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Abstract 

 

Monoclonal antibodies (mAbs) are successful treatment options in a variety of therapeutic areas, 

including cancer and inflammatory diseases. Even though introduction of infliximab (IFX) – the first 

mAb for inflammatory bowel diseases (IBD) – is considered a revolutionary step in IBD treatment, over 

the course of time challenges of IFX therapy arose. Given informative clinical data, quantitative 

approaches, such as pharmacometrics, are increasingly recognised for their potential to provide a deeper 

mechanistic understanding and contribute to overcoming clinical challenges, thus improving IBD 

therapy success.  

This work aimed to contribute to improving success of IBD treatment and the rational use of IFX. 

Insights in (1) dynamic exposure-biomarker relationship, (2) clearance mechanisms of mAbs and 

relevance of study design, and (3) pharmacokinetic (PK) behaviour of IFX in pregnancy are reported. 

Within this thesis the first population nonlinear mixed-effects (NLME) PK/PD model that quantitatively 

describes the IFX dose-exposure-CRP concentration relationship was developed. The model provides 

mechanistic insights, e.g. on significant factors influencing the IFX PK and the maximum inhibitory 

effect of IFX on CRP synthesis, and has been employed to assess the standard IFX dosing regimen, 

whereby potentially advantageous dosing regimens were identified. Moreover, the developed model 

can be further utilised to support Therapeutic Drug Monitoring and clinical decision-making. 

While the quantitative approaches are powerful tools, the methodology alone cannot overcome the 

limitations of the clinical data used for the model development. Adequately informative data are a 

prerequisite for a quantitative analysis, highlighting the importance of the clinical study design. Within 

the herein reported work, this aspect was addressed using cetuximab – an anti-EGFR oncology mAb – 

as a case study, due to a highly informative dataset available for this drug. Firstly, the most 

comprehensive NLME PK model of cetuximab was developed, which revealed both an exposure- and 

a time-dependency of clearance. The model was subsequently utilised to identify clinical study design 

characteristics relevant for the identification of the mechanistic clearance model. The provided 

guidelines can be extrapolated for analyses of other mAbs as well. The importance of rich sampling for 

a detailed PK characterisation is emphasised, and guidance on the methodological aspects of such an 

analysis (e.g. model selection relative to study design) and choice of exposure metrics used for 

exposure-response analyses given. 

Recognising the need for a more elaborate comprehension of IBD therapy in special populations, a part 

of the herein disclosed work focused on pregnant IBD patients receiving IFX. In addition to general 

therapy challenges, pregnancy opens additional clinical questions with respect to both safety and 
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efficacy of IBD treatment, in pregnant patient and foetus alike. The herein developed population NLME 

PK model of IFX in pregnancy is the first such model reported. The model provided insights in the 

impact of pregnancy on IFX PK, revealing a decreased IFX clearance in the second and third trimesters. 

The need for a consensus on IFX PK target in IBD management is emphasised, as well as the importance 

of monitoring of anti-drug antibodies regardless of the pregnancy status.  

Altogether, these findings provide a better understanding of the pharmacokinetics and 

pharmacodynamics of IFX in IBD patients and the developed models offer a basis for model-informed 

precision dosing.  
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Zusammenfassung 

 

Monoklonale Antikörper (mAb) gehören zu den etablierten Arzneimitteltherapien für Indikationen wie 

Onkologie und Entzündungserkrankungen. Die Einführung von Infliximab (IFX) – dem ersten mAb 

zur Behandlung chronisch-entzündlicher Darmerkrankungen (IBD) – stellte eine Revolution in der 

Behandlung von IBD dar, die allerdings von einigen Komplikationen begleitet wird. Quantitative 

Ansätze wie die Pharmakometrie können ein tieferes mechanistisches Verständnis ermöglichen, um die 

Therapieherausforderungen zu bewältigen und die IBD-Therapie zu optimieren. 

Ziel dieser Arbeit war dazu beizutragen, den Therapieerfolg in der IBD-Behandlung und den rationalen 

Einsatz von IFX zu verbessern. Dazu sollen Erkenntnisse in (1) den dynamische Expositions-

Biomarker-Zusammenhang, (2) die Eliminationsmechanismen von mAbs sowie die Relevanz des 

Studiendesigns hierfür und (3) die Pharmakokinetik (PK) von IFX während der Schwangerschaft 

erarbeitet werden.  

Das entwickelte PK/pharmakodynamische (PD) Populationsmodell ist das erste Modell, das die 

Zusammenhänge zwischen der IFX-Dosis, der Exposition und der Konzentration des C-reaktive 

Proteins (CRP) quantitativ charakterisiert. Das Modell bietet mechanistische Einblicke, wie z.B. 

wesentliche Faktoren, die die IFX-PK beeinflussen und den maximalen inhibitorischen Effekt von IFX 

auf die CRP Synthese, und wurde genutzt, um das standardmäßige IFX-Dosierungsschema neu zu 

bewerten. Dabei wurden potenziell verbesserte Dosierungsschemata identifiziert. Das entwickelte 

Modell kann für das Therapeutische Drug Monitoring sowie als Basis für klinische Entscheidungen 

genutzt werden.  

Die erarbeiteten quantitativen Ansätze sind auf aussagekräftige und informative klinische Daten 

angewiesen. Daher wurde in dieser Arbeit auch die Relevanz des klinischen Studiendesigns für die 

pharmakometrische Analyse erforscht. Dafür wurde Cetuximab – ein anti-EGFR mAb gegen 

Tumorerkrankungen – aufgrund der umfangreicheren Datenverfügbarkeit als Modellarzneistoff 

gewählt. Das entwickelte Modell ist das erste PK-Populationsmodell für Cetuximab, das sowohl die 

Expositions- als auch die Zeitabhängigkeit der Cetuximab-Elimination systematisch untersucht. Das 

Modell wurde danach angewandt, um die entscheidenden Merkmale eines klinischen Studiendesigns, 

die für die Bestimmung des mechanistischen Eliminationsmodells relevant sind, zu identifizieren. Die 

Empfehlungen können ebenso auf Populationsanalysen von anderen mAbs extrapoliert werden. Die 

Wichtigkeit eines umfangreichen Samplings für eine detaillierte PK-Charakterisierung wurde 

besonders hervorgehoben, und es wurden Hinweise zu methodischen Aspekten einer solchen Analyse 

und zur Auswahl von Expositionsmetriken gegeben, die für Expositions-Wirkungs-Analysen 

verwendet werden. 
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In Speziellen Patientengruppen ist es erforderlich, ein besseres Verständnis für die IBD-Therapie zu 

gewinnen. Daher lag der Fokus in einem weiteren Teil dieser Arbeit auf schwangeren IBD-Patientinnen, 

die IFX erhalten. Neben den allgemeinen therapeutischen Herausforderungen führt eine 

Schwangerschaft zu zusätzlichen klinischen Fragen hinsichtlich der Sicherheit und Wirksamkeit der 

IBD-Behandlung, sowohl bei der schwangeren Patientin als auch beim Fötus. Das hier entwickelte 

Populationsmodell, das die IFX PK in der Schwangerschaft charakterisiert, ist das erste derartige 

Modell. Das Modell ergab neue Einblicke in die Auswirkungen der Schwangerschaft auf die IFX PK 

und zeigte, dass die Elimination von IFX im zweiten und dritten Trimenon vermindert war. Darüber 

hinaus zeigte diese Arbeit den Bedarf eines Konsensus über die IFX PK-Zielkonzentration sowie die 

Bedeutung des Monitorings von Anti-IFX-Antikörpern, unabhängig vom Schwangerschaftsstatus. 

Insgesamt wurde im Rahmen dieser Arbeit ein verbessertes Verständnis über die PK und PD von IFX 

in IBD-Patienten geschaffen. Die entwickelten Modelle bieten die Grundlage für ein sogenanntes 

„Model-informed precision dosing“, ein modellbasiertes Therapeutisches Drug Monitoring. 
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1 Introduction and fundamentals 

 

1.1  Inflammatory bowel diseases: The epidemic on the rise  

1.1.1 Definition and epidemiology 

Inflammatory bowel diseases (IBD) are a group of inflammatory diseases of the gastro-intestinal tract 

(GIT), including Crohn’s disease (CD) and ulcerative colitis (UC), affecting approximately 4 million 

people around the world [1]. The most significant differences between CD and UC (Figure 1.) are 

location and extent of the inflammation, as well as genetic predisposition and risk factors. In UC, the 

inflammation begins in the rectum and continuously spreads upwards, in the most severe case 

(pancolitis) affecting the whole colon. In contrast to UC, the inflammation in CD is discontinuous and 

can affect any part of the GIT, from mouth to anus. Furthermore, the inflammation in UC is restricted 

to the mucosa (the epithelial lining of the gut), while in CD it is transmural, affecting deeper layers of 

the bowel wall as well, and can be present throughout the full thickness of the wall [2-7]. 

 

Figure 1. Two main types of IBD: Crohn’s disease and ulcerative colitis. Upper part: illustration of location and 

(dis)continuity of inflammation (red); Lower part: depiction of bowel cross-sections illustrating the extent of 

inflammation - transmural in Crohn’s disease and limited to the mucosa in ulcerative colitis. Parts of the figure 

were taken and adjusted from Servier Medical Art (https://smart.servier.com, Creative Commons Attribution 3.0 

Unported License; last access on: 26 Jun 2019). 
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The IBD area is an epitome of the great imprint that the rapid development of modern society and 

science are leaving on the fields of medicine and pharmacy. With the development of novel diagnostic 

techniques, the diagnosis and assessment of the severity of IBD saw a notable improvement in the past 

decades [8,9]; and understanding of the mechanisms underlying IBD is constantly deepening [10]. The 

recent advances that have brought about a revolution in IBD treatment through the discovery of novel 

therapeutic concepts and drugs, are discussed below [11]. Moreover, Therapeutic Drug Monitoring – 

regular measuring of blood concentration of a drug in order to maintain the drug concentration within 

a target range and when indicated inform dosing individualisation - in IBD has improved (e.g. through 

development of treatment algorithms), contributing to an improved overall disease management [12]. 

However, not all trends related to IBD have been positive. The past decades also recorded a constant 

rise in IBD incidence and prevalence in the world, especially in North America and Europe [1]. This 

trend might in part root from the modern lifestyle, as suggested by the hypotheses that environmental 

factors and lifestyle (e.g. diet) contribute to the increasing number of IBD patients [1], exemplified by 

a higher incidence in urban populations. Interestingly, moving from the country of origin to another 

country has been found to be accompanied by a change in the IBD incidence in the following 

generations - pointing to the role of environmental factors. Finally, stress has been directly related to 

IBD risk as well [1]. 

1.1.2 Disease aetiopathogenesis 

Even though many aetiological factors have been identified, up to now the cause and the cascade of 

immunological events in IBD remain unexplained. The root of the disease seems to be genetically 

predefined dysregulated intestinal mucosal immune response against commensal gut flora that causes 

the inflammation. This inflammation is characterised by the granulocyte and macrophage infiltration of 

the gut and an increased release of pro-inflammatory cytokines, chemokines and reactive oxygen and 

nitrogen species (ROS/RNS) intermediated by monocytes, macrophages and T cells [2, 3,13]. 

The disruption in the intestinal permeability has been described as one of the crucial events in the IBD 

development [14]. Thereby, a contact between the enteric flora and the immune system is enabled, as 

well as loss of electrolytes and water into the gut, leading to leak flux diarrhoea [15]. The structural and 

functional changes of the barrier comprise tight junction changes, apoptosis of epithelial cells, lesions 

(erosions and ulcers), and transcytosis [2,15]. However, the question whether the barrier disruptions are 

a cause or a consequence of IBD has not been fully elucidated. Earlier research suggested that oxidative 

stress leads to the barrier disruptions, by maintaining the active inflammation and further ROS 

generation [2]. Contrarily, recent research speaks in favour of the barrier disruption as a prerequisite for 

the IBD development. A study that used the “gut inflammation-on-a-chip” approach to mimic mouse 

colitis model showed that one of the early events in IBD, i.e. oxidative stress generation by mononuclear 

cells (mainly monocytes), requires the barrier disruption [16]. Hypothetically, it is possible that the 
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disrupted barrier initiates the oxidative stress, which in turn leads to maintenance and further disruption 

of the barrier. Further research is needed to address these questions and unify the contradictory findings. 

Mechanistically, the barrier disruptions are thought to originate from an elevated presence of cytokines, 

especially tumour necrosis factor-α (TNFα) and interferon γ (IFNγ), but certain environmental factors 

are anticipated to contribute as well. For instance, some dietary factors, such as a high intake of fat and 

refined sugars, induce low grade inflammation in the gut and can thereby increase the intestinal 

permeability [14,15]. 

Once the gut inflammation has developed, it is sustained by infiltration of leukocytes (in particular 

monocytes) and their differentiation (to macrophages), resulting in cytokine release. The cytokine 

profile in IBD is pro-inflammatory (as opposed to anti-inflammatory in the healthy gut) that leads to 

tissue injury and includes TNFα, interleukin (IL)-1β, IL-12, IL-6 [2,17]. The quantitative analyses have 

further confirmed the importance of the pro-inflammatory macrophages for the IBD development: 

Using an in silico model that described inflammation in IBD (incl. behaviour of T-cells, macrophages, 

dendritic, and epithelial cells), it has been demonstrated that even in the presence of an ongoing 

inflammatory response to the enteric bacteria, epithelial recovery will take place if pro-inflammatory 

macrophages are absent [18]. Finally, the spectrum of the gut bacteria in IBD is different than that found 

in the healthy gut, with narrower heterogeneity and additional presence of specific, invasive strains (e.g. 

special adhesive and invasive E. coli in CD) [1,17]. 

1.1.3 Mechanisms of inflammation and biomarkers in IBD 

Critical aspects for a successful treatment of any disease are understanding of the underlying 

mechanisms and identification of the disease markers that can be used to quantitatively track the disease 

activity. Due to the complex mechanisms of IBD, the choice of an appropriate disease biomarker has 

posed itself a challenging task [19-21]. The advantages and disadvantages of the currently used 

biomarkers relevant for the herein reported work are discussed below.   

Tumour necrosis factor-alpha 

In healthy individuals, TNFα has regulatory and protective roles. When overexpressed, however, it 

leads to an inflammatory cascade and is considered the main inflammatory agent in IBD. Its crucial role 

in IBD has been demonstrated by detection of increased concentrations, both in serum and tissue, in 

IBD patients, and successful control of the disease with anti-TNFα drugs. Furthermore, serum 

concentration of TNFα was shown to be predictive of the disease severity [2,14,22-26]. There are two 

forms of this cytokine: precursor membrane-bound (mainly on cell surface of activated macrophages 

and lymphocytes) ‘transmembrane’ (tmTNFα) and soluble form (in blood; sTNFα). Both are believed 

to play a role in IBD, acting via binding to the TNFα-receptors (type 1 and 2), expressed on most of the 

nucleated cells. Thereby initiated cascade of events results in an apoptotic or inflammatory outcome 

[2,13,23,26,27]. In addition, through its effects on tight junctions and transcellular passage of luminal 
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antigens, TNFα directly contributes to the epithelial disruption [15]. Apart from TNFα, TNFα-receptors, 

which stimulate T-cells and the inflammatory response, are overexpressed in IBD as well [2]. Due to 

the practicability of its measurement, sTNFα has been in focus, although the past years have revealed 

the importance of tmTNFα for IBD, when it was found that anti-TNFα drugs that do not bind to tmTNFα 

(e.g. etanercept) are not effective in IBD [23,28].  

C-reactive protein  

C-reactive protein (CRP) is a nonspecific inflammatory marker released predominantly upon signals 

from IL-6, TNFα and IL-1 as part of the acute phase immune response, caused by e.g. trauma, tissue 

necrosis and inflammation [29-32]. CRP is a sensitive marker: its concentrations rise rapidly, reaching 

the values as much as 1000-fold above the baseline, and decline fast, with a short life of ca. 19 h. 

Importantly, the half-life of CRP is constant, not impacted by the underlying disease or CRP 

concentration itself, making it a robust biomarker for tracking of immune response [31]. Its potential as 

a biomarker is further reinforced by the fact that none of the currently used therapeutics directly impacts 

its synthesis [31,32]. Correlation of CRP concentration and IBD severity has been established, though 

it seems less pronounced in UC than in CD [29,31,32]. This dependence of CRP-disease activity 

relationship on IBD type is not fully understood and could be due to different disease mechanisms or 

be a consequence of the disease signs. 

Faecal loss of proteins – a common finding in IBD – is a potentially important aspect to be considered 

with respect to the IBD biomarkers, including CRP. Although present in both disease types, faecal loss 

of proteins is more common in UC, and bloody diarrhoea [37] is one of the main signs of UC. Based 

on the reports of faecal loss of monoclonal antibodies (mAbs) through the inflamed IBD gut [3] and the 

similarity of the size, CRP molecules are expected to be lost faecally as well (Figure 2). In case of a 

higher incidence and extent of faecal protein loss (including bloody diarrhoea), a higher loss of CRP 

via faeces is anticipated, resulting in a buffered increase of CRP plasma concentration with increasing 

disease activity, and thus hindering the disease activity-CRP concentration relationship. It could 

therefore be postulated that the more common faecal protein loss in UC might in part explain the 

observed less pronounced relationship between CRP concentration and disease activity compared to 

CD. This hypothesis has not been addressed thus far, even though clarifying the reasons for the different 

findings in UC and CD would be beneficial, especially in terms of establishing the relationship between 

IBD drug exposure and CRP response. 
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Serum albumin 

Albumin is another acute phase protein, whose serum concentration decreases in the acute phase 

response [38]. Even though its long half-life of ca. 19 days makes it a much less sensitive inflammation 

marker than CRP, an inverse proportionality has been found between the two [39,40]. It is important to 

note that the kinetic behaviour of albumin is of much higher complexity than in the case of CRP. 

Albumin serum concentration is a result of the rate of its synthesis in the liver, its distribution, 

(fractional) catabolism (in multiple organs, including lower intestine), and exogenous loss, all of which 

are influenced by multiple factors (e.g. synthesis rate by inflammation, catabolic rate by albumin 

concentration, exogenous loss by faecal loss) [38,39]. In IBD, albumin concentration is decreased as a 

result of decreased synthesis, increased catabolism, potentially increased extravascularisation [38,39], 

and increased loss via faeces (up to 36 g/day vs. ~1 g/day in healthy individuals) [41,42]. In contrast to 

CRP, the already lowered serum albumin concentration due to the present inflammation in IBD is 

theoretically further decreased by the increased faecal loss, thus potentially enhancing the relationship 

between IBD activity and serum albumin concentration as a biomarker. However, due to the 

compensatory increase of albumin synthesis [42], this effect might not be significantly pronounced. 

Whether and to what extent the faecal loss of serum albumin might be relevant in this context has not 

yet been elucidated. As the fractional catabolic rate of albumin is in a direct relationship with serum 

albumin concentration (i.e. decreased synthesis leads to decreased catabolism, and vice versa), it is 

improbable that the hypoalbuminemia in IBD be only caused by decreased protein absorption [38,43]. 

Mechanism of hypoalbuminemia in the inflammation stays controversial, as some studies report 

Figure 2. Illustration of faecal loss of macromolecules in healthy gut versus inflammatory bowel diseases [33-

36]. ALB: Albumin; CRP: C-reactive protein; IBD: Inflammatory bowel diseases; IFX: Infliximab. 
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decreased synthesis [44,45] and increased degradation [44], and others even increased synthesis in 

certain inflammatory conditions [46]. 

In addition, further confounding factors may be present as well. Since up to 30%-50% of the albumin 

degradation takes place in different parts of the small intestine (duodenum > jejunum > ileum), massive 

resections of the small bowel – one of the therapeutic procedures in the IBD treatment – could result in 

a prolonged albumin survival [47]. Contrarily, gastrointestinal leakage (e.g. bleeding, ulcers) would 

have an opposite effect on albumin concentrations [47]. Accurate estimation of the albumin loss via 

faeces (i.e. quantification of faecal albumin) is an additional challenge, due to the proteolytic 

degradation [42]. 

Finally, the low serum albumin concentration is not necessarily only a consequence of IBD (and other 

gastrointestinal diseases), but might also contribute to the disease symptoms. Low albumin 

concentrations (~20 g/L – 26 g/L [42]) have been associated with diarrhoea, which would on the one 

hand further aggravate hypoalbuminemia, and on the other contribute to the IBD symptoms and would 

thereby be measured as IBD activity. A study in critically ill patients found that a cut-off of 26 g/L was 

predictive of diarrhoea with 100% sensitivity [42]. 

1.1.4 Signs and symptoms 

Regardless of the described differences, CD and UC manifest in very similar symptoms. Patients 

typically experience diarrhoea, passage of blood, mucus and pus, as well as abdominal pain. An 

important characteristic of CD is its dynamical nature and specific complications. Namely, one of the 

properties of CD is its “behaviour”, which may comprise the presence of strictures (narrowing of the 

intestine) and fistulas (abnormal connection between two organs). The inflammation in CD can change 

both location and behaviour over time, accompanied by changes in clinical manifestations [2-7]. As a 

consequence of the disease characteristics and therapy, other symptoms such as anaemia, osteoporosis, 

pyoderma gangrenosum and erythema nodosum can also develop [5]. In up to a quarter of IBD patients 

extraintestinal symptoms and complications (uveitis, ankylosing spondylitis, arthritis, myocarditis, 

iritis, etc.) are present [4]. 

Clinical activity  

The ultimate goal of IBD management is reduction of clinical activity, measured via clinical activity 

indices (e.g. Harvey-Bradshaw index [HBI] and Crohn’s disease activity index [CDAI] for CD). 

However, the agreement between clinical activity indices and mucosal inflammation – evaluated using 

endoscopy – has been found to be unreliable [48,49]. This is not surprising, considering that the clinical 

activity indices are hugely based on subjective measures and reports of IBD signs and symptoms, such 

as pain and general well-being. Over time, new indices (e.g. van Hees index) that take into account 

laboratory data as well have been developed, although their use remains very limited [49,50].  
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It is important to note that co-existing states might alter activity of IBD, with one particular example 

being pregnancy. Empirical findings suggest that the net effect of pregnancy on IBD activity is 

insignificant [51]. From mechanistic perspective, this net effect is the sum of a number of pregnancy-

induced changes, some of which could be directly linked to the IBD status. Due to its natural course, 

pregnancy is accompanied by immunity-related changes, i.e. modifications in the maternal immune 

system. As a dysregulated immune response is one of the aetiological factors of IBD, this could also 

influence the disease status. In the first trimester, a strong inflammatory response, needed for the 

implantation and the formation of the decidua and the placenta, develops. It is characterised by 

infiltration and accumulation of NK (’natural killer’) cells, dendritic cells and macrophages in the 

decidua. As the foetus enters the phase of rapid growth and development, the anti-inflammatory state 

is promoted. When the foetal development is completed, a proinflammatory state, crucial for delivery, 

is induced once again [52,53]. Furthermore, hormone (oestrogen and progesterone)-induced GIT 

changes, such as smooth muscle dysfunction, are more frequent in women with pre-existing GIT 

diseases, such as IBD [54]. Finally, the known effects of sex hormones (e.g. decrease in the endoplasmic 

reticulum stress, increased epithelial cell barrier and wound healing, induction of IL-8 production in 

vitro [55]) might also come into play as the pregnancy-related hormonal changes take place. 

1.2  Biologic therapies in IBD  

Introduction of biologic therapies in the IBD management has been referred to as “the greatest 

therapeutic advance in the care of inflammatory bowel disease” [56]. Anti-TNFα mAbs, pioneered by 

infliximab (IFX), were the first class of biologics to be approved for the IBD treatment. Although other 

(e.g. anti-integrin and anti-IL-12/23) mAbs followed and many are currently being evaluated, the anti-

TNFα drugs are still the most widely used biologics in IBD, with IFX often found preferred [56].  

1.2.1 Anti-TNFα mAbs 

The anti-TNFα mAbs act mainly by binding TNFα, thus cancelling out its endogenous effects (see 

1.1.3). In addition, they express other favourable effects for IBD treatment as well: they promote 

immunosuppressive regulatory macrophages, thereby inhibiting T-cells and stimulating synthesis of 

anti-inflammatory cytokines [13]. The full anti-TNFα mAbs, such as IFX, also invoke complement-

dependent and antibody-dependent cell-mediated cytotoxicity and lead to apoptosis of activated 

immune cells; this is not the case with the mAbs lacking Fc-fragments, such as certolizumab pegol [13]. 

1.2.2 Infliximab 

Introduction of IFX – a chimeric IgG1 anti-TNFα mAb – is considered a revolutionising moment in the 

IBD management. The IFX therapy has been consistently and repeatedly related to clinical remission 

(assessed by the clinical activity indices) [57-62], biomarker remission (especially CRP and faecal 

calprotectin) [58,59,63], and endoscopic remission [57,58,64,65]. This led to IFX keeping the status of 

one of the most widely used anti-TNFα drugs in the IBD management, despite constant inflow of new 
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therapeutics for this indication and the high incidence of immunogenicity [66]. In addition, IFX has 

been found to be effective in paediatric IBD patients as well [67-69]. 

Pharmacokinetics of infliximab 

A characteristic that is shared by all mAbs alike is the complex pharmacokinetics (PK) resulting from 

many pathways a mAb molecule can follow in the organism, which can be disease specific. Relevant 

PK pathways of IFX are schematically summarised in Figure 3. 

As IFX is administered via intravenous (i.v.) infusion, it does not undergo absorption processes. With 

this route of administration, maximum concentration (Cmax) is achieved earlier and is higher than in the 

case of other routes, e.g. subcutaneous administration. An IFX molecule leaves the intravascular space 

(i.e. blood) by either (1) binding to sTNFα and degradation of the complex [70], (2) forming immune 

complexes with anti-drug antibodies (ADA) [70,107], (3) faecal loss due to gastrointestinal bleeding, 

or (4) distribution to the interstitium via convection or transcytosis [70]. These processes occur 

simultaneously and are affected by many factors, e.g. target abundance, or co-medication with 

immunomodulators (known to have a suppressive effect on ADA formation [71]), or co-existing state, 

such as transport into foetus during pregnancy [72]. From the interstitial space a molecule can be carried 

Figure 3. Schematic overview of relevant pharmacokinetic processes of infliximab to and from three relevant 

spaces: intravascular, interstitial, intracellular. ADA: anti-drug antibodies; Fcγ rec.: Fcγ receptor; FcRn: neonatal 

Fc receptor; sTNFα: soluble tumour necrosis factor-α; tmTNFα: transmembrane tumour necrosis factor-α; 

*faecal loss in case of increased gut permeability. 
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back to the blood via the lymph or, at a lesser extent, transcytosis [70]. A molecule can also be excreted 

to the gut lumen from the intestinal interstitial space, and subsequently excreted from the body or 

undergo proteolysis [3]. This process depends on the gut permeability and the size of the molecule: 

smaller molecules (e.g. mAb fragments) are anticipated to be lost at a higher extent. Finally, the 

molecules can leave the interstitial space by transport into the cells via (1) binding to tmTNFα, (2) 

binding to Fcγ-receptors, or (3) pinocytosis [70]. Upon pinocytosis, a portion of mAb molecules binds 

to the neonatal Fc receptor (FcRn) on the cell surface. The IFX molecules undergo proteolysis in 

lysosomes, or, in case of being bound to FcRn, are recycled back to the interstitium. FcRn is thus a 

salvaging pathway, that in a pH-dependent manner binds the mAb molecule, protects it from 

degradation in the cell, and releases it upon exocytosis in the increased pH environment of the 

interstitium [70]. The FcRn pathway is nonspecific and saturable, making it dependent on the 

endogenous IgG concentration [73]. 

The above-mentioned binding of IFX to its target, TNFα, is known as target-mediated drug disposition 

(TMDD), and is a general characteristic of mAbs. An implication of this PK concept is that as the PK 

partly depends on the target abundance, and thus IBD severity (pharmacodynamics; PD), there is a 

bidirectional PK/PD relationship, where not only does the drug impact the disease, but the opposite also 

holds true [74,75].  

Exposure-response relationship 

The characterisation of PK/PD relationship of IFX in IBD poses a challenge, due to both the complex 

PK of IFX described above, and the use of multiple disease markers, some of which also express 

complex kinetics (e.g. albumin) [76]. Binding of TNFα by IFX neutralises the TNFα-induced cascade 

of events, leading to an improvement of IBD clinical activity (e.g. reduction in pain and diarrhoea), 

promotion of mucosal healing, and normalisation of disease (bio)markers (e.g. CRP, albumin). This is 

further complicated by the bidirectional PK/PD relationship outlined above (Figure 4).  

Therapy challenges 

Typical dosing regimen of IFX comprises 5 mg/kg IFX doses on weeks 0, 2, and 6 (“induction phase”) 

and every 8 weeks (q8w) thereafter (“maintenance phase”). Although the efficacy of IFX in IBD has 

been established [57-65], the IFX therapy still meets challenges posing obstacles to a successful IBD 

therapy. Namely, ~1/3 of patients do not respond to IFX therapy from the very beginning of the 

treatment (“primary non-responders”), whereas in ~1/2 of primary responders the response gradually 

fades over time (“secondary non-responders”) [77]. The primary non-response is likely due to different, 

i.e. non-TNFα-driven, underlying disease mechanisms, with potential contribution of underexposure 

during induction phase. The secondary loss of response is postulated to, at least partly, originate from 

lower IFX exposure and the formation of ADA [78]. Due to the protein nature of IFX, ADA develop as 
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a part of the typical reaction of the organism to the foreign protein. The ADA molecules bind IFX to 

form immune complexes, increasing thereby elimination of IFX and leading to decreased IFX exposure 

and reduced efficacy. Additional challenges are met in special populations, exemplified by the dilemma 

whether to discontinue IFX therapy in later trimesters of pregnancy in pregnant IBD patients in order 

to minimise the foetal exposure, or to continue the IFX therapy throughout the pregnancy in order to 

maximise the chances of maintaining therapeutic IFX levels, and thus disease remission, in the patient. 

1.3  In silico approach to leverage in vivo data 

1.3.1 Pharmacometric modelling and simulation 

Pharmacometrics is defined as “the science of developing and applying mathematical and statistical 

methods to characteri[s]e, understand, and predict a drug’s PK, PD, and biomarker-outcomes 

behavio[u]r” [79]. Together with other quantitative approaches, specifically physiologically-based PK 

(PBPK) and quantitative systems pharmacology (QSP) modelling and simulations (Figure 5), 

pharmacometrics (e.g. population analysis) has proved itself a crucial means for gaining knowledge of 

relevant mechanisms, informing drug development, and assisting in therapeutic decision-making.  

In the past years, the impact of pharmacometrics has been increasing, and its value is widely recognised 

across therapeutic areas, by also both regulatory agencies and pharmaceutical industry [80-82]. From 

the drug development perspective, pharmacometrics is often used to support the registration of newly 

developed drugs (including IBD drugs), often informs the choice of the approved dosing regimens of 

Figure 4. Illustration of highly intertwined PK and PD events in IFX treatment of IBD. The black arrows represent 

the events initiated by IFX administration, whereas the green arrows represent the effect of PD on IFX PK. ALB: 

Albumin concentration; CRP: C-reactive protein concentration; FCal: Faecal calprotectin concentration; IFX: 

infliximab concentration; TNF: Tumour necrosis factor-α concentration. 
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drugs, and in some cases even obliviates the need for clinical trials, for instance in cases of changing 

the initially approved dosing regimen of a drug [83-85]. From the clinical perspective, the value of 

pharmacometrics lies in its potential to support post-approval treatment optimisation in the clinical 

routine, and thereby improve the therapy success [86-89]. This is especially true in certain cases, such 

as the treatment of special populations (e.g. paediatrics [90], critically ill patients [89]), the Therapeutic 

Drug Monitoring setting, and for drug dose-exposure-response investigations [91]. Finally, adequate 

implementation of the concept of individualised dosing (i.e. personalised or precision medicine) relies 

heavily on modelling and simulation techniques [86]. 

Pharmacometric analyses comprise application of modelling techniques on clinical data with the goal 

to “integrate data, knowledge, and mechanisms to aid in arriving at rational decisions regarding drug 

use and development” [92]. Of special interest is a compartmental, population approach – the nonlinear 

mixed-effects (NLME) modelling approach – whereby a model is fitted to the entirety of available data 

simultaneously, and typical trends (population parameters, “fixed effects”) and variability (“random 

effects”) between and within individuals are estimated. A NLME model usually comprises three 

submodels: (1) a structural model that describes the typical profile of the analysed population, (2) a 

Figure 5. Common classification of modelling and simulation approaches: (1) nonlinear mixed-effects (NLME) 

population PK modelling, (2) physiologically-based PK (PBPK) modelling, and (3) quantitative systems 

pharmacology (QSP) methods. The three approaches can be used complementarily to inform drug development 

and clinical decision making. Parts of the figure were taken and adjusted from Servier Medical Art 

(https://smart.servier.com, Creative Commons Attribution 3.0 Unported License; last access on: 26 Jun 2019). 

CMT: Compartment; NLME: Nonlinear mixed-effects; PBPK: Physiologically-based pharmacokinetic 

modelling; QSP: Quantitative systems pharmacology. 
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statistical model that quantifies the variability at different levels (e.g. within a patient, across patients, 

across occasions), and (3) a covariate model that enables explaining (a part of) the variability by 

predictive patient-, disease-, and therapy-related factors, i.e. covariates [93]. The pharmacometric 

aspects relevant for herein presented work are given in Methods section of the thesis. 

1.3.2 Current modelling knowledge and contributions in IBD 

A number of quantitative studies have focused on IBD, with some of them significantly contributing to 

the understanding of the disease mechanisms and therapeutic decision-making. While unveiling of the 

disease mechanisms and therapeutic targets has benefited most from QSP models (which have identified 

inhibitory effects of IL-10 on inflammatory macrophages [18] – a believed mode of action of anti-TNFα 

mAbs [95], linked the cytokines to the clinical efficacy endpoints [96], and provided insights in mono- 

and combination therapies [97,98]), empirical/mechanism-motivated population models are most often 

employed to analyse clinical data and directly derive inferences about the therapy management.  

To this end, multiple population PK models have been developed for drugs used in IBD [99-108]. These 

models enabled identification of subpopulations at risk of therapy failure, and provide a means for more 

individualised therapy decisions. For instance, they revealed that development of ADA, a higher disease 

activity and a higher body weight increase elimination of IFX, thereby predisposing these populations 

to IFX underexposure. Integration of PBPK and population approaches has been undertaken as well, 

notably to translate knowledge of adult PK to paediatrics, providing predictions of ADA dynamics as 

well [109]. Furthermore, the superiority of model-based dosing in terms of maintaining target 

concentration of IFX in patients with IBD has been demonstrated using simulations [110]. 

The scope of the empirical semi-mechanistic models of IBD drugs is more recently being broadened to 

PD aspects as well. Dreesen et al. applied NLME modelling approach to compare different exposure 

targets in regard to the prediction of mucosal healing in UC. They used the model to derive a target 

exposure at week 12 of therapy that predicts mucosal healing in 70% of the patients. Thus, these results 

provide a basis for improved outcomes in IBD patients receiving IFX therapy [64]. Furthermore, a 

population PK/PD model relating IFX exposure to faecal calprotectin concentration and mucosal 

healing in Crohn’s disease patients was recently reported [108]. That study reported a high variability 

in biomarker response, arguing towards monitoring of the biomarker in addition to IFX concentration.  

While increasing presence of modelling and simulation in the IBD area is evident, exploiting the 

quantitative approaches to their fullest extent to integrate all available knowledge and translate into 

versatile clinical tools ultimately improving clinical outcomes remains a goal for the future. In addition 

to the above given examples, modelling and simulation bears the potential for shedding a light on and 

predicting immunogenicity to the therapeutic mAbs and factors that influence it, identifying drug 

exposure targets related to disease (bio)markers, or support unveiling, predicting and preventing loss of 

response to the therapy so often encountered in IBD patients.  
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1.4  Aims and research questions 

 

The overall objective of this work was to contribute to the improvement of success of IBD treatment 

and the rational use of IFX in the therapy of IBD. This complex objective was split into the following 

subobjectives: 

- Characterisation of systemic IFX exposure in IBD and identification of factors leading to 

underexposure – addressed in Paper I; 

- Characterisation of relationship between IFX exposure and IBD activity in a general IBD 

patient population and patients with treatment failure – addressed in Papers I and II, to: 

- identify disease activity marker(s) that can be quantitatively related to IFX exposure, 

- mechanistically describe and quantify the effect of IFX exposure on IBD activity, 

- determine the maximum effect of IFX on the disease activity marker and corresponding 

IFX exposure, 

- investigate alternative dosing regimens leading to adequate therapy; 

- Investigation and understanding of the impact of study design on identifiability of mAb 

clearance models – addressed in Paper III; 

- Identification and quantification of potential pregnancy-induced changes of IFX exposure and 

assessment of the current IFX dosing strategy in pregnancy – addressed in Paper IV. 
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2 Data and methodological approaches 

 

2.1  Data 

Clinical data for the analyses reported in Papers I-IV were provided as elaborated below and 

summarised in Table 1. 

Table 1. Overview of all analysed clinical data. 

 

2.1.1 Clinical study I design (Paper I) 

Clinical data were collected as part of an investigator-initiated trial at the University Hospital of the 

Medical University of Vienna. The study included 121 IBD patients (89 with CD, 31 with UC and 1 

patient with undetermined IBD type) receiving maintenance (>6 weeks) IFX therapy. Absolute IFX 

doses ranged from 100 to 1300 mg (median 400 mg). As part of Therapeutic Drug Monitoring, 388 
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blood samples were obtained, mainly at minimum concentration (‘trough’, Cmin) levels and at the middle 

of the dosing interval in the period 2010-2012. Relevant PK/PD-related and covariate data were 

obtained: serum concentration of IFX, ADA, CRP and albumin, body weight, smoking status, sex, 

disease duration, HBI, number or surgeries, disease location, behaviour, age at diagnosis per Montreal 

classification for CD and disease severity per Montreal classification for UC, IFX dosing, and co-

therapy information.  

Concentrations of IFX and ADA that were provided for the analysis had been quantified using IDK 

monitor® enzyme-linked immunosorbent assay (ELISA; Immunodiagnostik AG, Bensheim, Germany 

[111], and a homogeneous liquid-phase mobility shift assay (Prometheus® Anser® ADA, Prometheus 

Laboratories Inc., San Diego, California [112]), respectively. 

2.1.2 Clinical study II design (Paper II) 

Data comprised a subset of the dataset collected as part of a “parent” 12-week, single-blinded, 

multicentre, randomised clinical trial, with a 20-week follow-up period. The parent trial population 

comprised CD patients previously on maintenance IFX treatment (5 mg/kg q5w-q8w) who experienced 

treatment failure. The treatment failure was defined as CDAI≥220 and/or presence of ≥1 draining 

perianal fistula. The trial comprised two arms, receiving either IFX (5 mg/kg) at an intensified dosing 

frequency of q4w (arm A), or personalised IFX treatment informed by circulating IFX and ADA 

concentration, according to a treatment algorithm (arm B; Paper II). The blood sampling was performed 

at the time of screening (before the first trial dose) and at study weeks 12 and 20. In addition, presence 

of ADA, disease activity as per CDAI, CRP concentration, and patient-related covariate data were 

collected throughout the study (at weeks 0, 4, 8, 12, and 20).  

The analysis reported in Paper II was performed on a subset of the parent trial population, selected to 

minimise confounding factors. The subset (n=47) included patients treated with 5 mg/kg IFX at q4w 

dosing frequency. The patients in whom IFX treatment was ceased were included up to 4 weeks after 

the last IFX dose. For the patients who were switched to another dosing frequency at the end of the 

study period (week 12) all subsequent (past week 12) assessments were excluded. Furthermore, for 

investigations related to CDAI four additional patients who had fistulising disease activity only were 

excluded, for the reasons of previous reports of inappropriateness of CDAI for disease activity 

assessment in fistulising disease [113]. These patients were however included in investigations related 

to CRP concentrations. 

Concentrations of IFX and ADA that were provided for the analysis had been quantified using a 

homogenous mobility shift assay [112], whereby unbound IFX and total (unbound + IFX-bound) ADA 

concentrations were measured. 
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2.1.3 Clinical study III design (Paper III) 

Data were compiled from two multicentre clinical trials (Figure 6) in patients (npatients=226, 

nsamples=3821) with advanced rat sarcoma proto-oncogene (RAS) wild-type metastatic colorectal cancer 

on treatment with cetuximab, as detailed below. Full study descriptions are reported elsewhere 

[114,115].  

 

Figure 6. Overview of the dosing and PK sampling schemes from the clinical studies analysed in Paper III. (A) 

Dosing algorithm; (B) Pharmacokinetic sampling schedule.  

The Ph1 trial [114] was a phase I, open-label trial in which PK and PD of cetuximab were evaluated. 

During initial 6 weeks, the patients, assigned to two arms, received i.v. cetuximab as monotherapy. The 

patients in the arm A received cetuximab as per approved dosing regimen (ADR), comprising initial 

400 mg/m2 infusion and subsequent weekly 250 mg/m2 infusions. The patients in the arm B were further 

assigned to 4 treatment groups, comprising cetuximab doses of 400, 500, 600, and 700 mg/m2 q2w. 

From week 7 on, all patients in addition to cetuximab started FOLFIRI treatment, which comprised co-

therapy with irinotecan (180 mg/m2), 5-fluorouracil (180 mg/m2 bolus and 46-h 2400 mg/m2 infusion) 
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and folic acid (2-h 400 mg/m2 infusion). Throughout the duration of the trial PK samples were taken at 

Cmin levels. Additional PK samples were collected at the end of the first cetuximab infusion and over 

the dosing interval starting on day 29: at the end of infusion and at 4, 24, 48, 96, and 168 hours after 

the start of infusion in arm A, and at the end of infusion and at 4, 24, 48, 96, 168, 240, and 336 hours 

after the start of infusion in arm B. 

The EVEREST trial [115] was a phase I/II, open-label, randomised, controlled trial that evaluated PK 

and PD of cetuximab dose escalation. All patients were co-treated with cetuximab (ADR) and irinotecan 

for the first 3 weeks. Subsequently, the patients were assigned to 3 treatment groups, dependent on 

fulfilment of randomisation criteria. The patients who had neither required irinotecan discontinuation 

nor experienced skin reaction of grade >1 or any other cetuximab-related toxicity of grade >2 were 

deemed eligible for randomisation. The eligible patients were thereafter treated with either cetuximab 

ADR (group A) or underwent cetuximab dose escalation (group B). The dose escalation comprised 

increasing cetuximab dose by 50 mg/m2 per week, up to the maximum dose of 500 mg/m2/week. The 

patients who were not eligible for randomisation (group C) continued the cetuximab ADR-irinotecan 

co-treatment. Throughout the duration of the trial, PK samples were taken at Cmin levels. Additional PK 

samples in groups A and C were collected at the end of infusion and 6, 24, 48, 72, and 168 hours after 

the start of infusion. Additional dense sampling in group B was obtained from 5 patients from each dose 

level over the dosing interval starting on the second dose of the dose level. In both trials, the patients 

were treated until disease progression or an unacceptable adverse event. 

2.1.4 Clinical study IV design (Paper IV) 

Data were collected as part of a bicentre prospective clinical study that included all pregnant IBD 

patients treated with IFX until 2018 at the Copenhagen University Hospital Herlev, Denmark, and 

Sheba Medical Hospital, Israel. Patients (npatients=19, npregnancies=23, nsamples=172) with at least one 

biobanked blood sample during pregnancy were included. The patients were at maintenance therapy at 

the time of conception, receiving IFX doses of 5 mg/kg q8w, 5 mg/kg q6w, 5 mg/kg q10w, or 10 mg/kg 

q8w. During pregnancy, the absolute dose administered to each patient remained the same as prior to 

pregnancy, i.e. based on the pre-pregnancy body weight. The samples were taken at Cmin levels before, 

during and after pregnancy, and stored at -80°C until their analysis. For quantification of IFX an 

immunofluorometric ELISA was employed on the automated dissociation-enhanced lanthanide 

fluorescent immunoassay platform (AutoDELFIA; PerkinElmer, Turku, FIN [116]). In addition to the 

PK measurements, covariate information was collected as well, including disease activity assessment 

(HBI for CD, and Simple Clinical Colitis Activity index or partial Mayo Score for UC), ADA status, 

body weight, concomitant medication, serum albumin concentration, platelet and white blood cell 

count. The presence of ADA was assessed in samples with IFX concentration ≤5 µg/mL using an 

AutoDELFIA automated drug-sensitive ELISA that measures unbound neutralising ADA 
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concentration. All samples were analysed simultaneously under blinded conditions at the Dept. of 

Medical Biochemistry, Oslo, Norway. 

2.2  Pharmacometric data analyses 

In all papers (Papers I-IV) graphical and statistical data analyses were performed as a first step, in order 

to gain insights into the data and investigate potential trends of interest. Subsequently, pharmacometric 

PK(/PD) models were developed in Papers I, III and IV using the NLME approach [93], as elaborated 

below. 

2.2.1 Fundamentals of pharmacometric modelling 

A general analysis workflow as applicable in all below described analyses is shown in Figure 7. Briefly, 

after the clinical data (see 2.1) was collected at the clinical sites, the datasets were formatted to a 

software-specific input file format. Subsequently, exploratory analyses were performed and, if 

indicated, PK(/PD) NLME model development was initiated. All investigated models were evaluated 

(e.g. goodness of fit, precision, etc.). Once the most adequate (“final”) model was identified, an 

extensive assessment of the model performance was undertaken, to challenge and confirm/disprove the 

adequacy of the model. Thus, the model development was an iterative procedure, whereby the learnings 

from the evaluation step were used to update the model, and the evaluation was repeated. After the final 

model had been developed, simulations based on this model were performed, to answer further research 

questions. 

Dataset management: Formatting and checkout 

The clinical data collected was recorded in a so-called ‘raw’ format, and formatting and cleaning the 

dataset was oftentimes necessary prior to the analysis. The formatting requirements posed by 

NONMEM® (ICON Plc, Ireland) – the software used in all herein reported pharmacometric analyses – 

include, but are not limited to: chronological ordering of (dosing, sampling, or other) events, inclusion 

Figure 7. Main steps of the general pharmacometrics analysis workflow. 
 



Data and methodological approaches 
 

20 
 

of required information (e.g. columns containing: identifier for each patient in the dataset, dependent 

variable, flag for missing dependent variable, flag for values below lower limit of quantification 

[LLOQ], event compartment). As the next step, a dataset checkout was performed, in order to (1) 

confirm whether the software-specific data structure had been achieved, and (2) assess plausibility and 

completeness by identifying incomplete or missing values and measurements <LLOQ of the 

bioanalytical assay; e.g. if frequency of dependent variable measurements <LLOQ of the analytical 

assay was ≤10% these samples were flagged and excluded from the modelling dataset [117]. The dataset 

management was performed using R and RStudio, and NONMEM-ready datasets were saved in 

comma-separated values (csv) format.  

Exploratory analyses 

Once the final dataset was created, exploratory analyses were performed, comprising graphical and 

statistical exploration of the data, in order to summarise the data (e.g. distributions), and detect potential 

trends of interest in the data and test for their significance (e.g. correlation between variables). Common 

investigations included, but were not limited to, relationship between dependent variable (e.g. drug 

concentration) and independent variable (e.g. time), relationship between dependent variable and 

covariates, and correlation between covariates.  

Nonlinear mixed-effects model development 

As briefly mentioned in the Introduction (see 1.3.1), the NLME approach [93] enables analysis of data 

from all individuals in a population simultaneously by using nonlinear function to describe the 

relationships between the dependent variable and model parameters/independent variable. The resulting 

model is defined in terms of (“mixed”) fixed- and random-effects parameters, which are constant and 

vary among individuals, respectively. A typical NLME model consists of three main parts: (1) the 

structural submodel, (2) the statistical submodel, and (3) the covariate submodel.  

The structural submodel defines behaviour in the typical individual in the population, e.g. in a PK 

model the typical drug concentration-time profile in the population: 𝑌𝑖𝑗 =  𝑓(𝜙𝑖, 𝑥𝑖𝑗) 

, where Yij denotes the observed dependent variable of the ith individual at the jth observation, f the 

nonlinear function (i.e. the structural model), 𝜙𝑖 vector of model parameters (e.g. clearance [CL], 

volume of distribution) of length k, and xij study design variables (e.g. administered dose).  

The statistical submodel quantifies the variability at different levels and thus together with the 

structural model defines individual behaviour, e.g. individual drug concentration-time profiles of the 

patients in a population. Commonly, a statistical submodel comprises between-patient variability and 

residual unexplained variability (RUV), although other levels of variability (e.g. between-occasion 
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variability) can be implemented as well. The between-patient variability in a parameter (e.g. CL) 

captures the deviations of the individual parameter value (i.e. empirical Bayes or maximum a posteriori 

estimate; EBE) from the typical model parameter value in the population. Due to the nature of the data, 

the model parameters in NLME models are often assumed to be log-normally distributed (and thus non-

negative), and the between-patient variability is then modelled using an exponential relationship [93]: 𝜙𝑖𝑘 = 𝜃𝑘 ∙ 𝑒𝜂𝑖𝑘 , 𝜂𝑘~𝒩(0, 𝜔𝑘2) 

, where 𝜙𝑖𝑘 denotes the kth model parameter of the ith individual, 𝜃𝑘 typical value of the parameter, 𝜂𝑘 

vector of random-effects parameters of all the individuals in the population, 𝜂𝑖𝑘 individual random-

effect parameter value, and 𝜔𝑘2 variance of the estimated random-effects parameter. For easier 

interpretation, the variance of estimated random-effect parameters is usually reported as coefficient of 

variation (CV%) [93]: 

𝐶𝑉% = √𝑒𝜔𝑘2 − 1 ∙ 100% . 

The RUV captures the deviation of the observations from the model predictions; e.g. in case of a PK 

model the difference between the observed and the model predicted drug concentration. The RUV 

model is most often represented via additive, proportional or combined additive and proportional 

function. The combined model is defined as follows: 𝑌𝑖𝑗 = 𝑓(𝜙𝑖 , 𝑥𝑖𝑗) ∙ (1 + 𝜀𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙,𝑖𝑗) + 𝜀𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝑖𝑗  𝜀𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙~𝒩(0, 𝜎𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙2) 𝜀𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒~𝒩(0, 𝜎𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒2) 

, where 𝑌𝑖𝑗 denotes the observed dependent variable, 𝑓(𝜙𝑖, 𝑥𝑖𝑗) the model prediction, 𝜀𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙,𝑖𝑗 

and 𝜀𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝑖𝑗  proportional and additive RUV parameters for the ith individual at the jth observation, 

respectively, 𝜀𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 and 𝜀𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 vectors of proportional and additive RUV parameters for all 

observations of all individuals in the population, 𝜎𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 and 𝜎𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 variance of proportional 

and additive RUV parameters, respectively.  

Of note, between-patient variability in RUV [118] can also be defined, e.g. on the total (combined 

model) RUV: 𝑌𝑖𝑗 = 𝑓(𝜙𝑖, 𝑥𝑖𝑗) + (𝑓(𝜙𝑖, 𝑥𝑖𝑗) ∙ 𝜀𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙,𝑖𝑗 + 𝜀𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝑖𝑗) ∙ 𝑒𝜂𝑅𝑈𝑉,𝑖 , 𝜂𝑅𝑈𝑉~𝒩(0, 𝜔𝑅𝑈𝑉2 ) 

, where 𝑌𝑖𝑗 denotes the observed dependent variable, 𝑓(𝜙𝑖, 𝑥𝑖𝑗) the model prediction, 𝜀𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙,𝑖𝑗 

and 𝜀𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝑖𝑗  proportional and additive RUV parameters for the ith individual at the jth observation, 
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𝜂𝑅𝑈𝑉 vector of random-effects parameters of all the individuals in the population, 𝜂𝑅𝑈𝑉,𝑖 individual 

random-effect parameter value, and 𝜔𝑅𝑈𝑉2  variance of the estimated random-effects parameter. 

Finally, the covariate submodel defines relationships between structural parameters and one or more 

covariates (e.g. body weight, sex). In the herein reported work, the covariate model development 

comprised three steps: (1) pre-selection based on mechanistic plausibility and trends identified in the 

exploratory analysis, (2) univariate covariate modelling, and (3) step-wise modelling, whereby the 

covariates were added to the model in the order of decreasing impact on the model fit (i.e. objective 

function value [OFV]) and afterwards eliminated if removal of a covariate had no substantial impact on 

the model fit. While many different mathematical relationships can be used for this purpose, e.g. 

depending on the nature of the covariate, physiological anticipation, parametrisation and ease of 

interpretation, only the ones relevant for the work conducted within this thesis are given in the 

following: 

- Continuous covariates, power relationship: 

𝑔(𝜃𝑖𝑘 , 𝑐𝑜𝑣𝑖) = 𝜃𝑘 ∙ ( 𝑐𝑜𝑣𝑖𝑐𝑜𝑣𝑚𝑒𝑑𝑖𝑎𝑛)𝜃𝑐𝑜𝑣
 

-  Categorical covariates, fractional change model: 

𝑔(𝜃𝑖𝑘 , 𝑐𝑜𝑣𝑖) = {𝜃𝑘,                         𝑓𝑜𝑟 𝑐𝑜𝑣𝑖 = 𝑎𝜃𝑘 ∙ (1 + 𝜃𝑐𝑜𝑣),   𝑓𝑜𝑟 𝑐𝑜𝑣𝑖 = 𝑏 

- Categorical covariates, binary power relationship: 𝑔(𝜃𝑖𝑘, 𝑐𝑜𝑣𝑖) = 𝜃𝑘 ∙ 𝜃𝑐𝑜𝑣𝑐𝑜𝑣𝑖 , 𝑐𝑜𝑣𝑖 ∈ {0,1} 

, where 𝑔 denotes the covariate function, 𝜃𝑖𝑘value of the kth fixed-effects parameter of the ith individual, 

covi the covariate value in the ith individual, 𝜃𝑘 typical value of the kth fixed-effects parameter, covmedian 

median value of the covariate in the population, 𝜃𝑐𝑜𝑣 the covariate-effect parameter (e.g. exponent in 

power relationship), a and b unique possible values of a categorical, dichotomous covariate. 

Parameter estimation 

For the estimation of the (both fixed-effects and random-effects) model parameters that best fit the 

observed data, the maximum likelihood estimation approach was used, whereby a set of parameters that 

maximises the likelihood of observing the observed data given the model is identified [93,119]. This is, 

for convenience reasons, accomplished by minimising the objective function (OF), defined as: 𝑂𝐹 = −2 ∙ log (ℒ(𝜃, 𝜔2, 𝜎2|𝑌)) 
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, where 𝜃 denotes the vector of fixed-effects parameters, 𝜔2 and 𝜎2 variances of random-effects 

parameters, and Y vector of the observed data. When comparing nested models, comparison of the OFV 

is one of the criteria to identify the model with a better fit (i.e. lower OFV). 

As for most NLME models analytical computation of the likelihood is not possible, the OFV is 

approximated using numerical methods. In the NLME parameter estimation software NONMEM® 

many estimation methods are available for this purpose, including approximation methods that use 

simplified functions to approximate the likelihood, specifically first-order conditional estimation with 

interaction (FOCEI), of importance for the work described herein. In FOCEI method, the mode of joint 

density (i.e. the most likely values of between-patient variability random effects [η]) and the first-order 

approximation of variances of η’s are considered. Thereby, between-patient variability is accurately 

evaluated, and within-patient variability is evaluated via linear approximation [119].   

In the cases when the observed data is sparse, the information contained in the data might not be 

informative enough to inform (precise) estimation of one or more parameters in the model. When prior 

information (e.g. estimates and their uncertainty from a previously developed model) that is deemed 

appropriate are available, the frequentist prior approach [120] can be used to further inform and thereby 

stabilise the estimation of these parameters. This idea – to account for previous knowledge about a topic 

investigated – is the central point of the Bayesian statistics, where a prior distribution of a parameter 

value is combined with the data in order to obtain a new, posterior distribution. A limitation of using 

prior knowledge is that the choice of prior will clearly influence the results, i.e. the posterior distribution 

and final parameter estimates. The major difference between the Bayesian approach and the frequentist 

prior approach is that in the Bayesian statistics the parameters are considered to be random, whereas in 

the frequentist prior approach only the form of the parameter distribution is considered and no 

assumption that the distribution governs the randomness in the parameter is made. As explained above, 

an estimate of a parameter p is usually obtained by minimising the OF with respect to p. If an additional 

rich dataset were available for an analysis in addition to the sparse dataset, one could simply analyse 

the pooled data. In that case, the objective function O would be: 𝑂 = 𝑂𝑆 + 𝑂𝑅 

, where OS and OR denote the OF based on the sparse and rich data, respectively.   

Instead of pooling the data (e.g. if the rich dataset is not readily available), a prior model developed 

using the rich data can be used in place of the rich data itself. For any value of a parameter p, OF from 

the prior model OP can be computed. The OP thus represents the prior information about the value of p 

from the rich data and is used as an approximation of OR: 𝑂𝑅 ≈ 𝑂𝑃 𝑂 = 𝑂𝑆 + 𝑂𝑃 
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During the minimisation procedure, as different values of p are considered, the further the value is from 

the minimum of OP, the larger the OP will be, and the less likely it is that this value is the minimum of 

the OF. Thus, OP is referred to as “penalty”. If there were no information in the sparse data whatsoever, 

then OS → 0 and O → OP [120].  

Model evaluation 

The process of identifying the model that best fits the data is an iterative one between model estimation 

and model evaluation, whereby the changes in the model are informed by the results of model evaluation 

step. The selection criteria most relevant for this work included: plausibility of parameter estimates, 

estimation precision (e.g. relative standard error [RSE] and confidence interval), shrinkage of individual 

parameters towards the typical values [121], goodness-of-fit plots, log-likelihood profiling [122], visual 

predictive checks (VPC) [123]. The goodness-of-fit plots included, but were not limited to: plots of 

observations vs individual and population predictions, conditional weighted residuals (CWRES) [124] 

versus independent variable and population predictions, distributions of random-effects and EBEs.  

Simulations as an application of a model 

Once a model that best describes the data has been developed, the model can be further utilised to 

perform simulations and thereby address further research questions and investigate “what if” scenarios 

(e.g. what if the drug was administered at a different dosing frequency). Deterministic simulations are 

based on fixed-effects parameters and do not account for random-effects parameters, thus representing 

the typical behaviour. Stochastic (Monte Carlo) simulations account for both fixed-effects and random-

effects parameters (e.g. between-subject variability), thus providing information on the variability as 

well. In addition, the stochastic simulation and estimation (SSE) approach automatised in PsN [125] 

was used in this work. The SSE is a useful tool in cases when multiple models are to be investigated in 

a simulation setting: A number of simulated datasets is generated using a reference model, and 

subsequently the reference and alternative models are fitted to the simulated data and statistical 

measures and OFV outputted.  

Details on the pharmacometric approaches applied to each project are given in the following section. 

 

2.2.2 Characterisation of infliximab pharmacokinetic behaviour and 

exposure-response relationship and dosing regimen assessment 

PK model  

In Paper I, to compensate for the sparse nature of the analysed data and support the parameter 

estimation, prior information from the IFX PK model developed by Fasanmade et al. [100] was utilised 
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using the frequentist prior approach. RUV was described with a combined model and between-patient 

variability in RUV [118], thereby allowing RUV to vary among the patients. 

PK/PD model development 

In Papers I and II relationships between IFX exposure and IBD activity measures were addressed. 

Graphical analyses were performed as described above and, as indicated by these results, in Paper I 

PK/PD model development was undertaken with CRP concentration as an IBD activity marker.  

The PK/PD model relating IFX to CRP concentration was implemented via a sequential modelling 

approach: after the final PK model was developed, the EBEs were passed to the continuous PD model 

(instead of simultaneously fitting PK and PD data). Based on the pharmacological mechanisms and 

immunological sequence of events, the IFX effect-induced CRP concentration changes were anticipated 

not to be instantaneous, and thus an indirect effect, turnover PD model [92] was employed [126]: 

𝐸𝑏𝑎𝑠𝑒 = 𝑘𝑖𝑛𝑘𝑜𝑢𝑡 

, where Ebase denotes baseline steady-state level of the effect, and kin and kout rate constants for the 

biomarker production and removal, respectively. 

The IFX impact was implemented via an inhibitory effect on CRP synthesis and Emax relationship [126]: 

𝐸 = 𝐸𝑚𝑎𝑥 ∙ 𝐶𝑑𝑟𝑢𝑔𝐸𝐶50 + 𝐶𝑑𝑟𝑢𝑔 

, where E denotes the drug effect, Cdrug the drug concentration, and EC50 the concentration of the drug 

at half-maximal effect (i.e. when E is 50% Emax).  

To stabilise the estimation of the random-effects parameters of the PD model, the frequentist prior 

approach was employed.  

In order to present a clinically relevant and intuitive measure of the drug’s potency, IFX concentration 

at 90% of the maximum effect (EC90) was calculated as follows [127]: 𝐸 = 0.9 ∙ 𝐸𝑚𝑎𝑥 

0.9 ∙ 𝐸𝑚𝑎𝑥 = 𝐸𝑚𝑎𝑥 ∙ 𝐶𝑑𝑟𝑢𝑔𝐸𝐶50 + 𝐶𝑑𝑟𝑢𝑔 

More general: 

𝐸 = 𝐹[%]100[%] ∙ 𝐸𝑚𝑎𝑥 
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𝐹[%]100[%] ∙ 𝐸𝑚𝑎𝑥 = 𝐸𝑚𝑎𝑥 ∙ 𝐶𝑑𝑟𝑢𝑔𝐸𝐶50 + 𝐶𝑑𝑟𝑢𝑔 

𝐹[%] = 𝐶𝑑𝑟𝑢𝑔𝐸𝐶50 + 𝐶𝑑𝑟𝑢𝑔 ∙ 100[%] 
By solving for Cdrug: 𝐹[%] ∙ (𝐸𝐶50 + 𝐶𝑑𝑟𝑢𝑔) = 𝐶𝑑𝑟𝑢𝑔 ∙ 100[%] 𝐹[%] ∙ 𝐸𝐶50 = 𝐶𝑑𝑟𝑢𝑔 ∙ (100[%] − 𝐹[%]) 

∴  𝐶𝑑𝑟𝑢𝑔 = 𝐹[%]100[%] − 𝐹[%] ∙ 𝐸𝐶50 

, where E denotes F% of the maximum drug effect, Emax the maximum drug effect, EC50 the 

concentration of the drug at half-maximal effect (i.e. for F=50%), Cdrug drug concentration.  

Assessment of standard dosing regimen of IFX 

To assess the standard and alternative dosing regimens of IFX in terms of CRP remission achievement, 

stochastic simulations (n=1000) were performed using the final PK/PD model, accounting for the most 

influential covariates identified. The investigated dosing regimens differed in dosing frequency in the 

maintenance phase (q4w to q12w), whereas the administered dose (5 mg/kg) and induction phase dosing 

frequency (weeks 0, 2, and 6) were kept constant, corresponding to the current standard. The CRP 

remission was defined as CRP < 5 mg/L [128].  

2.2.3 Clearance of monoclonal antibodies: Cetuximab case study 

PK model development 

In Paper III, the “log-transform both sides” approach [93] was utilised, whereby both the data and the 

model predictions were ln-transformed. Of note, the model parameters are not transformed and thus 

retain their initial interpretation. Six different base models were investigated, focusing on the CL 

component: 

Linear (LCL) [129]:  

 
𝑑𝐴1𝑑𝑡 = −𝑄 ∙ 𝐶1 + 𝑄 ∙ 𝐶2 − 𝑪𝑳 ∙ 𝑪𝟏 

Time-varying linear (TVARCL): 

 
𝑑𝐴1𝑑𝑡 = −𝑄 ∙ 𝐶1 + 𝑄 ∙ 𝐶2 − 𝑪𝑳 ∙ 𝒆(𝑬𝒎𝒂𝒙,𝑪𝑳+𝜼𝑬𝒎𝒂𝒙𝑪𝑳)∙𝒕𝜸𝒕𝟓𝟎𝜸+𝒕𝜸 ∙ 𝑪𝟏 

Michaelis-Menten (MMCL) [130]: 
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𝑑𝐴1𝑑𝑡 = −𝑄 ∙ 𝐶1 + 𝑄 ∙ 𝐶2 − 𝑽𝒎𝒂𝒙∙𝑪𝟏𝑲𝒎+𝑪𝟏  

Parallel LCL and MMCL (LCL+MMCL): 

 
𝑑𝐴1𝑑𝑡 = −𝑄 ∙ 𝐶1 + 𝑄 ∙ 𝐶2 − 𝑪𝑳 ∙ 𝑪𝟏 − 𝑽𝒎𝒂𝒙∙𝑪𝟏𝑲𝒎+𝑪𝟏  

Parallel TVARCL and MMCL (TVARCL+MMCL):  

 
𝑑𝐴1𝑑𝑡 = −𝑄 ∙ 𝐶1 + 𝑄 ∙ 𝐶2 − 𝑪𝑳 ∙ 𝒆(𝑬𝒎𝒂𝒙,𝑪𝑳+𝜼𝑬𝒎𝒂𝒙𝑪𝑳)∙𝒕𝜸𝒕𝟓𝟎𝜸+𝒕𝜸 ∙ 𝑪𝟏 − 𝑽𝒎𝒂𝒙∙𝑪𝟏𝑲𝒎+𝑪𝟏  

Parallel linear and zero-order (LCL+0.EL) [131]: 

 
𝑑𝐴1𝑑𝑡 = −𝑄 ∙ 𝐶1 + 𝑄 ∙ 𝐶2 − 𝑪𝑳 ∙ 𝑪𝟏 − 𝒌𝟎 

, where A1 denotes drug amount in central compartment, C1 and C2 drug concentration in central and 

peripheral compartment, respectively, Q intercompartmental flow, CL linear clearance from central 

compartment, Emax,CL maximum change in time-varying linear CL, ηEmaxCL between-patient variability 

in Emax,CL, t50 time at which clearance is halved, γ curve shape factor, Vmax maximal rate of saturable 

elimination, Km concentration at half Vmax, and k0 zero-order rate constant of elimination from central 

compartment. 

Covariates were investigated for significance using the full fixed-effects modelling approach [132], 

whereby covariates were pre-selected based on data availability and mechanistic and pharmacological 

plausibility, and simultaneously implemented in the final base model. The resulting “full covariate 

model” was fit to the data and each covariate evaluated with respect to its impact on between-patient 

variability, estimation precision and extent of the effect.  

Study design investigations 

For further analysis, the four study designs and the six investigated models were compared using the 

SSE approach. The final base model developed as described above was considered the reference model. 

A simulation population of 100 virtual patients was generated, with body surface area – relevant for 

dosing purposes – sampled in such a way to correspond to the clinical database and assumed to be time-

constant. Using the reference model and the simulation population, 200 datasets were generated. The 

six models were fitted to the 200 datasets, and accuracy and bias (root mean squared error; RMSE) 

[133] in parameter estimates and exposure metrics assessed. This procedure was repeated for the four 

study designs, followed by comparison. 

The four study designs (Figure 8) differed in the number of dosing levels (single vs multiple) and 

sampling density (rich vs sparse). In all study designs, all virtual patients received an induction dose of 

400 mg/m2 at infusion rate of 5 mg/min. The subsequent doses were administered at an infusion rate of 
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10 mg/min. After the induction dose, the virtual patients received the following doses of cetuximab 

q1w: 

- 200, 250, 300, 350, 400, 450, or 500 mg/m2
 in study designs A and C; 

- the approved dose (250 mg/m2) in study designs B and D. 

In all virtual patients across the study designs PK samples were taken at Cmin after each dose until week 

12. At week 12 the patients were stratified in 5 sampling groups. In each group PK sampling was 

performed once monthly for three consecutive months, distributed over the period up to 18 months since 

study start. In the “rich” study designs (A and B), additional samples were taken after the 5th dose at the 

end of infusion and 4, 24, 48, 72, and 96 h after the start of the infusion. 

Investigated exposure metrics were Cmin and area under the concentration-time curve (AUC) after the 

second dose and at steady state, where steady state was defined as approximate time when 90% of 

maximal linear CL decrease had occurred.   

2.2.4 Infliximab pharmacokinetics in pregnancy 

PK model development 

As a first step, a fundamental (“initial”) PK model was developed using only pre-pregnancy data 

(nsamples=94, i.e. 55% of all PK samples). Subsequently, the initial model with the structural PK 

parameters fixed to the final estimates was fit to the totality of data (i.e. pre-, in- and post-pregnancy), 

and the potential effects of pregnancy and pregnancy trimester were investigated as covariates. Finally, 

other covariates of interest were pre-selected based on the data availability (e.g. the range of the 

covariate values) and exploratory analyses, and investigated in the model. 

Simulations to investigate IFX (dis)continuation in pregnancy 

Using the final model, deterministic and stochastic simulations were performed in order to demonstrate 

the concentration-time profiles of typical patients and a patient population, respectively. For stochastic 

simulations, a simulation population comprising 6000 virtual patients was generated, whereby the 

patients differed in significant covariates (ADA and pregnancy status) and strategy of IFX 

Figure 8. Overview of the four investigated study designs. 
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administration during pregnancy (dis-/continuation of IFX in the third trimester). The ADA status 

(positive/negative) was assigned on the patient level, i.e. as a time-invariant covariate. For pregnant 

patients, the date of conception corresponded to the second maintenance IFX administration (week 22 

of IFX therapy). All patients were assigned to receive an IFX dose corresponding to 5 mg/kg (standard 

dosing strategy) for a standard 65 kg patient, i.e. 325 mg, at a standard dosing interval (week 0, 2, 6, 

and q8w thereafter). The simulated exposures were further processed to calculate the percentage of 

patients reaching three PK targets: 3, 4, and 5 µg/mL at week 62 of therapy – corresponding to week 

40 of pregnancy in the pregnant patients. The calculated target achievement was compared relative to 

ADA status, pregnancy status, and dis-/continuation of IFX in the third trimester. 

2.3  Software 

Throughout all projects the pre- and post-processing was performed using R (version ≥3.2.4) and 

RStudio, and modelling and simulation activities using NONMEM® (version 7.3, ICON Plc, Ireland), 

PsN (https://uupharmacometrics.github.io/PsN/; in Paper I and Paper IV version ≥4.7.0, in Paper III 

version 4.4.8) and Pirana (https://www.certara.com/software/pirana-modeling-workbench/). In Paper 

III all estimations were performed on a Linux (version 3.0.101) cluster with SUSE operating system 

using Sun Grid Engine and the GFortran complier.  
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3 Results and Discussion  

 

Pharmacometrics holds a potential to overcome some of the many challenges faced in the management 

of IBD, from identification of useful biomarkers, to dosing decisions, to therapeutic decisions in special 

patient populations. As many other mAbs, IFX is dosed on body size-based basis, the assumption being 

that adjusting for body size (i.e. body weight) will partly compensate for between-patient differences 

and result in a similar exposure among the patients. In a side project outside of this thesis [134] it has 

however been demonstrated that body weight-based and flat (same absolute dose for all patients) dosing 

of IFX resulted in a similar exposure distribution in a patient population. This indicated that a more 

quantitative, more individualised, approach is required for IFX dosing in IBD. The herein reported work 

provides insights offering support to the clinical management of IBD, including biomarker choice and 

dosing decisions, in a general patient population, and a special population, i.e. pregnant IBD patients. 

3.1  Pharmacokinetic behaviour of infliximab 

For the development of the IFX PK model in a general patient population (Paper I), 388 PK samples 

from 121 patients were available. The model that described the data best was a 2-compartment model 

with linear elimination. To stabilise the estimation of the PK parameters for which the information in 

the data were insufficient (central volume of distribution V1 and intercompartmental flow Q), estimates 

from a published model [100] were used. Initially, the estimation of between-patient variability in V1, 

V2, and CL was also informed by prior, however as CL was of interest for covariate investigations, and 

between-patient variability in CL could be estimated from the data, the use of prior for the random-

effects parameters was abandoned, and the variability in V1 and V2 instead fixed. For RUV, a mixed 

additive and proportional model was used. The RUV was “individualised”, i.e. allowed to vary among 

patients, by introducing the between-patient variability in RUV. On the onset of covariate modelling, 

the parameters informed by the prior were fixed to their final estimates from the base model. The (time-

varying) covariates found to significantly influence IFX CL were ADA status, serum albumin 

concentration, body weight, and co-medication with immunomodulators. Table 2 (upper part) gives 

parameter estimates of the final PK model. The equations describing the final model were as follows:  

𝐶𝐿 = 𝐶𝐿𝑝𝑜𝑝 ∙ (1 + θ𝐴𝐷𝐴_𝐶𝐿 ∙ 𝐴𝐷𝐴) ∙ ( 𝑠𝐴𝑙𝑏43 𝑔/𝐿)θ𝑠𝐴𝑙𝑏_𝐶𝐿 ∙ ( 𝐵𝑊70 𝑘𝑔)θ𝐵𝑊_𝐶𝐿 ∙ θIMM_CL
𝐼𝑀𝑀 ∙ 𝑒𝜂𝐶𝐿 

𝑉1 = 𝑉1,𝑝𝑜𝑝 ∙ 𝑒𝜂𝑉1 𝑉2 = 𝑉2,𝑝𝑜𝑝 ∙ 𝑒𝜂𝑉2 𝑄 = 𝑄𝑝𝑜𝑝, 
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, where CL denotes the individual CL value, CLpop the typical CL of the population, ADA the status of 

ADA (0 for ADA- and 1 for ADA+), sAlb the serum albumin concentration, BW the body weight, IMM 

an indicator (0 for absence, 1 for presence) for co-therapy with immunomodulators, ηCL the between-

patient variability in CL, V1 the individual volume of central compartment, V1,pop the typical central 

compartment volume of the population, V2 the individual volume of peripheral compartment, V2,pop the 

typical peripheral compartment volume of the population, Q the individual intercompartmental 

exchange flow, Qpop the typical intercompartmental exchange flow of the population.  

Table 2. Parameter estimates of the final PK/PD model relating IFX exposure to CRP synthesis inhibition. 

Parameter, unit  Mean (%RSE) [%shrinkage] 

PK submodel parameters  

   Central volume of distribution V1, L 3.67 (-) 

   Intercompartmental flow Q, L/h 0.0067 (-) 

   Peripheral volume of distribution V2, L 0.956 (11) 

   CL, L/h 0.0109 (3) 

   Effect of ADA on CL 0.972 (4) 

   Effect of Alb on CL -1.17 (21) 

   Effect of body weight on CL 0.356 (41) 

   Effect of IMM co-therapy on CL 0.847 (5) 

   Between-patient variability in V1, %CV 12.8 (-) [83] 

   Between-patient variability in V2, %CV 55.3 (-) [56] 

   Between-patient variability in CL, %CV 34.9 (8) [6] 

   Additive RUV in PK, SD (μg/mL) 0.478 (21) [17] 

   Proportional RUV in PK, %CV 24 (14) [17] 

   Between-patient variability in RUV, %CV 22.2 (18) [46] 

PD submodel parameters  

   Baseline CRP concentration, mg/L 6.32 (17) 

   CRP degradation rate constant kdeg, h-1 0.0365 (-) 

   Half-maximal inhibitory concentration IC50, μg/mL 2.04 (43) 

   Maximum effect Imax, % 71.9 (9) 

   Between-patient variability in IC50, %CV 209 (42) [28] 

   Between-patient variability in baseline CRP concentration, %CV 115 (15) [0] 

   Proportional RUV in PD, %CV 65.3 (4) [10] 
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RSE: Relative standard error; PK: Pharmacokinetic(s); V1: Central volume of distribution; V2: Peripheral 
volume of distribution; Q: Intercompartmental flow; CL: Clearance; ADA: Anti-drug antibodies 
concentration; Alb: Serum albumin concentration; IMM: Co-therapy with immunomodulators; RUV: 
Residual unexplained variability; PD: Pharmacodynamic(s); CRP: C-reactive protein concentration; kdeg: 
CRP degradation rate constant; IC50: Infliximab concentration leading to half-maximal effect; Imax: 
Maximum effect. 
 

During its two decades of usage, IFX has been a subject of many PK modelling studies (Table 3). While 

there are variations in the reported models, a general agreement exists in the identified model structure 

and significant covariates, endorsing the herein published PK model as well. The published models 

were 1- or 2-compartment models, and the significant covariates – albeit differing among models – 

broadly fall into same mechanism-related categories: body size (body weight, fat-free mass), ADA 

status, co-medication, and disease activity (albumin, HBI, CRP). The slight differences presumably root 

from differences in the data availability/sparsity, and investigated population-specific characteristics.  

Table 3. Overview of previously published population PK(/PD) models of IFX in IBD, ordered chronologically. 

Reference Indication 
Structural 
PK model 

Covariates PD variable: model 

Furuya et al. 
[135] 

CD 1-CMT 
linear model 

- TNFα-inflammation (CDAI): 
turnover TNFα model with 
IFX-binding and subsequent 
effect on inflammation 

Fasanmade et al. 

[99] 

UC 2- CMT 
linear model 

CL ~ albumin, ADA, sex 

V1 ~ BW and sex 

- 

Fasanmade et al. 

[100] 

CD, incl. 
paediatrics 

2- CMT 
linear model 

CL ~ BW, ADA, albumin, 
concomitant 
immunomodulators 

V1, V2, Q ~ BW  

- 

Dotan et al. 

[104] 

IBD 2- CMT 
linear model 

CL ~ BW, albumin, ADA 

V1, V2, Q ~ BW 

- 

Aubourg et al. 
[136] 

CD 2- CMT 
linear model 

V1 ~ BW 

V1, CL ~ sex  

- 

Buurman et al. 

[102] 

IBD 2- CMT 
linear model 

CL ~ ADA, sex, period 
(induction/maintenance) 

V1 ~ HBI  

- 

Ternant et al. 
[137] 

CD 1- CMT 
linear model 

CL ~ CRP and Fcγ 
receptor 3A genotype 

V1 ~ BW 

Time to relapse (CDAI>250 or 
150<CDAI<250 with 70-point 
increase from baseline over 2 
consecutive weeks): Cox 
proportional-hazard model 
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Reference Indication 
Structural 
PK model 

Covariates PD variable: model 

Edlund et al. 

[107] 

CD 2- CMT 
linear model 

CL ~ BW, ADA  

V1, V2, Q ~ BW 

- 

Passot et al. 
[138] 

IBD, RA, 
PA, AS, 

incl. 
pediatrics 

1- CMT 
linear model 

CL ~ disease, BW, sex, 
concomitant methotrexate 

V ~ BW, sex, age≤15y 

- 

Brandse et al. 
[139] 

IBD 2- CMT 
linear model 

CL ~ ADA, BW, albumin ADA: time-to-
event/bidirectional IFX-ADA 
interaction 

Eser et al.  

[103] 

IBD 2- CMT 
linear model 

CL ~ BW, ADA, albumin  

V1, V2, Q ~ BW 

- 

Kevans et al. 
[140] 

UC 2- CMT 
linear model 

CL ~ BW, albumin, ADA, 
time 

V1, V2, Q ~ BW 

Clinical response at week 14 
and corticosteroid-free (Mayo) 
remission rate at week 54 of 
therapy: Graphical analysis 

Petitcollin et al. 
[141] 

Pediatric 
CD 

1- CMT 
linear model 

CL ~ time (as an ADA 
surrogate), albumin  

Paediatric CDAI remission: 
Survival, i.e. Kaplan-
Meier/multivariate Cox 
proportional-hazard analysis 

Petitcollin et al. 
[142] 

IBD 1- CMT 
linear model 

CL ~ time, BW, CRP, IBD 
type, dose, disease activity 
for UC (Mayo score), 
azathioprine cotreatment 

Time to relapse: Multivariate 
Cox proportional-hazard model 

Ternant et al. 
[143] 

IBD, 
spondylo- 
arthritis 
(AS and 
PA), RA, 

incl. 
pediatrics 

1- CMT 
linear model 

CL ~ BW, sex, disease, 
concomitant methotrexate 

V ~ BW, sex, disease, 
age<15y 

- 

Berends et al. 
[144] 

UC 2- CMT 
linear model 

CL ~ ADA, albumin  TNFα: TMDD-QSS model 

Dreesen et al. 
[64] 

UC 1- CMT 
linear model 

CL ~ albumin, CRP and 
fat-free mass  

V ~ concomitant 
corticosteroids, pancolitis 
at baseline  

Mucosal healing (Mayo 
endoscopic subscore): logistic 
regression model with IFX-
mucosal healing interaction 

Kimura et al. 
[145] 

IBD 2- CMT 
linear model 

- Inflammation: IFX-TNFα 
binding-inflammation 
suppression model 
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Reference Indication 
Structural 
PK model 

Covariates PD variable: model 

Vande Casteele 
et al. [146] 

UC Taken from 
Fasanmade 

et al. [99] 

Taken from Fasanmade et 

al. [99] 

Mayo endoscopic score: Linear 
relationship with baseline IFX 
CL and IFX concentrations; 
multivariable logistic 
regression model 

Bauman et al. 
[147] 

Pediatric 
IBD 

2- CMT 
linear model 

CL ~ BW, albumin, 
erythrocyte sedimentation 
rate, ADA 

- 

Dreesen et al. 
[108] 

CD 2-CMT 
linear model 

CL ~ faecal calprotectin, 
albumin, CDAI, ADA 

Faecal calprotectin: Emax 
turnover model 
Endoscopic remission: 1st order 
Markov model 

ADA: Anti-drug antibodies; AS: Ankylosing spondylitis; BW: Body weight; CD: Crohn’s disease; CDAI: 
Crohn’s disease activity index; CL: Clearance; CMT: Compartment; IBD: Inflammatory bowel diseases; IFX: 
Infliximab; PA: Psoriatic arthritis; PD: Pharmacodynamic(s); PK: Pharmacokinetic(s); Q: Intercompartmental 
flow; RA: Rheumatoid arthritis; TMDD-QSS: Quasi-steady-state approximation of target-mediated drug 
disposition; TNFα: Tumour necrosis factor-α; UC: Ulcerative colitis; V: Volume of distribution; V1: Central 
volume of distribution; V2: Peripheral volume of distribution. 
 

In the herein described analysis, the presence of ADA was identified as a covariate with the highest 

impact on IFX CL, with approximately 2-fold (97%) higher CL in patients who developed ADA 

(ADA+), compared to the ADA negative (ADA-) patients. The ADA develop as a natural response of 

an organism to a foreign (therapeutic) protein, and the observed depletion of IFX exposure by ADA 

presence was anticipated. Mechanistically, the development of ADA can affect both PK and the effect 

of IFX. The ADA molecules binding to active sites of IFX molecule (“neutralising ADA”) hinder its 

efficacy by disabling binding to its target, i.e. TNFα. Furthermore, the formed IFX-ADA complexes are 

promptly cleared from the blood, contributing to the higher CL of IFX [148]. The development of ADA 

is influenced by different factors intensifying or hindering this process, some of which have been 

identified. For instance, compared to episodic treatment, an uninterrupted, continued IFX treatment (i.e. 

without “drug holidays”), as well as concomitant use of azathioprine or methotrexate, is related to a 

lower risk of ADA development [3,13,74,149]. Of note, the analytical assay for ADA quantification 

employed in this study captured both drug-bound and -unbound (i.e. total) ADA molecules of all 

immunoglobulin (Ig) subtypes. The Ig profile in an immune response changes over time in the process 

referred to as Ig class switching, steered by cytokines secreted by T cells [150,151]. The Ig class 

switching is expected to take place in the case of ADA as well, since ADA represent an immune 

response to a drug. On the course of the process, the Ig constant regions change from IgM (in primary 

response) to IgD, IgE, IgA and/or one of four IgG isotypes (IgG3, IgG1, IgG2 and finally IgG4) [152]. 

In short, naïve B lymphocytes produce IgM and IgD antibodies as part of the primary immunological 

response. If T helper (Th) cell-mediated signalling occurs, the switching process is initiated [150,151]. 

The cytokines activate the transcription of the constant heavy chain genes that encode the Ig class to be 
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secreted [150]. The switching occurs in a defined order of Ig classes/subclasses (IgM, IgD → IgG3 → 

IgG1 → IgA1 → IgG2 → IgG4 → IgE → IgA2), due to location (i.e., order) of exons encoding them 

[153]. The switching begins approximately 6 days after activation by T cell-dependent antigen in vivo 

[151]. In the late immune response the dominant Ig classes are the ones that do not fix (and therefore 

do not activate) the complement, i.e. IgG2 and IgG4, serving as the organism’s way of restricting the 

inflammation and damage [152,154]. In fact, IgG4 is known to be the main Ig class after repeated or 

long-term exposure to an antigen and thus also in the case of immunity against therapeutic proteins 

[154], as was already demonstrated for adalimumab [155]. This is important to consider since the assays 

for ADA quantification measure different molecular species, e.g. by binding the ADA molecules by 

different number of bonds. For instance, some assays (e.g., ELISA) do not capture monovalent 

antibodies. Since IgG4 are functionally monovalent [156,157] and this Ig class is expected to be 

dominant in late immune response, this should be accounted for when choosing the assay for ADA 

determination in the patients. A study on beekeepers exposed frequently and repeatedly to bee stings 

showed that during the first 6 months of the exposure IgG1 class was the most abundant. Over time, the 

IgG1 contribution decreased and IgG4 increased, until IgG4 became the most numerous, accounting for 

up to >90% of the response. Another observation from the referenced study was that except for avoiding 

detection in precipitating assays, IgG4 molecules additionally interfered with immune precipitation of 

IgG1; namely, mixing of early (IgG1-governed) and late (IgG4) serum resulted in negative results 

[157,158]. In general, the production of pro-inflammatory IgG1 molecules is induced within 7 days 

after the initiation of the immune response, their number reaches maximum after 1-2 weeks and they 

disappear after 2-3 weeks; whereas IgG4 are induced after months or even years of exposure. The count 

of IgG4 increases similarly to IgG1, but the IgG4/IgG1 ratio changes from being constant at the 

beginning to increase in favour of IgG4 [156,159]. With respect to the drugs dosed at longer dosing 

intervals, Ig concentrations might decline over time after each drug administration (i.e. immunisation), 

hence potentially resulting in an ADA concentration-time profile analogous to a drug (in this case IFX). 

Lastly, the fact that, as functionally monovalent antibodies, IgG4 might not affect IFX in exactly the 

same manner as bivalent IgG1 classes, should be considered as well. Therefore, there is a need for a 

consensus in the scientific community on what ADA class(es) and subclass(es) should be monitored as 

predictors of the IFX therapy success and the loss of response. 

Apart from the ADA status, concomitant therapy with immunomodulators was also identified as another 

significant covariate influencing IFX CL, with ~15% lower CL in patient who received 

immunomodulators compared to the ones that were not co-treated. Immunomodulators, such as 

methotrexate, have been in use for IBD long before the introduction of IFX and are known to contribute 

to disease stabilisation [160]. Thus, the mechanism underlying the effect of immunomodulators on IFX 

CL might be in part due to the IFX-independent therapeutic effect of these drugs, and subsequent 

relative reduction in disease activity and reduced IFX elimination through TMDD or other disease-
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induced elimination pathways (e.g. GIT bleeding). In addition, immunomodulators hinder the 

development of ADA, and thereby presumably decrease IFX CL through ADA-binding. The latter 

mechanism would however be expected to be accounted for by ADA status as a covariate in the model.  

In this analysis, potential effect of serum albumin and CRP concentrations on the IFX PK was 

investigated as well. Although albumin and CRP concentrations are both surrogates for IBD activity, 

tend to be correlated, and have shown correlation with IFX exposure, only the effect of albumin on IFX 

CL could be quantified with sufficient precision in this analysis and was thus retained in the model: 

IFX CL was found to decrease with increasing albumin concentration. It is important to note that, while 

albumin is considered a biomarker for IBD activity, its catabolism is highly correlated with the 

catabolism of IgG molecules [70], thus making albumin simultaneously a marker for the nonspecific 

CL of IFX. Finally, IFX CL increased with increasing body weight, assumingly related to the non-

specific CL pathways.  

3.2  Disease activity (bio)markers 

One of the biggest challenges in the management and monitoring of IBD activity is identification of the 

most appropriate disease activity (bio)marker, making the clear goal of IBD treatment – clinical 

remission – difficult to quantify and monitor. A myriad of measures are used to assess IBD activity, 

from objective ones like endoscopy, to less specific ones like biomarkers, to complex, mostly 

symptoms-weighed scales like disease activity indices. Due to the high invasiveness of the procedure, 

endoscopy is unlikely to become a routine measure for IBD activity monitoring, thus bringing the 

biomarkers into the spotlight [161]. An appropriate disease marker should reflect both the effects of the 

drug and the current disease activity [162]. However, thus far no clear guidance on the advantage of 

clinical usage of one biomarker over the others has been made available and further investigations on 

the identification of the best marker for the IBD monitoring are warranted. A part of the herein reported 

work focused on investigations and comparison of routinely measured (bio)markers of IBD activity.  

In Paper II, CRP and CDAI were assessed and compared as disease markers in patients with IFX 

treatment failure (i.e. non-responders). The IFX PK exposure metrics (AUC and Cmin for each dosing 

interval and cumulative AUC and mean Cmin from the 12 weeks of the study) were estimated from a 

previously developed PK model [107]. As response variables, CDAI values and CRP concentrations, 

their change from baseline and last visit, and response and remission outcomes at week 12 were 

investigated. The two disease activity markers were found to be only very weakly correlated, implying 

that at least one of them does not represent a true measure of the disease activity and/or that there is a 

potential time delay in their changes. Neither CDAI nor CRP were consistently and significantly related 

to any of the investigated exposure metrics, although trends of somewhat lower Cmin and AUC in non-

responders were identified. In the case of CDAI, this finding is less surprising, since CDAI is by 

definition a subjective marker (e.g. accounting for abdominal pain and a patient’s general well-being) 
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and fails to link it to endoscopic or biomarker data have been reported previously [20,48,163,164]. In 

fact, CDAI is no longer accepted by regulatory authorities (FDA and EMA) as a primary efficacy 

endpoint for CD trials [165]. This lack of exposure-response relationship for both CRP and CDAI could 

be ascribed to the fact that both investigated markers are nonspecific, especially from the perspective 

of anti-TNFα drug monitoring, and an ideal marker should be both disease- and drug-specific. However, 

these findings could potentially be due to the investigated population as well, for instance the fact that 

CDAI was part of the study inclusion criteria, and CRP concentrations being <LLOQ in almost 40% of 

the patients. 

Since in non-responders the relationship between IFX and either CRP or CDAI response could not be 

established (Paper II), as the next step an evaluation of disease activity (bio)markers in a broader IBD 

population was undertaken (Paper I). In the study reported in Paper I, three disease activity measures 

were assessed: serum albumin and CRP concentration in all IBD patients, and HBI for CD patients. The 

exploratory analysis (Table 4) showed a statistically significant correlation between serum albumin and 

CRP concentrations, whereas HBI was not significantly correlated with either of the two biomarkers. 

Correlation of all three markers with IFX concentration was investigated as well. Similarly, HBI was 

the only marker that was not statistically significantly related to IFX, while albumin and CRP 

concentrations showed significant correlation (p-value <10-4 and <10-9, respectively). As HBI is, similar 

to CDAI, a subjective disease activity measure, these findings seem to support mutual correlation 

between the more objective markers (albumin and CRP) and emphasise the subjectivity of HBI. The 

correlation with IFX concentration was both the strongest and the most statistically significant in the 

case of CRP (Figure 9).  

Table 4. Correlation among different disease activity markers and between disease activity markers and IFX 

concentration. 

 Variable 1 Variable 2 Spearman’s rank 

correlation ρ 

p-value 

Disease activity markers albumin CRP -0.513 c 2·10-16 

CRP HBI 0.093 a 0.181 

albumin HBI -0.161 a 0.022 

CIFX and disease activity 

markers 

CIFX CRP -0.347 b 2·10-10 

CIFX albumin 0.237 b 2·10-5 

CIFX HBI -0.193 a 0.003 

a: very weak correlation; b: weak correlation; c: moderate correlation. 

CIFX: Infliximab concentration; CRP: C-reactive protein; HBI: Harvey-Bradshaw Index.  
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Figure 9. Relationship between infliximab (IFX) and C-reactive protein (CRP) concentration. (a) CRP 

concentration over IFX concentration; (b) Simplified representation, where IFX concentrations are stratified in 3 

groups: ≤3 µg/mL, 3-7 µg/mL, and >7 µg/mL [78]. 

3.3  Infliximab exposure-disease activity response relationship 

Based on the exploratory graphical and statistical analysis, in this population (see 2.1.1) CRP was found 

to be the disease activity marker best related to IFX exposure. Thus, as the next step, quantitative 

characterisation of IFX exposure-CRP concentration response relationship was undertaken (Paper I).  

For the development of the PK/PD model, the sequential modelling approach was employed. Thereby, 

the individual parameters estimates (EBEs) from the PK model were extracted and the PK model 

parameters were fixed in the PK/PD model, while only the PD submodel was fit to the data. The PD 

model comprised a CRP turnover model, with an inhibitory effect of IFX on CRP synthesis described 

using an Emax model, parametrised as follows: 𝑑𝐶𝑅𝑃𝑑𝑡 = 𝑘𝑠𝑦𝑛 ∙ 𝐼𝑚𝑎𝑥 ∙ 𝐶𝐼𝐹𝑋𝐼𝐶50 ∙ 𝑒𝜂𝐼𝐶50 + 𝐶𝐼𝐹𝑋 − 𝑘𝑑𝑒𝑔 ∙ 𝐶𝑅𝑃(𝑡) 

𝑘𝑠𝑦𝑛 = 𝐶𝑅𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∙ 𝑒𝜂𝐶𝑅𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∙ 𝑘𝑑𝑒𝑔 

, where CRP denotes CRP concentration, ksyn the zero-order CRP synthesis rate constant, Imax is the 

maximum effect (maximum percentage of CRP synthesis that can be inhibited by IFX), CIFX the 

concentration of IFX, IC50 the concentration of IFX that leads to 50% of the maximum effect, kdeg the 

CRP degradation rate constant, CRPbaseline the CRP concentration at baseline, ηIC50 and ηCRPbaseline 

between-patient variability in IC50 and baseline CRP concentration, respectively.  

While the fixed-effects parameters of the PD submodel were precisely estimated, the estimation of the 

between-patient variability terms was supported by the frequentist prior approach. In the absence of 

prior quantitative knowledge on IFX-CRP relationship in IBD, the prior parameter estimates were taken 

from a PK/PD model of adalimumab in rheumatoid arthritis previously published by Ternant et al. 

[166]. Considering the similarity of the drugs and the fact that the two parameters in question were 
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between-subject variability in baseline CRP concentration and IC50 value, this model was deemed 

appropriate. Due to the need for use of a prior for precise estimation of the between-patient variability, 

covariate investigations were approached with caution and comprised graphical (EBEs vs. covariates 

plots) and statistical analysis, and implementation in the model in a uni- and multivariate manner. None 

of the investigated covariate models was stable or precisely estimated, and thus none of the investigated 

covariates (e.g. diagnosis, time since diagnosis, smoking status, number of surgeries, age at diagnosis) 

were retained in the final model. The parameter estimates of the final model are given in Table 2 (lower 

part), while Figure 10 shows the final graphical PK/PD model and VPCs for the PK and PD submodel. 

 

Figure 10. (a) Final graphical PK/PD model; (b) Prediction-corrected visual predictive check for the PK (left 

panel) and PD model (right panel). Blue dots denote observations, blue and red lines median (full line) and 5th and 

95th percentile (dashed) of observations and simulations, respectively, shaded areas represent 90% confidence 

interval around median, 5th and 95th percentile of simulations. ADA: Anti-drug antibodies; ALB: Albumin; BW: 

Body weight; CIFX: Infliximab concentration; CRP: C-reactive protein; IFX: Infliximab; IMM: Co-medication 

with immunomodulators; kdeg: CRP degradation rate constant; ksyn: CRP synthesis rate constant; PD: 

Pharmacodynamic(s); PK: Pharmacokinetic(s); Q: Intercompartmental flow; V1: Central volume of distribution; 

V2: Peripheral volume of distribution. 
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As an IBD biomarker, CRP concentration has certain advantages compared to the other routinely 

monitored biomarkers: it highly correlates to endoscopic findings [167], has high sensitivity and short 

reaction time (~19 h half-life), and its kinetic behaviour is well understood and independent of the 

present disease/health state [31]. These characteristics also provide some advantages when modelling 

CRP as a PD variable. Conveniently, the half-life of CRP is constant and unaffected by the IBD drugs 

or the disease itself, and thus the degradation rate constant did not require estimation, but could be fixed 

to the value corresponding to the CRP half-life, i.e. 0.0365 h-1. Considering that IFX does not inhibit 

the synthesis of CRP directly, but through a cascade of events initiated by IFX-binding of TNFα and 

subsequent, and thus time-delayed, lower CRP synthesis, the indirect synthesis inhibition Emax model 

was assumed. Baseline (at the time of the first IFX administration) CRP concentration was estimated to 

be 6.32 mg/L (0.632 mg/dL), which was found plausible taking both published baseline CRP values 

(mean baseline CRP 1.88 mg/dL in patients with moderate to severe CD, with ~1/3 below 0.5 mg/dL 

[128]), and an in-house IBD database (baseline CRP median (range) 0.61 (0.02-10.25) mg/dL, n=76) 

as references for comparison. A high dispersion of individual baseline CRP concentration values 

(~115%CV, 5th-95th percentile range based on 1000 simulations: 1.503-28.4 mg/L) further supports the 

plausibility of this estimation, as it was anticipated in a diverse patient population as the one herein 

investigated. The model estimated the maximum possible degree of CRP synthesis inhibition by IFX to 

be ~72%, implying that ~28% of CRP synthesis cannot be inhibited by IFX, regardless of the 

administered dose. This is in accordance with mechanistic expectations, since TNFα is not a sole 

immunological initiator of CRP synthesis [31], and therefore even with a complete neutralisation of 

TNFα, CRP synthesis is not necessarily fully inhibited. Concentration of IFX leading to 50% of the 

maximum inhibition was estimated to be 2.04 µg/mL – a value close to the commonly used PK Cmin 

targets [78], while an IFX concentration of 18.4 µg/mL was required to achieve 90% of the maximum 

inhibition. The between-patient variability in IC50 was estimated with a high precision to be very high 

(~209% CV), similar to the one recently reported for faecal calprotectin [108], potentially indicating a 

high difference in the inhibition of CRP synthesis even among the patients with a similar IFX exposure. 

As a clinically relevant consequence, in this case monitoring of CRP concentration would be arguably 

advantageous over monitoring the drug concentrations alone.  

After the IFX exposure-CRP synthesis inhibition model had been developed, expansion of this model 

to include serum albumin as an additional biomarker, as well as development of a separate PK/PD IFX-

albumin model were attempted. Taking into account the complex PK behaviour of albumin (see 1.1.3), 

a theoretical model of IFX effect on albumin was postulated (Figure 11). Since the data on the faecal 

loss of albumin were not available, the model was further simplified to remove this parameter (equation 

in Figure 11). This model and more simplified versions were investigated, both on top of the previously 

developed IFX-CRP model and as a separate IFX-albumin PK/PD model. None of the investigated 

models could be successfully fit to the data. This is likely due to the complexity of this model and the 
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sparsity of the available data, but potentially also endorses the weaker relationship between IFX and 

serum albumin compared to the IFX-CRP relationship, as discussed above.  

3.4  Assessment of dosing regimens with respect to CRP remission 

The standard and alternative dosing regimens were evaluated by performing simulations from the 

developed IFX-CRP PK/PD model. As changing the dosing interval of IFX had been demonstrated to 

be advantageous over alterations of the administered dose [168], the investigated alternative dosing 

regimens differed from the standard dosing regimen only in the dosing interval, which varied from q4w 

to q12w. As ADA presence and co-medication with immunomodulators were identified as major 

covariates, they were taken into account in the simulations. Main results of these investigations are 

shown in Figure 12: The distribution of time to loss of CRP remission (“non-remission”; defined as 

CRP concentration > 5 mg/L) for ADA+ and ADA- patients with (upper panel) and without (lower 

panel) co-therapy with immunomodulators for all simulated dosing intervals is shown in Figure 12a; 

whereas a simplification, showing only median times to CRP non-remission, is presented in Figure 12b. 

In the figure, the number of patients experiencing loss of CRP remission at any point during a dosing 

interval is given below the corresponding boxes. More than 50% of ADA+ patients treated with the 

standard dosing interval (q8w) experienced CRP non-remission, independent of the co-therapy with 

immunomodulators. Concomitant immunomodulator use decreased this number in both ADA+ (from 

74% in absence to 55% in presence of concomitant immunomodulators) and ADA- patients (from 10% 

in absence to 5% in presence of concomitant immunomodulators). While ADA- patients that are co-

treated with immunomodulators, might not require intensification of dosing interval, for patients who 

Figure 11. Assumed graphical PK/PD model of IFX PK (blue boxes) and its effects on albumin (green box), and 

equation of the simplified model. V1: Central volume of distribution; V2: Peripheral volume of distribution; Q: 

Intercompartmental flow; CL: Clearance; ksyn,Alb denotes the albumin synthesis rate constant, kdeg,Alb the albumin 

degradation rate constant, Smax,Alb the maximum effect (stimulation) of IFX on albumin synthesis, SC50,Alb the 

concentration of IFX that leads to 50% of the maximum effect on synthesis, Imax,Alb the maximum effect (inhibition) 

of IFX on albumin degradation, IC50,Alb the concentration of IFX that leads to 50% of the maximum effect on 

degradation, Alb serum albumin concentration, and kfec,Alb loss of albumin via faeces. 
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are ADA+ and/or do not receive immunomodulators, a shorter dosing interval is recommended: A better 

dosing regimen in terms of achieving CRP remission in ADA+ patients would be q6w and q5w in the 

cases with and without immunomodulators co-treatment, respectively, and for ADA- patients that do 

not receive immunomodulators q7w. The substantial impact of immunomodulators co-therapy on the 

IBD activity is in alignment with previous clinical reports of benefits of IFX-immunomodulators co-

therapy, both in adults [71] and paediatrics [169], and might be due to a mix of effects [56], such as 

reduction of ADA production [71], or their independent therapeutic effect on IBD activity [170]. 

Figure 12. Evaluation of the standard and alternative infliximab (IFX) dosing regimens with respect to C-reactive 

protein (CRP) suppression via stochastic simulations (n=1000) of patients that differ only in anti-drug antibody 

(ADA) status. For the simulations, variability in the PK submodel parameters was considered. (a) Distribution of 

timepoints in weeks after 5th dose when CRP concentration reached 5 mg/L (“CRP non-remission”) as box-
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whisker plot over simulated IFX dosing intervals, stratified by ADA status and co-therapy with 

immunomodulators. Note that the virtual patients that do not experience CRP concentrations above 5 mg/L (i.e. 

without loss of CRP remission) are not included in the plot. Proportions of patients experiencing CRP 

nonremission (shown below each box) are higher in cases of ADA development and absence of co-therapy with 

immunomodulators; (b) Simplification showing only the median time after the 5th dose when CRP concentration 

reached CRP nonremission stratified by ADA development and immunomodulatory co-therapy. In presence of 

co-therapy with immunomodulators, the standard IFX dosing interval of every 8 weeks (q8w) corresponds to 

median time to CRP nonremission in ADA- patients, whereas for ADA+ patients reduction to q6w is to be 

recommended. In absence of co-therapy with immunomodulators, for ADA- patients dosing interval of q7w 

corresponds to median time to CRP nonremission, whereas for ADA+ patients further reduction to dosing interval 

of q5w should be preferred. Red frame: standard IFX dosing regimen every 8 weeks. 

3.5  Clearance of monoclonal antibodies: Cetuximab case study 

PK model development 

A complex PK behaviour characteristic for mAbs, including TMDD, non-specific elimination and 

potential time-variance, presumably requires highly informative data to be mechanistically described. 

A general limitation observed throughout the herein reported work, as well as in previously published 

modelling and simulation analyses in the IBD area, was sparsity and thus limited informativeness of 

the analysed data. In order to provide a better understanding of the impact of data, i.e. clinical study 

design the data originate from, on the results of modelling analyses, the following analysis was 

performed. For this type of investigations, a sufficiently rich dataset containing highly informative data 

was essential, which was acquired by pooling two clinical trials of cetuximab (Erbitux®; Merck KGaA, 

Darmstadt, Germany), an oncology anti-epidermal growth factor receptor (EGFR) mAb. Cetuximab 

was deemed an appropriate case study drug, not only due to the availability of the rich data, but also 

because of the fact that previously published PK models of cetuximab [129-131] show disagreement in 

CL models, warranting further investigation. 

As a first step, a PK model was developed based on the totality of the available data, with focus on the 

CL model. The parameter estimates for the six investigated models are given in Table 5, while Figure 

13 shows the goodness-of-fit plots. A 2-compartment model with parallel Michaelis-Menten and linear 

CL that changes exponentially over time (MMCL+TVARCL model) performed best in describing the 

data. As anticipated, addition of body surface area (via power function with exponent fixed to 0.75 and 

1 for effect on CL and volumes of distribution, respectively) was found to significantly decrease OFV 

and slightly reduce between-patient variability and RUV. Thereafter, age, sex, RAS mutation status, 

creatinine CL, dose group, co-medication with irinotecan or 5-fluorouracil/folic acid, and serum 

concentrations of amphiregulin, epidermal growth factor, IL-8, transforming growth factor-α, and 

vascular endothelial growth factor, and Eastern Cooperative Oncology Group performance status were 
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pre-selected and assessed as covariates on CL using full fixed-effects modelling approach. None of 

these covariates were found to be statistically or clinically relevant.  

Table 5. Comparison of the six investigated nonlinear mixed-effects base models of cetuximab, that differ in 

captured clearance (CL) mechanisms: linear CL (LCL), time-varying linear CL (TVARCL), nonlinear Michaelis-

Menten CL (MMCL), parallel nonlinear and linear CL (MMCL + LCL), parallel nonlinear and time-varying linear 

CL (MMCL + TVARCL), and parallel linear and zero-order elimination (LCL + 0.EL). 

 

The final (MMCL+TVARCL) PK model comprised parallel nonlinear and time-varying linear CL, 

implying both exposure- and time-dependency. The baseline linear CL of 0.0174 L/h decreased 

exponentially to a mean maximal decrease of ~18% (155 %CV) with a half-time of ~5 months. Half of 

the maximal rate of nonlinear CL of 0.861 mg/h was reached at cetuximab concentration of 13.3 mg/L. 

As TMDD (represented via MMCL) results from drug-target binding, the contribution of TMDD to 

overall CL depends on the mAb concentration. In this study, at very low drug concentrations, where the 

assumption Ccetuximab<<Km is reasoned, the nonlinear CL was approximately 4x higher than baseline 

linear CL (Figure 14).  

 LCL TVARCL MMCL MMCL + LCL MMCL + TVARCL LCL + 0.EL 

LCL, L/h (RSE%) 0.0222 (3) 0.0262 (3) - 0.0153 (4) 0.0174 (5) 0.0206 (-) 

V1, L (RSE%) 3.84 (3) 3.67 (3) 3.75 (3) 3.71 (2) 3.65 (3) 3.82 (-) 

Q, L/h (RSE%) 0.0188 (17) 0.0282 (12) 0.0332 (19) 0.0323 (4) 0.0368 (5) 0.0216 (-) 

V2, L (RSE%) 3.38 (12) 1.65 (11) 2.67 (8) 3.25 (6) 2.65 (4) 3.31 (-) 

KM, mg/L (RSE%) - - 283 (26) 9.81 (5) 13.3 (21) - 

Vmax, mg/h (RSE%) - - 9.48 (17) 0.882 (5) 0.861 (5) - 

Imax, % (RSE%) - –19.6 (16) - - –23.1 (20) - 

T50, weeks (RSE%) - 7.26 (15) - - 20.5 (29) - 

γ (RSE%) - 2.54 (24) - - 1 FIX - 

K0, mg/h (RSE%) - - - - - 0.0472 (-) 

ηLCL, CV% (RSE%) 
[Shr%] 

38.3 (6) 
[6] 

36.6 (6) 
[6] 

- 37.9 (8) 
[19] 

36.1 (23) 
[23] 

39.4 (-) 
[8] 

ηV1, CV% (RSE%) 
[Shr%] 

26.8 (11) 
 [31]* 

27.3 (10) 
[31] 

26.4 (15) 
[32] 

25.9 (11) 
[32] 

26.2 (10) 
[32] 

27.4 (-) 
[32] 

ηV2, CV% (RSE%) 
[Shr%] 

103.9 (13) 
[27] 

84.1 (9) 
[39] 

83.4 (17) 
[29] 

61.2 (9) 
[27] 

61.3 (14) 
[32] 

104.4 (-) 
[29] 

ηVmax, CV% (RSE%) 
[Shr%] 

- - 30.5 (9) 
[6] 

43.6 (10) 
[34]* 

48.8 (12) 
[12]* 

- 

ηTmax, CV% (RSE%) 
[Shr%] 

- 25.2 (11) 
[29] 

- - 51.5 (18) 
[35] 

- 

ηK0, CV% (RSE%) 
[Shr%] 

- - - - - 150.3 (-) 
[57] 

Additive RUV, mg/L 
(RSE%) 

9.44 (11) 7.79 (12) 8.14 (13) 5.85 (12) 4.85 (22) 8.65 (-) 

Proportional RUV, 
CV% (RSE%) 

23.1 (5) 22.8 (4) 23.4 (5) 24.0 (4) 23.5 (4) 22.9 (-) 

0.EL, zero-order elimination; AIC, Akaike information criterion; η, between-patient variability; γ, curve shape factor; K0, zero-order rate constant of 
elimination from central compartment; KM, Michaelis-Menten rate constant; LCL, linear clearance; Imax, maximum change in time-varying clearance; 
MMCL, Michaelis-Menten clearance; Q, intercompartmental exchange rate; RSE, relative standard error; RUV, residual unexplained variability; Shr, 
shrinkage; T50, time at which clearance is halved; TVARCL, time-varying linear clearance; V1, central volume of distribution; V2, peripheral volume of 
distribution; Vmax, maximum rate of saturable elimination.  
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Figure 13. Goodness-of-fit plots for the final cetuximab PK base model. 

 

 

 

Figure 14. Illustration of the contribution of the nonlinear CL (target-mediated drug disposition) to cetuximab 

CL: At very low cetuximab concentrations (Ccetuximab<<Km) the nonlinear CL was approximately 4x higher than 

baseline linear CL. CL: Clearance; Km: Concentration at half-maximal rate of saturable elimination.  
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Such a model with three CL components – linear, nonlinear and time-effect – has not been reported 

before. In the studies by Azzopardi et al. [131] and Dirks et al. [130] the cetuximab elimination was 

best described by LCL+0.EL and MMCL model, respectively. The latter study identified no time-

dependency of the cetuximab CL, contrary to the herein reported findings. A potential explanation for 

this disagreement might lie in the differences in the investigated populations or the study designs. 

Namely, the median follow-up in the study analysed by Dirks et al. was approximately 6 weeks, 

significantly shorter than in the herein analysed population (~23 weeks), which might have been 

insufficient to inform identification of the time change of CL.  

While the nonlinear CL of mAbs is a well-established and mechanistically sound concept [70,171,172], 

the time-dependency is a recent, yet not fully understood one, so far mainly reported in context of 

oncology mAbs [173-176]. To shed some light on the mechanisms of the time effect (Figure 15), the 

magnitude of CL change was compared between responders (the patients with complete or partial 

response) and non-responders (the patients with stable or progressive disease) [173,175,177]. In both 

patient groups, an initial decrease of CL was observed, however it was of higher extent in responders 

than non-responders, consistent with the previously reported studies. A study by Krippendorff et al. 

[178] demonstrated that administration of an anti-EGFR drug leads to an initial decrease in target 

activation due to drug-target binding, and a subsequent increase as drug exposure decreases. This is 

anticipated for both responders and non-responders. In responders, the decline continues, while in non-

responders the increased disease burden becomes predominant, resulting in eventual CL increase in 

non-responders. Overall, this effect of the disease status on PK is likely due to a mix of mechanisms, 

that are hypothesised to include cancer-related cachexia [176], i.e. a higher protein turnover rate due to 

inflammation [70]. Over time, in responders the disease state improves, leading to normalisation of the 

protein turnover, and thereby a decrease in nonspecific, linear, elimination of the mAb.  

 

Figure 15. Change of linear CL from baseline at weeks 6 and 12, stratified by post-treatment response. 
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Study design investigations 

“Models are representations of a ‘system’” [92], i.e. reality – in pharmacometric analyses of systems 

described by the collected clinical data. Thus, it is implied that a model’s “resolution”, i.e. the 

complexity and mechanistic detail that can be captured by the model, is fully dependent on the data. 

The first part of this analysis demonstrated this, by enabling development of the most complex CL 

model yet published for cetuximab through a rich dataset, e.g. in terms of the number of included 

patients, the range of investigated dose levels, and the density of the PK sampling in the population. In 

the second part of the analysis, the characteristics of a clinical dataset (number of dose levels [single 

vs. multiple dose levels] and sampling density [rich vs. sparse sampling]) relevant for characterisation 

of a mAb CL model were further assessed in order to evaluate and inform clinical study designs. 

The first approach herein applied was comparison of bias [133] in parameter estimates of the final 

(MMCL+TVARCL, i.e. reference) model across the four above described study designs (Paper III). To 

this end, in the case of singe-dose level and/or in particular sparse sampling, the bias increased, 

especially in parameters related to nonlinear, Michaelis-Menten CL. This is in accordance with 

mechanistic expectations, since the nonlinear CL is saturated at a high drug exposure, and thus heavily 

dependent on presence of lower drug exposure which might not be well captured with single dose level 

data. Furthermore, sparse sampling will unquestionably be less informative for the parameter estimation 

in general, including the Michaelis-Menten CL parameters, even in presence of multiple dose levels.  

The second approach investigated was “multi-dimensional” – performed across the four study designs 

and different (‘true’ MMCL+TVARCL and alternative) CL models, and through assessment how these 

differences reflect on the most often used exposure metrics (Cmin and AUC early in the treatment and at 

steady state). The effect of study design was of a higher extent for bias than RMSE (i.e. accuracy; Figure 

16, Figure 17). In general, a greater and clearer impact of the sampling density was observed compared 

to the number of dose levels. Furthermore, the effect of study design differed among different exposure 

metrics. Focusing on the seemingly more relevant study design characteristic, i.e. the sampling density, 

the impact was found to be of a lesser extent for bias in Cmin than for bias in AUC. This can be explained 

by the higher complexity of AUC, which takes into account exposure over a time period, than Cmin, 

which focuses on a single time point equally informed by all study designs. Additional sampling apart 

from the end of a dosing interval, particularly near Cmax, is necessary to properly inform AUC. 

Interestingly, bias in both metrics and for all compared models was overall lower in the case of single 

dose level, compared to multiple dose level designs. The best alternative to the true model depended on 

the exposure metric, but was in most cases TVARCL model, which disregards the nonlinear CL 

component. This is further in agreement with the above reported finding of the nonlinear CL parameters 

of the true, MMCL+TVARCL, model being the most sensitive to the study design changes. When it 

comes to the comparison of exposure metrics, Cmin at steady state was found to be the most robust. 



Results and Discussion 
 

49 
 

Panel I 
 

 
Panel II 

 

Figure 16. Bias in minimum concentration (Panel I) and area under the concentration-time curve (Panel II) 

after the second (Cmin,2, AUC2) dose and at steady state (Cmin,SS, AUCSS) compared to reference MMCL + 

TVARCL model. (a) Study design A: multiple-dose levels and rich sampling; (b) Study design B: single-dose 

level and rich sampling; (c) Study design C: multiple-dose levels and sparse sampling; (d) Study design D: 

single-dose level and sparse sampling. 0.CL, zero-order clearance; LCL, linear clearance; MMCL, Michaelis-

Menten clearance; TVARCL, time-varying linear clearance. 
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Panel I  
 

 
Panel II  

 

Figure 17. Accuracy in minimum concentration (Panel I) and are under the concentration-time curve (Panel 

II) after the second (Cmin,2, AUC2) dose and at steady state (Cmin,SS, AUCSS) compared to reference MMCL + 

TVARCL model. (a) Study design A: multiple dose levels and rich sampling; (b) Study design B: single dose 

level and rich sampling; (c) Study design C: multiple dose levels and sparse sampling; (d) Study design D: 

single dose level and sparse sampling. 0.CL, zero-order clearance; LCL, linear clearance; MMCL, Michaelis-

Menten clearance; RMSE, root mean squared error; TVARCL, time-varying linear clearance. 
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3.6  Effect of pregnancy on infliximab pharmacokinetics 

In special populations, such as children or pregnant women, PK of mAbs is expected to be altered due 

to physiological and mechanistic reasons [179]. The anti-TNFα drugs belong to pregnancy category B 

according to the FDA, meaning that whether they can cause harm to a foetus or not is not yet known 

and that there is no documented human toxicity. In other words, according to the FDA, it is justified to 

administer drugs from this group to a pregnant patient if undoubtedly needed [180,181]. Various 

authority bodies, institutions and organisations classify IFX differently in regard to the safety of its use 

during pregnancy and their recommendations are rather inconsistent. In the European Crohn’s and 

Colitis Organization guidelines IFX is labelled as “probably safe” [52]; the Australian TGA classifies 

the drug in category C, among the drugs that, based on their pharmacological effects, have been shown 

to cause or have potential to cause harmful (potentially reversible) effects on the foetus, without causing 

malformations [182]. With respect to this, a clinical strategy for reduction of the foetal exposure is 

ceasing the IFX therapy in the third trimester, since IFX crosses the placenta most efficiently during 

later pregnancy trimesters [183,184]; however, the decision on whether to continue the therapy or not 

is made on an individual basis [183,185].  

Studies assessing the PK of mAbs during pregnancy are very scarce, with only one report comparing 

the PK of IFX in presence and absence of pregnancy [186], excluding papers discussing possible general 

pregnancy-induced PK changes. Due to the lack of IFX (and mAbs in general) clinical data from 

pregnant patients, most aspects of mAbs PK/PD in pregnancy remain unexplained [52]. Theoretically, 

the pregnancy could affect mAb PK and/or PD in several ways. It is well known that IgG molecules 

cross the placenta throughout the second and the third trimesters of pregnancy. At the very beginning 

of the pregnancy, the transfer is negligible, because the continuous and compact FcRn-free inner layer 

of cells (cytotrophoblast) prevents penetration of IgG. By the end of the first trimester FcRn is 

increasingly present in the outer cell layer of the placenta (syncytiotrophoblast). Over time, the 

syncytiotrophoblast expands and the cytotrophoblast layer becomes discontinuous. As a consequence, 

the area for IgG transport grows, access to foetal vessel endothelium is enabled, and IgG molecules are 

internalised into the syncytiotrophoblast by endocytosis. In the endosome, the FcRn can bind the IgG 

molecules and release them at the basal membrane, which has neutral pH. The IgG can then pass through 

the basal lamina directly to the foetal vessel endothelium, thanks to the vasculosyncytial zones present 

in the terminal villi, in which sinusoids of foetal capillaries lie beside the syncytiotrophoblast (not 

separated by stromal cells) [52,184,187,188].  

Overall, the rate of the transplacental transport increases exponentially with pregnancy duration and 

reaches its maximum around the 28th gestational week [189]. Due to the active transport and a long half-

life, the IFX concentration in the neonates is often higher than in the maternal blood. This “trapping” 
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phenomenon has been supported by studies that report IFX concentration in the umbilical cord blood 

to be 98%-400% of the maternal level. Furthermore, the drug is detectable in the neonates for up to 9 

months after delivery [184,185,187,190-193]. Another potential effect of pregnancy is immunity 

related. Namely, pregnancy is accompanied by modifications of the maternal immune system. As a 

dysregulated immune response is one of the aetiological factors of IBD, this could also influence the 

disease status and IFX therapy. In the first trimester, a strong inflammatory response, needed for 

implantation and formation of the decidua and the placenta, develops. It is characterised by infiltration 

and accumulation of NK cells, dendritic cells and macrophages in the decidua. As the foetus enters the 

phase of rapid growth and development, an anti-inflammatory state is promoted. Finally, when the 

foetal development is over, once again a proinflammatory state, crucial for the delivery, is induced 

[52,53]. Apart from these immunological changes, the TNFα concentration increases throughout the 

pregnancy, reaching maximum at the onset of the labour [184]. This could be one of the mechanisms 

of potential IFX PK/PD changes, since TMDD contributes to the IFX elimination and with an increased 

target concentration this effect could be of importance. Another characteristic of pregnancy consists of 

body water changes, that could cause alterations in the IFX distribution. In pregnancy, blood flow and 

volume are increased. Plasma volume can rise for up to 50% (increase of ~1200-1600 mL compared to 

pre-pregnancy values) and extracellular volume increases by 30%-50%. These differences could 

theoretically influence PK/PD of IFX, especially since volume of distribution of IFX is limited to 

intravascular and extracellular fluid [52,54,194]. Due to the fact that IFX is dosed based on body weight, 

it is difficult to predict the overall effect without clinical data. One proposed hypothesis is that in 

pregnancy higher doses are required, because volume of central compartment of IFX increases 

proportionally to body weight [52]. Furthermore, if the above mentioned potential alterations indeed 

lead to differences in IFX concentrations in pregnancy, it could also reflect on frequency and extent of 

development of ADA, that in turn would further affect the IFX elimination, as ADA-mediated 

elimination is one of important elimination pathways of the drug [52]. Finally, hormone (oestrogen and 

progesterone)-induced GIT changes, such as smooth muscle dysfunction, are more frequent in women 

with pre-existing GIT diseases, including IBD [54]. 

The importance and effects of TNFα for the human foetus are not fully understood, but it is known that 

TNFα takes part in protection of the embryo from birth defects. This role of TNFα raises concerns about 

the use of the anti-TNFα drugs during pregnancy, since inhibiting TNFα and its protective effects could 

theoretically increase the risk of birth anomalies. At the same time, approximately 30% of women with 

IBD experience disease flares during pregnancy. The flares themselves carry a risk of adverse birth 

outcomes, with high TNFα concentrations being associated with an increased risk of infections during 

pregnancy, more frequent foetal growth retardations and spontaneous abortions [52,184,195]. Since 

IFX does not cross-react with other species, only developmental toxicity studies in cynomolgus monkey 

have been performed. These studies showed no teratogenic effect [180,183,184]. The safety of use of 
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the anti-TNFα drugs in the human pregnancy has been assessed previously, but there are large 

discrepancies between conclusions of different studies, ranging from “safe” [52,181,183,190,191,196], 

to “inconclusive” [184], to “not safe” [189]. Overall, taking into account the risks of an uncontrolled 

disease on both the pregnant patient and the foetus, it seems that the benefits of IFX use in the pregnancy 

outweigh the risks. The possible IFX-induced effects on the child’s immunity (i.e. a possibility of 

immunosuppression) should however be taken into account, even though the data so far suggest that a 

serious immune deficit is highly unlikely. According to the guidelines, live-virus vaccines are 

considered contraindicated in patients receiving biological therapy, whereas in the newborns that were 

exposed to IFX in utero the vaccines should be postponed until IFX in the infant becomes undetectable 

[187,192]. 

The analysis reported in Paper IV investigated IFX PK in pregnancy based on routinely collected PK 

samples from pregnant IBD patients. Of 23 pregnancies documented, 2 miscarriages and 1 birth with a 

congenital abnormality were recorded, while other 20 pregnancies ended with healthy births. These 

results seem in accordance with the above mentioned findings, however due to the limited size of the 

population no further analysis or inferences regarding IFX safety in pregnancy were made.  

 

Figure 18. Exploratory analysis: Infliximab concentration (CIFX) since last dose (A) and since conception (B); 

and dose-normalised CIFX per ADA status (C), pregnancy status (D), and per trimester (E). 

In accordance with the trends observed during statistical and graphical analyses (Figure 18), the 

population PK analysis identified changes of IFX CL in pregnancy. The model that described the data 
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best (Figure 19) was a 1-compartment model with linear elimination, and ADA and (the second and the 

third) trimester of pregnancy as covariates on CL. Table 6 shows respective parameter estimates of the 

model. The presence of ADA resulted in a 69% increase of IFX CL. No CL change was detected in the 

first trimester of pregnancy, whereas a decrease of 12% was identified in the second and the third 

trimesters. An attempt was made to segregate the changes in the second and the third trimester, but, 

although a trend (11% and 15% decrease, respectively) was observed, acceptably precise estimation 

could not be achieved, likely due to the sparseness of the sampling and absence of IFX dosing in the 

third trimester. Pre-selected covariates (body weight, co-therapy with immunomodulators, diagnosis, 

serum albumin concentration, platelet and white blood cell counts) were investigated on top of ADA 

and trimester effect, but none were found to have a significant impact on IFX CL. Finally, the 

development of ADA was not observed to be impacted by pregnancy (Table 7). 

Table 6. Parameter estimates of the final PK model of IFX in pregnancy. 

Clearance, L/d  0.608a 

Volume of distribution, L 18.2a 

Effect of ADA on clearanceb 0.685a 

Effect of 2nd/3rd trimester on clearanceb -0.121 (56) 

Interpatient variability in clearance, CV% (RSE%) [Shrinkage] 30.7 (28) [23] 

Interpatient variability in volume of distribution, CV% (RSE%) [Shrinkage] 53.3 (30) [23] 

Residual unexplained variability, μg/mL (RSE%) [Shrinkage] 0.371 (13) [6] 

aparameter value fixed to the final estimate from the initial model;  
bthe covariate effects on clearance were defines as:  𝐶𝐿 = 𝐶𝐿𝑡𝑦𝑝𝑖𝑐𝑎𝑙 ∙ (1 + 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐴𝐷𝐴 𝑜𝑛 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒) ∙(1 + 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 2𝑛𝑑3𝑟𝑑 𝑡𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟 𝑜𝑛 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒)      
 

Table 7. Incidence of ADA in different periods of the study (pre-, post-pregnancy, and in each trimester). 

 nsamples,total nsamples,ADA+ ADA+ (%) p-value*  
(vs. pre-pregnancy) 

Total 137 41 29.9 - 

Pre-pregnancy 91 24 26.4 - 

1st trimester 17 8 47.1 0.15 

2nd trimester 13 4 30.8 1.00 

3rd trimester 4 2 50 0.64 

Post-pregnancy 12 3 25 1.00 

*p-value as per Yates chi-squared test 
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Figure 19. Prediction-corrected visual predictive check for the final pharmacokinetic (PK) model of infliximab 

in pregnancy for all data (A) and per (non)pregnancy phase (B). Full lines are median and dashed lines 5 th and 

95th percentile of observations (blue lines) and simulations (red lines); red dashed areas denote the 90% confidence 

interval around the median of the simulated data; blue dots denote observations. 

These findings are in accordance with the report of Seow et al. [186] that previously addressed IFX PK 

in pregnancy. The herein reported analysis was designed to identify and quantify potential pregnancy-

related IFX PK changes, however the mechanisms underlying these phenomena remain unclear. It is 

known that the placental syncytiotrophoblast sheds into the maternal circulation [197-200], from 

approximately the 6th week of pregnancy [198,200] until delivery. Furthermore, viability and certain 

level of “left-over” functionality of the shed cell parts have been identified [201,202], although FcRn 

has not been investigated in this context. One potential hypothesis is that the FcRn on shed 
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syncytiotrophoblast parts might maintain some level of functionality, thus prolonging the half-life of 

IFX in the maternal circulation upon shedding (Figure 20). Another relevant aspect might be the change 

in the endogenous IgG concentration. Namely, the endogenous IgG concentration is known to gradually 

decrease over pregnancy – potentially as a part of the immunosuppressive effect of pregnancy, reaching 

the lowest concentrations in the third trimester [203,204]. Since the relationship between the IgG 

concentration and IgG half-life is inversely proportional (due to the saturability of FcRn), and the fact 

that endogenous and exogenous (e.g. IFX) IgG molecules share the same kinetic pathways, an increase 

in half-life of both endogenous and therapeutic IgG is anticipated. Of note, therapeutic mAbs, even at 

the highest therapeutic concentrations, have a negligible contribution to the total IgG concentration 

[205]. Further studies are warranted to dissect the mechanisms of pregnancy-induced mAb PK changes. 

 

Figure 20. Illustration of one of the hypothesised mechanisms of prolonged IFX half-life in pregnancy: shedding 

of the FcRn-carrying syncytiotrophoblast into maternal circulation. 

In the second part of the herein reported analysis, the developed PK model was applied to assess 

implications of the IFX discontinuation in terms of exposure achieved in the pregnant patients. As 

different IFX PK targets have been described in the literature, three cut-offs (3, 4, and 5 µg/mL) were 

investigated, in order to assess the sensitivity of the findings to PK target changes, and thus potential 

relevance of a consensus on target Cmin in the clinical setting. Figure 21 provides comparison of the 

typical IFX concentration-time profiles, and Table 8 achievement of the three PK targets, for simulated 

ADA+ and ADA- patients under three treatment settings: in absence of pregnancy, in continuous IFX 

therapy throughout the pregnancy, and in pregnancy with IFX therapy discontinuation in the third 

trimester.  
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Figure 21. Simulated typical IFX concentration-time profiles in absence of pregnancy, and during pregnancy with 

(IFX-stop) and without IFX therapy discontinuation (IFX-cont): (A) without, and (B) with anti-drug antibody 

formation. Dotted vertical lines represent pregnancy period; dotted horizonal line denotes a PK target of 3 µg/mL. 

Regardless of the PK target, discontinuation of IFX therapy in the third trimester led to a significant 

decrease of the percentage of both ADA+ and ADA- patients reaching the target. The significant impact 

of ADA found in the pre-modelling analysis and in the PK model thus clearly reflected on the PK target 

achievement under all three investigated treatment settings. Finally, the simulations demonstrated the 

effect of the second and third trimesters of pregnancy, with an increased target achievement in the 

pregnant compared to the non-pregnant patients. This finding might provide a partial explanation for 

the recently reported [206] increased risk of flares in the case of IFX discontinuation in pregnancy. The 

same study reported a similar risk of complications when IFX is continued and discontinued, supporting 

safety of IFX therapy throughout the pregnancy from maternal perspective.  

Table 8. Attainment of PK target (3, 4 or 5 µg/mL) for ADA+ and ADA- patients in  absence of pregnancy (‘Non-

pregnant’), continuation of IFX maintenance therapy throughout the entire pregnancy (‘Pregnant, IFX cont.’), and 

pausing during the third trimester of pregnancy (‘Pregnant, IFX-discont.’). 

 
Non-pregnant Pregnant, IFX cont. Pregnant, IFX-discont. 

ADA- %n>3µg/mL = 51 

%n>4µg/mL = 39 

%n>5µg/mL = 28 

%n>3µg/mL = 65 

%n>4µg/mL =52 

%n>5µg/mL = 41 

%n>3µg/mL = 30 

%n>4µg/mL = 19 

%n>5µg/mL =11 

ADA+ %n>3µg/mL = 11 

%n>4µg/mL =5 

%n>5µg/mL =2 

%n>3µg/mL = 17 

%n>4µg/mL =9 

%n>5µg/mL =3 

%n>3µg/mL = 3 

%n>4µg/mL =1 

%n>5µg/mL =1 
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With respect to the disease activity in the investigated population, a trend of a decreased activity in 

pregnancy starting already in the first trimester and an increased disease activity in the first months after 

delivery was observed, especially for CD patients (measured by HBI), whereas the trends were less 

clear in UC (measured by Simple Clinical Colitis Activity Index). While it could be hypothesised that 

the increased postpartal CD activity might be related to the low/absent IFX exposure due to the therapy 

discontinuation in the third trimester, the limited sample size in the herein analysed dataset hindered 

any concrete inferences or further analysis.   
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4 Conclusions and future perspectives 

 

Within this thesis substantial steps were taken to acquire a deeper mechanistic understanding of PK and 

PD of IFX in the IBD patients, provide a basis for model-informed clinical decision-making and support 

the rational use of IFX in IBD. Specifically, insights in (1) a dynamic exposure-biomarker relationship, 

(2) CL mechanisms of mAbs and relevance of study design characteristics, and (3) the PK behaviour 

of IFX in pregnancy are reported.  

The developed PK/PD model – the first model describing IFX dose-exposure-CRP concentration 

relationship – enabled precise estimation of the maximum effect of IFX on CRP synthesis and the 

respective IFX concentration. The model-based simulations revealed that to achieve CRP remission 

shortening of the IFX dosing interval, dependent on ADA status and absence/presence of co-therapy 

with immunomodulators, is necessary. The model can be further utilised for further comparisons of 

different dosing regimens of IFX in a general IBD patient population and to support Therapeutic Drug 

Monitoring and clinical decision-making. This model also provides a basis for more elaborate IFX 

PK/PD models; for instance, if data would be available, the model could be broadened to include 

additional IBD (bio)markers (e.g. faecal calprotectin), or utilised in an integrated multi-level way in 

combination with other approaches (e.g. PBPK or systems biology modelling) to deepen the 

understanding of IFX exposure-response relationship, improve predictions of the treatment outcome 

and contribute to the overall treatment success. As ADA status was consistently identified as a crucial 

factor on IFX exposure, further understanding of relevance of different ADA IgG subtypes is warranted. 

In addition, a model of ADA formation could identify predictors of ADA development, and thus 

potentially inform clinical decisions for prevention of their development. 

The PK model of cetuximab comprises the most detailed cetuximab CL characterisation reported, and 

the investigations of study design provide a guideline for future clinical studies for pharmacometric 

analyses. Identifiability of the true CL model of mAbs was found to heavily depend on the underlying 

data. While analysed IFX clinical data often does (due to clinical therapeutic decisions) comprise 

multiple dose levels, the sampling is usually sparse (only at Cmin), and clinical trials with rich sampling 

might enable the ‘true’ characterisation of IFX PK. Moreover, the observed differences in sensitivity of 

the exposure metrics (Cmin and AUC) highlight the value of dynamic models – such as the IFX-CRP 

PK/PD model developed as a part of this work – which contain information on the whole PK profile of 

a drug over time, instead of focusing on one exposure metric. In case such a dynamic model is not 

available and the data might be too limited to inform the true model, the choice of the exposure metric 

to be used in the exposure-response analysis should be made in advance, and considered during the PK 

model development (i.e. choice of alternative simplified models). 
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The developed PK model of IFX in pregnancy – the first such model reported – suggested that 

pregnancy is accompanied by a decrease in the IFX elimination. Solely from the PK target attainment 

perspective, continuation of IFX therapy throughout the pregnancy was found advantageous over 

discontinuation in the third trimester. Further studies addressing the mechanisms of the pregnancy-

induced changes, including the CL alterations observed within this work, would facilitate a deeper 

understanding of the underlying physiological processes and enable mechanism-based predictions of 

disease activity in pregnancy, further informing the need for therapy adjustments in this period. 

Furthermore, the herein reported findings call for an identification and a consensus on the PK target of 

IFX and emphasise the importance of ADA status monitoring regardless of the pregnancy status. 

Expansion of this model to include a disease activity (bio)marker or to a more extensive PK model (e.g. 

by linking to a PBPK mAb pregnancy model) could shed more light on the IFX PK mechanisms in 

pregnancy and maternal and foetal IFX exposure. Finally, further investigations of safety of IFX use in 

pregnancy for the foetus are warranted. 

In summary, the work performed within this thesis contributes to a better understanding of the PK and 

PD of IFX in IBD patients. Furthermore, it provides novel information for future studies and 

pharmacometric analyses, as well as for clinical management of IBD in general IBD patient population, 

and in pregnant IBD patients.   
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Aim: Quantitative and kinetic insights into the drug exposure-disease response rela-

tionship might enhance our knowledge on loss of response and support more effec-

tive monitoring of inflammatory activity by biomarkers in patients with inflammatory

bowel disease (IBD) treated with infliximab (IFX). This study aimed to derive recom-

mendations for dose adjustment and treatment optimisation based on mechanistic

characterisation of the relationship between IFX serum concentration and C-reactive

protein (CRP) concentration.

Methods: Data from an investigator-initiated trial included 121 patients with IBD

during IFX maintenance treatment. Serum concentrations of IFX, antidrug antibodies

(ADA), CRP, and disease-related covariates were determined at the mid-term and

end of a dosing interval. Data were analysed using a pharmacometric nonlinear

mixed-effects modelling approach. An IFX exposure-CRP model was generated and

applied to evaluate dosing regimens to achieve CRP remission.

Results: The generated quantitative model showed that IFX has the potential to

inhibit up to 72% (9% relative standard error [RSE]) of CRP synthesis in a patient. IFX

concentration leading to 90% of the maximum CRP synthesis inhibition was 18.4 μg/

mL (43% RSE). Presence of ADA was the most influential factor on IFX exposure.

With standard dosing strategy, ≥55% of ADA+ patients experienced CRP non-

remission. Shortening the dosing interval and co-therapy with immunomodulators

were found to be the most beneficial strategies to maintain CRP remission.

Conclusions: With the generated model we could for the first time establish a robust

relationship between IFX exposure and CRP synthesis inhibition, which could be

utilised for treatment optimisation in IBD patients.
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1 | INTRODUCTION

The inflammatory bowel diseases (IBDs), Crohn's disease and ulcera-

tive colitis, comprise a complex variety of diseases characterised by

chronic intestinal inflammation that may lead to irreversible damage

and are associated with poor quality of life. While the control of IBDs

has previously been of limited success, introduction of antitumour

necrosis factor α (TNFα) monoclonal antibodies, such as infliximab

(IFX), adalimumab and golimumab, brought about a notable advance-

ment.1 However, loss of response to the approved dosing regimen

posits major challenges and introduced the need for Therapeutic Drug

Monitoring (TDM), which finds clinical translations mostly with IFX.1

Furthermore, the choice of the most appropriate treatment target

to be tackled and effective monitoring biomarkers in IBD is itself a

complex task. Measures of clinical remission2 are subjective and thus

not appropriate for exploring exposure-response relationships of

drugs, whereas the more objective assessment of endoscopic disease

activity is less apt for long-term disease monitoring due to invasive-

ness. C-reactive protein (CRP) concentration has been found to be a

suitable surrogate marker due to its correlation with endoscopy3 and

favourable kinetic behaviour.4

The relationship between serum concentrations of IFX and vari-

ous disease outcomes has previously been investigated.5–10 However,

there is a lack of quantitative and kinetic knowledge of those relation-

ships. A pharmacometric framework, using the quantitative pharmaco-

kinetic/pharmacodynamics (PK/PD) population approach,11 in

comparison with a static relationship relating exposure and response

only at fixed time points, describes the time course of both drug expo-

sure and IBD activity, and additionally enables quantifying the variabil-

ity between patients in the investigated population, and identifying

and quantifying factors that impact drug exposure or disease activity.

The aim of this study was to derive recommendations for dose

adjustment and treatment optimisation based on mechanistic and

kinetic characterisation of the relationship between IFX dosing, IFX

serum concentration and CRP concentration.

2 | METHODS

2.1 | Study design

The data analysed in this study originated from an investigator-

initiated trial performed at the University Hospital of the Medical

University of Vienna. The study was conducted in accordance with

ethical standards and was approved the institutional review board of

the Medical University of Vienna. Written informed consent prior to

inclusion was obtained from all patients.

Adult patients (n = 121) diagnosed with IBD (89 with Crohn's

disease, 31 with ulcerative colitis (UC) and one patient with

undetermined IBD type) in maintenance IFX treatment were included

in the study, regardless of CRP concentration; patients with obvious

conditions associated with increased CRP concentration (particularly

infectious conditions) were excluded. The patients received IFX at

absolute doses ranging from 100 to 1300 mg (median 400 mg;

1-11 mg/kg, median 5.6 mg/kg) at dosing intervals ranging from 3 to

12 weeks (median 8 weeks). Blood samples (n = 388) were taken at

Cmin (minimum or trough concentration) and at the middle of the dos-

ing interval as part of Therapeutic Drug Monitoring in the period

2010-2012. Serum concentrations of IFX, antidrug antibodies (ADA),

CRP, albumin and other relevant laboratory values were determined.

In addition, potentially relevant patient-related (body weight, smoking

status, sex), disease-related (diagnosis, disease duration as well as

Harvey-Bradshaw index, number of surgeries, disease location, behav-

iour and age at diagnosis per Montreal classification for Crohn's dis-

ease and disease severity per Montreal classification for ulcerative

colitis ) and therapy-related (dosing, premedication with corticoste-

roids, co-therapy with immunomodulators) characteristics were

recorded.

Concentrations of IFX were determined using the IDK monitor

enzyme-linked immunosorbent assay (Immunodiagnostik AG,

Bensheim, Germany12) and concentrations of ADA by a homogeneous

liquid-phase mobility shift assay (Prometheus Anser ADA, Prometheus

Laboratories Inc., San Diego, California, USA13), with a threshold for

positive ADA (ie, lower limit of quantification) of 3.13 U/mL.

2.2 | PK/PD model development by

pharmacometric analysis

Prior to PK/PD model development, statistical and graphical analyses

were performed. Thereafter the data were analysed using the

What is already known about this subject

• Clearance of infliximab (IFX) is subjected to high inter-

individual variability, prompting the need for Therapeutic

Drug Monitoring (TDM) to counteract loss-of-response in

inflammatory bowel diseases (IBD).

• C-reactive protein (CRP) is routinely measured as a bio-

marker to monitor the activity of IBD.

• Quantitative and kinetic knowledge of the relationship

between IFX exposure and disease response is scarce.

What this study adds

• A population pharmacokinetic/pharmacodynamic model

describing the inhibitory effects of IFX on CRP synthesis

was developed.

• High variability in IFX effect suggests that CRP monitor-

ing should be included in the clinical decision making.

• Based on simulations from the model, dosing adjustments

are suggested to support achieving continuous CRP

remission.
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nonlinear mixed-effects modelling approach.14 For model develop-

ment, the software tools NONMEM (version 7.3, ICON Plc, Ireland)

and PsN (version 4.7.0) were employed, while R (version 3.3) and

RStudio (version 1.1.447) were used for pre- and post-processing. The

modelling process consisted of three main parts: (a) development of

the base model characterising IFX PK, (b) covariate analysis aiming to

identify patient-, disease- or therapy-specific factors significantly

influencing IFX exposure and (c) development of a PK/PD model that

quantifies the kinetic relationship between IFX exposure and disease

activity as measured by CRP concentrations. The details of the model-

ling steps are given in the Supporting Information. Briefly, the crucial

aspects were as follows:

a. The base model comprises a structural submodel that predicts the

PK of IFX in a typical individual of the patient population and a sta-

tistical submodel which quantifies between- and within-patient

variability in the PK profiles.

b. The covariate model enables identification of patient, disease or

therapy factors that relevantly affect the PK profile, thus enabling

individualisation of the IFX concentration-time profile according to

these relevant factors.

c. In the course of PK/PD model development, the effect of IFX on

CRP was implemented via sequential PK/PD modelling, ie, after

the PK model including covariates was developed the IFX

concentration predicted for each individual (based on the so-called

empirical Bayesian estimates of the PK parameters) were used for

PD model development.15 To account for the time delay in

changes of CRP concentration induced by IFX, indirect effect

models were chosen.15 The quality and predictive performance of

the ultimate PK/PD model was assessed by a recommended

approach, the prediction-corrected visual predictive check

(n = 1000 simulations).16

2.3 | Assessment of standard dosing strategy

The developed PK/PD model was utilised to evaluate the current dos-

ing strategy in terms of CRP remission (defined as CRP < 5 mg/L17)

and this strategy was compared to potential alternative dosing strate-

gies to select the most beneficial dosing approach(es). Stochastic sim-

ulations (n = 1000) were performed for a typical IBD patient and

patients differing in the most influential covariate factors identified.

As it has previously been shown that changing the dosing interval is

superior to changes in administered dose with respect to adjustment

of IFX exposure,18 the standard dosing regimen (5 mg/kg at weeks 0,

2, 6 and every 8 weeks (q8w) afterwards) was compared to alternative

dosing regimens that differed in dosing intervals. The investigations

were focused on maintenance phase since no clinical data from the

induction phase was available in the dataset underlying the developed

model. Dosing intervals investigated ranged from every 4 (q4w) to

every 12 weeks (q12w). For recommending alternative IFX dosing reg-

imens, the time after IFX dosing when CRP concentration reached

values ≥5 mg/L (CRP nonremission) was calculated for each regimen

and compared for ADA+ and ADA− patients across the investigated

dosing intervals in the presence and absence of co-therapy with

immunomodulators.

3 | RESULTS

3.1 | PK/PD model development by

pharmacometric analysis

The details of the model development process and outcomes are

given in the Supporting Information. Altogether, 388 blood samples

scattered over the entire dosing interval after IFX dosing from

121 patients were available for PK analysis (Table 1). Table 2 and

Figure 1 give characteristics of measurements, demonstrating two

sampling periods in this study: (a) from 2 to 6 weeks (mid-term) and

(b) from 6 to 10 weeks (end of interval). The IFX concentration-time

profiles were adequately characterised by the developed two-

compartment PK model with linear elimination (Figure 2). Subse-

quently, four significant covariates (Supporting Information Figure S3)

on clearance (CL) were identified: The development of ADA in a

patient increased IFX CL by 97%, leading to an accelerated half-life

and reduced exposure of IFX, whereas co-therapy with immunomodu-

lators decreased IFX CL by 15.3%. Furthermore, low serum albumin

concentration and high body weight were related to increased CL and

thus decreased IFX exposure. Based on bootstrap (Supporting Infor-

mation Figure S2), albumin concentration of 33 g/L was in almost

100% of cases related to increase in CL of >20% compared to the ref-

erence value. The extent of the effect of body weight was more mod-

est, with both high (96 kg) and low (50 kg) values related to <20%

change in CL compared to the reference value.

The developed PK model adequately described the measured

IFX data (Supporting Information Figure S1). Volumes of distribu-

tion and intercompartmental exchange capacity values were in the

range of typical PK parameters for monoclonal antibodies (mAbs;

Supporting Information Table S1). Clearance in this study was

0.0126 L/h for the typical patient, having a body weight of 70 kg

and serum albumin concentration of 43 g/L, that did not develop

ADA and was not cotreated with immunomodulators. All covariates

were considered time-varying, implying that CL changed over time

with the covariates in each individual patient. Potential additional

time-variance of CL on top of covariate effects could not be iden-

tified. From the covariates identified as significant, ADA presence

had by far the highest impact: patients developing ADA (ADA+)

revealed an approximately 2-fold higher CL compared to ADA−

patients (Supporting Information Figure S2).

The concentration of CRP was determined in 339 blood samples.

The graphical analysis indicated that there was a strong relation

between IFX and CRP concentrations (Figure 3): CRP increased with

decreasing IFX concentration (Figure 3A). Using the IFX threshold

concentrations described in the literature (3 and 7 μg/mL), this trend

was also clearly visible on stratification into three groups: IFX under-

exposed, within the target range and overexposed (Figure 3B). This

was confirmed by statistical comparison: the relationship between
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IFX and disease activity measures was highest for CRP (Spearman's

rank correlation: 2 × 10−10, 2 × 10−5 and 0.003 for CRP, albumin

and Harvey-Bradshaw index, respectively). Correlation between CRP

and serum albumin concentrations was significant (P < 10−10),

contrary to the correlation between CRP and Harvey-Bradshaw

index (P > .1).

Leveraging mechanistic knowledge on the immunological CRP

kinetics, an inhibition of CRP synthesis by IFX exposure was assumed

and realised in the PK/PD model.4 To explore a potential difference in

CD and UC subpopulation regarding serum CRP concentrations, multi-

ple approaches were undertaken: the exploratory analysis prior to

modelling identified no difference in CRP concentration range after

first or previous dose between CD and UC, the relation between IFX

and CRP was statistically significant (P value <10−4) in both subpopu-

lations and during model development no effect of IBD type was iden-

tified on baseline CRP and/or drug efficacy (IC50). The PK/PD model

that adequately described (Supporting Information Figure S4) the rela-

tionship between IFX exposure and CRP concentration comprised an

indirect response Emax model (Figure 2) that accounted for time delay

in CRP change induced by IFX. The degradation rate constant of CRP

was fixed to correspond to a reported half-life of 19 hours

(0.0365 h−1) to avoid identification issues.20 The generated quantita-

tive and kinetic model showed that IFX has the potential to inhibit up

to 72% of CRP synthesis in a patient (Figure 4A). IFX concentration

leading to 50% of the maximum CRP synthesis inhibition was

2.04 μg/mL and IFX concentration leading to 90% of the maximum

CRP synthesis inhibition was 18.4 μg/mL. The time point when these

values were reached was naturally dependent on covariates defining

the PK profile, as demonstrated in Figure 4B. The baseline CRP con-

centration could be estimated to be 6.32 mg/L for the typical individ-

ual, with high between-patient variability (coefficient of variation; CV)

of 115% CV (5th-95th percentile range based on 1000 simulations:

1.50-28.4 mg/L). Similarly, between-patient variability in IFX concen-

tration leading to half-maximum effect was found to be very high

(209% CV; Figure 4C,D). None of the investigated covariates

(eg diagnosis, sex, smoking status, age at diagnosis, Crohn's disease

behaviour, Crohn's disease location, Montreal classification of ulcera-

tive colitis severity, number of surgeries, baseline body weight, time

since diagnosis at first IFX infusion) explained a significant part of the

variability.

3.2 | Assessment of standard dosing strategy

To evaluate the standard and alternative dosing regimens, simulations

were performed for a typical patient for nine different dosing intervals

(q4w-q12w). Figure 5A shows the distribution of time to loss of CRP

remission (CRP > 5 mg/L) for ADA+ and ADA− patients with (upper

panel) and without (lower panel) co-therapy with immunomodulators

in dependence of the dosing interval. The numbers below the boxes

show the number of patients that experienced CRP > 5 mg/L at any

point during a dosing interval: With the standard dosing regimen in

the maintenance phase (q8w), more than half of ADA+ patients expe-

rience CRP nonremission, regardless of immunomodulator use. How-

ever, co-therapy with immunomodulators significantly decreased the

proportion of patients experiencing CRP nonremission from 74% to

55%. In Figure 5B, median times to loss of CRP remission per dosing

interval were extracted. To increase the number of patients that

accomplish CRP remission over the whole dosing interval, a dosing

TABLE 1 Summary of patient characteristics at the time of first

study day

Categorical characteristics

Number of

patients (%)

Sex (n = 121)

Male 62 (51.2)

Female 59 (48.8)

Smoking (n = 118)

Nonsmoker 41 (34.7)

Smoker 46 (39.0)

Ex-smoker 31 (26.3)

Diagnosis (n = 121)

Crohn's disease 88 (72.7)

Ulcerative colitis 32 (26.4)

Indeterminable IBD 1 (0.9)

Age at diagnosis of Crohn's disease

(n = 88)

≤16 years 11 (12.5)

17-40 years 65 (73.9)

>40 years 12 (13.6)

Crohn's disease location (n = 88)

Ileal 10 (11.3)

Colonic 21 (23.9)

Ileocolonic 57 (64.8)

Crohn's disease behaviour (n = 87)

Nonstricturing, nonpenetrating 30 (34.5)

Stricturing 25 (28.7)

Penetrating 32 (36.8)

Ulcerative colitis severity (n = 32)

Mild 2 (6.25)

Moderate 9 (28.1)

Severe 21 (65.6)

Number of surgeries (n = 118)

0 85 (72.0)

1 20 (17.0)

2 10 (8.5)

3 3 (2.5)

Continuous characteristics Median (minimum, maximum)

Body weight (kg) 70 (47, 115)

Height (cm) 171 (155, 190)

Body mass index (kg/m2) 23.2 (14.5, 41.7)

IBD, irritable bowel disease.
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interval shorter than the standard regimen would be required in both

ADA+ and ADA− patient subpopulations: To this end, in the absence

of co-therapy with immunomodulators, dosing intervals superior to

q8w would be q7w and q5w for ADA− and ADA+ patients, respec-

tively (Figure 5B). Furthermore, co-therapy with immunomodulators

obliviates the need for dosing interval reduction in ADA− patients

and shortens the needed dosing interval to q6w in ADA+ patients.

4 | DISCUSSION

To the best of the authors' knowledge, this is the first time that a pop-

ulation model that characterises the relationship of IFX PK to CRP

concentration as a time-varying variable in IBD has been reported:

This analysis characterised IFX exposure and its inhibition of CRP syn-

thesis, and thereby enabled quantification of relevant PK and PD

parameters, including variability in IFX exposure and response in the

population. Patients who develop ADA and have low albumin, high

BW and/or are not co-treated with immunomodulators were identi-

fied as subpopulations vulnerable to IFX underexposure. Furthermore,

the model-based investigations indicate that shortening of the stan-

dard maintenance phase dosing interval dependent on ADA status

should be considered to increase the number of patients maintaining

CRP remission.

Despite its long presence in IBD management, therapy with IFX

still faces challenges calling for further optimisation, from immunoge-

nicity, to variable induction drug response, to loss of response to the

therapy over time. The relationship between IFX exposure and CRP

TABLE 2 Summary of blood samples (ntotal = 388, nmid-interval = 202, nend-interval = 177) characteristics

Categorical characteristics Number of total samples (%) Number of mid-interval samples (%) Number of trough samples (%)

Concomitant therapy with immunomodulators

Yes 68 (17.5) 31 (15.3) 25 (14.0)

No 320 (82.5) 172 (84.7) 154 (86.0)

Antidrug antibodies

Yes 82 (21.1) 41 (20.3) 41 (23.2)

No 306 (78.9) 161 (79.7) 136 (76.8)

Continuous characteristics Median (minimum, maximum) Median (minimum, maximum) Median (minimum, maximum)

Absolute dose administered [mg] 400 (100, 1,300) … …

Concentration of IFX (μg/mL) (n = 388) 8.30 (0.10, 53.5) 13.8 (0.10,52.0) 4.30 (0.10, 24.0)

Concentration of CRP (mg/L) (n = 339) 2.70 (0.20, 120) 2.80 (0.20,120) 2.35 (2.00, 50.8)

Concentration of Alb (g/L) (n = 312) 42.9 (25.3, 51.6) 43.0 (25.3, 50.8) 42.7 (25.8, 51.6)

Harvey-Bradshaw index (n = 236) 2 (0, 19) 2 (0, 18) 2 (0, 19)

Note. Mid-interval samples were defined as samples taken between week 2 and week 6 after dose, end-of-interval (trough) samples were defined as

samples taken between week 6 and week 10 after dose.

Abbreviations: Alb, serum albumin; CRP, C-reactive protein; IFX, infliximab.

F IGURE 1 Overview of available measurements of infliximab (IFX) concentration in the investigated patient population. (A) Distribution of

sampling times over dosing interval. The samples were mainly taken at Cmin (trough) levels and at the middle of the dosing interval. The different

dosing intervals arose from clinical decisions. (B) Concentration of IFX over time after last dose. Note that the dataset informs only the later

phase of the concentration-time profile. The vertical orange line designates the standard dosing interval of 8 weeks (q8w). CIFX, measured IFX

concentration
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concentration has so far not been characterised in a quantitative and

mechanism-based way. Pharmacometric approaches enable a quanti-

tative, kinetic and mechanistic insight into the underlying PK and

PD/immunological pathways to be obtained. The developed models

can be used to support clinical decisions as part of TDM, advocated

by several national societies for the maintenance period of anti-TNFα

therapy.

The first part of this analysis characterised the PK of IFX in IBD

patients on maintenance phase treatment, including evaluation of fac-

tors that significantly contribute to the variability in IFX PK. In our

analysis, the covariates that significantly impacted CL in the investi-

gated population were ADA status, co-therapy with immunomodula-

tors, serum albumin concentration and body weight. Previously

published IFX PK models show a high level of agreement with respect

to identified covariates (eg, body size, disease activity markers, ADA,

co-medication) and our findings are also in good agreement with these

reports.21–29 In contrast to most of the previously developed models,

all covariates in the present analysis were implemented as time-

varying variables, thus implying a realistic change of IFX CL over time

relative to the covariate values in individual patients. By incorporating

the change over time in covariate values (in contrast to baseline

covariate values only), more information from a covariate-parameter

relationship from the data is used.

Mechanistically, the development of ADA affects both the PK

and IFX effects. ADA molecules binding to active sites of the IFX

molecule hinder its efficacy by disabling binding to its target, TNFα.

Furthermore, the IFX-ADA complexes formed are promptly cleared

from blood, contributing to higher CL of IFX.30 Despite differences in

assays available for ADA detection/quantification, especially the

lower limit of quantification, resulting in varying definitions of ADA

positivity in different analyses, ADA have consistently been found to

impact IFX CL. The assay used in this study quantified total

(both drug-bound and unbound) ADA concentration, with a cut-off

for ADA positivity of 3.13 U/mL. In this analysis, an approximately

2-fold higher IFX CL was found in patients who developed ADA

compared to patients who did not. The ADA status was, however, not

found to impact the drug efficacy in our model. Another important

factor that influences IFX CL is serum albumin concentration, as con-

firmed by our analysis as well. Serum albumin is likely related to IFX

CL via two mechanisms: (a) as a marker of disease state and increased

protein turnover in inflammation and (b) as a marker of the neonatal

Fc-receptor (FcRn) activity (lower albumin concentration indicative of

lower FcRn activity, resulting in higher IFX CL), potentially explaining

why albumin was the disease activity marker predictive of IFX CL

F IGURE 2 Graphical representation of the final pharmacokinetic/

pharmacodynamics (PK/PD) model. Infliximab (IFX) PK is described by

a two-compartment model with linear elimination. Antidrug antibody

status, serum albumin concentration, co-therapy with

immunomodulators and body weight were identified to impact the

drug clearance (CL). The effect of IFX on C-reactive protein (CRP) was

best characterised via the indirect drug effect modelling approach,

whereby the plasma concentration of IFX was related to inhibition of

CRP synthesis. ADA, antidrug antibodies; ALB, serum albumin

concentration; BW, body weight; CL, clearance; CRP, C-reactive

protein; IFX, infliximab; IMM, co-therapy with immunomodulators;

kdeg, rate constant of CRP degradation; ksyn, rate constant of CRP

synthesis; Q, intercompartmental exchange capacity; V1, volume of

central compartment; V2, volume of peripheral compartment

F IGURE 3 Relation between infliximab (IFX) exposure (ie, plasma concentration) and C-reactive protein (CRP) concentration.

(A) Concentration of CRP over IFX concentration. The blue line represents linear regression. (B) Simplified comparison of the IFX-CRP

relationship. Concentrations of IFX were stratified in three groups: ≤3 μg/mL, between 3 and 7 μg/mL, and >7 μg/mL.19 The numbers indicate the

number of observations each group comprises. A decrease in CRP concentration from the group with lowest IFX exposure to the group with

highest is observed. CCRP, measured CRP concentration; CIFX, measured IFX concentration
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rather than CRP. Furthermore, our analysis revealed a direct relation-

ship between body weight and IFX CL, as well as an inverse relation-

ship between co-therapy with immunomodulators and CL (see below).

This analysis also investigated the potential impact of other covariates

(eg, disease, sex), but none of them had a significant effect on

CL. Given the similar proportion of male and female patients, our

results suggest that dosing recommendations for both sexes must not

be different.

Of the myriad measures used to assess activity of IBD, bio-

markers currently represent adjunctive treatment targets primarily

aimed for disease monitoring.31 This study focused on CRP due to its

favourable characteristics: (a) correlation with endoscopy,3 (b) high

sensitivity and short half-life (t½ = approximately 19 h), and (c) well-

known kinetic behaviour that does not differ between healthy and

diseased individuals.4

One of the aims of this work was to investigate the PK/PD rela-

tionship between IFX exposure and IBD activity measures. In this

analysis, disease activity measures were CRP and serum albumin con-

centrations, and the Harvey-Bradshaw index for patients with

Crohn's disease. For UC, disease severity was assessed according to

the Montreal classification and disease activity by the partial Mayo

score; however, due to the low number of patients with UC, sub-

analyses in this group were not performed. As TNFα is the main initi-

ator of immunological cascade resulting in CRP synthesis, lower

levels of TNFα lead to lower CRP synthesis (Figure 2). Since IFX does

not inhibit CRP synthesis directly, a certain time-delay between max-

imum IFX exposure and maximum inhibition of CRP synthesis is

expected. In the PK/PD model, this time-delay was incorporated as

IFX inhibition of CRP synthesis via the indirect response modelling

approach. The model estimated that up to approximately 72% of

F IGURE 4 Illustration of infliximab (IFX) concentration (CIFX)-effect (C-reactive protein [CRP] synthesis inhibition)-time relationships. (A) IFX

exposure-CRP synthesis inhibition curve and IFX potency. Red and blue arrows designate the IFX concentrations corresponding to 90%

(18.4 μg/mL) and 50% (2.04 μg/mL) of the maximum CRP synthesis inhibition effect of �72% (dashed green line), respectively. (B) Time after

dose when IFX concentration falls below the 90% (blue line) and 50% (red line) effect concentrations for ADA− (solid lines) and ADA+ (dotted

lines) patients without (black lines) and with (green lines) immunomodulator co-therapy. (C) and (D) Visualisation of high unexplained between-

patient variability in IFX concentrations leading to a half-maximum effect on CRP concentration (IC50 value). Stochastic simulations were

performed whereby variability in IC50 was considered. (C) IFX concentration-time profile in a reference individual. (D) Corresponding potential

CRP concentration profiles. The plot demonstrates that due to high between-patient variability that could not be explained with any covariates,

even for a patient with a known PK profile and baseline CRP concentration it is not possible to predict a single corresponding CRP profile, but

rather a (rather wide) range of potential CRP profiles. ADA, antidrug antibodies; CCRP, measured CRP concentration; CIFX, measured IFX

concentration; IMM, co-therapy with immunomodulators
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F IGURE 5 Evaluation of the standard and alternative infliximab (IFX) dosing regimens with respect to C-reactive protein (CRP) suppression

via stochastic simulations (n = 1000) of patients that differ only in antidrug antibody status. For the simulations, variability in the PK submodel

parameters was considered. (a) Distribution of time points in the weeks after the fifth dose when CRP concentration reached 5 mg/L (CRP

nonremission) as box-whisker plot over simulated IFX dosing intervals, stratified by antidrug antibody (ADA) status and co-therapy with

immunomodulators. Note that the virtual patients that do not experience CRP concentrations above 5 mg/L (ie, without loss of CRP remission)

are not included in the plot. Proportions of patients experiencing CRP nonremission (shown below each box) are higher in cases of ADA

development and absence of co-therapy with immunomodulators. (b) Simplification showing only the median time after the fifth dose when CRP

concentration reached CRP nonremission stratified by ADA development and immunomodulatory co-therapy. In the presence of co-therapy with

immunomodulators, the standard IFX dosing interval of every 8 weeks (q8w) corresponds to median time to CRP nonremission in ADA− patients,

whereas for ADA+ patients reduction to q6w is to be recommended. In the absence of co-therapy with immunomodulators, for ADA− patients a

dosing interval of q7w corresponds to the median time to CRP nonremission, whereas for ADA+ patients further reduction to a dosing interval of

q5w should be preferred. Red frame, standard IFX dosing regimen every 8 weeks
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CRP synthesis can be inhibited by IFX (Figure 4A). In other words,

the IFX effect is saturable and CRP synthesis cannot be 100%

inhibited by IFX: Regardless of how high IFX concentrations are

achieved within an individual, approximately a quarter of CRP syn-

thesis cannot be inhibited. This finding, now quantified, is in good

accordance with previous knowledge, since TNFα is not the only

immunological initiator of CRP synthesis.4 Concentration of IFX lead-

ing to half-maximum effect was 2.04 μg/mL, which approximately

corresponds to PK targets previously described in the literature.19

The corresponding IFX concentration leading to 90% of the maxi-

mum effect was 18.4 μg/mL. As, depending on their covariates, dif-

ferent patients might have different PK profiles, the time after a

dose when IFX concentration falls below an effective level might dif-

fer as well. This is illustrated in Figure 4B: a typical ADA− patient

drops below the 90% effect IFX concentration before week 4 in the

absence of co-therapy with immunomodulators and after week 4 in

the presence of the co-therapy. The IFX concentration never falls

below the 50% effect concentration in this subpopulation. In con-

trast, ADA+ patients fall below the 90% effect concentration thresh-

old around week 2, regardless of immunomodulators use, ie,

approximately or more than 2x faster than the ADA− patient. Thus,

in ADA+ patients the 90% effect concentration is achieved during

only one quarter of the dosing interval. The beneficial co-therapy

with immunomodulators, however, delays crossing the 50% effect

concentration threshold in ADA+ patients from 5 to 6 weeks. From

the clinical perspective, a very important finding of this analysis is

the high between-patient variability in IC50 value of IFX for the

effect on CRP (�209% CV). One hypothesis to explain the identified

high between-patient variability in IC50 is the fact that CRP is a far

downstream biomarker with respect to IFX binding to TNFα. A simi-

lar finding was recently obtained for faecal calprotectin in a report of

an IFX-faecal calprotectin PK/PD model.32 This indicates that there

is a potentially high individual difference in effect (ie, inhibition of

CRP synthesis) among patients even in cases of the same IFX expo-

sure (Figure 4C,D). Practically, this implies that monitoring of disease

activity measures, such as CRP concentration, might be advanta-

geous over solely monitoring IFX concentration. Further investiga-

tions in the direction of identifying covariates that contribute to this

high variability are warranted.

In our data, no long-term inhibitory effect of IFX on CRP was

observed, ie, stopping IFX therapy leads to increase in disease activity,

regardless of the time after IFX therapy initiation. Contrarily, clinical

experience suggests that some patients will remain in a state of

remission even if IFX therapy is ceased after a certain period.33,34 In

our data, samples were collected from a large number of patients, but

spread over different ranges of time after first dose and with a

relatively short follow-up time. This might contribute to the lack of

identification of long-term disease suppression. If long-term data is

available and this cumulative IFX effect was identified, it could be

added to the PK/PD model.

We acknowledge that our study has certain limitations. As sam-

pling in the first weeks of the dosing interval is scarce, the dataset

informs only the later phase of the IFX concentration-time profile.

This limitation manifests itself through the fact that the central vol-

ume of distribution and intercompartmental exchange capacity could

not be estimated from the data alone, in contrast to clearance and

peripheral volume of distribution. The frequentist prior approach

enabled this limitation of the real-world clinical data situation to be

overcome.35 While the sampling scheme (ie, two samples per dosing

interval) resulted in appreciable ranges of all variables (eg, IFX, CRP,

ALB, covariates) due to the TDM nature of the dataset, the CRP

concentration at the time of the first IFX infusion was not available

for most patients. Our generated model, however, was able to esti-

mate the plausible baseline CRP value very precisely. In addition,

measurement of further factors, eg, genotyping and assessment of

faecal loss of IFX, CRP and albumin, would enable investigation of

their potential effect on the PK and PK/PD. For instance, besides

the two known mechanisms of the albumin-IFX relationship (ie, the

inverse relationship between serum albumin concentration and IBD

activity, and the shared PK pathways of albumin and IFX, especially

the FcRn salvage pathway), faecal loss might be an additional con-

tributor. Finally, limitations of CRP as a disease marker (eg, lack of

specificity) have to be acknowledged; investigation of additional dis-

ease markers would add to this knowledge and help further inform

the choice of the most appropriate marker. This was accounted for

in the developed PK/PD model by a finding of maximum CRP syn-

thesis inhibition lower than 100%, whereby non-TNFα inducers of

CRP synthesis are implied. Altogether, the heterogeneity of the

patient population (covering broad ranges of the measured values)

and the informative sampling time points (including an additional

sample to the one taken just before the next IFX dose, i.e. trough)

enabled the described IFX exposure-response relationship to be

captured.

Pharmacometric nonlinear mixed-effects modelling analysis of

PK/PD relationships enables characterisation of the analysed patient

population over time in a continuous manner, at the same time pro-

viding insight into the variability between patients and relevant

covariates. One of the advantages of this modelling approach is that

after successful model development and evaluation, the model can be

employed to test different hypotheses via simulations. This is illus-

trated by the in silico substudy we carried out. As the presence of

ADA was found to lead to a very high influence on IFX CL and thus

IFX exposure, we investigated how this impact reflects on CRP. To

this end, simulations were performed for ADA+ and ADA− virtual IBD

patients to assess different dosing intervals (q4w-q12w) and the

impact of co-therapy with immunomodulators. The desired target was

defined as CRP concentration <5 mg/L over the whole dosing interval

(CRP remission). To assess the target attainment, simulations

(n = 1000) were performed for each investigated dosing interval and

(a) the percentage of patients with undesired outcome, ie, that reach

CRP > 5 mg/L (CRP nonremission) and (b) the time after the fifth dose

when the CRP concentration crossed and exceeded the target value

were recorded. As shown in Figure 5A, when a standard dosing

regimen (q8w) was simulated without co-therapy with

immunomodulators, 10% of ADA− and as much as 74% of ADA+

patientsexperienced CRP values higher than 5 mg/L. These
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proportions were lower in the presence of immunomodulators (5%

and 55% for ADA− and ADA+ patients, respectively). The median

time to loss of CRP remission (Figure 5B) suggests that ADA− patients

accomplish continuous CRP remission with standard dosing interval

q8w when they are co-treated with immunomodulators. On the other

hand, in ADA+ patients a reduction of dosing interval would be

required to q5w and q6w in the absence and presence of immuno-

modulators co-therapy, respectively.

In this study, we report the first PK/PD model relating IFX expo-

sure to inhibition of CRP synthesis in IBD patients. Increased CL of

IFX was related to development of ADA, low serum albumin, high

body weight and absence of co-therapy with immunomodulators. The

developed PK/PD model identified high variability in effect on CRP

for the same IFX exposure, which could not be explained with

evaluated covariates, suggesting individual CRP measurements should

be monitored and included in the decision of a patient's dosing

regimen. Based on simulations from the developed PK/PD model,

concrete ADA status- and immunomodulatory co-therapy-dependent

dosing adjustments of current standard dosing strategies are

suggested to support achieving continuous CRP remission in these

patients. Finally, the developed model enables simulation of any type

of dosing regimen change (eg, dose change) and provides a framework

for development of a dashboard system28 that could directly support

therapeutic decision making, with respect to achieving both IFX and

CRP targets.

Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to

PHARMACOLOGY, and are permanently archived in the Concise

Guide to PHARMACOLOGY 2019/20.36
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PK/PD model development by pharmacometric analysis 16 

Throughout the modelling process, model evaluation and comparison included change of 17 

objective function value, plausibility and precision of parameter estimation, goodness-of-fit 18 

plots, and visual predictive checks. 19 

Base PK model 20 

Due to the sparse nature of the data the frequentist prior approach was used to support PK 21 

parameter estimation, as described in Gisleskog et al.1 The PK model used as prior was 22 

originally developed by Fasanmade et al.2 The prior model was used to further inform and 23 

stabilise estimation of V1 and Q. Initially, a prior was additionally employed for between-24 

patient variability in V1, V2 and CL, but as variability in CL was well informed by the data 25 

alone the prior was removed and between-patient variability in V1 and V2 fixed. Residual 26 

unexplained variability was described with a mixed additive and proportional error model. 27 

To account for potential differences between patients in residual unexplained variability 28 

arising from the high diversity of the investigated population, the residual variability was 29 

allowed to vary between patients (i.e. between-patient variability in residual unexplained 30 

variability was implemented). This change significantly improved the model fit.  31 

PK model parameters 32 

Volume of the central compartment and intercompartmental exchange flow were 3.67 L and 33 

0.00671 L/h, respectively. Volume of the peripheral compartment was estimated to be 0.936 34 

L. Between-patient variability in central and peripheral volume of distribution was fixed to 35 

12.8 and 55.3 %CV, respectively, as explained above. Proportional residual unexplained 36 

variability was estimated to be 24.0% CV, whereas additive residual unexplained variability 37 

had a standard deviation of 0.478 μg/mL. Inclusion of the covariates in the model explained 38 



26.7% of the between-patient variability in CL, decreasing it to a final value of 34.9 %CV. In 39 

addition, accounting for covariate effects resulted in a reduction of between-patient 40 

variability in residual unexplained variability from 31.7% to 22.2% CV. The estimated additive 41 

and proportional residual unexplained variability values were low. 42 

Table S1. Final model parameters.  

Parameter, unit  Mean (%RSE) [%shrinkage] 

PK submodel parameters  

   Central volume of distribution V1, L 3.67 (-) 

   Intercompartmental exchange rate Q, L/h 0.0067 (-) 

   Peripheral volume of distribution V2, L 0.956 (11) 

   Infliximab clearance, L/h 0.0109 (3) 

   Effect of ADA on CL 0.972 (4) 

   Effect of Alb on CL -1.17 (21) 

   Effect of body weight on CL 0.356 (41) 

   Effect of IMM co-therapy on CL 0.847 (5) 

   Between-patient variability in V1, %CV 12.8 (-) [83] 

   Between-patient variability in V2, %CV 55.3 (-) [56] 

   Between-patient variability in CL, %CV 34.9 (8) [6] 

   Additive RUV in PK, SD (μg/mL) 0.478 (21) [17] 

   Proportional RUV in PK, %CV 24 (14) [17] 

   Between-patient variability in RUV, %CV 22.2 (18) [46] 

PD submodel parameters  

   Baseline CRP, mg/L 6.32 (17) 

   CRP degradation rate constant kdeg, h-1 0.0365 (-) 

   Half-maximal inhibitory concentration IC50, μg/mL 2.04 (43) 

   Maximum effect Imax, % 71.9 (9) 

   Between-patient variability in IC50, %CV 209 (42) [28] 

   Between-patient variability in baseline CRP, %CV 115 (15) [0] 

   Proportional RUV in PD, %CV 65.3 (4) [10] 

 43 

Covariate model 44 

For the covariate modelling, the PK parameters informed by prior were fixed to the PK 45 

estimates from the base PK model, and the potential impact of measured covariates on the 46 

PK parameter clearance (CL) was investigated. Initial screening of covariate impact was 47 



based on graphical analysis and univariate modelling, and final covariate selection was based 48 

on statistical significance of the covariate impact. 49 

Impact of covariates included in the model is shown in Figure S2. The plot clearly 50 

demonstrates the dominant impact of anti-drug antibody status on CL compared to other 51 

covariates 52 

The final PK parameter equations are as follows: 53 

𝐶𝐿 = 𝐶𝐿𝑝𝑜𝑝 ∙ (1 + θ𝐴𝐷𝐴_𝐶𝐿 ∙ 𝐴𝐷𝐴) ∙ ( 𝑠𝐴𝑙𝑏43 𝑔/𝐿)θ𝑠𝐴𝑙𝑏_𝐶𝐿 ∙ ( 𝐵𝑊70 𝑘𝑔)θ𝐵𝑊_𝐶𝐿 ∙ θIMM_CL
𝐼𝑀𝑀 ∙ 𝑒𝜂𝐶𝐿  54 

𝑉1 = 𝑉1,𝑝𝑜𝑝 ∙ 𝑒𝜂𝑉1  55 

𝑉2 = 𝑉2,𝑝𝑜𝑝 ∙ 𝑒𝜂𝑉2  56 

𝑄 = 𝑄𝑝𝑜𝑝,  57 

in which CL denotes the individual CL value, CLpop the typical CL of the population, ADA the 58 

status of ADA (0 for ADA- and 1 for ADA+), sAlb the serum albumin concentration, BW the 59 

body weight, IMM an indicator for co-therapy with immunomodulators (0 for absence, 1 for 60 

presence of co-therapy), ηCL the between-patient variability in CL, V1 the individual volume 61 

of central compartment, V1,pop the typical volume of the central compartment of the 62 

population, V2 the individual volume of peripheral compartment, V2,pop the typical volume of 63 

the peripheral compartment of the population, Q the individual intercompartmental 64 

exchange flow, Qpop the typical intercompartmental exchange flow of the population 65 

PKPD model 66 



Due to the sparse nature of the data the frequentist prior approach was used to support 67 

estimation of between-patient variability terms. The PK/PD model used as prior was 68 

developed by Ternant et al.3 69 

The developed model considered between-patient variability in IFX concentration needed 70 

for 50% of maximum effect (IC50 value) and in baseline CRP concentration, and proportional 71 

residual unexplained variability. 72 

The model equation describing change in CRP over time was: 73 

𝑑𝐶𝑅𝑃𝑑𝑡 = 𝑘𝑠𝑦𝑛 ∙ 𝐼𝑚𝑎𝑥∙𝐶𝐼𝐹𝑋𝐼𝐶50∙𝑒𝜂𝐼𝐶50+𝐶𝐼𝐹𝑋 − 𝑘𝑑𝑒𝑔 ∙ 𝐶𝑅𝑃(𝑡),  𝑘𝑠𝑦𝑛 = 𝐶𝑅𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∙ 𝑒𝜂𝐶𝑅𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∙ 𝑘𝑑𝑒𝑔 74 

, in which ksyn denotes the CRP synthesis rate constant, Imax is the maximum effect (maximum 75 

percentage of CRP synthesis that can be inhibited by IFX), CIFX the concentration of IFX, IC50 76 

the concentration of IFX that leads to 50% of the maximum effect, kdeg the CRP degradation 77 

rate constant, and η between-patient variability. 78 
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Supplementary figure S1. Model evaluation: Prediction-corrected visual predictive check for 89 

the final PK model. Blue lines represent observations, whereas red lines and surfaces 90 

represent model predictions. Full lines are median, dashed lines 5th and 95th percentiles 91 

and surfaces 90% confidence intervals. Blue dots are observations. The plot indicates that 92 

the model adequately describes the data. CIFX: Measured infliximab concentration. Note that 93 

the VPC includes only time points at which observations were available; the full model-based 94 

PK profile is illustrated in Figure 4. 95 

 96 

  97 



Supplementary figure 2. Clinical inference of covariates. The x-axis shows change in CL 98 

relative to CL in a reference individual (body weight 70 kg, serum albumin 43 g/L, no anti-99 

drug antibodies, and no co-therapy with immunomodulators). The y-axis shows relevant 100 

covariates. For the continuous covariates (serum albumin concentration and body weight), 101 

the effect of 5th and 95th percentile of the covariate value in the investigated patient 102 

population is shown. Green surface represents change from CL of ±20% compared to 103 

reference value, as an illustration of the covariate effect extent. The grey areas represent 104 

distributions of the covariate effect based on bootstrap (n=1000). The numbers designate 105 

percentage of the distribution that falls in or out of the ±20% area, respectively. CL: 106 

Clearance; Alb: Serum albumin concentration; BW: Body weight; ADA: Anti-drug antibodies; 107 

IMM: Co-therapy with immunomodulators. 108 

 109 



Supplementary figure 3. Exploratory analysis of relevant covariates on dose-normalised CIFX: 110 

(1) co-therapy with immunomodulators, (b) presence of anti-drug antibodies, (c) serum 111 

albumin concentration, and (d) body weight. *Wilcoxon p-value < 0.05; *** Wilcoxon p-value < 112 

0.001. 113 

 114 
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Supplementary figure 4. Prediction-corrected visual predictive check for the final PK/PD 116 

model showing C-reactive protein concentration over infliximab exposure. Blue lines 117 

represent measured values, whereas red lines and surfaces represent predictions from the 118 

model. Full lines are median, dashed lines 5th and 95th percentiles and surfaces 90% 119 

confidence intervals. Blue dots are measurements. The plot indicates that the model 120 

adequately describes the relationship between infliximab exposure and CRP concentration. 121 

CCRP: Measured C-reactive protein concentration; CIFX: Measured infliximab concentration.  122 
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ARTICLE

Semimechanistic Clearance Models of Oncology 
Biotherapeutics and Impact of Study Design: Cetuximab 
as a Case Study

Ana-Marija Grisic1,2,3,†, Akash Khandelwal3,*, Mauro Bertolino3, Wilhelm Huisinga4, Pascal Girard5,‡ and Charlotte Kloft1,‡

This study aimed to explore the currently competing and new semimechanistic clearance models for monoclonal antibod-

ies and the impact of clearance model misspecification on exposure metrics under different study designs exemplified 

for cetuximab. Six clearance models were investigated under four different study designs (sampling density and single/

multiple-dose levels) using a rich data set from two cetuximab clinical trials (226 patients with metastatic colorectal can-

cer) and using the nonlinear mixed-effects modeling approach. A two-compartment model with parallel Michaelis–Menten 

and time-decreasing linear clearance adequately described the data, the latter being related to post-treatment response. 

With respect to bias in exposure metrics, the simplified time-varying linear clearance (CL) model was the best alternative. 

Time-variance of the linear CL component should be considered for biotherapeutics if response impacts pharmacokinetics. 

Rich sampling at steady-state was crucial for unbiased estimation of Michaelis–Menten elimination in case of the reference 

(parallel Michaelis–Menten and time-varying linear CL) model.

The emergence of new biologic therapies has led to dra-

matic improvement in the survival of patients with cancer.1 

However, a fully mechanistic understanding of the behav-

ior of monoclonal antibodies (mAbs) is still lacking, as their 

distribution and elimination are subject to complex phar-

macokinetics (PKs) that may change over time2 due to their 

protein nature with high affinity to their pharmacological tar-

get. Therefore, a quantitative description of their PK profile, 

especially clearance (CL), is a challenging task. The elim-

ination of mAbs is expected to comprise target-mediated 

drug disposition (TMDD; saturated at higher exposure and 

nonlinear/linear at lower concentrations) and nonspecific 

CL, which may be linear, nonlinear, and/or time-dependent, 

so both linear and nonlinear clearance are physiologically 

possible. However, quantification of each of these compo-

nents in a model is highly dependent on the data (i.e., the 

sampling scheme and dose range investigated), potentially 

leading to identification of different models for the same 

drug.

The mAbs targeting the epidermal growth factor re-

ceptor (EGFR) are among the most successful targeted 

therapies for patients with rat sarcoma proto-oncogene 

(RAS) wild-type metastatic colorectal cancer (mCRC), one 

of the most common causes of cancer death worldwide.3 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Characterization of complex clinical pharmacokinetics 

(PK) of monoclonal antibodies (mAbs) is hindered by limited 

availability of informative PK data over a wide dose range.

WHAT QUESTION DID THIS STUDY ADDRESS?
✔  This study explored semi-mechanistic clearance (CL) 

models for mAbs and implications of study design differ-

ences on identifiability of the CL models.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This analysis provides a population PK model incor-

porating both time-varying CL, related to treatment 

response, and target-mediated drug disposition (TMDD) 

component, and stresses the importance of informing the 

population models with rich data.

HOW MIGHT THIS CHANGE DRUG DISCOVERY,  

DEVELOPMENT, AND/OR THERAPEUTICS?
✔  Time-variance of CL in addition to TMDD should be 

considered for biotherapeutics if response impacts PK. 

Informing PK analyses with rich data (i.e., through pool-

ing data from multiple clinical trials at later stages of drug 

development) is crucial for reliable metrics derivation for 

exposure-response relationships.
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Availability of rich PK data sets for cetuximab (Erbitux; 

Merck KGaA, Darmstadt, Germany) approved in mCRC 

offered us the opportunity to reconciliate the different 

published population PK models for this mAb, which dif-

fer in the elimination model of the compound. The first 

published model considered only Michaelis–Menten elim-

ination4; then, Azzopardi et al. proposed a parallel linear 

and zero-order elimination,5 and others found a simple 

linear elimination.6

To explore different semimechanistic CL models for mAbs 

and investigate implications of study design differences on 

identifiability of the CL models, we conducted a population 

PK analysis on a pooled data set, using cetuximab as a case 

study. The objectives of this study were to: (1) refine the 

population PK models of cetuximab in patients with mCRC 

taking into account the TMDD of the biologic therapy; while 

also (2) comparing mechanistically plausible CL implemen-

tations (including linear, nonlinear, and time-varying CL) and 

test how response may or may not interfere with PK; and (3) 

investigate implications of study designs typical for various 

phases of drug development on the model performance and 

parameter identifiability.

Figure 1 Overview of the analyzed clinical trials: a phase I (PhI) trial7 and EVEREST trial.8 (a) Dosing algorithm; (b) pharmacokinetic 
sampling schedule. The PhI trial comprised two arms. In arm A, the patients received the approved dosing regimen (ADR). In arm B, 
after the initial 2-hour infusion of 400 mg/m2, the patients received 2-hour 400 mg/m2, 2.5-hour 500 mg/m2, 3-hour 600 mg/m2, or 3.5-
hour 700 mg/m2 infusions q2w. In the EVEREST trial, all patients initially received cetuximab ADR in combination with irinotecan; after 
3 weeks of treatment the patients eligible for randomization either continued receiving ADR (group A) or underwent dose escalation 
(group B), whereas the patients not eligible for randomization continued the treatment with ADR (group C). In group B, with each 
dose increase of 50 mg/m2 the dense sampling interval was shifted, denoted as “(B…)” for EVEREST in the figure. For all arms/
groups the sampling continued until the patients dropped out of the study or until the study end. ADR, approved dosing regimen for 
cetuximab (2-hour 400 mg/m2, 1-hour 250 mg/m2 once weekly); FOLFIRI, co-medication with irinotecan (30–90 minutes of 180 mg/
m2) + 5-fluorouracil (180 mg/m2 bolus and 2400 mg/m2 as infusion over 46 hours) + folic acid (2-hour 400 mg/m2); q2w, every 2 weeks.

Week: 0 1 2 3 4 5 6 7
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(B 300 mg/m2/week)
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METHODS

Clinical trial design and population

The data for this analysis originate from two multicenter 

clinical trials in patients with advanced mCRC (a phase 

I (PhI) trial7 and EVEREST8). The PhI trial was a phase I, 

open-label, multicenter trial designed to evaluate the PK 

and pharmacodynamics (PD) of cetuximab. The EVEREST 

trial was a phase I/II, open-label, randomized, controlled, 

multicenter trial aiming to evaluate PK and PD of cetuximab 

dose escalation as well as pharmacogenomic and phar-

macogenetic aspects. Full study descriptions are reported 

elsewhere.7,8

Treatment administration

In the PhI trial, patients received intravenous cetuximab 

monotherapy for the first 6  weeks, followed by cetux-

imab-FOLFIRI (folinic acid, 5-fluorouracil, and irinotecan) 

co-therapy (Figure 1a). The patients were assigned to the 

following treatment groups:

1. Initial 400  mg/m2 cetuximab infusion, followed by 

weekly dose of 250 mg/m2 (approved dosing regimen 

(ADR)) (arm A);

2. Cetuximab dose of 400 mg/m2 every 2 weeks (q2w),

3. Cetuximab dose of 500 mg/m2 q2w,

4. Cetuximab dose of 600 mg/m2 q2w, and

5. Cetuximab dose of 700 mg/m2 q2w (arm B)

Starting from week 7, in addition to cetuximab, all patients 

started FOLFIRI treatment, which comprises irinotecan 

(180 mg/m2), 5-fluorouracil (180 mg/m2 bolus and 46-hour 

2400  mg/m2 infusion), and folic acid (2-hour 400  mg/m2 

infusion). The treatment was continued until disease pro-

gression or an unacceptable adverse event.

In the EVEREST trial (Figure 1a), all patients received 

cetuximab ADR-irinotecan co-therapy for the first 3 weeks. 

On the fourth week, patients who had not required irinote-

can discontinuation and had not experienced skin reaction 

of grade >  1 or any other cetuximab-related toxicity of 

grade > 2 were randomized to continue the ADR (group A) 

or undergo cetuximab dose escalation (group B). The dose 

escalation comprised increasing the cetuximab dose by 

50  mg/m2/week up to the maximum dose of 500  mg/m2/

week. Patients not eligible for randomization continued 

the cetuximab ADR-irinotecan treatment (group C). The 

treatment was continued until disease progression or an un-

acceptable adverse event.

PK assay and sampling

For the PK analysis, the serum cetuximab concentra-

tion was measured by an enzyme-linked immunosorbent 

assay.7 Figure 1b illustrates the sampling schedules in the 

two studies.

In the PhI trial, PK samples were taken before and at the 

end of the first cetuximab infusion, as well as at minimum 

cetuximab concentrations (C
min

) until day 29. For the dos-

ing interval starting on day 29, dense sampling (Figure 1b) 

was performed as follows: patients receiving ADR (arm A) 

were sampled at the end of infusion and at 4, 24, 48, 96, and 

168 hours after the start of infusion, whereas patients in other 

treatment groups (arm B) were sampled at the end of infusion 

and at 4, 24, 48, 96, 168, 240, and 336 hours after the start 

of infusion. After the dense sampling interval, blood samples 

were collected at C
min

 until the end of the study in both arms.

In the EVEREST trial, PK samples were taken before the 

first dose and at C
min

 until week 29. In patients on ADR 

(groups A and C), dense sampling (at the end of infusion and 

6, 24, 48, 72, and 168 hours after the start of infusion) was 

performed over the dosing interval starting on day 29. The 

patients undergoing dose escalation (group B) were sam-

pled in such a way that five patients from each dose level 

were intensively sampled for one dosing interval, starting on 

the second dose of the dose level. After the dense sampling 

interval, C
min

 samples were collected from all patients until 

the end of the study.

Population PK analysis

A population PK model was developed using the nonlin-

ear mixed-effects modeling approach. The data were 

analyzed using the Stochastic Approximation Expectation 

Maximization estimation method in NONMEM (version 

7.3.0), PsN (version 4.4.8), and Pirana (version 2.9.2), 

whereas R (version 3.3.2) and RStudio (version 1.1.456) 

were used for preprocessing and postprocessing of data. 

The “log-transform both sides” approach was used.

Confirmed by graphical analysis, we used the previously 

published two-compartment model.4,5 We investigated 

six elimination models from the central compartment: lin-

ear clearance (LCL),6 linear clearance with exponential 

change over time (TVARCL),9,10 Michaelis–Menten clear-

ance (MMCL),4 linear clearance and Michaelis-Menten 

(MMCL  +  LCL), linear clearance with exponential change 

over time and Michaelis–Menten (MMCL  +  TVARCL), and 

linear clearance and zero-order (LCL  +  0.EL)5 clearance 

(Figure 2a). The differential equations for the change of drug 

amount in the central compartment (parameters part of elim-

ination process marked in bold) were as follows:

where A
1
 denotes drug amount in central compartment; A

2
, 

drug amount in peripheral compartment; C
1
, the concentration 

(1)
LCL:

dA1

dt
=−Q ⋅C1+Q ⋅C2−CL ⋅C1

(2)TVARCL:
dA1

dt
=−Q ⋅C1+Q ⋅C2−CL ⋅e

(Imax+�Imax )⋅t
�

t
�

50
+t�

⋅C1

(3)MMCL:
dA1

dt
=−Q ⋅C1+Q ⋅C2−

Vmax ⋅C1

Km+C1

(4)MMCL+LCL:
dA1

dt
=−Q ⋅C1+Q ⋅C2−CL ⋅C1−

Vmax ⋅C1

Km+C1

(5)

MMCL+TVARCL:
dA1

dt
=−Q ⋅C1+Q ⋅C2

−CL ⋅e

(Imax+�Imax )⋅t
�

t
�

50
+t�

⋅C1−
Vmax ⋅C1

Km+C1

(6)LCL+0. EL:
dA1

dt
=−Q ⋅C1+Q ⋅C2−CL ⋅C1−k0
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Figure 2 Overview of the analysis workflow. (a) Graphical representation of the investigated base pharmacokinetic (PK) models for 
cetuximab. (b) Flowchart illustrating the stochastic simulation and estimation (SSE) analysis per study design scenario. The final PK 
base (reference, “true”) model was used to simulate 200 data sets in the stochastic simulation step. The reference and five alternative 
models were subsequently fit to the simulated datasets. Thus, altogether 6 × 200 = 1,200 model fits were performed. For each model 
accuracy and bias of parameter estimates, exposure metrics (AUC and C

min
 after the second dose and in steady state), and their bias 

and accuracy were calculated and compared. The process was repeated for four study designs in total differing in sampling density 
and number of dose levels. C

1
 denotes drug concentration in central compartment; C

2
, drug concentration in peripheral compartment; 

CL, linear clearance from central compartment; I
max

, maximum change in time-varying linear clearance; K
m

, concentration at half V
max

; 
k

0
, zero-order rate constant of elimination from central compartment; η

Imax
, between-patient variability in I

max
; Q, intercompartmental 

exchange rate; t
50

, time at which clearance is halved; V
max

, maximal rate of saturable elimination; γ, curve shape factor. Parts of the 
model related to clearance are shown in red.
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in central compartment; Q, intercompartmental exchange 

rate; CL, linear clearance from central compartment; I
max

, 

maximum change in time-varying linear clearance; η
Imax

, be-

tween-patient variability in I
max

; t
50

, time at which clearance is 

halved; γ, curve shape factor; V
max

, maximal rate of saturable 

elimination; K
m

, concentration at half V
max

; and k
0
, zero-order 

rate constant of elimination from central compartment.

The distribution of individual parameter values was as-

sumed to follow a log-normal distribution. For covariate 

model development, a full fixed-effects modeling approach 

was used, as proposed by Gastonguay,11 whereby prese-

lected covariates were simultaneously included in the final 

base model. The criteria for inclusion/exclusion of a covari-

ate comprised statistical relevance (null value not covered 

by confidence interval) and clinical relevance (difference 

in baseline linear CL greater than ± 25% relative to typical 

CL value), impact on between-subject variability reduction, 

and extent of covariate effect on model parameters. Model 

discrimination was based on plausibility and precision of pa-

rameter estimates, the Akaike information criterion (AIC),12 

goodness-of-fit plots, and visual predictive checks.

Study design investigations

In the second part of this analysis, implications of study 

designs, on the model performance and parameter iden-

tifiability were assessed. Using the final base PK model 

(MMCL + TVARCL) as a reference model, 200 data sets were 

simulated, each comprising 100 patients, making a total of 

20,000 virtual patients. The six investigated models were fit 

to the simulated data sets under four study-design scenar-

ios, using the stochastic simulation and estimation (SSE) PsN 

feature,13 amounting to a total of 4,800 model fits (Figure 2b).

The body surface area (BSA) of the virtual population of 100 

patients was sampled to correspond to the distribution of the 

clinical database (Table 1) and assumed to be constant over 

time. In all study designs, all virtual patients received the same 

initial cetuximab induction dose of 400  mg/m2 with infusion 

rate of 5 mg/min. The infusion rate for subsequent doses was 

10  mg/min. The 100 virtual patients were relegated to four 

study designs (A–D), which differed in sampling density (dense 

vs. sparse) and dose levels (single vs. multiple-dose levels) and 

were chosen to correspond to typical trial designs in the initial 

phases of drug development (A and B) and later (e.g., phase III 

trials (C and D)). The investigated study designs were as follows:

• Study design A, the virtual patients were stratified 

in order to ensure that all dose levels were present 

across the whole range of BSA. The patients were 

first stratified in four groups corresponding to the 

BSA quartiles in order to avoid having only low or 

only high doses in one BSA quartile. To achieve 

further randomization of the dose distribution, within 

each group the patients were further randomly strat-

ified to receive 200, 250, 300, 350, 400, 450, or 

500  mg/m2 every week starting from the second 

dose. In addition to the C
min

 sampling described 

below, additional samples were taken after the fifth 

dose, at the end of infusion, and 4, 24, 48, 72, and 

96  hours after infusion start, corresponding to the 

clinical trials;

• Study design B, the virtual patients were treated ac-

cording to the approved dosing regimen of cetuximab 

(250  mg/m2 every week; i.e., single dose level). The 

sampling was performed in the same manner as in 

study design A;

• Study design C, the virtual patients were treated in the 

same manner as in study design A, and only C
min

 sam-

ples were taken;

• Study design D, the virtual patients were treated ac-

cording to the approved dosing regimen of cetuximab 

(single dose level) and only C
min

 samples were taken.

Under each study design, all virtual patients were sam-

pled at C
min

 after each dose for 12 weeks. At week 12, the 

patients were separated into 5 groups of 20 patients. Each 

group was sampled once a month for 3 months, until a study 

duration of 18 months (Figure S1).

To assess the performance across the models, for each in-

vestigated study design, clinically relevant exposure metrics 

(C
min

 and area under the curve (AUC)) as well as their bias 

and accuracy were calculated (Supplementary Material), 

in addition to the standard set of parameters provided by 

the PsN output (including parameter estimates and their bias 

and accuracy; Figure 2b). The PK metrics after the second 

dose and at steady-state (i.e., at the approximate time when 

90% of maximal CL decrease has occurred per the refer-

ence model (week 60)), were considered. The bias (i.e., mean 

error) was calculated according to the following equation:

Bias=
1

N
⋅

n
∑

i= 1

(esti− refi).

Table 1 Summary of baseline patient characteristics (n
patients

 = 226; 

n
pharmacokinetic samples

 = 3,821)

Continuous

Median 

(min–max)

Age, years 61 (26–81)

Duration of cetuximab therapy, months 5.8 (0.25–27.3)

Weight, kg 72 (41–132)

Body surface area, m2 1.85 (1.37–2.70)

Amphiregulin concentration, pg/mL 226 (8.50–5080)

Epidermal growth factor concentration, pg/mL 12.7 (0.61–633)

Interleukin 8 concentration, pg/mL 42.0 (1.76–5650)

Transforming growth factor-α concentration, pg/mL 2.52 (0.404–131)

Vascular endothelial growth factor concentration, 

pg/mL

278 (46.7–1720)

Creatinine clearance, mL/min 95.5 (31.0–218)

Categorical n (%)

Female 82 (36)

RAS mutation present 81 (36)

ECOG performance status

0 154 (68)

1 69 (31)

2 3 (1)

RECIST response achieved 63 (28)

ECOG, Eastern Cooperative Oncology Group; RAS, rat sarcoma proto-

oncogene; RECIST, Response Evaluation Criteria in Solid Tumors.
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where N denotes number of simulated trials repetitions 

(200); n, the number of patients (number of patients in a trial ∙ 

number of simulated trial repetitions; i.e., 200∙100 = 20,000); 

ref
i
, the parameter/exposure metric values of an individual i 

for the reference PK (MMCL + TVARCL) model; and est
i
, the 

respective values for the alternative models (C
min

: individual 

prediction value at defined timepoints), and AUC: integral of 

central compartment.

RESULTS

PK model comparison

In total, 3,821 PK samples from 226 patients (PhI (N = 62) 

and EVEREST (N = 164)) were analyzed. The relevant pa-

tient characteristics are given in Table 1. Based on AIC 

computed using Stochastic Approximation Expectation 

Maximization-importance sampling algorithm, the two- 

compartment model with parallel Michaelis–Menten 

and linear clearance that changes exponentially over 

time (MMCL  +  TVARCL) outperformed the second best 

model by 334 points for predicting the serum cetuximab 

concentration-time profiles in the analyzed population 

(Table 2). By decreasing the value of AIC, we found 

TVARCL, MMCL + LCL, MMCL, and LCL models, whereas 

the worst model was the one assuming elimination as 

first-order and zero-order mixed processes.

Parameter estimates for the investigated models are 

presented in Table 2. All fixed-effect parameters of the 

MMCL  +  TVARCL model showed excellent precision with 

relative standard error below 30%. Between-patient variabil-

ity in baseline linear CL, V
1
, V

2
, V

max
, and I

max
 was ≤ 61.3 

coefficient of variation with satisfactory shrinkage. As in-

dicated by goodness-of-fit plots (Figure S3), the model 

describes the clinical data well.

Covariate model

As body size is known to impact the PKs of mAbs,14 base-

line BSA was investigated for influence on baseline CL 

and volumes of distribution. The most appropriate imple-

mentation of baseline BSA was via power function with 

exponent fixed to 0.75 for CL and 1 for volumes of distribu-

tion.15 The inclusion of BSA decreased objective function 

value for ~ 60 points, and slightly decreased between-pa-

tient variability in baseline CL, V
1
, and V

2
 by 8.6%–11.8% 

(up to 5.4 percentage points, respectively), as well as ad-

ditive residual unexplained variability (4.85–4.68 µg/mL).

Based on biological and clinical relevance, the following 

covariates were preselected for full fixed-effect covariate 

Table 2 Comparison of all investigated base models

LCL TVARCL MMCL MMCL + LCL MMCL + TVARCL LCL + 0.EL

LCL, L/h (RSE%) 0.0222 (3) 0.0262 (3) - 0.0153 (4) 0.0174 (5) 0.0206 (-)

V1
, L (RSE%) 3.84 (3) 3.67 (3) 3.75 (3) 3.71 (2) 3.65 (3) 3.82 (-)

Q, L/h (RSE%) 0.0188 (17) 0.0282 (12) 0.0332 (19) 0.0323 (4) 0.0368 (5) 0.0216 (-)

V2
, L (RSE%) 3.38 (12) 1.65 (11) 2.67 (8) 3.25 (6) 2.65 (4) 3.31 (-)

K
M

, mg/L (RSE%) - - 283 (26) 9.81 (5) 13.3 (21) -

V
max

, mg/h (RSE%) - - 9.48 (17) 0.882 (5) 0.861 (5) -

I
max

, % (RSE%) - –19.6 (16) - - –23.1 (20) -

T
50

, weeks (RSE%) - 7.26 (15) - - 20.5 (29) -

γ (RSE%) - 2.54 (24) - - 1 FIX -

K0
, mg/h (RSE%) - - - - - 0.0472 (-)

η
LCL

, CV% (RSE%)

[Shr%]

38.3 (6)

[6]

36.6 (6)

[6]

- 37.9 (8)

[19]

36.1 (23)

[23]

39.4 (-)

[8]

ηV1
, CV% (RSE%)

[Shr%]

26.8 (11)

[31]

27.3 (10)

[31]

26.4 (15)

[32]

25.9 (11)

[32]

26.2 (10)

[32]

27.4 (-)

[32]

ηV2
, CV% (RSE%)

[Shr%]

103.9 (13)

[27]

84.1 (9)

[39]

83.4 (17)

[29]

61.2 (9)

[27]

61.3 (14)

[32]

104.4 (-)

[29]

ηVmax
, CV% (RSE%)

[Shr%]

- - 30.5 (9)

[6]

43.6 (10)

[34]

48.8 (12)

[12]

-

η
Tmax

, CV% (RSE%)

[Shr%]

- 25.2 (11)

[29]

- - 51.5 (18)

[35]

-

η
K0

, CV% (RSE%)

[Shr%]

- - - - - 150.3 (-)

[57]

Additive RUV, mg/L (RSE%) 9.44 (11) 7.79 (12) 8.14 (13) 5.85 (12) 4.85 (22) 8.65 (-)

Proportional RUV, CV% (RSE%) 23.1 (5) 22.8 (4) 23.4 (5) 24.0 (4) 23.5 (4) 22.9 (-)

AIC (SAEM-IMP) –6132 –6990 –6534 –6947 –7324 –5990

0.EL, zero-order elimination; AIC, Akaike information criterion; Imax
, maximum change in time-varying clearance; K

0
, zero-order rate constant of elimination 

from central compartment; K
M

, Michaelis-Menten rate constant; LCL, linear clearance; MMCL, Michaelis-Menten clearance; η, between-patient variability; 

Q, intercompartmental exchange rate; RSE, relative standard error; RUV, residual unexplained variability; Shr, shrinkage; T
50

, time at which clearance is 

halved; TVARCL, time-varying linear clearance; V
1
, central volume of distribution; V

2
, peripheral volume of distribution; V

max
, maximum rate of saturable 

elimination; γ, curve shape factor.

The model exhibiting the best performance comprised parallel Michaelis–Menten and time-varying linear clearance (MMCL + TVARCL).
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modeling: patient-related factors (age, sex, RAS mutation 

status, and creatinine clearance), therapy-related factors 

(dose group and co-medication with irinotecan or 5-fluoro-

uracil/folic acid), and EGFR ligand and other disease-related 

measurements (serum concentration of amphiregulin, epi-

dermal growth factor, interleukin-8, transforming growth 

factor-α, vascular endothelial growth factor, and Eastern 

Cooperative Oncology Group performance status). None of 

the investigated covariates were statistically or clinically rel-

evant (Figure S2), thus the final model comprised only the 

effect of BSA described above.

Study design investigations

Parameter estimates of the reference model and their bias 

indicate that across study designs the reference model 

parameter estimates were the least biased (Table S2). 

However, bias of many parameters increased substantially 

in case of sparse sampling compared with rich sampling. 

The highest change is observed for Michaelis–Menten CL 

parameters, where changing to either single-dose level or 

sparse sampling resulted in substantial increase in the pa-

rameter bias. Median objective function value across model 

fit repetitions was lowest for the true (MMCL  +  TVARCL) 

model, suggesting that this model, in fact, resulted in 

the best fit from all investigated models, under all study 

designs. This was further confirmed by the highest percent-

age of cases. The reference (TVARCL + MMCL) model was 

chosen as the best based on the AIC value under all study 

designs; only a slight variation existed among different 

study designs, which followed the expected pattern: 93% 

in the case of the most informative study design (multiple 

dose levels and rich sampling) and 80% for the least infor-

mative study design (one dose level and sparse sampling).

As a reference “background” bias comparison, bias in 

C
min

 and AUC from the reference model was calculated 

using simulated datasets as reference (horizontal lines in 

Figure 3 and Figure 4); as anticipated, this bias was of very 

low extent. Comparing the five alternatives to the reference 

MMCL + TVARCL) model, bias in C
min

 at steady-state was 

consistently lower than bias for C
min

 after the second dose 

for all models and across all investigated study designs 

(Figure 3). All alternative models, except for the MMCL 

model, resulted in a negligible bias in C
min

 at steady-state. 

With respect to bias in C
min

 after the second dose, the 

TVARCL model exhibited the smallest bias.

In study designs with rich sampling (A and B), bias in 

AUC after the second dose was consistently lower than 

bias in AUC at steady-state for all models (Figure 4). 

The TVARCL model resulted in the lowest bias for both 

exposure metrics. Compared with rich sampling, sparse 

sampling (study designs C and D) overall resulted in higher 

bias, especially in AUC after the second dose. Across all 

study designs and for both AUC metrics, the bias was the 

highest for the MMCL model. Overall, the impact of study 

design was more pronounced for bias in AUC than C
min

 

(Figure S7).

Altogether, changes in study design altered accuracy of 

the PK metrics to a lesser extent than bias (Figure S5 and 

Figure S6). Differences in inaccuracy of C
min

 across study 

designs were minimal (< 1.5 µg/mL) and can be considered 

negligible (Figure S5). Study designs with a single-dose 

level (B and D) resulted in higher accuracy (lower root mean 

squared error) compared with multiple-dose level designs, 

regardless of the sampling density.

DISCUSSION

This study revealed that cetuximab CL is best described by 

parallel nonlinear and linear clearance that changes expo-

nentially over time. Rich sampling at steady-state was crucial 

for unbiased estimation of Michaelis–Menten elimination in 

case of the true (MMCL + TVARCL) model (Table S2).

New consolidated PK model of cetuximab

Due to the dataset combining rich and sparse data with 

multiple dose levels collected over more than 2 years, we 

have been able to identify, to the best of our knowledge 

for the first time, a complex approximated TMDD model of 

cetuximab with time varying clearance (MMCL + TVARCL). 

Cetuximab clearance was best described by a combina-

tion of Michaelis–Menten and linear CL components, thus 

demonstrating both exposure-dependency and time-de-

pendency of cetuximab PK, respectively. The nonlinear 

CL of a maximum rate of 0.861 mg/h was identified, with 

50% of maximum value reached at a drug concentration 

of 13.3 mg/L. Nonlinear CL at very low cetuximab concen-

trations (C<<Km) was approximately four times higher than 

baseline linear CL (0.0647 vs. 0.0174 L/h, respectively). In 

parallel, the linear CL component decreased exponentially 

with mean maximal decrease of ~ 18% (155% coefficient 

of variation), reaching 50% of the maximal decrease after 

~ 5 months of therapy.

Two previous analyses identified simpler population PK 

models for cetuximab,4,5 likely due to less informative data 

(i.e., lower number of patients and only one dose level). 

Azzopardi et al.5 investigated cetuximab PK in patients with 

colorectal cancer and found that clearance was best de-

scribed by the LCL + 0.EL model. Dirks et al.4 found that 

the Michaelis–Menten elimination was most appropriate to 

describe cetuximab clearance in patients with squamous 

cell carcinoma of the head and neck. They also investigated 

a potential time change in CL and found that cetuximab 

elimination was not time-dependent. The disagreement of 

our findings with the study by Dirks et al. might be due to 

differences in the investigated populations. The median du-

ration of cetuximab treatment was significantly shorter in the 

study by Dirks et al. (6 weeks) compared with our popula-

tion (~ 23 weeks), which might have resulted in insufficient 

informativeness of the data with respect to potential time 

change in CL.

We further found that disregarding either of the two CL 

components (i.e., considering only the time-varying linear 

CL or TMDD component) resulted in significantly inferior 

model performance compared with the model with both 

clearance components (as identified in the final PK model). 

For the final (MMCL + TVARCL) model, relative relevance of 

the different identified clearance components is illustrated in 

Figure S4. The linear pathway contributed to a larger extent 

to the total cetuximab clearance than the nonlinear one; ne-

glecting the change of clearance over time resulted in minor 

differences in the cetuximab concentration-time profile of a 
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typical patient. For a typical individual after the first dose 

under ADR, the nonlinear CL at C
max

 (197  µg/mL) was 

0.00409, and at C
min

 (48.3 µg/mL) 0.0139 L/h. Furthermore, 

the change of mAb CL over time has previously been related 

to disease status in patients with cancer,9,16 which is in ac-

cordance with our findings as explained below. Thus, the 

ability to identify the change of CL over time is dependent 

on disease status change (e.g., initial disease burden and 

magnitude of change) in the investigated time frame and 

population (i.e., if an investigated population exhibits no rel-

evant change in disease status, no change in CL over time 

is expected).

Study design investigations

The capacity to identify a more or less complex model is 

highly sensitive to the study design. Impact of study de-

sign on how well the data informs each model parameter 

can be assessed by comparing bias in parameter esti-

mates of the reference model across the study designs.17 

Our results (Table S2) suggest that, in study designs with 

single-dose levels and/or sparse sampling, the bias in 

parameters of Michaelis–Menten CL increases the most. 

This implies that data with only one dose level are less 

informative for nonlinear CL, which is expected because 

this CL component is relevant only for the lower expo-

sure range, and might not be captured with only single 

level dosing. On the other hand, our findings suggest that 

sparse sampling does not provide enough information to 

estimate all the parameters, even if multiple-dose level 

data are available (Table S2).

Both rich and sparse sampling designs were investigated 

to assess bias and accuracy of parameter estimates and 

derived exposure metrics. The sampling density was found 

to be a more influential factor than number of dose levels. 

Figure 3 Bias in minimum concentration after the second (C
min2

) dose and C
min

 in steady–state (C
minSS

) compared with reference 
MMCL + TVARCL model. (a) Study design A: multiple-dose levels and rich sampling. (b) Study design B: single-dose level and rich 
sampling. (c) Study design C: multiple-dose levels and sparse sampling. (d) Study design D: single-dose level and sparse sampling. 
Horizontal lines represent “background” bias for the reference model compared with the simulated observations. 0.EL, zero-order 
clearance; LCL, linear clearance; MMCL, Michaelis-Menten clearance; TVARCL, time-varying linear clearance
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Our results indicate that the effect of study design depends 

on the PK metric considered. For instance, having sparse 

instead of dense sampling in the TVARCL model resulted 

in similar (or even slightly decreased) bias in C
min

, whereas 

the bias in AUC increased substantially. This is because the 

investigated sparse sampling study designs consisted of 

only C
min

 samples and thus did not inform the earlier part 

of the PK curve (especially C
max

) essential for AUC calcula-

tion. Additional sampling at C
max

 in addition to C
min

 samples 

should reduce the bias in AUC. On the other hand, bias in 

AUC was lower for all investigated models in single-dose 

level designs compared with multidose level designs, and a 

similar trend is observed for bias in C
min

.

Altogether, our findings imply that the TVARCL model is 

the best overall approximation to the true (MMCL + TVARCL) 

model. In study design A, in which the AUC calculation is 

well informed due to rich sampling and the role of nonlinear 

CL is expected due to low dose levels, the TVARCL model 

resulted in overprediction of C
min

 after the second dose. 

This behavior is mechanistically expected, as the contri-

bution of Michaelis–Menten CL, which is not accounted for 

in this model, is more important for C
min

 than the AUC cal-

culation, and it is expected to be more pronounced in the 

earlier phase of therapy (i.e., after the second dose) before 

the decrease of linear CL becomes significant and when the 

accumulation of the drug is not pronounced.

Mechanisms of clearance change

The role of nonlinear CL in disposition of mAbs has been 

well-established and is mechanistically explained by the 

presence of TMDD.2,18,19 On the other hand, time depen-

dence of PK of mAbs has only recently come into focus and 

Figure 4 Bias in AUC after the second dose and AUC in steady-state compared with reference MMCL + TVARCL model. (a) Study 
design A: multiple-dose levels and rich sampling. (b) Study design B: single-dose level and rich sampling. (c) Study design C: multiple-
dose levels and sparse sampling. (d) Study design D: single-dose level and sparse sampling. Horizontal lines represent “background” 
bias for the reference model compared to the individual predictions from the original, reference model, used for simulations. AUC, area 
under the curve; AUC

ss
, area under the curve in steady-state; 0.EL, zero-order clearance; LCL, linear clearance; MMCL, Michaelis-

Menten clearance; TVARCL, time-varying linear clearance.
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the understanding of its origin remains hypothetical. Time-

dependent elimination has previously been described for 

mAbs indicated in oncology.9,10,16,20

To investigate potential reasons for the CL change, 

the time-varying CL component in responders and non-

responders to cetuximab therapy was compared. The 

response was defined as per Response Evaluation Criteria 

in Solid Tumors (RECIST).21 Patients with complete or 

partial response were classified as responders, whereas 

patients with stable or progressive disease were classified 

as nonresponders. The average magnitude of decrease 

in CL was higher in responders than in nonresponders 

(Figure 5), implying that CL change is related to post-treat-

ment disease status in these patients, in accordance with 

previously reported findings.9,16,22 Mechanistically, the ef-

fect of disease status might comprise changes in TMDD 

(lower target abundance in responders) and/or cancer-re-

lated cachexia (lower protein turnover in responders).20 

Due to inflammation, the protein turnover rate in patients 

with cancer is increased compared with that in healthy 

individuals, as indicated by measures such as decreased 

albumin concentration.2 Decrease over time in disease 

(and thus inflammatory) status will be reflected in normal-

ization of protein turnover rate, that would, in turn, lead 

to decrease in nonspecific (linear) elimination of therapeu-

tic proteins, including cetuximab. We identified an initial 

decrease in cetuximab CL in both groups of patients, 

although it is of a lower extent in nonresponders than re-

sponders (Figure 5). Krippendorff et al.23 demonstrated 

that upon administration of an anti-EGFR drug, there is a 

steep initial decrease in receptor activation due to block-

age by the drug, followed by a gradual increase as drug 

exposure decreases. At high drug doses, a complete and 

long-lasting saturation of the target can be accomplished. 

Regardless of the outcome of the treatment (i.e., whether 

a patient is a responder or nonresponder), this initial effect 

is expected to be observed. In responders, further decline 

in CL over time is expected due to mechanisms elabo-

rated above. However, in nonresponders, the increase in 

disease burden would over time prevail, resulting in a net 

increase in CL.

Exposure-response and therapeutic drug monitoring

The findings of time-dependent change of cetuximab 

elimination in this study underline the bidirectional PK-PD 

relationship, which is intuitively anticipated for mAbs. 

The bidirectional interaction between PK and PD has 

important implications on assumption of exposure-re-

sponse causality and thus exposure-response analyses. 

In traditional exposure-response analyses, a unidirectional 

exposure-response relationship is assumed (i.e., exposure 

is considered the independent variable). However, in the 

presence of the time-dependent changes in elimination 

that are related to the patient response, this assumption 

fails to hold true, as response impacts exposure. As a con-

sequence, in this case, the exposure-response relationship 

is overestimated compared with the true underlying rela-

tionship.2,22 Thus, in the case of drugs with time-varying 

elimination, assumptions underlying therapeutic drug 

monitoring might be shattered. In addition, identifying 

and accounting for baseline biomarkers for disease status 

(e.g., cachexia24) would help to overcome these limitations.

In conclusion, a two-compartment model with parallel 

Michaelis–Menten and linear CL that changes exponen-

tially over time best characterized the PK of cetuximab. The 

magnitude of decrease in clearance over time is higher for 

responders than nonresponders, calling for better under-

standing of exposure-response analyses and therapeutic 

drug monitoring in the presence of time-varying clearance. 

Furthermore, the importance of informing the population 

models with rich data is stressed, supporting analysis of 

pooled data from multiple trials at later stages of drug devel-

opment instead of using only sparse data (e.g., in the case 

of phase III clinical trials).

Supporting Information. Supplementary information accompa-

nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 

website (www.psp-journal.com).
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 2 

Methods:  3 

The accuracy was assessed in terms of root mean squared error (RMSE) according to the following 4 

equation: 5 

 𝑅𝑀𝑆𝐸 = √1𝑁 ∙ ∑ (𝑒𝑠𝑡𝑖 − 𝑟𝑒𝑓𝑖)2𝑛𝑖=1          6 

where N denotes number of simulation repetitions (200); n, the number of patients (number of 7 

patients in a trial ∙ number of trial repetitions); refi, the parameter/exposure metric values for the 8 

reference PK model; and esti, the values for the alternative models. 9 

Relative bias was calculated according to the following equation: 10 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 = 100% ∙ 1𝑁 ∙ ∑ 𝑒𝑠𝑡𝑖 − 𝑟𝑒𝑓𝑖𝑟𝑒𝑓𝑖
𝑛

𝑖=1  11 

where N denotes number of simulation repetitions (200); n, the number of patients (number of 12 

patients in a trial ∙ number of trial repetitions); refi, the parameter/exposure metric values for the 13 

reference PK model; and esti, the values for the alternative models. 14 

All estimations were performed on a Linux cluster (version 3.0.101) with a SUSE operating system, 15 

using a Sun Grid Engine and the GNU Fortran compiler. 16 

Results: 17 

For the two models incorporating the Michaelis-Menten elimination component the number of model 18 

runs with successful minimization was low across all four study designs (for LCL+MMCL and MMCL 19 

models, 39.5%-66.5 % and 54.5%-64.0 % of total number of executions, respectively), which could 20 

impact the results of the analysis. To exclude this potential impact of the number of model runs 21 

included in the analysis (Table S1) and to allow inclusion of models that converged without successful 22 



 

 

minimization, the analysis was repeated on only model runs with successful minimization. The results 23 

(data not shown) were analogous, with only minor differences in the bias and RMSE values. 24 



 

 

Supplementary Figure Legends 25 

Figure S1. Pharmacokinetic sampling schedule for the virtual population used for the stochastic 26 

simulation and estimation (SSE) analysis. For all patients Cmin samples were taken after every dose until 27 

week 12. At week 12 the patients were divided in 5 groups of 20 patients, and the groups were sampled 28 

in such a way that each group was sampled for the duration of 3 months once a month at Cmin levels. 29 

Sampling for group 1 (G1) started at week 12, for group 2 (G2) at week 24, for group 3 (G3) at week 30 

36, for group 4 (G4) at week 48, and for group 5 (G5) at week 60. In study design A and C, in addition 31 

to the Cmin samples, dense sampling (at the end of infusion and 4, 24, 48, 72 and 96 h after infusion 32 

start) was performed in all patients (blue vertical lines) after the fourth dose.   33 

 34 



 

 

Figure S2. Forest plot illustrating clinical inference of covariates on baseline linear clearance (CL) 35 

investigated via full fixed-effects modeling approach. Purple surface represents area of clinical 36 

irrelevance (±25% change from typical CL value), and grey areas are covariate effect parameter value 37 

distributions based on bootstrap analysis (n = 1000). Numbers below the covariate distributions 38 

represent percent of the bootstrapped values that fall under the respective CL change range. Plotted 39 

covariates values (y axis) represent 5th and 95th percentile for continuous or the less frequent category 40 

for categorical covariates in the analyzed population. CLCR, creatinine clearance; ECOG, Eastern 41 

Cooperative Oncology Group score; EGF, epidermal growth factor concentration; IL8, interleukin 8 42 

concentration; TGFA, transforming growth factor-α concentration; VEGF, vascular endothelial growth 43 

factor concentration. 44 

 45 



 

 

Figure S3. Goodness-of-fit plots for the final base model indicate good performance of the model with 46 

parallel Michaelis-Menten and time-varying clearance (MMCL+TVARCL). CWRES, conditional weighted 47 

residuals. 48 

 49 



 

 

Figure S4.  Relative relevance of different clearance (CL) components identified in the population 50 

pharmacokinetic model. Cetuximab concentration-time profiles at the beginning of the treatment (A) 51 

and at time of half-maximal change in CL (B) for the identified (“true”) total CL consisting of nonlinear 52 

and time-varying linear elimination (“Total CL”), in absence of time-change in linear CL (“No time-53 

variance in CL”), in absence of nonlinear CL (“Only time-varying linear CL”), and in presence of only 54 

nonlinear CL (“Only nonlinear CL”). For all presented simulations, typical parameter values (Table 2) 55 

from the final model (MMCL+TVARCL) were used, and parameters related to the neglected CL 56 

components were excluded. 57 
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Figure S5. Accuracy in Cmin after the second dose and Cmin in steady state compared to reference MMCL 59 

+ TVARCL model. (a) Study design A: multiple dose levels and rich sampling; (b) Study design B: single 60 

dose level and rich sampling; (c) Study design C: multiple dose levels and sparse sampling; (d) Study 61 

design D: single dose level and sparse sampling. 0.CL, zero-order clearance; LCL, linear clearance; 62 

MMCL, Michaelis-Menten clearance; RMSE, root mean squared error; TVARCL, time-varying linear 63 

clearance. 64 
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Figure S6. Accuracy in AUC after the second dose and AUC in steady state compared to reference 66 

MMCL + TVARCL model. (a) Study design A: multiple dose levels and rich sampling; (b) Study design B: 67 

single dose level and rich sampling; (c) Study design C: multiple dose levels and sparse sampling; (d) 68 

Study design D: single dose level and sparse sampling. 0.CL, zero-order clearance; LCL, linear clearance; 69 

MMCL, Michaelis-Menten clearance; RMSE, root mean squared error; TVARCL, time-varying linear 70 

clearance. 71 
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Figure S7. Relative bias in AUC and Ctrough after the second dose and in steady state compared to 73 

reference MMCL+TVARCL model. (a) Study design A: multiple dose levels and rich sampling; (b) Study 74 

design B: single dose level and rich sampling; (c) Study design C: multiple dose levels and sparse 75 

sampling; (d) Study design D: single dose level and sparse sampling. 0.CL, zero-order clearance; LCL, 76 

linear clearance; MMCL, Michaelis-Menten clearance; TVARCL, time-varying linear clearance. 77 
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NONMEM model code 79 

$PROBLEM Cetuximab time-varying linear + MM CL  80 

$INPUT ID TIME AMT RATE CMT EVID MDV DV  81 

$DATA dataset.csv IGNORE=# 82 

$SUBROUTINE ADVAN6 TRANS1 TOL9 83 

$MODEL NCOMP=2 COMP=(CENTRAL DEFOBS) COMP=(PERIPH) 84 

$PK  85 

  TVCLL  = THETA(1)  86 

    CLL  = TVCLL*EXP(ETA(1))  87 

   TVV1  = THETA(2)  88 

     V1 =  TVV1*EXP(ETA(2))  89 

    TVQ = THETA(3)  90 

     Q =  TVQ*EXP(ETA(3))  91 

   TVV2 = THETA(4)  92 

    V2 =  TVV2*EXP(ETA(4))  93 

   TVVM = THETA(5)  94 

   VMAX = TVVM*EXP(ETA(5))  95 

   TVKM = THETA(6)  96 

   KM   = TVKM*EXP(ETA(6))  97 

   TT50 = THETA(7)  98 

   GAM = THETA(8)  99 

   TMAX = THETA(9)  100 

  TMETA = ETA(7)  101 

   S1   = V1  102 

   S2   = V2  103 



 

 

K12=Q/V1  104 

K21=Q/V2 105 

K10=CLL/V1 106 

$DES   107 

  C1    = A(1)/V1  108 

  C2    = A(2)/V2  109 

  DADT(1) = -K12*A(1)+K21*A(2)-(C1*VMAX/(KM+C1))-  110 

(K10*EXP((TMAX+TMETA)*T**GAM/(TT50**GAM+T**GAM))*A(1))  111 

  DADT(2) = K12*A(1)-K21*A(2) 112 

$ERROR    113 

  DEL=0  114 

  IF(F.EQ.0) DEL=1  115 

  IPRED = LOG(F+DEL)  116 

  IRES = DV-IPRED  117 

  W = SQRT((THETA(10)*THETA(10))/((F+DEL)*(F+DEL))+THETA(11)*THETA(11))   118 

  IF (W.EQ.0) W = 1  119 

  IWRES = IRES/W  120 

  Y = IPRED+W*ERR(1) 121 

$THETA  (0.0001,0.013851) ; 1  CLL  122 

$THETA  (0.0001,3.706311) ; 2  V1  123 

$THETA  (0.0001,0.035420) ; 3  Q   124 

$THETA  (0.0001,3.078210) ; 4  V2   125 

$THETA  (0.0001,0.957218) ; 5  VMAX   126 

$THETA  (0.0001,10.69743) ; 6  KM  127 

$THETA  (0.0001, 168.000) ; 7  TT50  128 

$THETA   1 FIX  ; 8  GAM  129 



 

 

$THETA   0.1  ; 9  TMAX  130 

$THETA  (0.0001,7.391201) ; 10  additive residual error  131 

$THETA  (0.00001,0.24688) ; 11  proportional residual error 132 

$OMEGA  0.1485  ;  1  OM CLL  133 

$OMEGA  0.0926  ;  2  OM V1  134 

$OMEGA  0  FIX  ;  3  OM Q  135 

$OMEGA  0.3906  ;  4  OM V2  136 

$OMEGA  0.1801  ;  5  OM VMAX  137 

$OMEGA  0  FIX  ;  6  OM KM  138 

$OMEGA  0.09  ;  7  OM TMAX  139 

$SIGMA  1  FIX  ;  RUV as THETAs 140 

$ESTIMATION NOABORT SIGDIG=3 MAXEVAL=9999 PRINT=1 METHOD=1 INTERACTION 141 

MSFO=runXXX.msf 142 

$COVARIANCE PRINT=E 143 

$TABLE ID TIME IPRED IRES IWRES CWRES NOPRINT ONEHEADER FILE=sdtabXXX 144 

$TABLE ID CLL V1 Q V2 VMAX KM TMAX TT50 GAM ETA1 ETA2 ETA3 ETA4 ETA5 ETA6 ETA7 NOAPPEND 145 

NOPRINT ONEHEADER FILE=patabXXX 146 



 

 

Supplementary Tables 1 

 2 

Table S1. Proportion of runs (in %) that were completed with successful minimization for each study 3 

design. 4 

TVARCL+MMCL 

(reference) model 

 LCL 

model 

TVARCL 

model 

MMCL 

model 

LCL+MMCL 

model 
LCL+0.EL model 

 Study design A 

90.0 98.5 95.0 64.0 66.5 86.5 

 Study design B 

89.5 90.0 97.5 55.0 47.5 70.0 

 Study design C 

87.0 99.5 98.5 63.0 58.0 82.5 

 Study design D 

82.5 97.0 97.5 54.5 39.5 62.5 

0.EL, zero-order elimination; LCL, linear clearance; MMCL, nonlinear clearance; TVARCL, time-varying 5 

linear clearance.  6 



 

 

Table S2. Bias in model parameter estimates for study designs with rich sampling (study designs A and B) and sparse sampling (study designs C and D). 

 Study Design A  Study Design B 

 

MMCL+TVARCL 

(Reference 

model) 

LCL model 
TVARCL 

model 

MMCL 

model 

LCL+MMCL 

model 

LCL+0.EL 

model 

MMCL+TVARCL 

(Reference 

model) 

LCL 

model 

TVARCL 

model 

MMCL 

model 

LCL+MMCL 

model 

LCL+0.EL 

model 

LCL, L/h −0.000880 0.00280 −2.62 - −0.00712 0.000250 −0.000950 0.00451 −2.62 - −0.00842 0.00268 

V1, L −0.00668 0.0107 3.63 4.60 0.0775 0.0889 −0.0004 0.07036 3.67 4.18 0.0666 0.0956 

Q, L/h 0.000324 −0.00938 −3.62 −2.64 −0.00896 −0.0122 0.00039 −0.0142 −3.62 −2.63 −0.00505 −0.01407 

V2, L 0.125 2.64 3.41 133 1.058 1.83 0.10018 2.414 2.61 106.4 0.917 2.12 

KM, mg/L 24.3 - - 94.2 109 - 172 - - 52876160 55.3 - 

Vmax, mg/h 0.550 - - 4.23 2.77 - 1.21 - - 565542 2.00 - 

ln(Imax) −0.0485 - −3440 - - - −0.660 - −3440 - - - 

T50, weeks 1.29 - 1172 - - - 1.028 - 53340 - - - 

γ - - −11.8 - - - - - −12.3 - - - 

K0, mg/h  - - - - - −0.483 - - - - - −0.667 

ηLCL, CV% −8.23 34.5 46.7 - 63.0 31.0 −3.65 34.9 −47.1 - 78.07 33.5 

ηV1, CV% −5.55 −7.84 −25.0 −8.60 9.105 10.15 −4.85 −7.18 −24.5 8.50 −8.29 −8.78 

ηV2, CV% −11.2 92.7 66.5 204 58.0 66.3 −21.7 115 74.2 196 50.10 86.5 

ηVmax, CV% −7.33 - - 7.47 19.1 - 21.3 - - 19.2 6.62 - 

ηImax, CV% 24.3 - 134 - - - 28.1 - 89.8 - - - 

ηK0, CV%   -   120 - - - - - 189 

Additive RUV, 

mg/L 
0.00343 5.34 4.20 −6.36 −3434 −7.64 0.0500 4.88 3.84 −7.508 −3434 −7.88 

Proportional 

RUV, CV% 
−0.01 −1300 49.7 -343975 −75.7 −344000 −0.0660 −1306 49.7 −344000 −75.8 −343976 

 Study Design C Study Design D 

 

MMCL+TVARCL 

(Reference 

model) 

LCL 

model 

TVARCL 

model 

MMCL 

model 

LCL+MMCL 

model 

LCL+0.EL 

model 

MMCL+TVARCL 

(Reference 

model) 

LCL 

model 

TVARCL 

model 

MMCL 

model 

LCL+MMCL 

model 

LCL+0.EL 

model 

LCL, L/h −0.000670 0.00278 −2.62 - −0.00586 −0.000690 0.000359 0.00445 −2.62 - −0.0084 0.00344 

V1, L −0.0758 −0.0214 3.53 4.83 −0.0287 0.00284 −0.0517 0.0219 3.55 4.62 0.00334 0.0220 

Q, L/h 0.0441 −0.00897 −3.51 −2.64 0.0182 −0.01505 0.0572 −0.0147 −3.42 −2.64 0.0357 −0.0102 

V2, L 0.500 2.95 4.58 144 1.084 1.75 0.382 2.606 3.67 126 0.6040 3.0201 

KM, mg/L 15176440 - - 88.21 68.1 - 75520740 - - 38967060 29.4 - 

Vmax, mg/h 52457 - - 4.19 1.70 - 418775 - - 529319 1.43 - 

ln(Imax) −0.0832 - −3440 - - - −0.09037 - −3440 - - - 



 

 

T50, weeks 5.99 - 72881 - - - 1.76 - 411901 - - - 

γ - - −11.6 - - - - - 12.1 - - - 

K0, mg/h  - - - - - −0.374 - - - - - −0.725 

ηLCL, CV% 2.70 35.8 −41.9 - 52.2 30.77 0.897 35.6 −43.9 - 68.6 33.8 

ηV1, CV% −8.51 −11.6 −25.0 25.8 −10.86 −14.5 −7.43 −10.10 −24.2 37.5 −8.74 −12.5 

ηV2, CV% −6.15 85.8 59.7 203.0 54.2 64.3 3.86 108.6 65.9 33.6 43.2 82.04 

ηVmax, CV% 33.0 - - −8.75 32.07 - 86.1 - - 198 -34.8 - 

ηImax, CV% 36.6 - 189 - - - 32.9 - 88.9 - - - 

ηK0, CV% - - - - - 134 - - - - - 218 

Additive RUV, 

mg/L 
−0.0386 4.83 3.76 −6.46 −3434 −8.051 0.0320 4.65 3.52 −7.58 −3434 −7.89 

Proportional 

RUV, CV% 
0.0355 −1306 49.7 −343975 −75.5 343975 −0.044 −1306 49.6 −343975 −75.5 −343976 

0.EL, zero-order elimination; η, between-patient variability; γ, curve shape factor; K0, zero-order rate constant of elimination from central compartment; KM, Michaelis-Menten rate constant; LCL, linear 

clearance; Imax, maximum change in time-varying clearance; MMCL, Michaelis-Menten clearance; Q, intercompartmental exchange rate; RSE, relative standard error; RUV, residual unexplained variability; Shr, 

shrinkage; T50, time at which clearance is halved; TVARCL, time-varying linear clearance; V1, central volume of distribution; V2, peripheral volume of distribution; Vmax, maximum rate of saturable elimination. 
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Original Article

Infliximab clearance decreases in the
second and third trimesters of pregnancy
in inflammatory bowel disease

Ana-Marija Gri�si�c1,2,*, Maria Dorn-Rasmussen3,*, Bella Ungar4,

Jørn Brynskov3, Johan F K F Ilvemark3, Nils Bolstad5,

David J Warren5, Mark A Ainsworth3, Wilhelm Huisinga6,

Shomron Ben-Horin4, Charlotte Kloft1,# and

Casper Steenholdt3,#

Abstract

Background: Infliximab therapy during pregnancy in inflammatory bowel disease is challenged by a dilemma

between maintaining adequate maternal disease control while minimizing fetal infliximab exposure. We investi-

gated the effects of pregnancy on infliximab pharmacokinetics.

Methods: The study population comprised 23 retrospectively identified pregnancies. Patients with inflammatory

bowel disease were generally in clinical remission at pregnancy conception (74%) and received steady infliximab

maintenance therapy (5 mg/kg q8w n¼ 17; q6w n¼ 4; q10w n¼ 1; 10 mg/kg q8w n¼ 1). Trough blood samples had

been obtained in the same patients prior to pregnancy (n¼ 119), the first trimester (n¼ 16), second trimester

(n¼ 18), third trimester (n¼ 7), and post-pregnancy (n¼ 12). Data were analyzed using nonlinear mixed-effects

population pharmacokinetic modelling.

Results: Dose-normalized infliximab concentrations were significantly higher during the second trimester (median

15 mg/mL/kg, interquartile range 10–21) compared to pre-pregnancy (7, 2–12; p¼ 0.003), the first trimester (9, 1–12;

p¼ 0.04), or post-pregnancy (6, interquartile range 3–11; p> 0.05) in patients with inflammatory bowel disease.

Similar trends were observed in the third trimester (13, 7–36; p> 0.05). A one-compartment model with linear

elimination described the pharmacokinetics of infliximab (volume of distribution¼ 18.2 L; clearance 0.61 L/day).

Maternal infliximab exposure was influenced by the second and third trimester of pregnancy and anti-infliximab

antibodies, and not by pregnancy-imposed physiological changes in, for example, body weight or albumin.

Infliximab clearance decreased significantly during the second and third trimesters by up to 15% as compared

to pre- and post-pregnancy and the first trimester. The increased maternal infliximab exposure was weakly asso-

ciated with lowered clinical disease activity. Pharmacokinetic model simulations of virtual patients indicated the

increased maternal infliximab trough concentrations imposed by pregnancy will not completely counteract the

decrease in infliximab concentration if therapy is paused in the third trimester.

Conclusion: Infliximab clearance decreases significantly in the second and third trimesters, leading to increasing

maternal infliximab concentrations in any given regimen. Maternal infliximab levels may thus be maintained as

constant in a de-intensified regimen by therapeutic drug monitoring guidance in inflammatory bowel disease.
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Key Summary

Summarize the established knowledge on this subject
• IFX during pregnancy is challenged by a dilemma between maintaining adequate maternal disease control

while minimizing fetal drug exposure.

• Clinicians may refrain from administering IFX in the last part of pregnancy to lower the risk of imposing

unknown effects of anti-TNF-a therapy on the fetus.

• International guidelines are conflicting regarding whether IFX should be paused in the third trimester.

What are the significant and/or new findings of this study?
• IFX CL significantly decreases in the second and third trimesters of pregnancy by up to 15%, resulting in

increasing maternal circulating IFX levels.

• Maternal IFX exposure during pregnancy is affected by trimester and anti-IFX Abs (increasing IFX CL by 69%).

• Increased maternal IFX exposure during pregnancy correlated weakly with lower disease activity.

• Maternal IFX concentrations may be maintained at a constant level at a de-intensified therapeutic regimen

in the second and third trimesters via a therapeutic drug monitoring guided-dose adjustments.

Introduction

Infliximab (IFX) therapy during pregnancy in patients

with inflammatory bowel disease (IBD) is challenged

by a dilemma between maintaining adequate maternal

disease control and at the same time minimizing fetal

IFX exposure. IFX is a monoclonal immunoglobulin

(Ig) G1 antibody (Ab) and, along with endogenous IgG

molecules, is actively transported from maternal to

fetal circulation via placental neonatal Fc receptors

(FcRn) expressed by syncytiotrophoblasts.1–3 This nat-

ural maternal-fetal transfer of immunoglobulins gives

immunological support to the newborn and occurs with

increasing efficiency over the pregnancy due to the

upregulation of placental FcRn expression.4,5 As a

result, IFX concentrations in infants, whose mothers

have been exposed to IFX during pregnancy, are

often supra-maternal and IFX can be detected for up

to 1 year postpartum.6,7 IFX exposure of the fetus and

newborn have not been associated with severe adverse

outcomes for the child, and reported associations with

lower birth weight, shorter gestational term, and

increased risk of delivery by cesarean section may

have been attributable to confounding by disease activ-

ity.8–12 However, pharmacological use during pregnan-

cy is often done carefully and with extra safety

precautions. Current European guidelines advocate

pausing IFX in the third trimester whereas North

American guidelines recommend pausing in the last

6–10 weeks prior to delivery.13,14 Keeping this in

mind, clinicians may refrain from administering IFX

in the last part of pregnancy to reduce fetal IFX expo-

sure. This proof-of-concept study aimed to elucidate,

and subsequently quantify, potential effects of preg-

nancy per se on the pharmacokinetics (PK) of IFX in

patients with IBD.

Methods

Study design

This was a retrospective study including IBD patients,

irrespective of disease activity status, who had all

received IFX therapy during pregnancy until 2018 at

two tertiary IBD centers (Copenhagen University

Hospital Herlev, Denmark, and Sheba Medical

Center, Tel Aviv University, Israel). Included patients

were required to have at least one bio-banked trough

(Cmin) blood sample obtained during each pregnancy

available for analysis. As part of the standard of care,

patients had been evaluated by disease activity scorings

(Harvey-Bradshaw Index (HBI) for Crohn’s disease and

Simple Clinical Colitis Activity Index or partial Mayo

Score for ulcerative colitis), and with storage of trough

blood samples drawn immediately prior to IFX infu-

sions. As part of this study, IFX concentrations and
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presence or absence of anti-IFX Abs were measured in

all available bio-banked samples obtained while on IFX

therapy during and before and/or after pregnancy in the

same patients. All patients received steady IFX mainte-

nance therapy at the time of conception (5 mg/kg q8w

n¼ 17; q6w n¼ 4; q10w n¼ 1; 10 mg/kg q8w n¼ 1). The

dosing regimen was not adjusted during pregnancy and

all patients thus continued to receive IFX dosing based

on their pre-pregnancy body weight.

IFX and anti-IFX Ab analyses

IFX concentrations and anti-IFX Abs were measured

in bio-banked trough serum samples, which had been

stored at –80�C. IFX was measured using a

time-resolved fluorometric assay performed on the

automated dissociation-enhanced lanthanide fluores-

cent immunoassay platform (AutoDELFIA;

PerkinElmer, Turku, FIN), and with limit of detection

(LOD) of 0.1 mg/mL.15 Samples with IFX �5mg/mL

were assessed for anti-IFX Abs using an automated

inhibition assay on the AutoDELFIA platform and

with LOD 15 arbitrary units/L.15 All analyses were

done simultaneously and blinded (Department of

Medical Biochemistry, Oslo, Norway).

IFX PK model development and effects of
covariates

Circulating IFX, anti-IFX Abs, and clinical data were

analyzed using the population approach (i.e., nonlinear

mixed-effects modelling) to quantify structural PK

parameters (clearance (CL), volume of distribution

(VD), interpatient variabilities in PK parameters), and

the impact of patient, pregnancy, and therapy-related

factors on these PK parameters using the software pro-

grams NONMEMVR (version 7.3, ICON, IRL), PsN

(version 4.7.0), R (version 3.3), and RStudio (version

1.1.447).16 Before PK model development, statistical

(Wilcoxon test) and graphical analyses were performed.

For the purpose of modelling, IFX data were log trans-

formed. Samples with IFX <LOD were excluded (10%

of samples).17 The model development strategy com-

prised the following steps:

1. Based on pre-pregnancy data, a fundamental PK

model structure explaining the general IFX

concentration-time profile (PK model I) was estab-

lished, whereby PK parameters such as CL, VD, and

the impact of anti-IFX Abs as well as interpatient

variability in PK were determined. In addition, pre-

selected covariates (e.g., body weight, concomitant

therapies, disease type, serum albumin concentra-

tion, thrombocyte count, and white blood cell

count) were investigated for impact on CL, by

means of investigation of each single covariate sep-

arately and via forward addition. This approach

allowed characterization of the PK in the population

without a potential interference of pregnancy, so any

potential effect of pregnancy could be investigated in

the next step, and by using the totality of the data.

2. The PK model I was subsequently applied to the

entire dataset (PK model II), and effects of pregnan-

cy/trimester on PK model parameters was investi-

gated as a covariate. In this step, the previously

determined PK parameters were fixed, making the

assumption that any differences in PK during/post

pregnancy were due to pregnancy itself—an assump-

tion deemed valid considering no dosing or other

therapy-related adjustments had been made during

pregnancy.

3. Based on the data availability (range of covariate

values or number of patients per covariate category)

and graphical and statistical analyses, re-assessment

of potential effects of the pre-selected other covari-

ates was performed. The effects of these on IFX PK

were investigated by implementing them into the PK

model II.

4. The final PK model II was applied to illustrate

effects of pregnancy and anti-IFX Abs on the PK

of IFX during pregnancy by model simulations, as

detailed in the Supplementary Material.

Statistics

Descriptive data are presented as percentages for dis-

crete variables, and for continuous variables as

medians with ranges or mean with standard error of

the mean (SEM). Maternal disease activity was

reported as all available clinical disease activity scores

recorded in each patient during ongoing IFX therapy

from up to 1 year prior to conception and up to 1 year

after delivery, and analyzed by non-paired analyses by

Welch’s unequal variances t-test. Dose-normalized IFX

concentrations were used to adjust for body weight

changes of the administered doses in the pregnancy

(unit of IFX concentration:mg/mL/kg). Values

<LOD were set to zero. Missing data were excluded.

As this was a mechanistic and exploratory proof-of-

concept study and there are no relevant data available

in this vulnerable population from other studies avail-

able at the time of study, formal sample size calcula-

tions had not been carried out. PK model simulations

are detailed in the Supplementary Material. Basic sta-

tistical analyses were carried out in GraphPad Prism

version 5 for Windows (GraphPad Software, CA,

USA). Two-sided p values <0.05 were considered

significant.

Gri�si�c et al. 3



Table 1. Characteristics of the study population.

Patient characteristics

Diagnosis, n (%)

Crohn’s disease 14 (74)

Ulcerative colitis 5 (26)

Disease duration at IFX initiation (years), median (IQR) 6 (2–9)

Crohn’s disease location, n (%)

Ileal 0 (0)

Colonic 6 (43)

Ileocolonic 8 (57)

Isolated upper disease 0 (0)

Crohn’s disease behavior, n (%)

Non-stricturing, non-penetrating 5 (36)

Stricturing 4 (29)

Penetrating 5 (36)

Crohn’s disease perianal disease, n (%) 6 (43)

Ulcerative colitis extent, n (%)

Proctitis 0 (0)

Left sided 1 (20)

Extensive 4 (80)

Previous abdominal surgery, n (%) 3 (16)

Smoking, n (%) 0 (0)

Age at conception (years), median (IQR) 31 (27–34)

Clinical disease activity at last clinical visit before conceptiona

Harvey-Bradshaw Index, median (IQR) 3 (2–5)

Simple Clinical Colitis Activity Index, median (IQR) 2.5 (0.0–5.5)

Number of pregnancies per patient, n (%)

One pregnancy 16 (84)

Two pregnancies 2 (11)

Three pregnancies 1 (5)

IFX therapy during pregnancy, n (%)

First trimester IFX therapy 23 (100)

Second trimester IFX therapy 20 (87)

Third trimester IFX therapy 7 (30)

Concomitant therapy during pregnancy, n (%)

Thiopurines 3 (15)

Steroids systemic 1 (5)

Blood sample characteristics

Trimester, n (%)

Pre-pregnancy 119 (69)

First 16 (9)

Second 18 (11)

Third 7 (4)

Post-pregnancy 12 (7)

Anti-IFX Ab positive, n (%) 41 (30)

Albumin concentration (g/L), median (min-max) 37 (27–44)

C-reactive protein (mg/dL), median (min-max) 2.5 (0–128)

Thrombocyte count (109 cells/L), median (min-max) 349 (217–1283)

White blood cell count (109 cells/L), median (min-max) 5 (3.5–22)

a
<3 months from conception (median 26 days, IQR 5–52)

IFX: infliximab; Abs: antibodies; IQR: interquartile range.

4 United European Gastroenterology Journal 0(0)



Results

Study population

The study population comprised 23 pregnancies from

19 women (Table 1). Of these, 20 pregnancies resulted

in healthy children assessed at 1 year after delivery, two

pregnancies resulted in miscarriages, and one child was

born with congenital abnormality (cleft soft palate and

impaired intrauterine growth (2692 g)). Most patients

were in clinical remission at conception of pregnancy

(17 of 23; 74%) and most paused IFX therapy in the

third trimester (16 of 23; 70%) (Table 1).

A total of 172 samples was available for PK analysis

(Table 1). Samples were obtained prior to pregnancy

(n¼ 119), in the first trimester (n¼ 16), second trimes-

ter (n¼ 18), third trimester (n¼ 7), or post-pregnancy

(n¼ 12). The timing of sampling after the last IFX

dosing covered a wide time interval as samples origi-

nated from both the induction and maintenance phases

and from patients who received different dosing inter-

vals (Figure 1(a) and (b)).

Maintenance phase IFX before, during, and after
pregnancy

The graphical and statistical analysis revealed that

samples obtained during pregnancy had significantly

higher dose-normalized IFX concentrations compared

to samples obtained from non-pregnancy periods

(Figure 1(c)). Furthermore, anti-IFX Ab-positive sam-

ples had significantly lower dose-normalized IFX

trough concentrations as compared to anti-IFX Ab-

negative samples (Figure 1(d)). The frequency of anti-

IFX Ab detection was similar (p> 0.5) in periods with

or without pregnancy, indicating pregnancy is neither

preventive nor predisposing to anti-IFX Ab

development.

Maintenance phase IFX during trimesters of
pregnancy

Having found that dose-normalized IFX concentra-

tions increased during pregnancy, we next explored

IFX concentrations during different trimesters

(Figure 1(e)). Dose-normalized IFX was higher

during the second trimester (median 15.0 mg/mL/kg,

interquartile range (IQR) 9.8–20.5) compared to pre-
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Figure 1. Exploratory graphical analysis of concentration of infliximab (IFX) (CIFX) over time (a) since last dose, and (b) since
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pregnancy (7.3, 2.0–11.6; p¼ 0.003), the first trimester

(8.5, 1.4–11.5; p¼ 0.04), or post-pregnancy (5.9, IQR

3.3–11.1; p> 0.05). Similar trends were observed for

the third trimester (13.0, 6.5–35.8; p> 0.05 compared

to pre-pregnancy) despite the limited sample size. IFX

concentrations were similar in pre- and post-pregnancy

samples and first trimester samples (p¼ 0.9 and p¼ 0.9,

respectively). These observations raised the question of

whether IFX CL is decreased in the second and third

trimesters, resulting in higher circulating IFX concen-

trations compared to the first trimester or periods with-

out pregnancy.

Population PK modelling

Effects of pregnancy on IFX PK. The PK model I com-

prised one compartment with linear elimination. All

parameters were estimated with high precision (relative

standard error (RSE) <35%) and low shrinkage

(<35%). The volume of distribution was 18.2 L and

CL was 0.608 L/d with moderate interpatient variabil-

ities of 51.2% and 40.7% coefficient of variation (CV),

respectively (Table 2). None of the investigated cova-

riates had significant impact on CL, and no covariates

except anti-IFX Abs were thus maintained in PK

model I.

As indicated by the observations above, PK model-

ling utilizing the entire dataset (PK model II) clearly

demonstrated that IFX CL was significantly decreased

by 12% in combined second to third trimesters of preg-

nancy compared to the first trimester, pre-, and post-

pregnancy levels. Due to the low number of samples

from the third trimester, the second and third trimester

samples were initially combined. However, when

analyzing data from the second and third trimesters

separately, IFX CL was found to additionally decrease

in the third trimester to a final decrease of 15%. These

trimester-specific effects were estimated with high

imprecision (RSE> 50%), presumably due to the low

number of samples available from the third trimester.

The model did not detect changes in VD in addition to

the changes in CL over the pregnancy.

Effects of other variables on IFX PK. In addition to preg-

nancy status and trimester of pregnancy, anti-IFX Abs

strongly influenced the PK of IFX. Hence, anti-IFX

Abs detected in 30% of samples markedly increased

IFX CL by 69% (Table 2).

Based on mechanistic plausibility, available patient

and therapy-associated data (Table 1), and graphical

and statistical analyses, further effects of selected cova-

riates on IFX CL were explored; for example, body

weight, concomitant therapies, disease type, serum

albumin concentration, thrombocyte count, and white

blood cell count. None of these factors influenced the

PK of IFX (all p> 0.1). Thus, PK model II was con-

sidered the final PK population model. This final PK

model described well both the typical PK profile and

interpatient variability in PK, and it performed well in

predicting the observed data as the 90% confidence

intervals of the simulation range (the grey area in

Figure 2) covered the observations, and with adequate

matching of the corresponding 5th, median, and 95th

percentile lines of observed and model-simulated data

(Figure 2).

Disease activity

Having shown that IFX CL significantly decreases in

the second and third trimesters of pregnancy and is

accompanied by increased maternal IFX exposure, we

next explored how these altered pharmacological con-

ditions correlated with maternal disease activity.

As illustrated in Figure 3(a), clinical disease activity

in patients with Crohn’s disease tended to decrease

during pregnancy starting from the first trimester

(HBI mean 2.8 (1.6–4.1), p¼ 0.02) and lasting

throughout the second (3.7 (2.5–5.0) p¼ 0.22) and

third trimesters (4.1 (1.7–6.6), p¼ 0.60), compared to

pre-pregnancy activity (4.8 (3.6–5.9)). Following deliv-

ery, disease activity tended to increase in the first 3

months (6.5 (3.9–9.2), p¼ 0.20), after which it returned

to pre-pregnancy scores (4.2 (3.0–5.4), p¼ 0.46).

Similar trends were observed in the small number of

patients with ulcerative colitis (Figure 3(b)).

Table 2. Final pharmacokinetic model parameters.

Clearance, L/d (RSE%) 0.608a (16)b

Volume of distribution, L (RSE%) 18.2a (23)b

Effect of anti-IFX Abs on clearancec

(RSE%)

0.685a (24)b

Effect of second/third trimester on

clearancec (RSE%)

–0.121 (56)

Interpatient variability in clearance,

CV% (RSE%) (Shrinkage)

30.7 (28) (23)

Interpatient variability in volume of

distribution, CV% (RSE%)

(Shrinkage)

53.3 (30) (23)

Residual unexplained variability, mg/

mL (RSE%) (Shrinkage)

0.371 (13) (6)

aParameter value fixed to the final estimate from PK model I.
bRSE from PK model I.
cThe covariate effects on clearance were defined as: CL¼CLtypical*

(1þeffect of anti-IFX Abs on clearance)*(1þeffect of second/third tri-

mester on clearance).

Abs: antibodies; CV: coefficient of variation; IFX: infliximab; RSE: rela-

tive standard error.
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PK model simulations

Lastly, we explored the extent to which the increased

maternal IFX exposure arising from decreased IFX

CL in the second and third trimesters counteracted the

decline in IFX trough concentrations caused by pausing

IFX throughout the entire third trimester, applied as a

precautionary measure. Thence, in a separate explorato-

ry analysis utilizing the final population PKmodel II, we

simulated the theoretical effects of pausing IFX in the

entire third trimester on the proportion attaining pre-

defined IFX PK targets as points of reference (Figure

4). For simulation purposes, ‘standard’ patients treated

with ‘standard’ IFX regimens were applied as detailed in

the Supplementary Material. As shown in Table 3, paus-

ing IFX in the third trimester in anti-IFX Ab-negative

patients resulted in a notable reduction of the propor-

tion of patients attaining the PK targets as compared to

steady-state non-pregnant patients or patients having

continued IFX treatments during the third trimester.

However, only a small proportion of anti-IFX Ab-pos-

itive patients attained the PK targets irrespective of sce-

nario, illustrating the profound negative effects of anti-

IFX Abs on circulating IFX.
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Figure 2. Prediction-corrected visual predictive check for the final pharmacokinetic (PK) model for all data (a) and per (non)
pregnancy phase (b). Full lines are median and dashed lines are the fifth and 95th percentile of observations (black lines) and
simulations (grey lines); the grey area denotes the 90% confidence interval around the median of the simulated data; dots
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Discussion

This is the first quantitative assessment using state-of-

the-art population PK modelling of the effects of preg-

nancy on the PK of any monoclonal therapeutic Ab. In

this proof-of-concept study, IFX CL was found to sig-

nificantly decrease by 12% during the second and third

trimesters of pregnancy in patients with IBD, and with

a trend of additional decrease from the second to third

trimester to a final of 15%. Maternal IFX exposure was

influenced only by pregnancy and anti-IFX Abs

(increasing IFX CL by 69%), and not by other

patient-, disease-, or pregnancy-related characteristics

including changes in body weight, VD, or albumin. Our

findings imply that pregnant IBD patients in the second

and third trimesters have higher circulating IFX trough

concentrations than in non-pregnant periods or the

first trimester. Apart from effects on tumor necrosis

factor (TNF)-related processes in the fetus, the altered

IFX CL during pregnancy may also have maternal

implications as well as consequences for the

maternal-fetal transfer of IFX, but these aspects were

not examined.

Available observations have not indicated serious

safety signals for anti-TNF therapies during
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pregnancy, but clinicians nevertheless sometimes pause

IFX therapy in the third trimester as an extra precau-

tion to diminish fetal IFX exposure and as suggested by

European guidelines.13,14 Hence, prospective cohort

studies have demonstrated an inverse correlation

between time from last IFX dose and IFX concentra-

tion in the umbilical cord, an infant-to-mother IFX

concentration ratio of approximately 2, and a median

time to complete infant IFX CL of �7 months.6,18 A

study used non-normalized raw IFX concentrations

without PK modelling and indicated increased IFX

levels over the pregnancy.19 Having determined that

IFX CL decreases significantly in the second and

third trimesters by up to 15%, we wanted to explore

the relative impact of this effect on the ability to main-

tain IFX PK targets of > 3–5 mg/mL if IFX therapy

was paused throughout the entire third trimester.19

Even though these results should be interpreted with

care as they originate from PK model simulations, they

indicate the increased maternal IFX trough concentra-

tions imposed by pregnancy will not completely coun-

teract the decrease in IFX concentration if therapy is

paused in the third trimester. Hence, if a constant

maternal IFX concentration until the end of pregnancy

is desired, dosing in the late second trimester or early

third trimester is necessary. It is unknown whether a

short period of sub-therapeutic IFX in the last part of

pregnancy imposed by pausing therapy in the third tri-

mester has clinical implications in form of increased

risk of disease flare or anti-IFX Ab formation.8,11 A

recent study indicated more steroid usage and a higher

risk of preterm pregnancies when IFX was discontin-

ued in the first or second trimesters.20 Of note, the

absolute decrease in IFX levels if therapy is paused in

the second and third trimester will be lower than at a

drug holiday of similar duration in non-pregnant

patients due to the decreased IFX CL. If IFX is con-

tinued in the last part of pregnancy, therapeutic drug

monitoring can aid balancing a de-intensified dose reg-

imen that secures a constant maternal drug level and

thus avoids increasing IFX exposure of the fetus.

This study was not designed to examine the under-

lying mechanisms for the observed decrease in IFX CL

during pregnancy. However, despite well-known

changes in body composition, immunological state,

and albumin concentrations, which could impact the

PK of IFX during pregnancy, along with our study

and another study indicated no influence of body

weight, concomitant therapies, disease type, albumin,

platelets, or leukocytes on maternal IFX CL.19

Our study has limitations. The cohort was relatively

small and comprised mainly Crohn’s disease patients in

clinical remission receiving steady IFX q8w mainte-

nance therapy at pregnancy conception. The sample

size was limited, especially during the third trimester,

and only seven patients had samples available from

pre-pregnancy, pregnancy, and post-pregnancy, impli-

cating potential imprecision in the estimated PK differ-

ences between the second and third trimesters. Thus,

our findings, especially for the third trimester, should

be interpreted with care. However, nonlinear mixed-

effects population PK modelling was used as this is a

highly versatile approach when a sample size is low.

This method analyses all data points simultaneously

and allows describing the central tendency (“typical

behavior”) in the population, as well as individual

PK parameters/profiles by quantifying in addition to

the central tendency the between- and within-patient

variability. Clinical disease activity can be challenging

to evaluate during pregnancy, and we did not have

systematic endoscopic data obtained shortly prior to

conception (median 289 days, IQR 224–492).

Furthermore, the correlation between decreased IFX

CL and lowered disease activity during pregnancy

was weak and not matched to individual patients.

Although only trough samples were included, availabil-

ity of samples from both induction and maintenance

phase, and different dosing regimens, rendered the data

to be sufficiently informative for population PK model-

ling. The lack of detection of changes in VD in addition

to changes in CL is likely caused by the limited sample

size combined with IFX predominantly being distrib-

uted in the circulation, which only increases to a small

extent over the pregnancy. The latter is also most likely

the explanation of our data being described by a one-

compartment model, and others have also found this

model appropriate.21–24 Of note, we used dose-

normalized IFX concentrations to adjust for any

changes in bodyweight. As the therapeutic threshold

for IFX is not well defined, we included simulations

of PK targets of 3–5 mg/mL.25–27 This study

Table 3. Pharmacokinetic (PK) model simulations of attain-
ment of PK targets of trough infliximab (IFX) concentrations of
>3 mg/mL, >4 mg/mL, or >5 mg/mL for anti-IFX antibody
negative (ADA-) or positive (ADAþ) patients in case of safety
pausing IFX therapy in the entire third trimester of pregnancy
(IFX-stop); continuation of steady IFX maintenance therapy in
the third trimester of pregnancy (IFX cont.); and non-pregnant
patients receiving standard IFX maintenance therapy.

Pregnant,

IFX-stop in

third trimester

Pregnant,

IFX cont. in

third trimester

Non-

pregnant

patients

ADA- %n>3mg/mL¼ 30 %n>3mg/mL¼ 65 %n>3mg/mL¼ 51

%n 4mg/mL¼ 19 %n>4mg/mL¼ 52 %n>4mg/mL¼ 39

%n>5mg/mL¼ 11 %n>5mg/mL¼ 41 %n>5mg/mL¼ 28

ADAþ %n>3mg/mL¼ 3 %n>3mg/mL¼ 17 %n>3mg/mL¼ 11

%n>4mg/mL¼ 1 %n>4mg/mL¼ 9 %n>4mg/mL¼ 5

%n>5mg/mL¼ 1 %n>5mg/mL¼ 3 %n>5mg/mL¼ 2
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investigated maternal implications of IFX therapy

during pregnancy, and PK in the fetus or infant was

not explored. Further studies on the effect of pregnan-

cy on the kinetics of other biologics are warranted.

In conclusion, maternal IFX CL decreases signifi-

cantly during the second and third trimesters, leading

to increased maternal-fetal IFX trough levels at a con-

stant therapeutic regimen. Therapeutic drug monitor-

ing can aid balancing a de-intensified IFX regimen that

secures constant maternal drug levels during pregnancy

and at the same time avoids increasing IFX exposure of

the fetus.

Note

The abstract was presented as a lecture presentation

during Digestive Disease Week in San Diego, CA,

18–21 May 2019, Gastroenterology 156(6): Suppl 1:S–

18.
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Supplementary Methods 

IFX PK model simulations 

The final population PK model II was applied to illustrate effects of pregnancy and anti-IFX Abs 

on the PK of IFX during pregnancy by model simulations. First, PK profiles for typical patients 

were simulated. Then, PK profiles for 6,000 virtual patients differing in anti-IFX Ab status, 

pregnancy status, and (dis)continuation of IFX in the 3rd trimester were simulated, including 

interpatient variability in PK parameters. The virtual patients were assigned to be anti-IFX Ab 

negative (ADA-) or anti-IFX Ab positive (ADA+), IFX dosing was set to 325 mg (corresponding to 

a 5 mg/kg dosing of a standard patient of 65 kg), and the IFX regimen comprised standard 

induction (i.e., infusions at weeks (w) 0, 2, and 6) and maintenance therapy (infusions every (q) 

8w). Date of conception was set to week 22 (corresponding to timing of 2nd maintenance IFX 

infusion). As the therapeutic threshold for IFX is not well defined, the percentage of patients 

reaching different pre-defined PK targets of >3, >4, and >5 µg/mL at week 62 of IFX therapy 

corresponding to end of pregnancy, was compared relative to anti-IFX Ab status, pregnancy 

status, and IFX administration in the 3rd trimester.  
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