calculated at the B3LYP-D3(BJ)/6-311+G** PCM(acetonitrile)// B3LYP/6-31+G** PCM(acetonitrile) level of theory. Some hydrogen atoms have been removed for clarity in the 3D representation of the key transition structures. Key bond-forming and bond-breaking distances are in angstroms (A).

Table SI-12. Coordinates and energies of computed structures.

Starting Materials
3-Phenylpropanal (sm.log)
Free Energy $=-424.09683$
Zero-point Energy $=-424.07017$
Potential Energy $=-424.23595$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 424.35584

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-424.21671$
Charge $=0$ Multiplicity $=1$

C	-3.3413160	-0.0005570	0.5403040
H	-3.9288280	-0.0002450	1.4807970
C	-1.8491150	-0.0005340	0.7243600
H	-1.6071760	0.8704580	1.3516390
H	-1.6070840	-0.8719850	1.3509560
C	-1.0313240	0.0000370	-0.5758450
H	-1.3069810	-0.8785130	-1.1687130
H	-1.3071090	0.8790120	-1.1680190
C	0.4615430	0.0000500	-0.3184150
C	1.1687220	1.2054270	-0.1841310
C	1.1688060	-1.2053300	-0.1845390
C	2.5419580	1.2082530	0.0802440
H	0.6406430	2.1499560	-0.2924210
C	2.5420360	-1.2081510	0.0798330
H	0.6407890	-2.1498560	-0.2931560
C	3.2340200	0.0000540	0.2141230
H	3.0706490	2.1524890	0.1765460
H	3.0707990	-2.1523810	0.1758140
H	4.3012090	0.0000500	0.4160980
O	-3.9173610	0.0006900	-0.5356430

Catalyst (cat.log)
Free Energy $=-538.35806$
Zero-point Energy $=-538.32923$
Potential Energy $=-538.59681$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$
538.76234

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-538.52359$
Charge $=0$ Multiplicity $=1$

C	-0.4544180	-0.1166990	-0.6994830
N	0.4266560	1.0008460	-0.2914750
C	1.5852240	0.5777350	0.2652530
O	2.4887570	1.3031530	0.7022350
C	1.5745020	-0.9521890	0.2523210
N	0.4181660	-1.3045010	-0.5947510
H	0.7590160	-1.5344140	-1.5245490
C	2.8849960	-1.5589870	-0.2398010
H	3.7062150	-1.2645140	0.4186440
H	2.8194820	-2.6512640	-0.2414640
H	3.1204180	-1.2213170	-1.2554950
H	1.3979930	-1.2887160	1.2835090
C	0.1807200	2.4085020	-0.5718670
H	-0.2985190	2.9212640	0.2681390
H	-0.4580440	2.4993570	-1.4525720
H	1.1386980	2.8949920	-0.7695520
H	-0.7422380	0.0344340	-1.7475790
C	-1.7730610	-0.2694120	0.1258260
C	-2.6574980	0.9869790	-0.0160930
H	-2.8146340	1.2546050	-1.0678020
H	-3.6416030	0.7942700	0.4248400
H	-2.2356580	1.8533340	0.4996520

C	-2.5421370	-1.4694220	-0.4650670
H	-2.7842300	-1.3035630	-1.5222530
H	-3.4853780	-1.6125740	0.0733430
H	-1.9560190	-2.3888790	-0.3889400
C	-1.4809210	-0.5254740	1.6153320
H	-0.9261150	-1.4578230	1.7573130
H	-2.4212300	-0.6094630	2.1713200
H	-0.9064070	0.2944330	2.0606280

Trifluoroacetic acid (tfa.log)
Free Energy = -526.81566
Zero-point Energy $=-526.79175$
Potential Energy $=-526.83013$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 526.98128

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-526.96680$
Charge $=0$ Multiplicity $=1$

C	0.9502640	-0.1544060	-0.0000050
C	-0.5942250	0.0015770	0.0000060
O	1.4971790	-1.2288920	-0.0000170
O	1.5236480	1.0442750	-0.0000080
H	2.4938330	0.9458880	-0.0000090
F	-1.0055400	0.6793790	1.0919440
F	-1.1885270	-1.1982590	-0.0002140
F	-1.0055640	0.6797710	-1.0917070

Water (h20.log)
Free Energy = -76.43466
Zero-point Energy $=-76.42090$
Potential Energy $=-76.44210$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 76.46677

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-76.45933$
Charge $=0$ Multiplicity $=1$

O	-0.0000000	-0.0000000	0.1177180
H	-0.0000000	0.7669030	-0.4708720
H	-0.0000000	-0.7669030	-0.4708720

N-chlorosuccinimide (suc.log)
Free Energy $=-820.19336$
Zero-point Energy = -820.16822
Potential Energy = -820.2494
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 820.38399

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-820.32788$
Charge $=0$ Multiplicity $=1$

C	-0.4323230	1.1871590	0.0000130
C	-1.8907470	0.7700950	0.0001270
C	-1.8907470	-0.7700950	0.0000880
C	-0.4323230	-1.1871590	-0.0000720
N	0.3190470	-0.0000000	-0.0000370
H	-2.3726500	1.1995430	0.8824860
H	-2.3728100	-1.1995470	-0.8821820
H	-2.3726010	-1.1995720	0.8824610
H	-2.3727600	1.1995770	-0.8821560
O	0.0417140	-2.3036950	-0.0001500
O	0.0417140	2.3036950	0.0001580
Cl	2.0274650	-0.0000000	-0.0000790

Succinimide (suc-h.log)
Free Energy = -360.63967
Zero-point Energy =-360.61626
Potential Energy $=-360.70798$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 360.81019

	Energy B3L	3(BJ)/6-31	$\mathrm{G}^{* *}$ PCM (extrapolated	C	0.3191370	-2.8959460	-2.7521310
	energy from q	RHO) $=-360$.	188	H	-0.3477650	-3.7452600	-2.5959650
	ge $=0$ Multip	ity $=1$		H	-0.1862780	-2.1628410	-3.3899950
C	-1.1670680	0.2088320	-0.0006280	H	1.1906660	-3.2640160	-3.3007970
C	-0.7696220	-1.2596600	0.0000790	C	1.8810950	-1.2287830	-1.7922360
C	0.7696220	-1.2596600	0.0000120	H	1.4532620	-0.3969480	-2.3629220
C	1.1670680	0.2088320	-0.0005610	H	2.4164870	-0.8211430	-0.9355300
N	0.0000000	0.9594370	-0.0000830	H	2.6304770	-1.7093760	-2.4282470
H	-1.2020090	-1.7408940	0.8816570	C	1.4031990	-3.3998650	-0.5580700
H	1.2020600	-1.7415660	-0.8811660	H	0.6525450	-4.1562520	-0.3089970
H	1.2020730	-1.7409440	0.8815300	H	2.1948060	-3.8999530	-1.1244980
H	-1.2021240	-1.7416150	-0.8810400	H	1.8539350	-3.0415460	0.3699470
O	2.2926660	0.6803470	0.0002360	C	-1.3324190	-1.3964190	2.9124170
O	-2.2926660	0.6803470	0.0004760	H	-0.6244830	-0.8030320	3.4910270
H	0.0000000	1.9733530	0.0004920	H	-2.2053760	-0.7788260	2.6859920
				H	-1.6578290	-2.2470480	3.5158720
	mediates			H	-1.1988590	-0.2659730	0.5455450

Int1.log
Potential Energy $=-1489.67565$
Zero-point Energy $=-1489.19554$
Free Energy =-1489.23816
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1490.13898

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-1489.70148$
Charge $=0$ Multiplicity $=1$

C	1.9462360	-0.4304000	1.7290860
H	2.3898140	-1.2580300	1.1725630
H	1.5830110	-0.8318660	2.6796860
C	3.0381520	0.6197670	2.0485670
C	0.767450	0.1622330	0.9633750
O	0.1653840	1.1293300	1.7475260
H	-0.4028390	1.7375180	1.1951310
H	1.0625910	0.5568670	-0.0119310
O	-1.5240140	2.6278790	0.3369240
C	-2.4769980	1.8901530	-0.0099700
C	-3.7216940	2.6623270	-0.5525430
F	-3.3819940	3.4704220	-1.5886500
F	-4.7076170	1.8510100	-0.9891620
F	-4.2547680	3.4549600	0.4131970
O	-2.5666420	0.6405150	0.0248780
H	3.7589450	0.1333660	2.7145960
C	3.7702050	1.1735960	0.8414430
C	4.8448520	0.4704380	0.2722390
C	3.3971740	2.3933560	0.2656780
C	5.520950	0.9699360	-0.8443490
H	5.1592610	-0.4733240	0.7121220
C	4.0697700	2.9020450	-0.8528430
H	2.5785320	2.9661620	0.7006990
C	5.1334150	2.1882660	-1.4129520
H	6.3523320	0.4120300	-1.2660380
H	3.7655930	3.8529270	-1.2813190
H	5.6596190	2.5796740	-2.2787650
H	2.5813280	1.4368810	2.6134460
N	-0.3493590	-0.8927940	0.6102410
C	-0.6980180	-1.9453390	1.6396240
C	-0.4468280	-1.5868290	-0.7713480
C	-1.6725010	-2.8154890	0.8395450
H	0.2008640	-2.5205480	1.8718850
H	-0.7990720	-0.8075150	-1.4532840
O	-2.4718120	-3.6122840	1.3238100
N	-1.5482370	-2.5083160	-0.4756630
C	-2.5552190	-2.9395790	-1.4468020
H	-2.3812470	-3.9641360	-1.7847900
H	-3.5363920	-2.8905320	-0.9699830
H	-2.5382840	-2.2690890	-2.3056680
C	0.8043460	-2.2703720	-1.4179650

Int2.log
Potential Energy $=-1489.67471$
Zero-point Energy $=-1489.20052$
Free Energy $=-1489.24669$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=$ 1490.13451

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from q RRHO $)=-1489.70649$
Charge $=0$ Multiplicity $=1$

C	-0.9076670	-1.4510240	-0.3872190
C	-0.7053740	-2.8638920	1.5019160
C	0.7227300	-2.6529040	0.9841170
N	0.5181550	-1.4692480	0.0906370
N	-1.5554800	-2.1514540	0.7253680
O	-1.0033980	-3.5500940	2.4755070
C	-2.9582150	-1.9579010	1.0920940
H	-3.5989610	-2.7370730	0.6714540
H	-3.0323810	-1.9934810	2.1804440
H	-3.2843840	-0.9790670	0.7399530
C	1.3809230	-0.5192300	-0.0314960
C	1.2192450	0.7867870	-0.7149230
C	2.4250840	1.1515040	-1.6268150
H	2.4994840	0.4246100	-2.4409870
H	2.1759710	2.1138820	-2.0854520
C	1.7463740	-2.4673650	2.0931350
H	1.6535160	-3.3229180	2.7662070
H	2.7672300	-2.4599330	1.7041890
H	1.5515820	-1.5515990	2.6568910
H	0.9956780	-3.5047370	0.3536320
C	-1.1152890	-2.1068240	-1.7988310
H	-1.2533120	-0.4145590	-0.3978180
C	-2.6229500	-2.0259360	-2.1323180
H	-2.7730020	-2.3302500	-3.1725630
H	-3.2195590	-2.6943650	-1.5080200
H	-3.0105980	-1.0074450	-2.0241620
C	-0.3458890	-1.3109870	-2.8717890
H	-0.6860510	-0.2724570	-2.9338690
H	0.7353230	-1.3221330	-2.7055950
H	-0.5233210	-1.7697240	-3.8490820
C	-0.6677540	-3.5802940	-1.8427280
H	-1.1401380	-4.1777990	-1.0567630
H	-0.9632340	-4.0144800	-2.8027090
H	0.4190780	-3.6853190	-1.7664190
H	1.1649890	1.5129720	0.1086330
H	0.2856240	0.8612390	-1.2682000
C	3.7537620	1.2537760	-0.9029550
C	4.0146940	2.3280740	-0.0361460
C	4.7496640	0.2823880	-1.0826630
C	5.2355070	2.4255990	0.6357360
H	3.2608890	3.0982630	0.1094100
4			

C	5.9742900	0.3767590	-0.4120960	C	-2.0324260	4.8503100	0.2406480
H	4.5694440	-0.5514930	-1.7568160	H	-1.3193820	5.0112630	1.0559370
C	6.2199550	1.4481700	0.4506480	H	-2.2170010	5.8205370	-0.2325960
H	5.4200860	3.2658580	1.2988600	H	-2.9796260	4.5072470	0.6686220
H	6.7333200	-0.3846850	-0.5667840	H	3.5687840	-2.9985350	0.9397540
H	7.1700720	1.5245520	0.9711210	H	1.8919410	-5.3503410	0.2203270
H	2.3367140	-0.6964060	0.4541960	H	3.8924930	-0.6320820	-0.9117720
O	0.2055980	0.6727320	2.5360000	O	4.8011550	-0.2227150	-1.0884920
H	-0.5650500	1.0245000	2.0250470	C	5.6235100	-0.4107390	-0.0808380
H	0.3612240	1.3062950	3.2479440	O	5.4112800	-0.9962000	0.9590350
O	-1.8272060	1.3783850	0.8585520	C	7.0013900	0.2419270	-0.3793350
C	-2.4962880	2.4448910	0.9188010	F	6.8699910	1.5709780	-0.5864840
C	-3.5454270	2.5697760	-0.2410770	F	7.5587580	-0.2956490	-1.4872250
O	-2.4417150	3.3874580	1.7255190	F	7.8512910	0.0625310	0.6426210
F	-4.3615340	3.6413520	-0.1226540	H	-4.1410040	-0.3493710	-2.9941210
F	-4.3489880	1.4744090	-0.3167630	C	-4.7545800	-1.3986480	-1.2351620
F	-2.9249700	2.6827500	-1.4496620	C	-6.0382910	-0.8318760	-1.1939430
				C	-4.5036130	-2.5347980	-0.4500470
Int3.log				C	-7.0428470	-1.3805660	-0.3904470
Potential Energy $=-2233.46906$				H	-6.2535360	0.0446210	-1.8007330
Zero-point Energy $=-2232.93826$				C	-5.5043350	-3.0882180	0.3552080
Free Energy $=-2232.98928$				H	-3.5175480	-2.9913900	-0.4718620
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 2234.04146				C	-6.7784160	-2.5119950	0.3884050
				H	-8.0306510	-0.9282820	-0.3769950
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.56168$				H	-5.2898060	-3.9706590	0.9516830
				H	-7.5578880	-2.9427040	1.0103600
Charge $=0$ Multiplicity $=1$							
C	-1.1664720	2.4657730	-0.1544700	Int4.log			
C	-0.8513740	2.2752420	2.1757360		tial Energy =	233.52559	
C	-2.3119350	1.9105080	1.9023010		point Energy	-2232.99216	
N	-2.3392020	1.7958790	0.4289940		Energy $=-22$. 04199	
N	-0.2484460	2.5334850	0.9948030		e-Point Energ	B3LYP-D3(BJ)	$/ 6-311+\mathrm{G}^{* *} \mathrm{PCM}=-$
O	-0.3144210	2.3101580	3.2878670		09921		
C	1.1866930	2.7691910	0.9011040		Energy B3L	D3(BJ)/6-31	$\mathrm{G}^{* *} \mathrm{PCM}$ (extrapolated
H	1.6843780	2.1758760	1.6709860		nergy from q	RHO) $=-2233$	1562
H	1.5438040	2.4572960	-0.0813760		ge $=0$ Multip	ity $=1$	
H	1.4423890	3.8218890	1.0576150	C	0.9402390	2.2301840	0.5755130
C	-2.9811220	0.7477450	-0.2013560	C	0.5027330	4.1457900	-0.7397400
H	-3.7572350	0.3006010	0.4096050	C	1.9868650	3.8132210	-0.9631080
C	-2.7937670	0.2608730	-1.4531300	N	2.0249080	2.4045230	-0.4527940
C	-3.6703920	-0.7961890	-2.1066510	N	-0.0284770	3.2119810	0.0836410
H	-3.0300030	-1.6017840	-2.4904950	O	-0.0837880	5.0894640	-1.2598720
H	-2.0634830	0.7088280	-2.1199590	C	-1.4705080	3.1036440	0.3140480
C	-2.7364480	0.6738020	2.6927140	H	-1.9822690	3.4779800	-0.5743480
H	-2.5204360	0.8572640	3.7484130	H	-1.7275290	2.0537610	0.4670710
H	-3.8080210	0.4825230	2.5981590	H	-1.7870090	3.6961130	1.1761920
H	-2.1859090	-0.2162640	2.3742630	C	2.7454050	1.4817430	-0.9874700
H	-2.9320000	2.7584290	2.2277080	H	3.4500860	1.8019600	-1.7499830
C	-1.4940740	3.8573210	-0.8060200	C	2.6813470	0.0069470	-0.7343940
H	-0.7157310	1.8236720	-0.9210120	C	4.0810820	-0.5922070	-0.5054300
Cl	-0.6328290	-1.4406910	-0.4240500	H	4.7390100	-0.2847360	-1.3239030
N	0.6830970	-2.5138660	-0.0345290	H	4.4684180	-0.1297800	0.4103860
C	0.4805070	-3.7822890	0.5498390	H	1.9639690	-0.2813880	0.0330220
C	2.0047690	-2.1910920	-0.2610340	C	2.4441960	4.0079270	-2.3990230
C	1.8549980	-4.3933150	0.7470550	H	2.2023740	5.0366690	-2.6757610
C	2.8523010	-3.3582650	0.1963350	H	3.5239480	3.8811440	-2.5036970
H	1.9936620	-4.5954540	1.8126050	H	1.9227810	3.3364590	-3.0864960
H	3.4239780	-3.7275400	-0.6600470	H	2.5907930	4.4261560	-0.2877630
O	2.3748020	-1.1276540	-0.7528730	C	1.4341060	2.4492160	2.0519330
O	-0.6062310	-4.2424560	0.8226390	H	0.5295620	1.2191770	0.4936670
C	-0.2292940	4.4427310	-1.4710590	Cl	1.9440840	-0.5927850	-2.3085880
H	-0.5034150	5.3241060	-2.0605060	C	0.2090740	2.2460370	2.9736820
H	0.5191650	4.7617330	-0.7420670	H	0.5486150	2.2349770	4.0137550
H	0.2379380	3.7224030	-2.1528340	H	-0.5172130	3.0558250	2.8760750
C	-2.5584360	3.6566090	-1.9043720	H	-0.2924930	1.2945410	2.7735490
H	-2.1929380	3.0079730	-2.7075700	C	2.4841840	1.3786940	2.4044470
H	-3.4771210	3.2217720	-1.5022470	H	2.0792960	0.3693310	2.2897890
H	-2.8069850	4.6255750	-2.3503730	H	3.3947320	1.4774860	1.8050190

H	2.7812480	1.4993960	3.4504460	H	-5.2204640	1.6237170	-1.3413180
C	2.0232770	3.8502860	2.2981650	H	-5.4755720	-0.0730440	-0.9462230
H	1.3376190	4.6469180	1.9929090	H	-5.1512320	1.1046410	0.3452410
H	2.2057970	3.9736950	3.3700080	C	-2.6791020	1.9586820	-0.6596500
H	2.9847450	3.9922280	1.7947840	H	-2.9102910	2.3953910	0.3175530
N	-4.6968210	-0.5822140	-0.5044950	H	-1.5939840	1.8966420	-0.7758730
C	-5.1131530	-1.1676640	-1.6866090	H	-3.0406400	2.6604550	-1.4168920
C	-5.7182360	0.0131040	0.2131920	C	-3.1018020	0.0942390	-2.2904840
C	-6.6157670	-0.9585470	-1.8197010	H	-3.5533630	-0.8857840	-2.4731620
C	-7.0173420	-0.1761770	-0.5586030	H	-3.5448580	0.7933110	-3.0060820
H	-7.1030100	-1.9345370	-1.8984060	H	-2.0316130	0.0402470	-2.5099730
H	-7.7299820	-0.7113950	0.0752450	H	-1.5386970	1.4502730	1.7886430
H	-7.4467460	0.8059610	-0.7755470	C	0.6941620	2.7826230	0.7489030
H	-6.8168200	-0.4171750	-2.7484660	C	0.0575970	4.0321350	0.8053310
O	-5.5737010	0.5869480	1.2843430	C	1.4137910	2.4405040	-0.4062140
O	-4.3766780	-1.7480110	-2.4727230	C	0.1303800	4.9182230	-0.2723730
C	4.0952020	-2.1008840	-0.3592940	H	-0.4925490	4.3154130	1.6991690
C	4.5129340	-2.9137850	-1.4226040	C	1.4861780	3.3258760	-1.4865580
C	3.7082090	-2.7091430	0.8446030	H	1.9268520	1.4844260	-0.4538080
C	4.5360160	-4.3057020	-1.2904990	C	0.8434730	4.5656320	-1.4234280
H	4.8249520	-2.4566540	-2.3575660	H	-0.3638680	5.8834290	-0.2113780
C	3.7275560	-4.0998270	0.9784350	H	2.0507550	3.0486270	-2.3720580
H	3.3966170	-2.0960600	1.6859870	H	0.9033330	5.2549600	-2.2605080
C	4.1406900	-4.9026520	-0.0900150	Cl	-0.7270040	-0.0834880	3.4123120
H	4.8642030	-4.9201600	-2.1237840	H	0.5305050	-0.5953730	0.6739480
H	3.4261290	-4.5544150	1.9175990	O	0.6578420	-0.6755290	-2.7444460
H	4.1590860	-5.9834430	0.0147770	H	1.5411640	-0.7915010	-2.3165700
H	-3.7112260	-0.5937930	-0.1843440	O	3.1296830	-1.0929550	-1.6112530
O	0.0996000	-0.9122890	0.9713150	C	3.3478300	-1.0444570	-0.3760050
C	-1.1159290	-1.1300350	0.7838390	C	4.8433580	-1.3228350	0.0009640
O	-1.9890280	-0.4009980	0.2577920	O	2.5720920	-0.8066350	0.5724530
C	-1.5906120	-2.5334120	1.2983540	F	5.2605550	-2.5262780	-0.4752800
F	-0.9371750	-3.5386520	0.6568490	F	5.6662370	-0.3807570	-0.5359510
F	-2.9146170	-2.7571000	1.1266560	F	5.0757760	-1.3294200	1.3330070
F	-1.3378790	-2.6842920	2.6260660	H	0.6851830	0.1942080	-3.1631330

Int4a.log

Potential Energy $=-1949.26126$
Zero-point Energy $=-1948.79604$
Free Energy $=-1948.84194$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.75917

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1949.33986$
Charge $=0$ Multiplicity $=1$

C	-2.9040680	-0.4194010	0.2350550
C	-2.6325550	-2.6725610	-0.4206930
C	-1.2574720	-2.0274910	-0.6080670
N	-1.4376240	-0.7549740	0.1673800
N	-3.4767610	-1.7587520	0.1195280
O	-2.8985910	-3.8425840	-0.6762100
C	-4.7923660	-2.1362520	0.6348710
H	-5.5494840	-2.1479020	-0.1532200
H	-4.7169250	-3.1372150	1.0635260
H	-5.0911810	-1.4325230	1.4123930
C	-0.4784210	-0.1969400	0.8226760
C	-0.6089920	0.8921270	1.8509710
C	0.6110340	1.8250560	1.9247100
H	0.5205620	2.3889040	2.8568570
H	1.5157700	1.2140160	1.9877750
C	-0.1269740	-2.9228550	-0.1213980
H	-0.2065090	-3.8660360	-0.6668420
H	0.8500250	-2.4865910	-0.3300750
H	-0.2131470	-3.1336140	0.9484260
H	-1.0885910	-1.7528200	-1.6541730
C	-3.3771390	0.6021360	-0.8629000
H	-3.1201270	-0.0123440	1.2258540
C	-4.8976800	0.8140910	-0.6800610

syn-18b (syn-aminal).log
Potential Energy $=-2233.52383$
Zero-point Energy $=-2232.98813$
Free Energy $=-2233.03620$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.10822

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.62060$
Charge $=0$ Multiplicity $=1$

C	-0.4491690	-1.7975970	1.1574570
C	-1.5239110	-3.7805250	0.4830270
C	-2.5342340	-2.6316080	0.3980450
N	-1.6701200	-1.4104740	0.4124130
N	-0.3499070	-3.2517390	0.8952080
O	-1.7378290	-4.9712520	0.2287250
C	0.8717840	-4.0428360	0.9685090
H	0.8645170	-4.7706060	0.1536310
H	1.7374070	-3.3879500	0.8578660
H	0.9563130	-4.5866740	1.9145590
C	-1.5216920	-0.6556080	-0.8301570
H	-2.3139000	-0.9715680	-1.5076500
C	-1.7364110	0.8661820	-0.5967830
C	-3.1391240	1.1523050	-0.0449680
H	-3.8827000	0.7665050	-0.7502160
H	-0.9583350	1.2858360	0.0367750
C	-3.5586120	-2.7996610	-0.7177210
H	-4.1242620	-3.7111330	-0.5079500
H	-4.2673270	-1.9664040	-0.7298210
H	-3.1033820	-2.9052280	-1.7037040
H	-3.0927780	-2.6355340	1.3413190
C	-0.4513420	-1.4065050	2.6785170
H	0.4236440	-1.3086810	0.7267240

Cl	-1.5383760	1.7378200	-2.2092710	H	-1.5075070	1.4056490	0.9815060
N	-0.2798400	-0.9287740	-1.6166500	C	0.7798260	-2.5898450	-1.9130310
C	0.9561520	-0.3321510	-1.4665370	H	1.1464220	-3.4635690	-2.4574550
C	-0.3161310	-1.7563270	-2.7650000	H	-0.2158730	-2.8261270	-1.5296960
C	1.8883350	-0.7973030	-2.5603030	H	0.7045620	-1.7555190	-2.6169870
C	1.0667240	-1.7992320	-3.3776140	H	1.7989960	-3.1750510	-0.1239160
H	2.1970110	0.0771420	-3.1414570	C	3.3730440	-0.6330290	1.7646110
H	1.4467220	-2.8227150	-3.3067670	H	2.7947160	0.6585110	0.1191560
O	-1.3207750	-2.3135010	-3.1599950	C	4.8176950	-0.1036950	1.8969710
O	1.2308430	0.4576540	-0.5585490	H	5.1080340	-0.1055460	2.9527070
C	0.8860890	-1.8467700	3.3155760	H	5.5372040	-0.7273040	1.3614860
H	0.9605100	-1.4320220	4.3261300	H	4.9106770	0.9260690	1.5335750
H	0.9654550	-2.9328430	3.4048180	C	2.4938300	0.1870880	2.7312480
H	1.7485210	-1.4826930	2.7453810	H	2.5490060	1.2587960	2.5051630
C	-0.5447920	0.1280410	2.7809370	H	1.4432880	-0.1105950	2.7060870
H	0.2601080	0.6199700	2.2235140	H	2.8493720	0.0509060	3.7577440
H	-1.5031820	0.4900370	2.4026260	C	3.3463780	-2.1192400	2.1630480
H	-0.4622630	0.4359540	3.8284710	H	3.9600680	-2.7275570	1.4899480
C	-1.6105730	-2.0368110	3.4719460	H	3.7492100	-2.2399940	3.1741220
H	-1.6252030	-3.1278980	3.3781310	H	2.3292020	-2.5227180	2.1622510
H	-1.4941480	-1.8017190	4.5355030	H	0.9591250	1.5815620	0.6189800
H	-2.5804130	-1.6415740	3.1558010	C	-1.1448710	3.2569880	-0.0296560
H	0.9936730	-1.5477370	-4.4382980	C	-0.6636340	4.0147090	1.0501740
H	2.7876280	-1.2198940	-2.1045250	C	-1.6670460	3.9325440	-1.1415380
H	-3.2356830	0.5615430	0.8719940	C	-0.6924050	5.4113320	1.0140520
C	-3.4281280	2.6117000	0.2486430	H	-0.2700580	3.5110630	1.9300370
C	-4.4150020	3.2993150	-0.4719660	C	-1.7014550	5.3304200	-1.1804510
C	-2.7375500	3.3006700	1.2588490	H	-2.0501870	3.3611940	-1.9828680
C	-4.7041960	4.6401400	-0.1970360	C	-1.2113670	6.0745520	-0.1034320
H	-4.9626210	2.7818060	-1.2553470	H	-0.3169830	5.9802880	1.8598650
C	-3.0199140	4.6410840	1.5344820	H	-2.1112780	5.8351730	-2.0506910
H	-1.9755200	2.7890740	1.8406390	H	-1.2378360	7.1599870	-0.1311740
C	-4.0054240	5.3167740	0.8065030	Cl	1.0022510	1.5561170	-1.7515770
H	-5.4734770	5.1529660	-0.7673900	H	-0.3244410	-0.8018520	-0.8102060
H	-2.4742500	5.1552840	2.3205740	O	-0.4673670	-0.7159980	1.2419540
H	-4.2273670	6.3578550	1.0221380	H	-2.0000610	-1.1423450	1.1659450
H	2.6555720	1.1278530	-0.3040150	H	0.0218740	-1.4334340	1.6737380
O	3.4957000	1.6485780	-0.0774810	O	-2.9808750	-1.4074570	1.2305400
C	4.5546770	0.8726600	-0.0322030	C	-3.4575800	-1.8027600	0.0724130
C	5.8198960	1.7052090	0.3140990	C	-4.9484380	-2.2165940	0.2141020
F	6.0443260	2.6500860	-0.6263830	O	-2.8808970	-1.8647910	-0.9923350
F	6.9074390	0.9232660	0.3850580	F	-5.0818620	-3.2388260	1.0887070
F	5.6764600	2.3319390	1.5027410	F	-5.6949440	-1.1853330	0.6677750
O	4.6161190	-0.3226640	-0.2250980	F	-5.4548690	-2.6094800	-0.9641920

Int5.log
Potential Energy $=-1949.26139$
Zero-point Energy $=-1948.79334$
Free Energy $=-1948.83756$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.75481
product. \log (S-(19))
Potential Energy $=-883.82667$
Zero-point Energy $=-883.66972$
Free Energy $=-883.69775$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 883.98063

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1949.33098$
Charge $=0$ Multiplicity $=1$

C	2.8479570	-0.4198890	0.2974400
C	3.1788680	-2.0851900	-1.3420500
C	1.7708930	-2.2976070	-0.7866200
N	1.5497880	-1.0639370	0.0043330
N	3.7174470	-1.0041560	-0.7385140
O	3.7192410	-2.7693720	-2.2175730
C	4.9482250	-0.3944440	-1.2321830
H	5.8410300	-0.8700730	-0.8165410
H	4.9758230	-0.4998760	-2.3191860
H	4.9574550	0.6650230	-0.9739010
C	0.2907740	-0.4074070	-0.0013390
C	0.2888550	1.1310430	-0.1127780
C	-1.1139280	1.7421000	0.0170570
H	-1.7602340	1.3272430	-0.7631280

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-883.85171$
Charge $=0$ Multiplicity $=1$

C	1.5543360	-0.1401000	-0.2522360
C	0.5788650	-0.8150130	0.7258110
H	1.3676790	-0.4306580	-1.2862890
Cl	3.2770780	-0.6606210	0.1189520
H	0.7501140	-1.8944180	0.6703410
C	1.5643120	1.3750860	-0.1387350
H	1.8473870	1.7745930	0.8535280
O	1.2837260	2.1117370	-1.0628590
H	0.8173130	-0.4989870	1.7465030
C	-0.8671920	-0.4916620	0.3938040
C	-1.5760040	0.4711890	1.1273470
C	-1.5186940	-1.1475590	-0.6630480
C	-2.9044020	0.7751410	0.8117550
H	-1.0912900	0.9815950	1.9557640

C	-2.8451130	-0.8455530	-0.9812380	H	1.6335620	4.6367890	-0.8838850
H	-0.9884110	-1.9045210	-1.2357550	C	-1.9919960	3.9311240	0.2883140
C	-3.5419630	0.1187320	-0.2446900	H	-1.1052070	2.6642240	1.7796120
H	-3.4389460	1.5206960	1.3931920	C	-1.7651810	4.7961960	-0.7853020
H	-3.3349500	-1.3653710	-1.7995070	H	-0.2640870	5.7284080	-2.0254310
H	-4.5739020	0.3521650	-0.4897160	H	-3.0042010	3.7429140	0.6345360
				H	-2.5995260	5.2811400	-1.2835530
	8b.log			H	-3.0867530	-0.7157070	0.4958220
	tial Energy	233.51758		O	-4.0733650	-0.9489840	0.4995030
	point Energy	-2232.98167		C	-4.5537260	-1.1134290	-0.7126060
	Energy $=-22$. 02959		O	-3.9714420	-1.0230510	-1.7711010
	-Point Energ	B3LYP-D3(-311+G** $\mathrm{PCM}=-$	C	-6.0670080	-1.4618580	-0.6463300
	10584			F	-6.2729370	-2.5907890	0.0682100
	Energy B3L	3(BJ)/6-3	** PCM (extrapolated	F	-6.5734600	-1.6497260	-1.8741570
	nergy from q	RHO) $=-2233$		F	-6.7646690	-0.4665610	-0.0540270
	ge $=0$ Multip	ity $=1$					
C	2.9544110	-1.3243090	-0.1002390				
C	2.6737200	-1.0248020	-2.4146860		tial Energy =	233.46721	
C	1.2861080	-0.9717320	-1.7662800		point Energy	-2232.93678	
N	1.5980950	-0.7775800	-0.3211500		Energy $=-223$	98830	
N	3.5820770	-1.2046860	-1.4325050		e-Point Energ	B3LYP-D3(B)	$6-311+\mathrm{G}^{* *} \mathrm{PCM}=-$
O	2.9203350	-0.9234620	-3.6224130		03863		
C	5.0134190	-1.1134380	-1.6842030		Energy B3LY	3(BJ)/6-311	$\mathrm{G}^{* *}$ PCM (extrapolated
H	5.1836440	-0.3621570	-2.4593090		energy from C	$\mathrm{HO})=-2233$	5972
H	5.5253020	-0.8071010	-0.7707000		ge $=0$ Multip	$y=1$	
H	5.4351900	-2.0639150	-2.0263420	C	-2.6266560	2.4503800	0.7784270
C	1.1601280	0.4374230	0.3404310	C	-1.5223420	3.9157680	-0.7036390
H	0.3598170	0.8508330	-0.2698600	C	-1.4995120	2.5479870	-1.3843830
C	2.1727410	1.5931060	0.6006320	N	-2.3190760	1.7439350	-0.4755820
C	1.5711680	2.8738550	1.2239240	N	-2.2467700	3.8256180	0.4340010
H	2.9882220	1.2656280	1.2385760	O	-1.0229690	4.9494330	-1.1588150
C	0.3481590	0.0148920	-2.4544380	C	-2.6800680	5.0203450	1.1497690
H	0.2497460	-0.3008260	-3.4963020	H	-2.8929100	5.8029220	0.4180380
H	-0.6456830	-0.0052230	-2.0011390	H	-3.5873750	4.7972780	1.7119570
H	0.7316020	1.0374070	-2.4508190	H	-1.9141910	5.3914730	1.8372380
H	0.8403080	-1.9676590	-1.8862410	C	-2.8890640	0.5278930	-0.7748120
C	2.9920850	-2.7955900	0.4603130	H	-3.7156960	0.2693140	-0.1181140
H	3.5033230	-0.6969110	0.6093060	C	-2.5480320	-0.3347000	-1.7643380
Cl	2.9889070	2.0185560	-0.9878270	C	-3.3463400	-1.5718740	-2.1430910
N	0.4561460	0.1057430	1.6282660	H	-2.6565380	-2.4200540	-2.2465020
C	-0.8689050	-0.2899060	1.6061870	H	-0.4627090	2.1815710	-1.4321660
C	1.0027610	0.0243020	2.9227410	C	-1.8870200	1.8911850	2.0517060
C	-1.3205100	-0.6577570	3.0003200	H	-3.7091810	2.4089470	0.9711340
C	-0.0875620	-0.4183520	3.8791330	H	-1.7300520	-0.0962950	-2.4377340
H	-2.1800740	-0.0388340	3.2724590	Cl	-0.2363270	-1.6516930	-0.4739190
H	0.2508230	-1.3118100	4.4098930	N	1.1471420	-2.5417150	0.0763850
O	2.1594890	0.2819190	3.2006630	C	1.0363910	-3.7776350	0.7502140
O	-1.5423060	-0.3195560	0.5749050	C	2.4420110	-2.1007200	-0.1074630
C	4.4627100	-3.2144140	0.6854470	C	2.4506000	-4.2249380	1.0669680
H	4.4913280	-4.1686520	1.2217670	C	3.3713980	-3.1349220	0.4890930
H	5.0041870	-3.3548050	-0.2529580	H	2.6145650	-5.2083090	0.6189150
H	5.0057940	-2.4792860	1.2909420	H	4.0294480	-3.5060380	-0.3019760
C	2.2740340	-2.8443600	1.8201050	H	4.0006990	-2.6479780	1.2388360
H	2.7394210	-2.1719470	2.5471310	H	2.5447700	-4.3343510	2.1507180
H	1.2181620	-2.5809810	1.7167860	O	2.7320410	-1.0465780	-0.6668220
H	2.3244460	-3.8599290	2.2264840	O	-0.0138360	-4.3256460	1.0012080
C	2.3239680	-3.8080880	-0.4893400	C	-2.0489010	2.7048910	-2.8121990
H	2.7638430	-3.7836250	-1.4915270	H	-1.9815400	1.7816430	-3.3867170
H	2.4608660	-4.8210290	-0.0954640	H	-3.0954690	3.0247850	-2.7883540
H	1.2471240	-3.6338460	-0.5724800	H	-1.4596170	3.4710050	-3.3225100
H	-0.2359960	0.3689890	4.6234600	C	-2.2691950	2.7253540	3.2945580
H	-1.6550560	-1.6994000	2.9974680	H	-1.8821820	2.2333710	4.1930320
H	1.2757670	2.6240190	2.2471820	H	-1.8471390	3.7320160	3.2716330
H	2.3980390	3.5847990	1.3163060	H	-3.3566490	2.8076790	3.4083120
C	0.4065630	3.5349510	0.5084340	C	-0.3611380	1.9234840	1.8549500
C	0.6201740	4.4235060	-0.5591730	H	0.0052410	2.9433680	1.6973150
C	-0.9140560	3.3119760	0.9288940	H	0.1375190	1.5274920	2.7461530
C	-0.4534840	5.0446110	-1.2028800	H	-0.0552940	1.3089460	1.0025880

	-		
C	-2.3435480	0.4409220	2.3163490
H	-3.4336810	0.3733900	2.4148440
H	-2.0249580	-0.2464270	1.5305160
H	-1.9061550	0.0909070	3.2574030
H	-3.7735670	-1.4198290	-3.1449540
C	-4.4630630	-1.9580020	-1.1934430
C	-4.2095650	-2.7655950	-0.0733220
C	-5.7776370	-1.5172080	-1.4116650
C	-5.2380530	-3.1213360	0.8046880
H	-3.1989240	-3.1217310	0.1094840
C	-6.8105050	-1.8690560	-0.5363640
H	-5.9948610	-0.8965530	-2.2779170
C	-6.5434660	-2.6727920	0.5765620
H	-5.0208980	-3.7518150	1.6625460
H	-7.8216360	-1.5197980	-0.7265350
H	-7.3442960	-2.9510480	1.2556610
H	4.2053280	-0.4257260	-0.8220110
O	5.0824190	0.0408130	-1.0131430
C	5.8752080	0.0342720	0.0349300
C	7.2094610	0.7594330	-0.2931800
O	5.6676980	-0.4490210	1.1269470
F	8.0263500	0.7706310	0.7706260
F	6.9854230	2.0395260	-0.6632370
F	7.8535440	0.1423900	-1.3090260

syn-18b'.log
Potential Energy $=-2233.51380$
Zero-point Energy $=-2232.97812$
Free Energy $=-2233.02594$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 2234.10139

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-2233.61352$
Charge $=0$ Multiplicity $=1$

C	-1.8564840	1.5162690	0.5390720
C	-1.0558940	2.6485280	-1.3582430
C	-0.1829640	1.4019620	-1.2095780
N	-0.9067160	0.6342080	-0.1733550
N	-2.0258090	2.6159430	-0.4207840
O	-0.9212940	3.5198530	-2.2252900
C	-3.1410830	3.5545640	-0.4437960
H	-3.4066970	3.7491130	-1.4854550
H	-3.9969730	3.1142900	0.0687400
H	-2.8902920	4.5085310	0.0301960
C	-1.0612310	-0.7812760	-0.0359600
H	-1.8517260	-0.9152110	0.7038930
C	-1.5783720	-1.5790380	-1.2979850
C	-2.8512570	-2.4065590	-1.0185230
H	-3.0719650	-2.9743660	-1.9274720
H	-2.6487100	-3.1254320	-0.2211320
H	0.7991750	1.7077950	-0.8262900
C	-1.3904810	2.0009280	1.9626020
H	-2.8191090	1.0018620	0.6615780
H	-1.7776430	-0.8680320	-2.0928030
Cl	-0.3275230	-2.7195670	-2.0195620
N	0.0848200	-1.4904980	0.6317360
C	1.4339680	-1.3187860	0.4183320
C	-0.1690210	-2.4815330	1.6010800
C	2.2146990	-2.2500960	1.3207470
C	1.1506810	-3.0198380	2.1098960
H	2.8814030	-1.6518450	1.9479080
H	1.2054580	-2.8544120	3.1894060
H	1.1792360	-4.0995380	1.9408560
H	2.8423160	-2.8932250	0.6971150
O	-1.2894440	-2.8115390	1.9446560
O	1.9138040	-0.5184570	-0.3868330
C	0.0511510	0.7837330	-2.5922080
H	0.6112370	-0.1475030	-2.5244570

H	-0.8787650	0.6189110	-3.1435800
H	0.6483590	1.4966790	-3.1666690
C	-2.4786610	2.8953560	2.5975720
H	-2.2209090	3.0933550	3.6432880
H	-2.5698340	3.8628330	2.0997370
H	-3.4604050	2.4073440	2.5879680
C	-0.0648890	2.7789510	1.8839380
H	-0.1531690	3.6705170	1.2544100
H	0.2311490	3.1102370	2.8851610
H	0.7420380	2.1532840	1.4901630
C	-1.2053860	0.7767440	2.8805530
H	-2.1085340	0.1571530	2.9235220
H	-0.3682180	0.1546080	2.5592900
H	-0.9889660	1.1118390	3.9001410
C	-4.0529870	-1.5514520	-0.6573110
C	-4.5709550	-1.5493350	0.6468020
C	-4.6867750	-0.7619670	-1.6317890
C	-5.6921380	-0.7773260	0.9717230
H	-4.0977860	-2.1612420	1.4099460
C	-5.8037200	0.0125290	-1.3099850
H	-4.3115380	-0.7612590	-2.6524120
C	-6.3102680	0.0075480	-0.0051020
H	-6.0888200	-0.7928670	1.9859130
H	-6.2821950	0.6137970	-2.0777230
H	-7.1812400	0.6063630	0.2446450
H	3.4502220	-0.2769000	-0.6037500
O	4.4160170	-0.0882660	-0.8688960
C	5.1693500	0.1863350	0.1700780
O	4.8473470	0.2370470	1.3382510
C	6.6331210	0.4522780	-0.2786510
F	7.1571450	-0.6422470	-0.8755220
F	7.4107460	0.7653100	0.7688980
F	6.6924280	1.4722900	-1.1630920

anti-18b'.log

Potential Energy $=-2233.51605$
Zero-point Energy $=-2232.98059$
Free Energy $=-2233.02877$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.10308

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-2233.61580$
Charge $=0$ Multiplicity $=1$

Charge $=0$ Mutiplicity $=1$			
C	0.9018130	-1.7271780	-0.9590970
C	2.4756080	-3.2785000	-0.1497600
C	3.0426390	-1.8960290	0.1790040
N	1.9167800	-1.0052690	-0.1549570
N	1.2443790	-3.1291900	-0.6785010
O	3.0338980	-4.3558530	0.0873170
C	0.3585820	-4.2708350	-0.8738650
H	0.4963440	-4.9633590	-0.0401170
H	-0.6762420	-3.9277280	-0.8893740
H	0.5722030	-4.8069730	-1.8036170
C	1.5887340	0.2349000	0.4577310
H	0.8024540	0.6880210	-0.1443410
C	2.7428850	1.2705370	0.5925640
C	2.2931770	2.7013300	0.9653110
H	3.8953800	-1.6988840	-0.4877090
C	0.8984730	-1.3844450	-2.4960980
H	-0.0999910	-1.5210680	-0.5714640
H	3.4602480	0.9458330	1.3377040
Cl	3.7155140	1.3128120	-0.9603400
N	0.8896240	0.1186550	1.8360340
C	-0.4775180	-0.0786710	1.8911410
C	1.4383610	0.2043890	3.1366820
C	-0.9379850	-0.2106690	3.3231400
C	0.3393300	-0.0530850	4.1501510
H	-1.4254750	-1.1817840	3.4484310

H	0.5984260	-0.9502620	4.7198330
H	0.3062870	0.7840970	4.8517100
H	-1.6868140	0.5603480	3.5259430
O	2.5997200	0.4617410	3.3900420
O	-1.1957140	-0.1241950	0.8879040
C	3.5652060	-1.9190910	1.6186660
H	4.0298040	-0.9785590	1.9114540
H	2.7745400	-2.1596200	2.3342630
H	4.3238850	-2.7037970	1.6778550
C	-0.2001170	-2.2026000	-3.2121960
H	-0.3065260	-1.8417970	-4.2407180
H	0.0367120	-3.2670730	-3.2679150
H	-1.1747160	-2.0894660	-2.727090
C	2.2628350	-1.6837230	-3.1419500
H	2.5285200	-2.7427290	-3.0547750
H	2.2294550	-1.4401900	-4.2096240
H	3.0573670	-1.0849130	-2.6881600
C	0.5531480	0.1073580	-2.6889910
H	-0.3975130	0.3669720	-2.2088240
H	1.3348850	0.7640070	-2.3033150
H	0.4480280	0.3201950	-3.7583010
H	1.8484580	2.6465940	1.9637900
H	3.2072590	3.2922480	1.0751620
C	1.3379770	3.4111440	0.0244960
C	-0.0499260	3.3584040	0.2285570
C	1.8218200	4.1743640	-1.0510960
C	-0.9315460	4.0268550	-0.6267690
H	-0.4502530	2.8041740	1.0727480
C	0.9452390	4.8453150	-1.9079790
H	2.8926520	4.2496740	-1.2140470
C	-0.4362110	4.7700890	-1.7015760
H	-2.0013360	3.9721500	-0.4470400
H	1.3418590	5.4314920	-2.7320840
H	-1.1181100	5.2937830	-2.3651760
H	-2.7786970	-0.3152100	0.9029630
O	-3.7789470	-0.4726670	0.9595420
C	-4.3987220	-0.1648870	-0.1577250
O	-3.9247170	0.2621700	-1.1875490
C	-5.9241100	-0.4246520	-0.0130270
F	-6.1675200	-1.7218550	0.2795830
F	-6.5747430	-0.1260870	-1.1474420
F	-6.4488920	0.3273980	0.9804430

Int4'.log
Potential Energy $=-2233.52515$
Zero-point Energy $=-2232.99167$
Free Energy $=-2233.04178$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.09953

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-2233.61616$
Charge $=0$ Multiplicity $=1$

C	0.5057100	2.0118400	-0.5734890
C	0.3276840	3.3585180	1.3565140
C	-1.0855050	2.7958810	1.1348800
N	-0.8166260	1.7463180	0.1044920
N	1.1647370	2.8349480	0.4340460
O	0.6298980	4.1230640	2.2678620
C	2.6145810	3.0071770	0.5321140
H	2.8852540	3.0151490	1.5896410
H	3.1158550	2.1749730	0.0372260
H	2.9390320	3.9491610	0.0818730
C	-1.5083000	0.7082520	-0.2162790
H	-1.0354380	0.0051190	-0.9134190
C	-2.8825480	0.3440270	0.2850680
C	-3.3183950	-1.0261410	-0.2557360
H	-1.7141450	3.5636590	0.6713470
C	0.3429650	2.6831150	-1.9874170

Int4a'.log
Potential Energy $=-1949.25759$
Zero-point Energy $=-1948.79233$
Free Energy $=-1948.83881$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.75178

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1949.33300$
Charge $=0$ Multiplicity $=1$

C	3.3793040	-0.3438340	-0.6281640
C	3.0655760	-1.7154410	1.2670310
C	2.0713280	-0.5588050	1.4469340
N	2.1267590	0.0767900	0.0955720
N	3.7079030	-1.5715620	0.0841130
O	3.2075540	-2.6371710	2.0632940
C	4.5314220	-2.6463780	-0.4699910

H	4.0957420	-3.5999170	-0.1666090	H	3.7892620	-3.6889490	0.2444790
H	4.5296550	-2.5780160	-1.5581430	H	4.0751140	-2.8992690	-1.3256940
H	5.5601560	-2.5981440	-0.1046600	H	5.2768250	-2.7614000	-0.0201730
C	1.2463370	0.7983050	-0.5085210	C	0.8585870	0.4326410	-0.4897690
H	1.4831790	1.0792040	-1.5273280	H	1.1289170	0.7414440	-1.5018270
C	-0.0153530	1.3863510	0.0716440	C	-0.1027130	1.5014070	0.0885170
C	-0.8112710	2.1515590	-0.9940500	C	-1.0741420	2.0110830	-0.9896530
H	-0.1991810	2.9712710	-1.3824930	H	-0.5034910	2.5569490	-1.7480220
H	2.4811850	0.1582300	2.1664910	H	2.7526370	0.4336970	2.1851800
C	4.4970840	0.7601150	-0.6261380	C	4.3400090	0.4921030	-0.9247020
H	3.0958370	-0.5743460	-1.6597580	H	2.7382860	-0.8231920	-1.5436500
H	-0.6306090	0.6118450	0.5263510	H	-0.6570520	1.0883880	0.9294940
Cl	0.4814650	2.4992290	1.4445480	Cl	0.8293510	2.9065140	0.7952750
C	0.7142870	-1.0725110	1.9225470	C	0.8714750	-0.5461420	2.3909940
H	0.0921170	-0.2741970	2.3267010	H	0.3586270	0.3833330	2.6444180
H	0.1770710	-1.6039630	1.1334990	H	0.1875730	-1.2113390	1.8614600
H	0.9171910	-1.7758980	2.7336140	H	1.1583290	-1.0288010	3.3289790
C	5.7146760	0.2024240	-1.3989070	C	5.3866790	-0.2467700	-1.7861810
H	6.4513870	1.0019410	-1.5196940	H	6.1276800	0.4709600	-2.1537010
H	6.2062700	-0.6138700	-0.8665150	H	5.9280450	-1.0101580	-1.2225320
H	5.4385350	-0.1465920	-2.3998790	H	4.9283600	-0.7234670	-2.6607870
C	4.9252890	1.1383090	0.8036840	C	5.0109370	1.0273390	0.3528200
H	5.2627510	0.2666420	1.3727740	H	5.3934650	0.2149320	0.9800920
H	5.7620170	1.8415450	0.7547120	H	5.8600520	1.6656520	0.0857520
H	4.1218280	1.6338760	1.3579490	H	4.3166790	1.6300500	0.9455750
C	4.0029380	2.0184970	-1.3694640	C	3.7922260	1.6745430	-1.7507400
H	3.6566680	1.7884750	-2.3836170	H	3.3130630	1.3313720	-2.6761220
H	3.2070660	2.5427280	-0.8326210	H	3.0688460	2.2622880	-1.1800780
H	4.8347470	2.7229210	-1.4617320	H	4.6158060	2.3377890	-2.0356930
H	-0.9668460	1.4411140	-1.8146340	H	-1.4886810	1.1219530	-1.4780330
C	-2.1478430	2.6722430	-0.5071500	C	-2.2063340	2.8713970	-0.4668650
C	-2.3787170	4.0488380	-0.3837030	C	-2.2318620	4.2527590	-0.7052430
C	-3.1831380	1.7791330	-0.1860950	C	-3.2628110	2.2970000	0.2587190
C	-3.6168370	4.5283550	0.0572630	C	-3.2803140	5.0446410	-0.2249160
H	-1.5877290	4.7508080	-0.6342430	H	-1.4262070	4.7128840	-1.2712090
C	-4.4186690	2.2564510	0.2584840	C	-4.3102960	3.0845900	0.7433830
H	-3.0231550	0.7078980	-0.2857540	H	-3.2718190	1.2249810	0.4405740
C	-4.6396370	3.6328990	0.3816820	C	-4.3220010	4.4631320	0.5034780
H	-3.7793100	5.5986310	0.1463910	H	-3.2819480	6.1130930	-0.4210960
H	-5.2101650	1.5537520	0.5027270	H	-5.1194000	2.6215280	1.3010730
H	-5.6016240	4.0029630	0.7242030	H	-5.1375710	5.0758540	0.8764310
O	0.1323700	-1.0197810	-1.9114570	O	-0.0120260	-0.7576120	-0.6406340
H	-0.7084270	-1.3127920	-1.4605150	H	-1.4565980	-1.3224630	-0.1375430
O	-2.0214000	-1.6607310	-0.4697650	O	-2.3365630	-1.7312320	0.1332700
C	-2.8574200	-2.4955140	-0.9143120	C	-2.6225620	-2.7602200	-0.6360220
O	-2.8958700	-3.0930550	-2.0015370	O	-1.9677270	-3.2072360	-1.5521230
C	-4.0140370	-2.7960410	0.1011900	C	-3.9846380	-3.3826390	-0.2247640
F	-4.6918040	-1.6631090	0.4324370	F	-4.9855390	-2.4886020	-0.3857620
F	-3.5308240	-3.3170380	1.2624030	F	-3.9724210	-3.7606370	1.0718730
F	-4.9305710	-3.6737670	-0.3663180	F	-4.2650080	-4.4608080	-0.9709960
H	-0.0882440	-0.9181980	-2.8470760	H	0.2688110	-1.2766220	-1.4085040

Int5'.log
Potential Energy $=-1949.26099$
Zero-point Energy $=-1948.79335$
Free Energy $=-1948.83855$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$

1949.75299

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-1949.33054$
Charge $=0$ Multiplicity $=1$

C	3.1423700	-0.4627680	-0.5876620	Formation of carbinol amine (TS1)	
C	2.9921210	-1.5649160	1.4859430		
C	2.1576970	-0.2863180	1.6051260		Conformation
N	2.0736570	0.1905140	0.2039530	Extrapolated	
N	3.4923300	-1.6309230	0.2328640		name energy
O	3.1703980	-2.3979020	2.3809440		
C	4.2071650	-2.8073760	-0.2464530		

Transition States

Formation of carbinol amine (TS1)
$\begin{array}{cc}\text { Conformation } & \text { Extrapolated } \\ \text { name } & \text { Free energy }\end{array}$
(kcal/mol)

TS1-lowest	0.0
1	0.9
2	0.1
3	1.5
4	2.3
5	1.4
6	1.5
7	0.5

TS1-lowest.log			
Potential Energy $=-1489.66362$			
Zero-point Energy $=-1489.18887$			
Free Energy $=-1489.23186$			
Single-Point Energy B3LYP1490.12258			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.69083$			
Nimag $=1(-162.6618)$			
Charge $=0$ Multiplicity $=1$			
C	1.8517090	-0.8511400	1.6926950
H	2.0070440	-1.7005300	1.0261210
H	1.4013680	-1.2130030	2.6208840
C	3.2250410	-0.2001630	2.0381640
C	0.9361530	0.1470150	1.0546780
O	0.4214710	1.0438850	1.8105020
H	-0.0740900	1.8766850	1.2616730
H	1.0578790	0.3821560	-0.0013810
O	-0.6648440	2.8873570	0.6484180
C	-1.7764790	2.5928830	0.0968280
C	-2.4661420	3.8293810	-0.5562970
F	-1.7045350	4.3270220	-1.5635700
F	-3.6739420	3.5343710	-1.0747810
F	-2.6448290	4.8269570	0.3433280
O	-2.3375590	1.4956530	0.0125340
H	3.7872370	-0.9518640	2.6022390
C	4.0319780	0.2445030	0.8336160
C	4.7148170	-0.6966460	0.0456070
C	4.1130900	1.5989250	0.4760850
C	5.4509620	-0.2970820	-1.0728450
H	4.6757730	-1.7500000	0.3134110
C	4.8487960	2.0035020	-0.6431880
H	3.6020130	2.3446700	1.0800220
C	5.5186850	1.0561710	-1.4225760
H	5.9752980	-1.0401360	-1.6670750
H	4.9001820	3.0573670	-0.9016440
H	6.0926470	1.3683920	-2.2901460
H	3.0559370	0.6454640	2.7114060
N	-0.8125710	-1.0379910	0.5345580
C	-1.2744170	-1.9646060	1.6063180
C	-1.2471790	-1.6343010	-0.7795250
C	-2.4527290	-2.6943130	0.9517430
H	-0.4871050	-2.6962800	1.8190460
H	-1.5765160	-0.8042420	-1.4129600
O	-3.2962320	-3.3773790	1.5380340
N	-2.4280920	-2.4223760	-0.3733750
C	-3.5480770	-2.7692240	-1.2427410
H	-3.4840610	-3.7987480	-1.6069870
H	-4.4743010	-2.6615600	-0.6736720
H	-3.5688350	-2.0892630	-2.0952580
C	-0.1805590	-2.4460100	-1.5841700
C	-0.8325990	-2.9522400	-2.8928420
H	-1.5888910	-3.7185880	-2.7126240
H	-1.2928600	-2.1352340	-3.4600700

H	-0.0615370	-3.4008130	-3.5269190
C	0.9802190	-1.5134500	-1.9876800
H	0.6135150	-0.5892060	-2.4491230
H	1.6204850	-1.2506450	-1.1449520
H	1.6167270	-2.0179160	-2.7214270
C	0.3584270	-3.6590820	-0.8036040
H	-0.4461780	-4.3447160	-0.5187960
H	1.0597230	-4.2178330	-1.4320280
H	0.8974220	-3.3659480	0.1013920
C	-1.6886230	-1.2641990	2.8982030
H	-0.8400980	-0.7734750	3.3776320
H	-2.4619780	-0.5130660	2.7077140
H	-2.0961040	-2.0077730	3.5874050
H	-1.3774290	-0.1821550	0.6063230

1.log

Potential Energy $=-1489.66305$
Zero-point Energy $=-1489.18786$
Free Energy $=-1489.23113$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.12134

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-1489.68941$
Nimag $=1(-133.0078)$
Charge $=0$ Multiplicity $=1$

C	1.3952340	-2.0585190	-0.2956850
H	0.6543910	-2.7384950	-0.7173550
H	1.5549830	-2.3234810	0.7525740
C	2.7223600	-2.2428810	-1.0968820
C	0.8997970	-0.6508130	-0.3909580
O	1.3984420	0.2147100	0.4164610
H	1.1683160	1.2481300	0.1533250
H	0.5363960	-0.2916880	-1.3530400
O	0.9013840	2.5506950	-0.1393410
C	-0.3032820	2.9011140	0.0743550
C	-0.5365840	4.4259900	-0.1568090
F	-0.1999490	4.7857890	-1.4207210
F	-1.8194550	4.7914340	0.0351080
F	0.2243440	5.1668250	0.6875980
O	-1.2666370	2.2105270	0.4283730
H	2.8918930	-3.3241100	-1.1457100
N	-1.1276380	-0.7687640	0.3082940
C	-1.3055380	-1.5724850	1.5509810
C	-2.4312110	-0.8364550	-0.4483670
C	-2.8214460	-1.5322140	1.7740390
H	-1.0095870	-2.6095680	1.3581450
H	-2.5984200	0.1555130	-0.8803050
O	-3.4079200	-1.8478030	2.8120990
N	-3.3967640	-1.0496250	0.6482010
C	-4.8041900	-0.6638800	0.6185940
H	-5.4600800	-1.5120210	0.4016090
H	-5.0726100	-0.2620670	1.5982070
H	-4.9529060	0.1066340	-0.1388470
C	-2.5387860	-1.8794290	-1.6086610
C	-3.9394450	-1.7492500	-2.2536400
H	-4.7378150	-2.0848270	-1.5891580
H	-4.1510560	-0.7185810	-2.5600750
H	-3.9800800	-2.3751560	-3.1504490
C	-1.5046070	-1.5463420	-2.7040070
H	-1.5451900	-0.4889660	-2.9901390
H	-0.4842290	-1.7870390	-2.4039890
H	-1.7176530	-2.1381650	-3.5997510
C	-2.3545080	-3.3304070	-1.1269920
H	-3.0841800	-3.5945350	-0.3548720
H	-2.5005830	-4.0171980	-1.9671150
H	-1.3524710	-3.5143660	-0.7299250
H	0.5391090	-1.1023900	2.6092910
H	-1.0353980	2.7574440	
H			

H	-4.5646570	-1.7643240	-2.0029570	C	-0.4347940	4.4251500	-0.3373100
C	-7.0466970	-1.0189630	0.2076770	F	0.5196980	5.0843330	0.3674700
H	-6.7896870	-0.8867430	2.3471900	F	-1.6305060	4.8810610	0.0857210
H	-6.9817740	-1.2346870	-1.9396030	F	-0.3003110	4.7927030	-1.6357530
H	-8.1080450	-0.7902490	0.2366440	H	-1.3240700	0.3360380	0.5288940
C	-0.5188640	-0.9695350	-0.0842710	O	-1.2156550	2.2637620	0.3625670
O	-0.0044950	-1.4388050	-1.1606430	C	3.8960150	-1.3657270	0.8005320
H	0.9783100	-1.8940480	-1.0063830	C	4.4900060	-0.1076740	0.9767820
H	-0.0781410	-1.2928620	0.8601760	C	4.4137930	-2.2163540	-0.1900370
O	2.1835600	-2.4978020	-0.8542280	C	5.5676450	0.2963630	0.1811120
C	3.0198630	-1.9252290	-0.0855850	H	4.1084510	0.5621850	1.7435190
C	4.3939740	-2.6617440	-0.0366060	C	5.4885730	-1.8169100	-0.9881540
F	4.2445780	-3.9552450	0.3411570	H	3.9768520	-3.2016240	-0.3354080
F	5.2596090	-2.0903500	0.8234370	C	6.0691910	-0.5565260	-0.8059420
F	4.9828430	-2.6652880	-1.2593220	H	6.0133710	1.2750970	0.3344290
H	1.3577620	0.3139080	0.5441370	H	5.8757580	-2.4902910	-1.7476500
O	2.8862970	-0.9005130	0.5951460	H	6.9061800	-0.2457170	-1.4243980
				H	2.9258150	-2.8152190	2.0510700
	ntial Energy =	489.66173		5.10			
	-point Energy	-1489.18580			ntial Energy =	489.66220	
	Energy $=-14$. 22874			-point Energy	-1489.18672	
	e-Point Ene	B3LYP-D3	$311+\mathrm{G}^{* *} \mathrm{PCM}=$		Energy = -1489	. 22968	
	. 12018				e-Point Energ	B3LYP-D3(B)	$-311+\mathrm{G}^{* *} \mathrm{PCM}=-$
	Energy B3LY	-D3(BJ)/6-3	** PCM (extrapolated		. 12110		
	energy from	$\text { RHO }=-1489$			Energy B3L	$\mathrm{D} 3(\mathrm{BJ}) / 6-31$	$\mathrm{G}^{* *}$ PCM (extrapolated
	ge $=1(-121.21$	city $=1$			ar = $1(-135.1$		
C	-1.9362220	-1.2364370	1.6801090		$\mathrm{ge}=0$ Multip	city $=1$	
C	-2.1796150	-1.0106530	-0.7029140	C	-0.9506580	-1.5101310	1.4119860
N	-1.2733680	-0.6907640	0.4615470	C	-2.5037390	-0.6472750	-0.2115040
H	-1.6324250	-2.2789660	1.8237220	N	-1.0486660	-0.6657880	0.1871530
H	-2.1490240	-0.1541110	-1.3843020	H	-0.7896810	-2.5542920	1.1223230
C	-3.4213220	-1.2158550	1.2978550	H	-2.7331220	0.3635400	-0.5648450
O	-4.3713680	-1.3083160	2.0782900	C	-2.3502470	-1.3896660	2.0265770
N	-3.5012210	-1.0378190	-0.0417000	O	-2.6633830	-1.6939950	3.1799850
C	-4.7660950	-0.7094380	-0.6932850	N	-3.1685550	-0.8520290	1.0923590
H	-4.5680000	-0.1213330	-1.5905630	C	-4.4998500	-0.3613880	1.4371840
H	-5.3329470	-1.6023130	-0.9704380	H	-4.7744930	0.4465040	0.7574600
H	-5.3681280	-0.1172740	-0.0004970	H	-5.2580780	-1.1471120	1.3809760
C	-1.6542950	-0.4426060	2.9523350	H	-4.4727980	0.0218490	2.4597300
H	-2.2940510	-0.8231750	3.7521610	C	0.1417270	-1.0743970	2.3850460
H	-0.6155040	-0.5513770	3.2734460	H	0.0366650	-1.6482310	3.3090040
H	-1.8731220	0.6208580	2.8151330	H	1.1402380	-1.2643080	1.9844590
C	-1.8451250	-2.2889170	-1.5360590	H	0.0544960	-0.0114280	2.6306490
C	-1.6683590	-3.5429540	-0.6599880	C	-2.9442430	-1.6476250	-1.3270330
H	-1.5115150	-4.4163480	-1.3014640	C	-2.5017090	-3.0936030	-1.0359880
H	-0.8030050	-3.4674180	0.0023290	H	-2.8917740	-3.7585470	-1.8136380
H	-2.5580740	-3.7405890	-0.0527110	H	-1.4147910	-3.2018790	-1.0301350
C	-2.9939460	-2.5542530	-2.5363390	H	-2.8931870	-3.4492130	-0.0769160
H	-3.2299200	-1.6673810	-3.1348620	C	-4.4854180	-1.6271670	-1.4479910
H	-2.6871920	-3.3450400	-3.2282410	H	-4.8741780	-0.6094870	-1.5652340
H	-3.9057640	-2.8922280	-2.0386560	H	-4.7800730	-2.1954390	-2.3359620
C	-0.5713420	-2.0260140	-2.3645790	H	-4.9737760	-2.0904220	-0.5876100
H	-0.3424100	-2.9062890	-2.9740740	C	-2.3756420	-1.1673930	-2.6776960
H	-0.7150750	-1.1784090	-3.0448160	H	-2.6929920	-1.8494600	-3.4732130
H	0.2985450	-1.8079400	-1.7468610	H	-2.7520950	-0.1681500	-2.9262840
C	1.3528600	-1.8902930	0.9390880	H	-1.2876400	-1.1201150	-2.6874470
H	0.6522400	-2.3752630	1.6219580	C	1.1096270	-1.9785120	-1.3281990
H	1.4412220	-2.4965700	0.0353980	H	0.9421260	-2.6234780	-0.4630040
C	2.7329700	-1.8084870	1.6644330	H	0.4780020	-2.3180930	-2.1515030
H	2.6439480	-1.1521750	2.5366990	C	2.6018870	-2.0914680	-1.7694210
C	0.8550440	-0.5233020	0.5974070	C	0.7744810	-0.5620810	-0.9875260
O	1.2402560	0.0186690	-0.5020880	O	0.5354070	0.2544600	-1.9458940
H	1.0395020	1.0786750	-0.5401520	H	0.5373670	1.3037050	-1.6310900
H	0.6412490	0.1473350	1.4312650	H	1.1943880	-0.1456740	-0.0716440
O	0.8261190	2.4459400	-0.6095520	O	0.5660670	2.6142610	-1.2937820
C	-0.2825750	2.8814930	-0.1691350	C	0.0367510	2.9356870	-0.1825340

C	0.0843970	4.4720070	0.0824530	C	-6.3059040	-1.0727200	1.3924020
F	1.3567100	4.9382530	0.0371050	H	-4.3730880	-1.4168800	2.2799320
F	-0.4232090	4.8080860	1.2844310	C	-6.4132430	-1.2675090	-1.014691
F	-0.6245640	5.1462430	-0.8580260	H	-4.5642650	-1.7636250	-2.0029800
H	-0.8638080	0.3040120	0.4774330	C	-7.0467620	-1.0188240	0.2073290
O	-0.4892300	2.2145280	0.6743470	H	-6.7902070	-0.8872000	2.3469320
H	2.7407200	-3.1237140	-2.1082340	H	-6.9813820	-1.2339590	-1.9399980
C	3.6090200	-1.7690440	-0.6823450	H	-8.1081110	-0.7900970	0.2361310
C	3.8457250	-2.6765800	0.3633890	C	-0.5188900	-0.9695120	-0.0841700
C	4.3228660	-0.5612880	-0.6925260	O	-0.0046290	-1.4388200	-1.1605870
C	4.7644570	-2.3824600	1.3741940	H	0.9782970	-1.8939170	-1.0065410
H	3.3122710	-3.6241060	0.3832510	H	-0.0781190	-1.2928540	0.8602500
C	5.2436250	-0.2624630	0.3178150	O	2.1838700	-2.4973260	-0.8549180
H	4.1617100	0.1498480	-1.4989880	C	3.0197720	-1.9252860	-0.0854450
C	5.4658750	-1.1716340	1.3557890	C	4.3940020	-2.6615880	-0.0367050
H	4.9362440	-3.0993380	2.1721110	F	4.2448790	-3.9542560	0.3441700
H	5.7868860	0.6778320	0.2904900	F	5.2607060	-2.0883670	0.8210350
H	6.1816290	-0.9427710	2.1399240	F	4.9814230	-2.6679720	-1.2600600
H	2.7653780	-1.4457030	-2.6375060	H	1.3576910	0.3138010	0.5444440
				O	2.8856000	-0.9014580	0.5965050
6.log							
Potential Energy $=-1489.66343$				7.log			
Zero-point Energy $=-1489.18829$				Potential Energy $=-1489.66169$			
Free Energy $=-1489.23176$				Zero-point Energy $=-1489.18761$			
Single-Point Energy B3LYP				Free Energy $=-1489.23092$			
1490.12013				Single-Point Energy B3LYP			-311+G**
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated					1490.12078		
	energy from	$\mathrm{RHO})=-1489$	58846	Free Energy			** PCM
	$a g=1(-134.5$	74)		free energy from qRRHO			002
$\text { Charge }=0 \text { Multiplicity }=1$				$\text { Nimag }=1(-225.2892)$			
C	0.1157540	1.5393690	1.6073830	Charge $=0$ Multiplicity $=1$			
C	1.0536400	1.9692590	-0.5663350	C	-1.2272110	1.6296880	1.7244310
N	0.5247270	0.8806120	0.3345420	C	0.2093770	2.2830240	-0.0051090
H	-0.9274310	1.8643370	1.5299920	C	-0.0097490	0.7165340	1.7547960
H	1.9137670	1.5584550	-1.1055090	H	0.9349330	2.9336880	0.5117010
C	1.0068650	2.7862540	1.6512020	H	-0.3052540	-0.3203680	1.9252010
O	1.2216510	3.4888220	2.6416660	C	-0.0322600	-0.9759410	-0.6285860
N	1.5451580	2.9535300	0.4207660	H	0.5214760	-0.6141840	-1.4939590
C	2.6385000	3.8930590	0.1887990	O	0.5365800	-1.8271480	0.1386550
H	3.2474980	3.5396860	-0.6444420	N	-1.1067290	2.4547060	0.6437900
H	2.2774610	4.9002850	-0.0361610	C	-1.9444290	3.6440330	0.5351690
H	3.2530230	3.9384170	1.0907630	H	-2.3907120	3.7290280	-0.4566380
C	0.2877830	0.6639120	2.8454320	H	-2.7414310	3.5444480	1.2724860
H	0.1015020	1.2718600	3.7339790	H	-1.3688160	4.5495920	0.7535220
H	-0.4209670	-0.1677000	2.8533890	O	-2.1363140	1.6398050	2.5557440
H	1.3041280	0.2632310	2.9112670	C	-1.5343390	-0.9932450	-0.7322160
C	0.0666680	2.5511730	-1.6274130	H	-1.9199100	0.0267720	-0.7809090
C	-1.2719390	2.9984770	-1.0116030	C	-2.2804870	-1.8205580	0.3333950
H	-1.8940340	3.4594990	-1.7858040	H	-2.1256540	-1.3865840	1.3251090
H	-1.8378420	2.1618930	-0.5956380	H	-1.8623840	-2.8310260	0.3590680
H	-1.1239610	3.7457500	-0.2247090	N	0.5157080	0.8691710	0.3759510
C	0.7201710	3.7746320	-2.3103540	C	3.6959380	-1.1549220	0.0828330
H	1.7207950	3.5443410	-2.6927540	C	5.2039670	-1.5382140	-0.0180230
H	0.1043660	4.0771370	-3.1632980	O	3.4047620	0.0100360	0.3679100
H	0.7920230	4.6336610	-1.6393340	H	1.5287650	0.7000970	0.3539300
C	-0.1680350	1.4906050	-2.7222190	O	2.9260650	-2.1445230	-0.1550350
H	-0.8408670	1.8943270	-3.4858620	H	1.6455390	-1.9312690	-0.0082900
H	0.7738800	1.2242030	-3.2159540	C	0.3494040	2.6362720	-1.5179040
H	-0.6082510	0.5722240	-2.3361670	C	0.3498410	4.1772530	-1.6821340
C	-1.9709290	-0.6178790	-0.0807230	H	0.6386990	4.4264430	-2.7079490
H	-2.1935190	0.0570010	0.7485900	H	-0.6285710	4.6263820	-1.5042260
H	-2.2433960	-0.1318520	-1.0196970	H	1.0725610	4.6516440	-1.0092660
C	-2.8099620	-1.9206000	0.0892750	C	-0.7491520	2.0362820	-2.4146110
H	-2.5065970	-2.4286370	1.0112230	H	-0.6541690	2.4481880	-3.4245660
H	-2.5875650	-2.5941880	-0.7440670	H	-1.7545870	2.2726660	-2.0550440
C	-4.2940160	-1.6209920	0.1332460	C	1.7364350	2.1403570	-1.9878610
C	-4.9404880	-1.3713760	1.3534510	H	1.9010690	2.4547000	-3.0229800
C	-5.0478240	-1.5658850	-1.0493240	H	2.5416890	2.5653120	-1.3785330

O	0.8953060	1.2539410	0.0146890	H	-1.1104150	-1.5302140	-0.1983810
C	1.6225310	2.0897860	0.6466230	O	-2.2760230	-2.0600690	0.2166960
C	1.8136060	3.4209040	-0.1497850	C	-3.2632010	-1.8081300	-0.5529800
O	2.1733030	1.9846670	1.7435760	O	-3.2887880	-1.1654220	-1.6042330
F	2.5259700	4.3409930	0.5321730	C	-4.5957220	-2.4280770	-0.0264160
F	0.6211220	3.9909260	-0.4618580	F	-4.5002500	-3.7777020	0.0850540
F	2.4663250	3.1983890	-1.3209710	F	-4.9075450	-1.9467770	1.2044070
				F	-5.6448950	-2.1683600	-0.8325580

1.log

Potential Energy $=-1489.66249$
Zero-point Energy $=-1489.18824$
Free Energy $=-1489.23172$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.11830

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-1489.68753$
Nimag $=1\left(-309.6177 \mathrm{~cm}^{-1}\right)$

Charge $=0$ Multiplicity $=1$

C	2.9163420	-0.0892340	-0.3998050
C	3.0941390	-2.3930880	0.0742480
C	2.4340840	-1.7323080	1.2886810
N	2.0021580	-0.4196300	0.7273880
N	3.3212000	-1.4310090	-0.8507370
O	3.3681970	-3.5895760	-0.0373540
C	3.8155230	-1.7444070	-2.1865760
H	4.9087010	-1.7654930	-2.2261400
H	3.4399180	-2.7298620	-2.4695140
H	3.4464850	-1.0010640	-2.8951280
C	0.6885600	-0.0846140	0.6966300
C	0.2516700	1.3123210	0.3111540
C	-1.2719890	1.5398080	0.4004290
H	-1.7892110	0.9284120	-0.3444370
H	-1.6227930	1.2106010	1.3853150
C	1.3732150	-2.6012100	1.9507580
H	1.8609770	-3.5253290	2.2701570
H	0.9615480	-2.1191500	2.8416240
H	0.5626630	-2.8657380	1.2693160
H	3.2211080	-1.5386160	2.0255120
C	4.1050930	0.8649880	-0.0247340
H	2.3443270	0.3911040	-1.1987510
C	4.8940600	1.2007950	-1.3105310
H	5.6309560	1.9792970	-1.0890220
H	5.4405250	0.3394880	-1.7014760
H	4.2377730	1.5826090	-2.1010160
C	3.5403810	2.1800430	0.5472630
H	2.8848500	2.6874560	-0.1682940
H	2.9855850	2.0104930	1.4744730
H	4.3669960	2.8607140	0.7746210
C	5.0646310	0.2414890	1.0068460
H	5.4427090	-0.7326880	0.6808710
H	5.9285980	0.9006440	1.1403730
H	4.5920740	0.1272190	1.9869770
H	0.6176640	1.5868750	-0.6833930
H	0.7473270	1.9838980	1.0200450
C	-1.6343500	2.9972760	0.1938430
C	-1.6670560	3.8897400	1.2767530
C	-1.9235370	3.4902750	-1.0878270
C	-1.9765150	5.2396480	1.0851320
H	-1.4551670	3.5239490	2.2787680
C	-2.2327660	4.8398060	-1.2847030
H	-1.9127450	2.8116840	-1.9374520
C	-2.2592710	5.7196580	-0.1979470
H	-2.0014380	5.9134190	1.9369710
H	-2.4575730	5.2012740	-2.2841980
H	-2.5031470	6.7673200	-0.3483300
H	0.1435240	-0.4855490	1.5453420
O	-0.1256740	-1.1394490	-0.5045090
	-0.2425590	-0.695270	.35

$2 . \log$
Potential Energy $=-1489.65965$
Zero-point Energy $=-1489.18505$
Free Energy $=-1489.22863$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$
1490.11864

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-1489.68763$
Nimag $=1\left(-222.1627 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$
$\left.\begin{array}{lccc}\mathrm{C} & -2.7695910 & -0.1669450 & 0.3649140 \\ \mathrm{C} & -1.8990570 & -2.3524920 & 0.1672370 \\ \mathrm{C} & -1.8496940 & -1.7152730 & -1.2252570 \\ \mathrm{~N} & -1.9970380 & -0.2667750 & -0.9043290 \\ \mathrm{~N} & -2.4034680 & -1.4329180 & 1.0237490 \\ \mathrm{O} & -1.5444360 & -3.4978390 & 0.4532300 \\ \mathrm{C} & -2.4519230 & -1.6621950 & 2.4629530 \\ \mathrm{H} & -3.3818170 & -2.1494890 & 2.7712660 \\ \mathrm{H} & -1.6152830 & -2.3086270 & 2.7354160 \\ \mathrm{H} & -2.3562610 & -0.7096780 & 2.9868740 \\ \mathrm{C} & -1.0130300 & 0.6208940 & -1.1885420 \\ \mathrm{C} & -1.2980500 & 2.1089270 & -1.1563150 \\ \mathrm{C} & -0.1438890 & 3.0265960 & -1.6216880 \\ \mathrm{H} & 0.3126100 & 2.6059020 & -2.5241690 \\ \mathrm{H} & -0.6074980 & 3.9714640 & -1.9280310 \\ \mathrm{C} & -0.6510510 & -2.1376540 & -2.0620440 \\ \mathrm{H} & -0.7053200 & -3.2226760 & -2.1815740 \\ \mathrm{H} & -0.6915760 & -1.6925980 & -3.0603280 \\ \mathrm{H} & 0.3064380 & -1.9016300 & -1.5941070 \\ \mathrm{H} & -2.7555600 & -2.0250490 & -1.7576560 \\ \mathrm{C} & -4.3134790 & 0.0589970 & 0.1957800 \\ \mathrm{H} & -2.3682800 & 0.6613860 & 0.9553270 \\ \mathrm{C} & -4.9335480 & 0.2671260 & 1.5963520 \\ \mathrm{H} & -5.9781290 & 0.5756100 & 1.4872680 \\ \mathrm{H} & -4.9262780 & -0.6463810 & 2.1952730 \\ \mathrm{H} & -4.4131240 & 1.0522860 & 2.1567470 \\ \mathrm{C} & -4.5579460 & 1.3372450 & -0.6295750 \\ \mathrm{H} & -4.1190150 & 2.2202950 & -0.1536740 \\ \mathrm{H} & -4.1556180 & 1.2461050 & -1.6424990 \\ \mathrm{H} & -5.6351200 & 1.5126960 & -0.7146350 \\ \mathrm{C} & -5.0186590 & -1.1239000 & -0.4955230 \\ \mathrm{H} & -4.8184070 & -2.0741660 & 0.0093590 \\ \mathrm{H} & -6.1012630 & -0.9619520 & -0.4725170 \\ \mathrm{H} & -4.7293430 & -1.2146290 & -1.5467950 \\ \mathrm{H} & -0.4100740 & 0.2498020 & 0.4462580\end{array}\right) 0.08924500$

H	0.4935220	-1.9113080	-2.1556880	H	7.0100910	-1.7622690	-0.3796240
O	0.4585630	0.2559860	-1.9622620	H	1.9753850	0.2793060	-0.8143100
H	0.1490030	1.0588990	-1.2715310	O	0.0003580	-0.5014050	-1.3285240
H	-0.1114070	0.2834180	-2.7479220	H	-0.9032860	-0.9328190	-0.8604480
O	-0.1404720	1.9824470	-0.3388710	H	0.4599550	-1.2122210	-1.8032520
C	-0.8462150	2.9706510	-0.7355600	O	-2.0262060	-1.3672060	-0.2691220
C	-1.1394870	3.9824360	0.4174190	C	-2.2886720	-2.5991100	-0.4849310
O	-1.3019890	3.2080180	-1.8544740	C	-3.5932620	-3.0598410	0.2384820
F	-1.8582110	5.0462620	0.0058850	O	-1.6647700	-3.4237890	-1.1536310
F	0.0093440	4.4606090	0.9594990	F	-3.4615510	-2.9613780	1.5871270
F	-1.8383140	3.3907220	1.4207500	F	-3.9165290	-4.3392850	-0.0375260
			F	-4.6547530	-2.2926230	-0.1157890	

5.log

Potential Energy $=-1489.66201$
Zero-point Energy $=-1489.18806$
Free Energy $=-1489.23178$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1490.12032

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from q RRHO $)=-1489.69009$
Nimag $=1\left(-338.0783 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-0.6678660	2.0195690	0.4497310
C	-0.6493540	2.8554140	-1.7572660
C	0.8029790	2.5509570	-1.3768490
N	0.6328230	1.6693650	-0.1857940
N	-1.4328840	2.5201910	-0.7057340
O	-1.0332190	3.3231880	-2.8315370
C	-2.8888900	2.5535000	-0.7856480
H	-3.2920060	3.5372500	-0.5270820
H	-3.1828790	2.3173560	-1.8104100
H	-3.3072070	1.8058500	-0.1101890
C	1.0733200	0.3840990	-0.2197110
C	1.0737550	-0.4595920	1.0381770
C	1.7316680	-1.8487110	0.8883360
H	1.6081660	-2.3550020	1.8527860
H	1.1824840	-2.4527460	0.1598720
C	1.6373960	2.0202500	-2.5350360
H	1.6280230	2.7798830	-3.3203950
H	2.6778390	1.8645010	-2.2374180
H	1.2324120	1.0964410	-2.9526980
H	1.2565240	3.4883870	-1.0365820
C	-0.5648210	3.0226660	1.6521100
H	-1.1471910	1.1070180	0.8157560
C	-1.9726970	3.2111160	2.2611550
H	-1.8907840	3.7838090	3.1904050
H	-2.6426090	3.7633680	1.5981470
H	-2.4412190	2.2507100	2.5046930
C	0.3498120	2.4227210	2.7379900
H	-0.0271170	1.4613460	3.1028500
H	1.3714210	2.2851260	2.3724480
H	0.3921910	3.1044920	3.5934400
C	-0.0092160	4.3973250	1.2338410
H	-0.5857620	4.8424630	0.4166490
H	-0.0642880	5.0834170	2.0853590
H	1.0414610	4.3385840	0.9343120
H	0.0579940	-0.5823160	1.4230950
H	1.6268180	0.1146490	1.7872030
C	3.2062110	-1.8192050	0.5253400
C	3.6700910	-2.3813670	-0.6734640
C	4.1469920	-1.2428990	1.3965260
C	5.0309630	-2.3617600	-1.0006790
H	2.9643340	-2.8474010	-1.3567630
C	5.5058860	-1.2203430	1.0742960
H	3.8174510	-0.8152050	2.3404280
C	5.9534840	-1.7783740	-0.1288600
H	5.3661560	-2.8038110	-1.9346460
H	6.2155950	-0.7722770	1.7640160

6.log

Potential Energy $=-1489.66303$
Zero-point Energy $=-1489.18910$
Free Energy $=-1489.23259$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.12040

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68996$
Nimag $=1\left(-327.0302 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	1.9497960	-0.6855510	0.6724740
C	3.7032480	-0.3311680	-0.8677400
C	2.9509950	-1.5859030	-1.3218810
N	1.6730390	-1.4728540	-0.5611250
N	3.0864730	0.1456470	0.2384630
O	4.6946800	0.1551780	-1.4162980
C	3.4669310	1.4138960	0.8500180
H	4.2670550	1.2911890	1.5860750
H	3.8207500	2.0824020	0.0625040
H	2.5965680	1.8583490	1.3346420
C	0.4911560	-1.3589270	-1.2212230
C	-0.8207720	-1.4590850	-0.4723180
C	-2.0683000	-1.3420470	-1.3728110
H	-2.1507160	-0.3246080	-1.7671270
H	-1.9575820	-2.0161370	-2.2307270
C	2.8610390	-1.7256130	-2.8357280
H	3.8824490	-1.7484500	-3.2232050
H	2.3771040	-2.6637110	-3.1208790
H	2.3392690	-0.8869490	-3.3007110
H	3.4960260	-2.4536450	-0.9342430
C	2.2198970	-1.5483790	1.9549690
H	1.1002840	-0.0288700	0.8800860
C	2.3914810	-0.6006110	3.1636030
H	2.4257320	-1.1918800	4.0842130
H	3.3184690	-0.0248990	3.1136990
H	1.5534540	0.1001270	3.2514830
C	1.0006030	-2.4517720	2.2256040
H	0.0855480	-1.8685310	2.3728910
H	0.8371860	-3.1626770	1.4107780
H	1.1729320	-3.0282370	3.1401390
C	3.4762280	-2.4304430	1.8237590
H	4.3640890	-1.8458350	1.5621760
H	3.6764310	-2.9192770	2.7828180
H	3.3427750	-3.2220070	1.0802420
H	-0.8745120	-0.7271380	0.3378380
H	-0.8175590	-2.4508040	-0.0071350
C	-3.3394040	-1.6848840	-0.6208270
C	-3.7993220	-3.0093270	-0.5543480
C	-4.0703780	-0.6884940	0.0440130
C	-4.9570830	-3.3314430	0.1602420
H	-3.2507340	-3.7939930	-1.0702170
H	-5.2285120	-1.0060420	0.7605210
	-5.2995990	-4.3617860	0.1959290

H	-5.7823730	-0.2197880	1.2657020	H	-6.6491730	-2.3368670	0.4081230
H	-6.5768900	-2.5777040	1.3743350	H	-5.7356480	1.8261260	1.0150310
H	0.4929690	-1.9111120	-2.1557010	H	-7.2563050	-0.1162320	1.3586400
O	0.4584900	0.2561280	-1.9621050	H	-0.3571540	-2.0162580	-2.1316540
H	0.1491980	1.0591180	-1.2712900	O	0.1084320	0.1041850	-1.9885060
H	-0.1115580	0.2837410	-2.7477020	H	0.2524590	0.9417600	-1.2896100
O	-0.1399530	1.9827030	-0.3387040	H	0.8689460	0.0654900	-2.5881710
C	-0.8456320	2.9709460	-0.7354260	O	0.3481200	1.9180930	-0.3629320
C	-1.1386590	3.9828970	0.4174670	C	0.8361630	3.0291990	-0.7619620
O	-1.3015190	3.2082090	-1.8543140	C	0.8725280	4.0962700	0.3781170
F	-1.8570940	5.0468780	0.0058340	O	1.2568120	3.3462410	-1.8747470
F	0.0102750	4.4608080	0.9595520	F	1.4175210	5.2638690	-0.0187690
F	-1.8376730	3.3914270	1.4208130	F	1.5950590	3.6581350	1.4410990
				F	-0.3775910	4.3711270	0.8318970
7.10							
	ntial Energy =	489.66171		8.10			
	-point Energy	-1489.18784			tial Energy =	1489.66281	
	Energy $=-148$. 23117			-point Energy	-1489.18914	
	le-Point Energ	B3LYP-D3(B	$-311+\mathrm{G}^{* *} \mathrm{PCM}=-$		Energy $=-14$. 23327	
	. 11933				e-Point Energ	B3LYP-D3($/ 6-311+\mathrm{G}^{* *} \mathrm{PCM}=-$
	Energy B3L	3(BJ)/6-3	* PCM (extrapolated		. 11742		
	energy from q	RHO) $=-1489$	8879		Energy B3LY	-D3(BJ)/6-31	$\mathrm{G}^{* *} \mathrm{PCM}$ (extrapolated
	$\mathrm{ag}=1(-319.4$	$1 \mathrm{~cm}^{-1}$)			energy from q	RHO) $=-1489$	8788
	ge $=0 \mathrm{Multip}$	city $=1$			$\mathrm{g}=1(-301.9$	$9 \mathrm{~cm}^{-1}$)	
C	1.4178620	-1.2262770	0.6745040		ge $=0$ Multip	city $=1$	
C	3.2013550	-1.5723010	-0.8345990	C	2.8651430	-0.4922060	0.2683590
C	2.0640050	-2.5107840	-1.2536040	C	3.2823360	-2.0585370	-1.4520040
N	0.8979530	-1.9239230	-0.5341140	C	1.7835630	-2.1426610	-1.1535730
N	2.7712060	-0.8499690	0.2258590	N	1.5779300	-0.9171800	-0.3408840
O	4.3059410	-1.4900100	-1.3755540	N	3.8234450	-1.0974800	-0.6693640
C	3.5648920	0.2322330	0.7976190	O	3.8825970	-2.7326000	-2.2912850
H	4.2719440	-0.1307950	1.5495610	C	5.1801200	-0.6066500	-0.8983240
H	4.1295870	0.7062580	-0.0077490	H	5.9303530	-1.2211030	-0.3935500
H	2.8999670	0.9677010	1.2518420	H	5.3793770	-0.6287680	-1.9719730
C	-0.1909630	-1.4704780	-1.2082150	H	5.2593130	0.4197160	-0.5386430
C	-1.4743980	-1.1403080	-0.4750600	C	0.4521800	-0.1676890	-0.4155720
C	-2.6317890	-0.7250630	-1.4075760	C	0.5144400	1.3280920	-0.1898490
H	-2.3741560	0.2059880	-1.9178280	C	-0.8298460	2.0490660	-0.4179590
H	-2.7571940	-1.4923420	-2.1808990	H	-1.2221620	1.7766390	-1.4046890
C	1.9486850	-2.7019800	-2.7599030	H	-1.5589180	1.7113870	0.3237270
H	2.8989160	-3.1115830	-3.1103500	C	0.9614520	-2.2432030	-2.4351110
H	1.1628360	-3.4179270	-3.0130320	H	1.3283750	-3.1053040	-2.9970900
H	1.7759640	-1.7720760	-3.3080950	H	-0.0988210	-2.4087300	-2.2287290
H	2.2687700	-3.4920550	-0.8119550	H	1.0752260	-1.3528560	-3.0610170
C	1.3804030	-2.0697370	1.9983800	H	1.6031170	-3.0388050	-0.5461120
H	0.8397500	-0.3124340	0.8356320	C	3.0755840	-0.9145040	1.7668060
C	1.8397880	-1.1705070	3.1689520	H	2.9557420	0.5964730	0.2042090
H	1.6739230	-1.6968970	4.1142580	C	4.5216400	-0.5811040	2.1954280
H	2.9032760	-0.9270210	3.1166300	H	4.6168710	-0.7270460	3.2760740
H	1.2719740	-0.2340450	3.2077080	H	5.2567070	-1.2297720	1.7137370
C	-0.0674410	-2.5158510	2.2810980	H	4.7813660	0.4616700	1.9811640
H	-0.7459950	-1.6620020	2.3781060	C	2.1249780	-0.0987000	2.6672330
H	-0.4450240	-3.1791610	1.4979110	H	2.3331210	0.9750300	2.5946070
H	-0.0973210	-3.0677840	3.2259900	H	1.0724450	-0.2644210	2.4284140
C	2.2834150	-3.3167630	1.9373110	H	2.2772320	-0.3904230	3.7113740
H	3.3147590	-3.0669500	1.6687210	C	2.8271640	-2.4191090	1.9783460
H	2.3081080	-3.7925580	2.9230800	H	3.4697290	-3.0321390	1.3378280
H	1.9048270	-4.0614110	1.2306500	H	3.0526770	-2.6837850	3.0163370
H	-1.3083760	-0.3714840	0.2852860	H	1.7842710	-2.6943710	1.7936140
H	-1.7585510	-2.0545680	0.0552120	H	1.2479060	1.7125240	-0.9103610
C	-3.9323980	-0.5528230	-0.6488360	H	0.8905830	1.5553510	0.8093320
C	-4.7996200	-1.6384110	-0.4495570	C	-0.6806880	3.5549060	-0.3288660
C	-4.2884410	0.6936340	-0.1105740	C	-0.8714320	4.2250700	0.8893230
C	-5.9891170	-1.4851710	0.2693720	C	-0.3241780	4.3092340	-1.4578050
H	-4.5451730	-2.6102790	-0.8661970	C	-0.7071520	5.6109590	0.9797360
C	-5.4764720	0.8519850	0.6098290	H	-1.1561120	3.6586480	1.7728630
H	-3.6331990	1.5482010	-0.2616560	C	-0.1591380	5.6949600	-1.3726600
C	-6.3311560	-0.2381670	0.8027820	H	-0.1806690	3.8088910	-2.4127010

C	-0.3491440	6.3508060	-0.1517920	H	0.0481230	4.4459400	-0.6229630
H	-0.8632200	6.1114920	1.9312360	C	-3.1378290	4.5076540	0.5735390
H	0.1123790	6.2613220	-2.2591110	H	-4.6593140	3.0533660	0.0960450
H	-0.2246160	7.4276820	-0.0843650	H	-1.4167570	5.7844800	0.8421830
H	-0.1806830	-0.4535230	-1.2494940	H	-3.7838090	5.1003250	1.2148030
O	-0.6818800	-0.6674930	0.8398350	H	0.0419400	-0.4601420	-1.4746960
H	-1.7546010	-0.6605710	0.5400490	O	-0.5507630	0.3432800	0.4279420
H	-0.4843870	-1.5977110	1.0390780	H	-1.4788490	-0.1801210	0.1740350
O	-3.0468740	-0.6593970	0.2160810	H	-0.1969480	-0.1503970	1.1863850
C	-3.5873260	-1.8065140	0.3768880	O	-2.6169520	-0.8721740	-0.1298980
O	-3.0775040	-2.8587520	0.7652300	C	-2.7952510	-1.8678820	0.6479280
C	-5.1054620	-1.8014020	0.0152990	O	-2.1015080	-2.2544040	1.5918840
F	-5.7924510	-0.9317990	0.7993650	C	-4.0937260	-2.6644900	0.3057590
F	-5.3032540	-1.4207810	-1.2724430	F	-5.1959210	-1.8814690	0.4333880
F	-5.6785560	-3.0122900	0.1657040	F	-4.0717520	-3.1167570	-0.9742550
				F	-4.2734600	-3.7370440	1.1031990
	ntial Energy =	489.65736		10.			
	-point Energy	-1489.18316			ntial Energy =	1489.66178	
	Energy $=-148$. 22653			-point Energy	-1489.18774	
	le-Point Energ	B3LYP-D3	$-311+\mathrm{G}^{* *} \mathrm{PCM}=$		Energy $=-14$. 23108	
	0.11533				e-Point Energ	B3LYP-D3(B)	/6-311+G** PCM $=-$
	Energy B3LY	-D3(BJ)/6-311	G*** PCM (extrapolated		. 11946		
	energy from q	RHO) $=-1489$	68449		Energy B3LY	-D3(BJ)/6-31	$\mathrm{G}^{* *} \mathrm{PCM}$ (extrapolated
	$\mathrm{ag}=1(-259.3$	$4 \mathrm{~cm}^{-1}$)			energy from q	RHO) $=-1489$	8876
	ge $=0$ Multip	city $=1$			$\mathrm{g}=1(-331.02$	$84 \mathrm{~cm}^{-1}$)	
C	3.0482640	0.2436420	-0.0441230		ge $=0$ Multip	city $=1$	
C	3.4644160	-1.9819580	-0.7227370	C	-3.0935230	-0.3488320	-0.4440750
C	1.9581610	-1.8897830	-0.4686920	C	-3.4353370	0.0880690	1.8531470
N	1.7637570	-0.4195740	-0.3912150	C	-1.9704560	-0.3317880	1.7100630
N	4.0106260	-0.7612020	-0.5200690	N	-1.7811600	-0.2371540	0.2412340
O	4.0670680	-2.9932880	-1.0868310	N	-3.9986140	0.1052170	0.6237800
C	5.3830840	-0.4664820	-0.9244820	O	-3.9926600	0.3907780	2.9102330
H	6.1078560	-0.7529900	-0.1577510	C	-5.3130970	0.7003000	0.3972550
H	5.6030410	-1.0266670	-1.8359390	H	-6.1237550	-0.0071230	0.5917340
H	5.4799960	0.6008170	-1.1258950	H	-5.4283200	1.5530220	1.0700100
C	0.6545870	0.1961500	-0.8653320	H	-5.3808180	1.0448490	-0.6350980
C	0.7441060	1.6047450	-1.4130420	C	-0.6228760	0.1871470	-0.3245560
C	-0.5620650	2.1680300	-2.0237720	C	-0.6483790	0.9181020	-1.6520460
H	-0.2627110	2.8253500	-2.8486440	C	0.7003070	1.5548320	-2.0554010
H	-1.1374460	1.3568530	-2.4831300	H	1.4760740	0.7859740	-2.1121260
C	1.1622470	-2.6150730	-1.5496900	H	0.5737270	1.9419700	-3.0725200
H	1.5196910	-3.6468000	-1.5874320	C	-1.0493420	0.5348470	2.5634580
H	0.0942190	-2.6417970	-1.3207940	H	-1.4039160	0.4783670	3.5953500
H	1.3122410	-2.1646520	-2.5355790	H	-0.0182080	0.1727570	2.5461480
H	1.7400970	-2.3533490	0.5019120	H	-1.0716450	1.5831040	2.2505800
C	3.2217230	0.6335620	1.4678860	H	-1.8779540	-1.3746650	2.0399930
H	3.1637300	1.1496430	-0.6465170	C	-3.4402470	-1.7683450	-1.0202260
C	4.6643930	1.1328510	1.7059490	H	-3.1369780	0.3706210	-1.2673680
H	4.7353030	1.5542550	2.7136380	C	-4.8988700	-1.7726690	-1.5285930
H	5.3978000	0.3264100	1.6385020	H	-5.0859850	-2.7040550	-2.0723690
H	4.9464180	1.9220210	0.9999530	H	-5.6227320	-1.7217910	-0.7121630
C	2.2699410	1.7978050	1.8117390	H	-5.0929250	-0.9445330	-2.2195930
H	2.5000130	2.6888600	1.2168060	C	-2.5266940	-2.0665370	-2.2269330
H	1.2173640	1.5493820	1.6611490	H	-2.6745210	-1.3326270	-3.0277950
H	2.3932900	2.0675660	2.8653050	H	-1.4682490	-2.0788150	-1.9591180
C	2.9483320	-0.5590900	2.4026120	H	-2.7766530	-3.0508580	-2.6358490
H	3.5963100	-1.4113130	2.1734960	C	-3.2769440	-2.8723860	0.0401850
H	3.1482290	-0.2650680	3.4378170	H	-3.8989550	-2.6854640	0.9217490
H	1.9070620	-0.8933160	2.3579250	H	-3.5877900	-3.8336150	-0.3815400
H	1.4933000	1.5389680	-2.2124790	H	-2.2371570	-2.9808300	0.3632940
H	1.1397260	2.2929000	-0.6649820	H	-1.3978530	1.7134800	-1.5602730
C	-1.4565940	2.9656670	-1.0911530	H	-0.9837270	0.2467880	-2.4446040
C	-2.7926740	2.5983210	-0.8801170	C	1.1532600	2.6808780	-1.1439030
C	-0.9790790	4.1271470	-0.4616160	C	0.5076620	3.9287110	-1.1802430
C	-3.6279450	3.3597950	-0.0550930	C	2.2177090	2.5064780	-0.2463700
H	-3.1823350	1.7032410	-1.3570420	C	0.9096440	4.9702660	-0.3405600
C	-1.8075600	4.8896910	0.3656200	H	-0.3112810	4.0896750	-1.8778230

C	0.4042320	4.6560070	0.4550500	C	-2.2178200	2.5062730	0.2462880
H	-1.4261420	3.6183430	-0.0076410	C	-0.9101120	4.9702580	0.3403210
C	2.3739190	3.8903270	-0.7150840	H	0.3109050	4.0899520	1.8776790
H	2.0856110	2.2651630	-2.0921280	C	-2.6238290	3.5478180	-0.5966090
C	1.7747410	4.7594910	0.2039770	H	-2.7342790	1.5506120	0.2116140
H	-0.0734160	5.3276820	1.1627580	C	-1.9707120	4.7823060	-0.5538050
H	3.4373650	3.9667740	-0.9233380	H	-0.4008390	5.9287680	0.3874300
H	2.3701370	5.5107410	0.7145550	H	-3.4515820	3.3927490	-1.2830610
H	0.1660430	0.4259420	0.5600690	H	-2.2860930	5.5919050	-1.2056080
O	0.5238830	-1.5994870	-0.1121890	H	-0.0524770	0.6266730	-0.4020410
H	1.6233220	-1.4303830	-0.2344690	O	-0.3784600	-1.1960140	0.7087670
H	0.4015280	-2.0097130	0.7597120	H	-1.4915860	-1.0794940	0.6188600
O	2.9146110	-1.2328350	-0.4405690	H	-0.1481600	-1.8916120	0.0704760
C	3.6602130	-1.6752210	0.4992500	O	-2.8048140	-0.9989940	0.5355310
O	3.3420540	-2.2408950	1.5456160	C	-3.2961330	-1.9135090	-0.2124810
C	5.1745690	-1.4220960	0.2180400	O	-2.7137880	-2.7992780	-0.8387920
F	5.5551520	-1.9580210	-0.9688460	C	-4.8520650	-1.8344450	-0.2963200
F	5.4422700	-0.0918030	0.1602850	F	-5.4162050	-1.9631320	0.9312520
F	5.9734380	-1.9486950	1.1677840	F	-5.2555280	-0.6400580	-0.7990310
				F	-5.3777820	-2.7962010	-1.0805700

13.log

Potential Energy $=-1489.66178$
Zero-point Energy $=-1489.18774$
Free Energy $=-1489.23108$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.11946

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from q RRHO $)=-1489.68876$
Nimag $=1\left(-330.9669 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	3.0935500	-0.3485140	0.4439820
C	3.4350370	0.0877620	-1.8534080
C	1.9701980	-0.3321370	-1.7100250
N	1.7810920	-0.2371240	-0.2411940
N	3.9984600	0.1053250	-0.6241160
O	3.9922150	0.3901960	-2.9106480
C	5.3129340	0.7005680	-0.3979590
H	6.1236130	-0.0068010	-0.5925510
H	5.4279210	1.5532270	-1.0708370
H	5.3808630	1.0452400	0.6343370
C	0.6228350	0.1871480	0.3246450
C	0.6483910	0.9182950	1.6520230
C	-0.7003040	1.5549860	2.0554170
H	-1.4760150	0.7860850	2.1123190
H	-0.5736450	1.9422630	3.0724730
C	1.0489460	0.5342530	-2.5635230
H	1.4033620	0.4774910	-3.5954540
H	0.0178170	0.1721690	-2.5459580
H	1.0712890	1.5825960	-2.2509380
H	1.8776960	-1.3751040	-2.0396700
C	3.4405120	-1.7678390	1.0204620
H	3.1370350	0.3711650	1.2670760
C	4.8991660	-1.7718040	1.5287470
H	5.0864860	-2.7030730	2.0726530
H	5.6229770	-1.7209130	0.7122740
H	5.0931010	-0.9435290	2.2196150
C	2.5270870	-2.0659030	2.2272980
H	2.6746980	-1.3316710	3.0279030
H	1.4686330	-2.0786520	1.9595300
H	2.7773940	-3.0499960	2.6365520
C	3.2773310	-2.8721640	-0.0396710
H	3.8993130	-2.6853850	-0.9212870
H	3.5883010	-3.8332500	0.3822920
H	2.2375560	-2.9808190	-0.3627420
H	1.3977970	1.7137180	1.5600750
H	0.9838590	0.2471180	2.4446430
C	-1.1534130	2.6808920	1.1438270
C	-0.5079980	3.9288220	1.1800890
H			

14.log

Potential Energy $=-1489.66326$
Zero-point Energy $=-1489.19008$
Free Energy $=-1489.23415$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.11854

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68943$
Nimag $=1\left(-378.5909 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-1.2140390	1.6419790	0.4122200
C	-1.1311840	2.7783480	-1.6503700
C	0.2929720	2.2678690	-1.4011770
N	0.0927420	1.3673840	-0.2403640
N	-1.9330390	2.3470900	-0.6518730
O	-1.4855890	3.4448390	-2.6252990
C	-3.3825270	2.5024470	-0.7158030
H	-3.6915490	2.4169630	-1.7595630
H	-3.8571920	1.7118850	-0.1335370
H	-3.7090070	3.4753160	-0.3367380
C	0.7376550	0.1984100	0.0069190
H	0.4142720	-0.2384160	0.9474100
C	2.2390470	0.0932050	-0.2132410
C	2.8822060	-1.0752030	0.5653970
H	2.6429640	-0.9714090	1.6296360
H	0.9133920	3.1225550	-1.1006470
C	-1.0884940	2.4426890	1.7570580
H	-1.7236560	0.6938000	0.6182570
H	2.4660480	-0.0020980	-1.2762420
C	0.8685670	1.6697130	-2.6876890
H	1.9449780	1.5107920	-2.6188410
H	0.3797040	0.7288190	-2.9486030
H	0.6902630	2.3925720	-3.4878940
C	-2.4921340	2.6364900	2.3725230
H	-2.3915260	3.0619660	3.3761700
H	-3.1120180	3.326610	1.7916210
H	-3.0265510	1.6844590	2.4696650
C	-0.4265150	3.8151050	1.5376880
H	-0.9891470	4.4303260	0.8280660
H	-0.3857640	4.3601270	2.4864780
H	0.6008590	3.7133940	1.1738620
C	-0.2453970	1.626710	2.7595710
H	-0.6644440	0.6272710	2.9266460
H	0.7943440	1.5238500	2.4363630
H	-0.2340050	2.1408390	3.7259120
O	0.0955260	-1.0241680	-1.0458000
H	-0.9744650	-1.2758530	-0.7932920
C			
C			

H	0.5955700	-1.8531720	-0.9564000	H	-0.7335280	0.5150370	-0.6010890
O	-2.2284180	-1.5161810	-0.5095180	H	-1.7567970	-0.8126070	-0.7847880
C	-2.4620310	-2.7351820	-0.1957170	O	-0.5316870	1.7846920	-0.2357640
O	-1.6834850	-3.6860520	-0.1391460	C	-1.5216060	2.5751040	-0.4059520
C	-3.9628220	-2.9706050	0.1607560	O	-2.6434240	2.3394880	-0.8538430
F	-4.7781470	-2.5962060	-0.8563290	C	-1.1903730	4.0334840	0.0437590
F	-4.2330790	-4.2618780	0.4355540	F	-0.1263620	4.5306420	-0.6368080
F	-4.3217100	-2.2436220	1.2503250	F	-2.2190680	4.8832440	-0.1496990
H	2.6802960	1.0367060	0.126630	F	-0.8760270	4.0789740	1.3643880
H	2.4537860	-2.0296920	0.2368740	H	0.4454870	-3.6946860	-0.1150570
C	4.3858750	-1.1204550	0.3826400	H	-1.2563340	-3.3679930	1.6692480
C	4.9585980	-1.8301260	-0.6841530	C	-2.8336290	-2.5919590	0.4391240
C	5.2361810	-0.4321680	1.2617090	C	-3.3330590	-1.7914240	1.4791070
C	6.3440140	-1.8489290	-0.8714710	C	-3.5546830	-2.6414200	-0.7683350
H	4.3158770	-2.3764520	-1.3704340	C	-4.5160310	-1.0610930	1.3212500
C	6.6223440	-0.4480250	1.0783210	H	-2.7952390	-1.7449470	2.4226270
H	4.8111160	0.1160900	2.0991310	C	-4.7355350	-1.9107190	-0.9299330
C	7.1809900	-1.1563670	0.0096060	H	-3.1964880	-3.2649860	-1.5839690
H	6.7684720	-2.4073610	-1.7010110	C	-5.2205030	-1.1176740	0.1157390
H	7.2641170	0.0878220	1.7719890	H	-4.8842240	-0.4497580	2.1400150
H	8.2576590	-1.1726550	-0.1323980	H	-5.2779110	-1.9654950	-1.8693120
				H	-6.1384190	-0.5511000	-0.0088890

15.log

Potential Energy $=-1489.66309$
Zero-point Energy $=-1489.18922$
Free Energy $=-1489.23270$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.12199

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.69160$
Nimag $=1\left(-291.0837 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.1556070	-0.1911370	0.4938210
C	3.1404510	-0.4468800	-1.6319580
C	2.2441500	-1.6756080	-1.4392940
N	1.4850200	-1.3090340	-0.2196250
N	3.0018210	0.3686220	-0.5635870
O	3.8449660	-0.2300750	-2.6205610
C	3.5815790	1.7072980	-0.5446020
H	3.5596060	2.1055200	-1.5610400
H	2.9883340	2.3495780	0.1071690
H	4.6192110	1.7009700	-0.1978920
C	0.1821630	-1.5934850	0.0427450
H	-0.1084380	-1.2286910	1.0238170
C	-0.3686470	-2.9797950	-0.2724990
C	-1.5609040	-3.4003240	0.6178160
H	-1.7700770	-4.4514910	0.3881790
H	2.8899910	-2.5376000	-1.2250280
C	2.9336220	-0.6435150	1.7807420
H	1.4079690	0.5559220	0.7833200
H	-0.6474620	-3.0455780	-1.3258080
C	1.4565020	-1.9588390	-2.7208940
H	0.9747990	-2.9365800	-2.6962580
H	0.7046450	-1.1901640	-2.9109610
H	2.1730190	-1.9617300	-3.5462660
C	3.5393910	0.5954480	2.4769580
H	3.9546150	0.2995010	3.4457290
H	4.3516660	1.0434140	1.9007820
H	2.7817180	1.3651770	2.6637100
C	4.0528090	-1.6446460	1.4418700
H	4.7800220	-1.2213970	0.7414350
H	4.5932980	-1.9155800	2.3547500
H	3.6509130	-2.5679810	1.0128400
C	1.9467430	-1.3007670	2.7682660
H	1.1138310	-0.6328720	3.0181780
H	1.5421390	-2.2401770	2.3813600
H	2.4690450	-1.5332510	3.7018100
O	-0.8246620	-0.5498050	-0.9015100

16.log

Potential Energy $=-1489.66225$
Zero-point Energy $=-1489.18884$
Free Energy = -1489.23238
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$
1490.12098

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-1489.69110$
Nimag $=1\left(-361.3958 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-0.2826440	1.6543360	0.6961040
C	-0.8995090	3.4405790	-0.7097270
C	0.3779920	2.8519770	-1.3213680
N	0.5375240	1.5984350	-0.5428510
N	-1.2536260	2.6999010	0.3629430
O	-1.5150200	4.4133860	-1.1517730
C	-2.5320930	2.8961280	1.0384480
H	-3.2771770	3.1764780	0.2910750
H	-2.8353470	1.9645410	1.5172410
H	-2.4815760	3.6883230	1.7911700
C	0.9706560	0.3964840	-1.0047680
H	1.0047860	-0.3424270	-0.2091530
C	2.1690260	0.3238370	-1.9358550
C	2.7779630	-1.0887970	-2.0978680
H	2.0514140	-1.7699070	-2.5557640
H	1.2085250	3.5322920	-1.0915120
C	0.5568170	1.9322650	1.9928570
H	-0.8126530	0.7034360	0.8231740
H	1.9097380	0.7103170	-2.9219130
C	0.2319540	2.7523980	-2.8422250
H	1.1899460	2.5859480	-3.3353690
H	-0.4670100	1.9646570	-3.1303670
H	-0.1576120	3.7123850	-3.1906610
C	-0.3795190	1.9367010	3.2216290
H	0.2231440	1.9764410	4.1347280
H	-1.0455070	2.8021350	3.2360410
H	-0.9906450	1.0280320	3.2689510
C	1.3011930	3.2770640	1.9084530
H	0.6123110	4.1157380	1.7640280
H	1.8456920	3.4549950	2.8416020
H	2.0340490	3.2819000	1.0955160
C	1.5803310	0.7946270	2.1859410
H	1.0936210	-0.1866020	2.2318720
H	2.3323010	0.7758620	1.3924200
H	2.1105770	0.9406900	3.1324170

O	-0.3083620	-0.3211870	-1.9387240
H	-1.1697440	-0.6460000	-1.2950890
H	-0.0031540	-1.1168810	-2.4058980
O	-2.1835330	-0.9729720	-0.5252020
C	-2.5548070	-2.1913150	-0.6495840
O	-2.1030010	-3.0712750	-1.3814970
C	-3.7525770	-2.5382430	0.2887560
F	-4.8305530	-1.7599440	0.0168340
F	-4.1466900	-3.8216880	0.1719090
F	-3.4296860	-2.3340020	1.5913430
H	2.9272210	0.9963820	-1.5195460
H	3.5935570	-0.9950930	-2.8232270
C	3.3096010	-1.7047970	-0.8180420
C	4.4985100	-1.2287430	-0.2398280
C	2.6357160	-2.7594310	-0.1840040
C	4.9960830	-1.7868410	0.9400590
H	5.0436250	-0.4201970	-0.7214500
C	3.1303720	-3.3214240	0.9986330
H	1.7207400	-3.1519260	-0.6212900
C	4.3117330	-1.8358320	1.5650410
H	5.9196060	-1.4076020	1.3683960
H	2.5937520	-4.1387760	1.4719290
H	4.6994320	-3.2722450	2.4809240

H	-2.4964500	-1.4305930	-3.7158570
O	0.8226500	-0.5778080	0.8921830
H	0.7884350	0.4791440	0.5519370
H	1.7453420	-0.8842340	0.8113060
O	0.6542370	1.7266910	0.0968050
C	1.4967400	2.5857890	0.5283260
O	2.4290960	2.4419420	1.3182590
C	1.2460530	4.0035740	-0.0765760
F	0.0117090	4.4655460	0.2503780
F	2.1396660	4.9170010	0.3530950
F	1.3172730	3.9805180	-1.4323260
H	-0.4792030	-3.6958700	0.0403230
H	1.2311190	-3.3428370	-1.7310130
C	2.8101080	-2.6076760	-0.4775100
C	3.3139570	-1.7782580	-1.4924310
C	3.5284730	-2.6947580	0.7294550
C	4.4979300	-1.0553830	-1.3102130
H	2.7783110	-1.7022530	-2.4352150
C	4.7106180	-1.9716680	0.9153560
H	3.1672140	-3.3415280	1.5254610
C	5.1994190	-1.1488100	-0.1051090
H	4.8694260	-0.4209850	-2.1097280
H	5.2507550	-2.0556760	1.8538470
H	6.1182210	-0.5881470	0.0382890

17.log

Potential Energy $=-1489.66308$
Zero-point Energy $=-1489.18914$
Free Energy $=-1489.23251$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1490.12191
18.log

Potential Energy $=-1489.66019$
Zero-point Energy $=-1489.18653$
Free Energy $=-1489.22984$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from q RRHO $)=-1489.69134$
Nimag $=1\left(-290.5330 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.1568900	-0.1633950	-0.4805990
C	-3.1344230	-0.4490860	1.6446970
C	-2.2536260	-1.6841930	1.4232750
N	-1.4958600	-1.3026680	0.2073770
N	-2.9920150	0.3852600	0.5915060
O	-3.8309500	-0.2430910	2.6412660
C	-3.5540640	1.7316490	0.6028710
H	-3.5170670	2.1109870	1.6261150
H	-2.9588080	2.3779870	-0.0430040
H	-4.5949270	1.7454270	0.2662690
C	-0.1963520	-1.5942890	-0.0654330
H	0.0930650	-1.2133900	-1.0406880
C	0.3412410	-2.9928870	0.2172890
C	1.5324410	-3.4025630	-0.6798270
H	1.7325220	-4.4604360	-0.4743360
H	-2.9108150	-2.5339660	1.1950660
C	-2.9454820	-0.5822410	-1.7722720
H	-1.4021940	0.5805900	-0.7595430
H	0.6162480	-3.0880700	1.2694500
C	-1.4637100	-2.0023640	2.6952400
H	-0.9939100	-2.9851090	2.6488020
H	-0.7020370	-1.2464950	2.8971370
H	-2.1764580	-2.0136230	3.5237990
C	-3.5514460	0.6746890	-2.4352620
H	-3.9714040	0.4034670	-3.4092270
H	-4.3604090	1.1095650	-1.8445500
H	-2.7933170	1.4476150	-2.6062990
C	-4.0662500	-1.5868360	-1.4493550
H	-4.7860380	-1.1778990	-0.7328760
H	-4.6152380	-1.8326970	-2.3642580
H	-3.6649370	-2.5221250	-1.0464910
C	-1.9671230	-1.2196790	-2.7811420
H	-1.1345880	-0.5479580	-3.0219900
H	-1.5614850	-2.1681740	-2.4180250

1490.11899

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.68863$
Nimag $=1\left(-392.7208 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.8509660	-0.1189270	0.5924330
C	-2.6438470	-2.2067690	-0.4783960
C	-2.0375180	-1.1791810	-1.4414520
N	-1.9560870	0.0295210	-0.5841970
N	-3.0235780	-1.5726330	0.6533040
O	-2.7410090	-3.4160790	-0.6976450
C	-3.4670080	-2.3088540	1.8319330
H	-2.9247530	-3.2557560	1.8698720
H	-3.2417630	-1.7284480	2.7277280
H	-4.5391600	-2.5247090	1.8030430
C	-0.9581320	0.9485100	-0.5287500
H	-1.2380320	1.7828450	0.1072070
C	-0.2411590	1.3821020	-1.8012260
C	0.2813470	2.8379720	-1.7467280
H	0.6403220	3.0825810	-2.7523730
H	-2.7664470	-0.9980800	-2.2424370
C	-4.1879450	0.6965480	0.4812050
H	-2.3150490	0.2127970	1.4892080
H	0.5802450	0.7007460	-2.0298410
C	-0.7559100	-1.7256030	-2.0692080
H	-0.4122730	-1.1080610	-2.8993880
H	0.0506340	-1.8373430	-1.3422550
H	-0.9942330	-2.7155050	-2.4672690
C	-4.9954720	0.5355290	1.7882740
H	-5.8527880	1.2161530	1.7707930
H	-5.3882320	-0.4755780	1.9148080
H	-4.3931140	0.7855410	2.6692650
C	-5.0404200	0.2283500	-0.7122960
H	-5.2943710	-0.8340920	-0.6402140
H	-5.9795080	0.7908520	-0.7363440
H	-4.5305860	0.4022450	-1.6651410
C	-3.8596250	2.1947980	0.3112590
H	-3.2362160	2.5722230	1.1305520

H	-3.3572470	2.3991400	-0.6385300	H	2.7219800	2.5203750	-1.0839790
H	-4.7894200	2.7724870	0.3178200	H	4.2494020	2.8681520	-1.8888570
O	0.2798580	0.3939260	0.5637880	O	0.1943470	-1.0374940	-1.0350620
H	1.0893110	-0.3223170	0.2274600	H	-0.7945880	-1.3560620	-0.5873080
H	0.7290740	1.1775000	0.9265170	H	0.0921130	-1.0479800	-2.0001180
O	2.0134440	-1.1562600	-0.1512960	O	-1.9023870	-1.7625540	-0.0411190
C	2.9003880	-1.4512960	0.7237960	C	-2.7314960	-2.2767180	-0.8699970
O	3.0147020	-1.0642580	1.8850630	O	-2.6267120	-2.4199370	-2.0874350
C	3.9564480	-2.4551270	0.1628790	C	-4.0363550	-2.7645480	-0.1667290
F	4.5759020	-1.9563490	-0.9368370	F	-4.6763540	-1.7350090	0.4443360
F	4.9166570	-2.7512130	1.0613670	F	-4.9097870	-3.3230450	-1.0278180
F	3.3734420	-3.6255450	-0.2024310	F	-3.7646610	-3.6900080	0.7875730
H	-0.9583810	1.3092890	-2.6253360	H	0.3067010	2.0680490	0.6904850
H	-0.5584990	3.5115010	-1.5427110	H	-0.5585780	2.4458360	-1.6425130
C	1.3922950	3.0931200	-0.7464010	H	-1.6045850	1.0366880	-1.4807250
C	1.1371610	3.7433820	0.4721430	C	-2.1969300	2.7160390	-0.2828200
C	2.7079040	2.6795990	-1.0176280	C	-3.3952750	2.1534620	0.1841940
C	2.1631400	3.9630770	1.4003830	C	-1.9994630	4.0962640	-0.1225070
H	0.1324260	4.0961320	0.6921120	C	-4.3687880	2.9473430	0.7980620
C	3.7340510	2.9002250	-0.0963610	H	-3.5687960	1.0870530	0.0637760
H	2.9301420	2.1839760	-1.9595070	C	-2.9705470	4.8943780	0.4903760
C	3.4645330	3.5406980	1.1189860	H	-1.0806230	4.5510750	-0.4851850
H	1.9429830	4.4689120	2.3360080	C	-4.1592360	4.3215730	0.9539010
H	4.7444340	2.5749500	-0.3271640	H	-5.2910720	2.4934800	1.1497350
	4.2626120	3.7122190	1.8351200	H	-2.8002450	5.9616380	0.6010120
				H	-4.9162490	4.9400500	1.4273560
19.log							
Potential Energy $=-1489.66231$				$20 . \log$			
Zero-point Energy $=-1489.18932$				Potential Energy $=-1489.66019$			
Free Energy = -1489.23334				Zero-point Energy $=-1489.18653$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1490.11822				Free Energy = -1489.22984			
					le-Point Energ	B3LYP-D3(BJ)	$-311+\mathrm{G}^{* *} \mathrm{PCM}=$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.68925$				1490.11898			
				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
$\begin{aligned} & \text { free energy from qRRHO })=-1489.68925 \\ & \text { Nimag }=1\left(-406.5721 \mathrm{~cm}^{-1}\right) \end{aligned}$					energy from qR	RHO) $=-1489$	863
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-392.8019 \mathrm{~cm}^{-1}\right)$			
C	3.3139270	-0.2198350	-0.5508950	Charge $=0$ Multiplicity $=1$			
C	3.3116440	-1.3128700	1.5352840	C	-2.8507190	-0.1190700	0.5924780
C	2.1613940	-0.3013600	1.5971430	C	-2.6436850	-2.2066600	-0.4788590
N	2.0808420	0.1560300	0.1884660	C	-2.0374180	-1.1788570	-1.4417230
N	3.8669720	-1.2717520	0.3039050	N	-1.9559650	0.0296610	-0.5842120
O	3.6449860	-2.0640800	2.4538880	N	-3.0232760	-1.5727940	0.6530380
C	4.8512580	-2.2608790	-0.1227090	O	-2.7408990	-3.4159140	-0.6983950
H	4.6121460	-3.2118290	0.3575500	C	-3.4666120	-2.3092920	1.8315290
H	4.7990360	-2.3805760	-1.2056180	H	-2.9243860	-3.2562240	1.8691720
H	5.8692250	-1.9769150	0.1596130	H	-3.2412480	-1.7291200	2.7274460
C	0.9619750	0.4568180	-0.5132440	H	-4.5387750	-2.5251030	1.8027000
H	1.2059120	0.7973830	-1.5147950	C	-0.9580950	0.9487320	-0.5287180
C	-0.1620720	1.2556710	0.1228170	H	-1.2379930	1.7829440	0.1073980
C	-1.1301690	1.8498940	-0.9215420	C	-0.2412510	1.3825630	-1.8011850
H	2.4749730	0.5353030	2.2348190	C	0.2811030	2.8384800	-1.7465260
C	4.2817570	0.9896640	-0.8092750	H	-2.7663700	-0.9975980	-2.2426490
H	3.0346820	-0.6548400	-1.5182420	C	-4.1877460	0.6963760	0.4815780
H	-0.7217390	0.6504080	0.8366440	H	-2.3147160	0.2124730	1.4892670
C	0.9258030	-0.9570980	2.2179830	H	0.5802170	0.7013260	-2.0299240
H	0.1621150	-0.2265120	2.4841430	C	-0.7558170	-1.7251380	-2.0696230
H	0.4926190	-1.7153850	1.5619650	H	-0.4121980	-1.1074150	-2.8996760
H	1.2508300	-1.4471340	3.1392960	H	0.0507380	-1.8370280	-1.3427060
C	5.4973880	0.5099840	-1.6329860	H	-0.9941400	-2.7149550	-2.4678960
H	6.0940670	1.3766850	-1.9349350	C	-4.9950700	0.5351100	1.7887430
H	6.1538380	-0.1511720	-1.0634890	H	-5.8524140	1.2157060	1.7715050
H	5.1877700	-0.0114320	-2.5461010	H	-5.3877750	-0.4760310	1.9151730
C	4.7661260	1.6122820	0.5128420	H	-4.3925860	0.7850000	2.6696830
H	5.2935810	0.8840480	1.1372660	C	-5.0403760	0.2283370	-0.7118730
H	5.4620020	2.4305250	0.3009270	H	-5.2943020	-0.8341190	-0.6399110
H	3.9348200	2.0299920	1.0895990	H	-5.9794750	0.7908290	-0.7357140
C	3.5484280	2.0658330	-1.6375930	H	-4.5306740	0.4023750	-1.6647630
H	3.1631010	1.6628510	-2.5817430	C	-3.8595200	2.1946680	0.3118340

H	-3.2359860	2.5719790	1.1310840	C	2.9446590	-1.2981520	-2.7149060
H	-3.3573180	2.3991990	-0.6380080	H	2.9213050	-2.3918080	-2.7841970
H	-4.7893400	2.7723140	0.3186600	H	1.9285150	-0.9381650	-2.8869620
O	0.2800350	0.3940950	0.5636610	H	3.5519750	-0.9273490	-3.5460430
H	1.0893790	-0.3223020	0.2273510	H	-1.4547220	-0.4369660	0.3238830
H	0.7293540	1.1776420	0.9263190	H	-1.5736900	-2.9052430	-1.4934650
O	2.0133670	-1.1564140	-0.1513330	C	-3.3691640	-2.2678030	-0.5063770
C	2.9001330	-1.4517050	0.7238570	C	-3.6313640	-3.4966490	0.1195550
O	3.0143760	-1.0647750	1.8851660	C	-4.3917060	-1.3070800	-0.5456560
C	3.9561000	-2.4556610	0.1629850	C	-4.8791880	-3.7589440	0.6933070
F	4.5763040	-1.9565150	-0.9361500	H	-2.8543300	-4.2569410	0.1527450
F	4.9157370	-2.7525550	1.0618180	C	-5.6412960	-1.5644270	0.0267790
F	3.3728840	-3.6256780	-0.2032470	H	-4.2098440	-0.3519110	-1.0324650
H	-0.9585070	1.3097720	-2.6252680	C	-5.8890770	-2.7921260	0.6493570
H	0.6399120	3.0832940	-2.7521810	H	-5.0633480	-4.7181660	1.1690310
H	-0.5587830	3.5118880	-1.5422820	H	-6.4205880	-0.8087740	-0.0176470
C	1.3921650	3.0935810	-0.7463130	H	-6.8602510	-2.9951380	1.0913610
C	1.1371530	3.7437010	0.4723320	H	0.6012660	-1.9113420	-1.3836600
C	2.7077650	2.6801690	-1.0177570	O	-0.0150290	0.1494610	-1.7681940
C	2.1632440	3.9633750	1.4004530	H	-0.5375690	1.0187570	-1.3192900
H	0.1324220	4.0963520	0.6924760	H	0.8042930	0.4843740	-2.1636460
C	3.7340220	2.9007730	-0.0966070	O	-1.2453960	2.0494480	-0.8454200
H	2.9299090	2.1846550	-1.9597150	C	-0.5612310	3.0081200	-0.3496840
C	3.4646260	3.5411130	1.1188370	O	0.6580700	3.1025340	-0.2016170
H	1.9431800	4.4691010	2.3361600	C	-1.4620590	4.1976380	0.1096140
H	4.7443950	2.5755840	-0.3275770	F	-2.1345890	4.7337430	-0.9414170
H	4.2627920	3.7126180	1.8348790	F	-0.7557170	5.1941050	0.6804630
				F	-2.3900360	3.7945780	1.0140680
21.log							
Potential Energy $=-1489.65495$				22.log			
Zero-point Energy $=-1489.18085$				Potential Energy $=-1489.65593$			
Free Energy $=-1489.22400$				Zero-point Energy $=-1489.18221$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1490.11262				Free Energy $=-1489.22598$			
					e-Point Energ	B3LYP-D3	$-311+\mathrm{G}^{* *} \mathrm{PCM}=$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.68166$				1490.11120			
				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
free energy from qRRHO) $=-1489.68166$$\text { Nimag }=1\left(-330.9198 \mathrm{~cm}^{-1}\right)$					energy from q	RHO) $=-1489$	
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-297.0900 \mathrm{~cm}^{-1}\right)$			
C	2.7836090	-1.4664520	-0.1699070	Charge $=0$ Multiplicity $=1$			
C	2.8317280	-0.4095240	1.9397200	C	-3.1260970	-0.3858910	-0.7275710
C	1.5180930	0.0340310	1.2940840	C	-4.2680010	0.9950400	0.8050760
N	1.4377840	-0.8874680	0.1351920	C	-2.8075580	0.9818010	1.2684260
N	3.4491010	-1.2938040	1.1230670	N	-2.1382050	0.3838820	0.0885860
O	3.2286750	-0.0643470	3.0537400	N	-4.3703010	0.2859820	-0.3408020
C	4.5380950	-2.1362370	1.6145920	O	-5.1837310	1.6050900	1.3595050
H	4.3367830	-2.3875910	2.6583360	C	-5.5566060	0.3890970	-1.1884710
H	4.5798680	-3.0526030	1.0255840	H	-5.9312360	1.4138720	-1.1368390
H	5.5060020	-1.6316220	1.5599500	H	-5.2849590	0.1569180	-2.2184910
C	0.3589430	-1.1643800	-0.6319060	H	-6.3522220	-0.2881520	-0.8678870
C	-1.0393860	-1.3671830	-0.0668200	C	-0.8233600	0.3886520	-0.2167930
C	-2.0076050	-1.9764890	-1.1038860	C	0.0646570	1.6046270	0.0022760
H	-2.1126760	-1.2903650	-1.9489430	C	1.4234440	1.4957730	-0.7209620
H	1.6146620	1.0674090	0.9336090	H	1.9845670	0.6404330	-0.3347100
C	3.5715730	-0.8389470	-1.3786910	H	-2.7145650	0.3040990	2.1278460
H	2.6588970	-2.5383010	-0.3656820	C	-3.1565350	-1.9461630	-0.5310180
H	-0.9366920	-2.0576640	0.7766630	H	-2.9258750	-0.1804110	-1.7858330
C	0.3978400	-0.0200960	2.3367590	H	-0.4799500	2.4654140	-0.3994450
H	-0.5196000	0.4478840	1.9815630	C	-2.3971660	2.3896350	1.7060920
H	0.1861720	-1.0444300	2.6540250	H	-1.4305290	2.4016610	2.2088380
H	0.7446530	0.5423400	3.2073850	H	-2.3825850	3.0896560	0.8668880
C	5.0218340	-1.3756270	-1.3756410	H	-3.1498730	2.7316580	2.4208760
H	5.5233470	-1.0498300	-2.2922130	C	-4.4183160	-2.5176040	-1.2163860
H	5.6019680	-0.9923310	-0.5341460	H	-4.3649410	-3.6106890	-1.2027230
H	5.0543380	-2.4703880	-1.3563270	H	-5.3360330	-2.2301250	-0.6987400
C	3.6211380	0.6971660	-1.2888200	H	-4.4942940	-2.2068600	-2.2644310
H	4.1283180	1.0246010	-0.3752330	C	-3.1790660	-2.3329660	0.9588760
H	4.1822990	1.0995930	-2.1380240	H	-4.0447760	-1.9028280	1.4742120
H	2.6303470	1.1612420	-1.2989320	H	-3.2528140	-3.4215220	1.0532110

H	-2.2664890	-2.0163420	1.4701080	H	-2.6234450	0.1182900	3.3253520
C	-1.9350340	-2.5846600	-1.2275560	H	-1.5223850	0.5441370	2.0134470
H	-1.8760850	-2.2882810	-2.2817160	C	-2.0175650	-2.2617930	2.0702360
H	-0.9942840	-2.3362720	-0.7379580	H	-2.2913520	-3.2139710	1.6016670
H	-2.0330700	-3.6747520	-1.1992640	H	-0.9501490	-2.1078990	1.9013720
H	0.2263430	1.8004290	1.0643410	H	-2.1496540	-2.3754910	3.1503810
H	1.2454710	1.3072060	-1.7862130	H	1.1948190	-0.2569150	-1.7635830
C	2.2478580	2.7572950	-0.5602150	H	1.7768640	-2.3488710	-3.0303640
C	2.1234780	3.8188840	-1.4699490	C	2.4363380	-2.7125590	-1.0298500
C	3.1360200	2.9011170	0.5170990	C	3.6025590	-1.9304610	-1.0024660
C	2.8625180	4.9946460	-1.3067890	C	2.3334510	-3.7844290	-0.1318550
H	1.4469770	3.7224740	-2.3160030	C	4.6275340	-2.2006240	-0.0928780
C	3.8768710	4.0750420	0.6849160	H	3.7113350	-1.1030190	-1.6996630
H	3.2521410	2.0858370	1.2272960	C	3.3576680	-4.0606340	0.7810860
C	3.7416340	5.1269760	-0.2269660	H	1.4458620	-4.4123830	-0.1464980
H	2.7550530	5.8031960	-2.0243970	C	4.5077950	-3.2672710	0.8057480
H	4.5617320	4.1652680	1.5234120	H	5.5212510	-1.5828350	-0.0883850
H	4.3189860	6.0382010	-0.1002470	H	3.2562840	-4.8959040	1.4684540
H	-0.6450800	-0.0868260	-1.1784200	H	5.3053180	-3.4797530	1.5118500
O	0.0075320	-0.8582640	0.7478410	H	-0.6012360	-2.1857820	-0.2903450
H	0.8980800	-1.3655960	0.3286360	O	0.6962800	-0.6996370	0.6644390
H	0.2631080	-0.4924740	1.6097470	H	1.2310040	0.2302480	0.4766850
O	1.9343400	-2.0331700	-0.1933640	H	0.2061740	-0.5737040	1.4919320
C	2.8591220	-2.3056860	0.6449780	O	1.9715760	1.3650930	0.2466370
O	2.9319900	-2.0320200	1.8437930	C	1.4605470	2.4463410	0.6897930
C	4.0318870	-3.1007970	-0.0108690	O	0.3801050	2.6260340	1.2571550
F	4.5716830	-2.4157700	-1.0509880	C	2.3818920	3.6828560	0.4418540
F	3.6018870	-4.2932170	-0.4980910	F	3.5915430	3.5235160	1.0373710
F	5.0316740	-3.3617040	0.8553060	F	1.8540730	4.8302940	0.9147650
				F	2.6111600	3.8650880	-0.8844740
23.log							
Potential Energy $=-1489.65068$				24.log			
Zero-point Energy $=-1489.17631$				Potential Energy $=-1489.65446$			
Free Energy = -1489.21947				Zero-point Energy $=-1489.18064$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$1490.11087				Free Energy $=-1489.22390$			
					e-Point Energ	B3LYP-D3(B)	/6-311+G** PCM $=-$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-1489.67967$				1490.11397 (B3LYP ${ }^{\text {d }}$			
				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
free energy from qRRHO $=-1489.67967$$\text { Nimag }=1\left(-280.3329 \mathrm{~cm}^{-1}\right)$					nergy from q	RHO) $=-1489$	
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-331.0632 \mathrm{~cm}^{-1}\right)$			
C	-2.8367730	-1.0145370	-0.0039030	Charge $=0$ Multiplicity $=1$			
C	-3.3021610	1.0374540	-1.0736320	C	-1.2994360	2.0527380	0.1249970
C	-1.7779870	0.9659920	-0.9746880	C	0.1922520	2.8433220	-1.5229660
N	-1.5783980	-0.4511600	-0.5862440	C	0.6664490	1.4271090	-1.1922750
N	-3.8291050	-0.1125360	-0.5930170	N	-0.4733880	0.9176870	-0.3920810
O	-3.9401320	1.9671540	-1.5695950	N	-0.9388050	3.1039230	-0.8287580
C	-5.2206470	-0.4720010	-0.8598700	O	0.7219130	3.5980040	-2.3403050
H	-5.4882090	-0.1036580	-1.8527250	C	-1.7960430	4.2332540	-1.1847940
H	-5.3234360	-1.5572230	-0.8386020	H	-1.7725200	4.3569070	-2.2698510
H	-5.9066610	-0.0334720	-0.1307890	H	-2.8182370	4.0249660	-0.8682300
C	-0.4353250	-1.1697490	-0.6385420	H	-1.4618550	5.1655430	-0.7225060
C	0.5255010	-1.1174480	-1.8242490	C	-0.7621490	-0.3661380	-0.0754380
C	1.3345460	-2.4207190	-2.0296550	C	-0.6141920	-1.5173730	-1.0583240
H	0.6382300	-3.2664550	-2.0643560	C	-1.2642110	-2.8333620	-0.5722210
H	-1.4311780	1.6165790	-0.1598950	H	-1.0555090	-3.5879910	-1.3389640
C	-2.9179120	-1.1123690	1.5637870	H	1.5637410	1.4775030	-0.5604480
H	-2.9820920	-2.0205590	-0.4150130	C	-1.0853200	2.4616210	1.6290910
H	-0.0914990	-0.9795820	-2.7150820	H	-2.3568200	1.7953540	-0.0106120
C	-1.1550850	1.4530130	-2.2851570	H	-1.0995030	-1.1962630	-1.9854060
H	-0.0691710	1.5218720	-2.2244550	C	1.0215110	0.6983960	-2.4916550
H	-1.4353510	0.8203450	-3.1312710	H	1.5259890	-0.2497660	-2.3090410
H	-1.5457050	2.4571440	-2.4683730	H	0.1413290	0.5298190	-3.1173900
C	-4.3627840	-1.4799310	1.9740780	H	1.7117920	1.3439350	-3.0406620
H	-4.3851810	-1.6898810	3.0479440	C	-1.8126650	3.7981080	1.9048970
H	-5.0645520	-0.6648010	1.7876950	H	-1.7862490	4.0021310	2.9798610
H	-4.7201640	-2.3771690	1.4569670	H	-1.3325900	4.6402150	1.4028240
C	-2.5428170	0.2194330	2.2385010	H	-2.8654400	3.7625450	1.6042230
H	-3.2194860	1.0239730	1.9324030	C	0.4070950	2.6425090	1.9613360

H	0.8552700	3.4354260	1.3534820	C	2.3024020	-1.8859650	-1.6041390
H	0.5198080	2.9307150	3.0112210	H	3.2211330	-1.5486300	-2.0963400
H	0.9962390	1.7341670	1.8036130	H	2.0246950	-2.8432810	-2.0575520
C	-1.7391480	1.4150320	2.5593540	H	1.5021840	-1.1720600	-1.8164090
H	-2.8072620	1.3061400	2.3397690	C	1.2006860	-2.5729550	0.5630510
H	-1.2932830	0.4202020	2.5068690	H	1.3201040	-2.6972810	1.6459840
H	-1.6470040	1.7455200	3.5983170	H	0.3511680	-1.9158500	0.3818990
H	0.4339740	-1.7070820	-1.2919060	H	0.9364670	-3.5508610	0.1473550
H	-0.7701410	-3.1682720	0.3436180	H	0.7586960	2.9180310	0.3154440
C	-2.7616660	-2.7494530	-0.3448290	H	-0.6806330	3.2116740	2.4885040
C	-3.3007540	-2.7797560	0.9503120	C	-1.9123610	2.6769210	0.8344640
C	-3.6462660	-2.6382860	-1.4314000	C	-1.8218470	3.6928950	-0.1331350
C	-4.6826160	-2.6969620	1.1580750	C	-3.1279210	1.9855930	0.9553580
H	-2.6346600	-2.8759290	1.8041780	C	-2.9075200	3.9985270	-0.9601450
C	-5.0260180	-2.5548330	-1.2293890	H	-0.9043430	4.2661790	-0.2380510
H	-3.2525680	-2.6256840	-2.4451390	C	-4.2173290	2.2914820	0.1341800
C	-5.5498420	-2.5823750	0.0685190	H	-3.2201130	1.1959480	1.6954270
H	-5.0780350	-2.7248830	2.1695430	C	-4.1105810	3.2981950	-0.8298360
H	-5.6922750	-2.4743300	-2.0837320	H	-2.8131800	4.7880780	-1.7002090
H	-6.6226150	-2.5203930	0.2265060	H	-5.1463430	1.7396710	0.2458090
H	-1.6947940	-0.4253770	0.4798020	H	-4.9543790	3.5348540	-1.4712570
O	0.2811770	-0.9966660	1.2118330	H	0.7140450	0.0686800	1.4776190
H	1.3002480	-1.2928230	0.8848590	O	-0.2215510	0.3850130	-0.4906190
H	0.3886920	-0.3283220	1.9057670	H	-1.0233320	-0.2825890	-0.1737430
O	2.5031790	-1.7423490	0.5202240	H	-0.6430620	1.1944170	-0.8252770
C	3.4411210	-0.8742810	0.5336810	O	-1.9813860	-1.1609470	0.2652910
O	3.3886960	0.3276600	0.7976980	C	-2.8160470	-1.5887280	-0.5979480
C	4.8231340	-1.4953040	0.1565360	O	-2.9087590	-1.3359580	-1.8008490
F	5.1943600	-2.4409000	1.0578550	C	-3.8506340	-2.5778900	0.0297410
F	5.8100150	-0.5778200	0.1122150	F	-4.5566410	-1.9857090	1.0279140
F	4.7803460	-2.0970830	-1.0591070	F	-3.2326250	-3.6610840	0.5688000
				F	-4.7458720	-3.0391650	-0.8679560

25.log

Potential Energy $=-1489.65026$
Zero-point Energy $=-1489.17613$
Free Energy = - 1489.21937
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1490.11007
26.log

Potential Energy $=-1489.65542$
Zero-point Energy $=-1489.18140$
Free Energy = 1489.22461
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.67919$
Nimag $=1\left(-236.1868 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.9655790	-0.7450410	0.6106690
C	4.4321080	0.7061370	-0.5284450
C	3.0214750	1.2467400	-0.7881910
N	2.2396610	0.5069990	0.2333050
N	4.3451060	-0.3543190	0.3043430
O	5.4741260	1.1958540	-0.9670610
C	5.5249760	-0.8816780	0.9865860
H	6.2083350	-0.0527500	1.1832920
H	5.2227530	-1.3319140	1.9329440
H	6.0493770	-1.6299140	0.3871820
C	1.0213930	0.8014080	0.7349330
C	0.6384340	2.2166790	1.1385650
C	-0.7581190	2.3781870	1.7796020
H	-0.9990470	1.4958420	2.3824200
H	2.6999500	0.9250300	-1.7875580
C	2.5065830	-2.0757000	-0.0899820
H	2.8711870	-0.8794080	1.6944240
H	1.3939700	2.4908450	1.8840140
C	3.0390790	2.7757330	-0.7580580
H	2.1183460	3.2047510	-1.1544030
H	3.2286320	3.1668860	0.2443520
H	3.8591140	3.0930490	-1.4074760
C	3.5745190	-3.1690130	0.1368200
H	3.1849640	-4.1250250	-0.2269840
H	4.4973810	-2.9632810	-0.4101870
H	3.8161000	-3.2970830	1.1977950

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68278$
Nimag $=1\left(-305.1265 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.6594770	0.3627560	0.7733560
C	-4.2758100	0.6552950	-0.9180470
C	-2.9187240	0.7163630	-1.6264930
N	-2.0180240	0.2048410	-0.5669730
N	-4.0744490	0.3832110	0.3901150
O	-5.3714230	0.7754100	-1.4692310
C	-5.1728560	-0.0572890	1.2477360
H	-5.8521990	-0.6717240	0.6526200
H	-4.7727950	-0.6541940	2.0677310
H	-5.7363230	0.7834110	1.6602630
C	-0.7497720	-0.2450180	-0.6933940
C	-0.3046190	-1.1100200	-1.8639070
C	1.0543550	-1.8112140	-1.6392890
H	1.2926120	-2.3376640	-2.5702210
H	-2.6781050	1.7664330	-1.8410500
C	-2.2165580	1.5991840	1.6391320
H	-2.4633750	-0.5465570	1.3538520
H	-1.0767310	-1.8729200	-2.0028390
C	-2.9992220	-0.0479650	-2.9501080
H	-2.1170780	0.1050020	-3.5712920
H	-3.1557290	-1.1182510	-2.7938280
H	-3.8625940	0.3461160	-3.4922410
C	-3.1864350	1.757790	2.8321240
H	-2.7961280	2.5229440	3.5081950
H	-4.1818440	2.0760540	2.5167870

H	-3.2822160	0.8292750	3.4093380		16	2.1		
C	-2.2211810	2.9010920	0.8176270	17				
H	-3.2116520	3.1098630	0.3987350			3.2		
H	-1.9582510	3.7440050	1.4654940	18		2.4		
H	-1.4909580	2.8661740	0.0052040					
C	-0.8116650	1.3472940	2.2284900	19			2.0	
H	-0.7741660	0.4008310	2.7808910	20		1.8		
H	-0.0319930	1.3428750	1.4680130					
H	-0.5675670	2.1481350	2.9340290	21			1.7	
H	-0.2604760	-0.5338740	-2.7905720					
H	1.8409050	-1.0662890	-1.4918430	22		2.1		
C	1.0622470	-2.7980890	-0.4864730	23		1.6		
C	1.7394660	-2.5098690	0.7085210					
C	0.3852410	-4.0252420	-0.5913620	24			1.8	
C	1.7364740	-3.4194550	1.7728040					
H	2.2762180	-1.5693480	0.8030810	TS3-lowest.log (Enamine 2)				
C	0.3797110	-4.9350850	0.4686850	Potential Energy $=-1489.65579$				
H	-0.1355890	-4.2746670	-1.5130770	Zero-point Energy $=-1489.18747$				
C	1.0555220	-4.6340440	1.6571740	Free Energy = -1489.23284				
H	2.2687020	-3.1777590	2.6886140	Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$				
H	-0.1460100	-5.8802560	0.3657520		. 11344			
H	1.0541170	-5.3419200	2.4809890	Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated				
H	-0.3713680	-0.6084600	0.2589350	free energy from qRRHO) $=-1489.69048$				
O	0.3567640	1.1356330	-0.8083270	Nimag $=1\left(-1187.7406 \mathrm{~cm}^{-1}\right)$				
H	1.3936680	1.0421710	-0.4225650	Charge $=0$ Multiplicity $=1$				
H	0.4171990	1.4379030	-1.7289230	C	-0.1574210	1.7542590	0.3996040	
O	2.6218020	0.9658580	0.0944950	C	-1.3320550	2.8990120	-1.3018630	
C	3.5103800	1.5887680	-0.5808790	C	-0.0728660	2.3291580	-1.9627140	
O	3.3906440	2.2229370	-1.6297590	N	0.3945820	1.3747860	-0.9257660	
C	4.9240020	1.4909890	0.0741950	N	-1.3482980	2.5141450	-0.0053190	
F	5.3135130	0.1986330	0.2164190	O	-2.1909620	3.5738310	-1.8717520	
F	4.9291690	2.0486450	1.3122650	C	-2.5095980	2.7435460	0.8492150	
F	5.8749020	2.1163020	-0.6485550	H	-3.4076800	2.6833550	0.2311380	
				H	-2.5520570	1.9734170	1.6201480	
Formation of enamine (TS3)				H	-2.4800390	3.7289410	1.3230100	
				C	0.9173820	0.1811110	-1.2147440	
				C	1.0484730	-0.9477280	-0.4019030	
Conformation name		Extrapolated Free energy (kcal/mol)		C	2.0034900	-2.0666860	-0.8350700	
			C	-0.3612370	1.7340590	-3.3362680		
			H	-0.8513680	2.5040260	-3.9369780		
			H	0.5563790	1.4420260	-3.8522550		
		0.0		H	-1.0291510	0.8702780	-3.2690510	
TS3-lowest				H	0.6564210	3.1414950	-2.0677920	
	1	1.2		C	0.8500190	2.5471490	1.3056370	
		0.5		H	-0.4803160	0.8499870	0.9236530	
	2			C	0.1647760	2.8799520	2.6495070	
	3	1.3		H	0.9083580	3.2918250	3.3393230	
				H	-0.6254200	3.6261000	2.5408500	
	4	0.9		H	-0.2626970	1.9869650	3.1191230	
				C	2.0777410	1.6630800	1.6045950	
	5	1.6		H	1.7997300	0.7555850	2.1505320	
	6	1.3		H	2.6091810	1.3720320	0.6946270	
				H	2.7778460	2.2222560	2.2336280	
	7	3.2		C	1.3197570	3.8521460	0.6356490	
		2.3		H	0.4798250	4.4979330	0.3599250	
	8			H	1.9483690	4.4130820	1.3346460	
	9	2.6		H	1.9221090	3.6566850	-0.2570300	
				H	1.1981000	0.0736060	-2.2594320	
	10	2.7		H	-0.2430860	-1.5221250	-0.6572260	
	11	2.2		H	0.9706550	-0.8154030	0.6754280	
	11			O	-1.2610430	-2.1561810	-0.8289860	
	12	3.4		C	-2.1793160	-1.9079390	0.0354620	
				O	-2.1485280	-1.1296760	0.9854510	
	13	3.1		C	-3.4663560	-2.7467530	-0.2311360	
	14	2.7		F	-3.2025320	-4.0721870	-0.1611240	
				F	-3.9644160	-2.4934630	-1.4633050	
15		2.4		F	-4.4354460	-2.4761230	0.6638120	
				H	2.0067640	-2.1345120	-1.9293480	

H	-3.3245770	-0.6518550	2.3728570	F	1.2916850	3.6117670	1.4507760
O	-3.7938960	-0.2767860	3.1423840	H	1.7401610	-2.4923760	2.0777460
H	-4.6103530	-0.7864980	3.2209610	C	3.0371140	-2.1980740	0.3922060
H	1.6142110	-3.0216520	-0.4643030	C	3.3270960	-2.5122570	-0.9455620
C	3.4264910	-1.8885320	-0.3310520	C	4.0327890	-1.5781210	1.1609950
C	3.8032040	-2.3726340	0.9313230	C	4.5724690	-2.2072000	-1.5021060
C	4.3901070	-1.2223570	-1.1040280	H	2.5740990	-3.0056270	-1.5558950
C	5.1026130	-2.1879600	1.4141390	C	5.2824270	-1.2739950	0.6104170
H	3.0738010	-2.9012680	1.5407440	H	3.8293970	-1.3310590	2.2000380
C	5.6915520	-1.0370630	-0.6271110	C	5.5559970	-1.5855960	-0.7247450
H	4.1234540	-0.8496190	-2.0902350	H	4.7765900	-2.4597910	-2.5389170
C	6.0522300	-1.5176850	0.6361200	H	6.0401870	-0.7957930	1.2248990
H	5.3737700	-2.5720210	2.3936740	H	6.5257800	-1.3512600	-1.1541790
H	6.4236190	-0.5228690	-1.2437360	H	0.0036500	2.5699450	-2.4867800
H	7.0632140	-1.3766510	1.0073250	O	-0.3829370	2.9644340	-3.2918480
				H	0.0394720	3.8278970	-3.3845810
1.log							
Potential Energy $=-1489.65425$				$2 . \log$			
Zero-point Energy $=-1489.18574$				Potential Energy $=-1489.65426$			
Free Energy = -1489.23052				Zero-point Energy $=-1489.18578$			
Single-Point Energy B3LYP				Free Energy $=-1489.23079$			
1490.11230				Single-Point Energy B3LYP			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated				1490.11317			
	nergy from	$\mathrm{RHO})=-1489$	58857	Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
Nimag $=1\left(-1184.5882 \mathrm{~cm}^{-1}\right)$				free energy from qRRHO) $=-1489.68969$			
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-1170.4086 \mathrm{~cm}^{-1}\right)$			
C	-2.1995800	-0.6142750	-0.4140810	Charge $=0$ Multiplicity $=1$			
C	-3.4781750	0.5370270	1.2061690	C	-1.5988630	-1.4802660	-0.2662370
C	-2.8341940	-0.6468350	1.9347400	C	-1.7836370	-1.7350240	2.0758960
N	-1.8205050	-1.0833510	0.9425240	C	-0.3720050	-2.2012210	1.7061200
N	-3.0595710	0.5293860	-0.0801630	N	-0.2510530	-1.6934900	0.3168800
O	-4.2314890	1.3644400	1.7217140	N	-2.4033040	-1.3087550	0.9516200
C	-3.3525130	1.6336070	-0.9893400	O	-2.2573110	-1.7322150	3.2134500
H	-3.3871960	2.5567040	-0.4072410	C	-3.6980110	-0.6359000	0.9967630
H	-2.5618400	1.7096650	-1.7366250	H	-3.7573780	-0.0682040	1.9275360
H	-4.3152640	1.5046960	-1.4922570	H	-3.7817870	0.0489080	0.1521650
C	-0.6069380	-1.5251660	1.2804200	H	-4.5293050	-1.3463230	0.9705110
C	0.5526290	-1.6020410	0.5059200	C	0.8802550	-1.1854430	-0.1809500
C	1.6791980	-2.5287680	0.9839770	C	1.0555300	-0.3468300	-1.2815550
H	1.4273160	-3.5651560	0.7201920	C	2.4390800	-0.1990160	-1.9391710
C	-2.2972410	-0.2578130	3.3076120	H	2.5383100	-0.9548380	-2.7286760
H	-3.1153710	0.1997900	3.8690340	C	0.6785340	-1.7010260	2.6912290
H	-1.9532280	-1.1292130	3.8696260	H	0.3745280	-2.0142270	3.6929540
H	-1.4818030	0.4673640	3.2303670	H	1.6607990	-2.1344970	2.4896790
H	-3.5932910	-1.4296960	2.0529520	H	0.7556540	-0.6098940	2.6777190
C	-2.8859690	-1.7169040	-1.2967570	H	-0.3654850	-3.2981280	1.6988690
H	-1.3077780	-0.2440420	-0.9279140	C	-2.0743790	-2.6428560	-1.2084850
C	-3.2253200	-1.1160230	-2.6789220	H	-1.6036170	-0.5396510	-0.8245750
H	-3.5546830	-1.9171600	-3.3483390	C	-3.4764480	-2.3024900	-1.7605670
H	-4.0339460	-0.3835950	-2.6273720	H	-3.7427830	-3.0262650	-2.5375250
H	-2.3530190	-0.6383740	-3.1388900	H	-4.2503870	-2.3528850	-0.9914560
C	-1.9048080	-2.8871840	-1.5153570	H	-3.5024000	-1.3054150	-2.2142700
H	-1.0018530	-2.5661840	-2.0450560	C	-1.1088140	-2.7634690	-2.4056260
H	-1.6078170	-3.3580270	-0.5741590	H	-1.0921020	-1.8485710	-3.0070710
H	-2.3907230	-3.6521010	-2.1296240	H	-0.0869160	-2.9914860	-2.0901740
C	-4.1729800	-2.2557400	-0.6442030	H	-1.4445820	-3.5772920	-3.0563730
H	-4.8895580	-1.4569750	-0.4274680	C	-2.1306790	-3.9934270	-0.4700780
H	-4.6610040	-2.9566130	-1.3290760	H	-2.7714200	-3.9500120	0.4165280
H	-3.9619670	-2.8004870	0.2813860	H	-2.5459530	-4.7552810	-1.1376450
H	-0.5165410	-1.7812550	2.3332640	H	-1.1349860	-4.3337370	-0.1689310
H	0.9957340	-0.2431380	0.7622300	H	1.7576570	-1.4101130	0.4187240
H	0.4493110	-1.5427120	-0.5756870	H	0.8364150	0.9176020	-0.6076940
O	1.4463780	0.8603840	0.9428050	H	0.2386470	-0.2719870	-1.9965740
C	1.1773420	1.6969510	0.0050670	O	0.7219440	2.0371430	-0.1840330
O	0.5343670	1.5143820	-1.0258470	C	-0.4606350	2.5268470	-0.3105380
C	1.7812050	3.1046700	0.2954000	O	-1.4587960	2.0051850	-0.7997700
F	1.5002420	3.9828990	-0.6860850	C	-0.5494690	3.9742770	0.2619370
F	3.1271700	3.0404060	0.4148750	F	-1.7831550	4.4943590	0.1182180

F	0.3189740	4.7990000	-0.3669700	F	4.6013680	-1.2800490	-0.5923490
F	-0.2483990	3.9912360	1.5809470	F	5.4288530	0.4466250	0.4465890
H	-3.2350130	2.5415230	-1.1201900	H	-0.1868390	2.1993680	-2.2411350
O	-4.1777790	2.6414080	-1.3526460	H	4.0005810	1.8736770	2.2649270
H	-4.4031180	3.5536130	-1.1296900	O	4.4322160	2.2804310	3.0406110
H	2.4659490	0.7732520	-2.4452820	H	5.3759960	2.1094750	2.9279480
C	3.6276570	-0.3076260	-1.0029900	H	0.7070710	2.8039420	-0.8531760
C	4.0272370	0.7830460	-0.2129840	C	-1.3978130	3.1862780	-0.7620130
C	4.3564480	-1.5030680	-0.9045150	C	-1.3167730	4.0402370	0.3482670
C	5.1210860	0.6809850	0.6511350	C	-2.5955710	3.1549750	-1.4933140
H	3.4792150	1.7193280	-0.2779700	C	-2.4043920	4.8351340	0.7251110
C	5.4518440	-1.6104470	-0.0406480	H	-0.3934630	4.0857480	0.9210760
H	4.0674760	-2.3561010	-1.5140360	C	-3.6849090	3.9487960	-1.1224510
C	5.8373280	-0.5176950	0.7413890	H	-2.6763060	2.5079940	-2.3638220
H	5.4167070	1.5381540	1.2496550	C	-3.5937260	4.7913580	-0.0090850
H	6.0036030	-2.5445160	0.0171640	H	-2.3200960	5.4908600	1.5873210
H	6.6891610	-0.5968570	1.4106160	H	-4.6013250	3.9133450	-1.7050760
				H	-4.4382700	5.4105850	0.2791300

3.log

Potential Energy $=-1489.65556$
Zero-point Energy $=-1489.18711$
Free Energy $=-1489.23272$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1490.11126
$4 . \log$
Potential Energy $=-1489.65510$
Zero-point Energy $=-1489.18668$
Free Energy $=-1489.23265$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68842$
Nimag $=1\left(-1179.1869 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-1.2013630	-1.7339540	0.7129140
C	-1.1177050	-3.6126720	-0.7172050
C	-1.6616950	-2.4566270	-1.5624440
N	-1.3552170	-1.2910960	-0.6945270
N	-0.8414180	-3.1449970	0.5223580
O	-0.9435410	-4.7650760	-1.1149070
C	-0.1351030	-3.9562770	1.5092570
H	0.5758460	-4.5970220	0.9837740
H	0.4067080	-3.3027000	2.1939280
H	-0.8177720	-4.5904200	2.0819360
C	-0.9329980	-0.1174070	-1.1696340
C	-0.2532820	0.9110000	-0.5113590
C	-0.2219150	2.3048410	-1.1502730
C	-1.0529080	-2.4260030	-2.9596460
H	-1.2217150	-3.4032960	-3.4182280
H	-1.5298130	-1.6738430	-3.5924480
H	0.0247330	-2.2407850	-2.9261350
H	-2.7487850	-2.5748150	-1.6452470
C	-2.4738460	-1.4916820	1.6004530
H	-0.3529830	-1.2099080	1.1640930
C	-2.1918740	-1.9937660	3.0338400
H	-3.0137570	-1.6880500	3.6889990
H	-2.1218890	-3.0824990	3.0879670
H	-1.2690660	-1.5650560	3.4407560
C	-2.7673400	0.0204600	1.6744130
H	-1.9411110	0.5713910	2.1355860
H	-2.9653120	0.4522930	0.6898340
H	-3.6556430	0.1834210	2.2930590
C	-3.7100840	-2.2192170	1.0393240
H	-3.5369620	-3.2939580	0.9237300
H	-4.5485540	-2.0954220	1.7321010
H	-4.0222660	-1.8058470	0.0752090
H	-1.0795080	-0.0068720	-2.2411350
H	1.0767140	0.4409540	-0.7566020
H	-0.2609710	0.9172030	0.5766600
O	2.2264260	0.1224080	-0.9825350
C	3.0862490	0.5276060	-0.1172970
O	2.9027490	1.1998250	0.8937020
C	4.5306140	0.0664240	-0.4823350
F	4.9194450	0.5939970	-1.6669020

1490.11153

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.68908$
Nimag $=1\left(-1209.0288 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-0.9401270	2.0526560	-0.5268090
C	0.3886130	3.3236300	0.9566900
C	-0.1653610	2.1532730	1.7752950
N	-0.6769740	1.2637380	0.7014760
N	-0.0408920	3.1954900	-0.3204950
O	1.1181890	4.2148540	1.3922600
C	0.4607460	4.0539170	-1.3893150
H	1.5006310	4.3046510	-1.1704420
H	0.4111530	3.5177530	-2.3378700
H	-0.1111640	4.9825910	-1.4708000
C	-0.5576810	-0.0644260	0.7360230
C	-0.6176540	-0.9867070	-0.3126710
C	-0.8340940	-2.4685790	0.0174670
C	0.8810920	1.5455200	2.7018550
H	1.2888760	2.3510730	3.3173300
H	0.4434890	0.8020010	3.3721690
H	1.7001700	1.0868330	2.1405010
H	-1.0062910	2.5233950	2.3739360
C	-2.4505060	2.4295700	-0.7319600
H	-0.5972790	1.4852250	-1.3977260
C	-2.5941270	3.2355070	-2.0418900
H	-3.6570160	3.3640340	-2.2698150
H	-2.1555060	4.2330780	-1.9673410
H	-2.1347720	2.7161540	-2.8905860
C	-3.2877350	1.1416900	-0.8691740
H	-2.9851030	0.5511160	-1.7400470
H	-3.2210720	0.5085460	0.0195050
H	-4.3398170	1.4112360	-1.0063200
C	-2.9965140	3.2634160	0.4424360
H	-2.4052730	4.1687730	0.6133830
H	-4.0205180	3.5784390	0.2177970
H	-3.0314100	2.6843880	1.3704840
H	-0.2922000	-0.4491670	1.7171800
H	0.7609080	-0.9484930	-0.6953280
H	-1.0675190	-0.6669840	-1.2511800
O	1.8543190	-0.9981530	-1.2297570
C	2.8279000	-1.2106700	-0.4182040
O	2.7911430	-1.3840490	0.7972820
C	4.2004500	-1.2363090	-1.1579500
C			

F	4.4275660	-0.0685590	-1.8028250	C	-2.4757780	2.4211640	1.3221250
F	4.2344690	-2.2258170	-2.0808260	F	-3.0968640	3.4703300	0.7494000
F	5.2254450	-1.4375190	-0.3075860	F	-1.5220830	2.9118860	2.1479190
H	-0.3339620	-2.7017070	0.9648200	F	-3.3856630	1.7754960	2.0874320
H	4.0669490	-1.7398580	2.1323530	H	-0.7173080	-2.8986870	-2.0854220
O	4.5993070	-1.9299470	2.9286040	H	-2.7476650	3.1240580	-1.9224880
H	5.5119000	-1.9916970	2.6188180	O	-3.0984820	3.7665430	-2.5688070
H	-0.3431410	-3.0744070	-0.7521910	H	-3.5406980	4.4449160	-2.0426240
C	-2.2973650	-2.8718430	0.0994090	H	-1.4736610	-1.3348060	-2.3614100
C	-2.9636860	-3.3814290	-1.0251860	C	-2.3730850	-2.4961390	-0.7947500
C	-3.0204420	-2.7271390	1.2939810	C	-3.5707040	-1.7659690	-0.8116920
C	-4.3174380	-3.7288100	-0.9634140	C	-2.3223130	-3.6756730	-0.0344230
H	-2.4177470	-3.5104260	-1.9569190	C	-4.6857870	-2.1961930	-0.0847890
C	-4.3726400	-3.0748770	1.3620920	H	-3.6318470	-0.8536740	-1.3996440
H	-2.5212060	-2.3434240	2.1807630	C	-3.4325700	-4.1084960	0.6964580
C	-5.0275300	-3.5753780	0.2312850	H	-1.4081950	-4.2648400	-0.0195860
H	-4.8139590	-4.1229270	-1.8458230	C	-4.6199200	-3.3686740	0.6739840
H	-4.9127270	-2.9597100	2.2978010	H	-5.6045530	-1.6170080	-0.1143090
H	-6.0777180	-3.8477680	0.2829440	H	-3.3727360	-5.0250770	1.2767480
				H	-5.4851860	-3.7053970	1.2376660

5.log

Potential Energy $=-1489.65358$
Zero-point Energy $=-1489.18548$
Free Energy = -1489.23092
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1490.11057

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from q RRHO $)=-1489.68791$
Nimag $=1\left(-1208.5109 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.6466040	-0.5250640	0.4019880
C	3.3606550	1.6515210	-0.1760490
C	2.7555660	1.0484840	-1.4476990
N	2.0503180	-0.1376920	-0.8993410
N	3.2403340	0.7493020	0.8258790
O	3.8541620	2.7760040	-0.0857880
C	3.5661360	1.0879320	2.2079230
H	3.3127000	2.1366560	2.3757060
H	2.9791580	0.4629220	2.8820140
H	4.6294250	0.9482480	2.4229530
C	0.8606200	-0.5510580	-1.3398560
C	-0.0850030	-1.3609590	-0.7055630
C	-1.1580860	-2.0310920	-1.5761540
C	1.8902880	2.0440840	-2.2113750
H	2.4952720	2.9336360	-2.4031370
H	1.5706340	1.6435820	-3.1763530
H	1.0094930	2.3402460	-1.6345660
H	3.5788240	0.7177540	-2.0923950
C	3.6552830	-1.7248420	0.3069510
H	1.8468100	-0.7924290	1.0997210
C	4.1965910	-2.0394660	1.7190120
H	4.7731760	-2.9692460	1.6841490
H	4.8625570	-1.2585520	2.0929220
H	3.3856460	-2.1803970	2.4424440
C	2.9181730	-2.9767230	-0.2117060
H	2.1142980	-3.2838540	0.4653760
H	2.4948590	-2.8233030	-1.2082370
H	3.6269650	-3.8083510	-0.2773490
C	4.8341910	-1.4082730	-0.6323510
H	5.3660330	-0.4998610	-0.3317860
H	5.5527520	-2.2335250	-0.6024260
H	4.5084720	-1.2992130	-1.6714550
H	0.5769180	-0.1147290	-2.2942460
H	-0.7389700	-0.3002460	0.0276730
H	0.2432760	-1.9630230	0.1400670
O	-1.2720400	0.4581520	0.8094550
C	-1.8548260	1.4630760	0.2602010
O	-1.9631050	1.7302610	-0.9338530
H			

6.log

Potential Energy $=-1489.65300$
Zero-point Energy $=-1489.18458$
Free Energy $=-1489.22976$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.11164

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68841$
Nimag $=1\left(-1198.2314 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.5755320	-0.0615980	-0.4401340
C	2.5823060	-0.8704600	1.7793790
C	1.8836520	0.4918310	1.8222040
N	1.6324170	0.7357860	0.3795060
N	2.9083000	-1.1449010	0.4943020
O	2.7925320	-1.5954730	2.7524560
C	3.4317050	-2.4473690	0.0951840
H	2.9830380	-3.2097220	0.7351620
H	3.1613740	-2.6436850	-0.9432460
H	4.5191650	-2.5018640	0.1997920
C	0.5132950	1.2980290	-0.0841380
C	-0.0159840	1.2633960	-1.3744860
C	-1.0547490	2.3101680	-1.8198400
C	0.6521150	0.4886020	2.7203270
H	0.9568410	0.1219480	3.7036830
H	0.2475330	1.4953280	2.8504650
H	-0.1271290	-0.1683870	2.3250560
H	2.6029210	1.2302530	2.1969850
C	3.8098330	0.7519600	-0.9716350
H	2.0401580	-0.4841930	-1.2962760
C	4.6903240	-0.1781060	-1.8354380
H	5.4610180	0.4176240	-2.3348740
H	5.2023890	-0.9378730	-1.2407930
H	4.1058620	-0.6815810	-2.6139780
C	3.3202150	1.9096010	-1.8659370
H	2.7811740	1.5435330	-2.7459020
H	2.6719290	2.6035370	-1.3238490
H	4.1859750	2.4753890	-2.2248070
C	4.6540470	1.3291760	0.1801290
H	4.9909690	0.5508800	0.8722520
H	5.5467240	1.8112040	-0.2311200
H	4.1058260	2.0897200	0.7446590
H	-0.0795590	1.7820470	0.6864200
H	-0.7688430	0.0245730	-1.3136820
H	0.6509580	0.9698890	-2.1832680
O	-1.3948820	-0.9665530	-1.5856480
C	-1.7484070	-1.6950090	-0.5863680

O	-1.5497760	-1.5113070	0.6107590	C	-1.9917630	2.6410960	-0.0428930
C	-2.5317150	-2.9604770	-1.0529520	C	-3.1391380	2.4397270	-0.8237520
F	-1.7830670	-3.7141670	-1.8908920	C	-2.1571980	2.9447590	1.3182950
F	-3.6610960	-2.6144870	-1.7133190	C	-4.4172890	2.5311090	-0.2618940
F	-2.8896800	-3.7400040	-0.0146300	H	-3.0328730	2.2112770	-1.8812810
H	-1.6203560	1.8835390	-2.6561200	C	-3.4312060	3.0343810	1.8855480
H	-2.1175570	-2.3933680	2.1851710	H	-1.2812450	3.1194040	1.9388850
O	-2.3454370	-2.7237410	3.0750140	C	-4.5677730	2.8266600	1.0960940
H	-2.8619960	-3.5259600	2.9261710	H	-5.2927390	2.3734770	-0.8857830
H	-0.5254420	3.1826190	-2.2241360	H	-3.5367240	3.2712400	2.9406080
C	-2.0226710	2.7752800	-0.7491230	H	-5.5590060	2.8989660	1.5342720
C	-1.7779160	3.9511220	-0.0223270	H	0.2242210	1.0976300	0.8266450
C	-3.1860560	2.0440580	-0.4591550	O	-1.4139080	-0.5805730	-1.2306070
C	-2.6645170	4.3829570	0.9698560	C	-2.2596010	-1.1566930	-0.4496740
H	-0.8881120	4.5375090	-0.2396400	O	-2.4032180	-1.0307770	0.7612160
C	-4.0754670	2.4711180	0.5310110	C	-3.1801650	-2.1393420	-1.2363710
H	-3.4010790	1.1376880	-1.0191470	F	-2.4529820	-3.1242980	-1.8146040
C	-3.8166270	3.6424410	1.2509200	F	-4.0905400	-2.7237740	-0.4341880
H	-2.4567320	5.2976690	1.5179280	F	-3.8529650	-1.4981810	-2.2193480
H	-4.9720530	1.8928420	0.7359320	H	-3.5178250	-1.8093330	2.0648750
H	-4.5084220	3.9768370	2.0185700	O	-4.0032980	-2.1377200	2.8457500
				H	-4.7222410	-2.6771930	2.4926620

$7 . \log$

Potential Energy $=-1489.65094$
Zero-point Energy $=-1489.18265$
Free Energy $=-1489.22755$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.10884

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-1489.68545$
Nimag $=1\left(-1148.9197 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.8422840	0.0222060	0.7162370
C	4.7535410	0.4491740	-0.6002260
C	3.5987170	0.2055680	-1.5792960
N	2.4243840	0.3170220	-0.6760040
N	4.2637490	0.3942470	0.6594600
O	5.9212320	0.6778020	-0.9188760
C	5.0768560	0.7372370	1.8211630
H	5.7753310	1.5245400	1.5309220
H	4.4308060	1.1045510	2.6198360
H	5.6510860	-0.1188510	2.1876020
C	1.3234260	1.0017670	-1.0022530
C	0.1863610	1.2912790	-0.2452910
C	-0.6028700	2.5532530	-0.6462910
H	-0.6765920	2.6006750	-1.7389510
C	3.6370330	1.1633880	-2.7637400
H	4.6136580	1.0562370	-3.2415710
H	2.8737240	0.9207550	-3.5068710
H	3.5215230	2.2051120	-2.4497760
H	3.6737870	-0.8230900	-1.9510580
C	2.5748010	-1.4488440	1.1951550
H	2.3147110	0.7086670	1.3866550
C	2.9421890	-1.5591440	2.6920130
H	2.6179500	-2.5335440	3.0710170
H	4.0180340	-1.4858640	2.8658610
H	2.4413090	-0.7889960	3.2895160
C	1.0763340	-1.7679250	1.0437300
H	0.4503260	-1.0903650	1.6318300
H	0.7566220	-1.7199660	-0.0002470
H	0.8849280	-2.7841750	1.4026040
C	3.3919460	-2.4793760	0.3927300
H	4.4660740	-2.2723040	0.4274220
H	3.2358050	-3.4750160	0.8202500
H	3.0761540	-2.5252290	-0.6540480
H	1.3092880	1.3237100	-2.0404650
H	-0.6742560	0.2125650	-0.7324520
H	-0.0357570	3.4409800	-0.3354630

$8 . \log$

Potential Energy $=-1489.65382$
Zero-point Energy $=-1489.18543$
Free Energy $=-1489.23089$
Single-Point Energy B3LYP-D3(BJ)/6-311+G ${ }^{* *}$ PCM $=-$
1490.10971

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68677$
Nimag $=1\left(-1155.2441 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.0155920	-1.1994680	0.7191720
C	3.9205020	-1.5198830	-0.6376280
C	2.7184950	-1.4563950	-1.5873390
N	1.6721310	-0.8987490	-0.6924380
N	3.4781120	-1.3184850	0.6248120
O	5.0899840	-1.7008210	-0.9792260
C	4.3965730	-1.1458380	1.7456710
H	5.2838310	-0.6201650	1.3869230
H	3.9132600	-0.5492520	2.5203160
H	4.7083920	-2.1040890	2.1711670
C	0.8281670	0.0637500	-1.0752860
C	-0.1395070	0.7476050	-0.3367150
C	-0.5812380	2.1346820	-0.8285620
H	-1.6087310	2.3129490	-0.4933410
C	3.0231210	-0.6614760	-2.8511080
H	3.8985240	-1.1150490	-3.3218030
H	2.1989430	-0.7061030	-3.5670860
H	3.2561200	0.3840090	-2.6291640
H	2.4473790	-2.4809550	-1.8678260
C	1.2989120	-2.4590000	1.3228660
H	1.7632380	-0.3266120	1.3303650
C	1.7131220	-2.6074920	2.8039190
H	1.1006830	-3.3850410	3.2713580
H	2.7576210	-2.9058080	2.9180610
H	1.5534070	-1.6798060	3.3650630
C	-0.2270850	-2.2535660	1.2714460
H	-0.5393840	-1.3734680	1.8430290
H	-0.5916600	-2.1525950	0.2464170
H	-0.7226360	-3.1236040	1.7138420
C	1.6579480	-3.7499180	0.5627120
H	2.7386800	-3.9198530	0.5266680
H	1.2084430	-4.6069790	1.0743330
H	1.2673450	-3.7427690	-0.4595490
H	0.8769210	0.2825280	-2.1387240
H	-1.3099290	-0.0159080	-0.7043150

H	-0.1351210	1.5590380	0.3485940	H	-0.3276490	-3.7115790	0.0600480
H	1.0108490	-0.2724590	-1.2412030	H	0.0193970	0.3909400	1.5139290
H	1.5874750	1.3654770	-2.8767210	H	1.3427960	0.4085420	-0.7573400
C	1.6142800	2.7053130	-1.2041690	H	0.8593640	2.4699380	0.7156010
C	1.0547400	3.9099280	-0.7483710	C	-0.8442260	3.3220970	-0.2869700
C	2.8833730	2.3396570	-0.7275730	C	-1.2564990	3.9198040	-1.4879320
C	1.7371930	4.7224720	0.1625190	C	-1.5834430	3.5856930	0.8768730
H	0.0782000	4.2175630	-1.1153160	C	-2.3805130	4.7511550	-1.5291190
C	3.5700830	3.1483780	0.1831250	H	-0.6905990	3.7358270	-2.3983020
H	3.3407130	1.4190240	-1.0795430	C	-2.7063880	4.4179660	0.8418210
C	2.9980760	4.3426690	0.6332800	H	-1.2760680	3.1412540	1.8206310
H	1.2866120	5.6519350	0.4991610	C	-3.1108820	5.0024570	-0.3632280
H	4.5530950	2.8484220	0.5353010	H	-2.6812470	5.2054550	-2.4691580
H	3.5317340	4.9734400	1.3382860	H	-3.2613830	4.6132620	1.7552400
H	-0.5530880	0.1499450	-2.3480810	H	-3.9818360	5.6508160	-0.3917710
O	1.9359010	-1.0332650	-1.2343550	H	-0.4611820	0.7500280	-1.5018810
C	2.2550580	-1.4810050	-0.0708910	O	2.4597270	0.1193330	-1.1005300
O	1.7196790	-1.2568950	1.0103110	C	3.3036730	0.0773210	-0.1305810
C	3.4910510	-2.4285550	-0.1400090	O	3.1156770	0.3106820	1.0600200
F	3.8324900	-2.8941330	1.0765410	C	4.7245460	-0.3363490	-0.6210950
F	3.2378720	-3.4967520	-0.9310370	F	5.6135470	-0.3677410	0.3899550
F	4.5671260	-1.7870760	-0.6503830	F	4.7029600	-1.5658520	-1.1859170
H	2.0375450	-1.7874030	2.7911810	F	5.1899690	0.5315540	-1.5487610
O	2.0736810	-1.9703710	3.7493960	H	4.1783810	0.2740210	2.6138850
H	2.8368770	-2.5493950	3.8713870	O	4.5877200	0.2900150	3.5001150
				H	5.5284430	0.1299500	3.3516050
11.log							
Potential Energy $=-1489.65354$				12.log			
Zero-point Energy $=-1489.18515$				Potential Energy $=-1489.65137$			
Free Energy = -1489.23091				Zero-point Energy $=-1489.18299$			
Single-Point Energy B3L1490.10954				Free Energy $=-1489.22808$			
					le-Point Energ	B3LYP-D3(B	$6-311+\mathrm{G}^{* *} \mathrm{PCM}=$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.68691$				1490.10840			
				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
$\text { free energy from qRRHO) }=-1489.68691$$\text { Nimag }=1\left(-1180.7665 \mathrm{~cm}^{-1}\right)$					energy from q	RHO) $=-1489$	8511
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-1166.0594 \mathrm{~cm}^{-1}\right)$			
C	-1.9986950	-1.4229600	-0.5600410	Charge $=0$ Multiplicity $=1$			
C	-2.9907190	-1.9988850	1.5034270	C	-2.9115690	-0.6317250	0.3494180
C	-1.5235830	-1.6723660	1.8053490	C	-4.3509180	0.5274750	-1.1199090
N	-1.1155190	-0.9892290	0.5506270	C	-2.9918330	1.2327820	-1.1976470
N	-3.2109190	-1.7951420	0.1843860	N	-2.1067990	0.2275280	-0.5543430
O	-3.8255450	-2.3630350	2.3326280	N	-4.2352880	-0.5303100	-0.2843120
C	-4.5515340	-1.8510430	-0.3898370	O	-5.3639510	0.8609110	-1.7361660
H	-5.2587920	-1.4629030	0.3460060	C	-5.3015500	-1.5164980	-0.1384630
H	-4.5873120	-1.2309390	-1.2861550	H	-5.8053890	-1.6238900	-1.1012210
H	-4.8439630	-2.8729440	-0.6479760	H	-4.8708180	-2.4757370	0.1517000
C	-0.3808400	0.1262000	0.5392600	H	-6.0407480	-1.2139810	0.6086870
C	0.0110900	0.9264010	-0.5355630	C	-0.9156210	-0.1136550	-1.0555320
C	0.3609330	2.3966680	-0.2576890	C	-0.0069710	-1.0788470	-0.6198500
H	1.0847410	2.7338360	-1.0079470	C	0.9657450	-1.6566590	-1.6635130
C	-1.3618610	-0.8754080	3.0939770	H	1.3420290	-0.8448860	-2.2958210
H	-1.8366910	-1.4460860	3.8955930	C	-2.6329830	1.6416840	-2.6207510
H	-0.3104390	-0.7404870	3.3587130	H	-3.4462910	2.2661130	-2.9978850
H	-1.8497430	0.1017300	3.0326730	H	-1.7149760	2.2334420	-2.6532510
H	-0.9743410	-2.6164650	1.8991720	H	-2.5311830	0.7755820	-3.2812790
C	-1.4161310	-2.5653590	-1.4652340	H	-3.0342260	2.1304740	-0.5700120
H	-2.2142410	-0.5532980	-1.1897520	C	-2.8828860	-0.2179230	1.8628610
C	-2.4284820	-2.8758640	-2.5903300	H	-2.5470610	-1.6606430	0.2615100
H	-1.9633190	-3.5517900	-3.3148350	C	-3.7530750	-1.2077460	2.6689900
H	-3.3283200	-3.3701570	-2.2174650	H	-3.6080600	-1.0236710	3.7382090
H	-2.7277240	-1.9696360	-3.1292480	H	-4.8190950	-1.0907110	2.4618330
C	-0.1071530	-2.0833310	-2.1190510	H	-3.4725890	-2.2488400	2.4728700
H	-0.2650940	-1.1972040	-2.7425660	C	-1.4387390	-0.3115960	2.3905150
H	0.6617720	-1.8548820	-1.3774810	H	-1.0379240	-1.3269490	2.3020420
H	0.2841040	-2.8740270	-2.7671430	H	-0.7659730	0.3746430	1.8716430
C	-1.1345830	-3.8516980	-0.6658170	H	-1.4252990	-0.0464620	3.4525950
H	-2.0241580	-4.2132160	-0.1403020	C	-3.4073250	1.2137750	2.0822960
H	-0.8169860	-4.6419980	-1.3535430	H	-4.4162130	1.3486690	1.6794230

H	-3.4533350	1.4211310	3.1562150	H	5.2126350	-1.5834100	-0.3305720
H	-2.7452560	1.9626110	1.6366580	H	5.1831360	-2.6452560	1.0795920
H	-0.5968480	0.5151310	-1.8824950	H	3.7773240	-2.5742570	0.0167630
H	0.8530900	-0.1932880	0.1615880	H	0.8859250	-0.4469210	1.4800640
H	0.4157490	-2.3390650	-2.3257060	H	-0.2079830	-1.9186370	-0.9769720
C	2.1356530	-2.4125160	-1.0610830	O	-1.7001040	0.6919240	-0.8465450
C	3.4415020	-1.9057940	-1.1302570	C	-2.0014860	1.5818530	0.0315960
C	1.9348210	-3.6509960	-0.4292470	O	-1.7059610	1.6152910	1.2228240
C	4.5175750	-2.6097510	-0.5784630	C	-2.8508900	2.7346980	-0.5848550
H	3.6190050	-0.9527230	-1.6220200	F	-3.1895910	3.6552730	0.3382010
C	3.0052690	-4.3567300	0.1266590	F	-3.9948660	2.2600870	-1.1284240
H	0.9329860	-4.0710440	-0.3773250	F	-2.1653690	3.3698150	-1.5638460
C	4.3027370	-3.8371720	0.0547560	H	-0.7058630	-2.9849950	1.3699630
H	5.5212090	-2.1990080	-0.6453050	C	-2.5627730	-2.4132600	0.4836910
H	2.8278300	-5.3135720	0.6098170	C	-3.7035170	-1.7110910	0.8990480
H	5.1363860	-4.3859070	0.4833670	C	-2.7252570	-3.4635030	-0.4349340
H	-0.3441190	-1.7908280	0.1331640	C	-4.9712510	-2.0412720	0.4073260
O	1.6059750	0.4143070	0.8691060	H	-3.5999560	-0.8998180	1.6152010
C	2.1943510	1.3948080	0.2802730	C	-3.9885510	-3.7955610	-0.9318570
O	2.1139580	1.7435190	-0.8943030	H	-1.8563660	-4.0312910	-0.7598600
C	3.1006330	2.1963690	1.2630770	C	-5.1180130	-3.0837440	-0.5122480
F	3.7558630	3.1939200	0.6389200	H	-5.8416070	-1.4851390	0.7444670
F	2.3632140	2.7488510	2.2548090	H	-4.0919040	-4.6124420	-1.6407170
F	4.0259960	1.3959550	1.8389250	H	-6.1011390	-3.3424780	-0.8947770
H	2.8809260	3.1120330	-1.9350250	H	-1.0171690	-0.1940660	-0.4210170
O	3.1853600	3.7640610	-2.5948840	H	-2.0238650	2.8047190	2.6442980
H	3.8755110	4.2742460	-2.1521010	O	-2.0921160	3.3226880	3.4691490
				H	-2.6994580	4.0461860	3.2683520
13.log							
Potential Energy $=-1489.65086$				14.log			
Zero-point Energy $=-1489.18293$				Potential Energy $=-1489.65001$			
Free Energy $=-1489.22874$				Zero-point Energy $=-1489.18150$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1490.10774				Free Energy $=-1489.22641$			
					le-Point Energ	B3LYP-D3(B)	$6-311+\mathrm{G}^{* *} \mathrm{PCM}=-$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolatedfree energy from qRRHO) $=-1489.68561$				1490.10979 (B) $6-311+\mathrm{G}$ -			
				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
free energy from qRRHO $)=-1489.68561$ Nimag $=1\left(-1175.9065 \mathrm{~cm}^{-1}\right)$					energy from q	RHO) $=-1489$	8619
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-1181.5008 \mathrm{~cm}^{-1}\right)$			
C	3.1581390	0.1724770	0.5004580	Charge $=0$ Multiplicity $=1$			
C	3.5154660	0.2860960	-1.8270180	C	-2.5365300	-0.2219870	0.5204660
C	2.2784190	-0.6004070	-1.6528610	C	-2.7903430	-2.2793990	-0.5991670
N	2.0049990	-0.4450310	-0.2086340	C	-1.8958920	-1.4328110	-1.5102460
N	3.8882160	0.7665370	-0.6187210	N	-1.6189180	-0.2630750	-0.6498550
O	4.0362650	0.5664360	-2.9068380	N	-3.0134180	-1.6041490	0.5510910
C	4.8688790	1.8417140	-0.4988340	O	-3.1779470	-3.4202880	-0.8531750
H	4.7315320	2.5272330	-1.3375850	C	-3.6127270	-2.2568250	1.7114510
H	4.7037810	2.3783530	0.4357680	H	-3.2481560	-3.2852330	1.7539450
H	5.8955290	1.4658310	-0.5227510	H	-3.3118830	-1.7303320	2.6174470
C	0.8881240	-0.7751150	0.4431770	H	-4.7045430	-2.2785830	1.6524870
C	-0.2731740	-1.3896950	-0.0270410	C	-0.6701210	0.6620720	-0.8177660
C	-1.1851510	-2.0624460	1.0145110	C	0.2527520	0.8052780	-1.8527310
H	-1.2872280	-1.4066490	1.8860450	C	0.9477330	2.1634850	-2.0881440
C	1.1787180	-0.1133400	-2.6040410	C	-0.6823000	-2.2739100	-1.9242820
H	1.6179480	-0.0394500	-3.6018600	H	-1.0605860	-3.2165720	-2.3269990
H	0.3368370	-0.8020330	-2.6560120	H	-0.0833720	-1.7939930	-2.6965740
H	0.8128600	0.8738770	-2.3097760	H	-0.0489940	-2.4947150	-1.0612800
H	2.5342680	-1.6433430	-1.8802860	H	-2.4580340	-1.1243430	-2.4010120
C	4.0056060	-0.8463920	1.3508500	C	-3.6864450	0.8470010	0.3991310
H	2.7876950	0.9630440	1.1634930	H	-1.9517060	-0.0101240	1.4232960
C	5.1660180	-0.0862630	2.0323680	C	-4.5518410	0.8002460	1.6789450
H	5.6730430	-0.7580290	2.7319410	H	-5.2600640	1.6345140	1.6638200
H	5.9150540	0.2608740	1.3182650	H	-5.1370340	-0.1180220	1.7551850
H	4.8054210	0.7755950	2.6054340	H	-3.9429220	0.9012130	2.5846880
C	3.1384750	-1.4649640	2.4679050	C	-3.0883670	2.2650360	0.2954620
H	2.6686790	-0.6984620	3.0951850	H	-2.4065530	2.4852740	1.1247910
H	2.3596010	-2.1264210	2.0782020	H	-2.5578770	2.4269500	-0.6467190
H	3.7763410	-2.0722660	3.1175780	H	-3.9000000	2.9982100	0.3356200
C	4.5732480	-1.9728130	0.4679170	C	-4.5705430	0.5795320	-0.8327950

H	-5.0350620	-0.4108190	-0.7960450	C	-4.0819640	-1.3785300	0.0751310
H	-5.3762200	1.3195910	-0.8724480	H	-4.2182560	-2.2858750	-0.5217900
H	-4.0033880	0.6651800	-1.7654330	H	-5.0529010	-1.1229480	0.5113230
H	-0.5908840	1.3505630	0.0198940	H	-3.7986880	-0.5588090	-0.5930630
H	0.0320640	0.2837130	-2.7837320	H	-0.4252090	0.1794490	1.1498550
O	2.3857980	-0.6233270	-1.2537900	H	-0.2109090	1.2156640	-1.7294310
C	2.5273830	-1.2151880	-0.1193870	O	2.5863500	0.4708880	-1.0042180
O	1.7372680	-1.2786640	0.8171780	C	3.2817210	0.2139730	0.0464920
C	3.9149150	-1.9174490	-0.0096120	O	2.9166190	0.1741690	1.2180810
F	4.0629130	-2.5501850	1.1682760	C	4.7730010	-0.0736520	-0.3067530
F	4.9211740	-1.0194210	-0.1232540	F	5.5043800	-0.3453040	0.7910350
F	4.0732890	-2.8348180	-0.9917210	F	5.3390590	0.9899850	-0.9226320
H	0.3177690	2.7681300	-2.7528230	F	4.8785840	-1.1333300	-1.1415330
H	1.3580620	-0.0278140	-1.3872180	H	1.4213470	0.6886840	-0.7775840
H	1.7881650	-2.0258960	2.5606280	H	3.7448250	-0.2009390	2.8652140
O	1.7228000	-2.3694170	3.4717770	O	4.0202790	-0.3792480	3.7848260
H	0.8725030	-2.0525560	3.8025590	H	4.9764060	-0.5094480	3.7460940
H	1.8743710	1.9706590	-2.6410320	H	1.1353630	3.0013500	-0.4610710
C	1.2702530	2.9761800	-0.8486670	H	0.5439410	2.3465540	1.0573820
C	0.4357430	4.0298190	-0.4441030	C	-0.9251220	3.4363380	-0.0748040
C	2.4173290	2.7065150	-0.0836510	C	-1.7871760	3.6057020	1.0190760
C	0.7296530	4.7868150	0.6952190	C	-1.2042340	4.1392230	-1.2582050
H	-0.4485600	4.2658870	-1.0310320	C	-2.9024720	4.4461650	0.9329610
C	2.7154330	3.4590390	1.0556660	H	-1.5810690	3.0816780	1.9492740
H	3.0868860	1.9073110	-0.3891920	C	-2.3181840	4.9783410	-1.3502850
C	1.8703550	4.5016920	1.4511420	H	-0.5414010	4.0319190	-2.1138170
H	0.0707420	5.5997530	0.9871190	C	-3.1736740	5.1337950	-0.2537940
H	3.6103550	3.2357670	1.6297530	H	-3.5546970	4.5659850	1.7936350
H	2.1028990	5.0893900	2.3344470	H	-2.5147010	5.5146270	-2.2745610
				H	-4.0377890	5.7882730	-0.3223260
15.log							
Potential Energy $=-1489.65263$				16.log			
Zero-point Energy $=-1489.18455$				Potential Energy = -1489.65301			
Free Energy $=-1489.23051$				Zero-point Energy $=-1489.18503$			
Single-Point Energy B3LYP1490.10882				Free Energy $=-1489.23095$			
				Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -			
Free Energy B3LYP-D3(BJ)/6-311+G					10925		
free energy from qRRHO) $=-1489.68670$							
Nimag $=1\left(-1202.9716 \mathrm{~cm}^{-1}\right)$				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-1172.7140 \mathrm{~cm}^{-1}\right)$			
C	-1.6477470	-1.9980930	0.6194240	Charge $=0$ Multiplicity $=1$			
C	-1.5440690	-2.9808100	-1.5207660	C	2.7467140	-1.4089580	-0.5812360
C	-1.1989170	-1.5043720	-1.7393170	C	2.2282760	-2.6018590	1.3847600
N	-1.0784370	-1.0195600	-0.3473450	C	1.3111580	-1.3749960	1.4057380
N	-1.6758590	-3.2122820	-0.1948260	N	1.5485490	-0.8050750	0.0623380
O	-1.6167740	-3.8274110	-2.4116610	N	2.9130310	-2.6217610	0.2184620
C	-1.7362100	-4.5714110	0.3360410	O	2.2728250	-3.4640330	2.2624080
H	-1.0787190	-5.2042590	-0.2636530	C	3.6603010	-3.8033780	-0.2030700
H	-1.3906640	-4.5707290	1.3700960	H	3.1141790	-4.6900790	0.1253740
H	-2.7479080	-4.9841570	0.2940910	H	3.7399670	-3.8113470	-1.2904720
C	-0.5088200	0.1132940	0.0675460	H	4.6628910	-3.8327530	0.2325360
C	0.0591230	1.1499880	-0.6763660	C	0.8014310	0.0994820	-0.5742460
C	0.2753980	2.5085160	0.0076170	C	-0.3325000	0.7844350	-0.1323790
C	0.0675770	-1.4136910	-2.5995180	C	-0.7647770	2.0513040	-0.8857710
H	-0.0864130	-2.0499220	-3.4744350	C	-0.1221780	-1.8347780	1.7008640
H	0.2640120	-0.4014730	-2.9494860	H	-0.0848900	-2.4682010	2.5903910
H	0.9414500	-1.7787600	-2.0531320	H	-0.7938440	-1.0032030	1.9081480
H	-2.0321000	-1.0000220	-2.2450000	H	-0.5245570	-2.4230830	0.8716640
C	-3.0497850	-1.5806580	1.1995300	H	1.6462040	-0.6739300	2.1806860
H	-0.9461080	-2.1266870	1.4519030	C	4.0088790	-0.4688450	-0.5926550
C	-3.5427320	-2.6834720	2.1635280	H	2.4983420	-1.6776940	-1.6147750
H	-4.4432040	-2.3335580	2.6777880	C	5.1774240	-1.2060590	-1.2852130
H	-3.8061300	-3.6060790	1.6428630	H	6.0106220	-0.5095100	-1.4206910
H	-2.7952810	-2.9170850	2.9303050	H	5.5513650	-2.0450740	-0.6955870
C	-2.9207840	-0.2763970	2.0134990	H	4.8929620	-1.5762240	-2.2768980
H	-2.1557190	-0.3553940	2.7948500	C	3.7156450	0.8058630	-1.4108110
H	-2.6946130	0.5898970	1.3862130	H	3.3641380	0.5712940	-2.4224200
H	-3.8743550	-0.0698900	2.5093940	H	2.9835220	1.4572400	-0.9261970

H	4.6390560	1.3846600	-1.5120210	H	2.9560810	2.8446560	-0.5375970
C	4.4217750	-0.0712890	0.8362470	H	4.5539830	3.3113290	-1.1007910
H	4.6590340	-0.9451870	1.4511770	C	4.7922550	1.5349320	1.0136060
H	5.3176530	0.5565050	0.7969020	H	5.2878460	0.6886500	1.4994620
H	3.6396790	0.5078590	1.3378110	H	5.4654890	2.3952220	1.0838360
H	1.1041490	0.2539710	-1.6078820	H	3.8877510	1.7816020	1.5793250
H	-0.5065050	0.8205400	0.9418460	H	1.4895410	1.3101230	-1.4036240
O	-2.2573070	-0.8261510	-0.9604750	H	-0.1485480	1.0481110	1.1755110
C	-3.3787680	-0.6749780	-0.3487510	O	-1.4300380	-0.6631700	-1.0719940
O	-3.6511320	0.0798590	0.5797690	C	-2.3365110	-1.2559980	-0.3768570
C	-4.4804890	-1.6124700	-0.9299230	O	-2.5887900	-1.1418700	0.8178750
F	-5.6542160	-1.4649790	-0.2864090	C	-3.1760540	-2.2354290	-1.2525860
F	-4.1172150	-2.9116420	-0.8265820	F	-4.1224150	-2.8660820	-0.5312930
F	-4.6965110	-1.3512420	-2.2400250	F	-2.3887130	-3.1834410	-1.8120140
H	-1.3590980	-0.1347660	-0.5563110	F	-3.7984220	-1.5765010	-2.2571310
H	-5.1986510	0.4475830	1.5903740	H	-0.7708910	0.1444240	-0.4946570
O	-5.9097640	0.7447770	2.1896000	H	-3.8375050	-1.9224240	1.9959970
H	-6.6845520	0.2217600	1.9470980	O	-4.4098770	-2.2485250	2.7164970
H	-1.8535210	2.1503630	-0.8049120	H	-5.0593930	-2.8207520	2.2883490
H	-0.5397480	1.9350180	-1.9520050	H	-0.5701560	2.5419800	-1.5134300
C	-0.1185730	3.3242110	-0.3649290	H	-0.1608390	3.3833920	-0.0241830
C	0.9631540	3.9155410	-1.0346590	C	-2.1495040	2.6107280	-0.0619800
C	-0.5872910	3.9321410	0.8110600	C	-2.5352880	2.9603150	1.2423960
C	1.5673730	5.0767970	-0.5406400	C	-3.1538180	2.3761690	-1.0123710
H	1.3327340	3.4684010	-1.9543300	C	-3.8849800	3.0631050	1.5902130
C	0.0140080	5.0910450	1.3099190	H	-1.7723600	3.1599900	1.9914110
H	-1.4328640	3.4967700	1.3385220	C	-4.5065700	2.4805500	-0.6706840
C	1.0962700	5.6675950	0.6357120	H	-2.8759570	2.1113390	-2.0294260
H	2.4014730	5.5204150	-1.0773130	C	-4.8770540	2.8222580	0.6332900
H	-0.3656890	5.5466030	2.2202990	H	-4.1615510	3.3356670	2.6049140
H	1.5624070	6.5702450	1.0200060	H	-5.2682750	2.2969790	-1.4234110
				H	-5.9266050	2.9046680	0.9005920

17.log

Potential Energy =-1489.65085
Zero-point Energy $=-1489.18269$
Free Energy = - 1489.22774
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1490.10845
18.log

Potential Energy $=-1489.65101$
Zero-point Energy $=-1489.18265$
Free Energy =-1489.22799
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-1489.68534$
Nimag $=1\left(-1147.5580 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	3.5330880	-0.0058360	-0.6121920
C	3.4042920	-1.5510720	1.1651460
C	2.1670000	-0.6633110	1.3167540
N	2.2241460	0.1414470	0.0799990
N	4.0498390	-1.2170440	0.0238690
O	3.7104130	-2.4712070	1.9238290
C	5.1040350	-2.0645950	-0.5259480
H	4.8407930	-3.1070850	-0.3355250
H	5.1746210	-1.9016020	-1.6015570
H	6.0753850	-1.8629230	-0.0657820
C	1.2585060	0.9189690	-0.4153500
C	0.0040750	1.2295390	0.1121410
C	-0.6801900	2.5016600	-0.4236840
C	0.9332060	-1.5621560	1.4679520
H	1.1250150	-2.2492410	2.2956640
H	0.0286770	-1.0010850	1.6963530
H	0.7676990	-2.1500800	0.5604580
H	2.2724200	-0.0173880	2.1977250
C	4.4785010	1.2459160	-0.4658250
H	3.3556690	-0.1930250	-1.6780840
C	5.7923350	0.9737280	-1.2332010
H	6.3946020	1.8873520	-1.2489600
H	6.3982160	0.1964190	-0.7642530
H	5.6017480	0.6868780	-2.2737480
C	3.8264460	2.4937150	-1.0988310
H	3.5283040	2.3192670	-2.1392990

1490.10962

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68661$
Nimag $=1\left(-1145.3557 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

Charge $=0$ Multiplicity $=1$			
C	2.9284020	-0.6227170	-0.5075450
C	2.4269210	-2.8838830	-0.0762700
C	1.4389360	-2.0810820	0.7765820
N	1.6736970	-0.7070710	0.2856970
N	3.1434740	-2.0300050	-0.8420370
O	2.4995460	-4.1128390	-0.1041030
C	3.9804540	-2.5097040	-1.9377680
H	3.4810840	-3.3610450	-2.4049940
H	4.1019960	-1.7147530	-2.6740070
H	4.9657030	-2.8335980	-1.5906550
C	0.8937840	0.3642590	0.4615460
C	-0.2865120	0.4885830	1.1923340
C	-0.7905420	1.8840990	1.6132300
C	0.0290370	-2.6454760	0.5645950
H	0.0834520	-3.7260330	0.7174250
H	-0.6933700	-2.2420490	1.2725750
H	-0.3207610	-2.4557640	-0.4537480
H	1.7156860	-2.1589890	1.8359690
C	4.1301280	0.0426600	0.2618280
H	2.7338670	-0.0492330	-1.4216430
C	5.3622200	0.0828790	-0.6703710
H	6.1533210	0.6711770	-0.1951020
H	5.7717050	-0.9100460	-0.8654490
H	5.1292920	0.5580950	-1.6301820
C	3.7827100	1.4984200	0.6356070

H	3.4802720	2.0858580	-0.2387410	H	4.8716140	0.7526620	-2.7189110
H	2.9930110	1.5599790	1.3893220	C	2.1212790	1.1239120	-2.3981660
H	4.6694120	1.9785320	1.0613000	H	2.3037450	0.4082760	-3.2086100
C	4.4757440	-0.7393270	1.5424020	H	1.1150970	0.9619690	-2.0048320
H	4.7486190	-1.7772760	1.3274420	H	2.1336740	2.1260280	-2.8383360
H	5.3317870	-0.2698510	2.0375410	C	2.8610200	2.0074270	-0.1587120
H	3.6451020	-0.7366630	2.2556900	H	3.6205520	1.9918120	0.6296240
H	1.2203950	1.2292670	-0.1105590	H	2.8072350	3.0305360	-0.5442800
H	-0.4853820	-0.2745320	1.9435090	H	1.8889870	1.7746090	0.2874730
O	-2.1475700	-0.1737230	-0.5689700	H	1.2261200	-1.4323290	-1.8754600
C	-3.2174630	-0.6481130	-0.0319240	H	-0.7575650	-0.2480010	-0.5696920
O	-3.4540700	-0.8523000	1.1541860	H	-0.9865860	-2.2923730	-2.2741610
C	-4.3009240	-0.9726300	-1.1043310	C	-2.6379740	-2.3679820	-0.9015290
F	-5.4102680	-1.4974430	-0.5507090	C	-3.1790780	-2.9646770	0.2488140
F	-3.8363080	-1.8607380	-2.0124930	C	-3.4984210	-1.6554380	-1.7494050
F	-4.6661800	0.1449470	-1.7742330	C	-4.5389380	-2.8450290	0.5491760
H	-1.2748400	0.0895040	0.2006730	H	-2.5315460	-3.5330510	0.9126310
H	-4.9363650	-1.4951300	2.1339430	C	-4.8609500	-1.5355370	-1.4557710
O	-5.6087120	-1.8020590	2.7713870	H	-3.0998220	-1.1909560	-2.6478390
H	-6.3958150	-1.9892780	2.2440210	C	-5.3857730	-2.1283570	-0.3034210
H	-0.3687510	2.1264900	2.5965570	H	-4.9373820	-3.3152100	1.4439160
H	-1.8755290	1.8170680	1.7592370	H	-5.5103990	-0.9813800	-2.1277770
C	-0.4847630	3.0235380	0.6592280	H	-6.4435640	-2.0372650	-0.0740790
C	-1.1996940	3.1800660	-0.5405920	H	-0.4343380	-1.6416050	0.7084240
C	0.5147630	3.9605460	0.9632300	O	-1.2453100	0.8441770	-0.7666890
C	-0.9207920	4.2383410	-1.4097210	C	-1.7486280	1.4142180	0.2694390
H	-1.9816000	2.4696720	-0.7943370	O	-1.7922430	1.0099340	1.4279260
C	0.7970490	5.0224450	0.0968520	C	-2.3652030	2.8028730	-0.0827890
H	1.0739410	3.8618930	1.8905010	F	-2.8931950	3.4070510	0.9992720
C	0.0799520	5.1642710	-1.0943480	F	-1.4287740	3.6335620	-0.5977400
H	-1.4888440	4.3430680	-2.3299320	F	-3.3499670	2.6784230	-1.0024370
H	1.5728900	5.7376260	0.3554740	H	-2.4531100	1.6864460	3.0531970
H	0.2943360	5.9889720	-1.7679140	O	-2.7320370	1.9060100	3.9629180
				H	-3.2235370	2.73388	3.88764

19.log

Potential Energy $=-1489.65248$
Zero-point Energy $=-1489.184748$
Free Energy =-1489.230437
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1490.10942

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68737$
Nimag $=1\left(-1194.8229 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	3.3290180	-0.4374140	-0.7853580
C	3.7998740	-0.8514930	1.4893910
C	2.2832100	-1.0154950	1.3573420
N	2.1046080	-0.9445340	-0.1091280
N	4.3290320	-0.6286650	0.2646700
O	4.4339170	-0.9725760	2.5378790
C	5.7696060	-0.7047330	0.0370570
H	6.1791340	-1.4843560	0.6827380
H	5.9569840	-0.9641930	-1.0052260
H	6.2722180	0.2379580	0.2700630
C	1.0419450	-1.3527420	-0.8052030
C	-0.2632970	-1.5834680	-0.3641930
C	-1.1584210	-2.5001910	-1.2114380
H	-0.8606560	-3.5442980	-1.0462600
C	1.8626750	-2.3372490	2.0126510
H	2.2952770	-2.3600540	3.0156310
H	0.7823730	-2.4338250	2.1097870
H	2.2468150	-3.1908140	1.4465170
H	1.7801820	-0.1737750	1.8488090
C	3.2083580	1.0413240	-1.3057600
H	3.5590160	-1.0900420	-1.6366510
C	4.5476790	1.4637040	-1.9502730
H	4.4199160	2.4363970	-2.4354830
H	5.3490080	1.5717350	-1.2168880

20.log

Potential Energy $=-1489.65454$
Zero-point Energy $=-1489.18650$
Free Energy $=-1489.23215$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.11007

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1489.68768$
Nimag $=1\left(-1183.6187 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.9257910	-0.9239940	-0.5253150
C	-3.4250940	-0.5082010	1.7427910
C	-1.9775470	-0.0440860	1.5588550
N	-1.8195760	-0.1439780	0.0922040
N	-3.9222500	-0.8919610	0.5447350
O	-4.0486040	-0.4696020	2.8037360
C	-5.3523870	-1.1213400	0.3570240
H	-5.8993600	-0.4113640	0.9808170
H	-5.6103230	-0.9554100	-0.6892040
H	-5.6468730	-2.1343760	0.6443720
C	-0.8697680	0.4262290	-0.6504850
C	0.3727240	0.9285460	-0.2551350
C	1.0929990	1.9297090	-1.1652190
H	0.8878470	1.6766900	-2.2122650
C	-1.8233010	1.3640750	2.1469820
H	-2.2313180	1.3442510	3.1603170
H	-0.7840460	1.6833350	2.2078790
H	-2.3851920	2.0941950	1.5574330
H	-1.3018420	-0.7425730	2.0681240
C	-2.5118000	-2.3701720	-0.9836760
H	-3.3021370	-0.3742730	-1.3968320
C	-3.7506360	-3.0942270	-1.5570030
H	-3.4355740	-4.0418430	-2.0047750

H	-4.4895200	-3.3300600	-0.7887960	H	3.3838880	-0.4050440	3.8323720
H	-4.2389510	-2.5059420	-2.3423540	H	4.5056590	-1.0313400	2.6300990
C	-1.4622180	-2.2827610	-2.1120950	H	4.1674440	0.7103810	2.7092390
H	-1.8097850	-1.6586580	-2.9439480	C	1.4066020	0.4895840	2.3194520
H	-0.4991990	-1.9019940	-1.7642480	H	1.7067860	1.5399750	2.2290220
H	-1.2818520	-3.2865630	-2.5095410	H	0.4685380	0.3443380	1.7789650
C	-1.9371650	-3.1824440	0.1911070	H	1.1981610	0.2992980	3.3770270
H	-2.6570050	-3.2782410	1.0104040	C	2.0141890	-1.9205420	1.9239130
H	-1.6885620	-4.1930240	-0.1484080	H	2.7816650	-2.6360660	1.6117190
H	-1.0185440	-2.7343450	0.5830640	H	1.7414320	-2.1598290	2.9567420
H	-1.0822350	0.4077290	-1.7179480	H	1.1226420	-2.0723450	1.3071390
H	1.1427890	-0.2591250	-0.4392820	H	1.0962770	1.5741250	-0.2011910
H	2.1729430	1.8193630	-1.0182480	H	-1.0838020	0.0137790	-0.3639200
C	0.7059620	3.3767720	-0.9065650	H	-0.7333170	2.0703260	-2.9057760
C	-0.3606050	3.9742820	-1.5960260	C	-0.9388130	3.0158560	-0.9958160
C	1.3971160	4.1422870	0.0451230	C	-1.7187110	3.1407010	0.1656970
C	-0.7316270	5.2975220	-1.3381580	C	-0.0375510	4.0464190	-1.3056870
H	-0.9028560	3.4024160	-2.3455920	C	-1.5999930	4.2604740	0.9938270
C	1.0285380	5.4654770	0.3087290	H	-2.4274210	2.3573990	0.4209550
H	2.2328640	3.6998310	0.5821570	C	0.0858470	5.1687710	-0.4796390
C	-0.0390110	6.0479650	-0.3819260	H	0.5686840	3.9724480	-2.2055300
H	-1.5570160	5.7428600	-1.8867350	C	-0.6954920	5.2789950	0.6744450
H	1.5779320	6.0411900	1.0484570	H	-2.2171140	4.3396780	1.8844640
H	-0.3245970	7.0765910	-0.1816080	H	0.7874070	5.9561340	-0.7406880
H	0.5478320	1.0719170	0.8089590	H	-0.6049750	6.1510170	1.3156390
O	1.8602080	-1.2264300	-0.5984020	H	-0.4232870	-0.2970180	-2.1127070
C	2.9891400	-1.1721880	0.0142410	O	-1.8046220	-0.4504170	0.4903130
O	3.4442570	-0.2686480	0.7096940	C	-2.8346120	-1.0800060	0.0466230
C	3.8280130	-2.4672480	-0.2107690	O	-3.1973540	-1.2392030	-1.1151350
F	5.0138130	-2.4137880	0.4258370	C	-3.6800730	-1.6875380	1.2073340
F	3.1684760	-3.5577910	0.2439940	F	-4.7648510	-2.3408200	0.7484330
F	4.0788560	-2.6606880	-1.5264190	F	-2.9493890	-2.5661320	1.9318880
H	5.0382740	-0.0077060	1.6766790	F	-4.1112940	-0.7210830	2.0505600
O	5.8013080	0.2679330	2.2199670	H	-4.6252940	-2.1398300	-1.9507730
H	6.4462000	-0.4461300	2.1370100	O	-5.2978760	-2.5613080	-2.5192880
				H	-5.9209500	-2.9798680	-1.9116150

21.log

Potential Energy $=-1489.65274$
Zero-point Energy $=-1489.18458$
Free Energy $=-1489.23013$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1490.11031

Potential Energy $=-1489.65177$
Zero-point Energy $=-1489.18389$
Free Energy $=-1489.22932$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1489.68769$
Nimag $=1\left(-1176.9071 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.9590250	-0.0971970	0.3830970
C	3.5438430	-1.8075490	-1.1324680
C	2.0946440	-1.4478880	-1.4719530
N	1.8828100	-0.2504280	-0.6316800
N	3.9952780	-0.9666350	-0.1740900
O	4.2045710	-2.6805620	-1.6961160
C	5.4146110	-0.8931800	0.1613460
H	5.9918900	-1.0551800	-0.7512780
H	5.6412440	0.0958690	0.5603480
H	5.7035140	-1.6523640	0.8933840
C	0.9180770	0.6629160	-0.7678990
C	-0.2995430	0.5486050	-1.4396420
C	-1.0670050	1.8013290	-1.8956300
H	-2.1244650	1.5275160	-1.9879860
C	1.9764400	-1.2259490	-2.9855080
H	2.4280340	-2.0884910	-3.4812960
H	0.9433390	-1.1477070	-3.3209930
H	2.5178140	-0.3251350	-3.2888870
H	1.4320640	-2.2640920	-1.1575740
C	2.5201100	-0.4686920	1.8468030
H	3.3056950	0.9436330	0.3757360
C	3.7240520	-0.2880950	2.7986440

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from q RRHO $)=-1489.68709$
Nimag $=1\left(-1199.7506 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-3.2328400	0.0939410	0.8033320
C	-4.1367980	-1.3447230	-0.8332130
C	-2.6256020	-1.5903040	-0.8726920
N	-2.1704560	-0.8228460	0.3066430
N	-4.4185080	-0.4799010	0.1677420
O	-4.9613830	-1.9039320	-1.5564820
C	-5.7897330	-0.2816580	0.6315090
H	-6.3169310	-1.2358700	0.5671330
H	-5.7754100	0.0526190	1.6690380
H	-6.3257380	0.4526260	0.0244110
C	-0.9962430	-0.9366710	0.9302350
C	0.1895020	-1.5169620	0.4733690
C	1.2250000	-1.9657100	1.5160260
H	0.8453880	-2.8518640	2.0423140
C	-2.3633260	-3.1012640	-0.8276880
H	-2.9989080	-3.5670860	-1.5845460
H	-1.3293160	-3.3570420	-1.0537430
H	-2.6261410	-3.5127660	0.1511070
H	-2.2091040	-1.1626350	-1.7933930
C	-2.9816880	1.6080110	0.4629230
H	-3.3107240	-0.0115790	1.8923280

C	-4.2024920	2.4413900	0.9124630	H	2.0809830	-1.6398470	1.8128040
H	-3.9645620	3.5050930	0.8134910	C	1.0963080	-4.2328330	1.7727860
H	-5.0857370	2.2491270	0.3001570	H	0.2301740	-4.8719230	1.9704280
H	-4.4577990	2.2581530	1.9623160	H	1.8431550	-4.8478760	1.2670460
C	-1.7576950	2.1208450	1.2496160	H	1.5007870	-3.9180670	2.7415800
H	-1.8720470	1.9566020	2.3276560	C	-0.5478230	-2.3681120	1.6347250
H	-0.8203120	1.6625240	0.9276800	H	-0.2621040	-1.9583780	2.6106780
H	-1.6552200	3.1988920	1.0907820	H	-1.0091300	-1.5727170	1.0450830
C	-2.7521460	1.8084010	-1.0461170	H	-1.3204850	-3.1233410	1.8092100
H	-3.6049710	1.4569010	-1.6361000	C	0.2088970	-3.5183310	-0.4743260
H	-2.6231140	2.8743770	-1.2590640	H	1.0307040	-4.0013540	-1.0127850
H	-1.8504320	1.2938130	-1.3926350	H	-0.5923850	-4.2563180	-0.3665310
H	-0.9670120	-0.4371920	1.8971960	H	-0.1799250	-2.7005760	-1.0894290
H	0.7494440	-0.3636470	-0.1957210	H	0.5450150	0.1393070	1.4095230
H	1.3456240	-1.1811680	2.2715680	H	-1.0702970	0.5419070	-0.6942430
C	2.5775170	-2.3082450	0.9188360	H	-1.1198020	2.8973920	-0.2373520
C	2.7514540	-3.4980970	0.1927180	C	0.8403300	3.5303950	0.3516550
C	3.6826140	-1.4601490	1.0811370	C	1.7404400	3.5764970	1.4277690
C	3.9906800	-3.8267770	-0.3635130	C	0.9900860	4.4666540	-0.6829350
H	1.9112720	-4.1773320	0.0674550	C	2.7656900	4.5262920	1.4669640
C	4.9264360	-1.7860830	0.5290280	H	1.6363380	2.8672810	2.2457060
H	3.5685050	-0.5369730	1.6427610	C	2.0155690	5.4172760	-0.6501140
C	5.0844850	-2.9698550	-0.1974130	H	0.2960660	4.4535340	-1.5201680
H	4.1037690	-4.7530320	-0.9200340	C	2.9086120	5.4497000	0.4256110
H	5.7700660	-1.1158190	0.6689550	H	3.4486110	4.5480270	2.3117550
H	6.0494960	-3.2251110	-0.6257140	H	2.1127730	6.1340650	-1.4608280
H	0.1312060	-2.1503850	-0.4094110	H	3.7034340	6.1893830	0.4553360
O	1.2672250	0.4377030	-0.9368700	H	0.5011930	1.3137340	-1.4357250
C	1.8656010	1.4175680	-0.3583950	O	-2.1161300	0.1271370	-1.1587260
O	1.9489950	1.6670710	0.8407940	C	-3.1228480	0.1635420	-0.3599430
C	2.5403330	2.3697870	-1.3920500	O	-3.1623690	0.5298190	0.8112390
F	3.1817980	3.3895770	-0.7895560	C	-4.4234860	-0.3493360	-1.0504420
F	3.4454170	1.7065500	-2.1473460	F	-5.4862640	-0.2910900	-0.2250280
F	1.6208760	2.9033250	-2.2298550	F	-4.7162360	0.3880460	-2.1463440
H	2.7540260	3.0254720	1.8655230	F	-4.2846830	-1.6355170	-1.4483620
O	3.1079470	3.6511020	2.5263520	H	-4.4922510	0.6113850	2.1394900
H	3.5819860	4.3212370	2.0175850	O	-5.0632820	0.7021580	2.9263090
				H	-5.9476390	0.4493480	2.6320100
23.log							
Potential Energy $=-1489.65395$				24.log			
Zero-point Energy $=-1489.18594$				Potential Energy $=-1489.65274$			
Free Energy $=-1489.23165$				Zero-point Energy $=-1489.18457$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1490.11023							
				Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated 1				1490.11033			
free energy from qRRHO) $=-1489.68794$				Free Energy B3LYP-D3(BJ)			
Nimag $=1\left(-1207.5758 \mathrm{~cm}^{-1}\right)$				free energy from qRRHO) $=-1489.68767$			
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-1177.1316 \mathrm{~cm}^{-1}\right)$			
C	1.8357380	-2.0017510	0.8069500	Charge $=0$ Multiplicity $=1$			
C	3.2612390	-2.0519450	-1.0725350	C	2.9618060	-0.0865770	0.3642210
C	2.2607000	-0.9287750	-1.3583270	C	3.5449600	-1.7715100	-1.1802500
N	1.5467820	-0.8322580	-0.0669380	C	2.0928870	-1.4117810	-1.5070080
N	3.0381570	-2.5376380	0.1700720	N	1.8814780	-0.2275070	-0.6481950
O	4.1659360	-2.4004230	-1.8313980	N	3.9980810	-0.9442650	-0.2108650
C	4.0096400	-3.4084200	0.8274000	O	4.2059500	-2.6331860	-1.7607690
H	5.0120070	-3.0892190	0.5342750	C	5.4188520	-0.8710010	0.1186110
H	3.9036990	-3.3161270	1.9085440	H	5.9921740	-1.0148280	-0.7995470
H	3.8814260	-4.4557790	0.5413710	H	5.6436580	0.1118480	0.5335870
C	0.7797000	0.1768180	0.3472300	H	5.7143450	-1.6416300	0.8358910
C	0.1721890	1.1854340	-0.4060800	C	0.9113860	0.6828860	-0.7642310
C	-0.2569870	2.4800870	0.2935070	C	-0.3093480	0.5737050	-1.4313550
H	-0.5978740	2.2447300	1.3079380	C	-1.0876200	1.8297760	-1.8583990
C	3.0304950	0.3285560	-1.7830760	H	-2.1435150	1.5499780	-1.9493270
H	3.7138460	0.0413340	-2.5857520	C	1.9657300	-1.1686240	-3.0165530
H	2.3781730	1.1146490	-2.1601280	H	2.4194020	-2.0215190	-3.5269350
H	3.6168730	0.7242930	-0.9488370	H	0.9305020	-1.0912490	-3.3456550
H	1.5749790	-1.2407980	-2.1559810	H	2.5007360	-0.2606640	-3.3097000
C	0.6485920	-3.0269580	0.9167230	H	1.4346260	-2.2346490	-1.2009180

C	2.5303060	-0.4820040	1.8238860
H	3.3055510	0.9552160	0.3713500
C	3.7388810	-0.3174100	2.7727180
H	3.4037430	-0.4525860	3.8058660
H	4.5199460	-1.0572290	2.5874240
H	4.1813320	0.6827240	2.6987670
C	1.4195950	0.4687400	2.3178670
H	1.7197490	1.5203380	2.2425140
H	0.4785630	0.3324030	1.7802980
H	1.2167910	0.2615880	3.3733670
C	2.0243950	-1.9348380	1.8796590
H	2.7898190	-2.6452050	1.5510070
H	1.7577890	-2.1912940	2.9099760
H	1.1291000	-2.0760200	1.2658340
H	1.0875040	1.5852070	-0.1828920
H	-1.0797110	0.0076730	-0.3615410
H	-0.7617680	2.1204570	-2.8651090
C	-0.9618600	3.0275200	-0.9361170
C	-1.7374220	3.1261560	0.2308040
C	-0.0672400	4.0685930	-1.2298300
C	-1.6211380	4.2305440	1.0796890
H	-2.4416990	2.3349760	0.4738190
C	0.0537570	5.1756310	-0.3830470
H	0.5355870	4.0150360	-2.1334130
C	-0.7232930	5.2597220	0.7761290
H	-2.2350250	4.2895290	1.9741130
H	0.7500840	5.9715370	-0.6319190
H	-0.6346890	6.1198750	1.4334130
H	-0.4309980	-0.2590190	-2.1208050
O	-1.7743690	-0.5028990	0.4879370
C	-2.8387380	-1.0749220	0.0475940
O	-3.2737010	-1.1113690	-1.0996330
C	-3.6117900	-1.8066920	1.1868750
F	-4.7825030	-2.3121880	0.7532730
F	-2.8787870	-2.8345850	1.6769500
F	-3.8828750	-0.9718060	2.2152340
H	-4.7583180	-1.9102490	-1.9397790
O	-5.4641260	-2.2646170	-2.5137660
H	-6.0593720	-2.7436240	-1.9230980

Chlorination of enamine (TS4)
(S)-TS-front

Conformation Extrapolated name Free energy (kcal/mol)

TS4-Sf-lowest	$\mathbf{0 . 0}$
1	0.5
2	1.0
3	0.2
4	1.4
5	0.6
6	0.6
7	0.9

TS-Sf-lowest.log

Potential Energy $=-2233.46980$			
Zero-point Energy = -2232.93920			
Free Energy $=-2232.98976$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 2234.04089			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.56086$			
Nimag $=1\left(-171.2674 \mathrm{~cm}^{-1}\right)$			
Charge $=0$ Multiplicity $=1$			
C	1.4362000	-2.0260730	0.1852510
C	0.6589640	-2.5454550	2.3535050
C	1.9872400	-1.8056210	2.5386940
N	2.2158010	-1.2590210	1.1802660
N	0.3820540	-2.6041080	1.0309380
O	-0.0429360	-2.9908790	3.2634590
C	-0.9020110	-3.0898600	0.5364720
H	-1.6744240	-2.8186980	1.2590040
H	-1.1237620	-2.6181050	-0.4216270
H	-0.9089440	-4.1766620	0.4121940
C	2.6962700	-0.0165110	0.9672230
H	3.1743400	0.4192710	1.8393750
C	2.6298390	0.7631100	-0.1734300
C	3.4840250	2.0109890	-0.3095340
H	3.7139220	2.4055100	0.6867900
H	2.9099480	2.7835200	-0.8322730
H	2.2665530	0.3375310	-1.1023570
C	1.9217000	-0.7861010	3.6715830
H	1.5900990	-1.3082500	4.5724590
H	2.9013980	-0.3496510	3.8798890
H	1.2096700	0.0145820	3.4518760
H	2.7596910	-2.5493130	2.7731390
C	2.2850320	-3.0774390	-0.6150130
H	0.9755380	-1.3327920	-0.5265310
Cl	0.4689130	1.7273330	0.4829900
N	-1.2008020	2.5821520	0.7876870
C	-1.3399020	3.7131330	1.5954140
C	-2.3732320	2.1463290	0.2431010
C	-2.8144340	4.0976710	1.6004990
C	-3.4990880	3.0598870	0.6961410
H	-3.1780470	4.0783990	2.6314920
H	-3.9716900	3.5004970	-0.1866800
O	-2.4718490	1.1604460	-0.4986300
O	-0.4271040	4.2681930	2.1794700
C	1.3752820	-3.8038310	-1.6299300
H	1.9936850	-4.4149550	-2.2952100
H	0.6614060	-4.4734930	-1.1450620
H	0.8183980	-3.0962140	-2.2546980
C	3.3899880	-2.3456000	-1.4034120
H	2.9707990	-1.6475540	-2.1357420
H	4.0669580	-1.7934900	-0.7462370
H	3.9855440	-3.0805060	-1.9546820
C	2.9351940	-4.1129440	0.3214480
H	2.1929360	-4.6324590	0.9360870
H	3.4537290	-4.8694300	-0.2764430
H	3.6781470	-3.6526550	0.9803000
H	-4.2550230	2.4590660	1.2094640
H	-2.9121420	5.1228650	1.2333920
C	4.7781290	1.7606790	-1.0718350
C	4.8343980	1.9359080	-2.4627700
C	5.9369270	1.3332880	-0.4050200
C	6.0135370	1.6837950	-3.1717770
H	3.9493190	2.2762250	-2.9952770
C	7.1187870	1.0828490	-1.1084250
H	5.9164780	1.1995340	0.6740020
C	7.1605770	1.2552410	-2.4963600
H	6.0367420	1.8274260	-4.2484800
H	8.0066210	0.7579240	-0.5730110
H	8.0785510	1.0629090	-3.0441750

H	-3.7921740	0.5960690	-1.0643750	C	-2.3922390	4.2428020	1.4840310
O	-4.5875760	0.1596840	-1.5413600	C	-2.6791270	4.1853430	-0.9091200
C	-5.5791260	-0.0979560	-0.7233580	C	-3.2919500	5.3105240	1.5690170
O	-5.6488720	0.1226780	0.4677200	H	-1.9269620	3.8583670	2.3887120
C	-6.7532220	-0.7683980	-1.4897840	C	-3.5765370	5.2542600	-0.8301860
F	-6.3628880	-1.9411010	-2.0385400	H	-2.4407000	3.7553670	-1.8790830
F	-7.1952980	0.0269540	-2.4897950	C	-3.8883170	5.8197040	0.4111580
F	-7.7868040	-1.0179020	-0.6713350	H	-3.5216100	5.7466870	2.5372550
				H	-4.0280650	5.6476450	-1.7367530
				H	-4.5839200	6.6515250	0.4742240
	ntial Energy =	233.46971		H	4.6400180	0.5562630	0.2808210
	point Energy	-2232.93890		O	5.5511380	0.9935370	0.1096450
	Energy $=-22$	98921		C	6.3794550	0.1925400	-0.5153900
	e-Point Energ	B3LYP-D3(BJ)	$6-311+\mathrm{G}^{* *} \mathrm{PCM}=-$	O	6.1896900	-0.9479880	-0.8835480
	04053			C	7.7403280	0.9030150	-0.7578160
	Energy B3L	D3(BJ)/6-31	** PCM (extrapolated	F	8.2996620	1.2878020	0.4115320
	energy from q	RHO) $=-2233$		F	8.6064930	0.0914900	-1.3837460
	$g=1(-171.7$	$3 \mathrm{~cm}^{-1}$)		F	7.5783660	2.0081600	-1.5198910
Charge $=0$ Multiplicity $=1$							
C	-3.6684520	-1.2846770	0.0439140	$2 . \log$			
C	-3.1339440	-2.8612820	-1.6305480	Potential Energy $=-2233.46737$			
C	-2.9388380	-1.4799660	-2.2628740	Zero-point Energy $=-2232.93698$			
N	-2.9850500	-0.5982410	-1.0729360	Free Energy $=-2232.98725$			
N	-3.4985410	-2.6935340	-0.3390530	Single-Point Energy B3LYP			$6-311+G$
O	-2.9658140	-3.9391640	-2.2042870	2234.03933			
C	-3.5938430	-3.8190540	0.5844800	Free Energy B3LYP-D3(BJ)/			
H	-2.8382370	-4.5570070	0.3076520	free energy from qRRHO) $=-2233.55921$			
H	-3.4027260	-3.4714640	1.6004680	$\text { Nimag }=1\left(-167.5942 \mathrm{~cm}^{-1}\right)$			
H	-4.5767530	-4.2978240	0.5472560	Charge $=0$ Multiplicity $=1$			
C	-2.1605030	0.4586480	-0.9178040	C	-3.7582770	-1.2903020	0.0612160
H	-1.6905320	0.7812090	-1.8419910	C	-2.6282090	-3.3491590	-0.1830060
C	-1.8223210	1.1420680	0.2357150	C	-2.4951300	-2.6227220	-1.5246840
C	-1.1164920	2.4843520	0.1620650	N	-2.9446640	-1.2565110	-1.1712110
H	-0.5429530	2.5430960	-0.7700860	N	-3.3054780	-2.5488370	0.6713530
H	-0.3958140	2.5566160	0.9835840	O	-2.1764780	-4.4674510	0.0727590
H	-2.3425670	0.9332850	1.1640620	C	-3.4510990	-2.8829010	2.0839360
C	-1.6676740	-1.4089620	-3.1034460	H	-2.5559740	-3.4194740	2.4049950
H	-1.7067390	-2.2170420	-3.8380570	H	-3.5495660	-1.9654210	2.6655410
H	-1.5959210	-0.4648870	-3.6487410	H	-4.3215950	-3.5197630	2.2672320
H	-0.7717180	-1.5398480	-2.4898910	C	-2.3370910	-0.1428660	-1.6402840
H	-3.8036920	-1.2774690	-2.9078000	H	-1.7237270	-0.3211680	-2.5186430
C	-5.1603820	-0.8375750	0.2497230	C	-2.3848910	1.1471720	-1.1532920
H	-3.1164690	-1.1035410	0.9725750	C	-1.9172930	2.3062050	-2.0198820
Cl	0.0755730	-0.3545370	0.6944540	H	-1.0772150	1.9837600	-2.6448560
N	1.5740650	-1.3810250	1.2446500	H	-3.0629580	1.4002420	-0.3459600
C	2.8640780	-0.9720530	1.0693310	C	-1.0892480	-2.7408880	-2.1053500
C	1.4567550	-2.6250500	1.8692570	H	-0.8380130	-3.8029610	-2.1613090
C	3.7991320	-2.0318770	1.6256780	H	-1.0345800	-2.3312140	-3.1168600
C	2.8650860	-3.1361220	2.1468190	H	-0.3491290	-2.2411590	-1.4740110
H	4.4705540	-2.3625960	0.8284330	H	-3.2074580	-3.0775090	-2.2256660
H	2.9681890	-3.3202260	3.2195200	C	-5.3056810	-1.2061500	-0.1958200
O	0.4034320	-3.1768090	2.1303680	H	-3.4660920	-0.4595990	0.7127990
O	3.1889180	0.0976490	0.5386820	Cl	-0.4588620	0.6652590	0.3627440
C	-5.7570470	-1.5887310	1.4602600	N	0.9475810	0.4923970	1.6026870
H	-6.7360890	-1.1625780	1.7019930	C	2.2560700	0.3560530	1.2366210
H	-5.9074070	-2.6518710	1.2595060	C	0.7472150	0.5238770	2.9855990
H	-5.1250830	-1.4892690	2.3501780	C	3.1122930	0.2815920	2.4885040
C	-5.2029910	0.6726930	0.5585660	C	2.1095970	0.3747720	3.6503370
H	-4.6681250	0.9126690	1.4833470	H	3.6829460	-0.6508850	2.4712050
H	-4.7788860	1.2703530	-0.2525180	H	2.2796910	1.2358750	4.3020250
H	-6.2443400	0.9830880	0.6925900	O	-0.3349360	0.6474210	3.5288400
C	-6.0149210	-1.1202460	-1.0000870	O	2.6484770	0.3065740	0.0646700
H	-5.9872710	-2.1767110	-1.2857080	C	-6.0507950	-1.2070520	1.1569640
H	-7.0588290	-0.8634470	-0.7928520	H	-7.1097410	-0.9876390	0.9863340
H	-5.6943830	-0.5164430	-1.8548300	H	-5.9976320	-2.1741710	1.6619650
H	2.9983050	-4.0915050	1.6318550	H	-5.6596430	-0.4399380	1.8350970
H	4.4150930	-1.5815920	2.4096780	C	-5.6311700	0.1173390	-0.9181900
C	-2.0765920	3.6631450	0.2459770	H	-5.3589230	0.9877870	-0.3121200

H	-5.1226210	0.1933590	-1.8831280	H	-3.5998200	-3.0634710	0.1662620
H	-6.7089750	0.1708090	-1.1031470	H	-1.9996480	-4.7199460	-1.7282390
C	-5.8019640	-2.3836980	-1.0555470	O	0.5243860	-3.7740500	-1.0084380
H	-5.5617200	-3.3511810	-0.6030570	O	-2.7276790	-0.5578660	-0.7031980
H	-6.8909000	-2.3288760	-1.1554380	C	6.2962370	-1.3349560	-1.3328370
H	-5.3799250	-2.3536320	-2.0649510	H	7.2102860	-0.9823460	-1.8215390
H	2.0959750	-0.5195130	4.2794210	H	6.5858410	-2.1234850	-0.6346910
H	3.8300110	1.1073040	2.4710170	H	5.6569620	-1.7745910	-2.1069850
H	4.1144480	0.0888980	-0.3798640	C	5.4443760	0.9896650	-1.6577550
O	5.0452210	0.0058580	-0.7987800	H	4.8757600	0.6644600	-2.5353570
C	5.7380100	-0.9802450	-0.2824840	H	4.9501010	1.8653290	-1.2285500
O	5.4095180	-1.7524050	0.5938620	H	6.4341220	1.3023110	-2.0062140
C	7.1364070	-1.0694720	-0.9546840	C	6.4934980	0.3465150	0.5305170
F	7.8324010	0.0756200	-0.7733370	H	6.6114410	-0.4136630	1.3094850
F	7.8575600	-2.0780460	-0.4416560	H	7.4919800	0.5832970	0.1489380
F	7.0203220	-1.2743060	-2.2859970	H	6.0942190	1.2578310	0.9865380
H	-2.7323200	2.5690050	-2.7113840	H	-1.8823840	-4.7468080	0.0329320
C	-1.5332080	3.5590400	-1.2531360	H	-3.6966200	-3.0244700	-1.5953440
C	-2.5125380	4.3185530	-0.5928070	H	-4.2322830	-0.2478210	-0.5574580
C	-0.2029150	3.9987030	-1.2017000	O	-5.2041920	0.0770120	-0.5262050
C	-2.1704710	5.4771020	0.1103750	C	-5.8759540	-0.4537370	0.4665300
H	-3.5533530	4.0055340	-0.6331790	O	-5.4869730	-1.2437450	1.3013030
C	0.1445290	5.1604160	-0.5036630	C	-7.3421750	0.0618870	0.4648040
H	0.5685970	3.4268470	-1.7107320	F	-7.9755770	-0.2992870	-0.6745780
C	-0.8382740	5.9026070	0.1578690	F	-8.0339860	-0.4394450	1.4995160
H	-2.9437210	6.0502890	0.6143400	F	-7.3840980	1.4102930	0.5488230
H	1.1815390	5.4836250	-0.4778760	H	1.8847310	2.8838230	-2.6526390
H	-0.5709840	6.8047820	0.7005110	C	0.5110260	3.2357420	-1.0511320
3.log				C	-0.7552280	2.9240800	-0.5300640
				C	1.1077490	4.4489580	-0.6731060
Potential Energy $=$-2233.46751				C	-1.4041060	3.7996080	0.3463260
Zero-point Energy $=-2232.93690$				H	-1.2357390	1.9911900	-0.8111460
	Energy $=-223$. 98708		C	0.4626350	5.3270830	0.2037950
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$2234.04096				H	2.0842520	4.7111390	-1.0737000
				C	-0.7972250	5.0041030	0.7174190
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $=-2233.56052$				H	-2.3855250	3.5424920	0.7351010
				H	0.9412330	6.2624820	0.4799900
	$\mathrm{ag}=1(-185.2$	2 cm^{-1})		H	-1.3029920	5.6856610	1.3953180
Charge $=0$ Multiplicity $=1$							
C	4.1883060	-0.5942920	-0.1173580				
C	3.8784760	-1.1507810	2.1561150	4.log			
C	3.5007990	0.3270880	2.0199240		tial Energy =	2233.46733	
N	3.4264230	0.4820260	0.5489490		point Energy	-2232.93678	
N	4.2126800	-1.6218250	0.9332250		Energy $=-223$. 98692	
O	3.8595620	-1.7994760	3.2042620		e-Point Energ	B3LYP-D3(B)	/6-311+G** PCM $=-$
C	4.4555190	-3.0407760	0.6963100		03906		
H	3.8036710	-3.6175260	1.3556340		Energy B3LY	-D3(BJ)/6-311	G** PCM (extrapolated
H	4.2203530	-3.2799180	-0.3415020		nergy from q	RHO) $=-2233$	5865
H	5.4930890	-3.3193510	0.9031320		$\mathrm{g}=1(-169.1$	cm ${ }^{-1}$)	
C	2.4785970	1.2282170	-0.0587720		ge $=0$ Multip	city $=1$	
H	1.9863450	1.9304810	0.6053870	C	2.3315200	-2.1027860	-0.5619230
C	2.0566760	1.1885710	-1.3731780	C	2.2387070	-3.1470730	1.5532530
C	1.2203700	2.2940210	-2.0057160	C	3.4184580	-2.1721090	1.6073580
H	0.4867730	1.8314010	-2.6764420	N	3.2012690	-1.3704900	0.3811250
H	2.5954070	0.5796870	-2.0904700	N	1.6461990	-3.0365800	0.3426470
C	2.2315120	0.6678470	2.7949610	O	1.8832200	-3.8897320	2.4709260
H	2.3769340	0.3546660	3.8317380	C	0.3886080	-3.7106670	0.0388320
H	2.0346480	1.7424710	2.7949010	H	-0.2096270	-3.7521820	0.9513070
H	1.3612070	0.1425800	2.3912820	H	-0.1521440	-3.1446890	-0.7206940
H	4.3312890	0.9264020	2.4154520	H	0.5468520	-4.7322810	-0.3192110
C	5.6058360	-0.1469850	-0.6275030	C	3.3978360	-0.0330410	0.3386070
H	3.6122030	-0.9752390	-0.9676110	H	4.0277540	0.3384410	1.1416030
Cl	0.4071210	-0.5897190	-0.9327190	C	2.9031380	0.8916660	-0.5581840
N	-0.9070010	-1.9556400	-0.8533110	C	3.5209430	2.2783460	-0.6446620
C	-2.2433120	-1.6950980	-0.7623890	H	3.8577810	2.5942750	0.3488150
C	-0.6000060	-3.3169400	-0.9140380	H	2.3507570	0.5614480	-1.4309200
C	-3.0036540	-3.0101370	-0.7489200	C	3.4557230	-1.3954720	2.9205180
C	-1.9118680	-4.0888190	-0.8398800	H	3.4479790	-2.1198850	3.7387680

H	4.3660680	-0.7982920	3.0116430
H	2.5848790	-0.7421020	3.0251070
H	4.3438680	-2.7552940	1.5121720
C	3.1112390	-2.7874540	-1.7416700
H	1.5905280	-1.4153090	-0.9841910
Cl	0.8819810	1.1958520	0.8787330
N	-0.7154320	1.5425790	1.8148560
C	-0.7413320	2.1682860	3.0645770
C	-1.9517230	1.2320780	1.3259730
C	-2.2000130	2.2936200	3.4854020
C	-3.0026220	1.6687260	2.3322340
H	-2.3370770	1.7745770	4.4378270
H	-3.6857230	2.3722520	1.8477680
O	-2.1506510	0.6838330	0.2353700
O	0.2428160	2.5350500	3.6794220
C	2.1056600	-3.4793470	-2.6880620
H	2.6293470	-3.8139260	-3.5894260
H	1.6448130	-4.3602730	-2.2355380
H	1.3095770	-2.7950880	-3.0034620
C	3.8631590	-1.7103630	-2.5503470
H	3.1758280	-0.9850530	-2.9982170
H	4.5877260	-1.1685180	-1.9364530
H	4.4106430	-2.1912080	-3.3675700
C	4.1241330	-3.8249230	-1.2222470
H	3.6443560	-4.5946060	-0.6090940
H	4.5980510	-4.3287180	-2.0709270
H	4.9198960	-3.3549130	-0.6359400
H	-3.5867580	0.7948250	2.6344040
H	-2.4289170	3.3504560	3.6472890
H	-3.5447110	0.3194480	-0.3362230
O	-4.4265390	0.1355780	-0.8220400
C	-5.0199380	-0.9518760	-0.3915060
O	-4.6506440	-1.7218310	0.4697350
C	-6.3572960	-1.1733390	-1.1521000
F	-6.1470400	-1.2793560	-2.4833810
F	-7.2027030	-0.1372190	-0.9503450
F	-6.9699500	-2.2937630	-0.7392860
H	4.4248440	2.2131120	-1.2693980
C	2.6165400	3.3422430	-1.2410680
C	2.2649410	3.2989250	-2.5999490
C	2.1291660	4.4002870	-0.4608750
C	1.4388470	4.2773500	-3.1602500
H	2.6449680	2.4969470	-3.2286620
C	1.3061900	5.3853520	-1.0176290
H	2.3941980	4.4540990	0.5918820
C	0.9551470	5.3255670	-2.3694860
H	1.1789060	4.2250070	-4.2138720
H	0.9407340	6.1971300	-0.3947480
H	0.3161190	6.0889550	-2.8038810

5.log

Potential Energy $=-2233.46755$
Zero-point Energy $=\mathbf{- 2 2 3 2 . 9 3 6 9 0}$
Free Energy $=-2232.98702$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.04042

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-2233.55989$
Nimag $=1\left(-182.4978 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

	-1.8954910	2.4654130	-0.1473520
C	-2.465080	2.5194600	2.1477600
C	-2.44636680	1.6414560	1.4713940
C	-3.5036780		
N	-2.8977740	1.4181920	0.1383960
N	-1.5567540	2.9171320	1.2097250
O	-2.4091360	2.7967130	3.3483490
C	-0.3303870	3.6235060	1.5637370
H	0.0054000	3.2645020	2.5387600

H	0.4374120	3.4127050	0.8181500
H	-0.4830430	4.7050210	1.6259610
C	-2.9475610	0.2264450	-0.4958300
H	-3.7074990	-0.4422300	-0.1061660
C	-2.1558650	-0.2368410	-1.5282260
C	-2.5159530	-1.4591580	-2.3633370
H	-1.5925380	-2.0026160	-2.5950300
H	-1.4638300	0.4394710	-2.0172750
C	-3.8159240	0.3894130	2.2849650
H	-4.1003920	0.7056680	3.2915570
H	-4.6538630	-0.1688090	1.8609110
H	-2.9457300	-0.2687580	2.3598130
H	-4.4206340	2.2361940	1.3673570
C	-2.4134340	3.5981870	-1.1048680
H	-1.0081520	2.0064930	-0.5963350
Cl	-0.4156240	-1.0628910	0.0157620
N	1.0554580	-1.7356210	1.0069190
C	0.9047710	-2.4619160	2.1912860
C	2.3545090	-1.5605350	0.6291690
C	2.2983210	-2.8256120	2.6888120
C	3.2602340	-2.2352950	1.6447800
H	2.4348770	-2.4029780	3.6879930
H	3.8599570	-2.9935780	1.1326680
O	2.7085210	-0.9459070	-0.3851650
O	-0.1622890	-2.7376270	2.7079140
C	-1.2736110	4.6067590	-1.3674340
H	-1.5810860	5.3021900	-2.1550980
H	-1.0328160	5.2032460	-0.4845970
H	-0.3600180	4.1056060	-1.7073690
C	-2.8213270	2.9776600	-2.4569360
H	-1.9720750	2.5003080	-2.9570790
H	-3.6188800	2.2382250	-2.3448110
H	-3.1892620	3.7681420	-3.1191300
C	-3.6238630	4.3378370	-0.5049710
H	-3.3967220	4.7663760	0.4765180
H	-3.9106920	5.1626800	-1.1652690
H	-4.4932370	3.6800270	-0.4084250
H	3.9490090	-1.4902400	2.0525720
H	2.3683420	-3.9130990	2.7764500
H	4.1768120	-0.6857380	-0.7844390
O	5.1050350	-0.4999680	-1.1778690
C	5.9092430	0.0666600	-0.3113950
O	5.6811260	0.3675700	0.8417500
C	7.2980440	0.3338390	-0.9557670
F	7.1839570	1.1411450	-2.0342400
F	7.8691810	-0.8215910	-1.3651070
F	8.1319770	0.9220430	-0.0844920
C	-3.5280870	-2.4156830	-1.7628530
C	-3.1215700	-3.4830520	-0.9467190
C	-4.8995220	-2.2577460	-2.0189570
C	-4.0581870	-4.3641850	-0.3974220
H	-2.0641620	-3.6262680	-0.7429340
C	-5.8404060	-3.1354730	-1.4711020
H	-5.2329840	-1.4433750	-2.6579670
C	-5.4218870	-4.1923870	-0.6567740
H	-3.7220210	-5.1863310	0.2281730
H	-6.8964730	-2.9966370	-1.6849340
H	-6.1499360	-4.8781210	-0.2328000
H	-2.8999740	-1.0999900	-3.3287060

[^5]| Nimag $=1\left(-169.4774 \mathrm{~cm}^{-1}\right)$ | | | |
| :---: | :---: | :---: | :---: |
| Charge $=0$ Multiplicity $=1$ | | | |
| C | 1.3950860 | -2.0067280 | 0.4283510 |
| C | 0.9290820 | -2.3898500 | 2.7111870 |
| C | 2.2618500 | -1.6362050 | 2.6642300 |
| N | 2.2935500 | -1.1746490 | 1.2565240 |
| N | 0.4738700 | -2.5331540 | 1.4457330 |
| O | 0.3645460 | -2.7796200 | 3.7352760 |
| C | -0.8556250 | -3.0632200 | 1.1627250 |
| H | -1.5286490 | -2.7526120 | 1.9644640 |
| H | -1.2129920 | -2.6583030 | 0.2151990 |
| H | -0.8587130 | -4.1559960 | 1.1107260 |
| C | 2.7184810 | 0.0565190 | 0.9028700 |
| H | 3.3063360 | 0.5501230 | 1.6708350 |
| C | 2.4816200 | 0.7604280 | -0.2634450 |
| C | 3.2844710 | 2.0057710 | -0.5947880 |
| H | 3.6370040 | 2.4697750 | 0.3334060 |
| H | 2.6297400 | 2.7341880 | -1.0850930 |
| H | 1.9986110 | 0.2738240 | -1.1036760 |
| C | 2.3453660 | -0.5498460 | 3.7317600 |
| H | 2.1455110 | -1.0165650 | 4.6994110 |
| H | 3.3410920 | -0.1023330 | 3.7762970 |
| H | 1.6036240 | 0.2366230 | 3.5655830 |
| H | 3.0670280 | -2.3628690 | 2.8329900 |
| C | 2.1387220 | -3.1044010 | -0.4137870 |
| H | 0.8332100 | -1.3619450 | -0.2558050 |
| 1 | 0.4146430 | 1.7537730 | 0.6256440 |
| N | -1.2047800 | 2.6239330 | 1.0939920 |
| C | -1.2435580 | 3.8560640 | 1.7510980 |
| C | -2.4366310 | 2.1137700 | 0.8043730 |
| C | -2.7082240 | 4.2312820 | 1.9409610 |
| C | -3.5001310 | 3.0757400 | 1.3068350 |
| H | -2.9037780 | 4.3526370 | 3.0098740 |
| H | -4.1211890 | 3.3884170 | 0.4624850 |
| O | -2.6252310 | 1.0372570 | 0.2243800 |
| O | -0.2647480 | 4.4910920 | 2.0984270 |
| C | 1.1094350 | -3.8821040 | -1.2631480 |
| H | 1.6400410 | -4.5327380 | -1.9657880 |
| H | 0.4632980 | -4.5199400 | -0.6558920 |
| H | 0.4769630 | -3.2073350 | -1.8513050 |
| C | 3.1315550 | -2.4217270 | -1.3763380 |
| H | 2.6199090 | -1.7647560 | -2.0874490 |
| H | 3.8843410 | -1.8356920 | -0.8425800 |
| H | 3.6547810 | -3.1885730 | -1.9567520 |
| C | 2.9066870 | -4.0884670 | 0.4883160 |
| H | 2.2508190 | -4.5732620 | 1.2187170 |
| H | 3.3508370 | -4.8766900 | -0.1281520 |
| H | 3.7235670 | -3.5940070 | 1.0231170 |
| H | -4.1462300 | 2.5512260 | 2.0165030 |
| H | -2.8897900 | 5.1955210 | 1.4586970 |
| C | 4.4703020 | 1.7196880 | -1.5059130 |
| C | 4.3315710 | 1.7802630 | -2.9008330 |
| C | 5.7218490 | 1.3730790 | -0.9735710 |
| C | 5.4108830 | 1.4944170 | -3.7433460 |
| H | 3.3720330 | 2.0573410 | -3.3312680 |
| C | 6.8046510 | 1.0893940 | -1.8111300 |
| H | 5.8522220 | 1.3289230 | 0.1051290 |
| C | 6.6520820 | 1.1468460 | -3.2007470 |
| H | 5.2832590 | 1.5488650 | -4.8209370 |
| H | 7.7668150 | 0.8283910 | -1.3791320 |
| H | 7.4927940 | 0.9287080 | -3.8529590 |
| H | -4.0145400 | 0.4493170 | -0.1154240 |
| O | -4.9256270 | 0.0070650 | -0.2683420 |
| C | -5.1716100 | -0.2196350 | -1.5363600 |
| O | -4.4712630 | 0.0226760 | -2.4963950 |
| C | -6.5656130 | -0.8870050 | -1.7031680 |
| F | -7.5419330 | -0.1027060 | -1.1933220 |
| F | -6.6121780 | -2.0742710 | -1.0571920 |

F $\quad-6.8459540 \quad-1.1085250 \quad-2.9966490$

7.10 g			
Potential Energy $=-2233.46969$			
Zero-point Energy $=-2232.93889$			
Free Energy $=-2232.98902$			
$\begin{aligned} & \text { Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM }=- \\ & 2234.04007 \end{aligned}$			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.55940$			
Nimag $=1\left(-169.2657 \mathrm{~cm}^{-1}\right)$			
Charge $=0$ Multiplicity $=1$			
C	1.2996140	-1.9352750	0.6324310
C	0.8454910	-2.0783730	2.9448770
C	2.1951360	-1.3657420	2.8145450
N	2.2263070	-1.0484250	1.3674750
N	0.3752800	-2.3351570	1.7031670
O	0.2806820	-2.3493760	4.0065110
C	-0.9729830	-2.8479740	1.4832690
H	-1.6266920	-2.4412530	2.2575250
H	-1.3292360	-2.5240510	0.5046630
H	-1.0101160	-3.9399670	1.5361330
C	2.6817160	0.1287730	0.8893260
H	3.2897080	0.6797960	1.6005110
C	2.4539930	0.7190740	-0.3400200
C	3.2881840	1.9015090	-0.7995490
H	3.6639790	2.4444070	0.0752150
H	2.6492810	2.5969230	-1.3544130
H	1.9490470	0.1656530	-1.1241720
C	2.3095850	-0.1794730	3.7667990
H	2.1062350	-0.5418190	4.7775200
H	3.3147540	0.2486050	3.7613670
H	1.5837030	0.6021890	3.5251810
H	2.9850590	-2.0900320	3.0515190
C	2.0088670	-3.1294120	-0.1008830
H	0.7466410	-1.3475560	-0.1080210
Cl	0.4247100	1.8592730	0.4627130
N	-1.1594390	2.8222390	0.8609130
C	-1.1525850	4.0630080	1.5028280
C	-2.4072310	2.3762320	0.5347240
C	-2.5999400	4.5201990	1.6374720
C	-3.4327780	3.3983590	0.9952590
H	-2.8236110	4.6718210	2.6969080
H	-4.0150400	3.7306980	0.1310360
O	-2.6347940	1.3061260	-0.0427680
O	-0.1526790	4.6483240	1.8763170
C	0.9518150	-3.9728350	-0.8468940
H	1.4590750	-4.7034140	-1.4852420
H	0.3066790	-4.5312040	-0.1648020
H	0.3197410	-3.3527620	-1.4927350
C	2.9967670	-2.5706830	-1.1449180
H	2.4847250	-1.9812690	-1.9127470
H	3.7692450	-1.9471250	-0.6872610
H	3.4959230	-3.4038300	-1.6502810
C	2.7747850	-4.0279130	0.8882630
H	2.1229010	-4.4179840	1.6766380
H	3.1918250	-4.8867090	0.3523590
H	3.6109430	-3.4969420	1.3539240
H	-4.1229800	2.9165870	1.6937480
H	-2.7122330	5.4838230	1.1332820
C	4.4554320	1.4921780	-1.6874360
C	4.3067090	1.4296120	-3.0812210
C	5.6990190	1.1523810	-1.1324390
C	5.3682110	1.0303350	-3.8999550
H	3.3535240	1.6993330	-3.5300540
C	6.7641040	0.7556540	-1.9464270
H	5.8370820	1.2029250	-0.0549470

C	6.6014540	0.6909150	-3.3346370	O	-3.3781910	-0.4715290	0.1866930				
H	5.2330320	0.9902140	-4.9772560	C	1.9305190	-1.2417980	2.3917860				
H	7.7205390	0.5019090	-1.4977070	H	2.1311490	-1.6632810	3.3799310				
H	7.4284850	0.3846710	-3.9686760	H	1.2650980	-0.3889660	2.5171320				
H	-4.0399810	0.7948480	-0.4477000	H	1.4268290	-1.9971680	1.7839970				
O	-4.9815630	0.4899030	-0.7087540	H	3.7189960	-0.0231740	2.3553590				
C	-4.9855200	-0.6646490	-1.3309880	C	5.6337740	-0.3312190	-0.7216980				
O	-4.0435450	-1.3763150	-1.6081920	H	4.0126390	-1.6900540	-1.2831520				
C	-6.4377840	-1.0627520	-1.7173610	C	6.7020710	-1.1901250	-1.435751				
F	-6.9727660	-0.1576790	-2.5685470	H	7.4936410	-0.5365650	-1.8155420				
F	-7.2336880	-1.1210980	-0.6262270	H	7.1738590	-1.9127300	-0.7673170				
F	-6.4684960	-2.2628790	-2.3169850	H	6.2822170	-1.7306060	-2.2919510				
				C	5.2093590	0.7844970	-1.6996710				
	S-front			H	4.7142980	0.3819690	-2.5912450				
				H	4.5491620	1.5202220	-1.2336770				
	formation	Extrapolated		H	6.1016010	1.3219240	-2.0363850				
	name	Free energy		C	6.2432420	0.3078930	0.5393680				
		(kcal/mol)		H	6.5846220	-0.4464230	1.2553320				
				H	7.1115210	0.9137530	0.2606720				
	4-Rf-lowest	0.0		H	5.5305390	0.9698650	1.0418080				
				H	-4.8350680	-0.0901000	0.5245130				
	1	0.9		O	-5.7464270	0.2488840	0.8492910				
	2	0.7		C	-6.6711790	0.1597230	-0.0754620				
	2	0.7		O	-6.5650670	-0.2636830	-1.2076310				
	3	0.5		C	-8.0293330	0.6888240	0.4640650				
				F	-7.9277010	1.9818730	0.8455330				
	4	1.7		F	-8.9878780	0.6069150	-0.4714170				
	5	1.0		F	-8.4328190	-0.0265920	1.5383770				
	5	1.0		H	0.9639280	1.9087710	-1.7946990				
	6	0.3		C	1.4610620	3.5154190	-0.4492710				
				C	1.0409270	4.2777710	0.6524450				
	Rf-lowest.log	2233.46593		C	2.4806960	4.0282750	-1.2652020				
	tial Energy =	2233.46593		C	1.6300410	5.5129400	0.9379380				
	point Energy	$=-2232.93534$		H	0.2432920	3.9033180	1.2899060				
	$\text { Energy }=-22$	$.98602$		C	3.0712420	5.2651350	-0.9857490				
	e-Point Ener 03614	B3LYP-D3(B	-311+G** $\mathrm{PCM}=-$	H	2.8120050	3.4587940	-2.1300990				
				C	2.6496010	6.0110580	0.1193690				
	Energy B3LY	D3(BJ)/6-311	G** PCM (extrapolated 5623	H	1.2893030	6.0881620	1.7943710				
	nergy from q	$R H O)=-2233$	5623	H	3.8561480	5.6461990	-1.6331910				
	$\begin{aligned} & \mathrm{g}=1(-187.5 \\ & \text { ge }=0 \mathrm{Multipl} \end{aligned}$	$\begin{aligned} & \left.1 \mathrm{~cm}^{-1}\right) \\ & \text { ity }=1 \end{aligned}$		H	3.1057850	6.9723950	0.3371990				
	4.4000250	$\begin{aligned} & \text { ity }=1 \\ & -1.2425990 \end{aligned}$		1.log							
C	4.4000250 4.2129450	-1.24259110 -2.0664110	-0.3594760 1.8393300								
C	3.2823380	-0.8511910	1.7804990	Potential Energy = -2233.46286							
N	3.2966190	-0.5371380	0.3392030	Free Energy $=-2232.98172$							
N	4.7121860	-2.2984330	0.6045560				Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 2234.03590				
O	4.4118610	-2.7583960	2.8391880								
C	5.4119630	-3.5398940	0.2888250	Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated							
H	4.9318380	-4.3547750	0.8348710								
H	5.3395200	-3.7323540	-0.7818300								
H	6.4660880	-3.5032030	0.5781510	$\text { Charge }=0 \text { Multiplicity }=1$							
C	2.4552490	0.2707560	-0.3356960	C	-2.5843210	2.0334160	-0.0069720				
H	2.6290590	0.2687660	-1.4081080	C	-2.58821120	2.5607910	2.2868460				
C	1.4126760	1.0519050	0.1282470	C	-2.9226860	1.0687680	2.2118540				
C	0.8313370	2.1594600	-0.7365040	N	-2.6792770	0.7813400	0.7849360				
H	-0.2476540	2.2259870	-0.5591040	N	-2.2926970	3.0084830	1.0447690				
H	1.2584990	1.1601240	1.1962360	O	-2.5153950	3.2209110	3.3252550				
Cl	-0.2804220	-0.6748720	-0.3578210	C	-1.6792330	4.3152890	0.8303970				
N	-1.7415300	-1.8426890	-0.6698720	H	-0.9761600	4.5035220	1.6446230				
C	-3.0299030	-1.5339690	-0.3440030	H	-1.1397020	4.3095740	-0.1170140				
C	-1.5948840	-3.0997180	-1.2613000	H	-2.4189970	5.1208750	0.8192480				
C	-3.9305470	-2.6928160	-0.7353360	C	-2.5630360	-0.4230960	0.1879840				
C	-2.9787460	-3.7310010	-1.3516370	H	$\begin{aligned} & -2.5030500 \\ & -2.3267310 \end{aligned}$	-0.3555180	-0.8693490				
H	-4.4456250	-3.0559920	0.1588480	C	$\begin{aligned} & -2.3201010 \\ & -2.6692240 \end{aligned}$	-1.6897150	0.7303460				
H	-2.9678620	-4.6819150	-0.8121960	C	$\begin{aligned} & -2.0092240 \\ & -2.8922710 \end{aligned}$	-2.9393700	-0.1178430				
H	-3.1972920	-3.9473700	-2.4009530	H		$\begin{aligned} & -2.9393 / 00 \\ & -3.2358450 \end{aligned}$	0.0160930				
H	-4.6932290	-2.3277820	-1.4288260	H	$\begin{aligned} & -5.9410150 \\ & -2.2973280 \end{aligned}$	$\begin{aligned} & -3.2558450 \\ & -3.7579180 \end{aligned}$	0.30397				
O	-0.5371680	-3.5770760	-1.6297210	H	-2.2973280	-1.7976610	1.75876				

Cl	-0.2520810	-1.8798750	1.1905940	H	-1.0466950	3.9435480	-2.3413940
N	1.5513880	-2.2587060	1.6481990	H	-0.9418950	4.1971180	-0.5830920
C	2.6188000	-1.6692550	1.0362110	H	0.0685050	5.1587110	-1.6903890
C	1.9049880	-3.1703490	2.6453420	C	1.9468610	0.2363010	0.1548110
C	3.9000400	-2.2080000	1.6505560	H	1.6268760	0.4394610	1.1728580
C	3.4264490	-3.2051660	2.7207260	C	2.5004900	-1.0065790	-0.0910560
H	4.5025060	-2.6702330	0.8633460	C	3.0186490	-1.8631180	1.0535660
H	3.7642430	-4.2286750	2.5370690	H	2.8174920	-2.9175410	0.8346830
H	3.7345250	-2.9305870	3.7332170	H	2.9203470	-1.2230150	-1.0672810
H	4.4748000	-1.3725400	2.0602810	Cl	0.2988060	-2.0946630	-0.3529930
O	1.1153750	-3.8083350	3.3175690	N	-1.2685800	-3.1352170	-0.5747340
O	2.5275850	-0.8339820	0.1278520	C	-2.5225670	-2.6556310	-0.3303050
C	-2.0603430	0.3214770	3.2367250	C	-1.2456090	-4.4630630	-1.0074390
H	-2.2023060	0.8174120	4.2002270	C	-3.5346300	-3.7533900	-0.6130270
H	-2.3512480	-0.7220030	3.3484030	C	-2.6868230	-4.9547350	-1.0628520
H	-1.0018550	0.3678790	2.9713090	H	-4.1110470	-3.9457640	0.2964570
H	-3.9842900	0.9200160	2.4527850	H	-2.7872550	-5.8237760	-0.4070710
C	-3.8714370	2.3799110	-0.8479500	H	-2.9076240	-5.2813390	-2.0826450
H	-1.7298120	1.9615550	-0.6907740	H	-4.2324250	-3.4033420	-1.3791750
C	-3.6289030	3.6975600	-1.6186960	O	-0.2380800	-5.0880710	-1.2836680
H	-4.4587680	3.8663240	-2.3122130	O	-2.7642770	-1.5065780	0.0593500
H	-3.5782470	4.5658450	-0.9591060	C	1.3813730	0.0923370	-2.9532330
H	-2.7076790	3.6564890	-2.2112410	H	1.4027480	0.3750300	-4.0086370
C	-4.1427160	1.2779420	-1.8923940	H	1.9912110	-0.8015520	-2.8306620
H	-3.2698630	1.0921420	-2.5288510	H	0.3513360	-0.1408250	-2.6730860
H	-4.4473190	0.3336240	-1.4346820	H	2.9803720	1.4331080	-2.3783190
H	-4.9611960	1.5982860	-2.5449750	C	2.2033630	3.4598250	0.5424720
C	-5.1071610	2.5315110	0.0578000	H	0.3246230	2.3398660	0.4909430
H	-4.9729910	3.3200200	0.8050030	C	1.5043010	4.7616870	0.9956500
H	-5.9768250	2.7998270	-0.5507730	H	2.1871170	5.3332990	1.6321030
H	-5.3463260	1.5966220	0.5748700	H	1.2313800	5.4045040	0.1567530
C	-2.6136960	-2.8280040	-1.6052570	H	0.6025130	4.5544300	1.5832880
C	-1.3214530	-3.0148390	-2.1226900	C	2.7321820	2.7561120	1.8098590
C	-3.6573260	-2.5612420	-2.5055500	H	1.9175180	2.4371210	2.4706860
C	-1.0783870	-2.9285620	-3.4968680	H	3.3560720	1.8893740	1.5779840
H	-0.5017090	-3.2334570	-1.4449150	H	3.3547070	3.4580500	2.3737410
C	-3.4197890	-2.4745670	-3.8810220	C	3.3889610	3.8027930	-0.3777710
H	-4.6676110	-2.4273490	-2.1262930	H	3.0654450	4.3278510	-1.2821160
C	-2.1270880	-2.6566040	-4.3816850	H	4.0869710	4.4592030	0.1518880
H	-0.0715910	-3.0803170	-3.8759670	H	3.9434930	2.9063340	-0.6734900
H	-4.2439610	-2.2709350	-4.5589300	H	-4.1784070	-0.9384690	0.3313930
H	-1.9397790	-2.5938870	-5.4497600	O	-5.1271040	-0.5877290	0.4899330
H	3.7252460	-0.1400000	-0.5623340	C	-5.1431090	0.6237500	0.9918000
O	4.4610530	0.2905460	-1.1300920	O	-4.2037510	1.3355620	1.2774030
C	4.9584850	1.3695140	-0.5751840	C	-6.6082680	1.1002110	1.1996930
O	4.6588170	1.8799650	0.4834820	F	-7.2758880	0.2675640	2.0297900
C	6.0608560	1.9834860	-1.4829980	F	-6.6469250	2.3322560	1.7303120
F	5.5526130	2.3384090	-2.6849450	F	-7.2760790	1.1316240	0.0240190
F	6.5979500	3.0775880	-0.9214390	H	2.4726570	-1.6196800	1.9716140
F	7.0569140	1.0960850	-1.7034010	C	4.5128930	-1.6862680	1.2851020
				C	5.4439310	-2.3632170	0.4811630
2.10				C	4.9946960	-0.8372640	2.2928140
	nial Energy =	233.46590		C	6.8179160	-2.1887530	0.6707070
	-point Energy	-2232.93524		H	5.0904430	-3.0355870	-0.2971710
	Energy $=-223$	98560		C	6.3685420	-0.6616950	2.4887330
	e-Point Energ	B3LYP-D3(B.	/6-311+G** PCM $=-$	H	4.2900800	-0.3135260	2.9341820
	. 03546			C	7.2856690	-1.3350670	1.6757450
	Energy B3LY	D3(BJ)/6-311	G** PCM (extrapolated	H	7.5218790	-2.7231750	0.0388150
	energy from q	RHO) $=-2233$	55515	H	6.7206250	-0.0031010	3.2778920
Nim	$\mathrm{g}=1(-185.9$	$9 \mathrm{~cm}^{-1}$)		H	8.3528570	-1.2012630	1.8271800
Charge $=0$ Multiplicity $=1$							
C	1.1550040	2.5438430	-0.1961330	3.log			
C	1.1257300	2.5353320	-2.5514090	Potential Energy $=-2233.46576$ Zero-point Energy =-2232.93514			
C	1.9157310	1.2859100	-2.1508830				
N	1.7031090	1.2563890	-0.6916680	Free Energy $=-2232.98568$			
N	0.6377590	3.1238870	-1.4363430	Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=$ 2234.03546			
O	0.9132840	2.8975160	-3.7098390				
C	-0.3733170	4.1740460	-1.5130640				

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolatedfree energy from qRRHO) $=-2233.55538$				H	0.3901700	6.0281840	1.4064410
				H	3.3185940	5.7604550	-1.7376660
Nimag $=1\left(-187.8362 \mathrm{~cm}^{-1}\right)$				H	2.2387390	7.0591250	0.0931640
Charge $=0$ Multiplicity $=1$							
C	4.4464930	-1.0152420	-0.1966280	4.log			
C	4.1597430	-1.7940070	2.0074730	Potential Energy $=-2233.46324$			
C	3.1261750	-0.6768850	1.8335430	Zero-point Energy $=-2232.93284$			
N	3.2267720	-0.4036630	0.3875120	Free Energy $=-2232.98280$			
N	4.7781540	-2.0094900	0.8247140	Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$			
O	4.3411700	-2.4359480	3.0433880	2234.03401			
C	5.6182820	-3.1836730	0.6097270	Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
H	5.1745910	-4.0273070	1.1427910	free energy from qRRHO) $=-2233.55357$			
H	5.6557330	-3.4108060	-0.4559130	Nimag $=1\left(-191.0590 \mathrm{~cm}^{-1}\right)$			
H	6.6357560	-3.0353770	0.9825940	Charge $=0$ Multiplicity $=1$			
C	2.3687880	0.2953190	-0.3815640	C	2.7482410	-2.6180430	-0.2848630
H	2.6300630	0.2784630	-1.4358770	C	3.7041980	-2.3771060	1.8540380
C	1.2201730	0.9818870	-0.0329070	C	3.7316070	-0.9763590	1.2348760
C	0.6052800	1.9941870	-0.9867860	N	2.9300200	-1.1777050	0.0152660
H	-0.4863310	1.9471690	-0.9079840	N	3.0525600	-3.2153350	1.0165620
H	0.9682880	1.1096700	1.0141720	O	4.1449640	-2.6691520	2.9672500
Cl	-0.2551720	-0.9209390	-0.5682280	C	2.6345370	-4.5460280	1.4466470
N	-1.5698980	-2.2390650	-0.9273380	H	2.3305730	-4.4904010	2.4941710
C	-2.9075660	-2.0258560	-0.7632520	H	1.7867580	-4.8711580	0.8430460
C	-1.2532330	-3.5244110	-1.3728410	H	3.4412020	-5.2794570	1.3591740
C	-3.6586610	-3.2952840	-1.1285110	C	2.4100290	-0.2314630	-0.7964080
C	-2.5601990	-4.2901470	-1.5383050	H	1.7922580	-0.6451400	-1.5884270
H	-4.2395920	-3.6241490	-0.2620530	C	2.5333960	1.1415800	-0.7538350
H	-2.5275460	-5.1819940	-0.9068170	C	2.1981110	1.9686980	-1.9878030
H	-2.6437960	-4.6217270	-2.5768330	H	3.0459210	1.8987310	-2.6865470
H	-4.3638460	-3.0717510	-1.9340400	H	3.2059760	1.6008030	-0.0377060
O	-0.1249520	-3.9303670	-1.5837000	Cl	0.3671970	1.3204150	0.5078240
O	-3.3998050	-0.9587480	-0.3762060	N	-1.2326160	1.6623610	1.4310920
C	1.7725230	-1.1780960	2.3527030	C	-2.4430780	1.1719230	1.0322090
H	1.9323270	-1.5507290	3.3675630	C	-1.2949690	2.4619560	2.5765930
H	1.0228890	-0.3894310	2.3967100	C	-3.5121470	1.6578560	1.9954380
H	1.3914470	-1.9946330	1.7349610	C	-2.7514410	2.5169520	3.0188700
H	3.4353170	0.2053850	2.4103920	H	-4.2661930	2.2172640	1.4343950
C	5.6126400	0.0032540	-0.4905470	H	-3.0748880	3.5612930	3.0304010
H	4.1805260	-1.5217010	-1.1326220	H	-2.8231710	2.1359260	4.0410930
C	6.8136650	-0.7654060	-1.0868190	H	-4.0070280	0.7899370	2.4404450
H	7.5669710	-0.0478140	-1.4267920	O	-0.3391140	3.0027020	3.1003010
H	7.2965910	-1.4187340	-0.3577940	O	-2.6087930	0.4504630	0.0416160
H	6.5189470	-1.3688500	-1.9532210	C	3.1886800	0.0258350	2.2613620
C	5.1654380	1.0444200	-1.5379240	H	3.7609780	-0.1083300	3.1826870
H	4.7891360	0.5703400	-2.4521180	H	3.3054960	1.0593670	1.9382250
H	4.3997230	1.7224300	-1.1529360	H	2.1331620	-0.1602640	2.4733150
H	6.0262130	1.6593060	-1.8194140	H	4.7653330	-0.7080560	0.9753490
C	6.0506070	0.7332320	0.7922340	C	3.6506520	-3.1628360	-1.4573100
H	6.3995240	0.0358240	1.5604050	H	1.6972870	-2.8034440	-0.5397170
H	6.8785530	1.4121700	0.5637490	C	3.3711660	-4.6705940	-1.6502170
H	5.2387360	1.3368740	1.2107390	H	3.8823500	-5.0190010	-2.5532010
H	-4.9137670	-0.7098520	-0.1767190	H	3.7395720	-5.2737390	-0.8182510
O	-5.9234920	-0.5798290	-0.0655270	H	2.3013870	-4.8718410	-1.7787070
C	-6.2302190	0.5680890	0.4895910	C	3.2974500	-2.4549470	-2.7828370
O	-5.4857500	1.4496420	0.8627270	H	2.2276710	-2.5249990	-3.0125440
C	-7.7722620	0.6986960	0.6370740	H	3.5882100	-1.4011290	-2.7852250
F	-8.2683760	-0.2919220	1.4127230	H	3.8397140	-2.9396470	-3.6009230
F	-8.1085570	1.8707090	1.1975300	C	5.1450860	-2.9500670	-1.1548410
F	-8.3820570	0.6222920	-0.5674100	H	5.4510650	-3.4549120	-0.2330110
H	0.8607640	1.7293050	-2.0187010	H	5.7471990	-3.3621590	-1.9711520
C	1.0569840	3.4189250	-0.6979660	H	5.3926390	-1.8870210	-1.0699430
C	0.4505920	4.1655720	0.3248260	H	-3.9702520	-0.1166810	-0.4368190
C	2.0927220	4.0139740	-1.4338960	O	-4.8293780	-0.4536870	-0.8790290
C	0.8739670	5.4665080	0.6121500	C	-5.3609860	-1.4665390	-0.2375030
H	-0.3626610	3.7266330	0.8981920	O	-4.9623690	-2.0147840	0.7682570
C	2.5179640	5.3165050	-1.1525170	C	-6.6590940	-1.9359790	-0.9519220
H	2.5666810	3.4566290	-2.2381800	F	-6.3930190	-2.3483900	-2.2120680
C	1.9113590	6.0468850	-0.1257880	F	-7.2323130	-2.9558890	-0.2947760

F	-7.5600310	-0.9308570	-1.0296960	H	5.7923800	-3.0389380	-0.3087280
H	1.3387970	1.5301490	-2.5064820	H	6.0628250	-2.9082650	-2.0485600
C	1.9380230	3.4407040	-1.7215850	H	5.5810580	-1.4779210	-1.1341860
C	2.9676750	4.2724910	-1.2521120	H	-3.9517100	-0.3173870	-0.5603260
C	0.6805980	4.0116760	-1.9638870	O	-4.7675720	-0.7318900	-1.0204680
C	2.7439520	5.6322270	-1.0187430	C	-5.4597600	-1.4981270	-0.2126430
H	3.9560760	3.8557740	-1.0726900	O	-5.2480540	-1.7443010	0.9564440
C	0.4522790	5.3734220	-1.7372730	C	-6.6793690	-2.1083080	-0.9580010
H	-0.1284130	3.3859240	-2.3317980	F	-6.2781240	-2.8496300	-2.0150780
C	1.4829300	6.1885990	-1.2605400	F	-7.3975520	-2.8991350	-0.1461040
H	3.5546800	6.2574440	-0.6550540	F	-7.4959960	-1.1361550	-1.4232820
H	-0.5299680	5.7947640	-1.9327560	H	1.2478990	1.5743570	-2.4940640
H	1.3079480	7.2458350	-1.0832060	H	2.9129550	2.1037150	-2.6676370
				C	1.6651750	3.5207770	-1.6813560
				C	2.6091430	4.4380000	-1.1913860
				C	0.3612160	3.9749810	-1.9247590
Potential Energy $=-2233.46325$				C	2.2568990	5.7667840	-0.9388730
Zero-point Energy $=-2232.93305$				H	3.6313940	4.1136210	-1.0108790
Free Energy = -2232.98350				C	0.0042170	5.3053420	-1.6788510
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -				H	-0.3827560	3.2817060	-2.3085700
2234.03446				C	0.9505990	6.2059530	-1.1815580
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-2233.55471$				H	3.0028770	6.4595910	-0.5594380
				H	-1.0121270	5.6354840	-1.8753660
Nimag $=1\left(-192.4734 \mathrm{~cm}^{-1}\right)$				H	0.6758430	7.2390510	-0.9891160
Charge $=0$ Multiplicity $=1$							
C	3.0240340	-2.4589160	-0.3299190	6.log			
C	3.9688390	-2.1618410	1.8070340	Potential Energy = -2233.46284			
C	3.8716210	-0.7566610	1.2051170	Zero-point Energy $=-2232.93211$			
N	3.0819700	-1.0117790	-0.0125360	Free Energy $=-2232.98229$			
N	3.3886730	-3.0434540	0.9616540	Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -			
O	4.4378100	-2.4280400	2.9151470	2234.03622			
C	3.0843850	-4.4085310	1.3793450	Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
H	2.7845240	-4.3890550	2.4293380	free energy from qRRHO) $=-2233.55567$			
H	2.2616990	-4.7952890	0.7773280	Nimag $=1\left(-207.1104 \mathrm{~cm}^{-1}\right)$			
H	3.9476070	-5.0724950	1.2785430	Charge $=0$ Multiplicity $=1$			
C	2.4749780	-0.1047690	-0.8081680	C	-4.5370210	0.5806250	-0.2161190
H	1.8917740	-0.5611110	-1.6028200	C	-4.3850850	2.6059480	0.9738200
C	2.4751760	1.2733500	-0.7468860	C	-3.3864980	1.6602270	1.6496020
C	2.0627920	2.0837810	-1.9684920	N	-3.3821360	0.5179380	0.7148350
H	3.1079820	1.7807880	-0.0271300	N	-4.9022520	1.9941700	-0.1147890
Cl	0.3100390	1.2414760	0.5219470	O	-4.6202250	3.7614740	1.3316000
N	-1.3102800	1.4304960	1.4563660	C	-5.6803100	2.7323980	-1.1046720
C	-2.4990500	0.9403130	0.9970680	H	-5.2479700	3.7299140	-1.2087040
C	-1.4094610	2.1007770	2.6795350	H	-5.6281780	2.2158300	-2.0633490
C	-3.5938470	1.2956010	1.9873310	H	-6.7279420	2.8388700	-0.8087330
C	-2.8673000	2.0434650	3.1172000	C	-2.4974600	-0.4981730	0.6474160
H	-4.3412350	1.9096840	1.4759300	H	-2.6917500	-1.1810390	-0.1737470
H	-3.2317010	3.0630980	3.2672990	C	-1.3936440	-0.7614400	1.4366790
H	-2.9223560	1.5263820	4.0792770	C	-0.7187530	-2.1300910	1.4877250
H	-4.0891490	0.3765510	2.3120920	H	-1.0037260	-2.5934410	2.4421410
O	-0.4782150	2.6218460	3.2642610	H	-1.2208210	-0.1577910	2.3205380
O	-2.6306750	0.3131540	-0.0610720	Cl	0.1589790	0.4505080	-0.0441080
C	3.2513650	0.1824790	2.2472200	N	1.5399860	1.3187960	-1.0215580
H	3.8399840	0.0880160	3.1631390	C	2.8553220	1.2623780	-0.6647980
H	3.2754840	1.2260390	1.9363830	C	1.3013350	2.0630690	-2.1789610
H	2.2177050	-0.0972000	2.4638250	C	3.6748750	2.0596600	-1.6648930
H	4.8765570	-0.3972630	0.9426370	C	2.6437190	2.5857550	-2.6765170
C	3.9615610	-2.9077970	-1.5151870	H	4.2026970	2.8559760	-1.1317700
H	1.9913670	-2.7324860	-0.5800500	H	2.6011800	3.6772480	-2.7231760
C	3.8229110	-4.4335460	-1.7191010	H	2.8086910	2.2163120	-3.6923490
H	4.3586330	-4.7251110	-2.6279600	H	4.4291990	1.4021720	-2.1059600
H	4.2519770	-5.0057860	-0.8943960	O	0.2055080	2.2428460	-2.6785280
H	2.7761220	-4.7339270	-1.8434920	O	3.2823120	0.6514370	0.3234370
C	3.5299760	-2.2253750	-2.8308700	C	-2.0637210	2.4100310	1.8511180
H	2.4686220	-2.3922540	-3.0496840	H	-2.2981080	3.3438340	2.3683290
H	3.7220630	-1.1491910	-2.8272930	H	-1.3561540	1.8540120	2.4645940
H	4.1053450	-2.6515100	-3.6588790	H	-1.5934290	2.6476090	0.8944320
C	5.4325400	-2.5588480	-1.2243060	H	-3.7792060	1.3481860	2.6271320

C	-5.7183460	-0.4026530	0.1332750	C	-2.6982290	0.5677980	-0.7476880		
H	-4.1895410	0.3620570	-1.2331750	H	-3.4593230	0.2822410	-0.0271560		
C	-6.8369400	-0.2393130	-0.9208270	C	-2.4136100	-0.3207910	-1.7691190		
H	-7.5930240	-1.0154690	-0.7657680	C	-3.3688660	-1.4401540	-2.1674150		
H	-7.3447550	0.7242160	-0.8484630	H	-2.7750740	-2.3116890	-2.4663760		
H	-6.4516150	-0.3538390	-1.9405890	H	-0.2561020	2.1688400	-1.4130720		
C	-5.2360490	-1.8662740	0.0698540	C	-1.6181800	1.9288640	2.0275870		
H	-4.7749690	-2.1051210	-0.8954000	H	-3.4712880	2.4454240	0.9939480		
H	-4.5259800	-2.1077260	0.8645410	H	-1.7252400	-0.0240820	-2.5508670		
H	-6.0967780	-2.5311650	0.1941410	Cl	-0.5771380	-1.4955010	-0.6593680		
C	-6.2851580	-0.1192610	1.5364320	N	0.8929820	-2.5142660	-0.0143360		
H	-6.6611270	0.9046980	1.6271940	C	0.7425780	-3.7398220	0.6388080		
H	-7.1221630	-0.7959530	1.7369040	C	2.1919690	-2.1242340	-0.1612330		
H	-5.5356850	-0.2870820	2.3166990	C	2.1351470	-4.2464640	0.9949440		
H	4.7672430	0.5084410	0.7098470	C	3.0981290	-3.1802700	0.4479110		
O	5.7070170	0.3854460	1.1014800	H	2.2779830	-5.2318660	0.5435670		
C	6.5692750	-0.0352380	0.2084280	H	3.7653410	-3.5609750	-0.3311580		
O	6.3812850	-0.2711270	-0.9669480	H	3.7209060	-2.7119440	1.2149570		
C	7.9720400	-0.2146700	0.8532430	H	2.1967860	-4.3666180	2.0800840		
F	7.9277630	-1.1092020	1.8660250	O	2.5456680	-1.0728230	-0.7101840		
F	8.8673960	-0.6510230	-0.0459710	O	-0.3237020	-4.2799460	0.8701340		
F	8.4241260	0.9558330	1.3575830	C	-1.8059920	2.6823530	-2.8442200		
H	0.3660390	-1.9820140	1.5428060	H	-1.6431490	1.7826820	-3.4359480		
C	-1.0388870	-3.1045560	0.3694880	H	-2.8734920	2.9219470	-2.8496240		
C	-2.0358450	-4.0781700	0.5397390	H	-1.2611350	3.5017680	-3.3192460		
C	-0.3353370	-3.0796600	-0.8458530	C	-1.9164000	2.8175840	3.2557540		
C	-2.3301070	-4.9953520	-0.4741680	H	-1.5008290	2.3426200	4.1500960		
H	-2.5823290	-4.1233130	1.4787520	H	-1.4632770	3.8076220	3.1759510		
C	-0.6262090	-3.9937440	-1.8630840	H	-2.9936040	2.9385930	3.4185590		
H	0.4484200	-2.3428250	-0.9938370	C	-0.1014040	1.9016520	1.7675220		
C	-1.6263670	-4.9546880	-1.6816110	H	0.2899430	2.9004980	1.5479830		
H	-3.1032110	-5.7424730	-0.3179390	H	0.4181270	1.5335870	2.6583270		
H	-0.0668930	-3.9590550	-2.7938550	H	0.1539060	1.2348940	0.9383360		
H	-1.8496500	-5.6679510	-2.4697800	C	-2.1151350	0.5056540	2.3586800		
				H	-3.2025610	0.4795630	2.4975070		
(S)-TS-back				H	-1.8424520	-0.2235510	1.5935280		
				H	-1.6569250	0.1761380	3.2968280		
Conformation name		Extrapolated		H	-3.9018680	-1.1174210	-3.0726540		
		Free energy (kcal/mol)		C	-4.3904750	-1.8564790	-1.1262420		
		C	-4.0747600	-2.8023100	-0.1375760				
		C	-5.6822120	-1.3067430	-1.1348160				
TS4-Sb-lowest				0.0		C	-5.0226080	-3.1852910	0.8165080
		H	-3.0818570			-3.2424330	-0.1159040		
	1			1.9		C	-6.6331480	-1.6858910	-0.1817540
	2	2.4		H	-5.9475790	-0.5794590	-1.8986480		
	2			C	-6.3053450	-2.6274690	0.7987210		
	3	1.5		H	-4.7601950	-3.9226330	1.5701170		
TS4-Sb-lowest.log				H	-7.6281580	-1.2505360	-0.2093230		
						H	-7.0428310	-2.9275640	1.5375850
Potential Energy $=-2233.46543$				H	3.9990760	-0.5681260	-0.8127540		
Zero-point Energy $=-2232.93478$				O	4.9180340	-0.1483500	-0.9877360		
Free Energy = -2232.98492				C	5.6569310	-0.0982780	0.0937080		
				C	7.0254430	0.5709370	-0.2147380		
				O	5.3852560	-0.4903180	1.2095120		
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.55860$				F	7.8150200	0.5823730	0.8703240		
				F	6.8529280	1.8500810	-0.6187910		
Nimag $=1\left(-192.3533 \mathrm{~cm}^{-1}\right)$				F	7.6781810	-0.0869450	-1.1987410		

Charge $=0$ Multiplicity $=1$

C	-2.3955980	2.4865830	0.7785440
C	-1.3161090	3.9298080	-0.7440620
C	-1.2860590	2.5499090	-1.4048870
N	-2.1288780	1.7612910	-0.4884320
N	-2.0238940	3.8527700	0.4051680
O	-0.8334860	4.9563420	-1.2256140
C	-2.4697650	5.0583040	1.0982740
H	-2.7242770	5.8123630	0.3502560
H	-3.3540380	4.8277010	1.6926350
H	-1.6940600	5.4670470	1.7516100

1.log

Potential Energy $=-2233.46774$
Zero-point Energy $=-2232.93705$
Free Energy = -2232.98699
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 2234.03861

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-2233.55785$
Nimag $=1\left(-170.9527 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-1.8852200	2.5765870	1.2115560
C	-1.6050980	3.4927530	-0.9449790
C	-1.7219820	1.9825740	-1.1607040
N	-2.0737010	1.5139850	0.1919760
N	-1.8021620	3.7677550	0.3640070
O	-1.4330760	4.3241830	-1.8379390
C	-2.0397650	5.1348930	0.8188200
H	-2.6154150	5.6576070	0.0518930
H	-2.6116760	5.1133230	1.7466490
H	-1.1071300	5.6813010	0.9837480
C	-2.5947170	0.3140520	0.5128910
H	-2.9837310	0.2655960	1.5273000
C	-2.6634770	-0.8381500	-0.2506600
C	-3.5960680	-1.9682770	0.1496610
H	-3.1347190	-2.9264490	-0.1113500
H	-3.7266590	-1.9634870	1.2381460
H	-0.7490840	1.5789840	-1.4714650
C	-0.6397750	2.3701280	2.1510190
H	-2.7852940	2.6346200	1.8375400
H	-2.3684890	-0.8105830	-1.2926950
Cl	-0.4914990	-1.7713120	0.3938080
N	1.1433030	-2.6604090	0.7426650
C	1.2343040	-3.7956370	1.5521520
C	2.3398460	-2.2527310	0.2272970
C	2.6986370	-4.2143880	1.5948450
C	3.4309800	-3.1925460	0.7100300
H	2.7816030	-5.2413450	1.2290350
H	3.9168140	-3.6434890	-0.1602910
H	. 1864690	-2.6093790	1.2439530
H	3.0356890	-4.2044890	2.6349580
O	2.4807750	-1.2711490	-0.5123460
O	0.2938900	-4.3296240	2.1110260
C	-2.7691030	1.7212200	-2.2533860
H	-2.7769410	0.6859380	-2.5908060
H	-3.7704130	1.9870800	-1.9020550
H	-2.5189640	2.3535250	-3.1087340
C	-0.5152300	3.5760430	3.1088980
H	0.2554950	3.3609310	3.8557500
H	-0.2184550	4.4914940	2.5936030
H	-1.4506650	3.7656820	3.6478240
C	0.6539950	2.2288520	1.3294870
H	0.8418580	3.1151560	0.7145770
H	1.5077400	2.1098680	2.0045940
H	0.6250290	1.3502440	0.6780460
C	-0.8430240	1.1121050	3.0219520
H	-1.7850350	1.1552800	3.5817080
H	-0.8234560	0.1894140	2.4390320
H	-0.0306970	1.0488280	3.7532240
C	-4.9566250	-1.8776400	-0.5279670
C	-5.9989950	-1.1307930	0.0428020
C	-5.1909250	-2.5242280	-1.7509510
C	-7.2401440	-1.0282070	-0.5922030
H	-5.8401480	-0.6286430	0.9943030
C	-6.4299140	-2.4222110	-2.3922330
H	-4.3982050	-3.1155290	-2.2033820
C	-7.4594630	-1.6724840	-1.8148050
H	-8.0358860	-0.4496980	-0.1310780
H	-6.5913500	-2.9319140	-3.3380830
H	-8.4236650	-1.5950280	-2.3088320
H	3.8312090	-0.7171300	-1.0224150
O	4.6511420	-0.2855950	-1.4591250
C	5.6108760	-0.0562610	-0.5959110
O	5.6263960	-0.2971460	0.5932020
C	6.8261200	0.6091770	-1.3000530
F	6.4792470	1.8029400	-1.8322250
F	7.8319400	0.8172670	-0.4364790
F	7.2913840	-0.1689930	-2.3028370

$2 . \log$			
Potential Energy $=-2233.46485$			
Zero-point Energy = -2232.93457			
Free Energy $=-2232.98474$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G**PCM $=-$2234.03723			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-2233.55711$			
Nimag $=1\left(-171.8028 \mathrm{~cm}^{-1}\right)$			
Charge $=0$ Multiplicity $=1$			
C	-2.7058680	3.0154530	0.6276940
C	-1.8811130	3.7965180	-1.4413000
C	-1.9170200	2.2731130	-1.5712490
N	-2.5903330	1.8808380	-0.3214810
N	-2.4226090	4.1501540	-0.2540050
O	-1.4918530	4.5736960	-2.3151280
C	-2.8014910	5.5340440	0.0175810
H	-3.1744500	5.9778370	-0.9081480
H	-3.5909720	5.5517160	0.7690210
H	-1.9556600	6.1303670	0.3706090
C	-3.1477100	0.6794350	-0.0599520
H	-3.7954200	0.6824560	0.8139220
C	-2.9881560	-0.5168990	-0.7311370
C	-3.9937280	-1.6392060	-0.5170510
H	-4.3015620	-1.6611780	0.5344890
H	-4.9005250	-1.4058200	-1.0957840
H	-0.8917990	1.8807690	-1.6040410
C	-1.7561670	2.9254220	1.8793070
H	-3.7422300	3.0792560	0.9854010
H	-2.4203300	-0.5450690	-1.6532300
Cl	-0.9680190	-1.2229210	0.5375410
N	0.5877030	-1.8890280	1.3528590
C	0.5680300	-2.6744550	2.5094870
C	1.8414160	-1.6568590	0.8628440
C	2.0112280	-3.0218040	2.8517570
C	2.8541230	-2.3588540	1.7498760
H	2.1140180	-4.1098580	2.8798160
H	3.4118360	-3.0776490	1.1421560
H	3.5678170	-1.6198360	2.1241040
H	2.2346870	-2.6415540	3.8523500
O	2.0785310	-0.9803870	-0.1447560
O	-0.4373480	-3.0010550	3.1121990
C	-2.6569520	1.9112220	-2.8685320
H	-2.5856000	0.8525200	-3.1133250
H	-3.7133950	2.1878530	-2.8005930
H	-2.1985990	2.4779830	-3.6825020
C	-1.9106450	4.2021860	2.7358800
H	-1.3662340	4.0694240	3.6762110
H	-1.4985940	5.0869160	2.2468490
H	-2.9589220	4.3991320	2.9887990
C	-0.2872460	2.7711010	1.4466650
H	0.0463530	3.6185750	0.8386330
H	0.3554040	2.7285790	2.3322150
H	-0.1288030	1.8492440	0.8791010
C	-2.1694420	1.7293900	2.7631340
H	-3.2287440	1.7814810	3.0421000
H	-1.9799080	0.7671060	2.2844990
H	-1.5855070	1.7499860	3.6890280
C	-3.5179310	-3.0181110	-0.9373960
C	-3.2595130	-3.3032360	-2.2880760
C	-3.3525920	-4.0450890	0.0025000
C	-2.8352680	-4.5740310	-2.6861440
H	-3.3964510	-2.5271430	-3.0375770
C	-2.9330340	-5.3206520	-0.3908330
H	-3.5509050	-3.8454600	1.0524250
C	-2.6698580	-5.5891850	-1.7371680
H	-2.6405460	-4.7731820	-3.7363370
H	-2.8118150	-6.1015390	0.3548520

H	-2.3435480	-6.5784020	-2.0450910	C	-0.7897640	-2.8703940	-1.9232950
H	3.4846340	-0.5998850	-0.6684180	C	0.5001350	-2.7376310	-1.3852320
O	4.3475510	-0.3149500	-1.1398130	C	-1.4921620	-4.0621650	-1.6839380
C	5.2296730	0.1802760	-0.3057800	C	1.0703550	-3.7643510	-0.6263500
O	5.1357230	0.3139860	0.8964810	H	1.0619400	-1.8253880	-1.5642640
C	6.5119960	0.6143270	-1.0691440	C	-0.9266890	-5.0917320	-0.9247800
F	6.2277470	1.5668820	-1.9857080	H	-2.4887120	-4.1871040	-2.1011280
F	7.4326260	1.1102860	-0.2282180	C	0.3581460	-4.9453350	-0.3924520
F	7.0642440	-0.4331310	-1.7217370	H	2.0718800	-3.6435580	-0.2230510
		H	-1.4865550	-6.0071890	-0.7550620		
3.log	H	0.8019860	-5.7448710	0.1936970			
Potential Energy =-2233.46543	H	3.8284510	0.5742090	0.5543120			
Zero-point Energy =-2232.93491	O	4.6564440	0.3192020	1.1008010			
Free Energy =-2232.98531	C	5.6489640	-0.0924380	0.3491570			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$	C	6.8745280	-0.4633750	1.2304460			
2234.03863		O	5.6885440	-0.1951230	-0.8587350		
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated	F	7.8968810	-0.9020480	0.4800070			
free energy from qRRHO) =-2233.55852	F	6.5590760	-1.4359020	2.1151410			
Nimag = 1 (-190.9753 cm							

	e $=0$ Multip	$y=1$				
C	-3.7783670	-0.3556430	1.4307710			
C	-5.5319040	0.9399670	0.5300570	(R)-TS-back		
C	-4.5051520	0.8098680	-0.5974540			
N	-3.5493990	-0.1532610	-0.0213310	Conformation	Extrapolat	
N	-5.1249230	0.1984310	1.5845880	name	Free energy	
O	-6.5926070	1.5624790	0.4534660		(kcal/mol)	
C	-6.0338280	-0.1106920	2.6850990			
H	-7.0376160	-0.2451630	2.2761610	TS4-Rb-lowest	0.0	
H	-5.7147660	-1.0342610	3.1686120			
H	-6.0673800	0.6908200	3.4281010	1	0.6	
C	-2.6275470	-0.8701160	-0.6939810	2	0.9	
H	-2.2022530	-1.6857150	-0.1159730	2	0.9	
C	-2.1528860	-0.6753540	-1.9787980	3	1.7	
C	-1.4118530	-1.7614940	-2.7501900			
H	-0.6387170	-1.2846260	-3.3636260	TS4-Rb-lowest.log		
H	-4.0239930	1.7817560	-0.7703030	Potential Energy	2233.46612	
C	-2.6997920	0.3124040	2.3611140	Zero-point Energy	-2232.93524	
H	-3.7988860	-1.4326750	1.6424910	Free Energy = -22	. 98573	
H	-2.6187670	0.0754620	-2.6051770	Single-Point Ener	B3LYP-D3(B)	$6-311+\mathrm{G}^{* *} \mathrm{PCM}=$
Cl	-0.4011950	0.9407510	-1.4227980	2234.03577		
N	0.9772170	2.2364860	-1.2374980	Free Energy B3L	$\mathrm{D} 3(\mathrm{BJ}) / 6-31$	$\mathrm{G}^{* *} \mathrm{PCM}$ (extrapolated
C	0.8642230	3.5373580	-1.7327390	free energy from	$\mathrm{RHO})=-223$	
C	2.1701300	1.9802970	-0.6268790	Nimag $=1$ (-203.2	$29 \mathrm{~cm}^{-1}$)	
C	2.1590610	4.2706300	-1.4038050	Charge $=0$ Multip	ty $=1$	
C	3.0278930	3.2339150	-0.6726880	C -3.3008510	-1.1285990	-1.2914060
H	1.9214550	5.1439270	-0.7902370	C $\quad-5.2086170$	-2.0593700	-0.2577480
H	3.2836630	3.5254180	0.3499950	C -4.1217700	-1.9819430	0.8201900
H	3.9611830	3.0048060	-1.1949460	N -3.1343610	-1.0759070	0.1821480
H	2.6063740	4.6305030	-2.3342530	N -4.7156180	-1.5244490	-1.3974470
O	2.4761440	0.8917700	-0.1247690	O -6.3450400	-2.5092930	-0.0981590
O	-0.1084200	3.9782560	-2.3174940	C $\quad-5.5671230$	-1.2645690	-2.5540690
C	-5.2299520	0.3521020	-1.8721190	H -6.5544980	-0.9647180	-2.1962530
H	-4.6024440	0.4139090	-2.7601200	H $\quad-5.1374910$	-0.4550950	-3.1452800
H	-5.5919560	-0.6746850	-1.7645910	H -5.6812330	-2.1493110	-3.1868930
H	-6.0885930	1.0116550	-2.0192300	C -2.6007950	-0.0235120	0.8367350
C	-3.1023040	0.1129540	3.8393230	H -2.8642470	0.0193710	1.8887950
H	-2.2786010	0.4406840	4.4814040	C -1.7481330	0.9609320	0.3653790
H	-3.9804640	0.6996030	4.1160260	C -1.6451990	2.2967620	1.0842670
H	-3.2992310	-0.9403820	4.0697430	H -0.6224410	2.6771120	0.9940490
C	-2.5681550	1.8168630	2.0633320	H -1.8405000	2.1532950	2.1529280
H	-3.5159530	2.3440500	2.2147610	H -1.4573530	0.9631370	-0.6806990
H	-1.8323550	2.2628540	2.7405690	C -4.6837830	-1.5467210	2.1688460
H	-2.2260370	1.9974810	1.0397390	H -5.4704360	-2.2546630	2.4400500
C	-1.3360180	-0.3805600	2.1575160	H -3.9230020	-1.5757000	2.9528070
H	-1.4063050	-1.4636370	2.3134640	H $\quad-5.1247410$	-0.5465510	2.1268060
H	-0.9142000	-0.1963460	1.1678360	H -3.6774990	-2.9784400	0.9320750
H	-0.6227200	0.0103330	2.8903460	C -2.3083690	-2.0806760	-2.0456340
H	-2.1220120	-2.2089050	-3.4596270	H -3.1822950	-0.1150950	-1.6896070

Cl	0.2191250	-0.0853760	1.3725210	H	-0.4999200	2.4297500	1.4201340
N	1.8748670	-0.6814830	2.1135310	H	-1.7802110	1.8144610	2.4606280
C	3.0460280	-0.6931600	1.4153300	H	-1.3757580	1.0211110	-0.5059020
C	2.0030770	-1.1167490	3.4339620	C	-4.7808620	-1.7061380	1.9009100
C	4.1566500	-1.2059950	2.3162300	H	-5.6070470	-2.4043450	2.0542780
C	3.4657930	-1.4796240	3.6618390	H	-4.0438440	-1.8818010	2.6883500
H	4.9438360	-0.4489110	2.3708200	H	-5.1730670	-0.6889330	1.9904080
H	3.8555830	-0.8668030	4.4792740	H	-3.8075620	-2.9990700	0.4955700
O	1.0907140	-1.1834540	4.2380170	C	-2.3309450	-1.7569920	-2.3051800
O	3.1564830	-0.3373420	0.2345770	H	-3.1223800	0.1777640	-1.6879310
C	-2.6353330	-2.0632550	-3.5552670	Cl	0.2107420	-0.3895880	1.3914400
H	-1.8480350	-2.5959910	-4.0981740	N	1.8272150	-1.1668340	2.0423010
H	-3.5803090	-2.5611870	-3.7836290	C	3.0253380	-1.0405600	1.4036480
H	-2.6748620	-1.0421860	-3.9515630	C	1.8928980	-1.9135590	3.2202550
C	-2.3905470	-3.5283320	-1.5262170	C	4.0916980	-1.7750780	2.1995480
H	-1.7435840	-4.1691420	-2.1340200	C	3.3384310	-2.3597840	3.4054900
H	-2.0463880	-3.6075500	-0.4904420	H	4.8749340	-1.0651570	2.4807630
H	-3.4062130	-3.9316970	-1.5935060	H	3.7022210	-1.9841410	4.3656750
C	-0.8708420	-1.5589130	-1.8645760	O	0.9467860	-2.1509110	3.9492890
H	-0.7525780	-0.5501000	-2.2757140	O	3.1887520	-0.4207110	0.3446390
H	-0.5699240	-1.5440250	-0.8153560	C	-2.6253090	-1.5140430	-3.8020210
H	-0.1769230	-2.2137130	-2.4016630	H	-1.8485390	-1.9980100	-4.4026560
H	3.5248150	-2.5256460	3.9742890	H	-3.5843130	-1.9345840	-4.1126260
H	4.5919550	-2.1019600	1.8637310	H	-2.6161710	-0.4466820	-4.0507910
C	-2.6092740	3.3330440	0.5230770	C	-2.4859500	-3.2576960	-1.9952190
C	-3.9029410	3.4755300	1.0482320	H	-1.8530390	-3.8360900	-2.6761310
C	-2.2282040	4.1570940	-0.5469370	H	-2.1690720	-3.4958380	-0.9751580
C	-4.7945890	4.4117340	0.5160230	H	-3.5159770	-3.6015750	-2.1352250
H	-4.2143040	2.8530440	1.8837550	C	-0.8764960	-1.3311820	-2.0320760
C	-3.1173850	5.0930340	-1.0849640	H	-0.7070500	-0.2810140	-2.2953210
H	-1.2261690	4.0680600	-0.9601020	H	-0.5965620	-1.4771390	-0.9871390
C	-4.4052800	5.2228960	-0.5553700	H	-0.2005620	-1.9347580	-2.6464640
H	-5.7899050	4.5103920	0.9403690	H	3.3667690	-3.4521250	3.4440750
H	-2.8022950	5.7228770	-1.9122760	H	4.5488310	-2.5370340	1.5618090
H	-5.0961730	5.9518630	-0.9688890	C	-2.4337560	3.2529350	0.9959330
H	4.4803670	-0.2698870	-0.5474300	C	-3.7549830	3.3593370	1.4577440
O	5.2819090	-0.2286310	-1.1867560	C	-1.9556970	4.2293570	0.1089420
C	6.2986220	0.4182710	-0.6714190	C	-4.5782580	4.4096580	1.0416160
O	6.3866630	0.9320900	0.4244020	H	-4.1424020	2.6175570	2.1522320
C	7.4785950	0.4672500	-1.6819120	C	-2.7764010	5.2806150	-0.3129460
F	7.1144790	1.1043420	-2.8177230	H	-0.9315970	4.1687790	-0.2519420
F	8.5339270	1.1146620	-1.1642670	C	-4.0919720	5.3738660	0.1517850
F	7.8786260	-0.7794740	-2.0194450	H	-5.5963000	4.4773530	1.4150740
				H	-2.3863410	6.0274770	-0.9988570
$1 . \log$				H	-4.7299250	6.1914670	-0.1711260
Potential Energy $=-2233.46607$				H	4.5374210	-0.2996810	-0.3961310
Zero-point Energy =-2232.93504				O	5.3771070	-0.2739740	-0.9838440
Free Energy $=-2232.98523$				C	6.1586870	0.7410680	-0.7049120
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$				O	5.9988500	1.6111220	0.1249910
2234.03525 (B)				C	7.4204920	0.7148700	-1.6125220
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated				F	7.0802630	0.7407870	-2.9205090
free energy from qRRHO) $=-2233.55440$				F	8.2148870	1.7690000	-1.3704050
Nimag $=1\left(-203.4857 \mathrm{~cm}^{-1}\right)$				F	8.1422950	-0.4089450	-1.3974070

Charge $=0$ Multiplicity $=1$

C	-3.2966830	-0.8747570	-1.4396090
C	-5.2671500	-1.8516490	-0.5813030
C	-4.2042890	-1.9768120	0.5157690
N	-3.1623870	-1.0383910	0.0290560
N	-4.7250260	-1.1838230	-1.6244170
O	-6.4252730	-2.2672610	-0.5071230
C	-5.5380460	-0.7245360	-2.7462660
H	-6.5199940	-0.4353080	-2.3655850
H	-5.0623340	0.1411190	-3.2083660
H	-5.6745530	-1.5043010	-3.5009780
C	-2.5964370	-0.1163530	0.8357730
H	-2.8817150	-0.2110850	1.8787430
C	-1.6902180	0.8834270	0.5241440
C	-1.5427480	2.0964180	1.4286310

$2 . \log$
Potential Energy $=-2233.46318$
Zero-point Energy $=-2232.93256$
Free Energy $=-2232.98266$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -

2234.03449

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-2233.55397$
Nimag $=1\left(-210.8518 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-3.9907910	-1.0164820	-0.9464790
C	-5.9962170	-0.9961520	0.2988210
C	-4.8967050	-0.4768100	1.2316440
N	-3.8000060	-0.1938080	0.2728710

N	-5.4481600	-1.2314190	-0.9144640
O	-7.1820660	-1.1446750	0.6016960
C	-6.2710620	-1.5317320	-2.0820460
H	-7.2012990	-0.9645640	-2.0049490
H	-5.7406850	-1.2308210	-2.9862270
H	-6.5178450	-2.5950880	-2.1486560
C	-3.1225930	0.9763750	0.2865730
H	-3.3782970	1.6223050	1.1205470
C	-2.1483350	1.4337220	-0.5812480
C	-1.8804550	2.9282130	-0.6977060
H	-1.9665750	3.3972020	0.2886820
H	-2.6767860	3.3692440	-1.3159290
H	-1.8572040	0.8248880	-1.4314950
C	-5.3813240	0.6884370	2.0873380
H	-6.2562310	0.3446970	2.6441410
H	-4.6252320	1.0013240	2.8115670
H	-5.6800120	1.5477860	1.4797850
H	-4.5943370	-1.2954310	1.8962330
C	-3.1484230	-2.3382090	-1.0034560
H	-3.7386020	-0.4059480	-1.8205200
Cl	-0.3945840	0.8091800	1.0480730
N	1.0963940	0.4412040	2.1667260
C	2.2361870	-0.1587690	1.7168030
C	1.1354130	0.7803270	3.5209200
C	3.2160670	-0.2890720	2.8699630
C	2.4931070	0.3526750	4.0651710
H	4.1500890	0.2099730	2.5978950
H	3.0069650	1.2356330	4.4553080
O	0.2308090	1.3221250	4.1300980
O	2.4128690	-0.5295290	0.5493110
C	-3.5113930	-3.1202040	-2.2850770
H	-2.8103160	-3.9519850	-2.4074430
H	-4.5162650	-3.5464730	-2.2432580
H	-3.4362230	-2.4924450	-3.1803990
C	-3.3982150	-3.2338310	0.2244330
H	-2.8537900	-4.1760450	0.1036970
H	-3.0394480	-2.7657290	1.1462440
H	-4.4580950	-3.4819180	0.3428780
C	-1.6520550	-1.9807570	-1.0733950
H	-1.4195240	-1.3900360	-1.9667260
H	-1.3223450	-1.4251060	-0.1936990
H	-1.0612600	-2.9009830	-1.1279260
H	2.3380320	-0.3365170	4.8994850
H	3.4407840	-1.3492340	3.0206210
C	-0.5472160	3.2917590	-1.3263400
C	-0.2878870	2.9876050	-2.6727010
C	0.4422450	3.9620320	-0.5933380
C	0.9301090	3.3313990	-3.2657070
H	-1.0468480	2.4831980	-3.2663330
C	1.6614970	4.3129870	-1.1831730
H	0.2587530	4.2103610	0.4487220
C	1.9112960	3.9958640	-2.5214870
H	1.1102180	3.0864770	-4.3087700
H	2.4140640	4.8323390	-0.5963060
H	2.8573500	4.2665490	-2.9813900
H	3.7121550	-1.1494270	-0.0000130
O	4.4927890	-1.6179090	-0.4722120
C	5.6426100	-1.0348500	-0.2361470
O	5.8655410	-0.0605940	0.4520500
C	6.7877000	-1.7725740	-0.9845790
F	6.5838100	-1.7475440	-2.3211420
F	7.9762220	-1.2011600	-0.7363460
	6.8597750	-3.0678710	-0.6035340

3.log

Potential Energy $=-2233.46277$
Zero-point Energy $=-2232.93196$
Free Energy $=-2232.98065$

Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
2234.03485
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.55273$
Nimag $=1\left(-221.9132 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-3.1584530	-2.2484970	-0.4667830
C	-5.2630690	-1.9280350	0.5547800
C	-4.3275320	-0.8621820	1.1349350
N	-3.1880880	-0.9150100	0.1850450
N	-4.5767060	-2.6375010	-0.3690790
O	-6.4464170	-2.0874420	0.8615140
C	-5.2418430	-3.5903310	-1.2524250
H	-6.2349070	-3.2043230	-1.4928770
H	-4.6645720	-3.6958980	-2.1715000
H	-5.3555390	-4.5729650	-0.7858910
C	-2.6773370	0.2028990	-0.3766570
H	-3.1008660	1.1234910	0.0083110
C	-1.6766090	0.3180890	-1.3254730
C	-1.5293870	1.5430730	-2.2238310
H	-1.8807260	1.2486410	-3.2224600
H	-0.4638230	1.7714490	-2.3382760
H	-1.2251020	-0.5828600	-1.7292440
C	-5.0273120	0.4822110	1.2992050
H	-5.8959000	0.3224580	1.9423680
H	-4.3815450	1.2179960	1.7846090
H	-5.3796140	0.8824430	0.3441760
H	-3.9891020	-1.2013830	2.1215450
C	-2.1647990	-3.2869250	0.1615200
H	-2.8972720	-2.1117940	-1.5219750
Cl	0.0097550	0.8107780	0.3758520
N	1.4984790	1.2249670	1.5067340
C	2.7564720	0.7480430	1.2873610
C	1.3965270	2.0466720	2.6305190
C	3.6859910	1.2822890	2.3648960
C	2.7809120	2.1426100	3.2617760
H	4.4899080	1.8502890	1.8878110
H	3.0798050	3.1937480	3.2959630
O	0.3706550	2.5779810	3.0160790
O	3.0641840	-0.0004890	0.3503580
C	-2.3038080	-4.6361870	-0.5777280
H	-1.5031270	-5.3073130	-0.2508840
H	-3.2519570	-5.1342290	-0.3632460
H	-2.2101900	-4.5174710	-1.6633030
C	-2.4291710	-3.5027560	1.6634520
H	-1.7672890	-4.2896840	2.0393980
H	-2.2233800	-2.5987180	2.2447270
H	-3.4584740	-3.8217330	1.8574710
C	-0.7211550	-2.7874760	-0.0316820
H	-0.4717600	-2.6742790	-1.0929130
H	-0.5476010	-1.8340640	0.4702870
H	-0.0243450	-3.5188970	0.3906360
H	2.7234570	1.7801760	4.2917380
H	4.1432450	0.4390180	2.8903300
C	-2.2765520	2.7941960	-1.8016890
C	-1.6607010	3.7816580	-1.0175820
C	-3.6059770	2.9980930	-2.2064230
C	-2.3545550	4.9368080	-0.6420560
H	-0.6304040	3.6466580	-0.7015280
C	-4.3041870	4.1500770	-1.8329200
H	-4.0962450	2.2498570	-2.8249730
C	-3.6796720	5.1243430	-1.0469960
H	-1.8577600	5.6907440	-0.0378680
H	-5.3308330	4.2888080	-2.1600430
H	-4.2183090	6.0223960	-0.7586340
H	4.4771560	-0.5550870	0.0883270
O	5.3606920	-1.0414950	-0.0983450
C	6.2184790	-0.2964520	-0.7523380

O 6.0850070	0.8453300	-1.1397110	N	-0.3978570	-0.6315820	1.8649200
C 7.5368390	-1.0820150	-0.9993610	C	-0.7766850	-1.1686660	3.0935660
F 7.3024910	-2.2200340	-1.6903770	C	0.8306060	-1.0403030	1.5649360
F 8.4162630	-0.3473280	-1.6977570	C	0.3165750	-2.0852860	3.6416530
F 8.1183410	-1.4248810	0.1729530	C	1.4286050	-1.9865420	2.5908720
			H	-0.0848200	-3.0963210	3.7555430
Formation of syn-aminal syn-18b (TS5)			H	1.6711590	-2.9410090	2.1140590
			H	2.3630620	-1.5690780	2.9778770
Conformation name	Extrapolated Free energy (kcal/mol)		H	0.6206480	-1.7372640	4.6326570
			O	1.4394860	-0.6535150	0.5116560
			O	-1.8443010	-0.9175730	3.6424710
			H	2.4918950	-1.0858790	0.3430170
TS5-int-lowest	0.0		O	3.6545720	-1.5644430	0.1757170
			C	4.1898400	-1.3628880	-0.9718070
1	6.0		C	5.6122050	-1.9990250	-1.0639670
2	0.4		O	3.7456330	-0.7647180	-1.9484080
			F	6.4442030	-1.4802660	-0.1254900
3	0.4		F	5.5650180	-3.3399090	-0.8600690
	2.5		F	6.1895210	-1.7974740	-2.2649060
4	2.9		C	-4.3991650	-1.6148080	-0.2566480
TS5-int-lowest.log			C	-4.2834460	-2.9728860	-0.5841800
			C	-5.4881580	-0.8905870	-0.7674960
Potential Energy $=-2233.49662$			C	-5.2268660	-3.5932020	-1.4097180
Free Energy $=-2233.01536$			H	-3.4509800	-3.5495840	-0.1901910
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 2234.07919			C	-6.4311560 -5.6072120	-1.5055800 0.1594780	-1.5950360 -0.5103080
			C	-6.3020670	-2.8603420	-1.9201860
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			H	-5.1209280	-4.6468120	-1.6516680
free energy from qRRHO) $=-2233.59792$			H	-7.2683870	-0.9299920	-1.9792050
Nimag $=1\left(-242.8971 \mathrm{~cm}^{-1}\right)$			H	-7.0362030	-3.3405350	-2.5605070

Charge $=0$ Multiplicity $=1$

C	-0.0676900	2.1356700	-0.6441190
C	0.9788090	3.1016740	1.2401920
C	-0.5069930	2.9616280	1.5893770
N	-0.9509820	1.9741380	0.5565620
N	1.1690310	2.5910120	0.0026550
O	1.8373290	3.5880490	1.9750120
C	2.4970760	2.4401650	-0.5832410
H	3.2135170	2.3313810	0.2325880
H	2.5237350	1.5438740	-1.2048540
H	2.7799400	3.3122370	-1.1802000
C	-1.6942840	0.9372200	0.8608640
H	-2.1639830	0.9970090	1.8353970
C	-2.4458780	0.0269650	-0.0963270
C	-3.3817480	-0.9441160	0.6443950
H	-2.7845330	-1.6901020	1.1700190
H	-3.9068770	-0.3570510	1.4072770
H	-3.0491590	0.6961920	-0.7150180
C	-0.7655650	2.6180150	3.0469230
H	-0.2965590	3.4011620	3.6471960
H	-1.8332430	2.6174410	3.2788630
H	-0.3272610	1.6609880	3.3316340
H	-0.9998720	3.9116160	1.3569160
C	-0.6157420	3.1043120	-1.7578170
H	0.0974660	1.1490490	-1.0755460
Cl	-1.4136870	-0.8828310	-1.2879210
C	0.2834820	2.9306420	-3.0045730
H	-0.1396280	3.5043420	-3.8349190
H	1.2995430	3.2964250	-2.8415670
H	0.3395630	1.8825890	-3.3176700
C	-2.0544100	2.7154100	-2.1509580
H	-2.1112020	1.6905540	-2.5296750
H	-2.7515780	2.8350020	-1.3156950
H	-2.3965060	3.3763980	-2.9532310
C	-0.6004470	4.5850190	-1.3291630
H	0.3842370	4.9041600	-0.9752460
H	-0.8561500	5.2076520	-2.1922510
H	-1.3401610	4.8007420	-0.5522300

1.log

Potential Energy $=-2233.48496$
Zero-point Energy $=-2232.95406$
Free Energy =-2233.00229
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.07105

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from q RRHO $)=-2233.58838$
Nimag $=1\left(-101.8706 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-0.0106870	2.4907310	-0.4376370
C	0.2278160	2.9209930	1.8731100
C	-1.2757390	2.9052890	1.5746230
N	-1.2982800	2.1796660	0.2681380
N	0.8815700	2.6473780	0.7203170
O	0.7354740	3.1427780	2.9716370
C	2.3304100	2.4804990	0.6638020
H	2.6648120	2.1164680	1.6368010
H	2.5872920	1.7457870	-0.1006790
H	2.8398480	3.4258870	0.4535010
C	-2.0723070	1.1379720	0.0490340
H	-2.8608890	1.0032940	0.7807140
C	-2.4184770	0.5864320	-1.3307070
C	-3.7019110	-0.2802240	-1.4140390
H	-4.4454720	0.2145910	-0.7783600
H	-4.0542820	-0.1513040	-2.4427020
H	-2.6536750	1.4886440	-1.8984220
C	-2.1385950	2.3733380	2.7040690
H	-1.9397210	2.9993540	3.5772540
H	-3.2024320	2.4597560	2.4686050
H	-1.9108740	1.3404560	2.9632030
H	-1.5808930	3.9353060	1.3617420
C	-0.0410040	3.7264970	-1.4126750
H	0.2870370	1.6048200	-0.9971630
Cl	-1.0450820	-0.1541010	-2.2584830
C	1.2661130	3.6896900	-2.2400150
H	1.2264660	4.4672850	-3.0090340

H	2.1524350	3.8799850	-1.6308330	C	-1.6667590	0.0829670	3.0141540
H	1.3954150	2.7264540	-2.7449950	H	-1.4802460	0.3492260	4.0572100
C	-1.2262820	3.6129790	-2.3913350	H	-2.7366170	-0.1110050	2.9072590
H	-1.1699180	2.7030320	-2.9965030	H	-1.1032980	-0.8209730	2.7804590
H	-2.1887250	3.6480110	-1.8707510	H	-1.8605040	2.1276850	2.3968520
H	-1.2022700	4.4615950	-3.0819850	C	-0.7439880	3.4084070	-0.3733680
C	-0.1316300	5.0793390	-0.6790390	H	0.2493010	1.4936390	-0.7546610
H	0.6424320	5.1894560	0.0860750	Cl	-0.5614480	-0.3093210	-2.3907240
H	0.0075460	5.8868170	-1.4047110	C	0.4313480	4.1504000	-1.0519320
H	-1.1098010	5.2357390	-0.2145750	H	0.0558580	5.0732780	-1.5043210
N	-1.1139780	-0.6278450	1.0797740	H	1.2118260	4.4311920	-0.3418930
C	-1.7910530	-1.2411960	2.1367090	H	0.8849040	3.5506130	-1.8483690
C	0.1167650	-1.1198340	1.0117440	C	-1.8634140	3.2365380	-1.4183050
C	-0.9380270	-2.3467230	2.7543530	H	-1.5253300	2.6644420	-2.2884000
C	0.3922140	-2.2354450	2.0023130	H	-2.7526590	2.7630160	-0.9909670
H	-1.4392100	-3.3075140	2.6039190	H	-2.1698940	4.2231180	-1.7789880
H	0.6757970	-3.1443340	1.4634900	C	-1.2760370	4.2663930	0.7906410
H	1.2355540	-1.9600270	2.6427460	H	-0.5454950	4.3652660	1.5992110
H	-0.8488910	-2.1842280	3.8315430	H	-1.4928330	5.2734050	0.4209180
O	0.9893500	-0.6705680	0.1905560	H	-2.2098390	3.8708160	1.2017360
O	-2.9060750	-0.9031140	2.5134950	N	-0.3852940	-1.8578010	0.4756280
H	1.9902380	-1.1695170	0.2266670	C	-0.8543680	-3.0948900	0.8726380
O	3.1535260	-1.7760390	0.2709330	C	0.9553810	-1.8789870	0.4420200
C	4.1032370	-1.2430160	-0.3996990	C	0.2968100	-4.0774160	1.1038010
C	5.4309260	-2.0554690	-0.2715260	C	1.5429090	-3.2397990	0.8027220
O	4.1011350	-0.2270230	-1.0936050	H	0.1760400	-4.9380370	0.4392860
F	5.8339460	-2.1392190	1.0223750	H	2.1335090	-3.6178540	-0.0377040
F	5.2755800	-3.3260430	-0.7243680	H	2.2197850	-3.1354290	1.6562660
F	6.4453920	-1.5058180	-0.9691460	H	0.2568890	-4.4483060	2.1321790
C	-3.6811230	-1.7670060	-1.1067940	O	1.6585160	-0.8705390	0.1495960
C	-4.2671320	-2.2631730	0.0661790	O	-2.0475620	-3.3668060	1.0228970
C	-3.1858400	-2.6900760	-2.0444480	H	2.9908630	-0.9936730	0.0928700
C	-4.3257870	-3.6380280	0.3166990	O	4.0898510	-1.1087500	0.0847470
H	-4.6750240	-1.5708210	0.7947880	C	4.7145330	-0.3105810	-0.7252880
C	-3.2369220	-4.0638180	-1.7956780	C	6.2504860	-0.5618770	-0.6743310
H	-2.7678240	-2.3347750	-2.9806610	O	4.2597940	0.5474750	-1.4631090
C	-3.8041910	-4.5439470	-0.6103770	F	6.7351370	-0.3715400	0.5760140
H	-4.7837150	-3.9976820	1.2338120	F	6.5478190	-1.8329230	-1.0362130
H H	-2.8456240	-4.7583930	-2.5336240	F	6.9179330	0.2634070	-1.4997520
H	-3.8506140	-5.6121940	-0.4191220	C	-4.4122270	-1.0819270	-1.1209010
				C	-5.2650740	-0.1997290	-1.8054900
$2 . \log$				C	-4.8887090	-1.7204870	0.0342090
Potential Energy $=-2233.49716$				C	-6.5609250	0.0432280	-1.3444490
Zero-point Energy $=-2232.96578$				H	-4.9183150	0.2921150	-2.7114300
Free Energy $=-2233.01358$				C	-6.1876820	-1.4791690	0.4962020
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$				H	-4.2376830	-2.4099610	0.5645290
				C	-7.0260750	-0.5961730	-0.1894670
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated				H	-7.2083420	0.7247450	-1.8887040
free energy from qRRHO $)=-2233.59722$				H	-6.5429990	-1.9844700	1.3898350
	$g=1(-41.54$	cm^{-1})		H	-8.0346600	-0.4104220	0.1681380
Charge $=0$ Multiplicity $=1$							
C	-0.2079630	2.0054930	0.0927230	3.log			
C	0.2336690	1.6796300	2.3910850	Potential Energy = -2233.49340			
C	-1.2249670	1.2658580	2.1687090	Zero-point Energy =-2232.96070			
N	-1.2420470	1.0896830	0.6819630	Free Energy $=-2233.00849$			
N	0.7512260	2.0605390	1.2012560	Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 223407881			
O	0.8200500	1.6530350	3.4715570				
C	2.1754370	2.3338310	1.0310920	Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
H	2.7229610	1.7397450	1.7644590	free energy from qRRHO) $=-2233.59390$			
H	2.4855200	2.0373530	0.0285540	Nimag $=1\left(-57.5343 \mathrm{~cm}^{-1}\right)$			
H	2.4084040	3.3900490	1.1919530	Charge $=0$ Multiplicity $=1$			
C	-1.8114260	0.0648760	0.1111190	C	-2.9809140	0.1760540	-0.7843200
H	-2.4566640	-0.5140270	0.7589900	C	-3.2989800	-2.1426870	-0.4827470
C	-2.0629700	-0.1502940	-1.3692320	C	-1.8699800	-1.9682390	-1.0069420
C	-3.0049530	-1.3410270	-1.6331140	N	-1.6479400	-0.5092420	-0.7503780
H	-3.0293390	-1.4901980	-2.7159990	N	-3.8573470	-0.9199850	-0.3590240
H	-2.5888080	-2.2407270	-1.1767560	O	-3.8275400	-3.2214260	-0.2130040
H	-2.5363160	0.7594890	-1.7395210	C	-5.1434840	-0.7206130	0.2996650

H	-5.9760910	-0.7768430	-0.4076050
H	-5.2682080	-1.5029260	1.0501380
H	-5.1479590	0.2519350	0.7921500
C	-0.5216150	-0.0552300	-0.2599430
H	0.3050640	-0.7521950	-0.3210400
C	-0.0713320	1.3920670	-0.1578110
C	1.3899750	1.5074310	0.3068300
H	1.4623290	1.1963390	1.3496520
H	1.9583230	0.7841620	-0.2888760
H	-0.1485410	1.7952440	-1.1698570
C	-0.8794700	-2.9434100	-0.3907870
H	-1.2629120	-3.9488480	-0.5803230
H	0.1049620	-2.8633470	-0.8552610
H	-0.7879960	-2.8032900	0.6871560
H	-1.8850300	-2.1090050	-2.0930120
C	-3.3769310	0.8029190	-2.1736920
H	-2.9789870	0.9491390	-0.0170180
Cl	-1.1382720	2.4835280	0.8376360
C	-4.6811680	1.6073020	-1.9614660
H	-4.9174350	2.1550960	-2.8789220
H	-5.5358030	0.9651340	-1.7380580
H	-4.5774220	2.3399010	-1.1536000
C	-2.2918980	1.7804250	-2.6652510
H	-2.1121260	2.5873320	-1.9484200
H	-1.3503460	1.2671030	-2.8837390
H	-2.6265730	2.2438700	-3.5984620
C	-3.6136590	-0.2591650	-3.2653480
H	-4.3386570	-1.0174520	-2.9552440
H	-4.0132230	0.2309100	-4.1588330
H	-2.6865920	-0.7580930	-3.5639300
N	-0.4299630	-0.5585310	2.0319830
C	-1.5746620	-0.4464490	2.8024210
C	0.5817410	-1.0257320	2.7925970
C	-1.3034760	-0.8398770	4.2578970
C	0.1735090	-1.2351470	4.2487710
H	-1.9754690	-1.6545110	4.5437740
H	0.3555520	-2.2778450	4.5267570
H	0.8034610	-0.6119770	4.8911750
H	-1.5273090	0.0126010	4.9064390
O	1.7499330	-1.2709540	2.4055770
O	-2.6709330	-0.0850540	2.3761520
H	2.6082350	-1.6864800	1.2727640
O	3.3933050	-2.0690860	0.7136350
C	3.2188310	-2.0144780	-0.5766370
C	4.4425440	-2.6184870	-1.3209350
O	2.2691860	-1.5718540	-1.1957940
F	4.6269260	-3.9120560	-0.9738300
F	4.2770510	-2.5665270	-2.6518330
F	5.5736170	-1.9441730	-1.0147920
C	1.9857420	2.8875180	0.1156510
C	2.2391460	3.7196440	1.2149850
C	2.3117060	3.3537670	-1.1681600
C	2.7961020	4.9904970	1.0386130
H	2.0001380	3.3710030	2.2160900
C	2.8648710	4.6240520	-1.3494130
H	2.1407110	2.7176290	-2.0337330
C	3.1077510	5.4479360	-0.2449210
H	2.9859560	5.6201490	1.9031640
H	3.1122110	4.9666940	-2.3500950
H	3.5410510	6.4341100	-0.3838930

4.log

Potential Energy $=-2233.49469$
Zero-point Energy $=-2232.96320$
Free Energy $=-2233.01182$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.07622

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-2233.59335$
Nimag $=1\left(-78.2152 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.3706890	2.0188620	0.0951800
C	0.6256560	3.3962350	-0.7103440
C	0.8831690	2.3336090	-1.7881450
N	1.5994580	1.2984390	-0.9784650
N	1.4503170	3.1413770	0.3324070
O	-0.1945290	4.3080640	-0.7912610
C	1.3869530	3.8940940	1.5809500
H	0.3570050	4.2249200	1.7255840
H	1.6762370	3.2438970	2.4070350
H	2.0360420	4.7748400	1.5585560
C	1.1375770	0.0810020	-0.8797500
H	0.3705870	-0.1890720	-1.5964970
C	1.8168330	-1.0857280	-0.2045950
C	2.8152490	-1.7367740	-1.1991160
H	2.2626690	-2.0503620	-2.0895390
H	2.2895350	-0.8019810	0.7343670
C	-0.3564400	1.8927540	-2.5459530
H	-0.7793650	2.7870270	-3.0102610
H	-0.1019480	1.1926440	-3.3464990
H	-1.1147270	1.4530210	-1.8947970
H	1.6125680	2.7367350	-2.4972620
C	3.8405550	2.4612300	-0.2484910
H	2.3721040	1.3769430	0.9791850
Cl	0.5697870	-2.3397740	0.2310160
N	-0.5894940	0.4465120	0.8170910
C	-1.9213530	0.3539430	0.7114470
C	-0.2397960	0.5121820	2.1491370
C	-2.6362800	0.3916360	2.0576720
C	-1.4758850	0.5033840	3.0513820
H	-3.3242250	1.2424070	2.0872100
H	-1.4120040	-0.3389140	3.7465230
O	0.9246270	0.5651810	2.5576620
O	-2.5211560	0.2413200	-0.3971940
C	4.5116610	2.8644510	1.0871130
H	5.5671190	3.0883630	0.9049010
H	4.0621880	3.7558950	1.5298790
H	4.4638700	2.0532470	1.8214720
C	4.6388140	1.2909290	-0.8458470
H	4.6724730	0.4314740	-0.1699930
H	4.2353030	0.9773960	-1.8129800
H	5.6728600	1.6081920	-1.0115580
C	3.9084720	3.6556150	-1.2216790
H	3.3117820	4.5056110	-0.8790300
H	4.9470500	3.9924840	-1.2956780
H	3.5897860	3.3885940	-2.2335090
H	-1.4966610	1.4204740	3.6475720
H	-3.2335150	-0.5173000	2.1792010
H	3.5190090	-0.9654680	-1.5180200
C	3.5768330	-2.9165840	-0.6248940
C	3.4357690	-4.1903850	-1.1923610
C	4.4555960	-2.7563360	0.4577940
C	4.1540900	-5.2808880	-0.6915740
H	2.7597720	-4.3311500	-2.0314180
C	5.1716810	-3.8440850	0.9634570
H	4.5890230	-1.7786760	0.9134650
C	5.0230670	-5.1113450	0.3896970
H	4.0314930	-6.2600230	-1.1453770
H	5.8470810	-3.7005300	1.8018030
H	5.5805960	-5.9569640	0.7814420
H	-3.8704250	0.1329330	-0.4348510
O	-4.9587500	0.1233960	-0.5683730
C	-5.5384690	-0.9701480	-0.1750460
C	-7.0767990	-0.8933330	-0.4008290
F	-7.6175240	0.1415650	0.2853010

N	2.0766130	-0.4323860	-0.533693
N	3.4199070	-1.4046260	-2.1065300
O	1.9987620	-1.4196840	-3.9164320
C	4.6561960	-1.5404920	-2.8776180
H	4.5565080	-0.9521490	-3.7918840
H	5.4905030	-1.1564650	-2.2899860
H	4.8567750	-2.5793350	-3.1491310
C	1.8576010	0.3433720	0.4912330
H	2.6334280	0.3328340	1.2500660
C	0.9705990	1.5679850	0.5216520
C	1.6926170	2.7073230	-0.2538520
H	2.6649340	2.8820700	0.2163040
H	0.5671310	-1.6032150	-1.3595520
C	3.4792960	-2.5207660	0.1901660
H	4.1831310	-0.5308780	-0.3647720
H	-0.0266880	1.3763210	0.1380870
Cl	0.7416250	2.1101380	2.2421080
N	0.3458150	-0.9495720	1.9479720
C	-0.8834150	-1.2372330	1.5052380
C	0.4088030	-1.1919290	3.3102950
C	-1.8158260	-1.7580470	2.5916780
C	-0.9242390	-1.7354600	3.8361900
H	-2.1734200	-2.7571470	2.3232850
H	-0.7641300	-2.7236810	4.2774500
H	-1.2949130	-1.0781100	4.6281690
H	-2.6915140	-1.1056370	2.6652910
O	1.4046430	-1.0000090	4.0070730
O	-1.2336810	-1.0847430	0.2966370
C	0.2864820	0.2898610	-2.3072060
H	-0.5374900	0.5448310	-1.6436340
H	0.8288170	1.1827370	-2.6211600
H	-0.1413610	-0.1638080	-3.2047130
C	4.7223430	-3.3090410	-0.2819260
H	4.8827140	-4.1474640	0.4025230
H	4.5925920	-3.7250990	-1.2833100
H	5.6308640	-2.6971490	-0.2686770
C	2.2335450	-3.4108810	0.0324270
H	2.0530900	-3.6769900	-1.0146220
H	2.3863960	-4.3450310	0.5821430
H	1.3408200	-2.9308570	0.4409640
C	3.6936990	-2.1587390	1.6742370
H	4.5764080	-1.5210300	1.8041810
H	2.8324110	-1.6663490	2.1260570
H	3.8697450	-3.0778310	2.2425990
H	1.8936980	2.3439270	-1.2653200
C	0.9121700	4.0056700	-0.3178440
C	1.3882170	5.1506510	0.3358320
C	-0.2812630	4.0965470	-1.0514140
C	0.6884660	6.3592960	0.2631730
H	2.3122390	5.0975380	0.9051180
C	-0.9848560	5.3013390	-1.1229720
H	-0.6656380	3.2271210	-1.5776620
C	-0.5021280	6.4374370	-0.4645900
H	1.0738070	7.2360210	0.7755570
H	-1.9058990	5.3530210	-1.6961870
H	-1.0477760	7.3746630	-0.5217350
H	-2.5066280	-1.3861940	-0.1142360
O	-3.4572070	-1.6772830	-0.5552050
C	-4.4428740	-0.8758100	-0.2794600
O	-4.4425340	0.1304530	0.4074990
C	-5.7523160	-1.3528970	-0.9726190
F	-6.0649080	-2.6194650	-0.6119930
F	-5.6187140	-1.3340360	-2.3204680
F	-6.7959300	-0.5679840	-0.6547000

1.log

Potential Energy $=-2233.49102$
Zero-point Energy $=-2232.95979$

Free Energy $=-2233.00858$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.07121

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from q RRHO $)=-2233.58877$
Nimag $=1$ (-61.9068)
Charge $=0$ Multiplicity $=1$

C	-1.8130170	-2.4931970	-1.1402690
C	-3.8246230	-2.7245180	0.0727710
C	-3.0569120	-1.6039910	0.7782400
N	-2.0022920	-1.2892390	-0.2360220
N	-3.1279240	-3.1172680	-1.0187790
O	-4.9254770	-3.1473700	0.4179770
C	-3.7491450	-3.9274280	-2.0669600
H	-4.8054300	-3.6580460	-2.1271030
H	-3.2664680	-3.7124190	-3.0210900
H	-3.6714160	-4.9968830	-1.8588220
C	-1.2660640	-0.2217790	-0.3820060
H	-0.4972460	-0.2971870	-1.1440820
C	-1.6536880	1.1972650	-0.0267710
C	-2.7005070	1.6923450	-1.0645390
H	-2.2633010	1.6063350	-2.0637200
H	-2.5227240	-1.9908450	1.6530020
C	-0.6024710	-3.4291430	-0.7987290
H	-1.6886300	-2.1133340	-2.1586160
H	-2.0067920	1.2936300	0.9955180
Cl	-0.1893940	2.2705920	-0.1457840
N	0.3949080	-0.3482360	1.3969580
C	-0.0490660	-0.2869960	2.7011350
C	1.7258500	-0.1716540	1.3714040
C	1.1111470	-0.0766010	3.6769500
C	2.3343000	0.0029300	2.7590160
H	1.1464170	-0.9117540	4.3827990
H	3.0729720	-0.7840240	2.9403270
H	2.8596970	0.9618190	2.8097700
H	0.9373890	0.8353620	4.2556860
O	2.4012120	-0.1538000	0.3052730
O	-1.2334650	-0.3869600	3.0343500
C	-4.0141380	-0.5180310	1.2549270
H	-3.5054780	0.2183840	1.8738090
H	-4.5554090	-0.0409260	0.4367680
H	-4.7521090	-1.0230550	1.8832440
C	-0.7446210	-4.7294210	-1.6221700
H	0.1681660	-5.3202900	-1.4998680
H	-1.5800690	-5.3449890	-1.2818670
H	-0.8650420	-4.5304850	-2.6926380
C	-0.5534600	-3.7882710	0.6970860
H	-1.4770350	-4.2744720	1.0291170
H	0.2647320	-4.4942600	0.8713890
H	-0.3673120	-2.9082600	1.3176850
C	0.7125190	-2.7477950	-1.2299550
H	0.6913490	-2.4803750	-2.2932380
H	0.9458030	-1.8571090	-0.6471910
H	1.5410920	-3.4489100	-1.0866880
H	-3.5495590	1.0042980	-1.0329590
C	-3.1794360	3.1126060	-0.8350750
C	-2.8914600	4.1155150	-1.7711090
C	-3.9398020	3.4467890	0.2966450
C	-3.3489700	5.4235270	-1.5827210
H	-2.3058790	3.8722950	-2.6535510
C	-4.3948410	4.7534250	0.4903200
H	-4.1864030	2.6863200	1.0325170
C	-4.1002580	5.7470050	-0.4494780
H	-3.1166170	6.1864660	-2.3200240
H	-4.9827210	4.9932890	1.3715000
H	-4.4558900	6.7622370	-0.3003350
H	3.7538890	0.0246360	0.3358730
O	4.8380730	0.1351660	0.3763710

C	-4.4822070	-1.3758820	-1.0485500
C	-5.4078690	-1.2068570	-2.0871710
C	-4.8855820	-2.0543560	0.1133120
C	-6.7122220	-1.6990960	-1.9701700
H	-5.1080000	-0.6881560	-2.9940340
C	-6.1890880	-2.5430530	0.2336870
H	-4.1749090	-2.2010720	0.9231240
C	-7.1071300	-2.3673020	-0.8079500
H	-7.4158670	-1.5597180	-2.7858850
H	-6.4862490	-3.0664100	1.1381300
H	-8.1191260	-2.7505810	-0.7147530
H	2.6018430	-1.6573800	-0.4675820
O	3.7335270	-2.0611650	-0.6549070
C	4.6670350	-1.1894870	-0.5031280
C	6.0746670	-1.8103610	-0.7591650
O	4.5837530	-0.0031650	-0.2038500
F	6.1826360	-2.2617720	-2.0340160
F	6.3051030	-2.8645830	0.0617720
F	7.0677870	-0.9225030	-0.5616410

C	0.7553950	2.0075520	-0.1593370
C	0.2995140	2.8729210	1.9872940
C	-1.0680540	2.4503560	1.4277240
N	-0.6532540	1.6570390	0.2335520
N	1.2637350	2.5507530	1.0957680
O	0.4695730	3.3815280	3.0920910
C	2.6837520	2.6033130	1.4462810
H	2.7816970	2.3576760	2.5055510
H	3.2295660	1.8696990	0.8514970
H	3.1043600	3.5983810	1.2792520
C	-1.2604740	0.6747920	-0.3513370
H	-0.7053660	0.1912140	-1.1459570
C	-2.7142960	0.2818740	-0.2167870
C	-3.0654790	-0.8567410	-1.1849440
H	-1.6004830	3.3397430	1.0742580
C	0.8302640	2.9761920	-1.3923690
H	1.2719540	1.0727950	-0.3981280
H	-2.9483800	0.0030550	0.8081800
Cl	-3.7337960	1.7689450	-0.5820500
N	-0.4735560	-1.4067320	0.8263090
C	0.7597970	-1.8201470	0.5668020
C	-0.9996430	-2.1714740	1.8588800
C	1.2274440	-2.9758000	1.4358890
C	0.0053300	-3.2274680	2.3275200
H	2.1242030	-2.6839770	1.9911980
H	0.2069320	-3.0922170	3.3939080
H	-0.4286110	-4.2232040	2.1982200
H	1.4977250	-3.8292530	0.8066020
O	-2.1255430	-2.0065410	2.3245710
O	1.4776180	-1.2734230	-0.3415940
C	-1.8926690	1.7263430	2.4888510
H	-2.9451290	1.6599210	2.2139220
H	-1.4994630	0.7293090	2.6978530
H	-1.8233980	2.3236400	3.4010400
C	2.3214220	3.2690830	-1.6760050
H	2.4017200	3.8195800	-2.6180780
H	2.7760740	3.8863470	-0.8986310
H	2.9057750	2.3484020	-1.7769920
C	0.0879850	4.2999610	-1.1340690
H	0.4625840	4.8109670	-0.2414560
H	0.2410070	4.9719670	-1.9840850
H	-0.9915810	4.1524690	-1.0304690
C	0.2381520	2.2841240	-2.6378060
H	0.7211940	1.3211860	-2.8387200
H	-0.8423220	2.1299950	-2.5625300
H	0.4048610	2.9218760	-3.5110210
H	-2.3519090	-1.6596160	-0.9676150
H	-2.8820800	-0.5251930	-2.2115970

1.log

Potential Energy =-2233.50099
Zero-point Energy $=-2232.97161$
Free Energy $=-2233.02034$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
2234.08469

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-2233.60403$
Nimag $=1$ (-389.2397)
Charge $=0$ Multiplicity $=1$

C	-1.1561550	1.4775340	-1.2816290
C	-2.7760180	2.9260920	-0.3623500
C	-3.1981720	1.5178010	0.0829510
N	-1.9823030	0.7295480	-0.2737740
N	-1.6173240	2.8439240	-1.0544130
O	-3.3867600	3.9558020	-0.0876860
C	-0.8588390	4.0399240	-1.4172450
H	0.1940090	3.7797770	-1.5269370
H	-1.2213630	4.4824740	-2.3488290
H	-0.9692440	4.7730640	-0.6159710
C	-1.5144300	-0.3538880	0.2667590
H	-0.5661160	-0.6950600	-0.1273800
C	-2.2664960	-1.3156440	1.1566980
C	-1.4431560	-2.5427760	1.5937880
H	-2.1162160	-3.1687290	2.1863620
H	-0.6842880	-2.1566050	2.2798250
N	-0.0491940	0.3793210	2.0910860
C	1.1522630	0.8726510	1.7977880
C	-0.2696240	0.4893950	3.4558820
C	1.9168260	1.3861640	3.0089610
C	0.9317430	1.1303760	4.1556190
H	2.8593000	0.8391060	3.1097970
H	1.3162690	0.4458430	4.9171570
H	0.6108510	2.0431950	4.6658400
H	2.1668220	2.4422680	2.8695210
O	-1.3006160	0.1173000	4.0145120
O	1.6027450	0.9048410	0.6060810
C	-3.6319310	1.5169140	1.5468160
H	-4.2944960	2.3759140	1.6768140
H	-4.1960600	0.6209250	1.8054400
H	-2.7829050	1.6292050	2.2239110
H	-4.0212260	1.1749050	-0.5533780
C	-1.3308770	0.9480280	-2.7492960
H	-0.1075350	1.3812960	-0.9811850
Cl	-3.7820070	-1.8347810	0.2468940
H	-2.6225610	-0.8107010	2.0511680
C	-0.8657360	-0.5201380	-2.8361930
H	0.1588000	-0.6472740	-2.4693360
n			
C			

H	-1.5235940	-1.2040940	-2.2925600
H	-0.8786020	-0.8352290	-3.8838910
C	-0.4182100	1.7885860	-3.6717190
H	-0.7646140	2.8189860	-3.7728600
H	0.6180570	1.8011540	-3.3168370
H	-0.4199180	1.3453900	-4.6720040
C	-2.7884920	1.0570540	-3.2328530
H	-3.1661260	2.0822700	-3.1668380
H	-2.8445530	0.7544890	-4.2830490
H	-3.4576410	0.3975190	-2.6715550
C	-0.7798090	-3.3664270	0.5076590
C	0.5610970	-3.1364440	0.1589370
C	-1.4726610	-4.3979320	-0.1473800
C	1.1875140	-3.8988460	-0.8320700
H	1.1266130	-2.3649470	0.6754580
C	-0.8493880	-5.1624790	-1.1371830
H	-2.5022760	-4.6097840	0.1247920
C	0.4821490	-4.9126170	-1.4859810
H	2.2258620	-3.7049100	-1.0846910
H	-1.4013610	-5.9575810	-1.6301480
H	0.9674970	-5.5094220	-2.2526650
H	2.7458930	1.4011750	0.4130400
O	3.7336280	1.9633310	0.2171470
C	4.7854380	1.395160	-0.2556840
C	4.6232730	-0.1441130	-0.5601680
F	3.6437630	-0.3552530	-1.4737500
F	5.7529090	-0.6859170	-1.0440570
F	4.2870850	-0.8311490	0.5599900
O	5.8648710	1.9056760	-0.4799020

E2-Mechanism (TS-E2)

Conformation Extrapolated name
 Free energy (kcal/mol)

TS-E2
0.0
0.9

TS-E2.log
Potential Energy = -2233.42985
Zero-point Energy $=-2232.89629$
Free Energy $=-2232.94300$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.02725

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-2233.54041$
Nimag $=1\left(-338.6068 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.2726820	-0.9271960	-0.7481570
C	-3.1142270	-1.2022830	1.4434540
C	-1.6178270	-1.4975780	1.5356850
N	-1.0817470	-0.8216420	0.2523880
N	-3.4090540	-0.8714840	0.1665630
O	-3.9001980	-1.2481600	2.3867650
C	-4.7162290	-0.3178230	-0.1867410
H	-5.0405680	0.3502890	0.6140570
H	-4.6305640	0.2445990	-1.1154850
H	-5.4634790	-1.1059000	-0.3093810
C	-0.4888800	0.5420700	0.4951520
H	-0.4783400	0.7825330	1.5482030
C	0.6685680	0.9533080	-0.1725320
C	1.2007610	2.3320760	0.2112530
H	0.6130110	3.0947730	-0.3191040
H	1.8647630	-0.2221270	0.3789040
C	-0.9881730	-1.1159980	2.8668330
H	-1.4143400	-1.7937190	3.6111600

H	0.0936260	-1.2666010	2.8631620
H	-1.2262470	-0.0953020	3.1691910
H	-1.4609540	-2.5640220	1.3665690
C	-2.2450480	-2.1968370	-1.6700770
H	-2.2403510	-0.0303830	-1.3699270
Cl	0.8090770	0.6159590	-1.9388910
N	-2.0358710	1.7908020	0.3421700
C	-2.5292130	2.4522740	-0.7622140
C	-2.2567880	2.5230590	1.4880050
C	-3.1928190	3.7657990	-0.3470270
C	-3.0390260	3.7962760	1.1766840
H	-2.6849810	4.5931490	-0.8520690
H	-3.9935210	3.7665700	1.7110230
O	-1.8664190	2.1888550	2.6107570
O	-2.4671140	2.0358290	-1.9209940
C	-3.5459110	-2.1541910	-2.5095850
H	-3.4937160	-2.9353800	-3.2734280
H	-4.4351700	-2.3466970	-1.9057710
H	-3.6698140	-1.1959010	-3.0246730
C	-1.0587800	-2.1344200	-2.6532160
H	-1.0862160	-1.2231250	-3.2565110
H	-0.0884820	-2.1877220	-2.1552460
H	-1.1221990	-2.9909290	-3.3317260
C	-2.2061980	-3.5351400	-0.9050420
H	-3.0082540	-3.6123060	-0.1642640
H	-2.3478390	-4.3517440	-1.6195900
H	-1.2433310	-3.7113590	-0.4157050
H	-2.4824810	4.6611420	1.5492080
H	-4.2321450	3.7640100	-0.6874780
H	0.9942020	2.4671940	1.2792650
C	2.6774590	2.5838060	-0.0375620
C	3.1145450	3.1916480	-1.2238080
C	3.6345840	2.2424070	0.9302760
C	4.4732970	3.4370180	-1.4462210
H	2.3859310	3.4785840	-1.9771280
C	4.9935410	2.4871090	0.7140550
H	3.3142480	1.7859200	1.8635970
C	5.4180660	3.0832520	-0.4780510
H	4.7914240	3.9086710	-2.3717270
H	5.7181140	2.2180010	1.4774640
H	6.4734040	3.2770320	-0.6468880
H	-0.2941070	-1.4078670	-0.0853860
O	1.2065520	-2.5374070	-0.0206420
C	2.3055770	-2.1190380	0.3109540
O	2.6543340	-0.8886610	0.5511390
C	3.4997560	-3.0943460	0.4978530
F	3.9810410	-3.0183410	1.7567560
F	4.5020160	-2.7846810	-0.3510950
F	3.1299900	-4.3615970	0.2662250

$1 . \log$
Potential Energy = -2233.43162
Zero-point Energy $=-2232.89817$
Free Energy $=-2232.94495$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.02560

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from q RRHO $)=-2233.53893$
Nimag $=1\left(-323.8199 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-0.8868030	-2.2718910	-0.0544120
C	-1.4009180	-1.7870380	2.2002150
C	-0.0587240	-1.1098600	1.9276830
N	-0.0445590	-1.0360190	0.3834360
N	-1.8257100	-2.3735510	1.0575630
O	-1.9851120	-1.7831920	3.2806250
C	-3.1807220	-2.9097540	0.9381560
H	-3.8650170	-2.2519030	1.4779420

H	-3.4642540	-2.9428840	-0.1133960
H	-3.2547290	-3.9143110	1.3623180
C	-0.4393850	0.3142990	-0.1668660
H	-0.6478580	1.0227210	0.6218580
C	0.2701650	0.8605970	-1.2360620
C	-0.0476120	2.2698960	-1.7346830
H	0.7686350	2.5695480	-2.4024650
H	1.9137280	0.9895550	-0.6359380
C	0.1655660	0.1761880	2.7071130
H	0.2582210	-0.1134280	3.7570900
H	1.0959430	0.6677640	2.4149840
H	-0.6737250	0.8670630	2.6229150
H	0.7409650	-1.8109210	2.1713760
C	-0.0535120	-3.5770610	-0.3184400
H	-1.4034650	-1.9871710	-0.9724210
Cl	0.6898770	-0.2082340	-2.6288440
N	-2.4218580	0.1529340	-0.4051890
C	-3.1311150	-0.1712350	-1.5400340
C	-3.1797360	0.9272400	0.4442170
C	-4.5245200	0.4590920	-1.4975550
C	-4.5697120	1.1703790	-0.1411620
H	-4.6301790	1.1392340	-2.3485170
H	-5.3205920	0.7597570	0.5406520
O	-2.7837080	1.3557890	1.5309980
O	-2.7149820	-0.8932980	-2.4485210
C	-1.0788010	-4.6821220	-0.6747450
H	-0.5337260	-5.5660970	-1.0182210
H	-1.6798330	-4.9836770	0.1854410
H	-1.7495410	-4.3729150	-1.4831150
C	0.8763820	-3.4017580	-1.5356530
H	0.3174500	-3.1151450	-2.4302660
H	1.6623820	-2.6621520	-1.3693880
H	1.3697090	-4.3576840	-1.7373180
C	0.7752130	-4.0567500	0.8904120
H	0.1685230	-4.1598620	1.7954040
H	1.1852050	-5.0455430	0.6632180
H	1.6290120	-3.4050090	1.0995250
H	-4.7470330	2.2476460	-0.2110190
H	-5.2774960	-0.3258020	-1.6114860
H	-0.9508390	2.2287600	-2.3588900
C	-0.2337290	3.3376430	-0.6688680
C	0.8354710	3.7614010	0.1383650
C	-1.4745840	3.9723210	-0.5153810
C	0.6626880	4.7784550	1.0805470
H	1.8145630	3.3055870	0.0253010
C	-1.6509090	4.9951240	0.4223590
H	-2.3099170	3.6689680	-1.1408800
C	-0.5827580	5.3992660	1.2270030
H	1.5030520	5.0917500	1.6935320
H	-2.6212980	5.4729630	0.5220490
H	-0.7158720	6.1925150	1.9568080
H	0.9413660	-1.1742460	0.0954950
O	2.8404570	-1.0719010	0.2444320
C	3.4415600	-0.0449040	-0.0284180
O	2.9456650	1.0719020	-0.4808280
C	4.9820090	0.0451330	0.1440610
F	5.3101470	1.0562670	0.9751630
F	5.5761940	0.2736870	-1.0462160
F	5.4783190	-1.0922890	0.6495350

E1-Mechanism (TS-E1)

Conformation	Extrapolated name
	Free energy
	kcal/mol)

TS-E1
0.0

1	2.8
2	1.9
3	1.1

TS-E1.log
Potential Energy $=-2233.47717$
Zero-point Energy =-2232.94991
Free Energy $=-2232.99863$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.05418

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.57563$
Nimag $=1\left(-1285.1321 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	1.3689690	-2.0491260	-0.7237330
C	0.2940610	-3.3944340	0.8866180
C	1.7298810	-3.1901280	1.3841540
N	2.1691450	-2.0459990	0.5295190
N	0.1338850	-2.6826180	-0.2520010
O	-0.5550960	-4.0831730	1.4509940
C	-1.1408350	-2.5872250	-0.9523900
H	-1.9280990	-2.8401450	-0.2412560
H	-1.2896690	-1.5642440	-1.3034300
H	-1.1961960	-3.2836280	-1.7947210
C	2.9679790	-1.1028390	0.9976430
H	3.4076700	-1.3738900	1.9513660
C	3.2284560	0.2503300	0.6268280
C	3.2459730	0.8283380	-0.7930200
H	4.1085340	0.4142400	-1.3252960
H	2.1888830	0.8220090	1.3634110
C	1.8005340	-2.9720910	2.8892500
H	1.2788340	-3.8063340	3.3643820
H	2.8293400	-2.9722260	3.2563250
H	1.3064450	-2.0425920	3.1863610
H	2.3164230	-4.0765110	1.1159810
C	2.0504700	-2.7997610	-1.9409670
H	1.1454130	-1.0175760	-0.9971440
Cl	4.6860040	0.8378580	1.5750640
N	-0.2254080	0.8900300	0.5289000
C	0.1632540	1.3678640	1.7152120
C	-1.5733250	1.0696170	0.4316080
C	-0.9562680	1.9254890	2.5727250
C	-2.1792970	1.7175390	1.6731320
H	-1.0049260	1.3787940	3.5192580
H	-2.6806470	2.6498410	1.3962690
O	-2.2267910	0.7360390	-0.5810730
O	1.3718970	1.3753500	2.1200210
C	1.3838910	-2.2876840	-3.2387590
H	1.8557690	-2.7644920	-4.1036080
H	0.3160900	-2.5163670	-3.2805230
H	1.5038430	-1.2045840	-3.3493950
C	3.5585040	-2.4895170	-2.0172610
H	3.7553220	-1.4258320	-2.1634850
H	4.0954050	-2.8256200	-1.1254870
H	3.9839250	-3.0156030	-2.8775160
C	1.8765220	-4.3299780	-1.8482440
H	0.8268810	-4.6314920	-1.8011190
H	2.3110070	-4.7903090	-2.7409590
H	2.3970820	-4.7553420	-0.9848690
H	-2.9353200	1.0530800	2.1014620
H	-0.7544860	2.9742630	2.8100480
H	2.3465750	0.4842140	-1.3074080
C	3.3025620	2.3444030	-0.8993940
C	2.1335940	3.1181160	-0.8448390
C	4.5271610	2.9951650	-1.1112790
C	2.1897600	4.5088590	-0.9763820
H	1.1755760	2.6264670	-0.7058750

C	4.5876810	4.3856470	-1.2435030	H	5.1794120	4.6549100	-0.5422380
H	5.4407550	2.4103080	-1.1739670	H	3.5583380	4.4434790	-1.1889970
C	3.4178190	5.1483580	-1.1728800	H	-3.5654720	-2.4098430	0.9307000
H	1.2733060	5.0907430	-0.9331470	H	-1.4176160	-1.3069370	2.6969210
H	5.5462390	4.8701520	-1.4062560	H	3.9792590	-0.4822290	0.3010170
H	3.4616830	6.2285110	-1.2784510	C	3.8400890	-2.5912310	0.0768730
H	-3.6659990	0.8996880	-0.6801070	C	4.3698600	-3.6257050	-0.7081860
O	-4.6886710	1.0347100	-0.8914340	C	3.4935500	-2.8703920	1.4073900
C	-5.4755860	0.4245080	-0.0474010	C	4.5319200	-4.9124370	-0.1854090
C	-6.9665160	0.6578860	-0.4234770	H	4.6596230	-3.4232720	-1.7355810
O	-5.1755860	-0.2460590	0.9214110	C	3.6550470	-4.1544420	1.9348460
F	-7.2290440	0.2096930	-1.6725800	H	3.0924930	-2.0801010	2.0353270
F	-7.2728440	1.9756860	-0.3883260	C	4.1722450	-5.1815480	1.1385350
F	-7.7912890	0.0212940	0.4239030	H	4.9432530	-5.7000390	-0.8102900
				H	3.3820720	-4.3504800	2.9678910
$1 . \log$				H	4.3007230	-6.1791630	1.5484130
Potential Energy $=-2233.47575$				H	-4.7732380	-0.5065760	-0.8896170
Zero-point Energy $=-2232.94890$				O	-5.8286780	-0.5484920	-0.8972330
Free Energy $=-2232.99826$				C	-6.3819040	0.0987880	0.0911780
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -				C	-7.9319930	-0.0013930	0.0105390
	. 04871			O	-5.8445390	0.7172260	0.9900350
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated				F	-8.3380330	-1.2916890	0.0438180
free energy from qRRHO) $=-2233.57122$				F	-8.3928150	0.5429590	-1.1395120
	$g=1(-1295$.	$76 \mathrm{~cm}^{-1}$)		F	-8.5192780	0.6407180	1.0335780
Charge $=0$ Multiplicity $=1$							
C	2.9849450	2.0380300	0.3581050	$2 . \log$			
C	1.0843850	3.4271840	0.4489930		tial Energy =	233.47519	
C	1.1370300	2.8444990	-0.9701130		point Energy	-2232.94829	
N	2.0778810	1.7007670	-0.7689890		Energy $=-22$. 99732	
N	2.1058080	2.8931610	1.1611230		e-Point Ener	B3LYP-D3(BJ)	$-311+\mathrm{G}^{* *} \mathrm{PCM}=-$
O	0.2491830	4.2326480	0.8546230		. 05049		
C	2.3191630	3.1715970	2.5751710		Energy B3L	3(BJ)/6-31	** PCM (extrapolated
H	1.3661850	3.4870400	3.0015500		nergy from	$\mathrm{HO})=-223$	7262
H	2.6597170	2.2647160	3.0799680		$g=1(-1259$	$95 \mathrm{~cm}^{-1}$)	
H	3.0524280	3.9692090	2.7301560		ge $=0$ Multip	ity $=1$	
C	1.8723700	0.5214660	-1.3295430	C	2.0498260	1.8758320	0.4238910
H	1.0939470	0.5508840	-2.0835690	C	0.0898470	2.7268940	-0.5656430
C	2.3221410	-0.7985250	-1.0265770	C	0.8114320	1.9101900	-1.6486550
C	3.7060190	-1.1857200	-0.4870360	N	1.7480020	1.1008190	-0.8094870
H	4.4365310	-1.0610340	-1.2939470	N	0.7880520	2.6055080	0.5892540
H	1.3645590	-1.1144050	-0.0623030	O	-0.9474910	3.3645870	-0.7321720
C	-0.2354590	2.5050250	-1.5299010	C	0.3496220	3.1930280	1.8484260
H	-0.8563000	3.3989880	-1.4313600	H	-0.7335960	3.3119600	1.8036720
H	-0.1863080	2.2499890	-2.5915130	H	0.6069940	2.5242600	2.6727260
H	-0.7079870	1.6849930	-0.9828250	H	0.8018440	4.1743190	2.0233420
H	1.6229840	3.5805750	-1.6205290	C	1.8763960	-0.2040580	-0.9813270
C	4.3513130	2.7177300	-0.0657190	H	1.4159670	-0.5521190	-1.8990550
H	3.1967710	1.1307240	0.9235510	C	2.3209290	-1.2435930	-0.1108110
Cl	1.8623020	-1.9095260	-2.4091090	C	3.5172410	-1.2388880	0.8371880
N	-1.1868470	-0.8494400	-0.3862090	H	3.5758340	-0.2560830	1.3164360
C	-0.6202230	-1.3798330	0.7014370	H	1.2678590	-1.3163430	0.7554230
C	-2.5372430	-0.9004080	-0.2159170	C	-0.1448790	1.1362520	-2.5425030
C	-1.5988880	-1.8475150	1.7629530	H	-0.8460440	1.8587240	-2.9672670
C	-2.9487630	-1.5247310	1.1146080	H	0.3779460	0.6546450	-3.3728120
H	-1.4465710	-2.9117360	1.9651650	H	-0.7121350	0.3914160	-1.9776500
H	-3.5553180	-0.8138680	1.6829020	H	1.4055250	2.5981900	-2.2597040
O	-3.3426740	-0.4740160	-1.0733930	C	3.3291090	2.8029110	0.3525920
O	0.6370460	-1.5008050	0.8723940	H	2.1631080	1.1746830	1.2524840
C	5.3550630	2.5054060	1.0909660	Cl	2.1894250	-2.8589800	-0.9594130
H	6.3217570	2.9410740	0.8203490	N	-1.2182530	-1.2356040	0.1639400
H	5.0293330	2.9818150	2.0195010	C	-0.7657930	-1.4451750	1.4038700
H	5.5159890	1.4408600	1.2930640	C	-2.5793740	-1.2549920	0.2115160
C	4.9238930	2.0614100	-1.3379810	C	-1.8472490	-1.6338310	2.4514440
H	5.1282960	0.9974930	-1.2009150	C	-3.1244870	-1.5012090	1.6158950
H	4.2573420	2.1794560	-2.1971200	H	-1.7315600	-2.6102200	2.9313360
H	5.8748730	2.5424270	-1.5868230	H	-3.7623090	-0.6640850	1.9141150
C	4.1943650	4.2306370	-0.3248420	O	-3.2939820	-1.0860100	-0.8015390
H	3.7907840	4.7638430	0.5399310	O	0.4689340	-1.4876430	1.7174500

C	3.7780970	3.0867240	1.8047530	Cl	-1.0783390	-1.5991500	2.9993370	
H	4.6862080	3.6972180	1.7931150	N	1.6605580	-0.9517030	0.6751260	
H	3.0235260	3.6326600	2.3770220	C	1.2855760	-2.0942030	0.0968160	
H	4.0078530	2.1601060	2.3421790	C	3.0132320	-0.8445620	0.5401860	
C	4.4782070	2.0918710	-0.3855850	C	2.4142910	-2.8980960	-0.5183470	
H	4.7763940	1.1614260	0.1015070	C	3.6332980	-2.0255890	-0.2011780	
H	4.2204150	1.8698280	-1.4251490	H	2.4511140	-3.8932430	-0.0653540	
H	5.3557850	2.7458250	-0.3933170	H	4.1631430	-1.6658200	-1.0878040	
C	3.0454220	4.1433240	-0.3569430	O	3.6601560	0.1287310	0.9842660	
H	2.2347530	4.7045810	0.1151190	O	0.0791500	-2.5101670	0.0425230	
H	3.9454870	4.7639750	-0.3090640	C	-5.8661420	1.9443530	1.0506060	
H	2.8046110	4.0133090	-1.4160480	H	-6.4082290	2.3186720	1.9245070	
H	-3.7432990	-2.4035470	1.6188660	H	-6.1241720	2.5894660	0.2080940	
H	-1.7465020	-0.8718270	3.2300600	H	-6.2339120	0.9341360	0.8403400	
H	3.2983220	-1.9387400	1.6499940	C	-4.1258830	1.1939620	2.6778110	
C	4.8820340	-1.5938300	0.2572290	H	-4.5183980	0.1737170	2.6364570	
C	5.8415780	-2.1572390	1.1130100	H	-3.0711090	1.1538750	2.9643490	
C	5.2379270	-1.3529710	-1.0762240	H	-4.6596910	1.7122290	3.4803980	
C	7.1262940	-2.4595460	0.6537150	C	-3.8748850	3.4074710	1.5255330	
H	5.5807170	-2.3614580	2.1486140	H	-3.9587270	3.9818470	0.5977760	
C	6.5207500	-1.6577430	-1.5418490	H	-4.5013780	3.9034320	2.2735320	
H	4.5133680	-0.9327910	-1.7672410	H	-2.8426540	3.4635160	1.8845320	
C	7.4711140	-2.2101930	-0.6784170	H	4.3674070	-2.5200690	0.4422190	
H	7.8526650	-2.8948380	1.3340110	H	2.2332700	-3.0319470	-1.5890970	
H	6.7735390	-1.4661550	-2.5807220	H	-3.8469440	-1.6359880	1.8107060	
H	8.4664980	-2.4495280	-1.0409000	C	-3.6161960	-2.0743910	-0.2816020	
H	-4.7354010	-1.0677030	-0.7406680	C	-4.9904930	-2.3338250	-0.4266730	
O	-5.7880650	-1.1082210	-0.8207020	C	-2.8310390	-1.9917020	-1.4414610	
C	-6.3969050	-0.2008100	-0.1078870	C	-5.5640920	-2.5074540	-1.6880920	
C	-7.9392760	-0.3233670	-0.2666330	H	-5.6173290	-2.4003680	0.4591290	
O	-5.9120320	0.6510470	0.6120710	C	-3.4053160	-2.1581620	-2.7069680	
F	-8.3746760	-1.5244730	0.1811780	H	-1.7655090	-1.8051000	-1.3724070	
F	-8.3078930	-0.2120650	-1.5631600	C	-4.7715980	-2.4180150	-2.8371270	
F	-8.5813520	0.6308000	0.4271480	H	-6.6283620	-2.7077850	-1.7719370	
				H	-2.7779990	-2.0859530	-3.5908490	
3.1				H	-5.2142220	-2.5474250	-3.8202870	
	ntial Energy =	2233.47279		H	5.0942590	0.2672730	0.8143140	
	-point Energy	-2232.94589		O	6.1335020	0.4388930	0.8125370	
	Energy $=-2232$. 99537		C	6.6477480	0.4860620	-0.3860950	
	le-Point Energ	B3LYP-D3(B)	$6-311+\mathrm{G}^{* *} \mathrm{PCM}=$	C	8.1788560	0.7499210	-0.3142150	
	. 05134			O	6.0891410	0.3512460	-1.4577040	
	Energy B3LY	-D3(BJ)/6-311	G** PCM (extrapolated	F	8.8076550	-0.2336760	0.3703100	
	energy from q	RHO) $=-2233$		F	8.4414450	1.9186180	0.3145690	
	$\mathrm{ag}=1(-1303.8$	($822 \mathrm{~cm}^{-1}$)		F	8.7236720	0.8106880	-1.5401960	
	ge $=0$ Multipli	city $=1$						
C	-3.6113070	1.2122550	0.1742270	Hydrolysis of chloroiminium ion (TS6)				
C	-2.4974060	2.5515250	-1.4138140					
C	-1.4539120	2.2071300	-0.3462540	Conformation name		Extrapolated Free energy (kcal/mol)		
N	-2.1440510	1.1051440	0.3846140					
N	-3.6542310	1.9193400	-1.1078660					
O	-2.2928160	3.2599570	-2.3986260					
C	-4.7942750	1.9124360	-2.0199670	TS6-lowest		0.0		
H	-4.4148550	1.8880300	-3.0432730					
H	-5.3970870	1.0222020	-1.8384180		1		3.7	
H	-5.4176640	2.8032340	-1.9009070			5.6		
C	-1.4780230	0.1811510	1.0580480		2			
H	-0.4598440	0.4672810	1.3133660		3	4.5		
C	-1.7722930	-1.1811050	1.3571830					
C	-3.0548830	-1.9764760	1.1340950		4	4.0		
H	-2.8220540	-2.9968470	1.4635910			2.6		
H	-0.7495980	-1.7895450	0.5933580		5			
C	-0.1118010	1.8275950	-0.9616940		6	2.0		
H	0.2202980	2.6617790	-1.5844860					
H	0.6472090	1.6455580	-0.1992440		7	1.6		
H	-0.2042490	0.9373690	-1.5902760	8		1.1		
H	-1.3300190	3.0696080	0.3184460					
C	-4.3502390	1.9520030	1.3550200	9			2.2	
H	-4.0441800	0.2193210	0.0550350					

F	-4.6195250	-2.6590390	1.4301720	F	-3.7302810	3.5353450	-0.1625320
F	-5.7248240	-2.2692010	-0.4055400	F	-4.8156700	1.7974860	-0.9195600
Cl	0.4281750	1.6405450	-1.6216870	F	-5.1910690	2.5251690	1.0974720
				Cl	1.4641170	-2.5203600	1.4324080

$2 . \log$

Potential Energy =-1949.2410
Zero-point Energy $=-1948.77561$
Free Energy $=-1948.81978$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.73822

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO $)=-1949.31697$
Nimag $=1\left(-192.4248 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.8894970	0.4179300	0.3334400
C	1.9558430	2.4592440	-0.3999840
C	1.7478320	1.4390170	-1.5255110
N	1.9463970	0.1504670	-0.7949480
N	2.5694180	1.8239840	0.6266920
O	1.6198690	3.6430760	-0.4302890
C	2.7918360	2.4695610	1.9160210
H	3.7414650	3.0121030	1.9444520
H	1.9807310	3.1797810	2.0874890
H	2.7844320	1.7167250	2.7058150
C	0.9881180	-0.7810200	-0.7533630
C	1.2649510	-2.2372670	-0.3661630
C	0.2700700	-3.2468120	-0.9773750
H	0.3833770	-3.1507590	-2.0636930
H	0.6469790	-4.2403780	-0.7169870
C	0.4550880	1.6231910	-2.3043350
H	0.4854960	2.6240780	-2.7422440
H	0.3830250	0.9072500	-3.1277170
H	-0.4374990	1.5607890	-1.6797890
H	2.5841280	1.5426380	-2.2243130
C	4.4055310	0.1416630	0.0270390
H	2.5936490	-0.1983500	1.1833380
C	5.1935200	0.3079790	1.3473810
H	6.2282490	-0.0129210	1.1920110
H	5.2235470	1.3459740	1.6862210
H	4.7725200	-0.3062330	2.1510700
C	4.5844710	-1.3108130	-0.4568240
H	4.2292000	-2.0344590	0.2842180
H	4.0734040	-1.4852690	-1.4088790
H	5.6485190	-1.5091650	-0.6190590
C	4.9952690	1.0951550	-1.0304710
H	4.8283590	2.1467100	-0.7775010
H	6.0774120	0.9402260	-1.0881030
H	4.5916740	0.9035200	-2.0291240
H	2.2465620	-2.4731730	-0.7744000
C	-1.1977920	-3.1367630	-0.6131450
C	-1.6901780	-3.6668010	0.5920030
C	-2.1074970	-2.5447310	-1.5034050
C	-3.0496080	-3.5831160	0.9068390
H	-1.0111460	-4.1593760	1.2810550
C	-3.4681320	-2.4641760	-1.1930640
H	-1.7536540	-2.1532530	-2.4538320
C	-3.9428200	-2.9790660	0.0163960
H	-3.4107550	-3.9992230	1.8428030
H	-4.1543180	-2.0031770	-1.8973560
H	-4.9996240	-2.9190220	0.2590010
H	0.3030960	-0.7143960	-1.5913040
O	-0.2605370	-0.2465070	0.5422210
H	-0.6111020	-0.9975070	1.0487370
H	-1.0955650	0.3295850	0.2269110
O	-2.1910560	1.1610540	-0.1716250
C	-3.0805160	1.3804530	0.7112190
O	-3.1585750	0.9743680	1.8743230
	-4.2183640	2.3154250	0.1853990

3.log

Potential Energy $=-1949.24357$
Zero-point Energy $=-1948.77902$
Free Energy = 1948.82349
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$
1949.73882

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1949.31874$
Nimag $=1\left(-270.5133 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-1.0258770	-1.7574150	-0.5882850
C	-2.5649860	-2.3536380	1.1003070
C	-1.1685940	-2.6872120	1.6360520
N	-0.2976520	-1.9019590	0.7074530
N	-2.426590	-1.8005640	-0.1259950
O	-3.6259040	-2.5546840	1.6927850
C	-3.5519460	-1.2590890	-0.8716840
H	-4.0326460	-2.0191450	-1.4949580
H	-4.2838410	-0.8824680	-0.1551640
H	-3.2093260	-0.4357180	-1.4991950
C	0.5927710	-1.0273360	1.1904650
C	1.7553820	-0.4376040	0.3920710
C	2.8097950	0.2101550	1.3102420
H	2.4040620	1.1214370	1.7583460
H	2.9964970	-0.4990320	2.1259030
C	-1.0157840	-2.4335390	3.1292590
H	-1.7885120	-3.0167270	3.6359260
H	-0.0464630	-2.7799600	3.4978110
H	-1.1534250	-1.3813000	3.3851330
H	-0.9830910	-3.7495530	1.4444520
C	-0.6641210	-2.8335330	-1.6760540
H	-0.8191030	-0.7689580	-0.9999490
C	-1.3379500	-2.4165650	-3.0040180
H	-.9894480	-3.0733930	-3.8071530
H	-2.4261660	-2.5016850	-2.9651640
H	-1.0816740	-1.3879640	-3.2810550
C	0.8605180	-2.8579410	-1.9019750
H	1.2405750	-1.8840450	-2.2257070
H	1.3964690	-3.1740110	-1.0018810
H	1.0963460	-3.5787670	-2.6911660
C	-1.1329990	-4.2516540	-1.2965740
H	-2.2003500	-4.2845640	-1.0574080
H	-0.9661320	-4.9233450	-2.1447860
H	-0.5700270	-4.6585360	-0.4511880
H	2.2119870	-1.2757470	-0.1375880
C	4.1206840	0.5205640	0.6156410
C	5.0060650	-0.5147710	0.2764800
C	4.4806480	1.8406750	0.3121540
C	6.2172150	-0.2379420	-0.3625780
H	4.7526000	-1.5438700	0.5202600
C	5.6939210	2.1219210	-0.3244250
H	3.8098290	2.6539250	0.5754930
C	6.5644660	1.0830850	-0.6659500
H	6.8913260	-1.0510600	-0.6158380
H	5.9570950	3.1510770	-0.5509040
H	7.5075280	1.3000350	-1.1589600
H	0.9192290	-1.2943370	2.1892300
O	-0.3467970	0.4513560	1.8041540
H	-1.0017590	0.9784800	1.1236980
O	-1.9211670	1.6449010	0.3228360
C	-1.8718290	2.9096320	0.4609950
O	-1.1483910	3.5917820	1.1927050
C	-2.8964960	3.6489300	-0.4579750

F	-2.6502070	3.3956360	-1.7701490	C	0.4007380	4.3131030	-0.1614240
F	-4.1684320	3.2443360	-0.2071050	F	-0.3109920	4.2967090	-1.3192720
F	-2.8691780	4.9887960	-0.3016830	F	-0.4489270	4.7140430	0.8205070
Cl	1.2651020	0.7311390	-0.9157250	F	1.3379890	5.2760880	-0.2891350
H	0.1999970	1.1214450	2.2446370	Cl	0.6801800	-0.4717460	-2.2509480
				H	1.9059950	-0.3029650	0.5801070
4.log							
Potential Energy $=-1949.24205$				5.log			
Zero-point Energy $=-1948.77664$				Potential Energy $=-1949.24618$			
Free Energy = -1948.82065				Zero-point Energy $=-1948.78104$			
Single-Point Energy B3LYP1949.74090				Free Energy $=-1948.82472$			
				1949.74322			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated							
free energy from qRRHO) $=-1949.31950$				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
Nimag $=1\left(-226.1030 \mathrm{~cm}^{-1}\right)$				free energy from qRRHO $)=-1949.32175$			
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-261.7286 \mathrm{~cm}^{-1}\right)$			
C	-2.1799620	-0.6944740	-0.3179740	Charge $=0$ Multiplicity $=1$			
C	-2.5365210	-0.4004970	1.9976650	C	2.9130930	-0.0045410	-0.0920550
C	-1.7824220	-1.7241620	1.8336030	C	3.3528360	2.3167710	0.0171920
N	-1.2595600	-1.5969300	0.4384980	C	1.8725980	2.1869440	-0.3446230
N	-2.6916310	0.1501390	0.7717890	N	1.6263550	0.7482990	-0.0568310
O	-2.9246590	0.0731650	3.0661610	N	3.8649320	1.0768240	0.1937540
C	-3.2666740	1.4778340	0.5873060	O	3.9603010	3.3781240	0.1616750
H	-4.3567080	1.4420440	0.5000260	C	5.1741910	0.8773790	0.8121020
H	-3.0063060	2.0846810	1.4559160	H	5.9855310	0.9279140	0.0815060
H	-2.8420720	1.9345710	-0.3068840	H	5.3272350	1.6613040	1.5568300
C	0.0427710	-1.7568460	0.1799630	H	5.1966090	-0.0955330	1.3039560
C	0.6106880	-1.9775460	-1.2232280	C	0.4398440	0.3006290	0.3898440
C	1.9645790	-2.7226070	-1.2262990	C	0.3506340	-0.9335190	1.2841040
H	1.7540690	-3.7192350	-0.8207040	C	-1.0789220	-1.4551230	1.5609090
H	2.2324720	-2.8685850	-2.2768030	H	-1.1249700	-1.7122400	2.6226890
C	-0.7716530	-1.9837110	2.9421950	H	-1.8014300	-0.6489030	1.4104100
H	-1.3144500	-1.9404370	3.8895360	C	1.0145490	3.1766990	0.4371680
H	-0.3316500	-2.9810220	2.8592980	H	1.3990460	4.1788810	0.2336520
H	0.0203850	-1.2328760	2.9613130	H	-0.0321160	3.1456320	0.1275200
H	-2.5213550	-2.5326060	1.8394900	H	1.0752710	2.9964620	1.5145210
C	-3.2971000	-1.4262030	-1.1489710	H	1.7561740	2.3802580	-1.4183320
H	-1.5880560	-0.0798430	-0.9986840	C	3.2042930	-0.7875680	-1.4225410
C	-4.0350890	-0.3656330	-1.9990490	H	2.9403480	-0.7143830	0.7397360
H	-4.7220800	-0.8700230	-2.6857140	C	4.6610840	-1.3023960	-1.4017620
H	-4.6300380	0.3185530	-1.3905490	H	4.8111240	-1.9806740	-2.2474530
H	-3.3375500	0.2258420	-2.6022630	H	5.3863890	-0.4919740	-1.5012500
C	-2.6576400	-2.4435440	-2.1139820	H	4.8851950	-1.8630110	-0.4876340
H	-1.9538970	-1.9651610	-2.8032430	C	2.2824660	-2.0218270	-1.5058310
H	-2.1500020	-3.2492310	-1.5746600	H	2.4637610	-2.7092110	-0.6715170
H	-3.4419810	-2.9051150	-2.7219140	H	1.2207910	-1.7672840	-1.5166500
C	-4.3197010	-2.1607290	-0.2605380	H	2.4932970	-2.5696860	-2.4294300
H	-4.7681310	-1.4999480	0.4875970	C	3.0131610	0.0998790	-2.6659650
H	-5.1309950	-2.5425520	-0.8885100	H	3.6448250	0.9932310	-2.6282170
H	-3.8776180	-3.0218100	0.2495580	H	3.2938820	-0.4617060	-3.5623170
H	-0.0993260	-2.6187570	-1.7431020	H	1.9740190	0.4174260	-2.7991630
C	3.1313380	-2.1151880	-0.4709920	H	0.9896640	-1.7379410	0.9288470
C	3.9040900	-1.0804490	-1.0276980	C	-1.4712070	-2.6872470	0.7607090
C	3.4904780	-2.6104200	0.7943260	C	-2.5808210	-2.6721500	-0.0951540
C	4.9901790	-0.5448970	-0.3291480	C	-0.7622570	-3.8893330	0.9177100
H	3.6603590	-0.6985030	-2.0140380	C	-2.9690720	-3.8255940	-0.7848010
C	4.5778110	-2.0772280	1.4933770	H	-3.1415990	-1.7518920	-0.2297660
H	2.9246100	-3.4290910	1.2319000	C	-1.1430430	-5.0419480	0.2257180
C	5.3290210	-1.0398070	0.9342990	H	0.0884920	-3.9334050	1.5939550
H	5.5742850	0.2540050	-0.7760850	C	-2.2495100	-5.0137030	-0.6300660
H	4.8383330	-2.4765860	2.4689980	H	-3.8321780	-3.7925870	-1.4436540
H	6.1750980	-0.6252430	1.4739980	H	-0.5814350	-5.9618350	0.3613150
H	0.5262590	-2.3999200	0.9056910	H	-2.5491100	-5.9094480	-1.1662420
O	0.9643160	-0.2601940	0.8207230	Cl	1.1214350	-0.3854150	2.8696480
H	0.6103050	0.7067270	0.5360940	H	-0.2478580	1.0856020	0.6917810
O	0.1151090	2.0083910	0.2583510	O	-0.5755970	-0.2415570	-0.9932330
C	1.0082980	2.9068060	0.1521450	H	-1.5668580	0.2344320	-0.9924020
O	2.2356470	2.8181320	0.2591870	H	-0.1198490	0.0683590	-1.7921080

O	-2.8076090	0.7835340	-1.0505970
C	-3.0748940	1.6554160	-0.1587290
C	-4.4958080	2.2745060	-0.3404560
O	-2.3806380	2.0434650	0.7848240
F	-4.6188110	2.8718620	-1.5529300
F	-5.4578980	1.3198830	-0.2651350
F	-4.7820250	3.2038370	0.5930370

6.log

Potential Energy $=-1949.24682$
Zero-point Energy $=-1948.78252$
Free Energy $=-1948.82707$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -

1949.74236

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-1949.32261$
Nimag $=1\left(-303.8552 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.9405970	0.4737770	0.2440760
C	-2.8819030	0.9851190	-2.0648600
C	-1.4254360	0.9857490	-1.5957550
N	-1.5491580	0.3158870	-0.2733930
N	-3.6717200	0.6514360	-1.0177150
O	-3.2600850	1.2129770	-3.2138920
C	-5.0774910	0.2991690	-1.2102990
H	-5.7249970	1.1795660	-1.2077020
H	-5.1781350	-0.2040870	-2.1742520
H	-5.3925340	-0.3782380	-0.4161100
C	-0.5742100	-0.4546230	0.2289240
C	-0.8674160	-1.5843140	1.2128260
C	0.3627620	-2.3397080	1.7580610
H	0.9676050	-1.5992500	2.2889220
H	-0.0200850	-3.0316920	2.5136000
C	-0.5054750	0.3051960	-2.6035740
H	-0.6446610	0.8041970	-3.5654110
H	0.5470140	0.4054010	-2.3282680
H	-0.7523290	-0.7532820	-2.7267160
H	-1.0999440	2.0241290	-1.4574770
C	-3.1550860	1.6315330	1.2849350
H	-3.2615610	-0.4656410	0.7011370
C	-4.6705490	1.8369850	1.5075120
H	-4.8163350	2.5326570	2.3395840
H	-5.1606000	2.2685560	0.6322180
H	-5.1775210	0.9019580	1.7689590
C	-2.5486170	1.2230880	2.6441360
H	-3.0248730	0.3157780	3.0333130
H	-1.4705930	1.0531990	2.6074490
H	-2.7213780	2.0205290	3.3731920
C	-2.5458800	2.9619800	0.8069530
H	-2.9685190	3.2786060	-0.1519560
H	-2.7652420	3.7475590	1.5364070
H	-1.4571490	2.9156740	0.7026590
H	-1.4478900	-1.2163930	2.0561320
C	1.2161230	-3.1035780	0.7618300
C	0.9597080	-4.4603290	0.5037550
C	2.2972220	-2.4934280	0.1056830
C	1.7448200	-5.1815540	-0.3993050
H	0.1425850	-4.9573620	1.0184440
C	3.0834560	-3.2121020	-0.8014060
H	2.5473840	-1.4572380	0.3112530
C	2.8078370	-4.5573710	-1.0602520
H	1.5295440	-6.2305130	-0.5817590
H	3.9160800	-2.7204000	-1.2963160
H	3.4208790	-5.1169240	-1.7607500
Cl	-1.9853350	-2.7594940	0.3438450
H	0.1990080	-0.6979050	-0.4906090
O	0.5248390	0.5406790	1.2881700
	1.5629640	0.6852280	0.9160610

H	-1.3709470	-1.2809390	1.3952960	O	0.6984830	-0.5791320	0.6048750
H	-0.3429530	-0.1420810	2.1864500	H	1.3553260	0.2774960	0.7299370
O	-2.5296390	-1.8511860	1.3516070	H	1.2797140	-1.3447370	0.4289420
C	-2.9676010	-2.1039460	0.1762180	O	2.2248110	1.3233300	0.9756600
C	-4.3733550	-2.7790850	0.2050100	C	2.8150090	1.7834240	-0.0560900
O	-2.4373600	-1.8859350	-0.9134890	C	3.8855480	2.8628690	0.3018100
F	-4.3432900	-3.9443670	0.8988200	O	2.6474090	1.4987070	-1.2453620
F	-5.2876460	-1.9769450	0.8065240	F	3.3212480	3.9195310	0.9417010
F	-4.8362640	-3.0590540	-1.0289010	F	4.8367240	2.3577130	1.1285530
			F	4.5205880	3.3492800	-0.7842530	

8.log

Potential Energy $=-1949.24828$
Zero-point Energy $=-1948.78306$
Free Energy $=-1948.82687$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -

1949.74551

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from q RRHO) $=-1949.32411$
Nimag $=1\left(-221.1495 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.7520840	0.0407560	0.3317730
C	-2.9423950	2.2811700	-0.3972320
C	-1.4443950	1.9729000	-0.3778850
N	-1.4544570	0.4930800	-0.2443250
N	-3.6196960	1.1606140	-0.0575620
O	-3.4430200	3.3602300	-0.7171940
C	-5.0618980	1.0528570	-0.2684670
H	-5.6321140	1.4602920	0.5702050
H	-5.3217270	1.6122140	-1.1698030
H	-5.3300520	0.0048340	-0.4058150
C	-0.4720850	-0.2775020	-0.7309370
C	-0.7578620	-1.6950240	-1.2367380
C	0.4531090	-2.4765850	-1.7917240
H	0.0428870	-3.2423630	-2.4561450
H	1.0544420	-1.8089630	-2.4161450
C	-0.7551050	2.5157850	-1.6273950
H	-0.9575430	3.5883630	-1.6775630
H	0.3275260	2.3783790	-1.5911680
H	-1.1503060	2.0475530	-2.5339390
H	-0.9969290	2.4292640	0.5137080
C	-2.7456920	-0.2620930	1.8744650
H	-3.0883120	-0.8563390	-0.1961120
C	-4.2010170	-0.4210900	2.3676120
H	-4.1873680	-0.7766740	3.4026310
H	-4.7476110	0.5244970	2.3553730
H	-4.7582880	-1.1561430	1.7763100
C	-2.0200030	-1.5982810	2.1338040
H	-2.4996190	-2.4236640	1.5936160
H	-0.9654180	-1.5541270	1.8595070
H	-2.0726690	-1.8367890	3.2010590
C	-2.0666010	0.8640110	2.6750150
H	-2.5543730	1.8305890	2.5096810
H	-2.1369080	0.6438640	3.7451400
H	-1.0056180	0.9555210	2.4266350
H	-1.2996630	-2.2840890	-0.4990710
C	1.3315240	-3.1674400	-0.7607330
C	2.6907980	-2.8338140	-0.6410010
C	0.8166880	-4.1916750	0.0536830
C	3.5134090	-3.4975110	0.2777680
H	3.1107070	-2.0575950	-1.2754600
C	1.6352660	-4.8520130	0.9711460
H	-0.2266410	-4.4827500	-0.0364080
C	2.9867260	-4.5052530	1.0876980
H	4.5617920	-3.2254820	0.3538620
H	1.2204940	-5.6409720	1.5913840
H	3.6221890	-5.0209210	1.8012160
Cl	-1.9373770	-1.4656400	-2.6332270
H	0.2284320	0.2620050	-1.3607740

9.log

Potential Energy = -1949.24741
Zero-point Energy $=-1948.78399$
Free Energy $=-1948.82843$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1949.74140

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1949.32242$
Nimag $=1\left(-442.2547 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	2.7191600	-0.2041100	0.7638350
C	4.5393150	-0.4094500	-0.7304020
C	3.2870380	-0.7790120	-1.5292260
N	2.2186010	-0.2645920	-0.6368800
N	4.1609790	-0.0529110	0.5187420
O	5.6902090	-0.4035680	-1.1688430
C	5.0897000	0.6031930	1.4366960
H	5.6944710	-0.1171470	1.9936510
H	5.7578550	1.2418880	0.8548840
H	4.5282460	1.2174800	2.1412870
C	1.0497860	0.1802760	-1.1105650
C	0.2225040	1.2251810	-0.3623110
C	-1.0819220	1.6098090	-1.0771300
H	-0.8377930	2.0020550	-2.0691950
H	-1.6548270	0.6911020	-1.2229420
C	3.3176910	-0.1930320	-2.9368540
H	4.2447510	-0.5220110	-3.4121450
H	2.4869260	-0.5555120	-3.5472160
H	3.3087010	0.9007960	-2.9208440
H	3.2213820	-1.8718660	-1.5968500
C	2.3445550	-1.4249090	1.6782770
H	2.3495210	0.7092380	1.2379090
C	3.1501070	-1.3364480	2.9932920
H	2.7791680	-2.0952670	3.6893110
H	4.2142740	-1.5282020	2.8390160
H	3.0365970	-0.3612300	3.4798250
C	0.8489760	-1.3486350	2.0427710
H	0.6065240	-0.4077350	2.5507890
H	0.2035610	-1.4609390	1.1715990
H	0.6011230	-2.1622770	2.7317340
C	2.6415290	-2.7723860	0.9956000
H	3.6954250	-2.8610240	0.7113130
H	2.4233130	-3.5885240	1.6919460
H	2.0195340	-2.9207890	0.1081810
H	0.0328310	0.9272360	0.6675390
C	-1.9341110	2.6037630	-0.3125270
C	-2.6262310	2.2044080	0.8420910
C	-2.0637910	3.9292710	-0.7492050
C	-3.4185540	3.1122510	1.5495010
H	-2.5550530	1.1745880	1.1833240
C	-2.8597340	4.8396890	-0.0461910
H	-1.5403700	4.2519990	-1.6451920
C	-3.5370750	4.4345100	1.1074780
H	-3.9487220	2.7853240	2.4394210
H	-2.9493680	5.8625250	-0.4007170
H	-4.1561360	5.1398330	1.6542000
Cl	1.2926670	2.7199000	-0.2376770

H	1.0602780	0.3494780	-2.1816800
O	-0.0940980	-1.2212090	-1.2173520
H	-1.0842360	-1.3713070	-0.6763750
H	-0.2685590	-1.4000370	-2.1554150
O	-2.1971090	-1.5884870	-0.0599540
C	-3.0439210	-2.2483560	-0.7601000
C	-4.3666850	-2.5177610	0.0216830
O	-2.9413380	-2.6622300	-1.9133620
F	-4.1281640	-3.1660360	1.1887880
F	-4.9941230	-1.3541380	0.3297630
F	-5.2369520	-3.2677160	-0.6823350

Cl	-1.6559370	1.8111550	-1.9963600
H	-0.4911890	1.2201740	0.8369330
O	0.5996500	-0.6804320	0.6471830
H	1.6280550	-0.9291430	0.2162200
H	0.6982530	-0.6068590	1.6091220
O	2.7653220	-1.2725730	-0.2645030
C	3.6354640	-1.5504090	0.6354870
C	5.0010960	-1.9778990	0.0144600
O	3.5215070	-1.5211930	1.8589030
F	4.8612370	-3.0838800	-0.7590820
F	5.5096920	-0.9981260	-0.7740550
F	5.9270600	-2.2591190	0.9518270

10.log

Potential Energy $=-1949.24591$
Zero-point Energy $=-1948.78201$
Free Energy $=-1948.82618$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.74144

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1949.32170$
Nimag $=1\left(-480.8318 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-2.7588980	-0.9998410	-0.4688040
C	-4.0750940	-0.1463160	1.3005930
C	-2.6173310	0.0506980	1.7218570
N	-1.9155980	-0.1633540	0.4306890
N	-4.0944050	-0.6870590	0.0607950
O	-5.0595890	0.1724430	1.9684750
C	-5.3263020	-0.7439100	-0.7235560
H	-5.9172790	-1.6347300	-0.4958340
H	-5.9250670	0.1395320	-0.4916000
H	-5.0789990	-0.7420730	-1.7854880
C	-0.7534060	0.4303280	0.1428800
C	-0.3340510	0.7367420	-1.2920280
C	1.0309720	1.4347470	-1.4615320
H	1.8008310	0.7012580	-1.2102090
H	1.1360220	1.6355690	-2.5315880
C	-2.3968440	1.4096950	2.3784540
H	-3.1045950	1.4961120	3.2062730
H	-1.3902680	1.5062580	2.7925700
H	-2.5824350	2.2299890	1.6789670
H	-2.3461140	-0.7414290	2.4307560
C	-2.4185860	-2.5334610	-0.4988370
H	-2.6899590	-0.6104470	-1.4880270
C	-3.5427690	-3.2837490	-1.2469370
H	-3.2338690	-4.3221150	-1.4024100
H	-4.4758340	-3.3026860	-0.6793140
H	-3.7410070	-2.8493240	-2.2330470
C	-1.1094210	-2.7527310	-1.2842360
H	-1.1871640	-2.3644030	-2.3069480
H	-0.2531070	-2.2940500	-0.7885340
H	-0.9086340	-3.8262950	-1.3597700
C	-2.2787080	-3.1220070	0.9166820
H	-3.1879310	-2.9757700	1.5094400
H	-2.1066150	-4.2009600	0.8469300
H	-1.4303620	-2.6873880	1.4528750
H	-0.3497050	-0.1607460	-1.9075220
C	1.2595780	2.7116390	-0.6742950
C	0.9303120	3.9625380	-1.2214220
C	1.8394010	2.6762270	0.6045850
C	1.1538880	5.1411760	-0.5044240
H	0.5029750	4.0149090	-2.2183490
C	2.0635900	3.8533130	1.3256700
H	2.1336010	1.7237870	1.0362520
C	1.7172220	5.0902570	0.7746930
H	0.8937810	6.0981570	-0.9476660
H	2.5156070	3.8019530	2.3120030
H	1.8942790	6.0059040	1.3312770

Hydrolysis of chloroiminium ion (TS6')

Conformation name	Extrapolated Free energy (kcal/mol)
TS6'-lowest	0.0
1	0.3
2	0.4
3	1.3
4	1.4
5	7.8

TS6'-lowest.log
Potential Energy $=-1949.24993$
Zero-point Energy $=-1948.78615$
Free Energy $=-1948.83066$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.74410

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1949.32483$
Nimag $=1\left(-394.5465 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	3.3143630	-0.3728650	-0.6322180
C	3.2125240	-1.5659510	1.3980330
C	2.1441210	-0.4717540	1.5097160
N	2.0901440	0.0360690	0.1147710
N	3.7866740	-1.4968120	0.1760890
O	3.4749480	-2.3887490	2.2755060
C	4.6968430	-2.5351590	-0.2987110
H	4.3712660	-3.4922370	0.1136690
H	4.6585420	-2.5796420	-1.3876470
H	5.7273660	-2.3525940	0.0185900
C	1.0189370	0.4459970	-0.5736820
H	1.2718860	0.7991990	-1.5674850
C	-0.1277950	1.2342110	0.0631440
C	-1.0601490	1.8436440	-0.9957120
H	-0.4865610	2.5379880	-1.6176840
H	2.5302590	0.3220860	2.1602310
C	4.3516930	0.7887180	-0.8216370
H	3.0173970	-0.7425430	-1.6204870
H	-0.6905590	0.6171060	0.7587660
Cl	0.5938430	2.5687080	1.0954060
C	0.8632590	-1.0367110	2.1229130
H	0.1755740	-0.2500000	2.4352360
H	0.3536080	-1.7290030	1.4495120
H	1.1564220	-1.5885800	3.0194560
C	5.5659580	0.2606790	-1.6174770
H	6.2166290	1.1010970	-1.8788510
H	6.1665320	-0.4462110	-1.0413150
H	5.2607990	-0.2232420	-2.5523080
C	4.8261780	1.3480660	0.5320460

H	5.2812280	0.5723990	1.1564280	H	4.5459410	-2.1085090	0.8615360
H	5.5830090	2.1208340	0.3634240	H	5.4315960	-0.5811980	0.8813120
H	4.0048160	1.8103470	1.0881120	H	3.8387140	-0.6700930	1.6345050
C	3.7060300	1.9234310	-1.6448980	C	3.6599670	0.9330980	-0.5938750
H	3.3310080	1.5645590	-2.6108170	H	3.1972880	1.2756090	-1.5270450
H	2.8895930	2.4124660	-1.1067240	H	3.0769270	1.3115530	0.2497090
H	4.4590870	2.6897270	-1.8535900	H	4.6508060	1.3942090	-0.5342400
H	-1.3835220	1.0220180	-1.6440890	H	-1.7321960	1.7871540	0.1223100
C	-2.2810110	2.5367470	-0.4243860	O	-0.7977950	-0.4820210	-0.9598230
C	-2.4289480	3.9267900	-0.5240990	H	-1.8548720	-0.5849260	-0.5641110
C	-3.2947930	1.7937010	0.2017410	O	-3.0320940	-0.7513090	-0.0518260
C	-3.5604550	4.5649000	-0.0048560	C	-4.0045460	-0.5508810	-0.8613790
H	-1.6555240	4.5148890	-1.0110050	O	-3.9757840	-0.2134940	-2.0432090
C	-4.4239530	2.4285480	0.7251000	C	-5.3884060	-0.7935710	-0.1824690
H	-3.2042640	0.7128080	0.2755500	F	-5.5467530	-0.0064180	0.9110420
C	-4.5603050	3.8175490	0.6237400	F	-5.5093480	-2.0812240	0.2295730
H	-3.6583100	5.6431720	-0.0922200	F	-6.4206280	-0.5399710	-1.0108070
H	-5.1991690	1.8385410	1.2055730	H	-0.8313520	-0.0053840	-1.8040330
H	-5.4396750	4.3108730	1.0273950	H	-1.4169280	2.4377180	1.7162530
O	0.1195270	-1.0138210	-1.1678240	C	-0.0911210	3.1701530	0.1854960
H	-0.8530080	-1.3550020	-0.7044250	C	0.6317820	4.0736720	0.9823320
O	-1.9392930	-1.7639340	-0.1166430	C	-0.0507990	3.3328760	-1.2086140
C	-2.7419960	-2.4054470	-0.8816290	C	1.3907520	5.0926430	0.4009740
O	-2.6442510	-2.6474990	-2.0831510	H	0.5936090	3.9848550	2.0635570
C	-3.9949680	-2.9254450	-0.1102420	C	0.7083190	4.3509880	-1.7945860
F	-4.6747740	-1.9043110	0.4697490	H	-0.6349420	2.6733620	-1.8454350
F	-3.6378220	-3.7824230	0.8797350	C	1.4362050	5.2317290	-0.9902930
F	-4.8601210	-3.5780190	-0.9112280	H	1.9402540	5.7822620	1.0352860
H	-0.0036890	-0.9769930	-2.1299370	H	0.7217940	4.4588310	-2.8752310
				H	2.0232990	6.0262750	-1.4413900
1.log							
Potential Energy $=-1949.24780$				$2 . \log$			
Zero-point Energy $=-1948.78402$				Potential Energy $=-1949.24751$			
Free Energy $=-1948.82865$				Zero-point Energy $=-1948.78376$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1949.74365				$\text { Free Energy }=-1948.82843$			
				Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -			
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-1949.32449$				1949.74337			
				Free Energy B3LYP-D3(BJ)/6-31			G** PCM
free energy from qRRHO) $=-1949.32449$ Nimag $=1\left(-416.3740 \mathrm{~cm}^{-1}\right)$				free energy from qRRHO $)=-1949.32429$			
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-381.0451 \mathrm{~cm}^{-1}\right)$			
C	2.4085910	-1.2682910	-0.7753590	Charge $=0$ Multiplicity $=1$			
C	1.8237410	-3.2259470	0.3986370	C	2.1176430	0.9731310	0.9323700
C	1.2459380	-2.0655920	1.2177850	C	3.4741420	2.0704710	-0.6512730
N	1.4125200	-0.9247690	0.2801390	C	2.9562280	0.8109220	-1.3558230
N	2.4051040	-2.7299470	-0.7161690	N	1.9210180	0.3366280	-0.4023190
O	1.7384640	-4.4161160	0.7023400	N	2.9276180	2.1399490	0.5825520
C	2.8645740	-3.6046480	-1.7910630	O	4.2364400	2.8965920	-1.1538200
H	2.1963810	-4.4666190	-1.8416930	C	3.0703450	3.3316330	1.4140100
H	2.8290250	-3.0639740	-2.7375090	H	3.0879320	4.2058710	0.7602430
H	3.8830810	-3.9640470	-1.6195730	H	2.2190100	3.4043340	2.0916260
C	0.5769410	0.1005620	0.0743890	H	3.9953030	3.3154590	1.9972570
H	0.9545620	0.8094490	-0.6546790	C	0.7416970	-0.2323160	-0.6831590
C	-0.2127310	0.7610050	1.2045720	H	0.1823960	-0.4968330	0.2072320
C	-0.9287320	2.0704680	0.8090080	C	0.5574570	-1.2317880	-1.8265640
H	1.8917130	-1.9038330	2.0891530	C	-0.8068230	-1.9555910	-1.8325960
C	3.8117260	-0.6019720	-0.5577460	H	3.7680970	0.0749140	-1.3947380
H	2.0172360	-0.9492180	-1.7480330	C	2.7642150	0.0179260	1.9960390
H	-0.9588090	0.0779200	1.6012990	H	1.1456450	1.3114200	1.3091390
Cl	0.9299800	1.0520030	2.6117440	H	0.6866500	-0.7441760	-2.7898130
C	-0.1633820	-2.4072350	1.7013250	Cl	1.9304330	-2.4460640	-1.7602710
H	-0.5072360	-1.7259000	2.4803630	C	2.5255170	1.1497470	-2.7833510
H	-0.8850210	-2.4303240	0.8820730	H	2.3578600	0.2582720	-3.3884890
H	-0.1146250	-3.4070020	2.1399310	H	1.6393100	1.7885790	-2.8021460
C	4.7518600	-1.0109970	-1.7134930	H	3.3488950	1.7037600	-3.2407800
H	5.6766170	-0.4293010	-1.6469010	C	2.8857650	0.7670830	3.3416990
H	5.0296730	-2.0662390	-1.6717690	H	3.1938830	0.0610490	4.1192120
H	4.3042430	-0.8080960	-2.6931860	H	3.6341220	1.5616770	3.3117140
C	4.4340590	-1.0219860	0.7863570	H	1.9288480	1.2024210	3.6514610

C	4.1547340	-0.4674320	1.5473760	H	5.2399470	1.7751040	1.6291370
H	4.8409920	0.3671710	1.3711880	H	3.7522360	2.5072980	2.2639070
H	4.5932000	-1.0945110	2.3302940	C	4.4444030	-0.8464710	1.5957800
H	4.0970220	-1.0729800	0.6376220	H	5.2366540	-0.6865240	0.8573910
C	1.8448630	-1.2012690	2.2172750	H	4.9266770	-1.0509980	2.5569970
H	0.8329100	-0.9017060	2.5138630	H	3.8794650	-1.7412670	1.3166680
H	1.7800110	-1.8371080	1.3305330	C	2.4311140	0.0924170	2.7750980
H	2.2515150	-1.8160040	3.0263570	H	1.7368080	0.9340000	2.8839650
O	-0.4240640	1.0640550	-1.1678400	H	1.8610780	-0.8094060	2.5362400
H	-1.3944220	1.1637050	-0.6054160	H	2.8980780	-0.0711340	3.7513340
O	-2.4852520	1.3041200	0.0985040	H	-1.9589970	-0.4443490	0.2944510
C	-3.4636540	1.8039220	-0.5592290	C	-2.5315700	-2.5088740	0.3309370
O	-3.5125610	2.1476670	-1.7392100	C	-2.8320240	-3.4774470	1.2985700
C	-4.7409190	1.9649360	0.3227800	C	-3.1798050	-2.5759020	-0.9126460
F	-4.4989300	2.7514960	1.4015840	C	-3.7518720	-4.4961720	1.0292500
F	-5.1652690	0.7632210	0.7903610	H	-2.3452260	-3.4346460	2.2691480
F	-5.7687720	2.5168910	-0.3517550	C	-4.0964180	-3.5941250	-1.1868480
H	-0.6113200	1.1205340	-2.1184720	H	-2.9739220	-1.8228230	-1.6697920
H	-0.8072130	-2.5990920	-2.7167870	C	-4.3846090	-4.5591210	-0.2155260
H	-1.5667080	-1.1875120	-2.0094260	H	-3.9730550	-5.2373160	1.7918800
C	-1.1782820	-2.7640980	-0.6040710	H	-4.5899390	-3.6293290	-2.1537930
C	-0.8047380	-4.1135170	-0.4930050	H	-5.0997860	-5.3489190	-0.4259280
C	-1.9363070	-2.1921560	0.4308100	O	-0.1375420	0.8610760	-1.0069230
C	-1.1599170	-4.8648680	0.6303010	H	-0.8752150	1.5495950	-0.5174920
H	-0.2399070	-4.5810580	-1.2939400	O	-1.6760590	2.3684370	0.1231140
C	-2.2918850	-2.9421510	1.5568060	C	-2.6199060	2.8650380	-0.5837380
H	-2.2669770	-1.1596110	0.3535120	O	-2.8859150	2.6809300	-1.7707570
C	-1.9016110	-4.2798590	1.6620490	C	-3.5270410	3.8269470	0.2462300
H	-0.8636500	-5.9078640	0.6957260	F	-2.8055420	4.8386050	0.7916730
H	-2.8805280	-2.4814500	2.3449550	F	-4.1287280	3.1676830	1.2695740
H	-2.1812770	-4.8644930	2.5336140	F	-4.5028620	4.3877000	-0.4954100
				H	-0.5446520	0.4745950	-1.7986640
3.log							
Potential Energy = -1949.249631				4.log			
Zero-point Energy $=-1948.78593$				Potential Energy $=-1949.247187$			
Free Energy $=-1948.83085$				Zero-point Energy $=-1948.78263$			
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1949.74168				Free Energy $=-1948.82673$			
					le-Point Energ	B3LYP-D3	$-311+\mathrm{G}^{* *} \mathrm{PCM}=$
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $)=-1949.32290$				1949.74308			
				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
free energy from qRRHO) $=-1949.32290$$\text { Nimag }=1\left(-355.7261 \mathrm{~cm}^{-1}\right)$					energy from qR	RHO) $=-1949$	
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-310.9690 \mathrm{~cm}^{-1}\right)$			
C	2.8627180	0.7576730	0.3601370	Charge $=0$ Multiplicity $=1$			
C	3.8037000	0.0081630	-1.6670530	C	-2.6986250	0.4657670	-0.8877210
C	2.7100560	-1.0092370	-1.3209250	C	-2.3567930	2.3382520	0.5025160
N	2.0088240	-0.3272390	-0.2044480	C	-1.9179440	1.1233180	1.3285200
N	3.8004560	0.9902260	-0.7381290	N	-1.8854940	0.0566510	0.2936240
O	4.5361930	-0.0533380	-2.6546330	N	-2.7302300	1.9200200	-0.7280910
C	4.5912050	2.2056460	-0.9097940	O	-2.3435540	3.5045270	0.8973940
H	4.6401110	2.4349030	-1.9760520	C	-3.0111670	2.8663030	-1.8036490
H	4.1066910	3.0299970	-0.3852160	H	-2.3672810	3.7377620	-1.6700490
H	5.6108690	2.0876690	-0.5326430	H	-2.7911020	2.3991840	-2.7643800
C	0.7004050	-0.3313200	0.0729530	H	-4.0527940	3.1994440	-1.7950520
H	0.4616890	0.2365400	0.9654660	C	-1.0165880	-0.9531120	0.1518680
C	-0.1886180	-1.5667240	-0.0999830	H	-1.2934790	-1.6204180	-0.6568350
C	-1.5379380	-1.4018820	0.6188140	C	-0.3934530	-1.6937070	1.3412590
H	-1.3566120	-1.3227040	1.6950990	C	0.1620690	-3.0917230	0.9846510
H	3.1884440	-1.9183920	-0.9377380	H	-2.7164440	0.8886570	2.0424190
C	3.5293970	0.3842840	1.7306160	C	-4.1054930	-0.2248560	-0.9574270
H	2.2464590	1.6527940	0.5023330	H	-2.1412680	0.2183090	-1.7980030
H	-0.3403050	-1.8010320	-1.1514950	H	0.3652930	-1.0850420	1.8282190
Cl	0.6995020	-3.0251330	0.5694680	Cl	-1.6958140	-1.9515560	2.6134520
C	1.9031250	-1.3628170	-2.5700510	C	-0.6400660	1.4293320	2.1056200
H	1.2499090	-2.2215080	-2.4123140	H	-0.4217640	0.6610240	2.8482080
H	1.3230290	-0.5128180	-2.9379180	H	0.2235440	1.5722240	1.4542250
H	2.6213360	-1.6373650	-3.3464710	H	-0.8154470	2.3643390	2.6439920
C	4.3518600	1.5902680	2.2369190	C	-4.8367240	0.2469510	-2.2338950
H	4.6934270	1.3895980	3.2572090	H	-5.7522400	-0.3392810	-2.3614890

H	-5.1299580	1.2975840	-2.1819800	H	4.2180430	3.8228320	-1.1852220
H	-4.2237180	0.1011380	-3.1306690	H	5.2551630	2.4649230	-0.7624950
C	-4.9624010	0.1039090	0.2786890	H	4.3811060	2.4757380	-2.3119040
H	-5.1086150	1.1822290	0.3983170	C	3.1442450	2.4075990	0.9423250
H	-5.9517270	-0.3520770	0.1698240	H	4.0432050	1.9888800	1.4079520
H	-4.5182570	-0.2946700	1.1959600	H	3.1818600	3.4927590	1.0836440
C	-3.9206450	-1.7540110	-1.0571620	H	2.2630820	2.0339960	1.4678440
H	-3.2945270	-2.0348170	-1.9126130	C	1.8400570	2.7166820	-1.2158340
H	-3.4882100	-2.1780730	-0.1466490	H	1.7784070	2.4597640	-2.2800030
H	-4.8973400	-2.2265950	-1.2007150	H	0.9109700	2.4288540	-0.7287550
O	0.4309350	-0.3485620	-0.7378910	H	1.9097270	3.8068810	-1.1463480
H	1.2179940	0.3012090	-0.2936140	H	-0.9679460	-1.2561510	-1.8226710
O	2.1562380	1.0911600	0.2196490	C	-2.1835550	-2.6506700	-0.7443110
C	3.0262320	1.5476110	-0.5988100	C	-3.4143510	-2.6407240	-0.0734770
O	3.1461220	1.3530810	-1.8077530	C	-1.7749140	-3.8312320	-1.3847630
C	4.0566810	2.4835630	0.1095810	C	-4.2168030	-3.7856200	-0.0350460
F	3.4408090	3.5552600	0.6715820	H	-3.7481260	-1.7323880	0.4206310
F	4.9918920	2.9606690	-0.7365390	C	-2.5722810	-4.9778990	-1.3458280
F	4.7115850	1.8323100	1.1046640	H	-0.8312320	-3.8540450	-1.9249910
H	0.8826560	-1.0953540	-1.1693810	C	-3.7967520	-4.9583730	-0.6690570
H	0.3844720	-3.5827400	1.9360120	H	-5.1682380	-3.7589660	0.4882400
H	-0.6347650	-3.6703770	0.5071440	H	-2.2415790	-5.8820340	-1.8487940
C	1.4110940	-3.1102730	0.1225150	H	-4.4193510	-5.8478220	-0.6414460
C	1.3509910	-3.4956290	-1.2267300	H	0.6121250	0.2142600	-1.1111280
C	2.6605230	-2.7755120	0.6706840	O	0.0749520	1.0253110	0.8481290
C	2.5090760	-3.5321820	-2.0136230	H	-0.8164190	1.4617730	0.4348660
H	0.3982110	-3.7857520	-1.6625820	H	-0.1720190	0.6380890	1.7055100
C	3.8161080	-2.8123630	-0.1120960	O	-1.9303770	2.0646620	-0.1663760
H	2.7304780	-2.4903420	1.7173200	C	-2.8245870	2.4913420	0.6348910
C	3.7437330	-3.1882240	-1.4585270	C	-4.0053950	3.1889250	-0.1142660
H	2.4423780	-3.8348650	-3.0543210	O	-2.8748540	2.4261550	1.8656720
H	4.7735190	-2.5515570	0.3291730	F	-4.6102350	2.3366770	-0.9824610
H	4.6431540	-3.2176770	-2.0660220	F	-3.5695330	4.2517870	-0.8393840
				F	-4.9602590	3.6454570	0.7223510

5.log

Potential Energy $=-1949.23941$
Zero-point Energy $=-1948.77437$
Free Energy $=-1948.81900$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.73291

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1949.31249$
Nimag $=1\left(-186.9810 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	3.1181100	0.5354530	-0.8234870
C	4.3992260	-0.8366830	0.6059300
C	2.9543720	-1.0417580	1.0668240
N	2.1941190	-0.3111330	0.0165670
N	4.4048120	-0.0854250	-0.5166800
O	5.3819840	-1.3696430	1.1200890
C	5.5626730	-0.0867920	-1.4112300
H	5.9905320	-1.0916980	-1.4185320
H	5.2380640	0.1737550	-2.4185060
H	6.3335550	0.6171530	-1.0898670
C	0.8743770	-0.2896400	-0.1859570
C	-0.0494010	-1.4899800	0.0760330
C	-1.3163060	-1.4094250	-0.7931530
H	-1.8953630	-0.5245470	-0.5159560
H	2.7905050	-0.5683310	2.0415960
C	3.0905050	2.0882560	-0.5626190
H	2.8709100	0.3548470	-1.8761930
H	0.5065240	-2.3946070	-0.1675040
Cl	-0.5043900	-1.6974070	1.8415520
C	2.7336070	-2.5584810	1.1697460
H	1.7889200	-2.8167410	1.6422850
H	2.8050570	-3.0347130	0.1874920
H	3.5367650	-2.9532980	1.7965040
C	4.3162510	2.7349400	-1.2494700

Catalyst regeneration and product release (TS7)

Conformation name	Extrapolated Free energy (kcal/mol)
TS7-lowest	0.0
1	3.6
2	3.6
3	4.5
4	2.3
5	5.3
6	3.8
7	5.6
8	1.1
9	0.7
10	1.6

TS7-lowest.log
Potential Energy $=-1949.25101$
Zero-point Energy $=-1948.78659$
Free Energy $=-1948.83046$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1949.74709

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1949.32653$
Nimag $=1\left(-492.3687 \mathrm{~cm}^{-1}\right)$

Charge $=0$ Multiplicity $=1$			
C	1.0639590	1.7565980	-1.7950990
C	-0.2708930	2.3394820	0.0328890
C	-0.1808220	0.8788080	-1.8252270
H	-0.9995880	3.0098360	-0.4502400
H	0.0659700	-0.1538370	-2.0768710
C	-0.1489250	-0.8124890	0.4540330
H	-0.6715330	-0.5341840	1.3706490
O	-0.6908270	-1.6602060	-0.3341430
N	1.0289200	2.5007140	-0.6487910
C	1.9203040	3.6473820	-0.4984670
H	2.3730770	3.6700700	0.4930590
H	2.7081110	3.5396320	-1.2441460
H	1.3868740	4.5863310	-0.6790740
O	1.9286660	1.7983340	-2.6690720
C	1.3778500	-0.8602110	0.5916570
H	1.7864850	0.1287560	0.7839120
C	2.1135610	-1.5683490	-0.5498780
H	1.8706510	-1.0305140	-1.4725620
H	1.7078280	-2.5763580	-0.6604390
N	-0.6271330	0.9464870	-0.4067470
C	-3.8247910	-1.0629700	-0.2117750
C	-5.3295320	-1.4568300	-0.1564260
O	-3.5182530	0.1205400	-0.3345990
H	-1.6437700	0.8025400	-0.3472500
O	-3.0553030	-2.0889970	-0.1176320
H	-1.9104120	-1.8428750	-0.2039220
C	-0.3851580	2.6589670	1.5545680
C	-0.3428680	4.1973580	1.7431830
H	-0.6213520	4.4353270	2.7742350
H	0.6471800	4.6218070	1.5700880
H	-1.0544310	4.7031880	1.0816820
C	0.7004860	2.0169540	2.4374130
H	0.6293040	2.4311810	3.4481500
H	1.7109970	2.2210180	2.0719910
C	-1.7832970	2.1937080	2.0250640
H	-1.9293570	2.4928870	3.0671670
H	-2.5810110	2.6541600	1.4320100
H	-1.9110970	1.1090200	1.9795190
C	-1.2108860	1.3949030	-2.8426400
H	-0.7744940	1.3495420	-3.8439080
H	-2.1022840	0.7631120	-2.8231080
H	-1.5090980	2.4285260	-2.6452470
H	0.5802510	0.9365340	2.5342450
Cl	1.6440390	-1.7747320	2.1772690
F	-5.6133560	-2.1331630	0.9811550
F	-6.1342890	-0.3805610	-0.2026320
F	-5.6549450	-2.2581010	-1.1988180
C	3.6209790	-1.6130600	-0.3902230
C	4.3981510	-0.4602750	-0.5857570
C	4.2701170	-2.8116730	-0.0623630
C	5.7876570	-0.5018580	-0.4426900
H	3.9181180	0.4742910	-0.8648520
C	5.6608930	-2.8581950	0.0785730
H	3.6842230	-3.7152580	0.0830470
C	6.4240590	-1.7019910	-0.1081280
H	6.3725040	0.3998660	-0.6003930
H	6.1453790	-3.7968230	0.3320110
H	7.5042880	-1.7362130	-0.0005890

Nimag $=1\left(-506.0454 \mathrm{~cm}^{-1}\right)$			
Charge $=0$ Multiplicity $=1$			
C	-0.4872840	2.5446190	1.7234570
C	1.0762730	2.2660040	0.0038530
C	0.1217160	1.1589380	1.8817700
H	2.0289420	2.5006800	0.5057360
H	-0.6537840	0.4297950	2.1172460
C	-0.3080020	-0.6205850	-0.3207610
H	0.0157800	-0.3655960	-1.3310290
O	0.2235360	-1.6211500	0.2839970
N	0.0248150	3.1081160	0.5952660
C	-0.1561850	4.5334570	0.3445280
H	-0.5049350	4.7192850	-0.6718900
H	-0.9123850	4.8860940	1.0460720
H	0.7734970	5.0846920	0.5186860
O	-1.2706190	3.0666710	2.5170300
C	-1.8077000	-0.5146900	-0.0544560
H	-1.9958980	-0.5702960	1.0177990
C	-2.5096700	-1.7012040	-0.7606600
H	-1.9825670	-2.6038020	-0.4352370
H	-2.3657290	-1.6077240	-1.8417360
N	0.6829530	0.8962630	0.5233480
C	3.3518350	-1.7996570	0.1976880
C	4.7337570	-2.4920670	0.0195940
O	3.2919670	-0.7046010	0.7510930
H	1.5453660	0.3433990	0.6139270
O	2.3902640	-2.5034540	-0.2885910
H	1.3345030	-2.0376040	-0.0569430
C	1.3892290	2.3986890	-1.5201030
C	2.1495840	3.7304700	-1.7535410
H	2.5334120	3.7429820	-2.7782020
H	1.5172560	4.6112730	-1.6358790
H	3.0057910	3.8286690	-1.0772270
C	0.1587540	2.3583410	-2.4432950
H	0.4815200	2.5520000	-3.4716370
H	-0.5838910	3.1148360	-2.1785410
C	2.3704160	1.2675120	-1.9059270
H	2.7017290	1.4180130	-2.9375620
H	3.2588010	1.2674330	-1.2662390
H	1.9177530	0.2743840	-1.8586530
C	1.1699940	1.1363750	3.0050450
H	0.6849770	1.3973950	3.9492260
H	1.5986200	0.1356160	3.0988020
H	1.9797150	1.8497220	2.8256400
H	-0.3442650	1.3908570	-2.4340150
Cl	-2.5273120	1.0581990	-0.6082370
F	4.9879130	-2.7377960	-1.2873290
F	5.7401080	-1.7382280	0.4961600
F	4.7655200	-3.6790310	0.6708520
C	-3.9838620	-1.8268520	-0.4351590
C	-4.9621170	-1.5094110	-1.3875890
C	-4.3968780	-2.2813720	0.8275070
C	-6.3222590	-1.6359250	-1.0863690
H	-4.6588070	-1.1625290	-2.3717580
C	-5.7544120	-2.4055210	1.1335800
H	-3.6531530	-2.5471540	1.5751160
C	-6.7225150	-2.0817910	0.1764440
H	-7.0658010	-1.3867800	-1.8380340
H	-6.0555300	-2.7606740	2.1149610
H	-7.7780640	-2.1811940	0.4120840

1.log
Potential Energy $=-1949.24594$
Zero-point Energy $=-1948.78197$
Free Energy $=-1948.82590$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1949.74085

2.log

Potential Energy $=-1949.24440$
Zero-point Energy $=-1948.77977$
Free Energy $=-1948.82337$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated 1949.74179
free energy from qRRHO $)=-1949.32081$

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1949.32076$				Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$194973962			
Nimag $=1\left(-500.3399 \mathrm{~cm}^{-1}\right)$				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
Charge $=0$ Multiplicity $=1$				free energy from qRRHO $)=-1949.31936$			
C	-0.8663320	-3.3403780	-1.0437420	Nimag $=1\left(-491.2565 \mathrm{~cm}^{-1}\right)$			
C	0.1349870	-2.2737740	0.7848040		$\text { ge }=0 \text { Multipl }$	$\text { city }=1$	
C	0.0726130	-2.2784330	-1.5966060	C	-2.9135440	-1.3243350	1.6240160
H	1.1083300	-2.7843610	0.8642510	C	-2.7165180	0.3464560	-0.0061310
H	-0.4068830	-1.7442420	-2.4170640	C	-1.5584750	-0.6610650	1.8181770
C	-0.5309800	0.4263900	-0.8299190	H	-3.0123460	1.2622580	0.5311450
H	-0.6076720	0.7018920	0.2214320	H	-0.7946290	-1.4194170	1.9938590
O	0.3927900	0.9424720	-1.5579610	C	0.3072860	-0.8350170	-0.3847590
N	-0.8614910	-3.2485480	0.3141580	H	0.0295450	-0.4679820	-1.3725930
C	-1.4395300	-4.3188200	1.1191670	O	1.2410800	-0.2502170	0.2727870
H	-2.1163530	-3.9268540	1.8792780	N	-3.5042300	-0.7755950	0.5279240
H	-2.0048500	-4.9573890	0.4401760	C	-4.9217240	-1.0039940	0.2715990
H	-0.6572060	-4.9156670	1.5988190	H	-5.0955640	-1.3314330	-0.7543060
O	-1.4793790	-4.1637100	-1.7236550	H	-5.2455610	-1.7918750	0.9518780
C	-1.8457870	0.2817290	-1.5893160	H	-5.5064080	-0.1002540	0.4707210
H	-1.6606870	-0.2223320	-2.5377240	O	-3.3963840	-2.1761480	2.3710240
C	-2.4340900	1.6802750	-1.9203900	C	0.3229550	-2.3443950	-0.2038150
H	-1.7038590	2.1616400	-2.5782890	H	0.4770870	-2.5887190	0.8472130
N	0.2591420	-1.3694190	-0.4270920	C	1.4623590	-2.9673970	-1.0634920
C	3.2919530	0.9235950	-0.3629900	H	1.3414410	-2.6386670	-2.1004660
C	4.6795040	1.5161040	0.0172690	N	-1.3308390	0.0080390	0.5041160
O	3.1314240	-0.2941950	-0.3527040	C	1.1362100	2.8807350	0.3133440
H	1.2187860	-0.9997250	-0.4347920	C	1.7070240	4.3254860	0.2055460
O	2.4357760	1.8405000	-0.6506470	O	0.0590520	2.7050300	0.8843280
H	1.4179440	1.3968250	-1.0379920	H	-0.8367290	0.8977750	0.6546250
C	-0.0714030	-1.5933200	2.1748960	O	1.9006950	2.0111520	-0.2358670
C	0.2341610	-2.6327520	3.2851260	H	1.5293940	0.8459250	-0.0214940
H	0.2761220	-2.1169310	4.2492800	C	-2.8524760	0.7074530	-1.5194080
H	-0.5282130	-3.4081260	3.3681820	C	-4.2254630	1.3917940	-1.7485770
H	1.2032110	-3.1182130	3.1259630	H	-4.2442720	1.8166920	-2.7568770
C	-1.4775050	-1.0136570	2.4092600	H	-5.0664190	0.7013110	-1.6748990
H	-1.5420420	-0.6454520	3.4385090	H	-4.3899070	2.2113220	-1.0403820
H	-2.2614450	-1.7625930	2.2731410	C	-2.7252820	-0.4890280	-2.4784950
C	0.9907020	-0.4793760	2.3255830	H	-2.9249660	-0.1488720	-3.5000450
H	0.9377040	-0.0696060	3.3384800	H	-3.4390000	-1.2831040	-2.2452890
H	2.0035710	-0.8662160	2.1744670	C	-1.7807510	1.7696260	-1.8571260
H	0.8402230	0.3548980	1.6367140	H	-1.9345630	2.1196520	-2.8821190
C	1.3762340	-2.9035110	-2.1170710	H	-1.8501170	2.6373220	-1.1932740
H	1.1393990	-3.5907750	-2.9334300	H	-0.7605240	1.3831940	-1.8021930
H	2.0399660	-2.1242610	-2.4995920	C	-1.5784650	0.3017130	3.0157010
H	1.9030450	-3.4628020	-1.3383970	H	-1.8072840	-0.2628600	3.9234000
H	-1.7070370	-0.1784240	1.7470680	H	-0.5998020	0.7727300	3.1358970
Cl	-3.0731040	-0.7399810	-0.7219070	H	-2.3328990	1.0852880	2.8982320
F	4.5757030	2.3354400	1.0905160	H	-1.7293500	-0.9334010	-2.4695590
F	5.5710690	0.5565600	0.3212620	Cl	-1.2391730	-3.1337400	-0.6890370
F	5.1912580	2.2443810	-1.0029040	F	1.9087570	4.6735640	-1.0881790
C	-2.7517330	2.5878710	-0.7477990	F	0.8836570	5.2413600	0.7479860
C	-1.7878690	3.4787270	-0.2477660	F	2.8998330	4.4217190	0.8417020
C	-4.0240040	2.5784060	-0.1546740	H	1.2858470	-4.0470800	-1.0490460
C	-2.0800710	4.3225810	0.8279310	C	2.8696280	-2.6839530	-0.5774840
H	-0.8046500	3.5205300	-0.7088580	C	3.7244290	-1.8391360	-1.2988820
C	-4.3202500	3.4215570	0.9204500	C	3.3560990	-3.2970990	0.5879760
H	-4.7893930	1.9112540	-0.5404580	C	5.0322920	-1.6031090	-0.8635670
C	-3.3473510	4.2939930	1.4182720	H	3.3662940	-1.3622310	-2.2076680
H	-1.3209400	5.0057370	1.1980010	C	4.6602230	-3.0600070	1.0291120
H	-5.3116830	3.4004510	1.3638640	H	2.7145450	-3.9703430	1.1517030
H	-3.5775460	4.9518970	2.2512240	C	5.5030420	-2.2099880	0.3043560
H	-3.3352780	1.5030900	-2.5143420	H	5.6805030	-0.9464180	-1.4366750
				H	5.0199460	-3.5433250	1.9329340
3.10				H	6.5183240	-2.0277820	0.6443020
Potential Energy $=$-1949.24375							
Zero-point Energy $=-1948.77976$				4.log			
Free Energy $=-1948.82349$				Potential Energy $=-1949.24967$ Zero-point Energy $=-1948.78455$			

Free Energy =-1948.82828
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM $=-$ 1949.74430

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO $=-1949.32292$
Nimag $=1\left(-353.0256 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-0.2350390	-0.9723700	-0.4731210
H	0.2935820	-0.8131030	-1.4123540
O	0.2216980	-1.8435150	0.3476350
C	-1.7506830	-0.8167670	-0.5376460
H	-2.0272890	0.1872770	-0.8486700
C	3.3816840	-1.6531910	0.1521120
C	4.8358420	-2.1969680	0.0250670
O	3.2168810	-0.4504010	0.3742200
O	2.5021340	-2.5672250	-0.0025820
H	1.3090400	-2.1661570	0.1625800
Cl	-2.2184270	-1.8774470	-1.9747610
F	5.0444000	-2.7332470	-1.2023480
F	5.7603500	-1.2361920	0.2088820
F	5.0728320	-3.1701410	0.9373090
N	0.5324180	0.7975310	0.2406800
C	0.0159300	1.3490050	1.5325950
C	1.0426340	1.9752410	-0.5712650
C	0.7963720	2.6615130	1.6762370
H	-1.0495820	1.5780350	1.4350350
H	1.9510520	1.6344390	-1.0782280
H	1.4031120	0.2953860	0.4699680
O	0.8855720	3.3338550	2.7043540
N	1.4170040	2.9151410	0.5002810
C	2.4701980	3.9234210	0.4010910
H	2.0662880	4.9260310	0.2369350
H	3.0346960	3.9261560	1.3361890
H	3.1387930	3.6675780	-0.4214420
C	0.2577120	0.4368700	2.7342540
H	-0.2783420	-0.5081200	2.6415730
H	1.3237060	0.2183860	2.8500810
H	-0.0867590	0.9486180	3.6358290
C	0.0963690	2.5869260	-1.6552420
C	0.8102440	3.8055770	-2.2890420
H	0.2223310	4.1564840	-3.1425820
H	0.9019770	4.6417260	-1.5935280
H	1.8079910	3.5470000	-2.6602580
C	-0.1310850	1.5674030	-2.7909960
H	0.8187070	1.1775740	-3.1745990
H	-0.7545250	0.7230620	-2.4974360
H	-0.6447510	2.0592970	-3.6226550
C	-1.2472690	3.0649950	-1.0753030
H	-1.1027240	3.8107250	-0.2871030
H	-1.8414810	3.5334950	-1.8661660
H	-1.8463880	2.2479260	-0.6653510
C	-2.5054800	-1.2508130	0.7213050
H	-2.2202970	-2.2755280	0.9692800
H	-2.1439760	-0.6165010	1.5376080
C	-4.0137050	-1.1259060	0.6260050
C	-4.8151100	-2.2661800	0.4722390
C	-4.6394830	0.1278300	0.7092090
C	-6.2070920	-2.1580260	0.3921580
H	-4.3477990	-3.2455750	0.4160790
C	-6.0300020	0.2406550	0.6265370
H	-4.0406690	1.0240090	0.8503240
C	-6.8189220	-0.9032910	0.4661150
H	-6.8107490	-3.0533350	0.2744080
H	-6.4959470	1.2194250	0.6952560
H	-7.8999140	-0.8174260	0.4059730

5.log

Potential Energy $=-1949.24583$

Zero-point Energy $=-1948.77984$
Free Energy $=-1948.82356$
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 1949.74041

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-1949.31813$
Nimag $=1\left(-182.7738 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	-0.4263140	-0.7666210	-0.3001490
H	-0.1255300	-1.2251390	0.6439450
O	0.1220020	-1.2109160	-1.3699740
C	-1.8984960	-0.3937960	-0.3160830
C	-2.7102910	-1.6160730	0.1901840
H	-2.5565940	-2.4493500	-0.5016470
H	-2.2782530	-1.9106530	1.1541600
C	2.8965280	-2.1112280	0.0191990
C	4.2033880	-2.9515910	0.1476470
O	2.6878930	-1.2268180	0.8598960
O	2.1852890	-2.4569360	-0.9776660
H	1.0624870	-1.7597240	-1.1754870
F	3.9265770	-4.2750010	0.2407800
F	4.9308560	-2.6154520	1.2301380
F	4.9942070	-2.7804980	-0.9410210
C	-4.1893320	-1.3418860	0.3715860
C	-4.6460630	-0.5921910	1.4669770
C	-5.1286550	-1.8428010	-0.5404020
C	-6.0092050	-0.3388760	1.6398060
H	-3.9350620	-0.2105470	2.1958700
C	-6.4942100	-1.5944760	-0.3682010
H	-4.7913190	-2.4317410	-1.3888610
C	-6.9381580	-0.8390000	0.7208460
H	-6.3454120	0.2411870	2.4943420
H	-7.2080740	-1.9921320	-1.0837600
H	-7.9982860	-0.6460270	0.8564180
H	-2.0835440	0.4603930	0.3344050
Cl	-2.4707480	0.1024800	-1.9629800
N	0.6753100	0.8485570	0.3522160
C	0.1436060	1.5363480	1.5679230
C	1.5201210	1.8712290	-0.3914650
C	1.2012360	2.6162770	1.8311170
H	-0.8032990	2.0281410	1.3229480
H	2.3824010	1.3345900	-0.8001050
O	1.3406770	3.2448820	2.8810260
C	3.2489280	3.4391950	0.7564580
H	3.1224210	4.5014770	0.5328920
H	3.6800150	3.3421340	1.7551900
H	3.9300390	3.0003910	0.0262380
N	1.9803960	2.7143930	0.7292800
H	1.3849230	0.1774860	0.6825000
C	-0.0396580	0.6226470	2.7770100
H	-0.2687100	1.2430330	3.6466330
H	-0.8660220	-0.0787480	2.6432760
H	0.8726410	0.0578670	2.9922280
C	0.8503490	2.6557080	-1.5622020
C	1.7749790	3.8222520	-1.9818640
H	1.8091280	4.6145370	-1.2304290
H	2.7974890	3.4853980	-2.1843380
H	1.3869270	4.2632560	-2.9053790
C	-0.5182660	3.2450140	-1.1753870
H	-0.9087330	3.8363640	-2.0100240
H	-1.2574830	2.4715340	-0.9579620
H	-0.4388520	3.9145330	-0.3122080
C	0.7257160	1.7159240	-2.7785460
H	0.1230170	0.8337230	-2.5719470
H	0.2615610	2.2544860	-3.6112950
H	1.7160200	1.3812530	-3.1094650

6.log

Potential Energy $=-1949.24520$							
Zero-point Energy $=-1948.77947$				Potential Energy = -1949.24378			
Free Energy $=-1948.82349$				Zero-point Energy $=-1948.77757$			
Single-Point Energy B3LYP1949.74218				Free Energy $=-1948.82128$			
					e-Point Energ	B3LYP-D3(B)	/6-311+G** PCM $=-$
Free Energy				1949.74017			
free energy from qRRHO) $=-1949.32047$				Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated			
Nimag $=1\left(-184.3497 \mathrm{~cm}^{-1}\right)$				free energy from qRRHO) $=-1949.31767$			
Charge $=0$ Multiplicity $=1$				Nimag $=1\left(-166.7933 \mathrm{~cm}^{-1}\right)$			
C	0.7139820	-0.3444080	-1.0328300		ge $=0$ Multip	ity $=1$	
H	1.1607050	0.2641110	-0.2446750	C	0.6752510	-0.6500430	0.1739330
O	0.1745010	0.2686700	-2.0208860	H	0.7524660	0.0164450	1.0346350
C	1.4989440	-1.6141770	-1.2925640	O	0.9418270	-0.1531300	-0.9781810
C	2.9902150	-1.2552330	-1.5667990	C	1.1078590	-2.0690590	0.4975860
H	3.0289940	-0.5430540	-2.3963320	C	2.3932850	-2.0672730	1.3750050
C	-0.6336890	2.9344980	-0.3845530	C	0.0470380	2.8675910	-0.2387100
C	-0.9798820	4.4469490	-0.2338760	C	0.0695870	4.4207630	-0.3729760
O	-0.6765710	2.2228750	0.6273310	O	-0.7258530	2.3668250	0.5899550
O	-0.3415570	2.6140260	-1.5810210	O	0.8548910	2.2926090	-1.0342230
H	-0.0640200	1.3257380	-1.7972240	H	0.8842690	0.9437210	-0.9913280
F	0.0446560	5.2271940	-0.6564210	F	1.3206460	4.9104360	-0.1958450
F	-1.2498430	4.7920110	1.0396640	F	-0.7312860	5.0307070	0.5219870
F	-2.0661670	4.7687800	-0.9797120	F	-0.3409940	4.8012930	-1.6089070
H	1.4341980	-2.2911070	-0.4413460	H	0.3316210	-2.5759320	1.0695100
Cl	0.8724320	-2.5388000	-2.7241510	Cl	1.3425340	-3.0769260	-0.9922950
N	-0.7753960	-0.7079250	0.3613030	N	-1.3491250	-0.4953750	0.4685840
C	-0.3565940	-1.4767910	1.5731260	C	-1.8539370	-1.0804500	1.7477600
C	-2.2759000	-0.9105740	0.2128410	C	-2.5180530	-0.5038380	-0.5044690
C	-1.6422120	-1.5178300	2.4088140	C	-3.3533010	-0.7598440	1.6943160
H	-0.0907440	-2.4984460	1.2829840	H	-1.7295270	-2.1680070	1.7252370
H	-2.6930430	0.0426090	-0.1274340	H	-2.4501200	0.4170960	-1.0922010
O	-1.7137200	-1.8106420	3.6032280	O	-4.1298460	-0.7960150	2.6492880
C	-3.9657770	-0.7583660	2.1843450	C	-4.9220910	0.2719630	0.1123960
H	-4.6202530	-1.6258140	2.3016600	H	-5.7045770	-0.4461960	-0.1447110
H	-3.8033360	-0.3091940	3.1666070	H	-5.2440850	0.8398520	0.9877850
H	-4.4518140	-0.0317080	1.5320780	H	-4.7758300	0.9545830	-0.7260550
N	-2.6666820	-1.1186880	1.6205320	N	-3.6538350	-0.3809090	0.4302040
H	-0.7146040	0.2892960	0.6143910	H	-1.2112200	0.5124210	0.6410390
C	0.7886630	-0.8343910	2.3516020	C	-1.1978270	-0.5060550	3.0005800
H	0.9252720	-1.3859120	3.2847560	H	-1.7371390	-0.8768600	3.8752000
H	1.7311070	-0.8691160	1.8017790	H	-0.1550470	-0.8163270	3.0967720
H	0.5613410	0.2066040	2.6014610	H	-1.2433390	0.5872650	3.0089200
C	-2.7668450	-2.0239320	-0.7639550	C	-2.6246200	-1.6975640	-1.5042260
C	-4.2795100	-2.2596000	-0.5445260	C	-4.0150670	-1.6651450	-2.1803630
H	-4.4880200	-2.7492250	0.4095530	H	-4.8168420	-1.9379010	-1.4901590
H	-4.8540150	-1.3283180	-0.5947840	H	-4.2406760	-0.6838090	-2.6114720
H	-4.6509950	-2.9161530	-1.3375730	H	-4.0253310	-2.3922660	-2.9983330
C	-2.0387140	-3.3626440	-0.5453170	C	-2.4588090	-3.0654050	-0.8176430
H	-2.4605280	-4.1201490	-1.2140120	H	-2.6088240	-3.8622280	-1.5533240
H	-0.9721060	-3.2962140	-0.7673530	H	-1.4600760	-3.2017980	-0.3981150
H	-2.1670220	-3.7266290	0.4797440	H	-3.2006050	-3.2115760	-0.0252960
C	-2.5925200	-1.5232120	-2.2121600	C	-1.5739780	-1.5058000	-2.6169670
H	-1.5607420	-1.2760240	-2.4537310	H	-0.5546100	-1.4746180	-2.2369860
H	-2.9271890	-2.2972810	-2.9106310	H	-1.6426040	-2.3325370	-3.3316150
H	-3.2055440	-0.6308350	-2.3860990	H	-1.7602350	-0.5751660	-3.1660400
H	3.4633260	-2.1792750	-1.9095500	H	2.6130250	-3.1168820	1.5899040
C	3.7394860	-0.7181530	-0.3622390	H	2.1166040	-1.6063460	2.3302920
C	3.9569610	0.6583600	-0.1975490	C	3.6184810	-1.3754110	0.8116440
C	4.2510010	-1.6005490	0.6031610	C	4.5142710	-2.0620070	-0.0234000
C	4.6575450	1.1436880	0.9112190	C	3.8999310	-0.0398910	1.1401470
H	3.5867250	1.3561650	-0.9444200	C	5.6476800	-1.4238870	-0.5347400
C	4.9516490	-1.1186370	1.7118450	H	4.3274120	-3.1027050	-0.2701960
H	4.1078470	-2.6716250	0.4827900	C	5.0325510	0.6017180	0.6302610
C	5.1543470	0.2563400	1.8703780	H	3.2379930	0.5029280	1.8104190
H	4.8183770	2.2121130	1.0208060	C	5.9082880	-0.0879690	-0.2131530
H	5.3425990	-1.8158260	2.4470770	H	6.3293840	-1.9723900	-1.1783560
H	5.7007660	0.6318370	2.7304190	H	5.2322290	1.6351730	0.8980480
				H	6.7906450	0.4071950	-0.6077890

H	-3.9367790	4.3856130	1.4467150	H	-4.9786820	-1.4443730	1.6915200
H	-1.8573700	5.6334180	2.0124100	H	-4.4453950	-4.7689110	-0.9905780
			H	-5.9474310	-3.1367670	0.1415870	

10.log

Potential Energy $=-1949.24828$
Zero-point Energy $=-1948.78385$
Free Energy =-1948.82750
Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = -
1949.74475

Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated
free energy from qRRHO) $=-1949.32397$
Nimag $=1\left(-533.9049 \mathrm{~cm}^{-1}\right)$
Charge $=0$ Multiplicity $=1$

C	3.1105990	-0.5891380	-1.5764200
C	2.7654150	0.5519640	0.4332690
C	1.8510890	0.2519050	-1.7318080
H	3.2081330	1.5316230	0.1907390
H	1.0685650	-0.3165230	-2.2351290
C	-0.1719290	-0.6699280	0.0412660
H	-0.2702150	-0.2611160	1.0504640
O	-0.9765110	-0.2706630	-0.8637940
N	3.5296740	-0.4917140	-0.2777750
C	4.8716910	-0.9379430	0.0842810
H	4.8628760	-1.5075260	1.0139780
H	5.2222060	-1.5831640	-0.7214070
H	5.5569860	-0.0893320	0.1824370
O	3.6680490	-1.2123160	-2.4783790
C	0.2732070	-2.1292750	0.0491580
C	-0.5983710	-2.9795080	1.0136650
N	1.4601320	0.4828650	-0.3113630
C	-1.5114290	2.8287570	-0.3068340
C	-2.3983320	4.1040390	-0.2070370
O	-0.2932690	2.9341030	-0.1821090
H	0.9598380	1.3768130	-0.2222830
O	-2.2112050	1.7714220	-0.5165380
H	-1.5742250	0.7824280	-0.6540990
C	2.6998910	0.5178630	1.9902780
C	4.0708280	0.9658520	2.5595340
H	3.9677790	1.1392610	3.6350500
H	4.8542960	0.2183640	2.4270180
H	4.4084910	1.9024080	2.1028020
C	2.3334040	-0.8523000	2.5883890
H	2.4828780	-0.8241270	3.6723240
H	2.9519870	-1.6622170	2.1916370
C	1.6677230	1.5777290	2.4403850
H	1.6666220	1.6379900	3.5327380
H	1.9171260	2.5710430	2.0519490
H	0.6475580	1.3407670	2.1277560
C	2.1282840	1.5362320	-2.5289570
H	2.4625090	1.2662080	-3.5342340
H	1.2130440	2.1272610	-2.6151630
H	2.9024710	2.1550150	-2.0655210
H	1.2852660	-1.1081850	2.4251080
F	-3.2878190	3.9949990	0.8085400
F	-1.6677240	5.2123430	0.0088790
F	-3.1036250	4.2935450	-1.3472090
H	1.3058380	-2.2023560	0.3833770
Cl	0.2691760	-2.8510260	-1.6231840
H	-0.1841790	-3.9916060	0.9862640
H	-0.4090340	-2.5950440	2.0225660
C	-2.0920220	-3.0177510	0.7597090
C	-2.9518120	-2.1143220	1.4040930
C	-2.6522870	-3.9769510	-0.0984570
C	-4.3313490	-2.1522970	1.1819960
H	-2.5437270	-1.3789350	2.0931600
C	-4.0313360	-4.0183000	-0.3234290
H	-2.0066350	-4.6990220	-0.5893570
C	-4.8755280	-3.1031200	0.3132650

2.4. Ion Mobility-Mass Spectrometry with Aminals (2 ${ }^{\text {nd }}$ Generation MacMillan Catalyst)

Diastereomeric aminals were dissolved in acetonitrile to yield pure and 1:1 mixed solutions. Arrival time distributions (ATDs) and mass spectra of iminium ions were recorded on a home-built drift-tube ion mobility instrument which is described in detail elsewhere. ${ }^{30,31}$ Briefly, iminium ions in the gas phase were generated by nanoelectrospray ionization followed by in-source fragmentation of intact aminal precursors. Subsequently, the ions are injected to the drift tube (161.2 cm) using helium at ca. 4.00 mbar as drift gas. Drift times were recorded at 14 different drift voltages from 2300 to 1000 V in 100 V steps. After transfer of the ions for mbar pressure to high vacuum, the ions are selected by their mass-tocharge ratio in a quadrupole mass filter. The ATDs are record using an electron multiplier detector which is on axis to the drift tube. For mass spectral analysis, the ions are pulsed off-axis to a Wiley-McLaren time-of-flight mass analyser. From the drift times, the instrument-independent collision cross sections (CCSs) can be derived using the Mason-Schamp equation. ${ }^{32,33}$ Arrival time distributions (ATDs) of iminium ions generated from both diastereomeric aminals and their mixture are shown below.

Figure SI-17. Ionization of aminals syn-25 and anti-25 and arrival time distributions of diastereomeric $E-(R)-$ (blue trace) and E-(S)-iminium ions (red trace). The trace of the mixture of both diastereomers is depicted in light grey.

Figure $\mathrm{SI}-18$. Mass spectra of iminium ions $(m / z=399)$ generated from aminal precursor ions $[\mathrm{M}+\mathrm{H}]^{+}$ $(m / z=496)$ and $[\mathrm{M}+\mathrm{Na}]^{+}(m / z=518)$.

Computational Methods

For each iminium ion $(E-(R), E-(S), Z-(R)$ and $Z-(S))$ the conformational space was sampled by using a genetic algorithm (GA) FAFOOM. ${ }^{34}$ In this case, all rotatable bonds were sampled, generating a pool of starting structures, which are automatically optimized with FHI-aims ${ }^{35}$ (version 171221) at the dispersion corrected density functional PBE+vdW ${ }^{\top S} 36,37$ level of theory using light basis set settings. For each type of isomers, ten GA runs were performed that yielded ca. 120 structures for each candidate. From that pool of structures, a certain number of distinct low-energy structures for each isomer were reoptimized, frequencies and Merz-Singh-Kollman ${ }^{38}$ charges calculated at the hybrid-DFT level PBE0+D3/6$311+G(d, p){ }^{39}$ using default settings in Gaussian 16, Revision A.03. ${ }^{14}$ The reoptimized structures and computed Merz-Singh-Kollman were used as input to compute theoretical CCS values using the trajectory method using the software hpccs. ${ }^{40}$ The calculation was carried out in helium as drift gas at 298.15 K. Default settings were used except for the number of points in velocity integration (60) and the number of points in Monte Carlo integrations of impact parameters and orientation (750). Computed energies plus zero-point vibrational energy, free energies at 298.15 K and computed CCSs are shown in Table SI-13. 3D-structures of each lowest-energy isomer are shown below and their xyz-coordinates can be found at the end of this chapter.

Table SI-13. List of conformations reoptimized at PBE0+D3/6-311+G(d,p) level of theory. Energies ($\Delta \mathrm{E}$, including zero-point-vibrational energy), free energies $(\Delta \mathrm{F})$ at 298.15 K and collision cross sections calculated with the trajectory method (CCS ${ }^{\top M}$) in He are assigned to each structure. The lowest-energy conformers for each isomer are labelled with an asterisk (*).

ID	$\Delta \mathrm{F}(\mathrm{PBE} 0+\mathrm{D} 3)$		
	$\Delta \mathrm{E}(\mathrm{PBE} 0+\mathrm{D} 3)\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	[$\mathrm{kcal} \mathrm{mol}{ }^{-1}$]	$\operatorname{CCS}^{\text {TM }}\left[\AA^{2}\right]$
trans_S/conf_00*	0.0	0.0	123
trans_S/conf_01	1.4	0.5	124
trans_S/conf_02	3.6	3.8	125
trans_S/conf_03	3.7	2.8	127
trans_S/conf_04	5.9	4.5	129
trans_S/conf_05	6.6	5.1	129
trans_R/conf_00*	2.4	1.8	128
trans_R/conf_01	2.4	2.1	125
trans_R/conf_02	4.4	5.3	123
trans_R/conf_03	5.3	4.4	131
trans_R/conf_04	5.5	5.1	127
cis_S/conf_00*	4.5	4.1	126
cis_S/conf_01	5.7	5.2	128
cis_S/conf_02	6.2	4.9	133
cis_S/conf_03	7.9	8.3	123
cis_S/conf_04	7.1	7.1	123
cis_R/conf_00*	1.4	0.8	123
cis_R/conf_01	5.0	4.2	124
cis_R/conf_02	6.0	6.0	123
cis_R/conf_03	7.9	6.6	133

a)

b)

c)

d)

Figure SI-19. Computed lowest-energy structures for four distinct iminium ions: (a) E-(R), (b) E-(S), (c) $Z-(R)$ and (d) Z-(S). Hydrogens are omitted for clarity.

Table SI-14. xyz-Coordinates of reoptimized structures

MacMillan_Catalyst/rrans_R/conf_00			
Charge=+1,			Multiplicity $=+1$
C	1.84003	0.99505	0.73778
C	1.87689	-1.39314	0.16100
C	3.20941	0.38309	0.98485
C	0.57872	2.65319	-0.74446
H	1.49436	-2.20115	0.79753
N	1.02636	-0.19435	0.46042
N	3.15318	-0.93582	0.65539
0	4.16256	0.98874	1.40093
C	4.27626	-1.81150	0.92437
H	4.90108	-1.31845	1.66978
H	3.91977	-2.76549	1.31794
H	4.88011	-1.98828	0.03147
C	1.83570	-1.89411	-1.30880
C	2.49158	-3.28176	-1.33395
H	2.35714	-3.72038	-2.32549
H	3.56365	-3.24543	-1.14025
H	2.03039	-3.96123	-0.61011
C	0.38475	-2.05627	-1.76311
H	0.37340	-2.48931	-2.76622
H	-0.18391	-2.73604	-1.11920
H	-0.14883	-1.10394	-1.82123
C	2.57569	-0.96109	-2.26105
H	3.58578	-0.73216	-1.91160
H	2.66458	-1.43742	-3.24034
H	2.03820	-0.02259	-2.41211
C	-0.22548	-0.31614	0.71021
C	-1.10207	0.71089	1.32873
H	-0.65278	1.69874	1.36399
C	-2.50843	0.78235	0.73921
H	-2.44310	1.46510	-0.11296
H	-3.14719	1.26456	1.48379
C	-3.06516	-0.54151	0.29415
C	-3.00226	-0.89306	-1.05507
C	-3.60588	-1.45076	1.20434
C	-3.45602	-2.13359	-1.48830
H	-2.61068	-0.17809	-1.77407
C	-4.05726	-2.69272	0.77274
H	-3.68457	-1.18389	2.25304
C	-3.97868	-3.03872	-0.57213
H	-3.41420	-2.38775	-2.54213
H	-4.48313	-3.38799	1.48800
H	-4.34081	-4.00463	-0.90682
Cl	-1.08994	0.08438	3.03342
C	-0.14099	2.19010	-1.84663
C	-1.35629	2.77053	-2.19751
H	0.26865	1.39488	-2.46276
C	0.05139	3.70581	0.00806

C	-1.87497
H	-1.89064
C	-1.16902
H	0.61337
H	-1.55961
H	-2.81795
H	-0.67395
C	1.90178
H	2.59058
H	2.37666
H	1.48721

3.81130	-1.43714
2.41892	-3.07390
4.27651	-0.33069
4.09914	0.85154
5.10148	0.25517
4.27042	-1.71287
-1.29503	0.55978
2.04431	-0.38138
2.80653	-0.00499
1.60581	-1.25992
1.44767	1.66739

MacMillan_Catalyst/trans_S/conf_00

H	-2.90621	2.43351	0.25816
C	-0.03189	4.17713	-0.20557
H	1.72786	4.00178	1.01519
H	-1.93580	4.17772	-1.20245
H	0.39883	4.92880	-0.85710
H	-1.92421	-0.20674	0.48701
C	-2.65040	-0.06158	-1.91293
C	-3.93919	-0.45584	-1.57791
H	-2.46984	0.94368	-2.28394
C	-1.83037	-2.24765	-1.33786
C	-4.17575	-1.74859	-1.11739
H	-4.76423	0.23956	-1.69048
C	-3.12159	-2.64579	-1.00697
H	-1.01228	-2.95798	-1.25564
H	-3.30273	-3.65772	-0.66190
H	-5.18254	-2.05794	-0.85962
H	0.53429	-0.81742	2.23759
C	-0.18458	-0.48871	-2.07474
H	-0.17113	0.17170	-2.94792
H	0.47112	-1.32801	-2.30641
H	-0.25628	1.19090	-0.71267

MacMillan_Catalyst/cis_R/conf_00

Charge $=+1$,		Multiplicity=+1	
C		-1.21055	-1.23991
C	-0.34914	-0.83267	0.69123
C	1.11752	-2.01645	-1.34987
C	0.93105	-1.11879	-0.96727
H	-2.82433	0.03044	0.87372
N	1.76623	-0.34109	-0.08195
N	-0.06297	-1.69737	-0.29445
O	1.72474	-2.76155	-2.25902
C	1.19576	-2.14299	-0.24262
H	3.10152	-2.30245	-1.26897
H	3.43423	-1.37308	0.22477
H	3.71710	-3.08369	0.30241
C	3.20982	-1.51543	2.05075
C	0.77712	-1.73471	2.78532
H	2.10648	-2.06654	3.80540
H	1.89847	-2.50062	2.31632
H	2.72409	-0.81060	2.85272
C	2.68989	-0.61756	2.92789
H	-0.09652	-1.16520	3.83791
H	-0.35338	0.28720	3.25018
H	0.42715	-0.33622	2.45209
C	-1.04017	-2.85627	1.85754
H	0.07471	-3.49816	1.13934
H	0.59086	-3.38732	2.81195
H	0.04556	-2.72838	1.53568
C	-0.96092	0.80074	0.03160
C	-0.63263	1.91779	0.92622

Cl	-1.73447	2.52456	1.68834
C	0.45283	2.99433	0.07400
H	-0.22503	3.33234	-0.71488
H	0.64435	3.84757	0.72992
C	1.72832	2.43297	-0.49593
C	2.88929	2.39682	0.27825
C	1.74938	1.86739	-1.77134
C	4.04439	1.79708	-0.21002
H	2.89522	2.85834	1.26239
C	2.90079	1.25969	-2.25898
H	0.86418	1.92465	-2.40077
C	4.04882	1.21951	-1.47571
H	4.94623	1.79319	0.39295
H	2.90654	0.83126	-3.25550
H	4.95200	0.75798	-1.85993
H	0.42086	1.59985	1.72827
C	-3.38150	-0.93287	0.29765
C	-3.31429	-0.36597	-2.03715
C	-4.40352	-0.00920	0.49455
H	-3.02461	-1.52475	1.13584
C	-4.87400	0.74421	-0.57268
H	-4.83216	0.11883	1.48248
C	-4.33170	0.55958	-1.84172
H	-2.90648	-0.51564	-3.03379
H	-5.67011	1.46473	-0.42179
H	-4.71125	1.12989	-2.68268
H	-1.43727	1.00664	-0.67398
C	-1.64331	-2.02644	-1.15713
H	-0.40159	-0.56442	-2.11959
H	-1.69932	-2.57349	-2.10282
H	-1.58009	-2.76935	-0.36249

MacMillan_Catalyst/cis_S/conf_00

Charge $=+1$,		Multiplicity=+1	
C	1.65003	1.56613	0.30206
C	2.05068	-0.80711	-0.09756
C	3.12435	1.28632	0.03486
C	-0.46934	2.75200	-0.42391
H	2.09183	-1.63748	0.61480
N	1.10968	0.20172	0.45798
N	3.28487	-0.06258	-0.04360
O	3.97689	2.13246	-0.03395
C	4.58765	-0.68646	-0.10740
H	5.32400	0.07464	0.15167
H	4.64246	-1.50711	0.61275
H	4.81662	-1.06621	-1.10607
C	1.66566	-1.36577	-1.51148
C	2.21408	-2.79569	-1.57549
H	2.00231	-3.23023	-2.55523
H	3.29639	-2.83265	-1.42703
H	1.74550	-3.43717	-0.82166

C	0.15098	-1.40508	-1.70647
H	-0.06810	-1.84675	-2.68126
H	-0.36403	-2.02089	-0.96558
H	-0.29958	-0.40930	-1.69125
C	2.28422	-0.53333	-2.63445
H	3.37386	-0.50438	-2.59051
H	2.00620	-0.97594	-3.59393
H	1.92347	0.49698	-2.64169
C	0.11389	-0.04810	1.22494
C	-0.27294	-1.37833	1.77425
H	0.10325	-2.21290	1.18635
C	-1.76381	-1.51922	2.03905
H	-1.90885	-2.40227	2.66538
H	-2.11789	-0.65394	2.60766
C	-2.49464	-1.66161	0.73224
C	-2.92618	-0.53673	0.03142
C	-2.68352	-2.92686	0.17552
C	-3.52849	-0.67704	-1.21363
H	-2.81286	0.45570	0.46037
C	-3.28785	-3.06649	-1.06687
H	-2.36762	-3.81008	0.72431
C	-3.70636	-1.93919	-1.76645
H	-3.87035	0.20274	-1.74667
H	-3.44123	-4.05519	-1.48542
H	-4.18490	-2.04696	-2.73370
Cl	0.67223	-1.36424	3.31884
C	-0.83474	3.30457	0.80724
C	-1.46090	2.52739	-1.37630
C	-2.16157	3.61141	1.08146
H	-0.07663	3.53330	1.55265
C	-3.14247	3.38945	0.11886
H	-2.42739	4.04767	2.03831
C	-2.78617	2.85855	-1.11368
H	-1.19158	2.11277	-2.34349
H	-4.17578	3.64511	0.32570
H	-3.54109	2.70762	-1.87794
H	-0.42278	0.81888	1.60795
C	0.96808	2.43933	-0.74439
H	1.58953	2.05194	1.27860
H	1.56995	3.35430	-0.78664
H	1.03645	1.97745	-1.73064

The combined approach (comparison of experimental and calculated CCSs) was successfully used to make a prediction whether E - or Z - iminium ions are formed in the decomposition process of the two diastereomeric aminals $(1 S, 2 R)$-syn- 25 and ($1 S, 2 S$)-anti- 25 . The ATD traces of the selectively dissociated aminals suggest that the dissociation of each aminal leads to the corresponding E-iminium ion. The comparison of the computed and the experimental CCS value suggests the E-iminium to be formed for both epimers.

3. CHLORINATIONS WITH THE JØRGENSEN-HAYASHI-TYPE CATALYST

3.1. Aminals Derived from Isovaleraldehyde

3.1.1. Synthesis and Derivatization

2-(1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloro-3-methylbutyl)isoindoline-1,3-dione (14)

Catalysts 9b ($0.896 \mathrm{~g}, 1.50 \mathrm{mmol}, 50 \mathrm{~mol} \%$) and NCP ($0.272 \mathrm{~g}, 1.50 \mathrm{mmol}, 0.5$ equiv) were added successively to a solution of isovaleraldehyde ($0.323 \mathrm{~mL}, 3.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(14 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. After 60 min the solvent and unreacted isovaleraldehyde were removed under reduced pressure. The crude product was dissolved in pentane (5 mL) and the precipitating solids were filtered off. Pentane was removed under reduced pressure and the product was obtained as a foamy off-white solid (1.04 g , $1.23 \mathrm{mmol}, 82 \%$). Attempts to further purify the product by column chromatography (Silica, Alox) resulted in decomposition. ${ }^{1} \mathrm{H}$-NMR-spectra were recorded at $22^{\circ} \mathrm{C}$ and $-54^{\circ} \mathrm{C}$. Both spectra and the ratio of the two signal sets at $-54^{\circ} \mathrm{C}(80: 20)$ are in accordance with the spectra from the literature. ${ }^{28}$ (The aromatic signals were left out)
$\mathrm{mp}=56^{\circ} \mathrm{C}$

IR (ATR): $\tilde{v}=3017,2970,1738,1366,1278,1217,1135,907,842,733 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{CIF}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 869.1806, found 869.1766.

major species:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz},-54{ }^{\circ} \mathrm{C}\right) \delta=5.16(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J$ $=7.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dt}, J=11.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dt}, J=11.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{dq}, J=13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.14-0.05(\mathrm{~m}, 1 \mathrm{H}),-0.07$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}),-0.22(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz},-54{ }^{\circ} \mathrm{C}\right) \delta=171.2,170.3,84.0,76.1,68.5,65.4,48.6,29.1,27.5,24.0$, 21.2, 12.0, 1.6 ppm.
minor species:
${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz},-54{ }^{\circ} \mathrm{C}\right) \delta=5.81(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J$ $=9.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{dp}, J=14.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}),-$ $0.21(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz},-54{ }^{\circ} \mathrm{C}\right) \delta=170.7,170.8,82.2,75.9,68.7,66.5,48.2,29.2,28.8,23.9$, 21.3, 15.5, 1.8 ppm.

The combination of aldehyde, Jørgensen-Hayashi-type catalyst 9b, and NCP generates the corresponding aminal species almost quantitatively. The conversion of the aldehyde to the α chloroaldehyde is always below 5%. The low conversion in combination with the high volatility of chloroaldehyde 12 and alcohol SI5 makes the isolation and purification difficult. To overcome these problems, in-situ reduced chloroaldehyde 12 was directly converted into the non-volatile 3,5dinitrobenzoylester SI2.

Enantiomeric Excess (Isovaleraldehyde, catalyst 9b and NCS)

Isovaleraldehyde ($0.215 \mathrm{~mL}, 2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. Catalyst 9 ($0.120 \mathrm{~g}, 0.200 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and NCS ($0.293 \mathrm{~g}, 2.20 \mathrm{mmol}, 1.1$ equiv) were added subsequently and the reaction mixture was stirred for 60 min at the same temperature. After the reaction was cooled to $0^{\circ} \mathrm{C}$, $\mathrm{MeOH}(1.3 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}$, 2.5 equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product was redissolved in dichloromethane $(4 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ and DMAP ($12.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.05$ equiv) and 3,5 -dinitrobenzoylchloride ($0.300 \mathrm{~g}, 1.30 \mathrm{mmol}, 0.7$ equiv) were added subsequently. $\mathrm{Et}_{3} \mathrm{~N}(0.236 \mathrm{~mL}, 1.70 \mathrm{mmol}, 0.9$ equiv) was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5$ $\mathrm{mL})$, the aqueous phase was extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$ and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Ester SI2 (0.013 g, 41.0 $\mu \mathrm{mol}, 2 \%, 49 \%$ ee for the (S)-enantiomer) was obtained as a colorless solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta=9.24(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{dd}, J=11.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=11.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, J=7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (heptd, $J=6.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=162.3,148.9,133.5,129.7,122.8,68.5,65.0,31.7,20.0,17.5 \mathrm{ppm}$.

(S)-2-chloro-3-methylbutyl-3,5-dinitrobenzoate ((S)-SI2)

Isovaleraldehyde ($0.108 \mathrm{~mL}, 1.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}(4.0 \mathrm{~mL})$ and cooled to $-30^{\circ} \mathrm{C}$. Catalyst 3c ($56.9 \mathrm{mg}, 0.200 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.147 \mathrm{~g}, 1.10 \mathrm{mmol}, 1.1$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}, \mathrm{MeOH}(1.3 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(94.6 \mathrm{mg}, 2.50 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product was redissolved in dichloromethane (4 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and DMAP ($12.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.1$ equiv) and 3,5 -dinitrobenzoylchloride ($0.300 \mathrm{~g}, 1.30 \mathrm{mmol}, 1.3$ equiv) were added subsequently. $\mathrm{Et}_{3} \mathrm{~N}(0.237 \mathrm{~mL}, 1.70 \mathrm{mmol}, 1.7$ equiv) was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane (3×10 mL) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Ester (S)-SI2 ($0.108 \mathrm{~g}, 0.341 \mathrm{mmol}, 34 \%, 96 \% \mathrm{ee}$) was obtained as colorless solid.

The ${ }^{1} \mathrm{H}$-NMR spectrum is in accordance with the previous experiment.

(R)-2-chloro-3-methylbutyl-3,5-dinitrobenzoate ((R)-SI2)

Isovaleraldehyde ($0.108 \mathrm{~mL}, 1.00 \mathrm{mmol}$, 1.0 equiv) was dissolved in $\mathrm{MeCN}(4.0 \mathrm{~mL}$) and cooled to $-30^{\circ} \mathrm{C}$. Catalyst ent-3c ($56.9 \mathrm{mg}, 0.200 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.147 \mathrm{~g}, 1.10 \mathrm{mmol}, 1.1$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}, \mathrm{MeOH}(1.3 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(94.6 \mathrm{mg}, 2.50 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product was redissolved in dichloromethane (4 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and DMAP ($12.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.1$ equiv) and 3,5-dinitrobenzoylchloride ($0.300 \mathrm{~g}, 1.30 \mathrm{mmol}, 1.3$ equiv) were added subsequently. $\mathrm{Et}_{3} \mathrm{~N}(0.237 \mathrm{~mL}, 1.70 \mathrm{mmol}, 1.7$ equiv) was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane (3×10 mL) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Ester (R)-SI2 ($97.0 \mathrm{mg}, 0.306 \mathrm{mmol}, 31 \%, 95 \%$ ee) was obtained as colorless solid

Spectroscopic data are in accordance with the previous experiment.

In contrast to most of the aminals derived from the MacMillan-type catalysts, all attempts to purify or crystallize aminal $\mathbf{1 4}$ failed and led to decomposition. The reduction of N-alkylphthalimides to amides is literature known ${ }^{22,41}$ and was anticipated to increase the stability of aminal 14 and enabled subsequent purification and crystallization.
$N-((1 S, 2 S)-1-((S)$-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloro-3-methylbutyl)-2-(hydroxymethyl)benzamide (SI3),
2-((1R,2S)-1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl))(trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloro-3-methylbutyl)-3-hydroxyisoindolin-1-one (SI4)

NaBH_{4} ($67.0 \mathrm{mg}, 1.77 \mathrm{mmol}, 3.0$ equiv) was added to a solution of aminal $14(0.500 \mathrm{~g}, 0.590 \mathrm{mmol}$, 1.0 equiv) in dry $\mathrm{MeOH}(7.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 4 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by the addition of aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous phase was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, pentane/EtOAc 20:1 to 5:1) amide $\mathbf{~ S I 3}$ ($0.122 \mathrm{~g}, 0.143 \mathrm{mmol}, 24 \%$) was obtained as an off-white foamy solid. The absolute configuration was determined by x-ray crystal structure analysis of the 3,5-dinitrobenzoyl-derivative. Hemiaminal SI4 $(94.0 \mathrm{mg}, 0.111 \mathrm{mmol}, 19 \%)$ was obtained as a pale yellow oil. The substance appears as a defined spot on the TLC. ${ }^{1} \mathrm{H}$-NMR of the hemiaminal SI4 shows extremely broadened signals for every hydrogen atom. A tentative structure proposal is based on the molecular mass and was supported by a further reduction process

Amide SI3:

$\mathrm{mp}=76^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-99.8^{\circ}(c=3.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=8.31(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=12.1,5.9$ Hz, 1H), 4.63 (dd, $J=12.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=$
$9.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 1 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.07--0.10(\mathrm{~m}, 1 \mathrm{H}),-0.12(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=171.3,145.6,144.4,140.4,135.6,132.5-131.9(\mathrm{~m}), 131.9,131.3$, $131.2-130.7(\mathrm{~m}), 130.5,129.5,128.5,127.9,123.4(2 \mathrm{xq}, J=273.0,47.6 \mathrm{~Hz}), 122.3,121.7,83.1,71.6$, $70.5,68.9,64.9,47.2,31.2,28.1,24.2,20.5,14.4,1.7 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3276,2968,2924,1734,1636,1541,1372,1278,1173,1136,910,844,712 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{CIF}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+: 851.2300$, found 851,$2320 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{CIF}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]+$: 873.2119 , found 873.2157 ; m/z calculated for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{CIF}_{12} \mathrm{KN}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}$: 889.1859, found 889.1889.

Figure SI-20. ${ }^{1} \mathrm{H}$-NMR spectra of amide SI 3 at $23^{\circ} \mathrm{C}$ (red spectrum) and $-60^{\circ} \mathrm{C}$ (blue spectrum). We noted the absence of a second set of signals at $-60^{\circ} \mathrm{C}$.

Hemiaminal SI4:

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{CIF}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 871.1962$, found 871.2005; m / z calculated for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{CIF}_{12} \mathrm{KN}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}$: 887.1702, found 887.1733.

N-((1S,2S)-1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-

 yl)-2-chloro-3-methylbutyl)-2-(hydroxymethyl)benzamide (SI3) (reduction of SI4)
NaBH_{4} ($13.4 \mathrm{mg}, 0.353 \mathrm{mmol}, 5.0$ equiv) was added to a solution of hemiaminal $\mathbf{S I 4}(60 \mathrm{mg}, 70.7 \mu \mathrm{~mol}$, 1.0 equiv) in dry $\mathrm{MeOH}(0.8 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. After 30 min the reaction was quenched by the addition of aqueous saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The aqueous phase was extracted with dichloromethane $(3 \times 1 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $10: 1$ to $\left.5: 1\right)$ amide $\mathbf{S I} 3$ ($36.0 \mathrm{mg}, 42.3 \mu \mathrm{~mol}, 60 \%$) was obtained as an off-white foamy solid.

The spectroscopic data are in accordance with the previously isolated amide SI3.

After the reduction of aminal 14 isolation and purification without notable decomposition was possible. Unfortunately, all attempts to isolate single crystals for X-ray crystal structure analysis failed. The esterification of the primary alcohol in amide SI3 with 3,5-dinitrobenzoyl chloride was anticipated to positively impact the crystallization behavior.

2-(((1S,2S)-1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-

 yl)-2-chloro-3-methylbutyl)carbamoyl)benzyl 3,5-dinitrobenzoate (15)

3,5-Dinitrobenzoylchlorid ($16.5 \mathrm{mg}, 71.5 \mu \mathrm{~mol}, 1.3$ equiv) and DMAP ($1.00 \mathrm{mg}, 8.25 \mu \mathrm{~mol}, 0.15$ equiv) were added to an ice-cold solution of alcohol SI3 ($46.8 \mathrm{mg}, 55.0 \mu \mathrm{~mol}, 1.0$ equiv) in dichloromethane (0.30 mL). $\mathrm{Et}_{3} \mathrm{~N}\left(13.0 \mu \mathrm{~L}, 93.5 \mu \mathrm{~mol}, 1.7\right.$ equiv) was added slowly and the solution was warmed to $22^{\circ} \mathrm{C}$ over 10 min . The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane $(3 \times 0.5 \mathrm{~mL})$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc 6:1). Ester 15 ($39.0 \mathrm{mg}, 37.3 \mu \mathrm{~mol}, 68 \%$) was obtained as an off-white foamy solid. The absolute configuration was determined by X-ray crystal structure analysis.
$m p=151^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=-53.9^{\circ}(c=2.00$, dichloromethane $)$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta=9.22(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.17(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~s}, 2 \mathrm{H}), 8.07(\mathrm{~s}$, $2 \mathrm{H}), 7.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61$ (ddd, $J=7.7,6.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (td, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (s, 1H), $4.98(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddd}, J=9.9,7.9,2.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.08(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{dddd}, J=12.5,10.1,7.0,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 1 \mathrm{H}),-0.12(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right) \delta=169.9,162.8,148.8,145.6,144.5,136.1,133.9,133.7,132.0(\mathrm{q}, \mathrm{J}=$ $33.5,33.0 \mathrm{~Hz}$), 131.2, $131.1-130.7(\mathrm{~m}), 130.6,130.2,129.7,129.6,129.3,127.5,123.4(\mathrm{qd}, J=273.0$, $40.2 \mathrm{~Hz})$, 122.7, 122.2, 121.7, 83.2, 71.7, 70.8, 68.8, 66.2, 47.1, 31.0, 28.2, 24.2, 20.7, 1.7 ppm.

IR (ATR): $\tilde{v}=3353,3106,2964,1736,1666,1629,1548,1463,1371,1345,1276,1171,1133,910$, $843,722 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{CIF}_{12} \mathrm{~N}_{4} \mathrm{NaO}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 1067.2083, found 1067.2087; m / z calculated for $\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{CIF}_{12} \mathrm{KN}_{4} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}$: 1083.1823 , found 1083.1816.

To avoid the oversight and potential loss of possible additional stereoisomers during the numerous purifications, an optimized synthesis protocol with a subsequent thorough isolation and purification process was developed.

2-(((1S,2S)-1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloro-3-methylbutyl)carbamoyl)benzyl 3,5-dinitrobenzoate (15) (optimized procedure)

then $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then work-up then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, 3,5$-dinitrobenzoyl chloride $\mathrm{DCM}, 0^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}, 10 \mathrm{~min}$

Catalyst 9b ($2.39 \mathrm{~g}, 4.00 \mathrm{mmol}, 50 \mathrm{~mol} \%$) and NCP ($0.726 \mathrm{~g}, 4.00 \mathrm{mmol}, 0.5$ equiv) were added successively to a solution of isovaleraldehyde ($0.861 \mathrm{~mL}, 8.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(36 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. After 45 min the solvent and unreacted isovaleraldehyde were removed under reduced pressure. The crude product was dissolved in dry $\mathrm{MeOH}(40 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(1.34 \mathrm{~g}, 35.4 \mathrm{mmol}$, 10.0 equiv) was added in portions and the reaction was stirred for 2 h at $22{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$) and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was dissolved again in dichloromethane $(14 \mathrm{~mL})$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and 3,5 -dinitrobenzoyl chloride ($1.02 \mathrm{~g}, 4.41 \mathrm{mmol}$, 1.3 equiv) and DMAP ($41.5 \mathrm{mg}, 0.340 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added successively. $\mathrm{Et}_{3} \mathrm{~N}(0.804 \mathrm{~mL}, 5.77$ mmol, 1.7 equiv) was added dropwise and the reaction mixture was stirred for 10 min at $22{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$) and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc 10:1 to 0:1). Ester 15 ($1.96 \mathrm{~g}, 1.87 \mathrm{mmol}, 47 \%$ over 3 steps, single diastereomer) was obtained as an off-white foamy solid. The spectroscopic data are in accordance with the previously isolated ester 15.

After a thorough analysis of all fractions from the column chromatographic, only a single diastereomer could be detected and isolated. This of course does not exclude the presence of additional, labile diastereomers, but it is the best we could do.

N-((1S,2S)-1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-

 yl)-2-chloro-3-methylbutyl)-2-(hydroxymethyl)benzamide (SI3) (ester hydrolysis)

Three drops of aqueous $\mathrm{NaOH}(1 \mathrm{M})$ were added to a solution of ester $15(0.140 \mathrm{~g}, 0.134 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$ and the reaction was stirred for 60 min at the same temperature. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added, the aqueous phase was extracted with dichloromethane ($3 \times 1 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After column chromatography (SiO_{2}, pentane/EtOAc 10:1 to 5:1) pure alcohol SI3 ($62.0 \mathrm{mg}, 72.8 \mu \mathrm{~mol}, 54 \%$) was obtained as an off-white foamy solid.

The spectroscopic data are in accordance with the previously synthesized alcohol SI3.

3.1.2. Structural Analysis

NOE and J-Coupling Analysis of Aminal 14

To extend the characterization data above, a full assignment of all NMR resonances of the aminal 14 was attempted in CDCl_{3} at 219 K (see Table SI-15). At this temperature there is still severe overlap of the two species in the NMR spectra, particularly in the aromatic region, where most of the signals are additionally split by the ${ }^{19} \mathrm{~F}$ J-couplings (see Figures $\mathrm{SI}-21$ to $\mathrm{SI}-22$). Subsequently, aminal 14 was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, showing almost the exact same chemical shifts and coupling patterns (see Table SI-16), indicating that no major structural change is observed in this solvent. The solvent change however allows to further cool down to 190 K , at which most resonances for the major species could be assigned. For the minor species, however, some aromatic signals (particularly quaternary carbons) remain unassigned as they could not be resolved.

Table SI-15. Assignment of aminal $\mathbf{1 4}$ in CDCl_{3} at 219 K , shifts relative to CHCl_{3} at 7.26 ppm .

[^6]Table SI-16. Assignment of aminal 14 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K , shifts relative to $\mathrm{CHDCl}_{2} @ 5.35 \mathrm{ppm}$.

[^7]

Figure SI-21. ${ }^{1} \mathrm{H}$ Spectrum of aminal 14 in CDCl_{3} at 219 K .

Figure SI-23. ${ }^{1} \mathrm{H}$ Spectrum of aminal 14 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K .

Figure SI-24. $\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ Spectrum of aminal 14 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K .

Figure $\mathrm{SI}-\mathbf{2 5} .{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectrum of aminal 14 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K .

Figure SI-26. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectrum of aminal 14 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K .

The experimental ${ }^{13} \mathrm{C}$ chemical shifts of major and minor species are fairly similar, while the observed ${ }^{1} \mathrm{H}$ chemical shifts as well as some - but notably not all - J-couplings show more marked differences between the two signal sets. The aminal proton H 1 ' as well as the pyrrolidine proton H 2 show the largest deviations in chemical shift between the major and the minor species, accompanied by a large difference for the resonance of the methyl group 5^{\prime}. The J-couplings in the aminal part indicate an anti-periplanar arrangement of the protons H 1 ' and $\mathrm{H} 2^{\prime}$ for both major and minor species. While not all J -couplings along the pyrrolidine ring could be determined experimentally, the observed values apparently differ between the major and minor species, possibly indicating a difference in the (average) ring pucker.

From the EASY-ROESY spectra, the interconversion between the major and minor species is evident (see Figure SI-27). While the NOE/ROE contacts have the opposite phase to the diagonal, the crosspeaks generated by chemical exchange have the same phase. These exchange peaks become even more prevalent at higher temperatures (219 K and 240 K , not shown here). Based on the exchange rate determined by the PANIC analysis, we estimate an energy difference for interconversion at 190 K of $\Delta G^{\ddagger} \approx 12.4 \mathrm{kcal} \mathrm{mol}^{-1}$. The distinction between chemical exchange and NOE is not immediately obvious in the 1D NOE spectra, as the compound is in the slow motion regime, i.e. both effects show signals with the same phase as the selected (diagonal) signal. A representative mixing time series of selective 1D NOE spectra showing this behavior is given in Figure SI-28.

Figure $\mathbf{S I}-27$. EASY-ROESY of aminal 14 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K . Diagonal peaks and signals generated by chemical exchange are colored green, while NOE/ROE cross-peaks are colored blue. a) full spectrum. b) zoom into the spectral region between 6 and 4 ppm . The highlighted signals show the interconversion of the major and minor species (negative phase, green cross-peaks) vs. the positive, blue cross-peaks for the NOE/ROE contacts.

Figure SI-28. a) Example of a selective 1D NOE mixing time series of aminal 14 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K , with the signal H 2 '-major selected. The mixing time is indicated with each spectrum. The NOE spectra are scaled to match the intensity of the selected signal for display purposes. The blue spectrum at the very top shows the corresponding part of the $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR spectrum. Note the distorted line shape of the H1'-major signal at 5.15 ppm which never reaches the expected doublet lineshape due to insufficient zero-quantum suppression. This leads to a larger error on the distance extracted from this peak (see below). All other signals show the expected undistorted linear build-up of the NOE cross-peak intensities with increasing mixing time. b) Selected PANIC plots for the normalized NOE integrals for the NOEs H2'-major -> H1'-major (top panel) and H2'-major -> H5a-major. As expected from the lineshapes, the linear fit of the normalized integrals is fairly bad for the first NOE ($\mathrm{H} 2^{\prime}$-major $->\mathrm{H} 1^{\prime}$-major) due to the J coupling contributions, while the latter example shows the high-confidence linear fit ($R^{2}>0.99$) observed for all other NOE contacts. The slope of the linear fit to the PANIC plot is used as crossrelaxation rate σ. Note that some "relayed" cross peaks are visible, which originate from magnetization transfer between the two species caused by chemical exchange and subsequent NOE (or vice versa).

The NOE derived distances calculated from the cross-relaxation rates by internal calibration with the cross-relaxation rate of the diastereotopic proton pair $\mathrm{H} 5 \mathrm{a} / \mathrm{b}$ are collected in Table $\mathrm{SI}-17$. In cases where both signals could be selected with the selective pulse in the 1D NOE spectra, the distances corresponding to the individual cross-relaxation rates are averaged. While the set of distances for the minor species is smaller, the observed distances show very similar values for both species. Particularly the close distances from the protons H 1 ' and H 2 ' of the aminal to the pyrrolidine protons H 2 and H 5 b indicate a similar geometry of both major and minor species with respect to the relative arrangement of the Cl and phthalimide substituents with respect to the pyrrolidine ring. The particularly interesting distance between the protons $\mathrm{H} 1^{\prime}$ and $\mathrm{H} 2^{\prime}$ ' in the aminal is difficult to address with these measurements. We used a variant of the 1D NOE pulse sequence already including a Thrippleton-Keeler element ${ }^{4}$ to suppress unwanted contributions by J-coupling of the two neighboring nuclei, however, the applied filter element was apparently not able to fully suppress these effects in the case of these two protons. Over the course of the mixing time series, the shape of the multiplet of the H 2 ' signal changes over time (see

Figure $\mathrm{SI}-28$, the mixing time series for the H 1 '-minor $->\mathrm{H} 2$ '-minor NOE shows the same effect but to a lesser extent), indicating J-coupling evolution alongside the desired NOE build-up. This effect results in an apparent oscillation in the normalized intensities of the PANIC plot (noted already by Kolmer et al. ${ }^{9}$ for such cases) and finally gives a reduced apparent NOE derived distance (see Table SI-17). Correcting for these effects would require extensive numerical simulations, which we did not undertake. We estimate the true experimental value for the H1'-H2' NOE distance to be around $2.9 \AA$, consistent with the anti-periplanar arrangement derived from the large $(>10 \mathrm{~Hz}){ }^{3} J_{H H}$ couplings.

Table SI-17. Experimental NOE derived distances for aminal 14 in CDCl_{3} at 219 K and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 190 K .

						Semi-quan	
		Quantitativ	selective				F1-PSYCHE-
						EASY-RO	
		CDCl_{3} @		$\mathrm{CD}_{2} \mathrm{Cl}_{2}$ @		$\mathrm{CD}_{2} \mathrm{Cl}_{2}$ @	
Nucleus 1	Nucleus 2	Major (A)	Minor (A)	Major (A)	Minor (A)	Major (A)	Minor (A)
$1{ }^{\prime}$	2	2.30	2.44	2.21 (2)	2.30 (3)	2.38	2.14
$1{ }^{\prime}$	5a	3.10		3.08 (6)		2.29	
1'	2'	$2.58{ }^{1}$	$2.67{ }^{1}$	$2.39(27)^{1}$	2.79 (5) ${ }^{1}$		
1'	3'			2.79 (4)		2.44	
$1 \times$	5					2.43	2.47
2'	2			3.56 (9)			
2'	5a	2.16	2.16	2.15 (6)	2.21 (3)	1.98	1.98
2'	5b	2.22		2.53 (7)			
2'	3'			2.22 (6)		2.22	2.01
2'	4'			3.03 (3)		2.72	2.74
3'	5a			2.72 (5)			
3'	5b			2.41 (3)		2.28	
3'	4'			2.90 (3)		2.61	2.35
3	5					2.50	2.47
4	5					3.05	
5'	5a			3.47 (5)			
5'	5b			3.28 (4)			
2	5a			3.17 (10)			
4a	4b					1.85	1.85
4a	5a					2.46	
4b	5b					2.31	
5a	5b	$1.76{ }^{2}$	1.77	$1.76{ }^{2}$	1.83 (1)	$1.76{ }^{2}$	1.83

${ }^{1}$ insufficient zero-quantum suppression. Oscillation observed in PANIC fit.
${ }^{2}$ fixed reference distance.

Using the optimized geometries from the DFT calculations of chemical shifts enables the comparison of experimental distances to expected ones for different relative configurations of C1' and C2' as well as different conformations of the pyrrolidine ring and the bulky ligand. The syn geometries use the phthalimide substituent, while the anti geometries are taken from the corresponding succinimide calculations below. The values in Table SI-18 show an overall better agreement of experimental and calculated values for the syn arrangement of Cl and imide substituents at C 2 ' and C 1 ', respectively. Applying ensemble averaging with the populations used below in the calculation of chemical shifts improves the agreement with the experimental data slightly (see Table SI-19). From the geometry optimizations, particularly short distances are expected for $\mathrm{H}^{\prime}{ }^{\prime}-\mathrm{H} 2, \mathrm{H} 2^{\prime}-\mathrm{H} 5 \mathrm{a}$ and $\mathrm{H} 3^{\prime}-\mathrm{H} 5 \mathrm{~b}$ for the syn diastereoisomers, while the latter distance is expected to be much larger in the anti diastereoisomers. Distances expected to be larger than $3 \AA$ from the DFT calculations are apparently underestimated by the experimental methods, which might be taken as indication for conformational flexibility (see below). Also distances involving the methyl groups 4' and 5' are underestimated. Interestingly, the experimental value for the $\mathrm{H}_{2}{ }^{\prime}-\mathrm{H} 2$ NOE distance is much shorter as compared to the expected value from the calculated ensembles. While this one particular value is well reproduced in the anti(S,S)/sc-exo geometry, several others (notably the short H3'-H5b distance) show much larger deviations from the experimental values. The observed deviations of NOEs involving methyl groups are a notorious issue in NOE analysis. The internal averaging of the internuclear interactions of the three methyl protons and another proton of interest are coupled to the overall tumbling of the molecule as well as any internal averaging related to conformational flexibility of the entire molecule. Furthermore the averaging depends on the angle the bond vectors (C-Me axis for the methyl group) of the two interacting partner take with respect to each other. ${ }^{10,42}$ The approximations taken herein, namely equal weighting of the three methyl proton distances (usually called "slow tumbling" or " r-3 averaging", equation (2)) without considering corrections to angular contributions in addition to the " r^{-6} averaging" of several geometries to form a conformer ensemble may not be applicable to the case here. Ignoring the methyl groups in the distance comparisons improves the agreement of experimental and calculated distances significantly, to $\sim 0.4 \AA$ RMSD for the favored syn models vs up to $1.0 \AA$ for the disfavored anti models of the major species. Thus the NOE data indicate that the major species is the syn-configured aminal. As the RMSD values are the root mean squared deviations normalized to the number of observations, they are expected to be larger for the major species, where four times the number of NOEs are experimentally observed than for the minor species. Thus the smaller value of the RMSD for the minor species does not indicate a better fit to any of the structures and no discrimination between structures is possible as all RMSD values for the minor species are (almost) within experimental error (at least $0.1 \AA$). The experimental NOE data therefore suggests that the major species is the syn diastereoisomer and not any of the anti models. With the reduced dataset for the minor species, however, no discrimination between the two configurations is possible based on NOEs alone. The NOEs indicate that the conformation of the pyrrolidine ring with respect to the rest of the compound (rotation around $\mathrm{N}-\mathrm{C} 1$ ' bond) is unchanged. Thus this can be excluded as a reason for the second signal set. ${ }^{43}$ As the large ${ }^{3} J$ coupling between H^{\prime} ' and H2' indicates that the antiperiplanar arrangement prevails, and the average ring-pucker is different in the two signal sets, we consider it unlikely that the minor signal set would be due to the antidiastereoisomer but consider a different conformation (sc-exo, see below and main text) more likely.

Furthermore, quite distinct chemical shifts are observed. Thus we conducted calculations of the chemical shifts (see below).

Table SI-18. Comparison of experimentally derived NOE distances from quantitative 1D selective NOE spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 190 \mathrm{~K}\right)$ with the internuclear distances of different structure models of aminal 14. For the calculated geometries, the first row specifies the arrangement of the Cl and imide substituents at C2' and C1', while the second row specifies the orientation of the bulky ligand at C 2 . The last column shows a potential geometry where the pyrrolidine ring is rotated 180° relative to the aminal.

		Experimental		Calculated					
				$\operatorname{syn}(R, S)$	$\operatorname{syn}(R, S)$	anti(R,R)	anti(S,S)	anti(S,S)	$\operatorname{syn}(R, S)$
				ap	sc-exo	ap	ap	sc-exo	sc-exo
Nucleus 1	Nucleus 2	Major (Å)	Minor (Å)	(Å)	(Å)	(Å)	(A)	(Å)	(A)
H1'	H2	2.21 (2)	2.30 (3)	2.40	2.51	2.38	2.47	2.45	3.62
H1'	H5a	3.08 (6)		3.62	3.71	3.67	3.70	3.71	2.60
H1'	H2'	$2.39(27){ }^{1}$	$2.79(5)^{1}$	3.04	3.06	3.05	3.06	3.07	3.04
H1'	H3'	2.79 (4)		3.18	3.09	3.17	3.12	3.11	3.08
H2'	H2	3.56 (9)		4.55	4.43	4.57	3.89	3.80	2.89
H2'	H5a	2.15 (6)	2.21 (3)	2.42	2.57	2.64	2.16	2.20	4.48
H2'	H5b	2.53 (7)		2.78	2.54	2.52	3.12	3.08	4.67
H2'	H3'	2.22 (6)		2.45	2.49	2.44	2.43	2.44	2.49
H2'	H4'	3.03 (3)		2.89	2.87	3.97	2.92	2.91	2.92
H3'	H5a	2.72 (5)		3.34	3.51	4.18	4.39	4.46	3.15
H3'	H5b	2.41 (3)		2.26	2.21	4.76	4.69	4.70	4.27
H3'	H4'	2.90 (3)		2.61	2.63	2.64	2.61	2.61	2.62
H5'	H5a	3.47 (5)		5.32	5.50	5.51	5.61	5.61	3.20
H5'	H5b	3.28 (4)		4.64	4.64	5.34	6.11	6.12	4.19
H2	H5a	3.17 (10)		3.65	3.38	3.61	3.44	3.32	2.99
H5a	H5b	$1.76{ }^{2}$	1.83 (1)	1.76	1.77	1.76	1.77	1.77	1.79
RMSD vs major (Å)				0.71	0.74	1.10	1.18	1.18	1.06
RMSD vs major (\AA) /without 5^{\prime}				0.45	0.45	0.89	0.83	0.84	1.10
RMSD vs minor (Å)				0.18	0.25	0.26	0.17	0.16	1.32

[^8]Table SI-19. Comparison of experimentally derived NOE distances from quantitative 1D selective NOE spectra $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 190 \mathrm{~K}\right)$ with the internuclear distances of different averaged ensemble structure models of aminal 14. For the calculated ensembles, the first row specifies the arrangement of the Cl and imide substituents at C2' and C1', while the second row specifies the orientation of the bulky ligand at C 2 .

		Experimental		Calculated averaged ensemble				
				$\operatorname{syn}(R, S)$	$\operatorname{syn}(R, S)$	anti(R,R)	anti(S,S)	anti(S,S)
				ap	sc-exo	ap	ap	sc-exo
Nucleus 1	Nucleus 2	Major (Å)	Minor (A)	(Å)	(A)	(A)	(A)	(Å)
H1'	H2	2.21 (2)	2.30 (3)	2.38	2.48	2.33	2.47	2.45
H1'	H5a	3.08 (6)		3.62	3.68	3.64	3.58	3.71
H1'	H2'	$2.39(27)^{1}$	$2.79(5)^{1}$	3.04	3.06	3.04	3.06	3.07
H1'	H3'	2.79 (4)		3.19	3.12	3.21	3.17	3.11
H2'	H2	3.56 (9)		4.54	4.43	4.56	3.79	3.80
H2'	H5a	2.15 (6)	2.21 (3)	2.29	2.27	2.35	2.16	2.20
H2'	H5b	2.53 (7)		2.96	2.79	2.73	3.32	3.08
H2'	H3'	2.22 (6)		2.44	2.48	2.44	2.43	2.44
H2'	H4'	3.03 (3)		2.89	2.88	3.98	2.94	2.91
H3'	H5a	2.72 (5)		3.04	2.99	3.99	4.20	4.46
H3'	H5b	2.41 (3)		2.38	2.35	4.97	4.88	4.70
H3'	H4'	2.90 (3)		2.61	2.62	2.64	2.61	2.61
H5'	H5a	3.47 (5)		5.15	5.17	5.23	5.58	5.61
H5'	H5b	3.28 (4)		4.73	4.72	5.63	6.20	6.12
H2	H5a	3.17 (10)		3.74	3.55	3.76	3.58	3.32
H5a	H5b	$1.76{ }^{2}$	1.83 (1)	1.77	1.77	1.76	1.77	1.77
RMSD vs major (\AA)				0.69	0.67	1.12	1.20	1.18
RMSD vs major (\AA)/without 5'				0.43	0.40	0.91	0.85	0.84
RMSD vs minor (\AA)				0.14	0.17	0.15	0.16	0.16

[^9]
Computational NMR Analysis of Aminals 11 (Succinimide Substituent) and 14 (Phthalimide Substituent)

The calculated ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts for the syn, anti(C^{1}), and anti(C^{4}) isomers of $\mathbf{1 1}$ were compared to Blackmond and coworkers experimental shifts $\left(^{\ddagger}\right)^{28}$ (Tables SI-20-SI29). The weights, or percentages, for the conformers used in the calculations can be found in Table SI-40. The syn-11 diastereomer resulted in the lowest MAD of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts compared to their major product at $-54^{\circ} \mathrm{C}$. The calculated chemical shifts for the anti($\mathrm{C} 1^{\text {c }}$) and anti($\mathrm{C} 2^{\text {c }}$) isomers were compared to the minor product at $-54^{\circ} \mathrm{C}$, but did not result in good agreement with the experimental shifts. Continuation of the search for the minor product at $-54^{\circ} \mathrm{C}$, led to the separation of the calculated $a p$ and exo-sc rotational conformer chemical shifts for syn-14. When the calculated chemical shifts were separated by this rotational classification, the ap and exo-sc weighted chemical shifts were in good agreement with major and minor chemical shifts respectively at $-54^{\circ} \mathrm{C}$ (Tables SI-30-SI-33). Using the same classification of the ap and exo-sc conformers for the succinimide version of the aminal (syn-11) the weighted ap conformers were in good agreement with major product chemical shifts (mean average deviations (MADs): 1.7 ppm for ${ }^{13} \mathrm{C}$; 0.16 ppm for ${ }^{1} \mathrm{H}$), while not all the exo-sc conformer chemical shifts were in good agreement with the minor product chemical shifts, such as the $\mathrm{C}\left(5^{\prime}\right) \mathrm{H}$ shift predicted to be 1.51 ppm , but which was reported to occur at -0.13 ppm . Given the similarities between the calculated lowest energy conformers between the phthalimide (syn-14) and succinimide (syn-11) substituent aminals, and the good agreement between the exo-sc chemical shifts, further investigation may be needed to confirm all of the experimental minor product chemical shifts.

For NMR calculations with this level of theory: PCM(chloroform)-mPW1PW91/6-311+G(2d,p)//B3LYP-D3(BJ)/6-31G+(d,p) expected absolute deviation for the ${ }^{1} \mathrm{H}$ chemical shifts is $<0.3 \mathrm{ppm}$ and $<7-8 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ chemical shifts ${ }^{17,18}$ and are highlighted in red in the tables below. The $\mathrm{C} 2{ }^{4}{ }^{13} \mathrm{C}$ shift deviations for both major and minor products when compared to the ap and exo-sc calculated chemical shifts are around this upper limit of deviation. This is expected for carbons bonded to halogens due to relativistic effects. ${ }^{44}$ The ${ }^{1} \mathrm{H}$ shifts for the H 2 carbon also had deviations $\sim 0.3 \mathrm{ppm}$ as well, suggesting minor variations in conformers or solvent interactions may be affecting this chemical shift. ${ }^{45}$ Chemical shifts that differ in the major and minor products are indicated (*).Chemical shift assignments which could be switched are assigned to minimize the mean average deviation (MAD and indicated (**).

The J-couplings for the syn-14 ap and exo-sc rotamers were also calculated for the pyrrolidine ring and compared to the calculated experimental J-couplings which were generally within $\sim 0.5 \mathrm{~Hz}$ of the experimental values (Tables SI-34-SI-37). Additionally, the theoretical chemical shifts for the iminium ion that forms from syn-11 were calculated to compare to unassigned peaks in the syn-11 spectra; however, no iminium ion peaks were able to be determined with this comparison (Tables $\mathrm{SI}-38$ \& SI39). The barrier of rotation for the syn-14 ap and exo-sc rotamers was also calculated and found to be $13.9 \mathrm{kcal} \mathrm{mol}^{-1}$ at $-54^{\circ} \mathrm{C}$ with implicit chloroform when rotating the -OTMS group from the ap orientation towards the exo-sc orientation, similar to the experimental value of $12.8 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure SI-29).

Table SI-20. Comparison of calculated and experiment major ${ }^{13} \mathrm{C}$ NMR δ 's for syn-11 (ap) at $-54^{\circ} \mathrm{C}$

Exp. C\#	Comp. C\#	Comp. Isotropic	Comp. δ	Avg. Comp. $\mathrm{\delta}^{\text {d }}$	Syn. $\mathbf{\delta}^{\ddagger}$	Abs. Dev.
C5	C1	135.6845	48.6		48.4	0.2
C2	C2	116.4527	67.1		67.8	0.7
C3	C3	156.9831	28.2		27.3	0.9
C4	C4	159.9259	25.4		23.8	1.6
*C1'	C12	107.0240	76.1		76.5	0.4
*C2'	C14	111.0191	72.3		64.3	8.0
C3'	C16	152.8208	32.2		28.7	3.5
*C4'	C18	165.6695	19.9		20.8	0.9
*C5'	C22	173.5483	12.3		11.7	0.6
	C27	154.8925	30.2			
	C28	155.4406	29.7			
**C5"	C34	-2.2923	181.0		179.5	1.5
**C2"	C36	-3.8047	182.5		180.9	1.6
*C6	C38	100.1433	82.7		81.9	0.8
	C39	34.6347	145.6			
	C40	50.0127	130.8			
	C41	48.8364	132.0			
	C42	50.6022	130.3			
	C44	51.8776	129.1			
	C46	59.7108	121.5			
	C48	33.1497	147.0			
	C49	48.2190	132.6			
	C50	46.7355	134.0			
	C51	48.3657	132.4			
	C53	49.2026	131.6			
	C55	58.2757	122.9			
	C57	52.3549	128.6			
	C58	52.4529	128.5			
	C59	51.8145	129.1			
	C60	51.9597	129.0			
	C62	184.8693	1.4			
	C66	186.5223	-0.2			
*OTMS	C70	185.8696	0.5	0.6	1.3	0.7
					MAD:	1.7

Table SI-21. Comparison of calculated and experimental major ${ }^{1} \mathrm{H}$ NMR δ 's for syn- $\mathbf{1 1}$ (ap) at $-54^{\circ} \mathrm{C}$.

Exp. \#	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. ${ }^{\text {\% }}$	Avg. Comp. $\bar{\delta}$	Exp.	Abs. Dev.
$\mathrm{C}(5) \mathrm{H}$	1	H5	28.22	3.41	3.41	3.20	0.21
$\mathrm{C}(5) \mathrm{H}$	1	H6	29.88	1.86	1.86	1.85	0.01
*C(2) H	2	H7	26.77	4.76	4.76	4.48	0.28
$\mathrm{C}(3) \mathrm{H}$	3	H8	29.94	1.80			
$\mathrm{C}(4) \mathrm{H}$	4	H9	31.64	0.21	0.21	0.13	0.08
$\mathrm{C}(4) \mathrm{H}$	4	H10	30.57	1.21	1.21	1.15	0.06
* $\mathrm{C}\left(1^{\prime}\right) \mathrm{H}$	12	H13	26.35	5.16	5.16	5.00	0.16
* $\mathrm{C}\left(2^{\prime}\right) \mathrm{H}$	14	H15	26.29	5.21	5.21	4.90	0.31
$\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$	16	H17	29.39	2.32	2.32	2.05	0.27
	18	H19	30.65	1.14			
	18	H20	30.74	1.06			
${ }^{* *} \mathrm{C}\left(4^{\prime}\right) \mathrm{H}$	18	H21	30.86	0.95	1.05	0.91	0.14
	22	H23	31.39	0.45			
	22	H24	31.83	0.04			
**C(5') H	22	H25	32.15	-0.26	0.08	-0.13	0.21
	27	H29	29.07	2.62			
**C(3"/C4") H	27	H30	28.98	2.70	2.66	2.77	0.11
	28	H31	28.89	2.78			
**C(3"/C4")H	28	H32	28.89	2.79	2.79	2.94	0.15
	40	H43	22.84	8.43			
	41	H32	26.54	7.74			
	46	H47	23.36	7.94			
	49	H52	21.22	9.94			
	50	H54	46.39	-13.55			
	55	H56	23.35	7.95			
	62	H63	31.37	0.47			
	62	H64	31.43	0.41			
	62	H65	31.66	0.20			
	66	H67	32.17	-0.28			
	66	H68	32.39	-0.48			
	66	H69	32.83	-0.90			
	70	H71	31.85	0.02			
	70	H72	31.80	0.07			
*OTMS	70	H73	32.03	-0.14	-0.07	-0.26	0.19
$\mathrm{C}(3) \mathrm{H}$	3	H87	29.86	1.88	1.84	1.72	0.12
						MAD	0.16

Table SI-22. Comparison of calculated and experimental minor ${ }^{13} \mathrm{C}$ NMR δ 's for syn-11 (exo-sC) at $-54^{\circ} \mathrm{C}$.

Exp. C\#	Comp. C\#	Comp. Isotropic	Comp. $\overline{\text { I }}$	Avg. Comp. $\overline{\text { \% }}$	Syn. $\mathbf{\delta}^{\ddagger}$	Abs. Dev.
C5	C1	136.4713	47.9		48.4	0.5
C2	C2	117.7784	65.8		70.7	4.9
C3	C3	156.1918	28.9		27.3	1.6
C4	C4	160.7078	24.6		23.8	0.8
*C1'	C12	107.8337	75.4		76.5	1.1
*C2'	C14	109.9297	73.3		65.4	7.9
C3'	C16	153.0082	32.0		28.7	3.3
*C4'	C18	165.8347	19.7		20.8	1.1
*C5'	C22	169.4198	16.3		11.7	4.6
	C27	155.0574	30.0			
	C28	155.2203	29.9			
**C5"	C34	-2.7958	181.5		179	2.5
**C2"	C36	-2.1768	180.9		180.1	0.8
*C6	C38	98.5761	84.2		83.7	0.5
	C39	34.5114	145.7			
	C40	46.9006	133.8			
	C41	49.8154	131.0			
	C42	49.4106	131.4			
	C44	49.4941	131.3			
	C46	57.4787	123.7			
	C48	33.6336	146.6			
	C49	51.1595	129.7			
	C50	47.3518	133.4			
	C51	51.6159	129.3			
	C53	51.1792	129.7			
	C55	59.7931	121.5			
	C57	52.2149	128.7			
	C58	51.6628	129.3			
	C59	52.2399	128.7			
	C60	52.5823	128.4			
	C62	185.8896	0.4			
	C66	184.4579	1.8			
*OTMS	C70	184.2350	2.0	1.4	1.5	0.1
					MAD:	2.3

Table SI-23. Comparison of calculated and experimental minor ${ }^{1} \mathrm{H}$ NMR δ 's for syn-11 (exo-sc) at $-54^{\circ} \mathrm{C}$.

$\begin{gathered} \text { Exp. } \\ \text { C\# } \end{gathered}$	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. $\overline{\text { I }}$	$\begin{gathered} \text { Avg. } \\ \text { Comp. } \delta \end{gathered}$	$\begin{gathered} \text { Exp. } \\ \delta^{+} \\ \hline \end{gathered}$	Abs. Dev.
$\mathrm{C}(5) \mathrm{H}$	1	H5	28.34	3.29	3.29	3.2	0.09
$\mathrm{C}(5) \mathrm{H}$	1	H6	29.45	2.26	2.26	1.85	0.41
*C(2) H	2	H7	27.34	4.23	4.23	4.08	0.15
$\mathrm{C}(3) \mathrm{H}$	3	H8	29.88	1.86			
$\mathrm{C}(4) \mathrm{H}$	4	H9	31.73	0.13	0.13	0.13	0.00
$\mathrm{C}(4) \mathrm{H}$	4	H10	30.61	1.18	1.18	1.15	0.03
*C(1')H	12	H13	25.50	5.95	5.95	5.66	0.29
* $\mathrm{C}\left(2^{\prime}\right) \mathrm{H}$	14	H15	26.24	5.25	5.25	4.95	0.30
$\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$	16	H17	29.06	2.62	2.62	2.05	0.57
	18	H19	30.56	1.23			
	18	H2O	30.75	1.05			
**C(4') H	18	H21	30.52	1.26	1.18	0.91	0.27
	22	H23	30.28	1.49			
	22	H24	30.50	1.28			
**C(5') H	22	H25	29.97	1.77	1.51	-0.13	1.64
	27	H29	29.02	2.66			
**C(3"/C4")H	27	H30	28.98	2.70	2.68	2.77	0.09
	28	H31	28.85	2.82			
**C(3"/C4")H	28	H32	28.94	2.74	2.78	2.94	0.16
	40	H43	23.70	7.63			
	41	H32	26.54	8.05			
	46	H47	23.33	7.97			
	49	H52	24.19	7.17			
	50	H54	44.85	-12.10			
	55	H56	23.36	7.94			
	62	H63	31.59	0.27			
	62	H64	33.66	-1.67			
	62	H65	32.31	-0.40			
	66	H67	31.11	0.71			
	66	H68	31.89	-0.02			
	66	H69	31.69	0.17			
	70	H71	31.64	0.22			
	70	H72	31.75	0.12			
*OTMS	70	H73	31.85	0.02	-0.06	-0.29	0.23
$\mathrm{C}(3) \mathrm{H}$	3	H87	30.40	1.38	1.62	1.72	0.10
						MAD	0.31

Table SI-24. Comparison of calculated and experimental minor ${ }^{13} \mathrm{C}$ NMR δ 's for anti(C1')-11 (ap) at $-54^{\circ} \mathrm{C}$.

Exp. C\#	Comp. C\#	Comp. Isotropic	Comp. $\overline{\text { I }}$	Avg. Comp. $\overline{\text { \% }}$	Syn. $\mathbf{\delta}^{\ddagger}$	Abs. Dev.
C5	C1	135.9947	48.3		48.4	0.1
C2	C2	115.7302	67.8		70.7	2.9
C3	C3	157.0734	28.1		27.3	0.8
C4	C4	160.2338	25.1		23.8	1.3
*C1'	C12	114.5331	68.9		76.5	7.6
*C2'	C14	108.4440	74.8		65.4	9.4
C3'	C16	151.6796	33.3		28.7	4.6
*C4'	C18	165.9822	19.6		20.8	1.2
*C5'	C22	171.6763	14.1		11.7	2.4
	C27	155.5999	29.5			
	C28	155.5434	29.6			
**C5"	C34	-1.1724	180.0		179	1.0
**C2"	C36	0.6840	178.2		180.1	1.9
*C6	C38	100.5030	82.4		83.7	1.3
	C39	36.4178	143.9			
	C40	48.3516	132.4			
	C41	49.8264	131.0			
	C42	54.0621	127.0			
	C44	51.5846	129.3			
	C46	60.4671	120.8			
	C48	34.4201	145.8			
	C49	50.9172	130.0			
	C50	46.9404	133.8			
	C51	49.8517	131.0			
	C53	48.0804	132.7			
	C55	56.4885	124.6			
	C57	51.7504	129.2			
	C58	52.3672	128.6			
	C59	51.8414	129.1			
	C60	51.3528	129.6			
	C62	185.8755	0.5			
	C66	184.8698	1.4			
*OTMS	C70	186.2035	0.1	0.7	1.5	0.8
					MAD:	2.7

Table SI-25. Comparison of calculated and experimental minor ${ }^{1} \mathrm{H}$ NMR δ 's for anti(C1')-11 (ap) at $-54^{\circ} \mathrm{C}$.

$\begin{gathered} \text { Exp. } \\ \# \end{gathered}$	$\underset{\text { C\# }}{\text { Comp. }}$	Comp. H\#	Comp. Isotropic	Comp. ${ }^{\text {d }}$	Avg. Comp. δ	$\begin{gathered} \text { Exp. } \\ \delta^{\ddagger} \end{gathered}$	Abs. Dev.
C(5) H	1	H5	28.45	3.19	3.19	3.2	0.01
$\mathrm{C}(5) \mathrm{H}$	1	H6	29.84	1.90	1.90	1.85	0.05
*C(2) H	2	H7	26.12	5.37	5.37	4.08	1.29
$\mathrm{C}(3) \mathrm{H}$	3	H8	29.64	2.09			
$\mathrm{C}(4) \mathrm{H}$	4	H9	31.73	0.13	0.13	0.13	0.00
$\mathrm{C}(4) \mathrm{H}$	4	H10	30.34	1.43	1.43	1.15	0.28
*C(1') H	12	H13	26.40	5.10	5.10	5.66	0.56
* $\mathrm{C}(2$ ') H	14	H15	25.93	5.54	5.54	4.95	0.59
$\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$	16	H17	30.19	1.57	1.57	2.05	0.48
	18	H19	30.78	1.02			
	18	H2O	30.64	1.15			
**C(4') H	18	H21	30.86	0.94	1.04	0.91	0.13
	22	H23	31.16	0.67			
	22	H24	31.15	0.67			
${ }^{* *} \mathrm{C}\left(5^{\prime}\right) \mathrm{H}$	22	H25	30.59	1.19	0.85	-0.13	0.98
	27	H29	29.28	2.42			
**C(3"/C4")H	27	H30	29.05	2.63	2.52	2.77	0.25
	28	H31	29.31	2.39			
**C(3"/C4")H	28	H32	28.94	2.74	2.57	2.94	0.37
	40	H43	23.98	7.36			
	41	H32	26.54	8.40			
	46	H47	23.40	7.91			
	49	H52	22.52	8.73			
	50	H54	24.02	7.32			
	55	H56	23.34	7.96			
	62	H63	32.02	-0.13			
	62	H64	31.85	0.02			
	62	H65	32.28	-0.38			
	66	H67	31.80	0.07			
	66	H68	31.33	0.51			
	66	H69	31.44	0.41			
	70	H71	32.57	-0.65			
	70	H72	31.91	-0.04			
*OTMS	70	H73	32.21	-0.31	-0.06	-0.29	0.23
$\mathrm{C}(3) \mathrm{H}$	3	H87	29.91	1.83	1.96	1.72	0.24
						MAD	0.39

Table SI-26. Comparison of calculated and experimental minor ${ }^{13} \mathrm{C}$ NMR δ 's for anti(C1')-11 (exo-sc) at $-54^{\circ} \mathrm{C}$.

Exp. C\#	Comp. C\#	Comp. Isotropic	Comp. $\overline{\text { I }}$	Avg. Comp. $\overline{\text { \% }}$	Syn. $\mathbf{\delta}^{\ddagger}$	Abs. Dev.
C5	C1	135.4575	48.8		48.4	0.4
C2	C2	110.9980	72.3		70.7	1.6
C3	C3	156.3759	28.8		27.3	1.5
C4	C4	160.0842	25.2		23.8	1.4
*C1'	C12	113.3557	70.1		76.5	6.4
*C2'	C14	109.9617	73.3		65.4	7.9^{\ddagger}
C3'	C16	151.9450	33.0		28.7	4.3
*C4'	C18	165.7677	19.8		20.8	1.0
*C5'	C22	171.3154	14.4		11.7	2.7
	C27	155.0763	30.0			
	C28	154.6013	30.5			
**C5"	C34	-2.1163	180.9		179	1.9
**C2"	C36	-0.3893	179.2		180.1	0.9
*C6	C38	96.1129	86.6		83.7	2.9
	C39	33.8334	146.4			
	C40	48.5481	132.3			
	C41	48.0533	132.7			
	C42	49.9668	130.9			
	C44	48.8141	132.0			
	C46	58.6709	122.5			
	C48	34.4047	145.8			
	C49	51.4280	129.5			
	C50	46.5023	134.2			
	C51	51.3556	129.6			
	C53	52.2943	128.7			
	C55	59.7534	121.5			
	C57	52.1849	128.8			
	C58	51.1248	129.8			
	C59	52.2953	128.7			
	C60	52.5062	128.5			
	C62	185.1263	1.2			
	C66	185.3374	1.0			
*OTMS	C70	186.3819	0.0	0.7	1.5	0.8
					MAD:	2.6

Table SI-27. Comparison of calculated and experimental minor ${ }^{1} \mathrm{H}$ NMR δ 's for anti(C1')-11 (exo-sc) at $-54^{\circ} \mathrm{C}$.

$\begin{gathered} \text { Exp. } \\ \# \end{gathered}$	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. $\overline{\text { J }}$	Avg. Comp. $\bar{\delta}$	$\underset{\delta^{\ddagger}}{\text { Exp. }}$	Abs. Dev.
$\mathrm{C}(5) \mathrm{H}$	1	H5	28.55	3.10	3.10	3.2	0.10
$\mathrm{C}(5) \mathrm{H}$	1	H6	29.35	2.35	2.35	1.85	0.50
*C(2) H	2	H7	26.17	5.32	5.32	4.08	1.24
$\mathrm{C}(3) \mathrm{H}$	3	H8	29.54	2.17			
$\mathrm{C}(4) \mathrm{H}$	4	H9	31.20	0.63	0.63	0.13	0.50
$\mathrm{C}(4) \mathrm{H}$	4	H10	30.44	1.33	1.33	1.15	0.18
*C(1')H	12	H13	25.27	6.16	6.16	5.66	0.50
*C(2') H	14	H15	25.69	5.77	5.77	4.95	0.82
$\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$	16	H17	30.11	1.64	1.64	2.05	0.41
	18	H19	30.82	0.99			
	18	H20	30.90	0.91			
${ }^{* *} \mathrm{C}\left(4^{\prime}\right) \mathrm{H}$	18	H21	30.49	1.29	1.06	0.91	0.15
	22	H23	30.62	1.17			
	22	H24	30.63	1.16			
${ }^{* *} \mathrm{C}\left(5^{\prime}\right) \mathrm{H}$	22	H25	31.08	0.74	1.03	-0.13	1.16
	27	H29	29.21	2.48			
**C(3"/C4") H	27	H30	29.12	2.57	2.52	2.77	0.25
	28	H31	29.04	2.64			
**C(3"/C4")H	28	H32	28.60	3.05	2.85	2.94	0.09
	40	H43	23.64	7.68			
	41	H32	26.54	8.23			
	46	H47	23.34	7.96			
	49	H52	23.93	7.41			
	50	H54	22.55	8.70			
	55	H56	23.42	7.89			
	62	H63	30.13	1.63			
	62	H64	31.48	0.37			
	62	H65	32.00	-0.12			
	66	H67	31.55	0.31			
	66	H68	32.05	-0.17			
	66	H69	32.11	-0.22			
	70	H71	32.58	-0.66			
	70	H72	32.48	-0.56			
*OTMS	70	H73	33.84	-1.84	-0.14	-0.29	0.15
$\mathrm{C}(3) \mathrm{H}$	3	H87	30.32	1.45	1.81	1.72	0.09
						MAD	0.44

Table SI-28. Comparison of calculated and experimental minor ${ }^{13} \mathrm{C}$ NMR δ 's for anti(C2')-11 (ap) at $-54^{\circ} \mathrm{C}$.

Exp. C\#	Comp. C\#	Comp. Isotropic	Comp. δ	Avg. Comp. $\bar{\delta}$	Syn. $\mathbf{\delta}^{\ddagger}$	Abs. Dev.
C5	C1	136.9004	47.5		48.4	0.9
C2	C2	115.5457	68.0		70.7	2.7
C3	C3	156.5798	28.6		27.3	1.3
C4	C4	160.0619	25.2		23.8	1.4
C1'	C12	108.9728	74.3		76.5	2.2
C2'	C14	108.1558	75.0		65.4	$9.6{ }^{\ddagger}$
C3'	C16	152.3606	32.6		28.7	3.9
C4'	C18	171.9968	13.8		20.8	7.0
C5'	C22	165.6509	19.9		11.7	8.2
	C27	155.1158	30.0			
	C28	154.7914	30.3			
C5'	C34	-2.7252	181.5		179	2.5
C2"	C36	-2.8807	181.6		180.1	1.5
C6	C38	100.0367	82.8		83.7	0.9
	C39	35.3661	144.9			
	C40	49.8824	131.0			
	C41	46.8657	133.9			
	C42	51.2183	129.7			
	C44	51.2936	129.6			
	C46	60.2623	121.0			
	C48	33.8848	146.3			
	C49	47.5167	133.2			
	C50	48.6472	132.2			
	C51	49.5448	131.3			
	C53	49.3588	131.5			
	C55	57.4194	123.7			
	C57	52.2395	128.7			
	C58	52.1519	128.8			
	C59	51.9835	129.0			
	C60	51.7189	129.2			
	C62	185.5768	0.7			
	C66	185.4877	0.8			
	C70	185.4005	0.9	0.8	1.5	0.7
					MAD:	3.3

Table SI-29. Comparison of calculated and experimental minor ${ }^{1} \mathrm{H}$ NMR δ 's for anti(C2')-11 (ap) at $-54^{\circ} \mathrm{C}$.

$\begin{gathered} \text { Exp. } \\ \# \\ \hline \end{gathered}$	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. ${ }^{\text {\% }}$	Avg. Comp. $\bar{\delta}$	$\begin{gathered} \text { Exp. } \\ \delta^{\ddagger} \\ \hline \end{gathered}$	Abs. Dev.
C(5) H	1	H5	28.44	3.21	3.21	3.2	0.01
$\mathrm{C}(5) \mathrm{H}$	1	H6	29.52	2.20	2.20	1.85	0.35
*C(2) H	2	H7	26.72	4.80	4.80	4.08	0.72
$\mathrm{C}(3) \mathrm{H}$	3	H8	29.93	1.81			
$\mathrm{C}(4) \mathrm{H}$	4	H9	31.73	0.13	0.13	0.13	0.00
$\mathrm{C}(4) \mathrm{H}$	4	H10	30.66	1.14	1.14	1.15	0.01
*C(1')H	12	H13	26.37	5.13	5.13	5.66	0.53
*C(2') H	14	H15	26.69	4.83	4.83	4.95	0.12
$\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$	16	H17	30.02	1.73	1.73	2.05	0.32
	18	H19	31.16	0.66			
	18	H2O	31.07	0.75			
${ }^{* *} \mathrm{C}\left(4^{\prime}\right) \mathrm{H}$	18	H21	31.18	0.64	0.68	0.91	0.23
	22	H23	30.82	0.98			
	22	H24	30.79	1.01			
${ }^{* *} \mathrm{C}\left(5^{\prime}\right) \mathrm{H}$	22	H25	30.91	0.90	0.97	-0.13	1.10
	27	H29	29.06	2.63			
**C(3"/C4")H	27	H30	29.11	2.58	2.60	2.77	0.17
	28	H31	28.87	2.80			
**C(3"/C4")H	28	H32	28.93	2.75	2.78	2.94	0.16
	40	H43	22.83	8.43			
	41	H32	26.54	8.77			
	46	H47	23.36	7.94			
	49	H52	23.34	7.96			
	50	H54	22.36	8.87			
	55	H56	23.38	7.92			
	62	H63	31.97	-0.09			
	62	H64	32.08	-0.19			
	62	H65	32.12	-0.23			
	66	H67	31.50	0.34			
	66	H68	31.47	0.37			
	66	H69	31.42	0.43			
	70	H71	32.37	-0.47			
	70	H72	32.35	-0.44			
*OTMS	70	H73	32.07	-0.18	-0.05	-0.29	0.24
$\mathrm{C}(3) \mathrm{H}$	3	H87	30.06	1.69	1.75	1.72	0.03
						MAD	0.28

Table SI-30. Comparison of calculated and experimental major ${ }^{13} \mathrm{C}$ NMR δ 's for syn-14 (ap) at $-54^{\circ} \mathrm{C}$.

Exp. C\#	Comp. C\#	Comp. Isotropic	Comp. $\overline{\text { d }}$	Avg. Comp. δ	Syn. ${ }^{\text {d }}$	Abs. Dev.
C5	C1	135.9388	48.4		48.8	0.4
C1'	C12	107.9988	75.2		76.3	1.1
C2'	C14	110.3959	72.9		65.6	7.3^{\ddagger}
C3'	C16	152.7793	32.2		29.3	2.9
C4'	C18	165.6499	19.9		21.3	1.4
C2	C2	115.6540	67.9		68.6	0.7
C5'	C22	173.5018	12.3		12.2	0.1
	C27	49.2818	131.5			
C2"/C5"	C29	6.8274	172.3		171.4	0.9
C3	C3	156.9539	28.2		27.7	0.5
C2"/C5"	C31	8.1297	171.0		170.5	0.5
C6	C33	100.1346	82.7		82.4	0.3
	C34	35.4051	144.9			
	C35	49.7620	131.1			
	C36	48.7174	132.1			
	C37	50.5989	130.3			
	C39	51.8300	129.1			
C4	C4	160.0826	25.2		24.3	0.9
	C41	59.6637	121.6			
	C43	33.8341	146.4			
	C44	46.4848	134.2			
	C45	48.1872	132.6			
	C46	48.4947	132.3			
	C48	49.1247	131.7			
	C50	58.0782	123.1			
	C52	52.3296	128.6			
	C53	52.3279	128.6			
	C54	51.7803	129.2			
	C55	51.8710	129.1			
OTMS	C57	185.6073	0.7			
OTMS	C61	185.5508	0.8			
OTMS	C65	185.6881	0.6	0.7	1.7	1.0
	C83	49.9831	130.9			
	C84	57.2058	123.9			
	C85	57.5833	123.6			
	C86	45.7889	134.9			
	C88	45.6369	135.0			
					MAD:	1.4

Table SI-31. Comparison of calculated and experimental major ${ }^{1} \mathrm{H}$ NMR δ 's for syn- $\mathbf{1 4}(a p)$ at $-54^{\circ} \mathrm{C}$.

$\begin{aligned} & \text { Exp. } \\ & \text { C\# } \end{aligned}$	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. δ	Avg. Comp. δ	$\begin{gathered} \text { Exp. } \\ \delta \end{gathered}$	Abs. Dev.
C4a	C4	H10	30.61	1.18	1.18	1.20	0.02
C1'	C12	H13	26.26	5.24	5.24	5.16	0.08
C2'	C14	H15	26.24	5.25	5.25	4.98	0.27
C3'	C16	H17	29.31	2.39	2.39	2.13	0.26
C4'	C18	H19	30.70	1.09			
C4'	C18	H2O	30.75	1.05			
C4'	C18	H21	30.74	1.06	1.07	0.95	0.12
C5'	C22	H23	31.34	0.50			
C5'	C22	H24	32.43	-0.52			
C5'	C22	H25	31.69	0.17	0.05	-0.01	0.06
	C35	H38	22.87	8.40			
	C36	H40	23.44	7.87			
	C41	H42	23.34	7.97			
	C44	H47	22.28	8.95			
	C45	H49	22.75	8.52			
C5a	C1	H5	28.26	3.37	3.37	3.29	0.08
	C50	H51	23.30	8.00			
OTMS	C57	H58	31.77	0.10			
OTMS	C57	H59	31.98	-0.10			
C5b	C1	H6	29.76	1.97	1.97	1.97	0.00
OTMS	C57	H32	26.54	-0.05			
OTMS	C61	H62	31.54	0.31			
OTMS	C61	H63	31.20	0.63			
OTMS	C61	H64	31.83	0.04			
OTMS	C65	H66	32.09	-0.20			
OTMS	C65	H67	32.15	-0.26			
OTMS	C65	H68	33.17	-1.21	-0.08	-0.16	0.08
C2	C2	H7	26.73	4.80	4.80	4.60	0.20
C3a	C3	H8	29.99	1.76	1.76	1.71	0.05
c3b	C3	H82	29.94	1.80	1.80	1.71	0.09
	C84	H87	23.36	7.94			
	C85	H89	23.50	7.81			
C4b	C4	H9	31.79	0.08	0.08	0.09	0.01
	C86	H90	23.53	7.79			
	C88	H91	23.55	7.76			
						MAD	0.10

Table SI-32. Comparison of calculated and experimental minor ${ }^{13} \mathrm{C}$ NMR δ 's for syn-14 (exo-sc) at $-54^{\circ} \mathrm{C}$.

Exp. C\#	Comp. C\#	Comp. Isotropic	Comp. δ	Avg. Comp. δ	Syn. ${ }^{\text {d }}$	Abs. Dev.
C5	C1	136.4232	47.9		48.5	0.6
C1'	C12	108.6580	74.6		76.1	1.5
C2'	C14	109.1710	74.1		66.8	7.3
C3'	C16	152.8625	32.1		29.0	3.1
C4'	C18	165.8239	19.7		21.4	1.7
C2	C2	116.4201	67.1		68.6	1.5
C5'	C22	169.4610	16.2		15.7	0.5
	C27	48.8475	132.0			
C2"/C5"	C29	8.3013	170.9		170.8	0.1
C3	C3	155.8692	29.3		29.0	0.3
C2"/C5"	C31	7.8370	171.3		170.9	0.4
C6	C33	98.5273	84.3		84.2	0.1
	C34	34.5708	145.7			
	C35	47.0622	133.7			
	C36	49.5313	131.3			
	C37	49.5707	131.3			
	C39	49.6703	131.2			
C4	C4	159.8652	25.4		24.1	1.3
	C41	57.9075	123.3			
	C43	34.3743	145.9			
	C44	50.9557	129.9			
	C45	46.9211	133.8			
	C46	51.8629	129.1			
	C48	50.8591	130.0			
	C50	59.5760	121.7			
	C52	52.2178	128.7			
	C53	51.6846	129.2			
	C54	52.3688	128.6			
	C55	52.5147	128.4			
OTMS	C57	184.1522	2.1			
OTMS	C61	184.4262	1.9			
OTMS	C65	185.9906	0.4	1.4	1.9	0.5
	C83	49.5982	131.2			
	C84	57.5751	123.6			
	C85	57.9324	123.2			
	C86	46.5484	134.2			
	C88	46.3394	134.4			
					MAD:	1.5

Table SI-33. Comparison of calculated and experimental minor ${ }^{1} \mathrm{H}$ NMR $\mathbf{\delta}$'s for syn-14 (exo-sc) at $-54^{\circ} \mathrm{C}$.

$\begin{gathered} \text { Exp. } \\ \text { C\# } \end{gathered}$	Comp. C\#	Comp. H\#	Comp. Isotropic	Comp. δ	Avg. Comp. $\overline{0}$	$\begin{gathered} \text { Exp. } \\ \delta \\ \hline \end{gathered}$	Abs. Dev.
C4a	C4	H10	30.53	1.25	1.25	1.28	0.03
C1'	C12	H13	25.39	6.04	6.04	5.81	0.23
C2'	C14	H15	26.21	5.28	5.28	5.05	0.23
C3'	C16	H17	29.01	2.67	2.67	2.35	0.32
C4'	C18	H19	30.54	1.25			
C4'	C18	H20	30.64	1.15			
C4'	C18	H21	30.59	1.20	1.20	1.06	0.14
C5'	C22	H23	30.41	1.37			
C5'	C22	H24	30.21	1.55			
C5'	C22	H25	30.17	1.59	1.50	1.28	0.22
	C35	H38	23.52	7.80			
	C36	H40	23.29	8.00			
	C41	H42	23.37	7.94			
	C44	H47	24.09	7.27			
	C45	H49	22.31	8.92			
C5a	C1	H5	28.18	3.44	3.44	3.27	0.17
	C50	H51	23.33	7.97			
OTMS	C 57	H58	31.59	0.26			
OTMS	C57	H59	31.09	0.73			
C5b	C1	H6	29.56	2.16	2.16	2.16	0.00
OTMS	C57	H60	26.54	0.43			
OTMS	C61	H62	31.71	0.15			
OTMS	C61	H63	31.76	0.10			
OTMS	C61	H64	31.73	0.13			
OTMS	C65	H66	31.56	0.30			
OTMS	C65	H67	33.86	-1.85			
OTMS	C65	H68	32.27	-0.37	-0.01	-0.15	0.14
C2	C2	H7	27.33	4.24	4.24	4.15	0.09
C3a	C3	H8	29.94	1.81	1.81	1.82	0.01
C3b	C3	H82	30.46	1.32	1.32	1.38	0.06
	C84	H87	23.43	7.88			
	C85	H89	23.46	7.85			
C4b	C4	H9	31.20	0.63	0.63	0.63	0.00
	C86	H90	23.52	7.80			
	C88	H91	23.53	7.79			
						MAD	0.13

Table SI-34. Comparison of the experimental J-couplings for the syn-14 major product to the calculated ap conformers averaged according to Table SI-31.

Scaling Factor:		0.9155			
Exp. H\#	Comp. H\#	Comp. FC $J(H z)$	Comp. FC $J(H z)$ Scaled	Syn. J-coupling	Abs. Dev.
5a-5b	5-6	-11.93	-10.92		
$5 \mathrm{a}-4 \mathrm{~b}$	5-9	6.87	6.29		
5a-4a	5-10	8.95	8.19		
$5 \mathrm{~b}-4 \mathrm{a}$	6-10	8.67	7.94		
$5 \mathrm{~b}-4 \mathrm{~b}$	6-9	6.27	5.74		
$4 \mathrm{a}-4 \mathrm{~b}$	9-10	-13.68	-12.52		
$4 \mathrm{a}-3 \mathrm{~b}$	10-82	5.56	5.09		
2-3a	8-7	9.56	8.75	7.6	1.15
$3 \mathrm{a}-3 \mathrm{~b}$	8-82	-14.93	-13.67		
2-3b	82-7	3.49	3.19	4.7	1.51
1'-2'	13-15	10.72	9.81	10.3	0.49
2'-3'	15-17	1.89	1.73	1.0	0.73

Table SI-35. Calculated J-couplings for the relevant syn-14 ap conformers.

		Weight of Conformer:	0.1393	0.3362	0.0028	0.4677
Exp. H\#	Comp. H\#	$\mathbf{4}$	$\mathbf{5 8}$	$\mathbf{8}$	$\mathbf{1 7}$	$\mathbf{4 6}$
5a-5b	$5-6$	-11.03	-13.22	-11.06	-11.13	-13.19
5a-4b	$5-9$	10.93	0.58	10.96	10.89	0.56
5a-4a	$5-10$	9.34	8.31	9.30	9.36	8.22
5b-4a	$6-10$	10.47	5.87	10.43	10.46	5.78
5b-4b	$6-9$	1.42	13.84	1.40	1.43	13.85
4a-4b	$9-10$	-13.94	-13.26	-13.93	-13.95	-13.22
4a-3b	$10-82$	0.58	13.35	0.58	0.57	13.41
2-3a	$8-7$	9.70	9.41	9.73	9.67	9.18
3a-3b	$8-82$	-14.32	-15.15	-14.48	-14.92	-15.34
2'-3b	$82-7$	0.69	7.80	0.70	0.73	7.90
1'-2'	$13-15$	10.79	10.51	10.82	10.87	10.55
2'-3'	$15-17$	1.94	1.84	1.96	1.92	1.84

Table SI-36. Comparison of the experimental J-couplings for the syn-14 minor product to the calculated exo-sc conformers averaged according to Table SI-33.

Scaling Factor:		0.9155 Comp. FC	Comp. FC J (Hz) Scaled	Syn. J-coupling	Abs. Dev.
Exp. H\#	Comp. H\#	J(Hz)	(Hz		
5a-5b	$5-6$	-11.31	-10.35		
5a-4b	$5-9$	6.45	5.90		
5a-4a	$5-10$	7.99	7.32		
5b-4a	$6-10$	7.19	6.59		
5b-4b	$6-9$	7.24	6.63		0.80
4a-4b	$9-10$	-13.41	-12.28		
4a-3b	$10-82$	7.24	6.63		
2-3a	$7-8$	9.84	9.00	9.8	0.85
3a-3b	$8-82$	-14.55	-13.32		0.46
2-3b	$82-7$	5.73	5.25	2.4	10.9
1'-2'	$13-15$	11.40	10.44	1	0.25
2'-3'	$15-17$	1.37	1.25		

Table SI-37. Calculated J-couplings for the relevant syn-14 exo-sc conformers.

		Weight of Conformer:	0.4860	0.4150
Exp. H\#	Comp. H\#	$\mathbf{3 3}$	$\mathbf{6 2}$	$\mathbf{2 1}$
5a-5b	$5-6$	-10.08	-12.57	-12.06
5a-4b	$5-9$	12.68	0.56	0.53
5a-4a	$5-10$	7.57	8.31	8.74
5b-4a	$6-10$	8.93	5.53	5.68
5b-4b	$6-9$	0.64	13.53	13.32
4a-4b	$9-10$	-13.67	-13.18	-13.07
4a-3b	$10-82$	0.57	13.38	14.29
2-3a	$8-7$	11.19	8.94	6.96
3a-3b	$8-82$	-14.75	-14.53	-13.62
2'-3b	$82-7$	1.12	9.64	12.02
1'-2'	$13-15$	11.63	11.29	10.79
2'-3'	$15-17$	1.27	1.32	2.03

Table SI-38. Calculated ${ }^{13} \mathrm{C}$ NMR δ 's for the syn- 11 iminium ion.

Exp. \#	Comp \#	Comp. Isotropic	Comp. ${ }^{\text {d }}$	Avg. Comp. δ
C5	C1	127.0736	56.9	
C2	C2	100.6921	82.2	
C3	C3	154.3676	30.7	
C4	C4	157.6886	27.5	
C1'	C12	4.3992	174.6	
C2'	C14	114.4977	69.0	
C3'	C16	146.7122	38.0	
C4'	C18	161.9306	23.4	
C5'	C22	165.5088	20.0	
	C27	98.2156	84.6	
	C28	39.8560	140.6	
C5"	C34	22.8471	156.9	
C2"	C36	22.5460	157.2	
C6	C38	48.7216	132.1	
	C39	49.0893	131.7	
	C40	46.4822	134.2	
	C41	22.8941	156.9	
	C42	46.4378	134.3	
	C44	55.6195	125.5	
	C46	51.8209	129.1	
	C48	52.1416	128.8	
	C49	52.1917	128.8	
	C50	205.2978	-18.2	
	C51	181.5245	4.6	
	C53	31.8869	148.2	
	C55	180.5291	5.6	
	C57	30.8771	149.2	
	C58	30.7102	149.4	
	C59	181.3023	4.9	
	C60	31.8039	148.3	
	C62	31.1726	148.9	
	C66	240.5816	-52.0	
	C70	227.3965	-39.4	19.2

Table SI-39. Calculated ${ }^{1} \mathrm{H}$ NMR δ 's for the syn- 11 iminium ion.

Exp. \#	Comp. C \#	Comp \#	Comp. Isotropic	Comp. δ	Avg. Comp. δ
$\mathrm{C}(5) \mathrm{H}$	1	H5	27.1258	4.43	4.43
$\mathrm{C}(5) \mathrm{H}$	1	H6	28.2451	3.38	3.38
$\mathrm{C}(2) \mathrm{H}$	2	H7	25.7323	5.73	5.73
$\mathrm{C}(3) \mathrm{H}$	3	H8	28.3500	3.29	
$\mathrm{C}(4) \mathrm{H}$	4	H9	29.8048	1.93	1.93
$\mathrm{C}(4) \mathrm{H}$	4	H10	29.0370	2.65	2.65
$\mathrm{C}\left(1^{\prime}\right) \mathrm{H}$	12	H13	22.0869	9.13	9.13
$\mathrm{C}\left(2^{\prime}\right) \mathrm{H}$	14	H15	26.5460	4.97	4.97
$\mathrm{C}\left(3^{\prime}\right) \mathrm{H}$	16	H17	28.5227	3.13	3.13
	18	H19	29.6889	2.04	
	18	H2O	29.6119	2.11	
$\mathrm{C}\left(4^{\prime}\right.$ or $\left.5^{\prime}\right) \mathrm{H}$	18	H21	29.6133	2.11	2.09
	22	H23	29.9158	1.83	
	22	H24	29.5853	2.13	
$\mathrm{C}\left(4^{\prime}\right.$ or $\left.5^{\prime}\right) \mathrm{H}$	22	H25	29.7018	2.03	2.00
	27	H29	47.6406	-14.71	
$\mathrm{C}\left(3^{\prime \prime} / \mathrm{C4} 4^{\prime \prime}\right) \mathrm{H}$	27	H30	48.4402	-15.46	-15.08
	28	H31	45.5225	-12.73	
$\mathrm{C}\left(3^{\prime \prime} / \mathrm{C} 4\right.$ ") H	28	H32	22.8399	8.43	-2.15
	40	H43	22.7776	8.49	
	41	H32	26.5383	8.70	
	46	H47	51.9737	-18.75	
	49	H52	31.0776	0.74	
	50	H54	30.9380	0.87	
	55	H56	30.7511	1.05	
	62	H52	31.0776	0.74	
	62	H53	31.8869	-0.01	
	62	H54	30.9380	0.87	
	66	H56	30.7511	1.05	
	66	H57	30.8771	0.93	
	66	H58	30.7102	1.09	
	70	H60	31.8039	0.06	
	70	H61	31.2639	0.57	
OTMS	70	H62	31.1726	0.65	0.66
$\mathrm{C}(3) \mathrm{H}$	3	H76	28.8069	2.86	3.07

Table SI-40. Weighted Averaging for the Calculated NMR and NBO calculations for syn-11, anti(C1')11, anti(C2')-11, and syn-14
$\operatorname{syn-11}(a p)$ at $-54^{\circ} \mathrm{C}$

Filename	Computed Energy (H)	Conformer Weight
crest_confs_1_h_2_nmr_2.log	-3561.5159	0.4707
crest_confs_8_h_2_nmr_2.log	-3561.5156	0.1656
crest_confs_5_h_2_nmr_2.log	-3561.5153	0.0668
crest_confs_7_h_2_nmr.log	-3561.5153	0.1344
crest_confs_21_h_7_nmr_2.log	-3561.5145	0.1625

syn- 11 (exo-sc) at $-54^{\circ} \mathrm{C}$

Filename	Computed Energy (H)	Conformer Weight
crest_confs_11_h_2_nmr_2.log	-3561.5131	0.8337
crest_confs_12_h_6_nmr_8.log	-3561.5130	0.1663

anti(C1')-11 (ap) at $-54^{\circ} \mathrm{C}$

Filename	Computed Energy (H)	Conformer Weight
crest_confs_2_h_5_nmr_2.log	-3561.5137	0.0994
crest_confs_3_h_3_nmr_2.log	-3561.5133	0.4934
crest_confs_39_h_2_nmr.log	-3561.5114	0.1949
crest_confs_7_h_4_nmr_2.log	-3561.5113	0.1826
crest_confs_10_h_5_nmr.log	-3561.5101	0.0105
crest_confs_18_h_2_nmr.log	-3561.5101	0.0099
crest_confs_12_h_5_nmr.log	-3561.5094	0.0093

anti(C1')-11 (exo-sc) at $-54^{\circ} \mathrm{C}$

Filename	Computed Energy (H)	Conformer Weight
crest_confs_44_h_4_nmr.log	-3561.5098	1

anti(C2')-11 (ap) at $-54^{\circ} \mathrm{C}$

Filename	Computed Energy (H)	Conformer Weight
crest_confs_55_h_3_low.log	-3561.5143	0.2927
crest_confs_23_h_2_low.log	-3561.5134	0.1472
crest_confs_6_h_3_low.log	-3561.5133	0.0620
crest_confs_7_h_3_low.log	-3561.5129	0.3022
crest_confs_9_h_3_low.log	-3561.5128	0.1959

syn-14 (ap) at $-54^{\circ} \mathrm{C}$

Filename	Computed Energy (H)	Conformer Weight
crest_confs_8_h_2_low.log	-3713.9415	0.0028
crest_confs_4_h_2_low.log	-3713.9408	0.1393
crest_confs_58_h_2_low.log	-3713.9398	0.3362
crest_confs_17_h_3_low.log	-3713.9389	0.4677
crest_confs_46_h_4_low.log	-3713.9379	0.0540

syn-14 (exo-sc) at $-54^{\circ} \mathrm{C}$

Filename	Computed Energy (H)	Conformer Weight
crest_confs_33_h_2_low.log	-3713.9381	0.4860
crest_confs_21_h_2_low.log	-3713.9380	0.0990
crest_confs_62_h_3_low.log	-3713.9375	0.4150

DFT NBO Analysis for 11 and 14

NBO analysis was performed assess the $n_{N(\text { cat })}-\sigma^{*} C-N($ (imide) $)$ interaction differences between the ap and exc-sc conformers for 11 and 14, and between the syn and anti (C1 ${ }^{1}$)- $\mathbf{1 1}$ diastereomers The syn interactions were higher in energy when compared to the anti-conformers for 11, with a minor difference in the weighted energies between the ap and exo-sc products ($0.31 \mathrm{kcal} \mathrm{mol}^{-1}$). The phthalimide aminal had a similar difference in energies between the two rotational isomers ($0.30 \mathrm{kcal} \mathrm{mol}^{-1}$).

Table SI-41. DFT NBO Analysis

syn-11 (ap) Interaction: Conformer	LP(1)N11-BD*(1)C12-N33 E2 Stabilization Energy (kcal mol	
1	17.91	
5	17.09	0.4707
7	17.74	0.0668
7	17.08	0.1344
8	16.92	0.1656
21	17.53	0.1625
Weighted Energy:		
syn-11 (exo-sc) Interaction:	LP(1)N11-BD*(1)C12-N33	
Conformer	E2 Stabilization Energy (kcal mol	
11	17.19	Conformer Weight
12	17.36	0.8337
Weighted Energy:	17.22	0.1663

anti(C1')-11 Interaction:	LP(1)N11-BD*(1)C12-N33	
Conformer	E2 Stabilization Energy (kcal mol	-1)

	Diheral	Relative	Energy
Frame	Angle	(kcal mol ${ }^{-1}$)	
1	-180	1.24	
2	-170	0.00	
3	-160	1.02	
4	-150	2.57	
5	-140	5.03	
6	-130	7.38	
7	-120	8.88	
8	-110	8.98	
9	-100	8.58	
10	-90	7.75	
11	-80	7.52	
12	-70	8.65	
13	-60	10.12	
14	-50	6.68	
15	-40	9.28	
16	-30	10.73	
17	-20	13.31	
18	-10	16.54	
19	0	20.66	
20	10	25.84	
21	20	24.55	
22	30	18.48	
23	40	17.73	
24	50	18.40	

25	60	20.71
26	70	24.51
27	80	29.97
28	90	4.55
29	100	6.92
30	110	10.18
31	120	13.73
32	130	13.70
33	140	13.90
34	150	13.30
35	160	13.09
36	170	13.19
37	180	13.16

Figure SI-29. Dihedral angle scan to calculate the ap to exo-sc rotational barrier for syn-14.

Structure Search in the CCDC Data Base

A structure search in the CCDC data base for Jørgensen-Hayashi catalysts 9b and 9c with the pyrrolidine nitrogen bound to a stereogenic sp^{3} hybridized carbon reveals striking similarities concerning the catalyst structure. Each structure in the database had the pyrrolidine ring in an envelope conformation with the γ-carbon tilted out of plane toward the diarylsilylether moiety and the nitrogen lone pair (down conformation). For the orientation of the diarylsilylether group, two distinct conformational minima can be observed. In $7 / 10$ crystal structures, the N - and O -substituent at the exocyclic $\mathrm{C}-\mathrm{C}$ bond of the catalyst possess an antiperiplanar ($a p$) relationship whereas in three cases an exo-synclinal (exo$s c)$ conformation was adopted.

Figure SI-30. $883666^{46,47}(a p)$

Figure SI-31. 883667 ${ }^{46,47}$ (ap)

Figure SI-32. $883668{ }^{46,47}$ (sc-exo)

Figure SI-33. 885695^{48} (ap)

Figure SI-34. 919662^{47} (sc-exo)

Figure SI-35. $919664{ }^{47}(a p)$

Figure SI-36. $973119^{49}(a p)$

Figure SI-37. 1434063^{50} (sc-exo)

Figure SI-38. $1521504^{51}(a p)$

Figure SI-39. 2045387 ($a p$)
(This work)

3.1.3. Decomposition and Deuterium Incorporation Studies

Decomposition and deuterium incorporation experiments were envisioned to shed more light on the decomposition mechanism of aminal 14 and should allow the distinction between E2-elimination (via chloroenamine) ${ }^{28}$ and hydrolysis via chloroiminium ion.

Decomposition of Aminal 14 (1)

$\mathrm{D}_{2} \mathrm{O}\left(36.1 \mu \mathrm{~L}, 2.00 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{TFAd}_{1}(154 \mu \mathrm{~L}, 2.00 \mathrm{mmol}, 2.0$ equiv) were added subsequently to a solution of aminal $14\left(0.847 \mathrm{~g}, 1.00 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ at $22{ }^{\circ} \mathrm{C}$. Aliquots (5 mL) were taken from the reaction mixture after defined points of time ($10 \mathrm{~min}, 30 \mathrm{~min}, 60$ min, 2 h, $4 \mathrm{~h}, 22 \mathrm{~h}, 70 \mathrm{~h}$) and added to a solution of $\mathrm{NaBH}_{4}(18.9 \mathrm{mg}, 500 \mu \mathrm{~mol}, 5.0$ equiv) in EtOH (2.0 mL). After 30 min the reactions were quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude products were purified by column chromatography (SiO_{2}, pentane/EtOAc 10:1). Deuterium incorporation was quantified by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra analysis and the enantiomeric excess was determined by chiral GC.

Figure SI-40. Monitoring of the decomposition of aminal 14 with deuterium incorporation and ee over time.

Figure SI-41. Exemplary ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a reduced sample (70 h).

When synthesizing aminal $\mathbf{1 4}$ it was not possible to remove all chloroaldehyde residues under reduced pressure. At the beginning of the decomposition experiment, these residues are present in higher concentrations than the chloroaldehydes formed by the decomposition of the aminal. As a consequence, the ee of the first sample ($\mathrm{t}=10 \mathrm{~min} ; \mathrm{ee}=46 \%$) corresponds roughly with the ee of the products formed from the α-chlorination reaction ($e e=49 \%$ with NCS). Over time, the proportion of chloroaldehyde originating from the decomposition of the aminal increases compared to the chloroaldehyde originating from the α-chlorination reaction. Since the aminal decomposes exclusively to the (S)-chloroaldehyde (see decomposition with the aminal SI6 derived from propanal), the ee increases over time. The acidcatalyzed (TFA-d ${ }_{1}$) racemization of the chloroaldehydes subsequently leads to a continuous decrease of the ee over time. A comparison with the decomposition experiment of the propanal-derived aminal (aminal could be obtained without chloroaldehyde impurities) helps to rationalize this experiment.

Decomposition of Aminal 14 (2)

0.60 mL of a stock solution $\left(\mathrm{CDCl}_{3}(6.0 \mathrm{~mL}), \mathrm{D}_{2} \mathrm{O}(4.73 \mu \mathrm{~L})\right.$ and $\left.\operatorname{TFAd}_{1}(9.11 \mu \mathrm{~L})\right)$ was added to a NMRtube containing aminal 14 ($10.0 \mathrm{mg}, 11.8 \mu \mathrm{~mol}, 1.0$ equiv). The NMR-tube was tightly sealed and ${ }^{1} \mathrm{H}-$ NMR spectra were recorded every 5 min over a period of 10 h . Two additional spectra were recorded after 24 h and 43 h . Conversion was quantified by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra analysis with CDCl_{3} as the internal standard. Deuterium incorporation was qualitatively evaluated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

time	time	integration aldehyde [min]	ch $]$	conversion aldehyde [\%	integration aminal
0	0,0	0,02	3	conversion aminal [\%]	
5	0,1	0,08	12	0,69	100
10	0,2	0,1	14	0,63	94
15	0,3	0,11	16	0,61	81
20	0,3	0,12	17	0,59	85
45	0,8	0,15	22	0,55	80
95	1,6	0,18	26	0,51	74
245	4,1	0,23	33	0,47	68
495	8,3	0,26	38	0,44	64
1420	23,7	0,3	43	0,38	55
2560	42,7	0,33	48	0,33	48

Figure SI-42. Monitoring of the decomposition of aminal 14.

H-12

D-12

Figure SI-43. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the ongoing decomposition reaction (2 equiv of $\mathrm{D}_{2} \mathrm{O}, 1$ equiv of TFAd_{1}) of aminal 14 allows a qualitative evaluation of the deuterium incorporation into the α-chloroaldehydes.

The analysis of the aldehyde-H signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra allows a qualitative evaluation of the deuterium incorporation into the α-chloroaldehydes. Almost no deuterium incorporation was observed during the first hours. Downstream incorporation of deuterium into the chloroaldehyde can be explained by acid-catalyzed enolization or enamine formation (doublet at $9.52 \mathrm{ppm}(\alpha-\mathrm{H}$-chloroaldehyde) -> singlet at 9.52 ppm (α-D-chloroaldehyde)).

Decomposition of Aminal 14 (3)

0.60 mL of a stock solution $\left(\mathrm{CDCl}_{3}(6.0 \mathrm{~mL}), \mathrm{D}_{2} \mathrm{O}(4.73 \mu \mathrm{~L})\right.$ and $\left.\mathrm{TFAd}_{1}(1.82 \mu \mathrm{~L})\right)$ was added to a NMRtube containing aminal 14 ($10.0 \mathrm{mg}, 11.8 \mu \mathrm{~mol}, 1.0$ equiv). The NMR-tube was tightly sealed and ${ }^{1} \mathrm{H}-$ NMR spectra were recorded over a period of 4 days. Deuterium incorporation and conversion was qualitatively evaluated by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

Figure $\mathrm{SI}-44 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the ongoing decomposition reaction (2 equiv of $\mathrm{D}_{2} \mathrm{O}, 20 \mathrm{~mol} \%$ of TFAd_{1}) of aminal 14 allows a qualitative evaluation of the deuterium incorporation into the α chloroaldehydes.

Lowering the amount of TFA-d (from to 2 equiv to $20 \mathrm{~mol} \%$) leads to a slower decomposition of aminal 14. Deuterium incorporation into the α-position of the aldehyde can be almost completely suppressed when using 20 mol\% TFA-d 1 (clean doublet for the aldehyde-proton).

Decomposition of Aminal 14 (4)

0.60 mL of a stock solution $\left(\mathrm{CDCl}_{3}(6.0 \mathrm{~mL}), \mathrm{D}_{2} \mathrm{O}(11.8 \mu \mathrm{~L})\right)$ was added to a NMR-tube containing aminal 14 ($10.0 \mathrm{mg}, 11.8 \mu \mathrm{~mol}, 1.0$ equiv). The NMR-tube was tightly sealed and ${ }^{1} \mathrm{H}$-NMR spectra were recorded over a period of 8 days. Deuterium incorporation and conversion was qualitatively and quantitatively evaluated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

Figure $\mathrm{SI}-45 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the ongoing decomposition reaction (5 equiv of $\mathrm{D}_{2} \mathrm{O}$) of aminal 14 allows a qualitative evaluation of the deuterium incorporation into the α-chloroaldehydes.

Figure SI-46. Exemplary ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (after 2 d and 8 d) of the ongoing decomposition reaction (5 equiv of $\mathrm{D}_{2} \mathrm{O}$) of aminal 14 allows a quantification of the deuterium incorporation into the a-position.

Omitting acidic conditions further decreases the rate of aminal hydrolysis. Nevertheless, only $\mathrm{D}_{2} \mathrm{O}$ can mediate the decomposition effectively. As shown in the figure above, aminal hydrolysis under non acidic conditions takes place without any detectable incorporation of deuterium in the α-position of the aldehyde over long term (8 days). The sharp doublet of the aldehyde proton (red) and the $1: 1$ ratio between the aldehyde proton (red) and the α-proton of the aldehyde (orange) prove this issue. E2elimination of the aminal with generation of chloroenamines, as proposed for the Curtin-Hammettscenario cannot explain the complete absence of deuterium incorporation. Whereas the "classical" hydrolysis pathway via chloroiminium ion with an intact α-position is in line with the absence of deuterium incorporation.

(S)-2-chloro-3-methylbutan-1-ol ((S)-SI5)

Isovaleraldehyde ($0.215 \mathrm{~mL}, 2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}(8.0 \mathrm{~mL})$ and cooled to $-30^{\circ} \mathrm{C}$. Catalyst $3 \mathrm{c}(0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}, \mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Pure chloroalcohol (S)-SI5 ($0.111 \mathrm{~g}, 0.905 \mathrm{mmol}, 45 \%, 89 \%$ ee) was obtained as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=3.92(\mathrm{ddd}, J=7.8,5.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (dd, $J=12.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7$ Hz, 3H) ppm.

(R)-2-chloro-3-methylbutan-1-ol ((R)-SI5)

Isovaleraldehyde (0.215 mL , $2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}(8.0 \mathrm{~mL}$) and cooled to $-30^{\circ} \mathrm{C}$. Catalyst ent-3c ($0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}, \mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Pure chloroalcohol (R)-SI5 ($0.102 \mathrm{~g}, 0.832 \mathrm{mmol}, 42 \%, 95 \% \mathrm{ee}$) was obtained as a colorless oil.

Spectroscopic data are in accordance with the previous experiment.

3.2. Aminals Derived from Propanal

3.2.1. Synthesis

When synthesizing aminal 14, it was not possible to remove all impurities of isovaleraldehyde (10) and 2-chloro-3-methylbutanal (12) under reduced pressure. Due to the fact, that a pure and aldehyde-free aminal is crucial for some follow-up experiments we changed from isovaleraldehyde to the more volatile propanal. As a result, all aldehyde-impurities could be removed under reduced pressure.

2-(1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloropropyl)isoindoline-1,3-dione (SI6)

Catalysts 9b ($2.91 \mathrm{~g}, 4.87 \mathrm{mmol}, 50 \mathrm{~mol} \%$) and NCP ($0.884 \mathrm{~g}, 4.87 \mathrm{mmol}, 0.5$ equiv) were added successively to a solution of propanal ($0.698 \mathrm{~mL}, 9.74 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(44 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. After 60 min the solvent and aldehydes were removed under reduced pressure. The crude product was dissolved in pentane (20 mL) and the precipitating solids were filtered off. Pentane was removed under reduced pressure and the aminal SI6 was obtained as a foamy off-white solid ($3.54 \mathrm{~g}, 4.32 \mathrm{mmol}, 89 \%$). ${ }^{1} \mathrm{H}$-NMR spectroscopy at $-54^{\circ} \mathrm{C}$ shows two signal sets with a ratio of 68:32.
$\mathbf{m p}=65^{\circ} \mathrm{C}$

IR (ATR): $\tilde{v}=3055,2988,2307,1713,1280,1264,1176,1139,844,733,704 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{CIF}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 841.1493, found 841.1487; m / z calculated for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{CIF}_{12} \mathrm{KN}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}$: 857.1233, found 857.1207.

major stereoisomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz},-54{ }^{\circ} \mathrm{C}\right) \delta=5.88(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dq}, J=13.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dd, $J=10.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{td}, J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (ddd, $J=9.9,6.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.81$ $(m, 1 H), 1.79(d, J=6.8 H z, 3 H), 1.40-1.34(m, 1 H), 1.32-1.26(m, 1 H), 0.41-0.31(m, 1 H),-0.18$ (s, 9H) ppm.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz},-54^{\circ} \mathrm{C}\right) \delta=171.0,170.9,83.7,77.9,66.8,55.0,47.6,27.9,23.8,23.3,1.5$ ppm.

minor stereoisomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz},-54{ }^{\circ} \mathrm{C}\right) \delta=5.01-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.20$ (m, 1H), $0.99(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz},-54{ }^{\circ} \mathrm{C}\right) \delta=171.1,170.2,78.5,70.0,53.8,48.0,27.4,24.1,22.3,1.7 \mathrm{ppm}$.

- $33^{\circ}{ }^{\circ} \mathrm{C}$

Figure SI-47. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of aminal SI6 at different temperatures shows the emergence of two signal sets at low temperatures.

Figure SI-48. The isomeric ratio (68:32) was assigned at $-54^{\circ} \mathrm{C}$.

The combination of aldehyde, Jørgensen-Hayashi-type catalyst 9b, and NCP generates almost quantitatively the corresponding aminal species. As a consequence, the conversion of the aldehyde to the α-chloroaldehyde is always below 5%. The low conversion in combination with the high volatility of aldehyde SI8 and alcohol SI9 makes the isolation and purification difficult. To overcome these problems, the in-situ reduced chloroaldehyde SI8 was directly transformed into the non-volatile 3,5dinitrobenzoylester SI10.

Enantiomeric Excess (Propanal, Catalyst 9b and NCS/NCP)

Propanal ($0.359 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CHCl}_{3}(10.0 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. Catalyst $9 \mathbf{b}$ ($0.299 \mathrm{~g}, 0.500 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and A: NCS ($0.734 \mathrm{~g}, 5.50 \mathrm{mmol}, 1.1$ equiv) or B: NCP (0.999 g , $5.50 \mathrm{mmol}, 1.1$ equiv) were added subsequently and the reaction mixture was stirred for 60 min at the same temperature. After the reaction was cooled to $0{ }^{\circ} \mathrm{C}, \mathrm{MeOH}(3.3 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.473 \mathrm{~g}$, $12.5 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$ and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product was dissolved in dichloromethane (10 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and DMAP ($30.5 \mathrm{mg}, 0.250 \mathrm{mmol}, 0.1$ equiv) and 3,5 -dinitrobenzoylchloride ($0.749 \mathrm{~g}, 3.25 \mathrm{mmol}, 1.3$ equiv) were added subsequently. $\mathrm{Et} 3 \mathrm{~N}(0.589$ $\mathrm{mL}, 4.25 \mathrm{mmol}, 1.7$ equiv) was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1).

A: Ester Sl10 ($0.073 \mathrm{~g}, 0.253 \mathrm{mmol}, 5 \%, 5 \%$ ee for the (R)-enantiomer) was obtained as a yellow oil. B: Ester SI10 ($0.050 \mathrm{~g}, 0.173 \mathrm{mmol}, 3 \%, 14 \%$ ee for the (R)-enantiomer) was obtained as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta=9.23(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.16(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{dd}, J=11.6,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.31(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right) \delta=162.2,148.8,133.4,129.6,122.8,70.5,53.6,21.5 . \mathrm{ppm}$.

HRMS (EI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 289.0222$, found 289,0219 .

The low ee and the inverted absolute configuration (compared to isovaleraldehyde) for propanal as a substrate may be due to the lower energy barrier for the rotation around the $\mathrm{C}-\mathrm{N}$-bond of the enamine compared to other substrates carrying more bulky alkyl-substituents (isovaleraldehyde). ${ }^{52}$

Figure SI-49. Relative free energies ($\Delta \mathrm{G}$) of isovaleralydehyde- and propanal-derived enamines according to Jørgensen et al. ${ }^{52}$

By simply replacing the substrate (isovaleraldehyde \rightarrow propanal) we demonstrated that the correlation between the ratio of interconverting aminals ($68: 32$; 36% excess) and the enantiomeric ratio of the chloroaldehyde product (57:43; 14\% excess) is no longer present

(S)-2-chloropropyl-3,5-dinitrobenzoate ((S)-SI10)

Propanal ($0.143 \mathrm{~mL}, 2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}\left(8.0 \mathrm{~mL}\right.$) and cooled to $-30^{\circ} \mathrm{C}$. Catalyst 3c•TFA ($0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0{ }^{\circ} \mathrm{C}, \mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}$, 2.5 equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$ and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product was dissolved in dichloromethane (8 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and DMAP ($24.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 0.1$ equiv) and 3,5 -dinitrobenzoylchloride (0.599 g , $2.60 \mathrm{mmol}, 1.3$ equiv) were added subsequently. $\mathrm{Et}{ }_{3} \mathrm{~N}(0.474 \mathrm{~mL}, 3.40 \mathrm{mmol}, 1.7$ equiv) was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane (3×10 mL) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Ester (S)-SI10 ($0.108 \mathrm{~g}, 0.374 \mathrm{mmol}, 19 \%, 94 \% \mathrm{ee}$) was obtained as a yellowish oil.

The ${ }^{1} \mathrm{H}$-NMR spectrum is in accordance with the previous experiment.

(R)-2-chloropropyl-3,5-dinitrobenzoate ((R)-SI10)

Propanal ($0.143 \mathrm{~mL}, 2.00 \mathrm{mmol}$, 1.0 equiv) was dissolved in $\mathrm{MeCN}\left(8.0 \mathrm{~mL}\right.$) and cooled to $-30^{\circ} \mathrm{C}$. Catalyst ent-3c•TFA ($0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}, \mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$ and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product was redissolved in dichloromethane (8 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and DMAP ($24.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 0.1$ equiv) and 3,5 -dinitrobenzoylchloride ($0.599 \mathrm{~g}, 2.60 \mathrm{mmol}, 1.3$ equiv) were added subsequently. Et 3 N ($0.474 \mathrm{~mL}, 3.40 \mathrm{mmol}, 1.7$ equiv) was added dropwise and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane (3×10 mL) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, pentane/EtOAc 10:1). Ester (R)-SI10 ($0.109 \mathrm{~g}, 0.378 \mathrm{mmol}, 19 \%, 94 \% \mathrm{ee}$) was obtained as a yellowish oil.

The ${ }^{1} \mathrm{H}$-NMR spectrum is in accordance with the previous experiment.

3.2.2. Decomposition and Deuterium Incorporation Studies

Decomposition of Aminal SI6 (1)

$\mathrm{H}_{2} \mathrm{O}(72.1 \mu \mathrm{~L}, 4.00 \mathrm{mmol}$, 2.0 equiv) and TFA ($308 \mu \mathrm{~L}, 4.00 \mathrm{mmol}, 2.0$ equiv) were added subsequently to a solution of aminal SI6 (1.64 g, $2.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ at $22^{\circ} \mathrm{C}$. Aliquots $(10 \mathrm{~mL})$ were taken from the reaction mixture after defined points of time ($1 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}, 20 \mathrm{~min}, 30 \mathrm{~min}$, $60 \mathrm{~min}, 2 \mathrm{~h}, 98 \mathrm{~h}$) and added to a solution of $\mathrm{NaBH}_{4}(75.7 \mathrm{mg}, 2.00 \mathrm{mmol}, 10.0$ equiv) in $\mathrm{MeOH}(4.0 \mathrm{~mL})$. After 60 min the reactions were quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was partially removed under reduced pressure (product is volatile!). The enantiomeric excess of the crude products was determined by chiral GC.

Figure SI-50. The acid-catalyzed decomposition of aminal SI6 generates almost enantiopure (S)chloroaldehyde product.

As mentioned before (decomposition of aminal 14, synthesis of aminal SI6) it was possible to obtain aminal SI6 without any detectable aldehyde or chloroaldehyde impurities. The decomposition experiment shows that aminal SI6 decomposes to almost enantiopure chloroaldehyde (S)-SI8. In contrast, the mechanism of the Curtin-Hammett scenario predicts the existence of both enantiomers in the same ratio as the interconverting species (ratio of signal sets at $-54^{\circ} \mathrm{C}=68: 32 \rightarrow 36 \%$ ee).

2-Chloropropan-1-ol (rac-SI9)

Racemic proline (SI11) ($0.104 \mathrm{~g}, 0.900 \mathrm{mmol}, 0.3$ equiv) and NCS ($0.401 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.0$ equiv) were added successively to an ice-cold solution of propanal ($0.215 \mathrm{~mL}, 3.00 \mathrm{mmol}, 1.0$ equiv) in dichloromethane (8.1 mL). After stirring for 2 h at $0^{\circ} \mathrm{C}, \mathrm{MeOH}(4.1 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.284 \mathrm{~g}, 7.50 \mathrm{mmol}$, 2.5 equiv) were added and the solution was stirred for another 2 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane (3×10 mL) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product was purified by column chromatography (Silica, pentane/Et ${ }_{2} \mathrm{O} 3: 1$). Alcohol rac-SI9 ($35.0 \mathrm{mg}, 0.370 \mathrm{mmol}, 12 \%$; product is volatile!) was obtained as a colorless oil.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum is in accordance with the literature. ${ }^{53}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta=4.13(\mathrm{pdd}, J=6.8,4.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.9,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.60 (dd, $J=12.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.29(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

(S)-2-chloropropan-1-ol ((S)-SI9)

Propanal ($0.143 \mathrm{~mL}, 2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}(8.0 \mathrm{~mL})$ and cooled to $-30^{\circ} \mathrm{C}$. Catalyst 3c•TFA ($0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0{ }^{\circ} \mathrm{C}$, $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product (99% ee; determined by chiral GC) was used without further purification.

(R)-2-chloropropan-1-ol ((R)-SI9)

Propanal (0.143 mL , $2.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}(8.0 \mathrm{~mL})$ and cooled to $-30^{\circ} \mathrm{C}$. Catalyst ent-3c•TFA ($0.114 \mathrm{~g}, 0.400 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.320 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.2$ equiv) were added subsequently and the reaction mixture was stirred for 15 h at the same temperature. After the reaction was warmed to $0^{\circ} \mathrm{C}$, $\mathrm{MeOH}(3.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.189 \mathrm{~g}, 5.00 \mathrm{mmol}, 2.5$ equiv) were added and the mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the combined organic phases were dried over NaSO_{4}. The solvent was removed under reduced pressure (product is volatile!) and the crude product ($>99 \%$ ee; determined by chiral GC) was used without further purification.

Decomposition of Aminal SI6 (2)

0.60 mL of a stock solution $\left(\mathrm{CDCl}_{3}(6.0 \mathrm{~mL}), \mathrm{D}_{2} \mathrm{O}(11.8 \mu \mathrm{~L})\right.$ was added to a NMR-tube containing aminal SI6 ($9.67 \mathrm{mg}, 11.8 \mu \mathrm{~mol}, 1.0$ equiv). The NMR-tube was tightly sealed and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded over a period of 8 days. Deuterium incorporation and conversion was qualitatively evaluated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

Figure SI-51. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the ongoing decomposition reaction (5 equiv of $\mathrm{D}_{2} \mathrm{O}$) of aminal SI6 allows a qualitative evaluation of the deuterium incorporation into the α-chloroaldehydes.

In accordance to the previous $\mathrm{D}_{2} \mathrm{O}$-mediated hydrolysis experiment of aminal 14, significant deuterium incorporation cannot be detected.

4. FURTHER RESULTS

Deuterium incorporation experiment

$\mathrm{D}_{2} \mathrm{O}\left(98.0 \mu \mathrm{~L}, 6.02 \mathrm{mmol}, 2\right.$ equiv), $\mathrm{TFAd}_{1}(464 \mu \mathrm{~L}, 6.02 \mathrm{mmol}, 2.0$ equiv), the catalyst (0.602 mmol , $20 \mathrm{~mol} \%$) and NCS ($0.442 \mathrm{~g}, 3.31 \mathrm{mmol}, 1.1$ equiv) were added subsequently to a solution of distilled hydrocinnamic aldehyde ($0.400 \mathrm{~mL}, 3.01 \mathrm{mmol}, 1.0$ equiv) in MeCN (catalyst 3c and ent-3b) or dichloromethane (catalyst $9 \mathbf{c})(12 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ or $-30^{\circ} \mathrm{C}$. After 18 h the reaction was adjusted to $0^{\circ} \mathrm{C}$. $\mathrm{EtOH}(4.00 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.569 \mathrm{~g}, 15.0 \mathrm{mmol}, 5.0$ equiv) were added and the reaction mixture was stirred for 60 min at the same temperature. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (Silica, 10:1 to 5:1 pentane/EtOAc). Deuterium incorporation was qualitatively evaluated by comparison of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra and quantified by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy

Example:

Figure SI-52. Exemplary ${ }^{1} \mathrm{H}$ - (top) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (bottom) spectrum for the evaluation of deuterium incorporation.

Table SI-41. Quantification of deuterium incorporation under various conditions

catalyst	solvent	T [${ }^{\circ} \mathrm{C}$]	H: D	t
	MeCN	20	90: 10	18 h
	MeCN	-30	100:0	18 h
	MeCN	20	57 : 43	18 h
	MeCN	-30	95:5	18 h
	dichloromethane	20	$83: 17$	18 h
	dichloromethane	-30	89:11	18 h
	dichloromethane	20	97:3	$5 \mathrm{~min}^{[a]}$

${ }^{[a]}$ no TFA- $d_{1}, 12 \%$ conversion, 59% ee

Comparison of Different Catalysts

The catalyst ($0.150 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and NCS ($0.111 \mathrm{~g}, 0.828 \mathrm{mmol}, 1.1$ equiv) were added successively to a tempered $\left(22^{\circ} \mathrm{C}\right.$ or $\left.0^{\circ} \mathrm{C}\right)$ solution of hydrocinnamic aldehyde ($0.100 \mathrm{~mL}, 0.752 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{MeCN}(3.0 \mathrm{~mL})$. The reaction was stirred for 60 min at the indicated temperature and then cooled to $0^{\circ} \mathrm{C}$. $\mathrm{EtOH}(1.0 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(71.2 \mathrm{mg}, 1.88 \mathrm{mmol}, 2.5$ equiv) were added and the reaction mixture was stirred for further 60 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $10: 1$ to $\left.5: 1\right)$ and the pure alcohols $\mathbf{2 3}, \mathbf{2 2}$ and $\mathbf{S I 1 2}$ were obtained as colorless oils. The enantiomeric excesses of the chloroalcohols $\mathbf{2 2}$ were determined by chiral HPLC.

Table SI-42. Comparison of different pyrrolidine- and imidazolidinone-based organocatalysts in the α chlorination of 16

	temperature	23 [\%]	22 [\%]	SI12 [\%]	sum [\%]	ee (22) [\%]
pyrrolidine (SI13)	$22^{\circ} \mathrm{C}$	26	17	19	62	0
	$0^{\circ} \mathrm{C}$	42	16	10	68	0
L-proline ((S)-SI11)	$22^{\circ} \mathrm{C}$	26	32	0	58	1
	$0^{\circ} \mathrm{C}$	49	14	0	63	9
L-prolinamide (SI14)	$22^{\circ} \mathrm{C}$	37	20	0	57	29
	$0^{\circ} \mathrm{C}$	46	8	0	54	44
Jørgensen-Hayashi catalyst (9c)	$22^{\circ} \mathrm{C}$	0	3	43	46	11
	$0^{\circ} \mathrm{C}$	0	17	25	42	16
in dichloromethane	$0^{\circ} \mathrm{C}$	0	33	13	46	69
diphenylyrrolidine catalyst (SI15)	$22^{\circ} \mathrm{C}$	0	18	22	40	97
	$0^{\circ} \mathrm{C}$	0	24	8	32	98
$1^{\text {st }}$ gen. MacMillan catalyst (3a)	$22^{\circ} \mathrm{C}$	0	51	23	74	36
	$0^{\circ} \mathrm{C}$	17	48	18	83	70
$2^{\text {nd }}$ gen. MacMillan catalyst (ent-3b)	$22^{\circ} \mathrm{C}$	39	26	9	74	28
	$0^{\circ} \mathrm{C}$	53	27	2	82	48
$3{ }^{\text {rd }}$ gen. MacMillan catalyst (3c)	$22^{\circ} \mathrm{C}$	2	64	0	66	91
	$0^{\circ} \mathrm{C}$	24	54	0	78	96

Figure SI-53. Comparison of the catalytic performance between numerous pyrrolidine- and imidazolidinone-based organocatalysts.

The comparison of different pyrrolidine- and imidazolidinone-based organocatalysts reveals some major differences in the catalytic performance. Dichlorination can be completely suppressed when catalysts (S)-SI11, SI14 and 3c were used. Raising the temperature enhances the amount of dichlorinated byproduct for all other catalysts. Excellent enantioselectivities under these conditions were exclusively achieved with catalyst S115 and 3c. The C2 or C2-like symmetry of both catalysts might play a role here. The sum of $\mathbf{2 3 , 2 2}$ and SI12 can be considered as a parameter for the selectivity of the catalytic system. Low values are indicative for ongoing side-reactions, whereas high values reflect a "clean" reaction with less side products. Concerning the formation of side products, imidazolidinone-based catalysts perform better than pyrrolidine-based catalysts under these conditions.

5. REFERENCES

(1) Bodenhausen, G.; Ruben, D. J. Chem. Phys. Lett. 1980, 69, 185-189.
(2) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093-2094.
(3) Thiele, C. M.; Petzold, K.; Schleucher, J. Chem. Eur. J. 2009, 15, 585-588.
(4) Thrippleton, M. J.; Keeler, J. Angew. Chem. Int. Ed. 2003, 42, 3938-3941.
(5) Kupče, E.; Boyd, J.; Campbell, I. D. J. Magn. Reson. B 1995, 106, 300-303.
(6) Ilgen, J.; Nowag, J.; Kaltschnee, L.; Schmidts, V.; Thiele, C. M. J. Magn. Reson. 2021, 324, 106900.
(7) Foroozandeh, M.; Adams, R. W.; Meharry, N. J.; Jeannerat, D.; Nilsson, M.; Morris, G. A. Angew. Chem. Int. Ed. 2014, 53, 6990-6992.
(8) Hu, H.; Krishnamurthy, K. J. Magn. Reson. 2006, 182, 173-177.
(9) Kolmer, A.; Edwards, L. J.; Kuprov, I.; Thiele, C. M. J. Magn. Reson. 2015, 261, 101-109.
(10) Neuhaus, D.; Williamson, M. P. The Nuclear Overhauser Effect in Structural and Conformational Analysis, $2^{\text {nd }}$ Ed., Wiley, Chichester, 2000.
(11) Kolmer, A.; Edwards, L. J.; Kuprov, I.; Thiele, C. M. J. Magn. Reson. 2015, 261, 101-109.
(12) Sinnaeve, D.; Foroozandeh, M.; Nilsson, M.; Morris, G. A. Angew. Chem. Int. Ed. 2016, 55, 1090-1093.
(13) a) https://gaussian.com/scrf/; b) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3093; c)_London, F. J. Phys. Radium, 1937, 8, 397-409; d) McWeeny, R. Phys. Rev. 1962, 126, 1028-1034; e) Ditchfield, R. Mol. Phys. 1974, 27, 789-807; f) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251-8260; g) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497-5509; h) Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkins-Diehr, N. Comput. Sci. Eng. 2014, 16, 6274; i) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104; j) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.
(14) Gaussian 16, Revision C.01: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

Pracht, P.; Bohle, F.; Grimme, S. Phys. Chem. Chem. Phys. 2020, 22, 7169-7192.
Grimme, S. J. Chem. Theory Comput. 2019, 15, 2847-2862.
Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Chem. Rev. 2012, 112, 1839-1862.
CHESHIRE, Chemical Shift Repository with Coupling Constants Added Too. http://cheshirenmr.info
a) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980,102, 7211-7218; b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066-4073; c) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746; d) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736-1740; e) J. E. Carpenter, Extension of Lewis structure concepts to open-shell and excited-state molecular species, Ph.D. thesis, University of Wisconsin, Madison, WI, 1987; f) Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem) 1988, 139, 41-62; g) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926; h) Weinhold, F. and Carpenter, J. E. in The Structure of Small Molecules and lons, Naaman, E. R.; Vager, Z. Plenum, 1988, 227-236.
(20) Legault, C. Y. CYLview, 1.0b. Université de Sherbrooke. 2009.
(21) Álvarez-Moreno, M.; de Graaf, C.; López, N.; Maseras, F.; Poblet, J. M.; Bo, C. J. Chem. Inf. Model. 2015, 55, 95-103.
(22) Ponath, S.; Menger, M.; Grothues, L.; Weber, M.; Lentz, D.; Strohmann, C.; Christmann, M. Angew. Chem. Int. Ed. 2018, 57, 11683-11687.
(23) Burés, J.; Armstrong, A.; Blackmond, D. G. Acc. Chem. Res. 2016, 49, 214-222.
(24) Burés, J.; Dingwall, P.; Armstrong, A.; Blackmond, D. G. Angew. Chem. Int. Ed. 2014, 53, 8700-8704.
(25) Wiest, J. The Role of Charged and Uncharged Intermediates in Organocatalysis, MS Thesis, 2012, Universität Basel (conducted in the Blackmond group at The Scripps Research Institute)
(26) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108-4109.

Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2009, 48, 5121-5124.
(28) Burés, J.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2012, 134, 6741-6750.
(29) Chen, G.; Fu, C.; Ma, S. Tetrahedron 2006, 62, 4444-4452.
(30) Warnke, S.; von Helden, G.; Pagel, K. Proteomics 2015, 15, 2804-2812.
(31) Hoffmann, W.; Langenhan, J.; Huhmann, S.; Moschner, J.; Chang, R.; Accorsi, M.; Seo, J.; Rademann, J.; Meijer, G.; Koksch, B.; Bowers, M. T.; von Helden, G.; Pagel, K. Angew. Chem. Int. Ed. 2019, 58, 8216-8220.
(32) Revercomb, H. E.; Mason, E. A. Anal. Chem. 1975, 47, 970-983.
(33) Gabelica, V.; Shvartsburg, A. A.; Afonso, C.; Barran, P.; Benesch, J. L. P.; Bleiholder, C.; Bowers, M. T.; Bilbao, A.; Bush, M. F.; Campbell, J. L.; Campuzano, I. D. G.; Causon, T.; Clowers, B. H.; Creaser, C. S.; De Pauw, E.; Far, J.; Fernandez-Lima, F.; Fjeldsted, J. C.; Giles, K.; Groessl, M.; Hogan, C. J., Jr.; Hann, S.; Kim, H. I.; Kurulugama, R. T.; May, J. C.; McLean, J. A.; Pagel, K.; Richardson, K.; Ridgeway, M. E.; Rosu, F.; Sobott, F.; Thalassinos, K.; Valentine, S. J.; Wyttenbach, T. Mass Spectrom. Rev. 2019, 38, 291-320.
(34) Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55, 2338-2348.
(35) Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. Comput. Phys. Commun. 2009, 180, 2175-2196.
(36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868. Tkatchenko, A.; Scheffler, M. Phys. Rev. Lett. 2009, 102, 073005.
(39) A
(39) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158-6170.
(40) Zanotto, L.; Heerdt, G.; Souza, P. C. T.; Araujo, G.; Skaf, M. S. J. Comput. Chem. 2018, 39, 1675-1681.
(41) Horii, Z-I.; Iwata, C.; Tamura, Y. J. Org. Chem. 1961, 26, 2273-2276.
(42) Thiele, C. M.; Kolmer A. J. Magn. Reson. 2016, 266, 69-72.
$(43) \quad$ a) Schmid, M. B.; Zeitler, K.; Gschwind, R. M. Angew. Chemie. Int. Ed. 2010, 49, 4997-5003; b) Schmid, M. B.; Zeitler, K.; Gschwind, R. M. Chem. Sci. 2011, 2, 1793-1803; c) Renzi, P.; Hioe, J.; Gschwind, R. M. Acc. Chem. Res. 2017, 50, 2936-2948.
(44) Iron, M. A. J. Chem. Theory Comput. 2017, 13, 5798-5819.
(45) Merrill, A.T.; Tantillo, D. J. Magn. Reson. Chem. 2020, 58, 576-583.
(46) Seebach, D.; Sun, X.; Sparr, C.; Ebert, M.-O.; Schweizer, W. B.; Beck, A. K. Helv. Chim. Acta 2012, 95, 1064-1078.
(47) Seebach, D.; Sun, X.; Ebert, M.-O.; W. Schweizer, W. B.; Purkayastha, N.; Beck, A. K.; Duschmalé, J.; Wennemers, H.; Mukaiyama, T.; Benohoud, M.; Hayashi, Y.; Reiher, M. Helv. Chim. Acta 2013, 96, 799-852.
(48) Cassani, C.; Melchiorre, P. Org. Lett. 2012, 14, 5590-5593.
(49) Weber, A. K.; Schachtner, J.; Fichtler, R.; Leermann, T. M.; Neudörfl, J. M.; von Wangelin, A. J. Org. Biomol. Chem. 2014, 12, 5267-5277.
(50) Gurubrahamam, R.; Chen, Y. M.; Huang, W.-Y.; Chan, Y.-T.; Chang, H.-K.; Tsai, M.-K.; Chen, K. Org. Lett. 2016, 18, 3046-3049.
(51) Boeckman Junior, R. K.; Wang, H.; Rugg, K. W.; Genung, N. E.; Chen, K.; Ryder, T. R. Org. Lett. 2016, 18, 6136-6139.
(52) Dinér, P.; Kjærsgaard, A.; Lie, M.; Jørgensen, K. Chem. Eur. J. 2008, 14, 122-127. Marathias, V. M.; Goljer, I.; Bach II, A. C. Magn. Reson. Chem. 2005, 43, 512-519.

6. APPENDIX

6.1. NMR-Spectra

1-((1S,2R)-1-((R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-yl)-2-chloro-3-
methylbutyl)pyrrolidine-2,5-dione (syn-20)

syn-20

1-((S)-1-((R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-yl)-2,2-dichloro-3-methylbutyl)pyrrolidine-2,5-dione (24a)

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1S,2R)-syn-21)

1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1S,2S)-anti-21)

(1S,2S)-anti-21

1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1R,2S)-syn-21)

(1R,2S)-syn-21

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1S,2R)-syn-25)

1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1S,2S)-anti-25)

(1S,2S)-anti-25

1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1R,2S)-syn-25)

Decomposition of Aminal syn-18b

KIE-experiment (1)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ (crude) after reductive work-up:

2-(1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-

 chloro-3-methylbutyl)isoindoline-1,3-dione (14)

(S)-2-chloro-3-methylbutyl 3,5-dinitrobenzoate ((S)-SI2)

$\begin{array}{lllllllllllll}1220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & 90\end{array}$

N-((1S,2S)-1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloro-3-methylbutyl)-2-(hydroxymethyl)benzamide (SI3)

Decomposition of Aminal 14 (1) Last sample (70 h , EtOAc impurities)

(S)-2-chloro-3-methylbutan-1-ol ((S)-SI5)

OH
 (S)-SI5

2-(1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloropropyl)isoindoline-1,3-dione (SI6)

2-(1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloropropyl)isoindoline-1,3-dione (SI6)

		1	1	T	1	,	1	,	1	1	1	1	1	T	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(S)-2-chloropropyl 3,5-dinitrobenzoate ((S)-S110)

2-chloropropan-1-ol (rac-SI9)

rac-SI9

Deuterium incorporation experiment

H-22

D-22

[^10]

2,2-dichloro-3-phenylpropan-1-ol (SI12)

3-phenylpropanal-2,2-d $\mathrm{d}_{2}\left(\mathrm{D}_{2}-16\right)$

$D_{2}-16$

Isotopic competition experiment

H-22
D-22

6.2. HPLC /GC Traces

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1S,2R)-syn-21), 1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1S,2S)-anti-21), 1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1R,2S)-syn-21)

HPLC: $1.0 \mathrm{ml} / \mathrm{min}, 25 \%$ iPrOH/hexane, Nucleosil 50-5 (0.4 x 25 cm)

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1S,2R)-syn-25), 1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1S,2S)-anti-25), 1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1R,2S)-syn-25)

HPLC: $1.0 \mathrm{ml} / \mathrm{min}, 20 \%^{\prime} \operatorname{PrOH} /$ hexane, Nucleosil 50-5 ($0.4 \times 25 \mathrm{~cm}$)

HPLC: $20.0 \mathrm{ml} / \mathrm{min}, 5 \% \mathrm{EtOH} /$ hexane, Nucleosil 50-5 (1.6 x 25 cm)

Decomposition of Aminal syn-18b

HPLC: $0.8 \mathrm{ml} / \mathrm{min}, 5 \% \mathrm{EtOH} /$ hexane, Chiralpak IA ($0.46 \times 25 \mathrm{~cm}$)

| Peak RetTime Type
 $\#$ | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [min] | [min] | [mAU*s] | [mAU] | |

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	14.079	BB	0.5355	2435.25098	66.45875	96.2897
2	15.434	BB	0.3249	93.83700	3.63817	3.7103

Enantiomeric excess (Isovaleraldehyde, Catalyst 9b and NCS)

HPLC: $0.8 \mathrm{ml} / \mathrm{min}, 10 \% \mathrm{EtOH} /$ hexane, Chiralpak IA ($0.46 \times 25 \mathrm{~cm}$)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	184		0.9789	3.17069 e 4	483.62997	97.6640
2	30.1	BB	0.80	758.403	12.623	2.33

Enantiomeric Excess (Propanal, Catalyst 9b and NCP or NCS)

HPLC: $1.0 \mathrm{ml} / \mathrm{min}, 20 \% \mathrm{EtOH} /$ hexane, Chiralpak IA ($0.46 \times 25 \mathrm{~cm}$)

corrected: $t=26.573$ area: 52.4195%; $t=30.678$ area: 47.5805%

Decomposition of aminal 14 (1)

GC: Lipodex-E, $70^{\circ} \mathrm{C}, 1,1 \mathrm{ml} / \mathrm{min} \mathrm{He}$; FID $300^{\circ} \mathrm{C}$, Split 50:1

Decomposition of aminal SI6 (1)

GC: Lipodex-E, $40-70^{\circ} \mathrm{C}\left(1.5^{\circ} \mathrm{C} / \mathrm{min}\right), 1,1 \mathrm{ml} / \mathrm{min} \mathrm{He} ;$ FID $300^{\circ} \mathrm{C}$, Split $50: 1$

Deuterium incorporation experiment

HPLC: $0.8 \mathrm{ml} / \mathrm{min}, 5 \%$ EtOH/hexane, Chiralpak IA ($0.46 \times 25 \mathrm{~cm}$)

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	Area \%
1	14.120	BV	0.3020	78.58987	3.78948	20.7408
2	14.916	VB	0.4263	300.32538	10.06108	79.2592

6.3. Crystallographic Data

1-((1S,2R)-1-((R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione (syn-20)

Deposition number: 2041073
Bond precision: C-C $=0.0022 \AA$
Wavelength $=1.54178$

Cell: $a=10.1851(2) \AA, b=12.6098(2) \AA, c=16.6551(3) \AA$
alpha $=90^{\circ}$, beta $=90^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 2139.05(7) \AA^{3}
Space group: P 212121
Hall group: P 2ac 2ab
Dx,g cm-3: 1.304
Z: 4
$\mathrm{Mu}(\mathrm{mm}-1): 1.808$
F000: 896.0
F000': 899.88
h,k,Imax: 12, 15, 20
Nref: 3871
Tmin,Tmax: 0.588, 0.753
Tmin': 0.384
Reported T Limits: $\operatorname{Tmin}=0.588$, $\operatorname{Tmax}=0.753$
AbsCorr = MULTI-SCAN
Data completeness $=1.73 / 0.99$
Theta $(\max)=68.353$
$R($ reflections $)=0.0214$ (3831)
$w R 2$ (reflections) $=0.0556(3871)$
$S=1.045$
Npar $=268$

1-((S)-1-((R)-5-benzyl-2,2,3-trimethyl-4-oxoimidazolidin-1-yl)-2,2-dichloro-3-methylbutyl)pyrrolidine-2,5-dione (24a)

Deposition number: 2049431
Bond precision: C-C $=0.0032 \AA$
Wavelength $=1.54178$
Cell: $a=10.72160(7) \AA, b=9.17122(6) \AA, c=22.72408(14) \AA$
alpha $=90^{\circ}$, beta $=91.1666(3)^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 2234.00(2) \AA^{3}
Space group: P 21
Hall group: P 2yb
Dx,g cm-3: 1.351
Z: 4
$\mathrm{Mu}(\mathrm{mm}-1): 2.848$
F000: 960.0
F000': 965.35
h,k,Imax: 12, 11, 27
Nref: 8056
Tmin,Tmax: 0.540, 0.693
Tmin': 0.417
Reported T Limits: $\operatorname{Tmin}=0.540$, Tmax $=0.693$
AbsCorr = MULTI-SCAN
Data completeness $=1.85 / 0.99$
Theta $(\max)=68.262$
$R($ reflections $)=0.0231$ (7929)
$w R 2$ (reflections) $=0.0615(8056)$
$S=1.040$
Npar $=551$

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1S,2R)-syn-21)

Deposition number: 2041074
Bond precision: C-C $=0.0075 \AA$
Wavelength $=1.54178$
Cell: $a=10.4883(4) \AA, b=25.9417(10) \AA, c=13.7281(5) \AA$
Alpha $=90^{\circ}$, beta $=96.445(1)^{\circ}$, gamma $=90^{\circ}$
Temperature: 101 K
Volume: 3711.6(2) \AA^{3}
Space group: P 21 P 1211
Hall group: P 2yb P 2yb
Dx,g cm-3 = 1.203
Z: 6
$\mathrm{Mu}(\mathrm{mm}-1): 1.592$
F000: 1440.0
F000': 1446.02
h,k,Imax: 12, 31, 16
Nref: 13347
Tmin,Tmax: 0.638,0.728
Tmin': 0.548
Reported T Limits: Tmin $=0.638$, Tmax $=0.728$
AbsCorr = MULTI-SCAN
Data completeness $=1.89 / 0.97$
Theta $(\max)=68.874$
R (reflections) $=0.0548$ (13035)
$w R 2$ (reflections) $=0.1294(13347)$
$S=1.024$
Npar = 857

1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1S,2S)-anti-21)

(1S,2S)-anti-21

Deposition number: 2041075
Bond precision: C-C $=0.0029$ A
Wavelength $=1.54178$
Cell: $a=24.00236(15) \AA, b=9.35451(6) \AA, c=10.74110(7) \AA$
alpha $=90^{\circ}$, beta $=93.6494(1)^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 2406.81(3) \AA^{3}
Space group: C 2 C 2
Hall group: C 2y C 2y
Dx,g cm-3: 1.236
Z: 4
$\mathrm{Mu}(\mathrm{mm}-1): 1.637$
F000: 960.0
F000': 964.01
h,k,Imax: 28, 11, 12
Nref: 4089
Tmin,Tmax: 0.464, 0.563
Tmin': 0.365
Reported T Limits: $\operatorname{Tmin}=0.464$, Tmax $=0.563$
AbsCorr = MULTI-SCAN
Data completeness $=1.74 / 0.93$
Theta $(\max)=68.276$
$R($ reflections $)=0.0236$ (4085)
$w R 2$ (reflections) $=0.0581$ (4089)
$S=1.079$
Npar $=287$

1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-methylbutyl)pyrrolidine-2,5-dione ((1R,2S)-syn-21)

(1R,2S)-syn-21

Deposition number: 2041077
Bond precision: C-C $=0.0320 \AA$
Wavelength $=1.54178$
Cell: $a=10.2163(4) \AA, b=25.1458(11) \AA, c=14.4592(6) \AA$
alpha $=90^{\circ}$, beta $=94.880(2)^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 3701.1(3) \AA^{3}
Space group: P 21 P 1211
Hall group: P 2yb P 2yb
Moiety formula
Dx,g cm-3: 1.207
Z: 6
$\mathrm{Mu}(\mathrm{mm}-1): 1.597$
F000: 1442.0
F000': 1448.02
h,k,Imax: 12, 30, 17
Nref: 11279
Tmin,Tmax: 0.557, 0.753
Tmin': 0.270
Reported T Limits: $\operatorname{Tmin}=0.557$, Tmax $=0.753$
AbsCorr = MULTI-SCAN
Data completeness $=1.62 / 0.83$
Theta $(\max)=68.367$
R (reflections) $=0.1344$ (10576)
$w R 2$ (reflections) $=0.3992$ (11279)
$S=1.382$
Npar $=392$

1-((1S,2R)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1S,2R)-syn-25)

(1S,2R)-syn-25

Deposition number: 2041078
Bond precision: C-C $=0.0024 \AA$
Wavelength $=1.54178$
Cell: $a=10.52726(7) \AA, b=13.34540(9) \AA, c=18.82390(12) \AA$
alpha $=90^{\circ}$, beta $=90^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 2644.58(3) \AA^{3}
Space group: P 212121
Hall group: P 2ac 2ab
Dx,g cm-3: 1.246
Z: 4
$\mathrm{Mu}(\mathrm{mm}-1): 1.544$
F000: 1056.0
F000': 1060.29
h,k,Imax: 12, 16, 22
Nref: 4815
Tmin,Tmax: 0.480, 0.714
Tmin': 0.420
Reported T Limits: $\operatorname{Tmin}=0.480, \operatorname{Tmax}=0.714$
AbsCorr $=$ MULTI-SCAN
Data completeness $=1.75 / 0.99$
Theta $(\max)=68.453$
R (reflections) $=0.0227$ (4763)
$w R 2$ (reflections) $=0.0586(4815)$
$S=1.046$
Npar $=320$

1-((1S,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1S,2S)-anti-25)

(1S,2S)-anti-25

Bond precision: C-C = $0.0030 \AA$
Wavelength $=1.54178$
Cell: $a=9.0086(4) \AA, b=10.9058(6) \AA, c=13.4651(6) \AA$
alpha $=90^{\circ}$, beta $=97.426(2)^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 1311.80(11) \AA^{3}
Space group: P 1211
Hall group: P 2yb
Dx,g cm-3: 1.256
Z: 2
$\mathrm{Mu}(\mathrm{mm}-1): 1.557$
F000: 528.0
F000': 530.14
h,k,Imax: 10,13,16
Nref: 4722
Tmin,Tmax: 0.583, 0.753
Tmin': 0.388
Reported T Limits: $\operatorname{Tmin}=0.583, \operatorname{Tmax}=0.753$
AbsCorr = MULTI-SCAN
Data completeness $=1.85 / 0.98$
Theta $(\max)=68.467$
$R($ reflections $)=0.0250$ (4685)
$w R 2$ (reflections) $=0.0624(4722)$
$S=1.032$
Npar $=321$

1-((1R,2S)-1-((2R,5R)-5-benzyl-2-(tert-butyl)-3-methyl-4-oxoimidazolidin-1-yl)-2-chloro-3-phenylpropyl)pyrrolidine-2,5-dione ((1R,2S)-syn-25)

Deposition number: 2043370
Bond precision: C-C $=0.0028$ Å
Wavelength $=0.71073$
Cell: $a=8.9226(2) \AA, b=15.9789(3) \AA, c=17.9095(3) \AA$
alpha $=90^{\circ}$, beta $=90^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 2553.42(9) \AA^{3}
Space group: P 212121
Hall group: P 2ac 2ab
Dx,g cm-3: 1.290
Z: 4
$\mathrm{Mu}(\mathrm{mm}-1): 0.184$
F000: 1056.0
F000': 1057.00
h,k,Imax: 10,19,21
Nref: 4853
Tmin,Tmax: 0.780,0.836
Tmin': 0.941
Reported T Limits: $\operatorname{Tmin}=0.780$, Tmax $=0.836$
AbsCorr $=$ MULTI-SCAN
Data completeness $=1.76 / 1.00$
Theta $(\max)=25.702$
$R($ reflections $)=0.0247$ (4738)
$w R 2$ (reflections) $=0.0603(4853)$
$S=1.075$
Npar $=320$

2-(((1S,2S)-1-((S)-2-(bis(3,5-bis(trifluoromethyl)phenyl)((trimethylsilyl)oxy)methyl)pyrrolidin-1-yl)-2-chloro-3-methylbutyl)carbamoyl)benzyl 3,5-dinitrobenzoate (15)

Deposition number: 2045387
Bond precision: C-C $=0.0060 \AA$
Wavelength $=1.54178$

Cell: $a=9.87405(7) \AA, b=19.31855(13) \AA, c=25.10775(17) ~ \AA$
alpha $=90^{\circ}$, beta $=96.9297(3)^{\circ}$, gamma $=90^{\circ}$
Temperature: 100 K
Volume: 4754.37(6) \AA^{3}
Space group: P 21
Hall group: P 2yb
Dx,g cm-3: 1.460
Z: 4
$\mathrm{Mu}(\mathrm{mm}-1): 1.876$
F000: 2144.0
F000': 2154.95
h,k,Imax: 11,23,30
Nref: 16869
Tmin,Tmax: 0.502,0.705
Tmin': 0.394
Reported T Limits: $\operatorname{Tmin}=0.502$, $\operatorname{Tmax}=0.705$
AbsCorr = MULTI-SCAN
Data completeness $=1.88 / 0.97$
Theta $(\max)=68.297$
R (reflections) $=0.0435$ (16690)
$w R 2$ (reflections) $=0.1138$ (16869)
$\mathrm{S}=1.111$
Npar $=1272$
5.4. Supporting Information: In Situ Synthesis and Applications for Polyinterhalides based on BrCl

Chemistry-A European Journal

Supporting Information

In Situ Synthesis and Applications for Polyinterhalides Based on BrCl

Benjamin Schmidt, ${ }^{[a]}$ Sebastian Ponath, ${ }^{[b]}$ Johannes Hannemann, ${ }^{[a]}$ Patrick Voßnacker, ${ }^{[a]}$ Karsten Sonnenberg, ${ }^{[a]}$ Mathias Christmann, ${ }^{[b]}$ and Sebastian Riedel ${ }^{*[a]}$

Supporting Information

Table of Content

1. Results and Discussion 2
a. Crystal Data 2
b. Solid State Structures 4
c. Raman Spectra 6
d. IR Spectra 9
e. Calculated Thermochemistry 9
f. Interhalogenation: Substrate Scope 10
g. NMR Spectra 11
h. Crystal Packing / Intermolecular interactions 20
i. Long Term Stability Studies. 22
j. Computed Vibrational Frequencies 24
k. Additional Information 28
I. xyz-Files of the Calculated Molecules. 31

1. Results and Discussion

a. Crystal Data

Table S1. Crystal data of the synthesized compounds.

Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{BrCl}_{2} \mathrm{~N}(\mathbf{1})$	$\mathrm{C}_{16} \mathrm{H}_{40} \mathrm{Br}_{3} \mathrm{Cl}_{5} \mathrm{~N}_{2}(\mathbf{2})$	$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{Br}_{3} \mathrm{Cl}_{4} \mathrm{~N}$ (3)
Formula weight	281.06	677.48	511.78
Temperature/K	100.0	100.0	100.0
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pnma	$\mathrm{P} 21 / \mathrm{m}$	$P 2_{1 / C}$
$a / A ̊$	11.9218(16)	7.7583(4)	12.0185(6)
b/Å	12.4514(15)	12.8611(7)	10.1733(5)
c/Å	17.4209(17)	14.2896(8)	14.5527(6)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	90	103.750(2)	99.093(2)
$\mathrm{Y} /{ }^{\circ}$	90	90	90
Volume/Å ${ }^{3}$	2586.0(5)	1384.96(13)	1756.97(14)
Z	8	2	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.444	1.625	1.935
μ / mm^{-1}	3.551	4.858	7.476
F(000)	1152.0	680.0	992.0
Crystal size/mm ${ }^{3}$	$0.3 \times 0.2 \times 0.11$	$0.458 \times 0.453 \times 0.28$	$0.58 \times 0.31 \times 0.24$
Radiation	MoKa ($\lambda=0.71073$)	MoKa ($\lambda=0.71073$)	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.676 to 56.61	5.406 to 56.634	4.906 to 56.68
Reflections collected	24805	65037	30162
Independent reflections	$\begin{gathered} 3364\left[R_{\text {int }}=0.0595\right. \\ \left.R_{\text {sigma }}=0.0344\right] \end{gathered}$	$\begin{gathered} 3601\left[R_{\text {int }}=0.0524,\right. \\ \left.R_{\text {sigma }}=0.0176\right] \end{gathered}$	$\begin{gathered} 4370\left[R_{\text {int }}=0.0929\right. \\ \left.R_{\text {sigma }}=0.0545\right] \end{gathered}$
Data/restraints/parameters	3364/0/122	3601/0/134	4370/0/149
Goodness-of-fit on F^{2}	1.054	1.048	1.079
Final R indexes [l>=2 $\sigma(\mathrm{l})$]	$\begin{gathered} \mathrm{R}_{1}=0.0277, \mathrm{wR}_{2}= \\ 0.0537 \end{gathered}$	$\begin{gathered} R_{1}=0.0200, w R_{2}= \\ 0.0434 \end{gathered}$	$\begin{gathered} R_{1}=0.0426, w R_{2}= \\ 0.1008 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0404, w \mathrm{R}_{2}= \\ 0.0571 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0259, \mathrm{wR}_{2}= \\ 0.0456 \end{gathered}$	$\begin{gathered} R_{1}=0.0609, w R_{2}= \\ 0.1096 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.39/-0.55	0.37/-0.52	0.87/-1.56
CCDC deposition numbers	1965315	1984581	1965317

Table S2. Crystal data of the synthesized compounds.

Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{Br}_{4} \mathrm{Cl}_{5} \mathrm{~N}$ (4)	$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{Br}_{5.6} \mathrm{Cl}_{5.4} \mathrm{~N}(5)$	$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{Br}_{2.32} \mathrm{Cl}_{2.68} \mathrm{~N}$	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrClO}$
Formula weight	683.24	769.17	410.47	323.61
Temperature/K	100.0	100.0	100.0	100.0
Crystal system	tetragonal	monoclinic	monoclinic	monoclinic
Space group	$\overline{4}$	$P 2_{1} / n$	$P 2_{1} / n$	Cc
$a / A ̊$	11.8884(13)	14.6745(13)	8.4748(3)	5.7073(3)
b/Å	11.8884(13)	10.3054(8)	13.9985(5)	25.3888(13)
c/Å	8.5997(9)	16.5643(14)	12.9242(4)	9.0603 (5)
$\alpha{ }^{\circ}$	90	90	90	90
$\beta /{ }^{\circ}$	90	114.001 (3)	93.8220(10)	95.499(2)
Y^{1}	90	90	90	90
Volume/ ${ }^{\text {a }}$	1215.4(3)	2288.4(3)	1529.85(9)	1306.81(12)
Z	2	4	4	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.867	2.233	17.820	1.645
μ / mm^{-1}	7.169	10.450	6.564	6.030
F(000)	664.0	1451.0	806.2	648.0
Crystal size/mm ${ }^{3}$	$0.26 \times 0.21 \times 0.21$	$\begin{gathered} 0.403 \times 0.339 \times \\ 0.298 \end{gathered}$	$\begin{gathered} 0.319 \times 0.303 \times \\ 0.206 \end{gathered}$	$0.322 \times 0.075 \times 0.033$
Radiation	MoKa ($\lambda=0.71073$)	MoKa ($\lambda=0.71073$)	Mo Ka ($\lambda=0.71073$)	CuKa ($\lambda=1.54178$)
2Θ range for data collection/ ${ }^{\circ}$	4.846 to 56.49	3.134 to 56.67	4.3 to 66.34	6.964 to 139.3
Reflections collected	9392	54685	38582	16304
Independent reflections	$\begin{gathered} 1516\left[R_{\text {int }}=0.0532,\right. \\ \left.R_{\text {sigma }}=0.0375\right] \end{gathered}$	$\begin{gathered} 5702\left[R_{\text {int }}=0.0893,\right. \\ \left.R_{\text {sigma }}=0.0448\right] \end{gathered}$	$\begin{gathered} 5755\left[R_{\text {int }}=0.0363,\right. \\ \left.R_{\text {sigma }}=0.0245\right] \end{gathered}$	$\begin{gathered} 2313\left[R_{\text {int }}=0.0538,\right. \\ \left.R_{\text {sigma }}=0.0345\right] \end{gathered}$
Data/restraints/parameters	1516/0/52	5702/7/195	5755/0/151	2313/2/163
Goodness-of-fit on F^{2}	1.098	1.047	1.059	1.080
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\begin{aligned} \mathrm{R}_{1}= & 0.0255, w \mathrm{R}_{2}= \\ & 0.0570 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}= 0.0333, \mathrm{wR}_{2}= \\ & 0.0794 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0226, \mathrm{wR}_{2}= \\ 0.0478 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0343, \mathrm{wR}_{2}= \\ 0.0832 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0286, \mathrm{wR}_{2}= \\ 0.0580 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0475, \mathrm{wR} \mathrm{R}_{2}= \\ 0.0857 \end{gathered}$	$\begin{aligned} & \mathrm{R}_{1}= 0.0354, \mathrm{wR}_{2}= \\ & 0.0547 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0360, w \mathrm{w}_{2}= \\ & 0.0845 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.53/-0.51	0.76/-1.07	0.60/-0.96	0.79/-0.82
CCDC deposition numbers	1965314	1965318	1971174	1984909

b. Solid State Structures

Figure S1. Molecular structure of $[\mathrm{NEt} 4][\mathrm{Cl}(\mathrm{BrCl})]$ in the solid state with thermal ellipsoids set at 50% probability. Selected bond lengths [pm] and angles [${ }^{\circ}$]: $\mathrm{Cl} 1-\mathrm{Br} 1$ 241.8(1), $\mathrm{Cl} 2-\mathrm{Br} 1$ 235.7(1), $\mathrm{Cl} 3-\mathrm{Br} 2$ 240.4(1), $\mathrm{Cl} 4-\mathrm{Br} 2$ 239.1(1); Cl1-Br1-Cl2 174.8(1), Cl3-Br2-Cl4 179.1(1).

Figure S2. Molecular structure of $\left[\mathrm{NEt} t_{4}\right]_{2}\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right][\mathrm{ClBrCl}]$ in the solid state with thermal ellipsoids set at 50% probability. Selected bond lengths [pm] and angles [${ }^{\circ}$]: $\mathrm{Cl} 1-\mathrm{Br} 1$ 251.7(1), $\mathrm{Cl} 1-\mathrm{Br} 2$ 262.3(1), $\mathrm{Br} 1-\mathrm{Cl} 2$ 227.8(1), $\mathrm{Br2-}$ Cl3 224.1(1), Cl4-Br3 239.8(1), Cl5-Br3 236.8(1); Cl1-Br1-Cl2 178.0(1), Cl1-Br2-Cl3 175.7(1), $\mathrm{Br} 2-\mathrm{Cl} 1-\mathrm{Br} 1$ 116.6(1), Cl4-Br3-Cl5 174.7(1).

Figure S3. Molecular structure of $[\mathrm{NEt} 4]\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]$ in the solid state with thermal ellipsoids set at 50% probability. Selected bond lengths [pm] and angles [${ }^{\circ}$]: $\mathrm{Cl1}-\mathrm{Br} 1$ 266.4(2), $\mathrm{Cl} 1-\mathrm{Br} 2$ 273.0(2), $\mathrm{Cl1}-\mathrm{Br} 3$ 269.2(2), $\mathrm{Br} 1-\mathrm{Cl} 4$ 223.0(2), $\mathrm{Br} 2-\mathrm{Cl} 2220.1(2), \mathrm{Br} 3-\mathrm{Cl} 3221.0(2)$; $\mathrm{Cl} 1-\mathrm{Br} 1-\mathrm{Cl} 4177.6(1), \mathrm{Cl} 1-\mathrm{Br} 3-\mathrm{Cl} 3178.0(1), \mathrm{Cl} 1-\mathrm{Br} 2-\mathrm{Cl} 2175.5(1)$, Br1-Cl1-Br3 90.5(1), Br3-Cl1-Br2 87.7(1), Br1-Cl1-Br2 104.2(1).

Figure S4. Molecular structure of $[\mathrm{NPr} 4][\mathrm{Cl}(\mathrm{BrCl}) 4]$ in the solid state with thermal ellipsoids set at 50% probability. Selected bond lengths [pm] and angles [${ }^{\circ}$: $\mathrm{Cl} 1-\mathrm{Br} 1$ 278.6(1), $\mathrm{Br} 1-\mathrm{Cl} 2$ 221.3(2); $\mathrm{Cl} 1-\mathrm{Br} 1-\mathrm{Cl} 2$ 177.7(1), $\mathrm{Br} 1-\mathrm{Cl} 1-\mathrm{Br} 1$ ' 100.3(1), 130.1(1).

Figure S5. Molecular structure of $[\mathrm{NEt} 4]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]$ in the solid state with thermal ellipsoids set at 50% probability. Selected bond lengths [pm] and angles [${ }^{\circ}$]: $\mathrm{Cl} 1-\mathrm{Br} 1$ 286.4(2), $\mathrm{Cl} 1-\mathrm{Br} 2$ 281.6(2), $\mathrm{Cl} 1-\mathrm{Br} 3$ 281.4(2), $\mathrm{Cl} 1-\mathrm{Br} 4$ 281.1(2), $\mathrm{Cl} 1-\mathrm{Br} 5$ 298.6(2), $\mathrm{Br} 1-\mathrm{Cl} 2$ 218.0(2), $\mathrm{Br} 2-\mathrm{Cl} 3$ 219.4(2), $\mathrm{Br} 3-\mathrm{Cl} 4$ 219.1(2), $\mathrm{Br} 4-\mathrm{Cl} 5$ 218.9(2), $\mathrm{Br} 5-\mathrm{Cl} 6 \mathrm{~A}$ 218.4(16), $\mathrm{Br} 5-\mathrm{Br} 6 \mathrm{~A} 231.4(5)$; $\mathrm{Cl} 1-\mathrm{Br} 1-\mathrm{Cl} 2$ 176.7(1), $\mathrm{Cl} 1-\mathrm{Br} 2-\mathrm{Cl} 3174.9(1), \mathrm{Cl} 1-\mathrm{Br} 3-\mathrm{Cl} 4$ 175.3(1), $\mathrm{Cl} 1-\mathrm{Br} 4-\mathrm{Cl} 5$ 176.1(1), $\mathrm{Cl} 1-\mathrm{Br} 5-\mathrm{Cl} 6 \mathrm{~A}$ 174.8(8), $\mathrm{Br} 3-\mathrm{Cl} 1-\mathrm{Br} 1$ 148.7(1), $\mathrm{Br} 2-\mathrm{Cl} 1-\mathrm{Br} 4$ 171.5(1);); population of the disorders: $\mathrm{Cl} 6 \mathrm{~A}:$ 40 \%, Br6A: 60 \%.

c. Raman Spectra

Figure S6. Raman spectrum of a single crystal of $[\mathrm{NEt} 4][\mathrm{Cl}(\mathrm{BrCl})]$, taken at low temperature $\left(-196{ }^{\circ} \mathrm{C}\right)$.

Figure S7. Raman spectrum of a single crystal of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right][\mathrm{ClBrCl}]$, taken at low temperature $\left(-196{ }^{\circ} \mathrm{C}\right)$.

Figure S8. Raman spectrum of a single crystal of $[\mathrm{NEt} 4]\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]$, taken at low temperature $\left(-196{ }^{\circ} \mathrm{C}\right)$.

Figure S9. Raman spectrum of a single crystal of $[\mathrm{NPr} 4]\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]$, taken at low temperature $\left(-196{ }^{\circ} \mathrm{C}\right)$.

Figure S10. Raman spectrum of a single crystal of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]$, taken at low temperature $\left(-196{ }^{\circ} \mathrm{C}\right)$.

Figure S11. Raman spectrum of a single crystal of $[\mathrm{PNP}]\left[\mathrm{Cl}(\mathrm{BrCl})_{6}\right]$, taken at low temperature $\left(-196{ }^{\circ} \mathrm{C}\right)$.

d. IR Spectra

Figure S12. Selected bands of the ATR-IR spectra of RT-ILs obtained from $\left[\mathrm{N}_{2221}\right] \mathrm{Cl}$ and $1-3$ equiv of BrCl .

e. Calculated Thermochemistry

Table S3. Calculated $\Delta G(298.15 \mathrm{~K}, 1 \mathrm{bar})$ and ΔE values for the formation of $\left[\mathrm{Cl}(\mathrm{BrCl})_{n}\right]^{-}$calculated at B3LYP-D3(BJ)/def2-TZVPP and SCS-MP2/def2-TZVPP levels.

	B3LYP-D3(BJ)		SCS-MP2	
	$\Delta G[\mathrm{~kJ} / \mathrm{mol}]$	$\Delta E[\mathrm{~kJ} / \mathrm{mol}]$	$\Delta G[\mathrm{~kJ} / \mathrm{mol}]$	$\Delta E[\mathrm{~kJ} / \mathrm{mol}]$
$[\mathrm{Cl}(\mathrm{BrCl})]^{-}+\mathrm{BrCl} \rightarrow\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}\left(C_{2 v}\right)$	-48.8	-81.1	-30.4	-62.4
$\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}+\mathrm{BrCl} \rightarrow\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{-}\left(C_{3 v}\right)$	-19.0	-54.5	-11.1	-47.5
$\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{-}+\mathrm{BrCl} \rightarrow\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}\left(T_{d}\right)$	-9.2	-42.4	-8.1	-39.8
$\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}+\mathrm{BrCl} \rightarrow\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}\left(D_{3 h}\right)$	7.4	-29.9	12.8	-33.1
$\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}+\mathrm{BrCl} \rightarrow\left[\mathrm{Cl}(\mathrm{BrCl})_{6}\right]^{-}\left(\mathrm{O}_{h}\right)$	8.1	-32.2	9.1	-34.8
$2 \mathrm{BrCl} \rightarrow \mathrm{Cl}_{2}+\mathrm{Br}_{2}$	5.2	1.7	5.9	2.4
$2\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-} \rightarrow\left[\mathrm{Cl}\left(\mathrm{Cl}_{2}\right)_{4}\right]^{-}+\left[\mathrm{Cl}\left(\mathrm{Br}_{2}\right)_{4}\right]^{-}$	89.6	103.8	114.9	122.0
$2\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-} \rightarrow\left[\mathrm{Cl}\left(\mathrm{Cl}_{2}\right)_{2}\right]^{-}+\left[\mathrm{Cl}\left(\mathrm{Br}_{2}\right)_{2}\right]^{-}$	65.9	67.6	78.3	81.4

f. Interhalogenation: Substrate Scope

Table S4. Substrate scope of the interhalogenation with the reactive IL $\left[\mathrm{NE}_{3} \mathrm{Me}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$.
Nr.

The excellent regio- and diastereoselectivity (cis/trans, E/Z) of all compounds (beside \mathbf{D}) is in accordance with the classical reactivity of unsaturated substrates with interhalides. The more electrophilic bromine atom forms a bromonium ion which is subsequently attacked by the remaining chloride. The nucleophilic attack on the bromonium ion is directed by the substitution pattern (tertiary>secondary>primary carbocation) of the participating carbon atoms. For Michael-systems the nucleophilic chloride exclusively attacks the benzylic β-position. The solid state structure of compound \mathbf{H} confirms these considerations.

g. NMR Spectra

Figure $\mathbf{S 1 3 .}{ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation product \mathbf{A}.

Figure S14. ${ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation product \mathbf{A}.

Figure S15. ${ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation product \mathbf{B}.

Figure $\mathbf{S} 16 .{ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation product \mathbf{B}.

Figure S17. ${ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation product \mathbf{C}.

Figure $\mathbf{S 1 8 .}{ }^{13} \mathrm{C}-$ NMR spectrum of the interhalogenation product \mathbf{C}.

Figure S19. ${ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation products \mathbf{D}.

Figure S20. ${ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation products \mathbf{D}.

Figure S21. ${ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation product \mathbf{E}.

Figure S22. ${ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation product \mathbf{E}.

Figure S23. ${ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation product \mathbf{F}.

Figure S24. ${ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation product \mathbf{F}.

Figure S25. ${ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation product \mathbf{G}.

Figure S26. ${ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation product \mathbf{G}.

Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the interhalogenation product \mathbf{H}.

Figure S28. ${ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation product \mathbf{H}.

Figure S29. ${ }^{1} \mathrm{H}$-NMR spectrum of the interhalogenation product \mathbf{I}.

Figure S30. ${ }^{13} \mathrm{C}$-NMR spectrum of the interhalogenation product I.

Figure S31. Crystal packing of $[\mathrm{NEt} 4][\mathrm{Cl}(\mathrm{BrCl})]$ viewing along the crystallographic x-axis; thermal ellipsoids are shown with 50% probability. The anions and cations are arranged in layers. There are no significant interactions (distance shorter than the sum of the van der Waals radii) between the anions or anion and hydrogen atoms.
h. Crystal Packing / Intermolecular interactions

Figure S32. Crystal packing of $\left[\mathrm{NE} \mathrm{t}_{4}\right]_{2}\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right][\mathrm{ClBrCl}]$; thermal ellipsoids are shown with 50% probability. The anions and cations are arranged in layers. There are weak hydrogen bond interactions to the anions ($d \mathrm{H}-\mathrm{Cl}: 275$ - $283 \mathrm{pm}, d \mathrm{H}-\mathrm{Br}$: 288 pm ; depicted as dashed bonds) The [$\left.\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$units interact with each other, forming a chain (d. $\mathrm{Cl2}-\mathrm{Cl} 1$ ' 318.1 (1)).

Figure S33. Hydrogen bonding between the $\left[\mathrm{Cl}\left(\mathrm{BrCl}_{3}\right]^{-}\right.$anion and the surrounding $\left[\mathrm{NEt}_{4}\right]^{+}$cations; thermal ellipsoids are shown with 50% probability. Three weak hydrogen bonds to the terminal chlorine atoms are observed ($d \mathrm{H}-\mathrm{Cl}$: $270-284 \mathrm{pm}$; depicted as dashed bonds). There are no interactions between the anions.

Figure S34. Crystal packing of $[\mathrm{NPr} 4]\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]$ viewing along the crystallographic z-axis; thermal ellipsoids are shown with 50% probability. The anions and cations are arranged in columns. The intermolecular distances are depicted as dashed bonds ($d \mathrm{Br}-\mathrm{Cl}: 350.8(2) \mathrm{pm}$). There are no interactions with the cations.

Figure S35. Anion-anion interactions of the $\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}$units; thermal ellipsoids are shown with 50% probability. A Br_{2} molecule interacts with two central chlorides ($d \mathrm{Br}-\mathrm{Cl}: 326.7(5)$, 298.6(2) pm) to form an infinite chain. The chains are very weakly interconnected to form an extended network ($d \mathrm{Br}-\mathrm{Cl}: 336.9(1) \mathrm{pm}$). There are no interactions with the cations.

i. Long Term Stability Studies

$$
\left[\mathrm{NMe}_{4}\right] \mathrm{Cl}+4.5 \text { equiv } \mathrm{BrCl}
$$

Figure S36. Long term stability studies of [NMe_{4}] Cl and 4.5 equivalents of BrCl . After 59 weeks no new bands can be observed, which can be assigned to $\mathrm{C}-\mathrm{Br}$ or $\mathrm{C}-\mathrm{Cl}$ stretches. This indicates that the $\left[\mathrm{NMe}_{4}\right]^{+}$cation is stable against interhalogenation.
$\left[\mathrm{NPr}_{4}\right] \mathrm{Cl}+4.5$ equiv BrCl

Figure S37. Long term stability studies of [NPr 4$] \mathrm{Cl}$ and 4.5 equivalents of BrCl . After 59 weeks no new bands can be observed, which can be assigned to $\mathrm{C}-\mathrm{Br}$ or $\mathrm{C}-\mathrm{Cl}$ stretches. This indicates that the [$\left.\mathrm{NPr}_{4}\right]^{+}$cation is stable against interhalogenation.

j. Computed Vibrational Frequencies

Table S5. Computed vibrational frequencies of $[\mathrm{Cl}(\mathrm{BrCl})]^{-}$in $D_{\infty h}$ symmetry.

B3LYP-D3(BJ)/def2-TZVPP					SCS-MP2/def2-TZVPP		
Nr.	Symmetry	Wavenumber $\left[\mathrm{cm}^{-1}\right]$	IR Intensity $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$	Nr.	Symmetry	Wavenumber $\left[\mathrm{cm}^{-1}\right]$	IR Intensity $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$
1	Π_{u}	117.0	3	1	Π_{u}	129.5	3
2	Π_{u}	117.0	3	2	Π_{u}	129.5	3
3	Σ_{u}	232.4	268	3	Σ_{u}	246.1	376
4	$\Sigma_{g^{+}}$	244.2	0	4	$\Sigma_{g}{ }^{+}$	269.7	30

Table S6. Computed vibrational frequencies of $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$in $\mathrm{C}_{2 v}$ symmetry.

B3LYP-D3(BJ)/def2-TZVPP					SCS-MP2/def2-TZVPP		
Nr.	Symmetry	Wavenumber $\left[\mathrm{cm}^{-1}\right]$	IR Intensity $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$	Nr.	Symmetry	Wavenumber $\left[\mathrm{cm}^{-1}\right]$	IR Intensity $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$
1	A_{1}	20.3	0	1	A_{1}	18.7	0
2	B_{1}	95.5	4	2	B_{1}	99.7	24
3	A_{2}	98.5	0	3	A_{2}	107.8	0
4	A_{1}	105.2	1	4	A_{1}	109.3	2
5	B_{2}	120.2	2	5	B_{2}	131.7	3
6	A_{1}	187.6	25	6	B_{1}	167.0	502
7	B_{1}	190.6	346	7	A_{1}	193.7	48
8	B_{1}	283.7	165	8	B_{1}	313.9	142
9	A_{1}	305.7	50	9	A_{1}	335.0	63

Table S7. Computed vibrational frequencies of $\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{-}$in $C_{3 v}$ symmetry.

| B3LYP-D3(BJ)/def2-TZVPP | | | | SCS-MP2/def2-TZVPP | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nr. | Symmetry | Wavenumber
 $\left[\mathrm{cm}^{-1}\right]$ | IR Intensity
 $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$ | Nr. | Symmetry | Wavenumber
 $\left[\mathrm{cm}^{-1}\right]$ | IR Intensity
 $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$ |
| 1 | E | 13.5 | 0 | 1 | A_{1} | 16.2 | 0 |
| 2 | E | 13.5 | 0 | 2 | E | 16.5 | 0 |
| 3 | A_{1} | 17.0 | 0 | 3 | E | 16.5 | 0 |
| 4 | E | 86.6 | 6 | 4 | E | 86.9 | 25 |
| 5 | E | 86.6 | 6 | 5 | E | 86.9 | 25 |
| 6 | A_{2} | 87.5 | 0 | 6 | A_{1} | 93.3 | 1 |
| 7 | A_{1} | 90.5 | 0 | 7 | A_{2} | 93.8 | 0 |
| 8 | E | 95.8 | 5 | 8 | E | 98.6 | 4 |
| 9 | E | 95.8 | 5 | 9 | E | 98.6 | 4 |
| 10 | A_{1} | 157.6 | 7 | 10 | E | 157.5 | 196 |
| 11 | E | 173.0 | 166 | 11 | E | 157.5 | 196 |
| 12 | E | 173.0 | 166 | 12 | A_{1} | 164.8 | 18 |
| 13 | E | 316.0 | 173 | 13 | E | 350.3 | 143 |
| 14 | E | 316.0 | 173 | 14 | E | 350.3 | 143 |
| 15 | A_{1} | 342.3 | 20 | 15 | A_{1} | 373.3 | 28 |

Table S8. Computed vibrational frequencies of $\left[\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}$in T_{d} symmetry.

| B3LYP-D3(BJ)/def2-TZVPP | | | | SCS-MP2/def2-TZVPP | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nr. | Symmetry | Wavenumber
 $\left[\mathrm{cm}^{-1}\right]$ | IR Intensity
 $\left[\mathrm{km} \mathrm{mol} \mathbf{l}^{-1}\right]$ | Nr. | Symmetry | Wavenumber
 $\left[\mathrm{cm}^{-1}\right]$ | IR Intensity
 $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$ |
| 1 | E | 7.9 | 0 | 1 | E | 6.9 | 0 |
| 2 | E | 7.9 | 0 | 2 | E | 6.9 | 0 |
| 3 | T_{2} | 9.1 | 0 | 3 | T_{2} | 9.1 | 0 |
| 4 | T_{2} | 9.1 | 0 | 4 | T_{2} | 9.1 | 0 |
| 5 | T_{2} | 9.1 | 0 | 5 | T_{2} | 9.1 | 0 |
| 6 | A_{1} | 75.6 | 0 | 6 | A_{1} | 73.0 | 0 |
| 7 | T_{2} | 78.7 | 10 | 7 | T_{2} | 78.5 | 16 |
| 8 | T_{2} | 78.7 | 10 | 8 | T_{2} | 78.5 | 16 |
| 9 | T_{2} | 78.7 | 10 | 9 | T_{2} | 78.5 | 16 |
| 10 | T_{1} | 80.2 | 0 | 10 | T_{1} | 85.9 | 0 |
| 11 | T_{1} | 80.2 | 0 | 11 | T_{1} | 85.9 | 0 |
| 12 | T_{1} | 80.2 | 0 | 12 | T_{1} | 85.9 | 0 |
| 13 | E | 90.5 | 0 | 13 | E | 93.0 | 0 |
| 14 | E | 90.5 | 0 | 14 | E | 93.0 | 0 |
| 15 | T_{2} | 170.8 | 104 | 15 | T_{2} | 163.9 | 122 |
| 16 | T_{2} | 170.8 | 104 | 16 | T_{2} | 163.9 | 122 |
| 17 | T_{2} | 170.8 | 104 | 17 | T_{2} | 163.9 | 122 |
| 18 | T_{2} | 338.0 | 155 | 18 | T_{2} | 374.1 | 124 |
| 19 | T_{2} | 338.0 | 155 | 19 | T_{2} | 374.1 | 124 |
| 20 | T_{2} | 338.0 | 155 | 20 | T_{2} | 374.1 | 124 |
| 21 | A_{1} | 363.1 | 0 | 21 | A_{1} | 393.8 | 0 |

Table S9. Computed vibrational frequencies of $\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}$in $D_{3 h}$ symmetry.

| B3LYP-D3(BJ)/def2-TZVPP | | | | | SCS-MP2/def2-TZVPP | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nr. | Symmetry | Wavenumber
 $\left[\mathrm{cm}^{-1}\right]$ | IR Intensity
 $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$ | Nr. | Symmetry | Wavenumber
 $\left[\mathrm{cm}^{-1}\right]$ | IR Intensity
 $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$ |
| 1 | E^{\prime} | 6.2 | 0 | 1 | E^{\prime} | 14.6 | 0 |
| 2 | E^{\prime} | 6.2 | 0 | 2 | E^{\prime} | 14.6 | 0 |
| 3 | E^{\prime} | 16.1 | 0 | 3 | $E^{\prime \prime}$ | 15.5 | 0 |
| 4 | E^{\prime} | 16.1 | 0 | 4 | $E^{\prime \prime}$ | 15.5 | 0 |
| 5 | $E^{\prime \prime}$ | 18.4 | 0 | 5 | $A_{2}^{\prime \prime}$ | 22.5 | 0 |
| 6 | $E^{\prime \prime}$ | 18.4 | 0 | 6 | E^{\prime} | 25.5 | 0 |
| 7 | $A_{2}{ }^{\prime \prime}$ | 19.1 | 0 | 7 | E^{\prime} | 25.5 | 0 |
| 8 | A_{1} | 52.0 | 0 | 8 | $A_{1}{ }^{\prime}$ | 51.0 | 0 |
| 9 | E^{\prime} | 67.0 | 1 | 9 | $A_{1}{ }^{\prime}$ | 68.9 | 0 |
| 10 | E^{\prime} | 67.0 | 1 | 10 | E^{\prime} | 76.1 | 9 |
| 11 | $E^{\prime \prime}$ | 67.5 | 0 | 11 | E^{\prime} | 76.1 | 9 |
| 12 | $E^{\prime \prime}$ | 67.5 | 0 | 12 | $E^{\prime \prime}$ | 81.7 | 0 |
| 13 | A_{1} | 70.6 | 0 | 13 | $E^{\prime \prime}$ | 81.7 | 0 |

14	$A_{2}{ }^{\prime \prime}$	75.1	7	14	E^{\prime}	82.5	0
15	E^{\prime}	75.7	9	15	E^{\prime}	82.5	2
16	E^{\prime}	75.7	9	16	E^{\prime}	82.5	2
17	$A_{2} 2^{\prime}$	75.9	0	17	$A_{2}{ }^{\prime}$	83.3	10
18	$E^{\prime \prime}$	81.9	0	18	$E^{\prime \prime}$	92.1	0
19	$E^{\prime \prime}$	81.9	0	19	$E^{\prime \prime}$	92.1	0
20	$A_{2}^{\prime \prime}$	139.0	153	20	$A_{2}^{\prime \prime}$	150.5	153
21	E^{\prime}	157.4	100	21	E^{\prime}	155.6	105
22	E^{\prime}	157.4	100	22	E^{\prime}	155.6	105
23	E^{\prime}	353.7	142	23	E^{\prime}	390.3	104
24	E^{\prime}	353.7	142	24	E^{\prime}	390.3	104
25	$A_{1}{ }^{\prime}$	359.7	0	25	$A_{1}{ }^{\prime}$	394.0	0
26	$A_{2}{ }^{\prime \prime}$	368.6	152	26	$A_{2}{ }^{\prime \prime}$	399.4	115
27	$A_{1}{ }^{\prime}$	383.9	0	27	$A_{1}{ }^{\prime}$	411.2	0

Table S10. Computed vibrational frequencies of $\left[\mathrm{Cl}(\mathrm{BrCl})_{6}\right]^{-}$in O_{h} symmetry.

B3LYP-D3(BJ)/def2-TZVPP					SCS-MP2/def2-TZVPP		
Nr.	Symmetry	Wavenumber [cm^{-1}]	IR Intensity [$\mathrm{km} \mathrm{mol}^{-1}$]	Nr.	Symmetry	Wavenumber [cm^{-1}]	IR Intensity [$\mathrm{km} \mathrm{mol}^{-1}$]
1	$T_{2 u}$	11.1	0	1	T2u	15.3	0
2	$T_{2 u}$	11.1	0	2	T2u	15.3	0
3	$T_{2 u}$	11.1	0	3	$T_{2 u}$	15.3	0
4	$T_{2 g}$	17.0	0	4	$T_{2 g}$	20.6	0
5	$T_{2 g}$	17.0	0	5	$T_{2 g}$	20.6	0
6	$T_{2 g}$	17.0	0	6	$T_{2 g}$	20.6	0
7	$T_{1 u}$	17.1	0	7	Tiu	27.4	0
8	$T_{1 u}$	17.1	0	8	$T_{1 u}$	27.4	0
9	Tiu	17.1	0	9	$T_{1 u}$	27.4	0
10	E_{g}	51.8	0	10	E_{g}	53.3	0
11	E_{g}	51.8	0	11	E_{g}	53.3	0
12	$T_{1 g}$	64.0	0	12	$A_{1 g}$	67.5	0
13	$T_{1 g}$	64.0	0	13	Tiu	77.3	5
14	$T_{1 g}$	64.0	0	14	$T_{1 u}$	77.3	5
15	$T_{2 u}$	64.7	0	15	$T_{1 u}$	77.3	5
16	$T_{2 u}$	64.7	0	16	$T_{1 g}$	79.2	0
17	$T_{2 u}$	64.7	0	17	$T_{1 g}$	79.2	0
18	$T_{1 u}$	66.6	3	18	$T_{1 g}$	79.2	0
19	$T_{1 u}$	66.6	3	19	$T_{2 u}$	80.2	0
20	Tiu	66.6	3	20	$T_{2 u}$	80.2	0
21	$A_{1 g}$	67.4	0	21	$T_{2 u}$	80.2	0
22	$T_{2 g}$	73.7	0	22	$T_{2 g}$	86.3	0
23	$T_{2 g}$	73.7	0	23	$T_{2 g}$	86.3	0
24	$T_{2 g}$	73.7	0	24	$T_{2 g}$	86.3	0

25	$T_{1 u}$	137.6	136	25	$T_{1 u}$	151.6	125
26	$T_{1 u}$	137.6	136	26	$T_{1 u}$	151.6	125
27	$T_{1 u}$	137.6	136	27	$T_{1 u}$	151.6	125
28	$T_{1 u}$	373.0	135	28	$T_{1 u}$	405.6	95
29	$T_{1 u}$	373.0	135	29	$T_{1 u}$	405.6	95
30	$T_{1 u}$	373.0	135	30	$T_{1 u}$	405.6	95
31	E_{g}	373.3	0	31	E_{g}	405.8	0
32	E_{g}	373.3	0	32	E_{g}	405.8	0
33	$A_{1 g}$	393.1	0	33	$A_{1 g}$	419.7	0

k. Additional Information

Figure S38. Molecular structure of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$ in the solid state with thermal ellipsoids set at 50% probability. Selected bond lengths [pm] and angles [$]$]: $\mathrm{Cl} 1-\mathrm{Br} 1$ 259.6(1), $\mathrm{Cl} 1-\mathrm{Br} 2265.5(1), \mathrm{Br} 1-\mathrm{Cl} 2224.4(3), \mathrm{Br} 2-$ Cl3 220.7(4), $\mathrm{Br} 1-\mathrm{Br} 3$ 247.0(9), $\mathrm{Br} 2-\mathrm{Br} 4$ 241.1(7); Cl1-Br1-Cl2 175.0(2), Cl1-Br2-Cl3 176.1(2), $\mathrm{Br} 2-\mathrm{Cl} 1-\mathrm{Br} 1$ 97.1(1); population of the disorders: $\mathrm{Cl} 2: 88 \%, \mathrm{Br} 3: 12 \%, \mathrm{Cl} 3: 81 \%, \mathrm{Br} 4: 19 \%$.

Figure S39. Raman spectrum of a single crystal of $[\mathrm{NEt} 4]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$, taken at low temperature $\left(-196{ }^{\circ} \mathrm{C}\right)$.

Figure S40. Crystal packing of $\left[\mathrm{NEt} t_{4}\right]\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]$; thermal ellipsoids are shown with 50% probability. The anions and cations are arranged in layers. There are very weak hydrogen bond interactions to the anions ($d \mathrm{H}-\mathrm{Cl}$: 279 pm, $d \mathrm{H}-\mathrm{Br}: 286 \mathrm{pm}$; depicted as dashed bonds) Anion-anion interactions are depicted in Figure S41.

Figure S41. Anion-anion interactions of the $\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$units viewing along the crystallographic y-axis; thermal ellipsoids are shown with 50% probability. Two pentahalide anions form a rectangle and are connected via the bromine atoms ($d \mathrm{Br} 3-\mathrm{Br} 4: 327.4(14) \mathrm{pm}$). The connections between Br and Cl are less pronounced ($d \mathrm{Cl} 2-\mathrm{Br} 4^{\prime}$: $334.0(8) \mathrm{pm}, \mathrm{d}$ Cl3-Br3' 350.3(12)). The rectangles are interconnected via the $\mathrm{Cl1}{ }^{\prime}-\mathrm{Br} 3$ '" interaction (343.4(9) pm).

Raman spectra of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right][\mathrm{ClBrCl}]$ at different conditions

Figure S42. Raman spectra of $\left[\mathrm{NE} \mathrm{t}_{4}\right]_{2}\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right][\mathrm{ClBrCl}]$ at different conditions. The spectra were taken in a DCM solution at $25^{\circ} \mathrm{C}$, as solid ($-196^{\circ} \mathrm{C}$) and as single crystal Raman scope spectrum ($-196^{\circ} \mathrm{C}$). Gas phase calculations show that the symmetric stretching mode $\left(A_{1}\right)$ of the coordinating BrCl molecules has a higher Raman intensity (see Figure 6) than the asymmetric stretch $\left(B_{1}\right)$. In solution, these intensities are in agreement with the calculations. However, spectra of the solid state show, that the intensities change, resulting in a higher intensity for the asymmetric stretching mode. This can be explained by interactions in the solid state. The band at $281 \mathrm{~cm}^{-1}$ associated with [ClBrCl$]^{-}$is indicated by asterisks.

Figure S43. Solid state structure of the product \mathbf{H} after interhalogenation with the BrCl based reactive ionic liquid; thermal ellipsoids are shown with 50% probability. The halogens are arranged trans to each other.

I. xyz-Files of the Calculated Molecules

$[\mathrm{Cl}(\mathrm{BrCl})]^{-}$

```
B3LYP-D3(BJ)/def2-TZVPP:
    0.00000000000000 0.00000000000000 -4.65478608806984 cl
    0.00000000000000 0.00000000000000 -0.00000000000000 br
    0.00000000000000 0.000000000000000 4.65478608806984 cl
Etot =-3494.476772972 H, ZPE = 4.214 kJ/mol, H=19.25 kJ/mol, }\mu=-66.39 kJ/mol
SCS-MP2/def2-TZVPP:
    0.00000000000000 0.000000000000000 -4.56717617284753 cl
    0.00000000000000 0.000000000000000 0.00000000000000 br
    0.00000000000000 0.00000000000000 4.56717617284753 cl
E(SCF) = -3491.495333171 H, E(MP2) = -1.026591420411 H,ZPE = 4.634 kJ/mol
H=19.38 kJ/mol, }\mu=-65.25\textrm{kJ}/\textrm{mol
```


$\left[\mathrm{Cl}(\mathrm{BrCl})_{2}\right]^{-}$

B3LYP-D3(BJ)/def2-TZVPP:		
0.00000000000000	0.00000000000000	-3.21138772166569 cl
-4.03201490368139	0.00000000000000	-0.40108236354168 br
4.03201490368139	0.00000000000000	-0.40108236354168 br
7.71939332291606	0.00000000000000	2.00671238810105 cl
-7.71939332291606	0.00000000000000	2.00671238810105 cl

$E_{\text {tot }}=-6528.696640102 \mathrm{H}, Z P E=8.345 \mathrm{~kJ} / \mathrm{mol}, H=33.57 \mathrm{~kJ} / \mathrm{mol}, \mu=-92.22 \mathrm{~kJ} / \mathrm{mol}$

SCS-MP2/def2-TZVPP:

0.00000000000000	0.00000000000000	-3.34336507817772	cl
-3.91977218528769	0.00000000000000	-0.41982630251125 br	
3.91977218528769	0.00000000000000	-0.41982630251125 br	
7.41698127141964	0.00000000000000	2.09144500532661 cl	
-7.41698127141964	0.00000000000000	2.09144500532661 cl	

$E_{(\mathrm{SCF})}=-6523.408663161 \mathrm{H}, E_{(\mathrm{MP} 2)}=-1.700585487184 \mathrm{H}, Z P E=8.851 \mathrm{~kJ} / \mathrm{mol}$
$H=33.76 \mathrm{~kJ} / \mathrm{mol}, \mu=-91.16 \mathrm{~kJ} / \mathrm{mol}$

$\left[\mathrm{Cl}(\mathrm{BrCl})_{3}\right]^{-}$

B3LYP-D3(BJ)/def2-TZVPP:		
-0.00000000000000	0.00000000000000	-2.38862142703802 cl
-2.34937161747260	4.06923100732284	-0.39846634525948 br
-2.34937161747260	-4.06923100732284	-0.39846634525948 br
4.69874323494525	0.00000000000000	-0.39846634525948 br
8.68845360089481	0.00000000000000	1.20131512417996 cl
-4.34422680044738	7.52442153797727	1.20131512417996 cl
-4.34422680044738	-7.52442153797727	1.20131512417996 cl

$E_{\text {tot }}=-9562.906293914 \mathrm{H}, Z P E=12.24 \mathrm{~kJ} / \mathrm{mol}, H=49.17 \mathrm{~kJ} / \mathrm{mol}, \mu=-115.05 \mathrm{~kJ} / \mathrm{mol}$

SCS-MP2/def2-TZVPP:

| -0.00000000000000 | 0.00000000000000 | -2.71886913342799 cl |
| :--- | :--- | :--- | :--- |
| -2.29119276264963 | 3.96846227484326 | -0.45817098245949 br |
| -2.29119276264963 | -3.96846227484326 | -0.45817098245949 br |
| 4.58238552529929 | 0.00000000000000 | -0.45817098245949 br |
| 8.37584103748935 | 0.00000000000000 | 1.37110233017664 cl |
| -4.18792051874466 | 7.25369111652598 | 1.37110233017664 cl |
| -4.18792051874466 | -7.25369111652598 | 1.37110233017664 cl |

$E_{(S C F)}=-9555.321018629 \mathrm{H}, E_{(\mathrm{MP} 2)}=-2.369837219305 \mathrm{H}, Z P E=12.93 \mathrm{~kJ} / \mathrm{mol}$
$H=49.48 \mathrm{~kJ} / \mathrm{mol}, \mu=-112.71 \mathrm{~kJ} / \mathrm{mol}$

[$\left.\mathrm{Cl}(\mathrm{BrCl})_{4}\right]^{-}$

B3LYP-D3(BJ)/def2-TZVPP:			
-0.00000000000000	0.00000000000000	-0.00000000000000	cl
-3.01884831384178	-3.01884831384178	3.01884831384178	br
3.01884831384178	-3.01884831384178	-3.01884831384178	br
-3.01884831384178	3.01884831384178	-3.01884831384178 br	
3.01884831384178	3.01884831384178	3.01884831384178 br	
-5.46944696218501	-5.46944696218501	5.46944696218501	cl
5.46944696218501	5.46944696218501	5.46944696218501	cl
-5.46944696218501	5.46944696218501	-5.46944696218501	cl
5.46944696218501	-5.46944696218501	-5.46944696218501	cl

$E_{\text {tot }}=-12597.11120670 \mathrm{H}, Z P E=15.81 \mathrm{~kJ} / \mathrm{mol}, H=64.82 \mathrm{~kJ} / \mathrm{mol}, \mu=-140.55 \mathrm{~kJ} / \mathrm{mol}$

SCS-MP2/def2-TZVPP:

| -0.00000000000000 | 0.00000000000000 | 0.00000000000000 cl |
| :--- | :--- | :--- | :--- |
| -3.03262051540363 | -3.03262051540363 | 3.03262051540363 br |
| 3.03262051540363 | -3.03262051540363 | -3.03262051540363 br |
| -3.03262051540363 | 3.03262051540363 | -3.03262051540363 br |
| 3.03262051540363 | 3.03262051540363 | 3.03262051540363 br |
| -5.43875660644968 | -5.43875660644968 | 5.43875660644968 cl |
| 5.43875660644968 | 5.43875660644968 | 5.43875660644968 cl |
| -5.43875660644968 | 5.43875660644968 | -5.43875660644968 cl |
| 5.43875660644968 | -5.43875660644968 | -5.43875660644968 cl |

$E_{(S C F)}=-12587.23284961 \mathrm{H}, E_{(M P 2)}=-3.036569955557 \mathrm{H}, Z P E=16.76 \mathrm{~kJ} / \mathrm{mol}$
$H=65.28 \mathrm{~kJ} / \mathrm{mol}, \mu=-139.27 \mathrm{~kJ} / \mathrm{mol}$

$\left[\mathrm{Cl}(\mathrm{BrCl})_{5}\right]^{-}$

| B3LYP-D3(BJ)/def2-TZVPP: | | |
| :--- | :--- | :--- | :--- |
| -0.00000000000000 | 0.00000000000000 | -0.00000000000000 cl |
| -2.67580366236152 | -4.63462789428903 | 0.00000000000000 br |
| -2.67580366236152 | 4.63462789428903 | 0.00000000000000 br |
| 5.35160732472303 | 0.00000000000000 | 0.00000000000000 br |
| 0.00000000000000 | 0.00000000000000 | 5.48805052183008 br |
| 0.00000000000000 | 0.00000000000000 | -5.48805052183008 br |
| 9.56402041542057 | 0.00000000000000 | 0.00000000000000 cl |
| -4.78201020771027 | -8.28268464206720 | 0.00000000000000 cl |
| -4.78201020771027 | 8.28268464206720 | 0.00000000000000 cl |
| 0.00000000000000 | 0.00000000000000 | 9.67207751604432 cl |
| 0.00000000000000 | 0.00000000000000 | -9.67207751604432 cl |

$E_{\text {tot }}=-15631.31125760 \mathrm{H}, Z P E=19.16 \mathrm{~kJ} / \mathrm{mol}, H=80.46 \mathrm{~kJ} / \mathrm{mol}, \mu=-162.28 \mathrm{~kJ} / \mathrm{mol}$

SCS-MP2/def2-TZVPP:

| 0.00000000000000 | 0.00000000000000 | 0.00000000000000 cl |
| :---: | :---: | :---: | :---: |
| -2.68812454489377 | -4.65596828882895 | 0.00000000000000 br |
| -2.68812454489377 | 4.65596828882895 | 0.00000000000000 br |
| 5.37624908978751 | 0.00000000000000 | 0.00000000000000 br |
| 0.00000000000000 | 0.00000000000000 | 5.45552697524794 br |
| 0.00000000000000 | 0.00000000000000 | -5.45552697524794 br |
| 9.51781151670752 | 0.00000000000000 | 0.00000000000000 cl |
| -4.75890575835375 | -8.24266656190080 | 0.00000000000000 cl |
| -4.75890575835375 | 8.24266656190080 | 0.00000000000000 cl |
| 0.00000000000000 | 0.00000000000000 | 9.58271041987689 cl |
| 0.00000000000000 | 0.00000000000000 | -9.58271041987689 cl |

$E_{(S C F)}=-15619.13933117 \mathrm{H}, E_{(M P 2)}=-3.706321438418 \mathrm{H}, Z P E=21.12 \mathrm{~kJ} / \mathrm{mol}$
$H=81.14 \mathrm{~kJ} / \mathrm{mol}, \mu=-151.05 \mathrm{~kJ} / \mathrm{mol}$

$[\mathrm{Cl}(\mathrm{BrCl})]_{6}{ }^{-}$

| B3LYP-D3(BJ)/def2-TZVP: | | |
| :--- | :--- | :--- | :--- |
| -0.00000000000000 | -0.00000000000000 | 0.00000000000000 cl |
| 5.51151017729707 | 0.00000000000000 | -0.00000000000000 br |
| -0.00000000000000 | -0.00000000000000 | -5.51151017729707 br |
| 0.00000000000000 | -5.51151017729707 | 0.00000000000000 br |
| 0.00000000000000 | 0.00000000000000 | 5.51151017729707 br |
| -5.51151017729707 | -0.00000000000000 | 0.00000000000000 br |
| -0.00000000000000 | 5.51151017729707 | 0.00000000000000 br |
| -0.00000000000000 | 9.68747412917864 | 0.00000000000000 cl |
| 9.68747412917864 | 0.00000000000000 | -0.00000000000000 cl |
| 0.00000000000000 | -0.00000000000000 | -9.68747412917864 cl |
| -0.00000000000000 | 0.00000000000000 | 9.68747412917864 cl |
| -9.68747412917864 | -0.00000000000000 | 0.00000000000000 cl |
| 0.00000000000000 | -9.68747412917864 | -0.00000000000000 cl |

$E_{\text {tot }}=-18665.51215904 \mathrm{H}, Z P E=22.44 \mathrm{~kJ} / \mathrm{mol}, H=96.12 \mathrm{~kJ} / \mathrm{mol}, \mu=-181.05 \mathrm{~kJ} / \mathrm{mol}$

SCS-MP2/def2-TZVPP:

| -0.00000000000000 | -0.00000000000000 | -0.00000000000000 cl |
| :--- | :--- | :--- | :--- |
| 5.49514970038369 | 0.00000000000000 | 0.00000000000000 br |
| 0.00000000000000 | -0.00000000000000 | -5.49514970038369 br |
| 0.00000000000000 | -5.49514970038369 | -0.00000000000000 br |
| -0.00000000000000 | 0.00000000000000 | 5.49514970038369 br |
| -5.49514970038369 | -0.00000000000000 | -0.00000000000000 br |
| -0.00000000000000 | 5.49514970038369 | 0.00000000000000 br |
| -0.00000000000000 | 9.61346003715582 | 0.00000000000000 cl |
| 9.61346003715582 | 0.00000000000000 | -0.00000000000000 cl |
| 0.00000000000000 | -0.00000000000000 | -9.61346003715582 cl |
| -0.00000000000000 | 0.00000000000000 | 9.61346003715582 cl |
| -9.61346003715582 | -0.00000000000000 | 0.00000000000000 cl |
| 0.00000000000000 | -9.61346003715582 | 0.00000000000000 cl |

$E_{(\text {SCF })}=-18651.04434211 \mathrm{H}, E_{(\text {MP2 })}=-4.378111120132 \mathrm{H}, Z P E=25.33 \mathrm{~kJ} / \mathrm{mol}$
$H=97.01 \mathrm{~kJ} / \mathrm{mol}, \mu=-165.00 \mathrm{~kJ} / \mathrm{mol}$

5.5. Experimental Part

All reactions were carried out in standard glass apparatus. If necessary, work was carried out using Schlenk technique and inert gas atmosphere (argon). All chemicals were used without further purification unless otherwise noted. The solvents used for column chromatography were obtained from technical grade solvents by distillation under reduced pressure at $40^{\circ} \mathrm{C}$ water bath temperature. IKA RV 10 and Heidolph Hei-Vap Advantage rotary evaporators were used for this purpose. All other solvents were used analytically pure and without further purification. Qualitative reaction control was carried out with the aid of silica gel-coated aluminum plates of the type Kieselgel 60 F254 from Merck. Subsequent indication was performed by irradiation under UV light (254 nm and 366 nm) and treatment with various staining reagents based on potassium permanganate, anisaldehyde or ninhydrin. The stationary phase of the column chromatography was silica gel with a pore size between 40 and $63 \mu \mathrm{~m}$ from Macherey-Nagel. The mobile phase consisted of solvent mixtures of distillatively purified n-pentane, ethyl acetate, diethyl ether, methanol, and dichloromethane. Melting points were measured on a Stuart SMP-30 instrument. All melting points in this work correspond to the uncorrected values. To measure the optical rotation value of chiral compounds, a polarimeter of the Jasco P-2000 type was used. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECX 400 (400 MHz), JEOL ECP 500 (500 MHz), Bruker Avance 500 (500 MHz), JEOL ECZ600 S (600 MHz) and Bruker Avance $700(700 \mathrm{MHz})$ spectrometers. Chemical shifts (δ) were expressed in parts per million (ppm) relative to tetramethylsilane. The internal standard is the respective deuterated solvent. Coupling constants (J) were given in Hertz (Hz). All IR spectra were recorded using a JASCO FT/IR-4100 spectrometer. Samples were measured in liquid or solid state and characteristic bands are reported as wavenumbers (\tilde{v}) in reciprocal cm . High-resolution mass spectrometry (HRMS) was performed on an Agilent 6210 ESI-TOF instrument from Agilent Technologies. For the determination of the enantiomeric excess (ee), a system consisting of a GC oven type 6850 Network GC System and an autosampler type 7683B Series Injector from Agilent Technologies were used. Detection of the compounds were performed using a flame ionization detector. Enantiomeric excesses (ee) were also determined using chiral HPLC methods. The Agilent Technologies 1200 Series system with DAD detector were used for this purpose.

5.5.1. Triazoles

(2R,4R)-2,4-Dichloropentane-1,5-diol (ent-57) ("classic" conditions)

Catalyst ent-18 ($573 \mathrm{mg}, 2.00 \mathrm{mmol}, 40 \mathrm{~mol} \%$) and NCS ($1.47 \mathrm{~g}, 11.0 \mathrm{mmol}, 2.2$ equiv.) were added at $-30^{\circ} \mathrm{C}$ to a solution of pentanedial $56\left(500 \mathrm{mg}, 4.99 \mathrm{mmol}, 1.0\right.$ equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(35 \mathrm{~mL})$ and stirred for 17 h at $-30^{\circ} \mathrm{C}$. $\mathrm{EtOH}(35 \mathrm{ml})$ and $\mathrm{NaBH}_{4}(944 \mathrm{mg}, 25.0 \mathrm{mmol}, 5.0$ equiv.) were added subsequently to the reaction mixture and stirring was continued for 30 min at $0^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(70 \mathrm{~mL})$ was added to the reaction, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-pentane/EtOAc 3:1 to 1:1) diol ent-57 ($328 \mathrm{mg}, 1.90 \mathrm{mmol}, 38 \%,>99 \% \mathrm{ee},>99 \% \mathrm{de}$) was obtained as a colorless solid. The absolute stereoconfiguration was determined by single crystal structure analysis.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=4.23(\mathrm{dq}, J=8.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{t}, J=6.3 \mathrm{~Hz}$, 2 H), 2.09 (dd, $J=8.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=67.1,62.2,39.8 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3551,2262,1193,1037,832 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 194.9950, found 194.9947.

(2S,4S)-2,4-Dichloropentane-1,5-diol (57) (modified conditions)

Catalyst 62 ($248 \mathrm{mg}, 998 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%)$, TFA ($76.9 \mu \mathrm{~L}, 998 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$), and $\mathrm{NO}_{2} \mathrm{NCP}(2.49 \mathrm{~g}, 11.0$ mmol, 2.2 equiv.) were added at $-30^{\circ} \mathrm{C}$ to a solution of pentanedial 56 ($500 \mathrm{mg}, 4.99 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(35 \mathrm{ml})$ and stirred for 17 h at $-30^{\circ} \mathrm{C}$. $\mathrm{EtOH}(35 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(944 \mathrm{mg}, 25.0 \mathrm{mmol}, 5.0$ equiv.) were added and the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (70 mL) was added to the reaction, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc 3:1 to 1:1) diol 57 (298 $\mathrm{mg}, 1.72 \mathrm{mmol}, 35 \%$) was obtained as a pale yellow solid.

The spectroscopic data are in accordance with the previous experiment.

(2R,4R)-1,5-Diazidopentane-2,4-diol (58)

KOH ($642 \mathrm{mg}, 11.4 \mathrm{mmol}, 6.6$ equiv.) was added to a $0^{\circ} \mathrm{C}$ cold solution of chlorohydrin 57 (300 mg , $1.73 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ and stirred for 3 days at $22^{\circ} \mathrm{C}$. The reaction mixture was filtered over a short plug of MgSO_{4} and the solvent was removed under reduced pressure (950 mbar, $40^{\circ} \mathrm{C}$). The crude product was dissolved in EtOH (18 mL), $\mathrm{NaN}_{3}(1.12 \mathrm{~g}, 17.3 \mathrm{mmol}, 10.0$ equiv.) and $\mathrm{NH}_{4} \mathrm{Cl}\left(906 \mathrm{mg}, 16.9 \mathrm{mmol}, 9.8\right.$ equiv.) were added and stirring was continued for 48 h at $22^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc $(10 \mathrm{~mL})$ and the precipitated solid was filtered off. The solvent was removed under reduced pressure and EtOAc (20 mL) and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added to the crude product. The aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O} / n-\right.$ pentane 3:1) diol 58 ($203 \mathrm{mg}, 1.09 \mathrm{mmol}, 63 \%$) was obtained as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=4.08(\mathrm{tdd}, J=7.0,5.5,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=12.4,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.33$ (dd, J = 12.4, 7.3 Hz, 2H), $2.48(\mathrm{~s}, 2 \mathrm{H}), 1.65(\mathrm{dd}, \mathrm{J}=6.7,5.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=67.7,57.0,37.2 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3398,2924,2096,1274,1084 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 209.0757, found 209.0753; m/z calculated for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{KN}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{K}]^{+}$: 225.0497 , found 225.0494.

(2R,4R)-1,5-Diazido-2,4-bis(prop-2-yn-1-yloxy)pentane (64)

NaH (60% in mineral oil; 35.4 mg , $886 \mu \mathrm{~mol}, 3.0$ equiv.) was added to a $0^{\circ} \mathrm{C}$ cold solution of diol 58 ($55.0 \mathrm{mg}, 295 \mu \mathrm{~mol}, 1.0$ equiv.) and DMF (2.4 mL) and stirred for 60 min at $0^{\circ} \mathrm{C}$. Propargyl bromide (80% in toluene; $82.3 \mu \mathrm{~L}, 739 \mu \mathrm{~mol}, 2.5$ equiv.) was added and the reaction was stirred for additional 60 min at $0^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) was added subsequently, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography ($\mathrm{SiO}_{2}, n-$ pentane/EtOAc 10:1) propargyl ether $64(49.0 \mathrm{mg}, 187 \mu \mathrm{~mol}, 63 \%)$ was obtained as a pale yellow oil. Due to its instability the compound was immediately used in the next step.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.32(\mathrm{dd}, \mathrm{J}=5.5,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.91(\mathrm{dddd}, J=7.1,5.6,4.8,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.58(\mathrm{dd}, J=13.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=13.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{dd}, J=7.0$, $5.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

Bis((R)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-6-yl)methane (60)

Propargyl ether 64 ($40.0 \mathrm{mg}, 153 \mu \mathrm{~mol}, 1.0$ equiv.) was dissolved in toluene (1 mL) and stirred for 4 h at $80^{\circ} \mathrm{C}$. The precipitated solid was filtered through a suction filter (Por. 4) and dried under high vacuum overnight. Bistriazole $60(35.0 \mathrm{mg}, 134 \mu \mathrm{~mol}, 88 \%)$ was obtained as a colorless solid without further purification. The absolute stereoconfiguration was confirmed by single crystal structure analysis.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta=7.58(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19$ - 4.12 (m, 2H), 4.05 (dd, $J=12.6,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (DMSO- ${ }_{6}, 126 \mathrm{MHz}$): $\delta=130.9,127.8,70.2,61.2,49.3,35.5 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=2249,2123,1053,1024 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 285.1070, found 285.1064; m/z calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{KN}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{K}]^{+}$: 301.0810, found 301.0809.

TBSCI ($2.66 \mathrm{~g}, 12.5 \mathrm{mmol}, 2.4$ equiv.) and imidazole ($850 \mathrm{mg}, 12.5 \mathrm{mmol}, 2.4$ equiv.) were added to a solution of chlorohydrin ent-57 (900 mg, 5.20 mmol , 1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL}$) and stirred for 20 h at $22^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to the reaction mixture, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc 200:1) silyl ether 65 ($1.81 \mathrm{~g}, 4.51 \mathrm{mmol}, 87 \%$) was obtained as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=4.26-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.83(\mathrm{dd}, \mathrm{J}=10.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.70$ (m, 2H), $2.13(\mathrm{dd}, J=8.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.08(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=67.5,59.7,39.8,26.0,18.4,-5.2(2 x \mathrm{C}) \mathrm{ppm}$.

IR (ATR): $\tilde{v}=2954,2929,2857,1255,1122,835,814 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{NaO}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 423.1679, found 423.1700.

(2S,4S)-2,4-Diazidopentane-1,5-diol (ent-59)

NaN_{3} ($3.52 \mathrm{~g}, 54.2 \mathrm{mmol}, 15$ equiv.) was added to a solution of silyl ether 65 ($1.45 \mathrm{~g}, 3.61 \mathrm{mmol}$, 1.0 equiv.) and DMF (50 mL) and stirred in a pressure tube for 15 h at $100^{\circ} \mathrm{C}$. After cooling to $22^{\circ} \mathrm{C}$, TBAF (1M in THF; $21.7 \mathrm{~mL}, 21.7$ mmol, 6 equiv.) was added and the reaction was stirred for additional 10 min at $22{ }^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (40 mL) was added, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1$ to $20: 1$) diol ent-59 ($481 \mathrm{mg}, 2.58 \mathrm{mmol}, 72 \%$) was obtained as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=3.67(\mathrm{dd}, \mathrm{J}=11.2,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=11.2$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.20(\mathrm{~s}, 2 \mathrm{H}), 1.44$ (dd, J = $7.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 126 \mathrm{MHz}\right): \delta=65.8,62.2,32.3 \mathrm{ppm}$.

(2S,4S)-2,4-Diazido-1,5-bis(prop-2-yn-1-yloxy)pentane (66)

NaH (60% in mineral oil; $309 \mathrm{mg}, 7.72 \mathrm{mmol}, 3.0$ equiv.) was added to a $0^{\circ} \mathrm{C}$ cold solution of diol ent59 ($479 \mathrm{mg}, 2.57 \mathrm{mmol}, 1.0$ equiv.) and DMF (21 mL) and stirred for 60 min at $0^{\circ} \mathrm{C}$. Propargyl bromide (80% in toluene; $860 \mu \mathrm{~L}, 7.72 \mathrm{mmol}, 3.0$ equiv.) was added dropwise and the reaction mixture was stirred for additional 2 h at $0^{\circ} \mathrm{C}$. Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added to the reaction, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc 10:1) propargyl ether 66 ($509 \mathrm{mg}, 1.94 \mathrm{mmol}, 76 \%$) was obtained as a pale yellow oil. Due to its instability the compound was immediately used in the next step.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.22(\mathrm{dt}, \mathrm{J}=2.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=9.9,3.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=9.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

Bis((S)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-7-yl)methane (ent-61)

Propargyl ether 66 ($500 \mathrm{mg}, 1.91 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene (13 mL) and stirred for 3 days at $80^{\circ} \mathrm{C}$. The precipitated solid was filtered through a suction filter (Por. 4) and dried under high vacuum overnight. Bistriazole ent-61 (341 mg, 1.30 mmol , 68%) was obtained as a colorless solid without further purification. The absolute stereoconfiguration could be confirmed by single crystal structure analysis.
$m p=162{ }^{\circ} \mathrm{C}$
$[\alpha]_{D}^{26}=14.1^{\circ}\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta=7.52(\mathrm{~s}, 2 \mathrm{H}), 5.38-5.34(\mathrm{~m}, 2 \mathrm{H}), 4.97-4.90(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=12.2$, $3.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=12.2,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta=130.6,128.4,68.5,62.6,54.1,36.7 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=2953,2930,2881,2864,1551,1464,1446,1430,1384,1333,1189,1160,1088,986$, $880,824,775 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 263.1251, found 263.1243; m/z calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 285.1070 , found 285.1067 ; m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{KN}_{6} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{K}]^{+}: 301.0810$, found 301.0824.

(2S,4S)-2,4-Dichloropentane-1,5-diol (57)

(2R,4R)-1,5-Diazidopentane-2,4-diol (58)

64

$\operatorname{Bis}((R)-6,7-$ dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-6-yl)methane (60)

(6R,8R)-6,8-Dichloro-2,2,3,3,11,11,12,12-octamethyl-4,10-dioxa-3,11-disilatridecane (65)

[^11]
(2S,4S)-2,4-Diazidopentane-1,5-diol (ent-59)

(2S,4S)-2,4-Diazido-1,5-bis(prop-2-yn-1-yloxy)pentane (66)

130.57
~ 128.37

0
0
0

(2R,4R)-2,4-Dichloropentane-1,5-diol (ent-57)

Cell: $a=5.0131(1) \AA, b=5.7783(1) \AA, c=7.1692(2) \AA$
$\alpha=91.147(1)^{\circ}, \beta=102.993(1)^{\circ}, \gamma=107.702(1)^{\circ}$
Temperature: 100 K
Volume: 191.898(7) \AA^{3}
Space group: P 1
Hall group: P 1
Mr: 173.03
Dx [g/cm $\left.{ }^{3}\right]: 1.497$
Z: 1
$\mathrm{Mu}[1 / \mathrm{mm}]: 0.774$
F000: 90.0
F000': 90.33
h,k,Imax: 6,7,8
Nref: 1310
Tmin,Tmax: 0.761, 0.875
Tmin': 0.769
Data completeness $=1.78 / 0.89$
Theta $(\max)=25.749$
$R($ reflections $)=0.0221$ (1285)
$w R 2$ (reflections) $=0.0568$ (1310)
$S=1.067$
Npar $=90$

Bis((R)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-6-yl)methane (60)

Temperature/K	100.0
Crystal system	monoclinic
Space group	P 21
a/Å	4.46200(10)
b/Å	11.0166(3)
c/Å	12.2067(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	98.6440(10)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}$	593.22(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.468
μ / mm^{-1}	0.891
F(000)	276.0
Crystal size/mm ${ }^{3}$	$0.32 \times 0.147 \times 0.117$
Radiation	CuK $\alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} 7.324$ to 144.436	
Index ranges	$-5 \leq h \leq 5,-13 \leq k \leq 13,-14 \leq 1 \leq 15$
Reflections collected	24236
Independent reflections	$2326\left[\mathrm{R}_{\text {int }}=0.0434, \mathrm{R}_{\text {sigma }}=0.0211\right]$
Data/restraints/parameters	2326/1/172
Goodness-of-fit on F^{2}	1.082
Final R indexes [$1>=2 \sigma$ (1]	$\mathrm{R}_{1}=0.0275, \mathrm{wR}_{2}=0.0693$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0280, w \mathrm{R}_{2}=0.0699$
Largest diff. peak/hole / e \AA^{-3}	0.16/-0.23
Flack parameter	0.12(6)

Bis((S)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-7-yl)methane (ent-61)

Temperature/K	100.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{12} 1_{1}{ }_{1}$
a/Å	8.1095(6)
b/Å	11.6834(10)
c/Å	12.6166(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1195.38(16)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.457
μ / mm^{-1}	0.885
F(000)	552.0
Crystal size/mm ${ }^{3}$	$0.306 \times 0.165 \times 0.157$
Radiation	CuK α ($\lambda=1.54178$)
2Θ range for data collection/ ${ }^{\circ} 10.318$ to 144.36	
Index ranges	$-10 \leq h \leq 10,-14 \leq k \leq 12,-15 \leq \mathrm{l} \leq 15$
Reflections collected	20613
Independent reflections	$2362\left[\mathrm{R}_{\text {int }}=0.0473, \mathrm{R}_{\text {sigma }}=0.0202\right]$
Data/restraints/parameters	2362/0/172
Goodness-of-fit on F^{2}	1.088
Final R indexes [l>=2 $\sigma(1)]$	$\mathrm{R}_{1}=0.0264, w \mathrm{R}_{2}=0.0651$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0278, w \mathrm{R}_{2}=0.0663$
Largest diff. peak/hole / e \AA^{-3}	0.12/-0.19
Flack parameter	-0.07(8)

5.5.2 Studies on the Total Synthesis of Hypatulin A and B

2-Allyl-1,3,2-dioxaborinane (136)

Borinane 136 was synthesized according to a procedure of Brown et al. ${ }^{[124]}$ Allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O} ; 100 \mathrm{~mL}, 100 \mathrm{mmol}, 1.04$ equiv.) was added to $\mathrm{a}-78^{\circ} \mathrm{C}$ cold solution of boric acid ester 135 ($10.0 \mathrm{~g}, 96.2 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(300 \mathrm{~mL})$ over a period of 60 min and stirring was continued for additional 2 h at $-78^{\circ} \mathrm{C}$. The reaction was warmed to $0^{\circ} \mathrm{C}$, added slowly to $2 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, and stirred for 60 min at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was reduced to a volume of 200 mL under reduced pressure (600 mbar, $25^{\circ} \mathrm{C}$). The solution was degassed in an argon stream and molar sieve (3 Å; 2.00 g) and 1,3-propanediol ($6.96 \mathrm{~mL}, 96.2 \mathrm{mmol}, 1.0$ equiv.) were added. The reaction mixture was stirred at $22^{\circ} \mathrm{C}$ for 15 h , then filtered and the volume of the solvent was halved under reduced pressure ($600 \mathrm{mbar}, 25^{\circ} \mathrm{C}$). n-Pentane (200 mL) was added and the resulting suspension was filtered over Celite ${ }^{\oplus}$. The solvent of the filtrate was again removed under reduced pressure ($80 \mathrm{mbar}, 0^{\circ} \mathrm{C}$) and borinane 136 ($10.2 \mathrm{~g}, 81.0 \mathrm{mmol}, 84 \%$ over 2 steps) was obtained as a colorless liquid without further purification.

The spectroscopic data are in accordance with the literature. ${ }^{[124]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.86(\mathrm{ddt}, \mathrm{J}=17.5,10.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.97(\mathrm{~m}$, $4 \mathrm{H}), 1.95(\mathrm{p}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

(S)-1-Allyl-2-iodocyclopent-2-en-1-ol (122)

Alcohol 122 was synthesized according to a procedure of Taber et al. ${ }^{[116]}$ (S)-3,3'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (137) ($2.74 \mathrm{~g}, 6.18 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) was added to a solution of 2-allyl-1,3,2dioxaborinane (136) ($23.3 \mathrm{~g}, 185 \mathrm{mmol}, 1.5$ equiv.) and ${ }^{t} \mathrm{BuOH}(18.3 \mathrm{~g}, 247 \mathrm{mmol}, 2.0$ equiv.) and the mixture was stirred till complete homogeneity at $22^{\circ} \mathrm{C}$. Enone 119 ($25.7 \mathrm{~g}, 124 \mathrm{mmol}, 1.0$ equiv.) was added and the stirring was continued for 24 h at $22^{\circ} \mathrm{C}$. Subsequently, the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and washed with $2 \mathrm{~N} \mathrm{NaOH}(3 \times 100 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-pentane/EtOAc 10:1) alcohol 122 ($27.3 \mathrm{~g}, 109 \mathrm{mmol}, 88 \%, 94 \% \mathrm{ee}$) was obtained as a pale yellow solid. The aqueous phase was adjusted to $\mathrm{pH}=1$ with $15 \% \mathrm{HCl}$, extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), and the solvent was removed under reduced pressure. BINOL derivative 137 ($2.36 \mathrm{~g}, 5.31 \mathrm{mmol}, 86 \%$) could thus be recovered clean and almost quantitative without further purification.

The spectroscopic data are in accordance with the literature. ${ }^{[116]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.25(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dddd}, J=16.8,10.1,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-$ $5.12(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.09(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.97-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

1-Allyl-2-iodocyclopent-2-en-1-ol (rac-122)

Allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O} ; 96.2 \mu \mathrm{~L}, 96.2 \mu \mathrm{~mol}, 2.0$ equiv.) was added dropwise to a solution of enone 119 ($10.0 \mathrm{mg}, 48.1 \mu \mathrm{~mol}, 1.0$ equiv.) and dry $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and stirred for 30 min at $22^{\circ} \mathrm{C}$. $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc 10:1) alcohol rac-122 $(8.9 \mathrm{mg}, 35.6$ $\mu \mathrm{mol}, 74 \%)$ was obtained as a pale yellow solid.

The spectroscopic data are in accordance with the literature. ${ }^{[116]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.25(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (dddd, $\left.J=17.0,10.1,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.24-$ $5.14(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.98-$ $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

(S)-1-Allyl-2-methylcyclopent-2-en-1-ol (123)

Alcohol 123 was synthesized according to a procedure of Taber et al. ${ }^{[117]}$ Methylmagnesium bromide (3 M in $\mathrm{Et}_{2} \mathrm{O}$; $21.5 \mathrm{~mL}, 64.5 \mathrm{mmol}, 2.3$ equiv.) was added dropwise to a suspension of $\mathrm{NiCl}_{2} \mathrm{dppp}$ $(75.9 \mathrm{mg}, 140 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%)$ and $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(120 \mathrm{~mL})$ and stirred for 10 min . A solution of alcohol 122 ($7.00 \mathrm{~g}, 28.0 \mathrm{mmol}, 1.0$ equiv.) and dry $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added and the reaction mixture was stirred for 6 h at $22{ }^{\circ} \mathrm{C} . \mathrm{Na}_{2} \mathrm{SO}_{3}(14 \mathrm{~g})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (50 mL) were added to the reaction and the aqueous phase was rapidly extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{2} \mathrm{SO}_{3}$, and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/Et ${ }_{2} \mathrm{O} 5: 1$) alcohol 123 (3.72 g, 26.9 mmol, 96\%) was obtained as a colorless oil.

The spectroscopic data are in accordance with the literature. ${ }^{[125]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=5.78$ (dddd, $\left.J=17.1,10.2,7.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.49-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.15-$ $5.05(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{ddt}, J=13.7,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.73$ $(\mathrm{m}, 1 \mathrm{H}), 1.68(\mathrm{q}, \mathrm{J}=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

Methyl (3S,4R)-4-allyl-3-methyl-2-oxocyclopentane-1-carboxylate (118)

KH (30% in mineral oil; $21.5 \mathrm{~g}, 161 \mathrm{mmol}, 2.5$ equiv.) was washed with dry n-pentane ($3 \times 20 \mathrm{~mL}$) and the remaining solvent was removed under reduced pressure. Dry THF (300 mL), 18-crown-6 (20.4 g, $77.3 \mathrm{mmol}, 1.2$ equiv.), and alcohol 123 ($8.90 \mathrm{~g}, 64.4 \mathrm{mmol}, 1.0$ equiv.) were added subsequently and heated for 60 min under reflux. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, dimethyl carbonate (21.7 mL , $258 \mathrm{mmol}, 4.0$ equiv.) was added and heated for another 10 min under reflux. The reaction was again cooled to $0{ }^{\circ} \mathrm{C}$ and $2 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 200 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. β-Keto ester 118 ($12.3 \mathrm{~g}, 62.7 \mathrm{mmol}, 97 \%$) was obtained as a colorless oil without further purification. NMR spectroscopic evaluation reveals multiple isomers resulting from the interconversion of the stereocenter between the two carbonyl groups and keto/enol tautomerism. For the further synthesis, this behavior has no negative consequences.

$$
[\alpha]_{D}^{26}=+17.0^{\circ}\left(c=0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

${ }^{1} \mathrm{H}$ NMR (mixture of isomers, $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.87-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.75-$ $3.65(\mathrm{~m}, 3 \mathrm{H}), 3.37-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.52-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.16-1.01(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (major isomer, $\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta=212.7,170.0,135.3,117.3,54.4,52.6,49.8,41.9,37.9$, 31.3, 12.6 ppm .

IR (ATR): $\tilde{v}=2954,2931,1754,1725,1436,1337,1228,1152,993,913,730 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 219.0991$, found 219.0995.

Methyl (3S,4R)-4-allyl-2-(allyloxy)-3-methylcyclopent-1-en-1-carboxylate (124)

The Mitsunobu-like O-allylation was performed following a procedure by Jacobsen et al. ${ }^{[119]} \mathrm{PPh}_{3}$ ($24.7 \mathrm{~g}, 94.2 \mathrm{mmol}, 1.5$ equiv.) was dissolved in dry THF (125 mL) and cooled to $-20^{\circ} \mathrm{C}$. DEAD (40% in toluene; $41.0 \mathrm{~g}, 94.2 \mathrm{mmol}, 1.5$ equiv.), allyl alcohol ($5.13 \mathrm{~mL}, 75.4 \mathrm{mmol}, 1.2$ equiv.), and β-keto ester 118 ($12.3 \mathrm{~g}, 62.8 \mathrm{mmol}, 1.0$ equiv.) were added subsequently, and the reaction mixture was warmed to $22^{\circ} \mathrm{C}$ over 2 h . Hexane (1200 mL) was added, the precipitated solid was filtered over a short plug of Celite ${ }^{\circledR}$ and the solvent was removed under reduced pressure. After an initial purification by column chromatography $\left(\mathrm{SiO}_{2}, \quad n\right.$-pentane/EtOAc 30:1) a mixture of O-allyl- β-keto ester 124 and diastereomeric C-allyl- β-keto esters 125a/b (10.2 g, 43.2 mmol, 68\%) was obtained. After a second purification by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-pentane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2\right) \mathrm{O}$-allyl- β-keto ester 124 (5.29 g , $22.4 \mathrm{mmol}, 36 \%)$ and C-allyl- β-keto esters $125 \mathrm{a} / \mathrm{b}(4.51 \mathrm{~g}, 19.1 \mathrm{mmol}, 30 \%)$ were obtained separately.

O-Allyl- β-keto ester 124:

$[\alpha]_{\boldsymbol{D}}^{26}=+6.8^{\circ}\left(c=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=5.93(\mathrm{ddt}, J=17.2,10.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{ddt}, J=17.2,10.3,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dq}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{ddt}, J=10.3,2.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{ddt}, J=13.5,5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{ddt}, J=13.5,5.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, 2.69 (ddd, $J=15.0,8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (dddd, $J=6.9,4.1,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.78$ (ddq, $J=11.4,7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 126 \mathrm{MHz}\right): \delta=170.7,166.0,137.4,134.3,117.4,116.5,104.5,71.9,51.2,45.1,41.6$, 40.2, 34.5, 18.3 ppm .

IR (ATR): $\tilde{v}=3078,2953,2928,1750,1725,1639,1436,1203,1145,1083,994,915,773,712 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 259.1304$, found 259.1310 .

(R)- N-(2,6-Dimethylphenyl)piperidine-2-carboxamide (139)

Amide 139 was synthesized according to a procedure of Müller et al. ${ }^{[126]} \operatorname{Dry~Et}_{3} \mathrm{~N}(1.43 \mathrm{~mL}, 10.3 \mathrm{mmol}$, 1.1 equiv.) and ethyl chloroformate ($982 \mu \mathrm{~L}, 10.3 \mathrm{mmol}, 1.1$ equiv.) were added subsequently to a $0{ }^{\circ} \mathrm{C}$ cold solution of pipecolic acid derivative $138\left(2.15 \mathrm{~g}, 9.38 \mathrm{mmol}, 1.0\right.$ equiv.) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ and stirred at for $60 \mathrm{~min} 0^{\circ} \mathrm{C} .2,6$-Dimethylaniline ($1.56 \mathrm{~mL}, 12.7 \mathrm{mmol}, 1.4$ equiv.) was added and stirring was continued for 24 h at $22{ }^{\circ} \mathrm{C}$. The reaction mixture was subsequently washed with $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ $(35 \mathrm{~mL})$, aqueous saturated NaHCO_{3} solution (20 mL), and aqueous saturated NaCl solution (20 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and TFA ($3.98 \mathrm{~mL}, 51.6 \mathrm{mmol}, 5.5$ equiv.) was added slowly. The reaction was stirred for 2 h at $22^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the pH was adjusted to 10 with 2 N NaOH . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. Amide 139 $(1.55 \mathrm{~g}, 6.67 \mathrm{mmol}, 71 \%$ over 2 steps) was obtained as a colorless solid without further purification.

The spectroscopic data are in accordance with the literature. ${ }^{[126]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=8.35(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dtd}$, $J=12.5,3.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=12.2,10.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.83-$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

(2R,2'R)-1,1'-(Propane-1,3-diyl)bis(N-(2,6-dimethylphenyl)piperidine-2-carboxamide) (140)

Diamine 140 was synthesized following a procedure of Feng et al. ${ }^{[127]} \mathrm{K}_{2} \mathrm{CO}_{3}(2.04 \mathrm{~g}, 14.8 \mathrm{mmol}, 4.0$ equiv.) and 1,3-dibromopropane ($376 \mu \mathrm{~L}, 3.69 \mathrm{mmol}, 1.0$ equiv.) were added sequentially to a solution of amide 139 ($1.71 \mathrm{~g}, 7.38 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ and heated for 6 h under reflux. The reaction mixture was cooled to $22^{\circ} \mathrm{C}$, the solid was filtered off, and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ diamine 140 ($1.50 \mathrm{~g}, 2.97 \mathrm{mmol}, 81 \%$) was obtained as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.06(\mathrm{~s}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 6 \mathrm{H}), 3.19(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.83(\mathrm{~m}$, $2 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 14 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.77(\mathrm{dt}, \mathrm{J}=12.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

N, N^{\prime}-dioxide 141 was synthesized following a procedure of Feng et al. ${ }^{[127]} \mathrm{mCPBA}(1.06 \mathrm{~g}, 6.12 \mathrm{mmol}$, 2.1 equiv.) was added to a $0^{\circ} \mathrm{C}$ cold solution of diamine 140 ($1.47 \mathrm{~g}, 2.91$ mmol, 1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ and stirred for 10 min at $0^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and after purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right.$ to $\left.3: 1\right) \mathrm{N}, \mathrm{N}^{\prime}$-dioxide 141 (1.18 g, $2.20 \mathrm{mmol}, 76 \%)$ was obtained as a colorless solid
$\mathbf{m p}=91^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{24}=+57.6^{\circ}\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=12.03(\mathrm{~s}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 6 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.61(\mathrm{~m}$, $2 H), 3.59-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{td}, \mathrm{J}=12.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{p}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61$ (qd, J = 13.0, $3.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.38(\mathrm{qt}, J=13.0,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 12 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{dt}, J=$ $13.4,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.44(q t, J=13.2,3.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right): \delta=166.7,134.3,133.6,128.4,126.9,76.3,66.3,64.7,26.9,22.4,20.3,19.1$, 16.5 ppm .

IR (ATR): $\tilde{v}=2926,2857,1673,1520,1471,1440,1376,1266,1212,920,770,730 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 537.3436 , found 537.3456; m/z calculated for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 559.3255 , found 559.3246.

Methyl (1R,3S,4R)-1,4-diallyl-3-methyl-2-oxocyclopentane-1-carboxylate (125a)

C-Allyl- β-keto ester 125a was synthesized following a procedure of Feng et al. ${ }^{[120]} \mathrm{Ni}\left[\mathrm{BF}_{4}\right]_{2}$ (381 mg, $1.12 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was dissolved in THF (22 mL), added to a solution of ligand 141 ($600 \mathrm{mg}, 1.12$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$, and stirred for 30 min at $35^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the solid was added to a solution of O-allyl- β-keto ester $\mathbf{1 2 4}(5.28 \mathrm{~g}, 22.4 \mathrm{mmol}$, 1.0 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (220 mL). The reaction mixture was stirred for 20 h at $35^{\circ} \mathrm{C}$ and the solvent was subsequently removed under reduced pressure. After purification by column chromatography (SiO_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane 4:1) C-allyl- β-keto ester 125 ($4.94 \mathrm{~g}, 20.9 \mathrm{mmol}, 93 \%, \mathrm{dr}=10: 1$) was obtained as a colorless oil.
$[\alpha]_{\boldsymbol{D}}^{26}=+24.2^{\circ}\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.82(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.03(\mathrm{~m}$, $4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{ddt}, J=13.9,7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84-$ $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{dd}, J=13.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 126 \mathrm{MHz}\right): \delta=215.7,171.6,135.6,133.0,119.4,117.0,60.5,52.7,50.1,41.4,39.2$, 38.3, 36.9, 13.5 ppm .

IR (ATR): $\tilde{v}=3079,2954,2928,1750,1726,1641,1435,1274,1212,1132,994,913,731 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 259.1304$, found 259.1303.

Methyl (1R,6R,7S)-7-methyl-8-oxobicyclo[4.2.1]non-3-ene-1-carboxylate (126)

Umicore M71 SIPr (approximately 1 mg) was added to a solution of β-keto ester 125a (20.0 mg , $84.6 \mu \mathrm{~mol}, \mathrm{dr}=10: 1$, 1.0 equiv.) and dry toluene (1.4 mL) and stirred in a pressure tube for 5 h at $110{ }^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc $30: 1$) bicycle 126 ($12.0 \mathrm{mg}, 57.6 \mu \mathrm{~mol}, 68 \%, 75 \%$ based on the main diastereomer) was obtained as a pale yellow solid.
$\mathbf{m p}=66^{\circ} \mathrm{C}$
$[\alpha]_{\boldsymbol{D}}^{24}=+45.1^{\circ}\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.56-5.43(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}$, $J=17.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=13.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right): \delta=220.0,172.7,126.9,124.6,58.7,52.7,49.4,38.4,38.1,36.9,36.6,17.1$ ppm.

IR (ATR): $\tilde{v}=3011,2953,2919,2875,2832,1747,1727,1456,1432,1263,1237,1202,1070,1027$, $974,867 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 231.0991$, found 231.0986.

Methyl (1R,4R)-1,4-diallyl-3-methyl-2-((trimethylsilyl)oxy)cyclopent-2-ene-1-carboxylate (117)

KH (30% in mineral oil; $638 \mathrm{mg}, 4.77 \mathrm{mmol}, 1.2$ equiv.) was washed with dry n-pentane ($3 \times 5 \mathrm{~mL}$) and the remaining solvent was removed under reduced pressure. A solution of ketone 125a (940 mg, 3.98 mmol , 1.0 equiv.) and dry THF (25 mL) were added and the reaction mixture was stirred for 30 min at $22^{\circ} \mathrm{C}$. TMSCI ($606 \mu \mathrm{~L}, 4.77 \mathrm{mmol}, 1.2$ equiv.) was added subsequently and stirring was continued for 10 min at $0{ }^{\circ} \mathrm{C}$. Aqueous saturated NaHCO_{3} solution (20 mL) was added to the reaction mixture, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. Silyl enol ether 117 ($1.16 \mathrm{~g}, 3.77 \mathrm{mmol}$, 95\%) was obtained as a colorless oil without further purification.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=5.93$ (dddd, $\left.J=17.0,10.2,7.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71$ (ddt, $J=17.1,10.2,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12-4.99(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{ddt}, \mathrm{J}=13.8,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.55$ $-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{dd}, \mathrm{J}=13.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, \mathrm{~J}=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H})$ ppm.

IR (ATR): $\tilde{v}=3077,2954,2923,2855,1732,1682,1639,1435,1379,1252,1214,1141,991,911,844$, $755 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 331.1700$, found 331,1704.

Acetal 143 was synthesized according to a procedure of Kinoshita et al. ${ }^{[128]} \beta$-Keto ester 143 (10.0 g, $52.0 \mathrm{mmol}, 1.0$ equiv.), ethylene glycol ($7.56 \mathrm{~mL}, 135 \mathrm{mmol}, 2.6$ equiv.), and $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (108 mg , $624 \mu \mathrm{~mol}, 1.2 \mathrm{~mol} \%$) were dissolved in benzene (35 mL) and heated for 26 h under reflux. Water was continuously removed using a Dean-Stark trap. After cooling to $22^{\circ} \mathrm{C}$, the solution was washed with saturated aqueous NaHCO_{3} solution (30 mL) and the aqueous phase was extracted with EtOAc $(1 \times 30 \mathrm{~mL})$. The combined organic phases were washed with aqueous saturated NaCl solution $(30 \mathrm{~mL})$, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc $10: 1$ to $3: 1$) acetal 143 (10.4 g, $44.0 \mathrm{mmol}, 85 \%$) was obtained as a colorless oil.

The spectroscopic data are in accordance with the literature. ${ }^{[128]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.74$ $(\mathrm{m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

2-(2-Phenyl-1,3-dioxolan-2-yl)acetaldehyde (116)

Aldehyde 116 was synthesized according to a procedure of Davis et al. ${ }^{[129]}$ Acetal 143 (4.93 g, 20.9 mmol, 1.0 equiv.) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; $25.0 \mathrm{~mL}, 1.2$ equiv.) was added while the temperature did not exceeded $-70{ }^{\circ} \mathrm{C}$ throughout the procedure. After additional 60 min at $-78^{\circ} \mathrm{C}, 3 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was carefully added to the reaction and slowly warmed to $22{ }^{\circ} \mathrm{C}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Aldehyde 116 (3.86 g, $20.1 \mathrm{mmol}, 96 \%$) was obtained without further purification.

The spectroscopic data are in accordance to the literature. ${ }^{[129]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.77(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.14-$ $4.05(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

Methyl (1R,3R,4R)-1,4-diallyl-3-((S)-1-hydroxy-3-oxo-3-phenylpropyl)-3-methyl-2-oxocyclopentane-1-carboxylate (127) and Methyl (1R,3R,4R)-1,4-diallyl-3-((S)-1-hydroxy-2-(2-phenyl-1,3-dioxolan-2-yl)ethyl)-3-methyl-2-oxocyclopentane-1-carboxylate (128)

Aldehyde 116 ($74.8 \mathrm{mg}, 389 \mu \mathrm{~mol}, 1.0$ equiv.) and silyl enol ether 117 ($180 \mathrm{mg}, 583 \mu \mathrm{~mol}, 1.5$ equiv.) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}^{\circ} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(247 \mu \mathrm{~L}, 1.95 \mathrm{mmol}, 5.0$ equiv.) was slowly added and the reaction mixture was warmed to $22^{\circ} \mathrm{C}$ over 2 h . Aqueous saturated NaHCO_{3} solution (10 mL) was added, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc $10: 1$ to $5: 1$) ketone 127 (78.0 mg , $203 \mu \mathrm{~mol}, 52 \%)$ and acetal $128(13.0 \mathrm{mg}, 30.3 \mu \mathrm{~mol}, 8 \%)$ were obtained as colorless oils.

Ketone 127:

$[\alpha]_{D}^{26}=+4.3^{\circ}\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=7.96-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{ddt}$, $J=17.1,10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddt}, J=17.2,10.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.00(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, 1 H), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.52 (dd, $J=17.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.35(\mathrm{~s}, 1 \mathrm{H}), 3.14$ (dd, $J=17.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.84-2.77$ $(\mathrm{m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=13.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=13.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=$ 13.9, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.97(\mathrm{dt}, J=14.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}{ }^{2}$ NMR $\left(C D C l_{3}, 151 \mathrm{MHz}\right): \delta=217.1,201.3,169.8,136.9,136.8,133.7,133.0,128.8,128.2,119.1$, $116.3,70.9,62.4,55.1,52.9,40.1,40.0,38.0,35.0,34.6,15.3 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3537,3076,2952,2923,2871,1748,1726,1677,1598,1449,1376,1294,1215,993,915$, $754 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 385.1932$, found $385.2002 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 407.1829$, found $407.1819 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{KO}_{5}[\mathrm{M}+\mathrm{K}]^{+}: 423.1569$, found 423.1557 .

Acetal 128:

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.91-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{ddt}$, $J=17.3,10.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-4.97(\mathrm{~m}, 4 \mathrm{H}), 4.09-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=10.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (td, $J=7.4,6.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=13.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.60$ (m, 2H), $2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{dd}, \mathrm{J}=15.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dt}, \mathrm{J}=14.1,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.25-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 429.2272$, found $429.2273 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 451.2091$, found $451.2095 ; \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{KO}_{6}[\mathrm{M}+\mathrm{K}]^{+}: 467.1831$, found 467.1831.

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((E)-3-oxo-3-phenylprop-1-en-1-yl)cyclopentan-1carboxylate (115) (from ketone 127)

pTsOH $\cdot \mathrm{H}_{2} \mathrm{O}(4.95 \mathrm{mg}, 26.0 \mu \mathrm{~mol}, 1.0$ equiv.) was added to a solution of ketone $127(10.0 \mathrm{mg}, 26.0$ $\mu \mathrm{mol}, 1.0$ equiv.) and acetone (0.2 mL) and heated for 4 h under reflux. After cooling to $22{ }^{\circ} \mathrm{C}$, the reaction was washed with aqueous saturated NaHCO_{3} solution (0.5 mL), the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 0.5 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. Enone 115 ($10.0 \mathrm{mg}, 27.3 \mu \mathrm{~mol}$, quant.) was obtained as a colorless oil without further purification.

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((E)-3-oxo-3-phenylprop-1-en-1-yl)cyclopentan-1-

 carboxylate (115) (from acetal 128)
pTsOH•H2O ($9.77 \mathrm{mg}, 51.3 \mu \mathrm{~mol}, 2.0$ equiv.) was added to a solution of acetal $128(11.0 \mathrm{mg}, 25.7 \mu \mathrm{~mol}$, 1.0 equiv.) and acetone (0.2 mL) and heated for 4 h under reflux. After cooling to $22^{\circ} \mathrm{C}$, the reaction was washed with aqueous saturated NaHCO_{3} solution (0.5 mL), the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 0.5 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. Enone 115 ($10.0 \mathrm{mg}, 27.3 \mu \mathrm{~mol}$, quant.) was obtained as a colorless oil without further purification.

$$
[\alpha]_{D}^{24}=-45.0^{\circ}\left(c=1.5, \mathrm{CHCl}_{3}\right)
$$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{ddt}, J=17.1,10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.17-$ $5.03(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{ddt}, J=13.9,7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 3 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H})$, $2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right): \delta=213.9,190.6,171.0,150.1,137.9,135.9,133.0,132.8,128.8,128.7$, $125.6,119.8,116.9,61.4,55.1,53.0,43.3,39.0,35.2,34.5,16.6 \mathrm{ppm}$.

IR (ATR): $\tilde{v}=3077,2977,2952,2840,1750,1730,1670,1616,1447,1295,1219,1178,1017,991,917$, $847 \mathrm{~cm}^{-1}$

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1723$, found 389.1741 ; m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{KO}_{4}[\mathrm{M}+\mathrm{K}]^{+}$: 405.1463 , found 405.1482 .

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((R)-1-oxo-1-phenylhex-5-en-3-yl)cyclopentane-1-

 carboxylate (129a; desired diastereomer) and Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((S)-1-oxo-1-phenylhex-5-en-3-yl)cyclopentane-1-carboxylate (129b; undesired diastereomer)

Triallyl 129a/b was synthesized following a procedure of Lee et al. ${ }^{[122]}$ Anhydrous $\operatorname{lnCl} 3$ ($42.6 \mathrm{mg}, 192$ $\mu \mathrm{mol}, 15 \mathrm{~mol} \%), \mathrm{TMSCI}(814 \mu \mathrm{~L}, 6.41 \mathrm{mmol}, 5.0$ equiv.), and allyltrimethylsilane ($306 \mu \mathrm{~L}, 1.92 \mathrm{mmol}$, 1.5 equiv.) were added sequentially to a solution of enone 115 ($470 \mathrm{mg}, 1.28 \mathrm{mmol}, 1.0$ equiv.) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{~mL})$ and stirred for 4 h at $22^{\circ} \mathrm{C}$. The reaction was subsequently washed with saturated aqueous NaHCO_{3} solution (4 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-pentane/EtOAc 30:1) triallyl 129a/b ($302 \mathrm{mg}, 739 \mu \mathrm{~mol}, 58 \%$, dr (129a:129b) = 1:2.4) was obtained as a colorless oil. The separation of the two diastereomers was performed by chiral HPLC. The stereoconfiguration of the two diastereomers was elucidated in the further course of the synthesis with the aid of X-ray crystal structure analysis. ${ }^{[121]}$

Mixture of the two diastereomers 129a and 129b:

IR (ATR): $\tilde{v}=3075,2952,2925,2868,1723,1686,1639,1447,1375,1293,1222,998,911,732 \mathrm{~cm}^{-1}$.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 431.2193$, found 431.2208.

Desired diastereomer 129a:

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 5.87$ (dddd, $J=17.5,10.1,7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.03(\mathrm{~m}, 4 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 3.46 (dd, $J=18.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.94(\mathrm{dd}, J=18.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.77(\mathrm{ddt}, J=13.9,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-$ $2.59(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dt}, \mathrm{J}=14.4,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.40$ (dd, $J=13.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

Undesired diastereomer 129b:

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.81$ (dddd, $J=16.9,10.1,7.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 4 \mathrm{H}), 4.93(\mathrm{dtd}, J=17.0,1.9,1.0 \mathrm{~Hz}$, 1 H), 4.82 (dddd, $J=10.1,2.2,1.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=18.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=$ $18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddt, $J=13.9,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddt}, J=10.4,6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=$ $13.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dtd}, \mathrm{J}=13.6,3.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{dd}$, $J=13.5,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}\right): \delta=217.5,199.1,170.3,137.7,137.4,136.5,133.1,132.9,128.6,128.0$, $119.1,116.8,116.5,61.4,54.7,52.8,40.5,39.4,38.0,35.8,35.5,35.0,16.6 \mathrm{ppm}$.

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((R,E)-1-phenyl-1-((trimethylsilyl)oxy)-hexa-1,5-dien-3-yl)cyclopentane-1-carboxylate (130a; desired diastereomer) and Methyl ($1 R, 3 R, 4 R$)-1,4-diallyl-3-methyl-2-oxo-3-((S,E)-1-phenyl-1-((trimethylsilyl)oxy)-hexa-1,5-dien-3-yl)cyclopentane-1carboxylate (130b; undesired diastereomer)

Anhydrous $\operatorname{InCl}_{3}(60.4 \mathrm{mg}, 273 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%), \mathrm{TMSCl}(1.73 \mathrm{~mL}, 13.6 \mathrm{mmol}, 10.0$ equiv.), and allyltrimethylsilane ($1.08 \mathrm{~mL}, 6.82 \mathrm{mmol}, 5.0$ equiv.) were added subsequently to a solution of enone 115 ($500 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.0$ equiv.) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ and stirred for 60 min at $22^{\circ} \mathrm{C} . \mathrm{Dry}_{\mathrm{Et}}^{3} \mathrm{~N}$ ($1.90 \mathrm{~mL}, 13.6 \mathrm{mmol}, 10.0$ equiv.) was then added and stirring was continued for 5 min at $22{ }^{\circ} \mathrm{C} . \mathrm{n}$ Pentane (4 mL) was added and the precipitated solid was filtered over a short plug of Celite ${ }^{\circledR}$. The filtrate was washed with aqueous saturated NaHCO_{3} solution (8 mL), the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography $\left(\mathrm{SiO}_{2}, n-\right.$ pentane/EtOAc 100:1 to 50:1) silyl enol ether 130a/b ($410 \mathrm{mg}, 853 \mu \mathrm{~mol}, 63 \%$, dr (130a:130b) = 1:2) was obtained as a colorless oil. The two diastereomers could be separated by column chromatography at a later stage of the synthesis. ${ }^{[121]}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right): \delta=7.44-7.38(\mathrm{~m}, 2 \mathrm{H}$, major \& minor), $7.32-7.22(\mathrm{~m}, 3 \mathrm{H}$, major \&minor), $5.97-5.84(\mathrm{~m}, 1 \mathrm{H}$, major \& minor), $5.82-5.70(\mathrm{~m}, 1 \mathrm{H}$, major \& minor), $5.66-5.51(\mathrm{~m}, 1 \mathrm{H}$, major \& minor), 5.11 ($\mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $5.10-4.92(\mathrm{~m}, 6 \mathrm{H}$, major \& minor), $4.66(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 3.56 ($\mathrm{s}, 3 \mathrm{H}$, minor), 3.07 ($\mathrm{s}, 3 \mathrm{H}$, major), $2.82-1.81$ ($\mathrm{m}, 10 \mathrm{H}$, major \& minor), 1.37 ($\mathrm{dd}, \mathrm{J}=13.4$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $1.30(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$, major), $0.97(\mathrm{~s}, 3 \mathrm{H}$, major), $0.94(\mathrm{~s}, 3 \mathrm{H}$, minor), $0.09(\mathrm{~s}, 9 \mathrm{H}$, minor), 0.08 (s, 9H, major) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 176 \mathrm{MHz}\right): \delta=218.2$ (major), 217.0 (minor), 170.5 (minor), 169.7 (major), 152.6 (major), 151.6 (minor), 140.2 (minor), 140.1 (major), 138.9 (major), 138.5 (minor), 138.0 (major), 137.6 (minor), 134.0 (minor), 133.9 (major), 128.6 (minor), 128.5 (major), 128.4 (major), 128.2 (minor), 126.6
(major), 126.6 (minor), 118.9 (minor), 118.8 (major), 116.3 (minor), 115.9 (major), 115.9 (minor), 115.8 (major), 112.5 (major), 111.9 (minor), 62.5 (major), 61.9 (minor), 56.2 (major), 55.8 (minor), 52.9 (minor), 52.5 (major), 42.1 (minor), 41.9 (major), 41.2 (major), 41.1 (minor), 40.4 (minor), 39.6 (major), 36.1 (minor), 35.6 (minor), 35.4 (major), 35.4 (major), 35.2 (minor), 34.8 (major), 17.9 (major), 16.7 (minor), 1.3 (minor), 1.2 (major) ppm.

IR (ATR): $\tilde{v}=3076,2953,2925,2870,1726,1641,1445,1346,1252,1210,1082,911,887,840,758$ cm^{-1}.

HRMS (ESI, pos. mode): m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 503.2588$, found 503.2610.

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((E)-3-oxo-3-phenylprop-1-en-1-yl)cyclopentane-1-

 carboxylate (115) (from enone 120)

Freshly prepared LDA (0.52 M in THF; $790 \mu \mathrm{~L}, 410 \mu \mathrm{~mol}$, 1.1 equiv.) was slowly added to a $-78^{\circ} \mathrm{C}$ cold solution of enone $\mathbf{1 2 0}^{[121]}$ ($100 \mathrm{mg}, 373 \mu \mathrm{~mol}, 1.0$ equiv.) and dry THF (4.2 mL) and stirred for 30 min at $-78^{\circ} \mathrm{C}$. HMPA ($700 \mu \mathrm{~L}$) and allyl bromide ($35.4 \mu \mathrm{~L}, 410 \mu \mathrm{~mol}, 1.1$ equiv.) were added subsequently and the reaction was stirred for another 30 min at $-78^{\circ} \mathrm{C}$. LDA (0.52 M in THF; $790 \mu \mathrm{~L}, 410 \mu \mathrm{~mol}, 1.1$ equiv.) was added again and the reaction was stirred for 30 min at $-78^{\circ} \mathrm{C}$. Methyl cyanoformate (59.2 $\mu \mathrm{L}, 745 \mu \mathrm{~mol}, 2.0$ equiv.) was added and the reaction mixture was stirred for additional 10 min at -78 ${ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was then added to the reaction, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. After purification by column chromatography (SiO_{2}, n-pentane/EtOAc 10:1) enone 115 ($62.0 \mathrm{mg}, 169 \mu \mathrm{~mol}, 45 \%$) was obtained as a colorless oil.

The spectroscopic data are in accordance with the previous synthesized enone 115.

2-Allyl-1,3,2-dioxaborinane (136)

136

(S)-3,3'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (137) (reisolated)

137

1-Allyl-2-iodocyclopent-2-en-1-ol (rac-122)

(S)-1-Allyl-2-methylcyclopent-2-en-1-ol (123)

Methyl (3S,4R)-4-allyl-3-methyl-2-oxocyclopentane-1-carboxylate (118)

Mixture of O-Allyl- β-keto ester 124 and C-Allyl- β-keto ester 125a und 125b

$\begin{array}{lllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0\end{array}$
C-Allyl- β-ketoester 125a and 125b

(R)- N-(2,6-Dimethylphenyl)-piperidine-2-carboxamide (139)

Methyl (1R,3S,4R)-1,4-diallyl-3-methyl-2-oxocyclopentane-1-carboxylate (125a)

[^12]

\section*{| N |
| :---: |
| N |
| |}

Zく'ZくI-

$\stackrel{+}{\underset{\sim}{7}}$

[^13]Methyl (1R,4R)-1,4-diallyl-3-methyl-2-((trimethylsilyl)oxy)cyclopent-2-ene-1-carboxylate (117)

117

Ethyl 2-(2-phenyl-1,3-dioxolan-2-yl)acetate (143)

2-(2-Phenyl-1,3-dioxolan-2-yl)acetaldehyde (116)

Methyl (1R,3R,4R)-1,4-diallyl-3-((S)-1-hydroxy-3-oxo-3-phenylpropyl)-3-methyl-2-oxocyclopentane-
1-carboxylate (127)

Methyl (1R,3R,4R)-1,4-diallyl-3-((S)-1-hydroxy-2-(2-phenyl-1,3-dioxolan-2-yl)ethyl)-3-methyl-2-oxocyclopentane-1-carboxylate (128)

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((E)-3-oxo-3-phenylprop-1-en-1-yl)cyclopentane-1carboxylate (115)

$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { กn } \\ & \text { Q } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ì } \\ & \underset{i}{2} \end{aligned}$	 	

Mixture of the two diastereomers 129a and 129b

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((R)-1-oxo-1-phenylhex-5-en-3-yl)cyclopentane-1carboxylate (129a; desired diastereomer)

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((S)-1-oxo-1-phenylhex-5-en-3-yl)cyclopentane-1carboxylate (129b; undesired diastereomer)

Methyl (1R,3R,4R)-1,4-diallyl-3-methyl-2-oxo-3-((E)-1-phenyl-1-((trimethylsilyl)oxy)hexa-1,5-dien-3-

yl)cyclopentane-1-carboxylate (130a/b)

(S)-1-Allyl-2-iodocyclopent-2-en-1-ol (122)

GC: Lipodex-E, $50-190^{\circ} \mathrm{C}, 1,1 \mathrm{ml} / \mathrm{min} \mathrm{He}$; FID $300^{\circ} \mathrm{C}$, Split 50:1

[^0]: [*] M. Sc. S. Ponath, M. Sc. M. Menger, M. Sc. L. Grothues, M. Weber, Prof. Dr. D. Lentz, Prof. Dr. M. Christmann
 Freie Universität Berlin
 Institute of Chemistry and Biochemistry
 Takustr. 3, 14195 Berlin (Germany)
 E-mail: mathias.christmann@fu-berlin.de
 Prof. Dr. C. Strohmann
 Technische Universität Dortmund
 Faculty of Chemistry and Chemical Biology
 Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
 (i)

 Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201806261.

[^1]: [a] B. Schmidt, J. Hannemann, P. Voßnacker, Dr. K. Sonnenberg,
 Prof. Dr. S. Riedel
 Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstr. 34/36, 14195 Berlin (Germany)
 E-mail: s.riedel@fu-berlin.de
 [b] S. Ponath, Prof. Dr. M. Christmann Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie-Organische Chemie Takustr. 3, 14195 Berlin (Germany)Supporting information and the ORCID identification number(s) for the
 (1) author(s) of this article can be found under:
 https://doi.org/10.1002/chem. 202001267.
 of © 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

[^2]: Manuscript received: March 13, 2020
 Accepted manuscript online: April 6, 2020
 Version of record online: October 22, 2020

[^3]: Spectroscopic data were in accordance with published data. ${ }^{[15]}$

[^4]: * for Me ${ }_{4}$ NCS: Overlap of α-chloroaldehyde-signal and $\mathrm{Me}_{4} \mathrm{NCS}$-signal at the first measurement points

[^5]: 6.log

 Potential Energy $=-2233.46970$
 Zero-point Energy $=-2232.93905$
 Free Energy $=-2232.98951$
 Single-Point Energy B3LYP-D3(BJ)/6-311+G** PCM = 2234.04006

 Free Energy B3LYP-D3(BJ)/6-311+G** PCM (extrapolated free energy from qRRHO) $=-2233.55987$

[^6]: ${ }^{1}$ diastereotopic protons strongly coupled
 ${ }^{2}$ hindered rotation around C1'-N-bond, no assignment Pth-1 vs Pth-1' etc.

[^7]: ${ }^{1}$ diastereotopic protons strongly coupled
 ${ }^{2}$ hindered rotation around C2-C6-bond, no assignment of diastereotopic aromatic rings A vs $B, N O E$ contacts hint at ring B being atop the pyrrolidine
 ${ }^{3}$ hindered rotation around C1'-N-bond, no assignment Pth-1 vs Pth-1' etc.
 ? obfuscated by overlap / not determined

[^8]: ${ }^{1}$ insufficient zero-quantum suppression. Oscillation observed in PANIC fit.
 ${ }^{2}$ fixed reference distance.

[^9]: ${ }^{1}$ insufficient zero-quantum suppression. Oscillation observed in PANIC fit.
 ${ }^{2}$ fixed reference distance.

[^10]:

[^11]: $\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^12]: $\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^13]: $\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

