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Background and Aims: Chronic inflammation induces liver fibrosis, cirrhosis and

potentially liver cancer. Kupffer cells modulate hepatic stellate cells by secreting

immunologically active proteins as TGF-β. TGF-β promotes liver fibrosis via the activation

of Sma- and Mad-related protein 3. IL-37 broadly suppresses innate and adaptive

immune responses. Intracellular IL-37 interacts with Smad3. We hypothesize that IL-37

downregulates the activation of hepatic Kupffer and stellate cells and interferes with the

TGF-β signaling cascade to modulate liver fibrogenesis.

Methods: The role of IL-37 on liver inflammation and fibrogenesis was assessed in three

mouse models as well as isolated Kupffer- and stellate cells. Serum IL-37 was tested by

ELISA in a clinical cohort and correlated with liver disease severity.

Results: Transgene expression of IL-37 in mice extends survival, reduces hepatic

damage, expression of early markers of fibrosis and histologically assessed liver

fibrosis after bile duct ligation. IL-37tg mice were protected against CCl4-induced

liver inflammation. Colitis-associated liver inflammation and fibrosis was less severe in

IL-10 knockout IL-37tg mice. Spontaneous and LPS/TGF-β-induced cytokine release

and profibrogenic gene expression was lower in HSC and KC isolated from IL-37tg

mice and IL-37 overexpressing, IL-1β stimulated human LX-2 stellate cells. However,

administration of recombinant human IL-37 did not modulate fibrosis pathways after

BDL in mice, LX2 cells or murine HSCs. In a large clinical cohort, we observed a positive

correlation of serum IL-37 levels with disease severity in liver cirrhosis.

Conclusions: Predominantly intracellular IL-37 downregulates liver inflammation and

fibrosis. The correlation of serum IL-37 with disease severity in cirrhosis suggests its

potential as a novel target modulating the course of liver fibrosis.
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INTRODUCTION

Liver fibrosis and end stage cirrhosis represent the final pathway
of chronic liver diseases and still lack a specific therapeutic
approach (1). Whereas, chronic inflammation has been shown
to promote hepatocarcinogenesis, the molecular link between
inflammation and hepatic fibrogenesis has not been unraveled
thoroughly (2). At the cellular level it was shown that Kupffer
cells (KC) are the predominant inflammatory cells activating
hepatic stellate cells (HSC). At the molecular level TGF-β is the
core cytokine secreted by KCs to stimulate HSCs and to induce
extracellular matrix (ECM) deposition (3). TGF-β promotes liver
fibrosis and hepatocellular apoptosis through activation of Sma-
and Mad-related protein 3 (Smad3) as a major TGF-β -signaling
molecule (4, 5). Other cytokines such as IL-13, IL-17, and IL-
33 were also shown to promote liver fibrogenesis by activating
HSCs (6).

Cytokines of the IL-1 family (IL-1F) of ligands and receptors
play a pivotal role in the modulation of immune responses
(7). Recent data provide evidence for the role of IL-1F
cytokine signaling in chronic liver injury and fibrosis (8, 9).
For example, IL-1α and IL-1β are critically involved in the
transformation of steatosis to steatohepatitis and liver fibrosis
in hypercholesterolemic mice and ethanol-induced liver damage
(10, 11). IL-33 promotes liver fibrosis through the induction of
Th2 cells and attraction of innate lymphoid cells in fibrotic livers
(12, 13).

IL-37 is a member of the IL-1 family and inhibits both
innate and adaptive immunity by limiting the production of
cytokines induced by IL-1 and Toll like receptors (TLR) (14, 15).
IL-37 is a dual acting cytokine with extra- and intracellular
targets of function. Extracellular IL-37 binds to IL-18 receptor
alpha and single Ig IL-1R-related molecule (SIGIRR) (16, 17).
Intracellular IL-37 translocates to the nucleus upon N-terminal
processing by caspase-1 and binds to the TGF-β signaling
molecule Smad3 (15–19).

Overexpression of IL-37 in cells of monocytic origin
almost completely abolishes the production of proinflammatory
cytokines in response to TLR-ligands or IL-1β. Vice versa,
silencing of IL-37 in human PBMC increases the production
of proinflammatory cytokines (15). IL-37tg mice are protected
against LPS-induced endotoxemia (15), acute DSS-induced
colitis (20) as well as obesity induced inflammation (21).
We recently reported that transgene IL-37 suppresses colon
carcinogenesis in chronic colitis (22). Wt mice treated with
recombinant IL-37 (rhIL-37) are also protected in models of
endotoxemia, acute lung injury, spinal cord injury, myocardial
infarction, and asthma (2, 16, 23–26).

Abbreviations: AP, alkaline phosphatase; BDL, Bile duct ligation; CCl4,

Carbontetrachloride; CP, Child Pugh; ECM, Extracellular matrix; HAI, Hepatic

Activity Index; HCC, hepatocellular carcinoma; HPF, High power field; IL-

1F, Interleukin-1 family; KC, Kupffer cells; LPS, Lipopolysaccharide; (m)HSC,

(murine) hepatic stellate cells; MELD, model of end stage liver disease; MMP,

Matrixmetalloproteinase; NK, natural killer cells; rh, recombinant human; SIGIRR,

single Ig IL-1R-related molecule; SN, Supernatant; TGF, Transforming growth

factor; TIMP, Tissue inhibitor of metalloproteinase; TLR, Toll-like receptor; Wt,

Wild type.

In the liver, IL-37 reduces inflammation induced by ischemia
or concanavalin A-induced toxicity (27, 28). Although transgene
IL-37 expression did not protect mice from liver injury in amodel
of binge drinking, rhIL-37 ameliorates hepatic inflammation and
improves steatosis (29).

In humans, IL-37 mRNA expression in the liver correlates
with the body mass index of severely obese patients (30). Higher
expression of IL-37 in hepatocellular carcinoma correlates with a
better overall survival (31).

Here, we hypothesize that IL-37 not only suppresses liver
inflammation but also modulates liver fibrosis by the interaction
with Smad3. We tested the impact of IL-37 in three different
models of liver fibrogenesis and dissected its function at the
molecular and cellular level in hepatic Kupffer and stellate cells.
Moreover, we demonstrate the correlation of serum IL-37 with
disease severity in human cirrhosis.

MATERIALS AND METHODS

Chemicals and Reagents
All reagents were purchased from Sigma-Aldrich GmbH
(Munich, Germany) unless indicated.

Animals
All animals received humane care and were acclimatized for 2
weeks before being studied. C57BL/6J mice expressing human
IL-37 have been described previously (15). IL-10KO mice were
obtained from Charles River Inc. (Boston, MA, USA). Animal
protocols were approved by the review board of the Federal
Government of Bavaria, Germany (Az. 55.2.1.54-2532-77-11),
(Az. 55.2-1-54-2532-3-2017).

Mouse Models of Liver Fibrosis
Bile Duct Ligation
Male wildtype, IL-37tg mice underwent ligation of the common
bile duct under general anesthesia at the age of 6–8 weeks
according to standard procedures (32). Control mice underwent
sham operations in which the common bile duct was exposed but
not ligated. Mice were either sacrificed 3 or 14 days after bile-duct
ligation. In a separate experiment C57BL/6 mice were injected
with rhIL-37 (1 or 5 µg) or vehicle 1 h before bile duct ligation
and once again on day 2.

Chemically Induced Liver Fibrosis
CCl4 (0.6 ml/kg in oil) or oil was administered twice weekly via
intra-peritoneal injection into 6–8 weeks old female C57BL/6 or
IL-37tg mice for 6 weeks as described (33).

Colitis Associated Liver Disease
We recently described the protective role of IL-37 against colon
inflammation and carcinogenesis during chronic colitis in IL-10
KO mice (22). Livers of homozygous IL-10KO and IL-10KO/IL-
37tg mice from this study were analyzed by histology for fibrosis
and by qPCR for gene expression after a 6 months course of
chronic colitis.

Frontiers in Immunology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 603649

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mountford et al. IL-37 in Liver Fibrosis

Liver Histology
At the end of each experiment, mice were bled by intracardial
puncture and subsequently sacrificed. Livers were removed,
segments of the right lobe fixed in 4% PFA and embedded in
paraffin for histological evaluation. Hematoxylin/eosin (H&E),
Van-Giesson, Sirius red, Mac2 (Cederlane Labs, Burlington,
Canada) and CD3 (Zytomed Systems, Berlin, Germany) staining
of 5µm liver sections were performed according to standard
protocols. Sirius red, Mac2-macrophage and CD3 T-lymphocyte
quantification was performed by averaging the percentage of
positive staining per area or number of positively stained cells
in four randomly chosen HPF. Signs of inflammation and
fibrosis were evaluated according to standardized HAI scoring
system (34) and independently evaluated by a blinded pathologist
(D. M.).

Isolation of mHSC and KC
Quiescent hepatic stellate cells were isolated from Wt and
IL-37tg mice (C57BL/6 background) according to standard
methods as described in (35). During culture HSC show
spontaneous differentiation into myofibroblasts and secrete IL-
6 (see Supplementary Figure 1). Isolated cells were resuspended
in 10ml culture media (DMEM low glucose) and plated in 6-
well TC plates with or without rhIL-37 (10, 100, or 1,000 ng/ml).
Media and rhIL-37 were replaced every 2 days and tested for
spontaneous IL-6 secretion by Elisa. In addition, cells were
stimulated with LPS (100 ng/ml) on day 8 and TGF-β1 (100
pg/ml) on day 9. RNA analysis was performed on day 2, 6 h after
LPS stimulation.

Murine Kupffer cells were isolated according to the same
process as described above, though after gradient centrifugation
cells appearing as a white milky colored ring were gently
aspirated, added to 50ml GBSS/B and centrifuged at 45 × g at
4◦C for 2min. Supernatant was carefully transferred to a fresh
falcon and centrifuged at 4◦C for 5min at 700 × g. Cell pellet
was resuspended in cell culture media plated for cell staining or
migration assay (35).

Tissue Culture
LX2 cells were obtained from Sigma Aldrich (SCC064) and
routinely tested for mycoplasma contamination. For IL-37
overexpression experiments LX2 cells were plated in starvation
media (DMEM + 0.5% FCS). Cells were transfected with
1 µg human IL-37 encoding chemically modified RNA or
control using Lipofectamine RNAiMax. Subsequently, cells were
stimulated with IL-1β (1 ng/ml). Chemically modified RNAs
were kindly provided by Ethris GmbH (Planegg, Germany). For
recombinant human IL-37 treatment LX2 cells were plated in
starvation media (DMEM + 0.5% FCS) and exposed to a range
of rhIL-37 for 24 h. Subsequently, cells were stimulated with
IL-1β (1 ng/ml). Total RNA was collected 6 h after stimulation.
Supernatant was tested for IL-6 by Elisa 24 h after stimulation.

Cytokine Measurement
IL-6 was measured by ELISA (BD Biosciences, Heidelberg,
Germany). CCL2, CCL4, IL-10, IL-13, Rantes, KC, G-CSF,
IL12p40 were analyzed by BioplexAssay (Biorad, Munich,
Germany). Serum IL-37 was determined with IL-37 (human)

ELISA Kit (AdipoGen, Liestal, Switzerland) according to the
manufacturer’s specification.

Serum Biochemistry
Serum samples were diluted 1:4 in PBS for determination
of bilirubin, GPT, GOT, γGT, and alkaline phosphatase by
routine methods.

RNA Isolation and Quantification
Total RNA was isolated from 30mg of snap frozen liver tissue
or cell pellets using RNeasy Mini Kit (Qiagen, Hilden). RNA
samples (1 µg) were reverse transcribed using SuperScriptTM

II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA).
Gene expression levels were measured by quantitative PCR
(SYBR Green Supermix, Biorad). Gene specific primers were
designed using PrimerExpress and ordered from Eurofins MWG
(Ebersberg, Germany) with purification grade HPLC. qRT-PCR
reactions were performed in triplets in a 96-well format (BioRad
iCycler). Fold changes of mRNA expression were calculated and
if not stated otherwise normalized to Rpl13a gene expression
using the 11Ct-method (36). Gene specific primers used are
listed in Supplementary Table 1.

Protein Isolation and Western Blotting
Cell pellets were resuspended in Pierce IP lysis buffer (Thermo
Fisher Scientific, Munich, Germany) containing protease
inhibitors. Ten milligram of liver tissue was homogenized in
lysis buffer (PBS + 0.1% Triton). Protein quantification was
performed using the BCA kit from Thermo Fisher. Between 5
and 35µg of protein samples were loaded into each lane of an any
kD Mini-PROTEAN TGX Precast Protein Gel and subsequently
transferred to a PVDF membrane. After blocking (5% skim
milk in PBS/Tween 20 0.05%) the membrane was probed
with antibodies against Icam1 (R&D Systems, Abingdon, UK)
and αSMA (Abcam, Cambridge, UK). β-actin (Cell signaling,
Frankfurt, Germany) served as a loading control.

Patients
We included 286 patients (84 female, 202 male) with liver
cirrhosis and 22 healthy volunteers (8 female, 14 male) at the
University Hospital of Innsbruck, Austria, in this study. Cirrhosis
was confirmed by abdominal computer tomography and indirect
cirrhosis signs, including esophageal varices, portal hypertension,
ascites, hepatic encephalopathy, and thrombocytopenia. Model
of end stage liver disease (MELD) score and Child Pugh
(CP) score were calculated and the cohort size distributed
within the ranges of CP scores were as followed (see
Supplementary Table 2): 151 patients were diagnosed with CP
score A, in 71 patients the calculated CP score was B and
64 patients fitted the criteria for CP C. Preexisting chronic
liver disease was alcoholic liver disease in 143 patients and
metabolic associated liver disease in 70 patients. Nine patients
with chronic hepatitis B, 38 patients with chronic hepatitis
C, and two patients with hepatitis D were included in the
study. Furthermore, 11 patients with primary biliary cholangitis,
two patients with secondary sclerosing cholangitis, one patient
with primary sclerosing cholangitis and five patients with
autoimmune hepatitis participated in this study. Five patients
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FIGURE 1 | Transgene IL-37 expression is associated with improved survival, liver function tests, and reduced liver fibrogenesis after BDL. Wt and IL-37tg mice

underwent BDL or sham operation. (A) Survival curve. (B) Liver function tests. (C) ECM deposition in liver sections as assessed and quantified by Sirius red staining.

(D) Hepatic mRNA was quantified by qPCR 3 days after BDL. Fold changes of mRNA expression were calculated using the 11Ct-method normalized to Rpl13a gene

expression. Open circles: Wt-sham (n = 5), Open boxes: Wt (n = 5), Closed boxes: IL-37tg (n = 6). *p < 0.05, **p < 0.01.

suffered from hereditary liver diseases: two patients diagnosed
with Wilson’s disease, two patients with alpha-1-antitrypsin
deficiency and one patient with hemochromatosis. Ascites was
detected by abdominal ultrasound. Two experienced physicians
(each >3,000 US-exams) performed the US-examinations with
the Philips EPIQ 5 R© (Philips Corporation, Amsterdam, The
Netherlands). Hepatic encephalopathy was diagnosed by using
the West Haven criteria in combination with the Psychometric
Hepatic Encephalopathy score as described elsewhere (37).
The study protocol was approved by the institutional ethics
commission with an amendment to AN2017-0016 369/4.21.

Statistical Analysis
Data were expressed as mean ± standard error of mean
or as median with first and third quartiles. For comparing
quantitative variables, the Student’s t-test or the non-parametric
Mann–Whitney U or Wilcoxon signed-rank test were used
as appropriate. Normality of distribution was determined
by Kolmogorov-Smirnov test. The correlation analysis was
estimated using the Spearman’s p coefficient A p < 0.05 was
considered as statistically significant. All statistical analyses

were performed using SPSS Statistics v.22 (IBM, Chicago, IL)
and GraphPad Prism 5 and 8 Version 8.4.2 for Macintosh
(La Jolla, CA).

RESULTS

Transgene IL-37 Expression Is Associated
With Improved Survival, Liver Function
Tests and Reduced Liver Fibrogenesis
After BDL
Since there is a broad range of pathologies inducing liver fibrosis
we tested the role of IL-37 in different disease models. To
investigate the impact of IL-37 in liver fibrosis induced by
obstructive cholestasis, we performed bile duct ligation (BDL) in
Wt and IL-37tg mice. By day 6, 5/10 Wt mice unexpectedly died
(n = 2) or had to be sacrificed due to a high morbidity score (n
= 3). Only one IL-37tg mouse had to be sacrificed on day 13 due
to significant loss of body weight (Figure 1A). All sham-operated
mice survived.
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FIGURE 2 | Recombinant IL37 protein does not downregulate early markers of liver fibrogenesis after BDL. Wt mice underwent bile duct ligation. Five microgram

rhIL-37 (n = 12) or PBS (n = 14) was i.p. injected prior to BDL and the morning after. Hepatic levels of mRNA were quantified by qPCR after 3 days. Fold changes of

mRNA expression were calculated using the 11Ct-method normalized to Rpl13a gene expression.

GOT, GPT, total serum bilirubin and alkaline phosphatase
(AP) were normal in sham-operated mice and significantly
higher in Wt mice after 15 days of BDL. IL-37tg mice had lower
GOT levels compared to Wt mice after bile duct ligation and
there was a trend of reduced serum bilirubin (45.8% reduction,
p = 0.06) and AP (40.1% reduction, p = 0.25) (Figure 1B;
Supplementary Figure 2A).

Fifteen days after BDL IL-37tg mice showed less liver
fibrosis and less collagen deposition as determined by
Sirius red staining in comparison to Wt mice (Figure 1C).
Hepatic infiltration of Mac2-positive cells after BDL was
similar in IL-37tg and Wt mouse livers despite an increase in
comparison to sham-operatedmice (Supplementary Figure 2B).
Numbers of CD3-positive lymphocytes were slightly
decreased in IL-37tg mice (27% reduction, p = 0.17,
Supplementary Figure 2C).

In accordance to histologically overt liver fibrosis, Cxcl2 gene
expression as an early marker of liver fibrosis 3 days after
BDL was significantly higher in Wt compared to sham-operated
mice (Figure 1D). Transgene IL-37 expression was associated
with lower, but not significantly reduced, gene expression levels
of Cxcl2, Acta2 (55.9% reduction) and Il6 (45.1% reduction)
compared toWtmice and showed similar levels to sham operated
mice (Figure 1D). Even though not significantly, Col1a1, Tgfβ ,
and Tnfα were also lower in IL-37tg mice. There was no
difference in Timp1 expression (Supplementary Figure 3A).

Recombinant IL37 Protein Does Not
Downregulate Early Markers of Liver
Fibrogenesis After BDL
Intraperitoneal administration of rhIL-37 has been reported to
downregulate ischemia-induced liver damage (28). To assess
whether i.p. administered rh-IL-37 is sufficient to modulate
early fibrosis markers after BDL, Wt mice were injected with
increasing doses of rhIL-37 or vehicle prior to BDL and the day
after. Gene expression analysis of Cxcl2, Acta2 (Figure 2), Col1a1
and Timp1 (Supplementary Figure 3B), showed no difference
between vehicle and rhIL-37-treatedmice [1µg (data not shown)
or 5 µg of rhIL-37 per dose].

Transgene IL-37 Expression Reduces
CCl4-Induced Liver Inflammation
In addition to BDL as a model of obstructive cholangiopathy
and liver fibrosis, we evaluated the effect of transgene IL-
37 in CCl4-induced toxic liver injury and consecutive liver
fibrosis. After a 6 week course of CCl4-injections Wt mice
showed a reduced body weight compared to controls, while
IL-37tg mice showed no significant weight loss (Figure 3A).
No significant differences were observed for γGT (Figure 3B).
Overall bilirubin levels were low, however serum bilirubin
was higher in CCl4 treated Wt mice compared to control
and there was no difference in treated and untreated IL-
37tg mice (Figure 3B). AP was comparably low in both oil
and CCl4-treated IL-37tg mice (Figure 3B). Quantification of
collagen deposition as assessed by Sirius-red-staining showed
an increase in Wt and IL-37tg mice compared to oil treated
mice (Figure 3C). A slightly lower collagen deposition was
observed in livers of IL-37tg mice (27.9% reduction, p = 0.12).
IL-37tg livers showed higher baseline Tgfβ mRNA levels but
significantly lower levels after CCl4 treatment (Figure 3D). There
was no difference in Acta2 mRNA levels between the groups
(Figure 3D). Hepatic Il6 mRNA concentration was increased by
CCl4 treatment but significantly lower in IL-37tg compared toWt
mice (Figure 3D).

Transgene IL-37 Expression Reduces
Colitis Associated Liver Inflammation and
Fibrosis
As a third model we evaluated whether IL-37tg expression
reduces liver inflammation and fibrosis in the IL-10KO mouse
model of chronic colitis which we recently published (22). IL-
10KOmice showed mild liver inflammation and fibrosis with the
age of 6 months in the course of chronic colitis. IL-10KO/IL-37tg
mice were protected from colon carcinogenesis (22) and, here,
show reduced liver fibrosis (Figures 4A,B), though histologic
liver inflammation (Figure 4C) did not differ to IL-10KO mice.
Hepatic gene expression of proinflammatory Cxcl2, Acta2, Il6,
Tnfα, Icam1, Ccl3, Ccl2, and Cxcl10 was downregulated in IL-
10KO/IL-37tg mice (Figure 4D).
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FIGURE 3 | Transgene IL-37 expression reduces CCl4-induced liver inflammation. Wt and IL-37tg mice were injected with CCl4 or oil for 6 weeks. (A) Weight change

(B) Liver function tests. (C) ECM deposition was assessed and quantified by Sirius red staining. (D) Hepatic mRNA levels were quantified by qPCR. Fold changes of

mRNA expression were calculated using the 11Ct-method normalized to Rpl13a gene expression. Open boxes: Wt (Oil: n = 5, CCl4: n = 13), closed boxes: IL-37tg

(Oil: n = 5, CCl4: n = 10). *p < 0.05, **p < 0.01, ***p < 0.001.

IL-37 Overexpression Reduces the
Pro-inflammatory Response of Human LX2
Stellate Cells
We next tested whether overexpression of IL-37 reduces
the inflammatory response of human LX-2 stellate cells.
After confirming that LX2 stellate cells express the IL-37
receptor SIGIRR and IL-18Rα (Figure 5A), we overexpressed
IL-37 in LX2 cells by transfection with liposomal-coated,
chemically modified RNAs (Figure 5B). We tested two
different preparations of IL-37-expressing cmRNAs. Cells
overexpressing IL-37 showed reduced IL-6 secretion (RNA1:
19% reduction, RNA2: 17% reduction) upon stimulation with
IL-1β (Figure 5C). Cxcl10 mRNA expression was reduced
by 85% by cmRNA2 (Figure 5D). In contrast, increasing
concentrations of rhIL-37 protein did not downregulate
IL-6 secretion from LX-2 cells upon stimulation with IL-1β
(Figure 5E).

Transgene IL-37 Expression Reduces the
Pro-inflammatory Response of mHSC and
KC
Hepatic stellate cells are the main collagen producing cell type
in liver fibrosis. To further evaluate the role of IL-37 in primary
stellate cells we isolated HSCs fromWt and IL-37tg mouse livers.
Spontaneous IL-6 secretion from HSC over a 12 days period in
culture was markedly lower in HSC isolated from IL-37tg mice
compared toWtHSCs (Figure 6A). In vitro differentiated IL-37tg
HSC released less IL-6 in response to LPS and LPS plus TGF-β
(Figure 6B). CCL2 was lower by trend in supernatants of IL-37tg
HSC (p = 0.1) but there was no difference in IL-10 (Figure 6C).
After LPS stimulation Cxcl1 and Icam1 mRNA was significantly
lower in IL-37tg HSC. Bambi showed a trend of reduction in
IL-37tg HSC (Figure 6D). α-Sma protein expression was lower
in IL-37tg mHSC after LPS/TGF-β (Figure 6E). Icam1 protein
was also reduced but without statistical significance (p = 0.1).
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FIGURE 4 | Transgene IL37 expression reduces colitis associated liver inflammation and fibrosis. Livers of homozygous IL-10KO and IL-10KO/IL-37tg mice were

analyzed after a 6 month course of chronic colitis. (A) Liver histology, (B) liver fibrosis and (C) liver inflammation was assessed using the HAI scoring system. (D)

Hepatic mRNA levels were quantified by qPCR. Fold changes of mRNA expression were calculated using the 11Ct-method normalized to TBP gene expression.

Open boxes/column: IL-10KO (n = 5), closed boxes/column: IL-10KO/IL-37tg (n = 10), *p < 0.05.

UnstimulatedWt or IL-37tgHSC showed no difference in α-SMA
and Icam1 protein expression (Figure 6E).

Similar to IL-37tg HSC, KC isolated from IL-37tg mice secrete
less IL-6 after LPS (Figure 6F).

Recombinant IL-37 Does Not Modulate the
Pro-inflammatory Response of HSC
To investigate whether extracellular IL-37 is sufficient to
modulate spontaneous IL-6 secretion, we treated mHSC isolated
from wt mice with rhIL-37 protein during culture. Increasing
concentrations of rhIL-37 (10, 100, or 1,000 ng/ml) had no effect
on spontaneous IL-6 secretion (Figure 7A) or LPS-induced pro-
inflammatory gene expression in HSC (Figure 7B).

Migration of KC Toward HSC Is Not
Modulated by IL-37
Activated KC migrate toward HSC to stimulate collagen
deposition. We therefore tested whether IL-37tg expression
modulates the migration of KC toward the supernatant of LPS-
stimulated Wt HSC. Neither transgene IL-37 expression in KC
nor the supernatant of IL37tg HSC modulated migration of KC
in vitro (Table 1).

MELD Score and Child-Pugh Score
Correlate With Serum IL-37
Both CRP and IL-37 serum levels correlate with Child Pugh
(CP) score and are significantly lower in healthy controls than
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FIGURE 5 | IL-37 overexpression reduces the pro-inflammatory response of LX2 stellate cells. LX2 cells were transfected with two different IL-37 expressing cmRNA

or vehicle or exposed to rhIL-37 protein. Cells were stimulated with IL-1β (1 ng/ml) 24 h after transfection or treatment with rhIL-37. (A) IL-37 receptor expression.

SIGIRR and IL-18Rα mRNA from LX2 and human PBMC was detected by RT-PCR. (B) Lysates of LX2 cells transfected with IL-37 cmRNA1, cmRNA2 or control

mRNA were analyzed for IL-37 protein expression by western blot. (C) IL-6 in supernatants of IL-37 mRNA-transfected LX2 cells after IL-1β-stimulation. (D) mRNA

levels by qPCR 6h after IL-1β-stimulation and are expressed relative to control mRNA transfection. (E) IL-1β-stimulated LX2 cells treated with rhIL-37. IL-6 in cell

supernatants was measured after 24 h stimulation. n = 3, *p < 0.05.

in patients with different extent of liver fibrosis as indicated
by Child-Pugh-score (Figures 8A,B). Furthermore, IL-37 levels
showed significant differences between CP A, CP B, and CP
C patients (p < 0.01, Figure 8B). A positive correlation was
observed between MELD score and IL-37 levels (p < 0.001, r
= 0.043, Figure 8C). Likewise, platelet count and hemoglobin
values correlated negatively with IL-37 in cirrhosis patients (p <

0.05, r = 0.012, Figure 8D; p < 0.001, r = 0.044, Figure 8E). IL-
37 did not correlate with levels of C-reactive protein, albumin,
INR, liver transaminases, gamma-glutamyltransferase, alkaline
phosphatase, leukocytes and creatinine (data not shown).

DISCUSSION

Chronic inflammation is an important trigger of liver
fibrogenesis. Although well-described, inflammatory pathways
have received little attention as therapeutic targets for
chronic liver diseases (2). IL-37 exerts broad-spectrum anti-
inflammatory effects in vitro and in vivo (14) and interferes
with the TGF-β signaling pathway by functional interaction
with Smad3 (15–19). We therefore hypothesized that IL-37
downregulates the activation of hepatic Kupffer and stellate
cells and also modulates liver fibrogenesis by functional
interaction with the TGF-β signaling pathway. We show that
IL-37 improves the clinical outcome and downregulates liver
inflammation and fibrogenesis in mice as well as the activation

of Kupffer- and stellate cells. In addition, we demonstrate the
correlation of IL-37 serum levels with disease severity in human
liver cirrhosis.

Obstructive cholestasis in patients induces the release of
serum transaminases, alkaline phosphatase and bilirubin (38).
Consistently, Wt and IL-37tg mice show elevated GOT, GPT, AP
and bilirubin serum levels after BDL in this study. IL-37tg mice
had lower GOT levels thanWtmice indicating less hepatocellular
damage. In the model of chemically-induced liver fibrosis liver
function tests were normal both in vehicle- or CCl4-treated Wt
and IL-37tg mice. This reflected induction of mild liver disease
by CCl4 as intended for the study (data not shown).

Mortality after BDL is described as being as low as 5% (32).

Despite the fact that there was no perioperative mortality, 50%
of Wt mice died or had to be sacrificed during the second week

after BDL mainly due to weight loss and worsening clinical
condition. However, IL-37tg expression was associated with
markedly improved survival after BDL and only one IL-37tg
mouse had to be removed from the experiment prematurely due
to weight loss. Since all sham-operated mice survived without
sequelae other factors than surgery, such as local microbiota,
might have contributed to high morbidity and mortality rate in
Wt mice after BDL. Weight loss is also well-described in CCl4-
induced liver inflammation and fibrosis (37) and was similarly
less in IL-37tg mice indicating an improved clinical condition by
IL-37tg expression in the chemically-induced liver fibrosis model.
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FIGURE 6 | Transgene IL-37 expression reduces the pro-inflammatory response of mHSC and KC. (A) Supernatants of freshly isolated murine HSC were collected on

day 5, 7, 9, and 12 during myofibroblast differentiation and tested for spontaneous IL-6 release. (B) Cultured HSC were stimulated with LPS (100 ng/ml) on day 8, and

TGFβ (100 pg/ml) on day 9. Cells were harvested on day 12 and supernatant tested for IL-6 or CCl2 and IL-10 (C). (D) Freshly isolated mHSC were cultured overnight

and stimulated with LPS (100 ng/ml) the next day. Total RNA was collected 6 h after stimulation and analyzed by qPCR. Fold changes of mRNA expression (relative to

control) were calculated using the 11Ct-method normalized to Rpl13a gene expression. (E) HSC were stimulated as described in (B) and Icam1 and α-Sma was

analyzed in cell lysates (day 12) by western blotting. (F) Freshly isolated KC were stimulated with LPS (0.1µg/ml). Supernatants were tested for IL-6 24 h after

stimulation. HSC or KC were isolated from Wt (open boxes/bars) or IL-37tg mice (closed boxes/bars). n = 3, *p < 0.05, **p < 0.01, ****p < 0.0001.
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FIGURE 7 | Recombinant IL-37 protein does not modulate the pro-inflammatory response of HSC. (A) Recombinant IL-37 (1µg/ml) was added every second day

along with fresh media to cultured Wt HSC. Supernatants were collected on day 5, 7, and 9 during myofibroblast differentiation and tested for spontaneous IL-6

release. (B) Freshly isolated mHSC from Wt mice were cultured with 1µg/ml rhIL-37 overnight and subsequently stimulated with LPS (100 ng/ml). mRNA levels were

measured by qPCR 6h after stimulation. Fold changes of mRNA expression were calculated using the 11Ct-method normalized to Rpl13a gene expression. Open

boxes/bars: PBS, closed boxes/bars: rhIL-37. N = 3.

In parallel to the mitigated clinical outcome, IL-37tg mouse
livers after BDL showed less fibrosis. In CCl4-induced liver injury
we also observed a trend toward less liver fibrosis in IL-37tg mice.

As a third model we examined livers of IL-10KO and IL-
10KO/IL-37tg mice during chronic colitis, since hepatobiliary
involvement in IBD is common and affects 20–30% of
patients with IBD (2, 39). Despite low-grade histologic liver
inflammation, IL-37tg expression was associated with reduced
histologically proven fibrosis.

Analyzing the immune cell infiltrate in livers after BDL we
found that numbers of Mac2-positive hepatic macrophages were
similar in IL-37tg and Wt mice. However, we observed a trend of
lower numbers of CD3 positive lymphocytes in livers of IL-37tg
mice indicating less hepatocellular inflammation.

When activated, liver infiltrating macrophages and T-
lymphocytes secrete cytokines such as IL-6 and TGF-β to
stimulate, in concert with KCs, the proliferation and activation
of HSCs (40, 41). Since overexpression of IL-37 downregulates
the proinflammatory response of immune cells in vitro and in
vivo we hypothesized that proinflammatory mediators are also
lower in livers of IL-37tg mice (14). Indeed, there was a trend of
reduced expression of proinflammatory and profibrogenic genes
in IL-37tg mouse livers in the early course after BDL. Similarly,
in CCl4-induced liver fibrosis levels of hepatic Il6 and Tgfβ gene
expression were markedly lower in IL-37tg mice. Most strikingly
was the reduction of Tnfα, Cxcl10, and other proinflammatory
and profibrogenic genes in livers of IL-37tg mice during chronic
colitis suggesting that IL-37 modulates fibrosis both by inhibiting
inflammation and downregulating fibrosis-inducing pathways.

Intraperitoneally injected rhIL-37 reduces
ischemia/reperfusion-induced liver damage (28). However,
in our model of BDL, systemic administration of rhIL-37 at
different doses, acting by binding to the membrane receptor,
was not sufficient to limit proinflammatory or profibrogenic
gene expression at day 3 after BDL. Therefore, we speculate
that intracellular IL-37, as expressed in IL-37tg mice, plays a
more dominant role in modulating cholestasis-induced liver

TABLE 1 | Migration of KC toward HSC is not modulated by IL-37.

Migration index Wt KC IL-37tg KC

SN Wt mHSC 97.81 ± 21.09 97.47 ± 6.70

SN IL-37tg mHSC 89.24 ± 5.42 101.5 ± 3.82

Kupffer cells from Wt and IL-37tg were isolated from mouse livers (n = 3, one liver per

experiment) and placed in the upper chamber of a Boyden Chamber Migration assay.

Supernatants from LPS and TGF-β stimulated Wt or IL-37tg mHSCs were placed in the

lower chamber. Migration index was assessed after 8 h.

inflammation and fibrosis after BDL than extracellular IL-37.
The effect of rhIL-37 protein could not be tested in CCl4-induced
liver fibrosis or during chronic colitis due to the long-term
nature of both models during which subcutaneous or i.p.
injections would have induced an antibody response against
human IL-37 protein.

The crosstalk between KC and HSC is crucial for the
activation of HSC and the initiation of liver fibrogenesis. KC
secrete proinflammatory cytokines in response to danger signals
such as endotoxin (42). In turn, these cytokines activate and
thereby initiate proliferation and myofibroblast differentiation
of HSCs, which then produce components of ECM as well as
adhesion molecules like α-SMA and Icam1 (43–45). Since IL-37
downregulates inflammation and was shown to have functional
interaction with profibrogenic TGFβ-signaling molecule Smad3,
we tested the impact of IL-37 on the function of human LX2
stellate cells and primary mouse KC and HSC.

When we overexpressed IL-37 in LX2 stellate cells by
cmRNAwe observed a reduction of IL-1β-induced IL-6 secretion
and profibrogenic Cxcl10 gene expression. However, despite
expression of the IL-37 receptor, treatment of LX2 cells with
rhIL-37 had no effect. We particularly paid attention to titrate
concentrations of rhIL-37 down to as low as 10 ng/ml (data
not shown), since it was shown that low concentrations of
rhIL-37 are more effective to downregulate the inflammatory
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FIGURE 8 | Serum levels of IL37 correlates with disease severity in patients with liver cirrhosis. Correlation of CRP (A) and serum IL-37 (B) with CP score in patients

with liver cirrhosis compared to healthy control patients. (C) MELD score in patients with cirrhosis compared to healthy controls (MELD in healthy controls was

assumed 0). Correlation of serum IL-37 with platelet count (D) and hemoglobin (E) in patients with cirrhosis and healthy controls. ****p < 0.0001, ***p < 0.001, **p <

0.01, *p < 0.05: according to Spearman correlation or Student’s t-test.

response of primary human macrophage cells in vitro than
higher concentrations (16). The lack of response to rhIL-
37 indicates that intracellular expression of IL-37, as induced
by cmRNA transfection, is more effective to reduce the
inflammatory response of LX-2 stellate cells than exogenously
applied, extracellular rhIL-37. Similar results were obtained from
mouse HSC-derived myofibroblasts, where only transgene IL-37
but not rhIL-37 protein reduced spontaneous, LPS or LPS/TGF-
β-induced IL-6 secretion and pro-inflammatory gene expression.

Common markers of HSC activation such as Icam1 and α-
Sma were also reduced in HSC-derived myofibroblasts isolated
from IL-37tg mice after LPS or LPS/TGF-β stimulation. These
results indicate that IL-37 overexpression reduces both the
inflammatory response as well as fibrogenesis by HSC. Notably,
there was no difference in IL-10 secretion from IL37tg and Wt
HSCs. This stands in accordance with our previously published
observation that the immunomodulatory function of IL-37 in
macrophage cells or PBMC is not mediated by IL-10 (15, 18).

Activated liver HSC/myofibroblasts release a range of
chemokines including CCL2, CCL3, and CXCL10 to attract
lymphocytes (46). Previous studies have shown that IL-37
inhibits the formation of macrophage pseudopodia suppressing
cell migration (15, 47). Our results show that HSC-derived
myofibroblasts from IL-37tg mouse livers secrete slightly
less KC attracting chemokine CCL2. We hypothesized
that IL-37tg expression in HSC impairs migration of KC
toward HSC. However, neither transgene expression of IL-
37 in KCs nor the supernatant of stimulated IL-37tg HSC
modulated the migration behavior of KC. Therefore, we

speculate that modulation of KC migration toward HSC
is unlikely to contribute to reduced liver fibrogenesis in
IL-37tg mice.

At the molecular level we reported that intracellular IL-37
interacts with Smad3 to reduce inflammation (15). Smad3 itself
is activated by phosphorylation at the C-terminus (pSmad3C)
or at the linker domain (pSmad3L) through TGF-β type I
receptor or TGF-β-dependent c-Jun N-terminal kinase (48). The
pSmadC pathway inhibits growth of normal cells as a tumor
suppressor, whereas pSmadL-mediated signaling promotes ECM
deposition and subsequent fibrosis as well as tumor cell
invasion (2, 49, 50). In a human HCC cell line, transfected
IL-37 directly targets pSmad3L/c-myk signaling to suppress
oncogenic pSmadL signaling and to promote tumor-suppressive
pSmad3C signaling (48). In line with this observation, our
yet unpublished, confocal microscopy data show that IL-
37 colocalizes with pSmad3L in human fibrotic livers (MS
in preparation). Moreover, Kim et al. recently reported that
intranasally-administered IL-37 attenuates bleomycin-induced
lung fibrosis in mice and is associated with lower TGF-
β protein in lungs (51). Accordingly, we measured lower
TGF-β mRNA levels in livers of IL-37tg mice after CCl4-
treatment. Li et al. also showed that intranasal administration
of a lentivirus expressing IL-37 improved survival, attenuated
pulmonary inflammation and collagen deposition in bleomycin-
treated mice (52). In summary, these reports lead us to speculate
that, beside limiting the inflammatory response, IL-37 directly
impacts HSC-mediated liver fibrogenesis by interacting with
TGF-β dependent pathways.
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As well-established in liver fibrosis we show that CRP,
a surrogate parameter for inflammation, correlates with
the CP score in our large cohort of patients with liver
fibrosis. Interestingly, IL-37 serum levels are also higher in
patients with liver cirrhosis correlating with the CP- and
MELD score as well as platelet counts and hemoglobin
levels. A similar phenomenon has been described for IL-1
receptor antagonist, another anti-inflammatory IL-1 family
member (53). This might reflect the response of the host
to fight against overwhelming hepatic inflammation and
consecutive fibrosis.

In summary, we show evidence that transgene expression
of IL-37 reduces liver inflammation and fibrosis in BDL-,
CCl4-, and colitis-associated liver disease in mice. We
suggest that predominantly intracellular IL-37 modulates
liver fibrosis in two definite ways. Firstly, the interaction
of IL-37 with pSmad3L directly targets the fibrotic
pathway. Secondly, IL-37 downregulates liver inflammation
and subsequent HSC activation by limiting the release
of proinflammatory and profibrogenic cytokines from
infiltrating lymphocytes, macrophages, and KC. Thus, IL-
37-dependent mechanisms may represent a future target for
the treatment of inflammatory and fibrosing liver diseases.
The correlation of serum IL-37 with disease severity of liver
cirrhosis in humans indicates the clinical relevance of our
experimental findings. Further studies are needed to unravel
the molecular mechanisms of IL-37 in liver fibrogenesis
in more detail.
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