
Railway Timetable Optimization

Inaugural Dissertation
Presented to the

School of Business and Economics
Freie Universität Berlin

in Candidacy for the Degree of
doctor rerum politicarum (Dr. rer. pol.)

Julian Reisch, M. Sc.

Berlin, 2021

Referees:

1. Univ.-Prof. Dr. Natalia Kliewer, Freie Universität Berlin

2. Univ.-Prof. Dr. Ralf Borndörfer, Freie Universität Berlin

3. Prof. Dr.-Ing. Johannes Schlaich, Beuth Hochschule Berlin

Date of Disputation:

27.04.2021

Publications:

• Reisch, J., Kliewer, N., Martin, U., Pöhle, D. (2021). ”Bestimmung der Kapazitäts-
steigerung durch Einführung der Mittelpufferkupplung und ep-Bremse”. In:
ETR - Eisenbahntechnische Rundschau 1-2/2021.,
URL: https://www.eurailpress.de/publikationen/etr.html

• Reisch, J., Großmann, P., Pöhle, D., Kliewer, N. (2021). ”Conflict Resolving - A
Local Search Algorithm for Solving Large Scale Conflict Graphs in Freight Rail-
way Timetabling”. In: European Journal of Operational Research. DOI: 10.1016/j.
ejor.2021.01.006

• Reisch, J. (2020). ”State of the Art Overview on Automatic Railway Timetable
Generation and Optimization”. In: Diskussionsbeiträge Fachbereich Wirtschaftswis-
senschaft 2020/20. DOI: 10.17169/refubium-28658

• Reisch, J., Großmann, P., Kliewer, N. (2020). ”Stable Resolving - A Randomized
Local Search Heuristic for MaxSAT”. In: Schmid U., Klügl F., Wolter D. (eds)
KI 2020: Advances in Artificial Intelligence. KI 2020. Lecture Notes in Computer
Science, vol. 12325, pp. 163–175, Springer, Cham.
DOI: 10.1007/978-3-030-58285-2 12

• Lindner, N., Reisch, J. (2020). ”Parameterized Complexity of Periodic Time-
tabling”. Preprint published in: ZIB-Report (20-15). URN: urn:nbn:de:0297-zib-
78314. Under revision for the Journal of Scheduling.

• Reisch, J., Kliewer, N. (2020). ”Black-Box Optimization in Railway Simulations”.
In: Neufeld J.S., Buscher U., Lasch R., Möst D., Schönberger J. (eds) Operations
Research Proceedings 2019. Operations Research Proceedings (GOR (Gesellschaft
für Operations Research e.V.)), pp. 717–723, Springer, Cham. DOI: 10.1007/
978-3-030-48439-2 87

v

https://www.eurailpress.de/publikationen/etr.html
https://doi.org/10.1016/j.ejor.2021.01.006
https://doi.org/10.1016/j.ejor.2021.01.006
https://doi.org/10.17169/refubium-28658
https://doi.org/10.1007/978-3-030-58285-2_12
https://nbn-resolving.org/urn:nbn:de:0297-zib-78314
https://nbn-resolving.org/urn:nbn:de:0297-zib-78314
https://doi.org/10.1007/978-3-030-48439-2_87
https://doi.org/10.1007/978-3-030-48439-2_87

• Hauck, F., Kliewer, N., Reisch, J., Rößler, D. (2020): ”Datengetriebene Feinjustier-
ung von Fahrplänen zur Erhöhung der Pünktlichkeit im Schienenverkehr”. In:
Tagungsbericht Heureka 2021, FGSV Verlag, Köln. (Not part of this dissertation).

• Reisch, J., Großmann, P., Kliewer, N. (2019). ”Conflict Resolving - A Maximum
Independent Set Heuristics for Solving MaxSAT”. In: Andrej Brodnik, Gábor
Galambos, Branko Kavšek (eds) Proceedings of the 22nd International Multiconfer-
ence Information Society, vol. 1, pp. 67–71.
URL: http://library.ijs.si/Stacks/Proceedings/InformationSociety/2019/
IS2019 Volume I%20-%20MATCOS.pdf

• Rößler, D., Reisch, J., Kliewer, N. (2019). ”Modeling Delay Propagation and
Transmission in Railway Networks”. In: Thomas Ludwig and Volkmar Pipek
(eds) Human Practice. Digital Ecologies. Our Future. 14. Internationale Tagung
Wirtschaftsinformatik (WI 2019), February 24-27, 2019, Siegen, Germany, vol. 14, pp.
98–111, University of Siegen, Germany / AISeL.
URL: https://aisel.aisnet.org/wi2019/track02/papers/2/

vi

http://library.ijs.si/Stacks/Proceedings/InformationSociety/2019/IS2019_Volume_I%20-%20MATCOS.pdf
http://library.ijs.si/Stacks/Proceedings/InformationSociety/2019/IS2019_Volume_I%20-%20MATCOS.pdf
https://aisel.aisnet.org/wi2019/track02/papers/2/

Declaration of Authorship

Except where reference is made in the text, this thesis contains no material published
elsewhere or extracted in whole or in part from a thesis presented by me for another
degree or diploma. No other person’s work has been used without due acknowledg-
ment in the main text of the thesis. This thesis has not been submitted for the award
of any other degree or diploma in any other tertiary institution.

Abstract

In this cumulative dissertation, we study several aspects of railway timetable op-
timization. The first contributions cover Practical Applications of Automatic Railway
Timetabling. In particular, for the problem of simultaneously scheduling all freight
trains in Germany such that there are no conflicts between them, we propose a novel
column generation approach. Each train can choose from an iteratively growing set of
possible routes and times, so called slots. For the task of choosing maximally many
slots without conflicts, we present and apply the heuristic algorithm Conflict Resolv-
ing (CR). With these two methods, we are able to schedule more than 5000 trains si-
multaneously, exceeding the scopes of other studies. A second practical application
that we study is measuring the capacity increase in the railway network when equip-
ping freight trains with electro-pneumatic brakes and middle buffer couplings. Me-
thodically, we propose to explicitly construct as many slots as possible for such trains
and measure the capacity as the number of constructed slots. Furthermore, we con-
tribute to the field of Algorithms and Computability in Timetable Generation. We present
two heuristic solution algorithms for the Maximum Satisfiability Problem (MaxSAT).
In the literature, it has been proposed to encode different NP-complete problems that
occur in railway timetabling in MaxSAT. In numerical experiments, we prove that our
algorithms are competitive to state-of-the-art MaxSAT solvers. Moreover, we study the
parameterized complexity status of periodic scheduling and give proofs that the prob-
lem is NP-complete for input graphs of bounded treewidth, branchwidth and carv-
ingwidth. Finally, we propose a framework for analyzing Delay Propagation in Railway
Networks. More precisely, we develop delay transmission rules based on different cor-
relation measures that can be derived from historical operations data. What is more,
we apply SHAP values from Explainable AI to the problem of discerning primary de-
lays that occur stochastically in the operations, to secondary follow-up delays. Trans-
mission rules that are derived from the secondary delays indicate where timetable ad-
justments are needed. In our last contribution in this field, we apply such adjustment
rules for black-box optimization of timetables in a simulation environment.

Zusammenfassung

Diese kumulative Dissertation befasst sich mit verschiedenen Aspekten der Fahrplan-
optimierung im Bahnverkehr. Sie umfasst erstens das Themenfeld praktischer Anwen-
dungen automatischer Fahrplanung. Hier wird ein Spaltengenerieungsansatz vorgestellt,
um simultan alle Güterzüge in ganz Deutschland zu planen, ohne dass Konflikte
entstehen. Dabei wird für jeden Zug eine Trasse aus einer Menge möglicher Trassen
ausgewählt. Es wird ein heuristischer Algorithmus vorgestellt, der für maximal viele
Züge je eine Trassen auswählt, sodass je zwei ausgewählte Trassen keinen Konflikt
zueinander haben. Dieser Ansatz ermöglicht es, mehr als 5000 Güterzüge gleichzeitig
zu planen. Dies übersteigt den Umfang bisheriger Ansätze. Eine zweite praktische
Anwendung automatischer Fahrplanung ist die Messung der Kapazitätssteigerung,
die sich ergibt, wenn Güterzüge mit elektropneumatischer Bremse und Mittelpuf-
ferkupplung ausgestattet werden. Die Kapazität wird hierbei gemessen in der Anzahl
von Trassen, die sich automatisch konstruieren lassen, ohne dass Konflikte entste-
hen. Des Weiteren befasst sich diese Arbeit mit dem Themenfeld Algorithmen und
Berechenbarkeit in der Fahrplanung. Dabei werden zwei heuristische Algorithmen zur
Lösung des Maximum Satisfiability (MaxSAT) Problems präsentiert. Verschiedene
NP-vollständige Probleme aus der Fahrplanung lassen sich als MaxSAT Problem ko-
dieren. In numerischen Experimenten weisen wir nach, dass diese beiden Algorith-
men vergleichbare Ergebnisse erzielen wie state-of-the-art Algorithmen aus der Liter-
atur. Außerdem wird der Komplexitätsstatus des periodischen Fahrplanungsprob-
lems PESP untersucht. Es wird bewiesen, dass das PESP NP-vollständig ist auch
auf Graphen beschränkter Baumweite, Verzweigungsweite und Schnittweite. Im let-
zten Themenfeld Verspätungsfortpflanzung in Bahnnetzen werden Verspätungsübertra-
gungsregeln aus historischen Verspätungsdaten abgeleitet und anhand von Korrela-
tionskoeffizienten beschrieben. Ferner werden SHAP values angewandt, um Primär-
von Sekundärverspätungen zu unterscheiden. Diejenigen Übertragungsregeln, die
aus Sekundärverspätungen abgeleitet werden, dienen als Hinweise, wo Fahrplanan-
passungen zu weniger Verspätungsübertragung und mehr Pünktlichkeit führen kön-
nen. Diese Anpassungen werden angewandt und durch Simulationen evaluiert.

Contents

List of Figures ix

List of Tables xi

1. Introduction 1
1.1. Motivation . 1
1.2. Thesis Outline . 1

2. State of the Art Overview on Automatic Railway Timetable Generation
and Optimization 5
2.1. Introduction . 6
2.2. Slot Construction . 7
2.3. (A-)Periodic Timetabling . 8
2.4. Train Path Assignment Problem . 10
2.5. Timetable Robustness . 11
2.6. Conclusion . 12

I. Practical Applications of Automatic Railway Timetabling 15

3. Conflict Resolving - A Local Search Algorithm for Solving Large Scale
Conflict Graphs in Freight Railway Timetabling 17
3.1. Introduction . 19

3.1.1. Motivation . 19
3.1.2. The Train Path Assignment Problem for Railway Timetabling . . 19
3.1.3. Contribution and Outline . 21

3.2. Related Work . 21
3.2.1. The Train Path Assignment Problem 21
3.2.2. Maximum Independent Set Algorithms 22

3.3. Solving the Train Path Assignment Problem 23
3.3.1. Contents and Notation . 23
3.3.2. MIP formulation with Slot Variables 24
3.3.3. Slot Construction . 24
3.3.4. MIP formulation as Multi-Commodity-Flow 25
3.3.5. Heuristic Column Generation . 26

3.4. Maximum Independent Set Formulation of the TPAP 26
3.5. The Conflict Resolving Algorithm . 27

3.5.1. Notations in Graph Theory . 27

iii

3.5.2. Overall Procedure . 28
3.5.3. Perturbation . 28
3.5.4. Tight Improvements . 29
3.5.5. Solution Checking . 33

3.6. Experimental Results . 33
3.6.1. Test Instances . 34
3.6.2. Comparison to other Solvers . 34
3.6.3. Alternating Tree-depth Parameter 34
3.6.4. Graph Analysis . 35
3.6.5. Objective Function Evolution in Single Runs 36
3.6.6. Results . 37
3.6.7. Discussion of the Results . 39

3.7. Conclusions and Outlook . 40

4. Bestimmung der Kapazitätssteigerung durch Einführung der Mittelpuffer-
kupplung und ep-Bremse 43
4.1. Einleitung . 44
4.2. Automatische Trassenkonstruktion als Methodik zur Bemessung von

Schienenkapazität . 44
4.3. Berechnungsergebnisse von Konstruktionsszenarien bei sukzessiver Um-

rüstung auf Mittelpufferkupplung . 45
4.3.1. Referenzszenario . 45
4.3.2. Abbildung der Mittelpufferkupplung und ep-Bremse in den Zug-

charakteristiken . 46
4.3.3. Ergebnisse zur Steigerung der Trassenzahl 47
4.3.4. Ergebnisse zur Senkung der Fahrzeiten 49

4.4. Diskussion und Ausblick . 49

II. Algorithms and Computability in Timetable Generation 51

5. Conflict Resolving - A Maximum Independent Set Heuristics for Solving
MaxSAT 53
5.1. Introduction . 54
5.2. Reduction from SAT to MIS . 54
5.3. Conflict Resolving Algorithm . 55
5.4. Experimental Results . 57
5.5. Conclusion and Outlook . 59

6. Stable Resolving - A Randomized Local Search Heuristic for MaxSAT 61
6.1. Introduction . 62
6.2. Related Work . 63
6.3. Algorithm . 64
6.4. Experimental Results . 68
6.5. Conclusion and Outlook . 70

iv

7. Parameterized Complexity of Periodic Timetabling 75

7.1. Introduction . 77
7.2. The Periodic Event Scheduling Problem 78
7.3. PESP on Networks of Treewidth Two . 82

7.3.1. Subset Sum . 82
7.3.2. Treewidth . 83
7.3.3. Branchwidth . 84
7.3.4. Carvingwidth . 85

7.4. Dynamic Programs . 87
7.4.1. PESP and Vertex Separators . 87
7.4.2. A Branch Decomposition Approach 88
7.4.3. A Tree Decomposition Version . 90

7.5. Fixed-parameter tractable algorithms . 93
7.5.1. Cyclomatic Number . 93
7.5.2. Vertex Cover Number . 96

7.6. Structure of Realistic Event-Activity Networks 97
7.6.1. Line-Based Event-Activity Networks 97
7.6.2. Branchwidth of Line-Based Networks 98
7.6.3. Parameters of R1L1 . 101

7.7. Conclusion . 104

III. Delay Propagation in Railway Networks 109

8. Modeling Delay Propagation and Transmission in Railway Networks 111

8.1. Introduction . 113
8.2. Methods . 114

8.2.1. Introduction . 114
8.2.2. Data selection: Region and traffic type 114
8.2.3. Data cleaning: Outliers, Missing data, STL 115
8.2.4. Data engineering: Cumulated delay, Train encounters 117

8.3. Constructing the delay transmission network 119
8.3.1. Pearson’s product-moment correlation coefficient ρ 119
8.3.2. Kendall’s rank correlation coefficient τ 120
8.3.3. Graph theory & network analysis 120
8.3.4. Constructing the delay transmission network 120
8.3.5. Measuring network properties . 121

8.4. Evaluation . 122
8.4.1. Results . 122
8.4.2. Examples . 123
8.4.3. Validation . 125

8.5. Discussion & Conclusions . 125

v

9. Discerning Primary and Secondary Delays in Railway Networks using Ex-
plainable AI 129
9.1. Introduction . 130
9.2. Related Work and Contribution . 131
9.3. Methods . 131

9.3.1. Explaining Deviations from Expected Value with SHAP Values . 132
9.3.2. Explaining the Entire Prediction 133

9.4. Computational Experiments . 133
9.4.1. Model Evaluation and Selection 135
9.4.2. SHAP values . 136

9.5. Conclusion and Outlook . 139

10.Black-Box Optimization in Railway Simulations 141
10.1. Introduction . 142
10.2. Markov Chain Simulation Model . 142
10.3. Black-Box Optimization . 143
10.4. Experimental Results . 145
10.5. Conclusions and Outlook . 146

11.Conclusion 149

vi

List of Figures

2.1. Block segments in the time-track diagram: The orange train can be
scheduled in the capacity that remains after three other trains (grey)
have been scheduled. 8

3.1. A time-track diagram for a particular day showing blocking segments
of two trains (green and black) heading in opposite directions and hav-
ing a conflict (pink). The white lines indicate the exact position of each
train on the track at each point in time. The diagram is a screenshot
taken from the timetabling tool Rut-K of the German infrastructure man-
ager DB Netz AG. 20

3.2. A stylized example of two trains (blue and orange) on the same track.
The blue train has two possible slots, the orange one only one. The later
blue slot is in conflict to the orange slot. 20

3.3. Three slots for three trains and the resulting conflict graph (left) and the
green train with an alternative slot (right). 27

3.4. From left to right: An independent set (blue), the vertex forced into the
solution (red) and the new independent set. 29

3.5. From left to right: An independent set of size 2 (blue), an alternating
tree rooted at v and the augmenting set of size 3. 31

3.6. An alternating tree of depth 1: A vertex to be improved (in the middle),
its solution neighbors (blue), and their children, grouped in three differ-
ent cliques. For an augmenting set, choose one vertex from each group
by DFS. 31

3.7. Two subgraphs of SingleDay37 where alternating trees are computed
with root (green) and with respect to a maximal solution of the MIS
(black). 35

3.8. On the left: 2-neighborhood of the root; On the right: The subgraph
where an augmenting set is computed; Taken from SingleDay37. 35

3.9. On the left: 2-neighborhood of the root; On the right: The subgraph
where an augmenting set is computed; Taken from SingleDay37. 36

3.10. Two subgraphs where an augmenting set will be computed in the bench-
mark graph 1zc.4096. 37

3.11. Running time versus objective function value on SingleDay37. 37
3.12. Evolution of Algorithm 1 with different solution algorithms for the Find

Assignment part with time limit of 6h on 5359 trains. 39

4.1. Ablaufdiagramm der automatischen Trassenkonstruktion. 45
4.2. Karte von STA (Schlaich and Pöhle, 2017) 46

vii

4.3. Steigerung der konstruierten Trassen nach Anteil umgerüsteter Züge. . . 47

4.4. Boxplot zu Trassenzahl je Migrationsszenario. 48

4.5. Fahrzeitverringerung vom Referenzszenario zum umgerüsteten Szenario. 49

5.1. Example SAT to MIS. 55

5.2. A root vertex to be improved (in the middle), its solution neighbors
(blue), and their children, possibly replacing their parents. 56

6.1. Stabilities of clauses during an improvement step. 67

6.2. Accumulated sum of scores of unweighted instances after 60 sec com-
putation time . 70

6.3. Accumulated sum of scores of weighted instances after 60 sec compu-
tation time . 72

7.1. Instance I(r, c, C): arcs a are labeled with [ℓa, ua], T := ∑
r
i=1 ci + 1 82

7.2. An optimal tree decomposition of width 2 for the I(r, c, C) network . . . 83

7.3. An optimal branch decomposition of width 2 for the I(r, c, C) network . 85

7.4. An optimal carving decomposition of width 3 of the modified I(r, c, C)
network . 86

7.5. Relation between Se, Se1
and Se2 . 89

7.6. Removed part of R1L1, events recognized as departures are marked yel-
low . 102

8.7. Boxplots for the distribution of differences for predicted vs. observed
∆d for each pair of trains at the respective stop (10%-trimmed). Pre-
dictions were obtained by multiplying the total delay of the incoming
trains with the estimated Pearson correlation coefficients. Operation
points are labeled as follows: RBB := Baden-Baden, RK := Karlsruhe, RM
:= Mannheim, RO := Offenburg . 126

9.1. Possible decomposition of the delay difference 134

9.2. Summary plots for the MLP model for the three cases. The estimated
SHAP values are plotted in lanes for each feature; Features are ordered
by the absolute cumulative feature importance. Additionally, the data
points are colored according to the observed feature values (pink: high
value; blue: low value). 137

9.3. Force plots for selected MLP predictions in the stylized data case 3. Plots
in the left column use the original SHAP values, plots in the right are
based on the transformed SHAP values. Bars show the effects ob select
features on the predicted value. The base value marks the expected value
and the black number is the estimated delay build-up for the data object. 138

viii

9.4. Force plots for selected MLP predictions in the real world data case 1.
Plots in the left column use the original SHAP values, plots in the right
are based on the transformed SHAP values. Bars show the effects ob
select features on the predicted value. The base value marks the expected
value and the black number is the estimated delay build-up for the data
object. 138

10.1. Convergence Behaviour of the two Trains 146

ix

List of Tables

1.1. Mapping of Research Publications to Chapters and Dimensions 2

3.1. Computational Results for the three solution algorithms in FindAssignment
on the conflict graphs from railway timetabling with a time limit of 2
minutes. 38

3.2. Computational Results for the two MIS heuristics on the benchmark
graphs. 38

5.1. Results from 2018 with 300 seconds computation time 57
5.2. Results from 2019 with 60 seconds computation time 58

6.1. Sum of scores by solver on unweighted instances 69
6.2. Sum of scores by solver on weighted instances 69
6.3. Gaps of unweighted instances where SR performs best 71
6.4. Gaps of weighted instances where SR performs best 72

7.1. Parameters of R1L1 . 101

8.1. Number of trains, which are either right-skewed, symmetrical, or left-
skewed. The skewness S was measured by means of the medcouple,
showing that the majority of trains show exhibit right-skewness or ap-
proximate symmetry for both d and ∆d. 115

8.2. Average total delay and change in delay by days of week. 117
8.3. Exemplary data from the delay transmission network. 125

9.1. Short description of stylized and real-world data instances. 135
9.2. Average R2 and MAE scores of Random Forest (RF) and Multi-Layer

Perceptron (MLP) on unseen test data from the outer CV-loop for both
data sets. 136

xi

1. Introduction

1.1. Motivation

Railway timetable generation is the task of assigning a slot to a train trip. A slot is
a technically valid path through the network from the trains origin to its destination
together with the times the train passes the signals on this path. In most countries, a
train is only allowed to operate when it has been assigned a slot (Hansen and Pachl,
2014). In this respect, railway transportation is different to other means of transporta-
tion. For instance, driving a car on a road offers much more flexibility as the route can
be calculated and altered during the ride. The main reason why train trips are planned
beforehand and on a detailed level is safety. Trains usually have very long brake paths
and moreover, changing switches for trains takes time. Therefore, a railway under-
taker who wants to operate a trains first has to address a train path request to the in-
frastructure manager specifying the train characteristics (e.g. which locomotive, how
many coaches), the origin and destination of the trip and the desired departure (or ar-
rival) time. The infrastructure manager then constructs a slot for each requested train
trip. In this process of constructing and coordinating possibly many requests, the in-
frastructure manager has different and sometimes conflicting aims. Firstly, the slot is
the product of the infrastructure manager that one wants to sell. Therefore, the slot
should meet the request as well as possible and with a minimal travelling time. Sec-
ondly, the infrastructure manager wants to sell slots to as many railway undertakers
as possible. Hence, the capacity utilization of its most valuable resource, the infras-
tructure, should be maximized. Thirdly, the constructed timetable should be possible
to operate. That is, given that there are stochastically occurring disturbances in the
operations, the timetable should have enough time supplements and buffer times to
compensate delays and prevent follow-up delays. With these three objectives, railway
timetabling becomes an optimization problem.

1.2. Thesis Outline

In this cumulative dissertation, several aspects of automatic railway timetable gen-
eration and optimization are considered. There are 9 contributions grouped in 3 di-
mensions as shown in Table 1.1. With the paper by Reisch (2020), we start with an
overview on state-of-the-art techniques for automatic railway timetable generation

1

Table 1.1.: Mapping of Research Publications to Chapters and Dimensions
Chapter Title Dimension
2 State of the Art Overview on Automatic Railway

Timetable Generation and Optimization
-

3 Conflict Resolving - A Local Search Algorithm for
Solving Large Scale Conflict Graphs in Freight Rail-
way Timetabling

(1)

4 Bestimmung der Kapazitätssteigerung durch
Einführung der Mittelpufferkupplung und ep-Bremse

(1)

5 Conflict Resolving - A Maximum Independent Set
Heuristics for Solving MaxSAT

(2)

6 Stable Resolving - A Randomized Local Search
Heuristic for MaxSAT

(2)

7 Parameterized Complexity of Periodic Timetabling (2)
8 Modeling Delay Propagation and Transmission in

Railway Networks
(3)

9 Discerning Primary and Secondary Delays in Railway
Networks using Explainable AI

(3)

10 Black-Box Optimization in Railway Simulations (3)

and optimization1. We present the challenges in this field of research and review the
literature with respect to models, solution approaches and applications in practice. In
particular, we discuss algorithms to automatically construct a slot for a train. Pöhle
(2016) has proposed that the German infrastructure manager DB Netze today’s man-
ual slot construction shall be enhanced by automatization for calculating better slots in
shorter time. Furthermore, we present the differences between periodic and aperiodic
timetabling and discuss the respective complexity status. It will turn out that the ape-
riodic problem can be solved using a polynomial time shortest path algorithm while
the periodic problem, modelled as the Periodic Event Scheduling Problem (PESP) is
proved to be NP-complete (M. Odijk, 1994). What is more, we study the problem
of planning multiple trains simultaneously, denoted by the Train Path Assignment
Problem (TPAP). This problem can be modelled as a multi-commodity flow and is
hence NP-complete, as well (Even et al., 1975). Finally, we present models for robust
timetabling that aims at minimizing the sum of expected follow-up delays when mi-
nor disturbances occur. The most common approaches either incorporate robustness
in the timetable generation itself, or modify an existing timetable with the aim of im-
proving its robustness.

The remaining papers are mapped to one of the following three dimensions. Di-
mension (1) covers Practical Applications of Automatic Railway Timetabling. In the
first paper (Reisch, Großmann, Pöhle, et al., 2021), we study the TPAP - the problem

1The paper (Reisch, 2020) was created in sole authorship. The other publications were created in co-
authorship. All authors contributed equally to the papers.

2

of scheduling multiple trains simultaneously - for all freight trains in Germany with
real-world data provided by DB Netze. Due to the large scale of the application, we
propose a novel column generation approach for the multi-commodity flow modelling
of the TPAP. In each iteration, we choose one slot per train from a growing set of pos-
sible slots such that no two chosen slots have a conflict (Zwaneveld et al., 1996). This
task can be modelled in a graph where two vertices (slots) share an edge if the respec-
tive slots have a conflict. A maximum set of pairwise conflict-free slots can be found
with an independent set algorithm. We present Conflict Resolving (CR) which is a lo-
cal search independent set heuristic that is tailored to the specially structures graphs
from this application. With the column generation together with the independent set
heuristic, we are able to schedule more than 5000 freight trains simultaneously, ex-
tending the scopes of other approaches significantly. For constructing the single slots
in this framework, we employ a heuristic slot construction algorithm by Dahms et al.
(2019). This algorithm is also in use in the second paper of the first dimension (Reisch,
Kliewer, et al., 2021). Here, we use the slot construction algorithm to quantify the ca-
pacity of track sections. More precisely, we construct as many slots as possible on the
track section for a representative set of train trips. Then, the capacity of the section
is the number of constructed slots. To our knowledge, this approach for measuring
capacities in railway networks has not been studied before in the literature. We ap-
ply this method for the case study of measuring the capacity increase when equipping
freight trains with electro-pneumatic brakes and middle buffer couplings as proposed
by Martin et al. (2015). It turns out that this upgrade increases the freight railway ca-
pacity in Germany by 4%.

The second dimension (2) Algorithms and Computability in Timetable Generation
studies more theoretic aspects of railway timetabling. The first two papers (Reisch,
Großmann, and Kliewer, 2019; Reisch, Großmann, et al., 2020) address solution al-
gorithms for the (weighted) Maximum Satisfiability Problem (MaxSAT). In the Satis-
fiability problem (SAT), we are given a set of Boolean variables together with signs
that are grouped in clauses. Within the clauses, the variables are joint by conjunctions
and the clauses are joint by disjunctions. For example, if x ∨ y and ¬x ∨ y ∨ z are two
clauses, the entire formula will be (x ∨ y) ∧ (¬x ∨ y ∨ z). Then, the task is to assign ei-
ther true or false to each variable such that all clauses are satisfied. (Weighted) MaxSAT
is the incomplete version of this task where one aims at finding an assignment satisfy-
ing a (weighted) maximum subset of clauses. Many problems from combinatorial op-
timization can be encoded as MaxSAT. In particular, in the book by Bacchus, Berg, et al.
(2020) we describe the MaxSAT encoding of the Independent Set problem for the TPAP
graph instances as proposed by Reisch, Großmann, Pöhle, et al. (2021). Furthermore,
the PESP can be encoded as MaxSAT, as well (Großmann et al., 2012a). As the formulas
in the railway timetabling application are of large scale, we propose two heuristic algo-
rithms. The first one works by transforming the MaxSAT instance to an instance of the
Independent Set problem and solving it using CR (Reisch, Großmann, and Kliewer,
2019). The drawback of this approach is that the transformation multiplies the sizes
of the instances so that the solvers performance often is uncompetitive. Hence, we

3

developed Stable Resolving (SR) which also is a local search heuristic that - unlike CR -
directly works on the MaxSAT formulas (Reisch, Großmann, et al., 2020). A compar-
ison to other MaxSAT solvers from the 2019 MaxSAT challenge2 shows that SR now
yields comparable results, in particular on the railway transport application. The last
contribution in this dimension investigates the parameterized complexity status of the
PESP (Lindner and Reisch, 2020). That is, if we restrict the input graph to belong to a
particular graph class, does the problem remain NP-complete or is there a polynomial
time algorithm that makes use of the special graph types? We answer this question
for the three classes of graphs with treewidth at least 2, branchwidth of at least 2 and
carvingwidth of at least 3. In each case, the PESP remains NP-complete. Nevertheless,
we give two pseudo-polynomial-time dynamic programming algorithms solving the
PESP on input graphs with bounded tree- or branchwidth.

In the third dimension (3) Delay Propagation in Railway Networks we analyze
the emergence of follow-up delays and how a timetable can be optimized so that the
follow-up delays are as small as possible. In railway operations, there are stochasti-
cally occurring disturbances and the timetable should have enough time supplement
to compensate them. In addition, to avoid that the delay is propagated to a follow-
ing train, there should be sufficient buffer times between the train trips. In (Rößler et
al., 2019) we derive correlation rules from historical railway operations data provided
by DB Netze on how the delays of different trains affect each other. For example, if
the data reveal that one train almost every day waits for passenger of a second train,
then we derive a transmission rule between the two trains. Such rules can then be
used for optimally allocating buffer times. However, we do not differentiate between
primary and secondary delays in this paper. Primary delays are the type of delays
that occur even if the train is the only train in the network. Vehicle or infrastructure
malfunctions are typical examples of primary delay causes. Secondary delays are the
resulting follow-up delays from one train to another. For the transmission rules, we
are only interested in secondary delays. Hence, we propose to apply Explainable AI
for discerning primary from secondary delays in the data (Rößler et al., 2021). More
precisely, we train a machine learning model on primary and secondary features for
predicting the total delay, that is, the sum of primary and secondary delay. Then, we
compute SHAP values (Lundberg and Lee, 2017) for extracting the secondary features’
contribution to the total amount of predicted delay. With this approach, we can dis-
cern the secondary part of the total delays. The last paper in this dimension presents
a Markov-chain simulation framework for delay propagation (Reisch and Kliewer,
2020). Given a timetable and historical delay data, this framework allows for adjust-
ing the time supplements and then evaluates the achieved decrease of expected delays
by running the simulation. The adjustments can be derived from the data as proposed
in the first two papers in this dimension, or can be based on expert knowledge.

2MaxSAT Evaluation 2019 https://maxsat-evaluations.github.io/2019/index.html

4

2. State of the Art Overview on
Automatic Railway Timetable
Generation and Optimization

Abstract

In railway transportation, each train needs to have a timetable that specifies which
track at which time will be occupied by it. This task can be addressed by automatiza-
tion techniques both in generating a timetable and in optimizing an existing one. In
this paper, we give an overview on the state of the art of these techniques. We study
the computation of a technically valid slot for a train that guarantees a (short) spa-
tial and temporal way through the network. Furthermore, the construction of a cyclic
timetable where trains operate e.g. every 60 minutes, and the simultaneous construc-
tion of timetables for multiple trains are considered in this paper. Finally, timetables
also need to be robust against minor delays. We will review the state of the art in
the literature for these aspects of railway timetabling with respect to models, solution
algorithms, complexity results and applications in practice.

Contents

2.1. Introduction . 6

2.2. Slot Construction . 7

2.3. (A-)Periodic Timetabling . 8

2.4. Train Path Assignment Problem 10

2.5. Timetable Robustness . 11

2.6. Conclusion . 12

5

2.1. Introduction

Before a train can operate, it is mandatory that it has a timetable. Therefore, railway
undertakers request timetables at the infrastructure manager for their train operations.
The task of the infrastructure manager is to coordinate these requests and create a
timetable for all operating trains. In this paper, we review the literature on the state of
the art on how this coordination and generation process can be enhanced by autom-
atization. That is, for the different planing horizons, periodicities and objectives, we
present mathematical models, solution algorithms, complexity results and application
tools.

Single Slot Construction. The timetable of a single train is called a slot. Most of
the European infrastructure managers use the blocking time model to construct a
slot (Hansen and Pachl, 2014). In the blocking time model, a slot is a sequence of block
segments. Each block segment is defined from one signal to the next one and has a
temporal expansion that reflects the trains driving dynamics. If two slots of different
trains have overlapping block segments, we say that the trains have a conflict.

Planning Horizons. Depending on the planning horizon, the infrastructure manager
has different degrees of flexibility to schedule the requested trains. In the annual
timetable, all train operation requests, both for passenger and freight trains, are col-
lected and then considered simultaneously. The request to operate a train comes with a
desired planning period, for example, only on weekdays. Due to requests from other
trains, or due to infrastructure restrictions, the infrastructure manager can split the
planning period and construct for each part a separate slot. No two trains can have
conflicting slots. For shorter planning horizons and especially in the intraday ad-hoc
timetabling, there already exist the timetables from the annual timetable and the new
slots need to be constructed individually and without any conflicts to existing slots.

Periodicities. Especially for passenger trains, the railway undertakers often wish to
operate their train periodically, that is, for example, every 60 minutes. Periodical
timetabling is mostly relevant for the annual timetable and ad-hoc train operations
run aperiodically.

Objectives. As most infrastructure managers construct their timetables manually,
one objective in automatic timetable generation simply is to generate a timetable with-
out any manual work but by automatized algorithms. Moreover, in the models for
timetable generation, typically three objectives are considered and balanced out against
each other. First, the capacity utilization shall be maximized, that is, as many trains
as possible should operate. Second, the timetable quality shall be maximized which
means that the slots should have minimal running times. Third, the timetables robust-
ness shall be maximized. That is, the expected follow-up delays shall be minimized
given minor disturbances.

6

Generation versus Adaption. Timetable optimization can take place in the genera-
tion of the timetable, or in adapting an existing timetable to improve some objective
function.

The outline of this paper is as follows. In Section 2.2, we review models to construct
single slots in a time-space network that is restricted by capacity utilization. This task
comes in ad-hoc planning, for example, when other trains already use some parts of
the infrastructure. Then, in Section 7.2, we point out the difference between aperi-
odic and periodic timetabling. In particular, we present the Periodic Event Schedul-
ing Problem (PESP) and analyze its complexity. Another complexity in timetabling is
planning multiple trains simultaneously, as needs to be done in the annual timetable.
Section 2.4 is about modelling and solving this problem, which is called the Train Path
Assignment Problem (TPAP). In Section 2.5, we review timetabling optimization mod-
els, for both generation and adaption. Finally, in Section 2.6, we conclude this paper.

2.2. Slot Construction

A slot y = ((x, t)i)
n
i=0 of a train is a trajectory through time and space. It specifies the

time t a position x (mostly a signal) is passed. The time difference t′− t between x and
x′ depends on the infrastructure and the train characteristics. Mostly, the starting time
interval, the starting position and the target position are given. Then, in this simplest
model, a slot can be computed as a constrained path through the time-discretized time-
expanded infrastructure graph (cf. e.g. A. Caprara et al. (2002), Zhang et al. (2019)).
For a mathematical formulation MIP-slot, let F denote its incidence matrix. That is, F
is−1 for each arc entering a particular position x at a particular time t and +1 for each
arc leaving x at t. The set of arcs that can be reached from an arc depends on the train
characteristics, such as maximum speed, and the infrastructure graph. Furthermore,
the indicator vector I is 1 for each arc in the starting position in the starting interval
in time, −1 for the destination arcs, and zero elsewhere. Thus, (1b) ensures flow con-
servation. The conflict matrix C ensures that the slot y can only occupy tracks at times
that are not occupied, yet. Finally, (1d) indicates which arcs the slot uses. The objective
(1a) minimizes the total travel time of the slot.

MIP-slot Minimize tn − t0 (2.1a)
s.t. Fy = I (2.1b)

Cy ≤ 1 (2.1c)
yi ∈ {0, 1} for each yi = (x, t)i (2.1d)

In particular, the slot construction MIP-slot is polynomially solvable when applying
a shortest path or flow algorithm (Ford and Fulkerson, 1956). However, modelling the
driving on a track only by the time span the train takes to pass the track is too rough
for most infrastructure managers. A more sophisticated model describes a slot as a
sequence of block segments as defined in Hansen and Pachl (2014). A block segment

7

is the time span a track is utilized by a train in which no other train can enter the
track including overlaps and headway times and depending on the concrete driving
dynamics of a train. For example, if a train halts, depending on its load, it might block
the succeeding track for some time because there might be an overlap. Figure 2.1
illustrates the construction of a slot as a sequence of block segments in the capacity
that remains after other slots have been planned already. The German infrastructure
manager DB Netz works with the block segment model. Therefore, Dahms et al. (2019)
propose a heuristic shortest path algorithm to compute a slot with its block segments
automatically. In the application click and ride, this algorithm comes into practice for
the construction of ad-hoc slots for freight trains.

Figure 2.1.: Block segments in the time-track diagram: The orange train can be sched-
uled in the capacity that remains after three other trains (grey) have been
scheduled.

2.3. (A-)Periodic Timetabling

In this section, we will discuss the additional task of a timetable to satisfy periodicity
constraints. That is, a train is supposed to be operated every T minutes with the same
timetable. We denote T by the period. Following Serafini and Ukovich, 1989a, the
periodic timetabling problem is modelled in the event network.

Definition 2.3.1. An event network is a tuple N = (D, l, u) where D = (V, A) is a
directed graph and l, u ∈ Q|A| such that la ≤ ua for all a ∈ A. The vertices V and arcs
A are called events and activities, respectively.

Events are e.g. passings of a train at a given station or signal. Activities are the
driving from one signal to the next one or the headway times from one train to a
succeeding train. Hence, multiple trains can be scheduled simultaneously. Unlike in
the time-discretized time-expanded infrastructure graph, the events are fixed. That is,

8

deviations in the spatial way a train takes or different overtaking opportunities are not
considered. The only flexibility is the time differences between the events.

Definition 2.3.2. Given an event network N = (D, l, u). Then, an aperiodic timetable
for N is a vector π ∈ Q|V| that satisfies

πw − πv ∈ [la, ua] ∀ a = (v, w) ∈ A

A vector π ∈ Q|V| is called a periodic timetable for N with period T if there exists
p ∈ Z|A| such that for all a = (v, w) ∈ A we have

la ≤ πw − πv + paT ≤ ua

Periodicity is not only practical for passengers but also has operational purposes.
For example, a whole tour of a train is supposed to be a multiple of the period. The
following example illustrates this situation.

Example 2.3.3. An event network with cyclic constraints and possible solution
(π(1), π(2), π(3)) = (2, 7, 12).

1

2 3

[4, 6]15

[4, 6]15

[5, 5]15

The aperiodic timetable π or the periodic timetable π mod T together with fixed
positions of the events forms a slot. The acyclic timetabling problem is polynomially
solvable using a shortest paths algorithm (Christian Liebchen, 2006), as is the slot con-
struction. However, the Periodic Event Scheduling Problem (PESP), i.e. the problem of
finding a periodic timetable in the event network, is NP-complete for T ≥ 3 (M. Odijk,
1994). The following MIP formulation additionally minimizes the weighted activity
times.

MIP-PESP Minimize ∑
a∈A

ωa(πw − πv + paT − la) (2.2a)

s.t. πw − πv + paT ≤ ua ∀a = (v, w) ∈ A (2.2b)
πw − πv + paT ≥ la ∀a = (v, w) ∈ A (2.2c)

pa ∈ Z ∀a ∈ A (2.2d)

Solution approaches to tackle the PESP include satisfiability solving (Großmann et
al., 2012b), the modulo simplex method by Nachtigall (1998), banch-and-cut of the MIP
(Christian Liebchen, 2006) and mixtures of these (Borndörfer et al., 2020). When the

9

event network is a tree, then the PESP is polynomially solvable (Christian Liebchen,
2006). Lindner and Reisch (2020) extend this result by giving pseudo-polynomial-
time dynamic programming algorithms if the event network has bounded tree- or
branchwidth. Christian Liebchen (2008) put the PESP into practice and computed a
cyclic timetable for the Berlin underground. In general, cyclic timetabling is most
common for long-term planning of passenger trains.

2.4. Train Path Assignment Problem

In Section 2.2, we pointed out that a single slot can be constructed by applying a flow
algorithm. If multiple slots are constructed simultaneously such that no two of them
occupy the same infrastructure at the same time, this problem generalizes to the multi-
commodity flow problem (A. Caprara et al., 2002). In general, this problem arises in
long-term planning of both freight and passenger trains and we denote the problem of
assigning a slot to each of maximally many trainsR the Train Path Assignment Problem
(TPAP). Let qr incidate whether or not a train r is assigned to a slot, Fr the incidence
matrix of the train r and C the conflict matrix between arcs occupying the same infras-
tructure at the same time. Then, the TPAP can be modelled in the following MIP.

MIP-TPAP Maximize ∑
r∈R

qr (2.3a)

s.t. Fryr = qr Ir ∀ r ∈ R (2.3b)
Cy ≤ 1 (2.3c)
qr ∈ {0, 1} ∀ r ∈ R (2.3d)
yr = (((x, t)i)

n
i=0)r ∀ r ∈ R (2.3e)

(yi)r ∈ {0, 1} ∀ (yi)r = ((x, t)i)r ∀ r ∈ R (2.3f)

A variant is that the number of trains is fixed and the traveling times of the slots
are minimized (Alberto Caprara, 2015; Zhang et al., 2019). Even et al. (1975) proved
that the multi-commodity flow problem is NP-complete even for two commodities.
This complexity result holds for both variants. Therefore, studies that solve TPAP for
traveling time minimization, schedule at most several hundred of trains, as Zhang et
al. (2019) have pointed out. On the other hand, Nachtigall and Opitz, 2014 use column
generation to solve the TPAP for maximizing the capacity utilization of freight trains
in the east of Germany. Reisch, Großmann, Pöhle, et al. (2021) extend this work by a
heuristic column general approach and solve the TPAP for capacity maximization for
all freight trains in Germany, that is, more than 5000. Zhang et al. (2019) close the gap
to periodic timetabling by incorporating constraints to generate a cyclic timetable in
the TPAP model.

10

2.5. Timetable Robustness

So far, we have seen models and solution approaches to schedule as many trains as
possible or to find schedules with minimal traveling times. A third objective in rail-
way timetabling is the robustness against minor delays that occur stochastically in
railway operations. That is, given a distribution of minor disturbances, the sum of
expected delays is to be minimized. The means to achieve this goal are buffer times
between train trips on the one hand and time supplements in the timetable of a train,
on the other hand. When buffer times are sufficiently large, minor delays of a train
trip will not be propagated to the consecutive trip whereas supplements enable a train
to compensate for delays that have occured already.

Stochastically occuring delays can be modelled by adding the amount ζ of delay to
the minimum traveling times from x to x′ in the TPAP model or to the lower bounds on
the activities l in the PESP model. The vector ζ is referred to as a scenario. The scenario
ζ̂ ∈ Z without any delays is called the nominal scenario. In (strict) robust optimization,
the generated timetable needs to be feasible for every possible scenario ζ in a set Z
of plausible delay scenarios (Goerigk and Schöbel, 2010). Let F be the constraints, x
be the variable and f the objective. Then, in its most general form, a (strict) robust
optimization problem reads as follows.

strict-robustness Minimize f (x) (2.4a)
s.t. F(x, ζ) ≤ 0 ∀ζ ∈ Z (2.4b)

Since this modelling is very conservative, Fischetti and Monaci (2009) introduce the
concept of light robustness for train timetabling where exceedances γi of a constraint
i are minimized in the objective function. Let z∗ be the optimal value of the nominal
problem and δ a parameter restricting the deviation from the optimal solution value
of the nominal scenario. Then, the light robustness problem reads as follows.

light-robustness Minimize ∑ γi (2.5a)

s.t. F(x, ζ̂) ≤ 0 (2.5b)

f (x, ζ̂) ≤ (1 + δ)z∗ (2.5c)
Fi(x, ζ) ≤ γi ∀i ∀ζ ∈ Z (2.5d)
γ ≥ 0 (2.5e)

Schöbel and Kratz (2009) apply the robust optimization to the aperiodic timetabling
in an bi-criteria approach compromising robustness and travelling times. Further-
more, there are studies where the robust timetable is not generated but merely mod-
ified. For instance, Maróti (2017) applies stochastic programming to find an optimal
allocation of buffer and supplement times of a given reference timetable and applies it
to a 1-hour timetable of the whole Netherlands Railways (NS).

11

Finally, there is a number of approaches that consist of evaluations of the robust-
ness of a modified timetable only. Such approaches include both simulation (Curchod,
2007), and analytical computations (Huisman and Boucherie, 2001) to derive the ex-
pected amount of propagated delays in a timetable with respect to a distribution of
occurring delays. Reisch and Kliewer (2020) close the gap to robust timetable modi-
fication by introducing black-box optimization rules for these evaluation approaches
with the aim of adjusting the timetable such that the new one improves the objective
of minimal delays.

2.6. Conclusion

In this state of the art overview, we considered different aspects of computer-aided
railway timetabling. We presented the notion of a slot which is a timetable for a sin-
gle train and that it can be computed in polynomial time. Furthermore, we stated the
difference between periodic and aperiodic timetables and showed that the periodic
problem modelled as the PESP, is NP-complete. Likewise, the complexity of schedul-
ing multiple trains on a limited infrastructure, modelled as the TPAP, is NP-complete.
Finally, we presented approaches that optimize railway timetables with respect to min-
imizing the sum of expected delays.

References

Borndörfer, Ralf, Niels Lindner, and Sarah Roth (2020). “A Concurrent Approach to
the Periodic Event Scheduling Problem”. In: Journal of Rail Transport Planning &
Management 15, pp. 100–175. DOI: 10.1016/j.jrtpm.2019.100175.

Caprara, A. et al. (2002). “Solution of real-world train timetabling problems”. In: Pro-
ceedings of the 34th Annual Hawaii International Conference on System Sciences.

Caprara, Alberto (2015). “Timetabling and assignment problems in railway planning
and integer multicommodity flow”. In: Networks 66.1, pp. 1–10.

Curchod, Anne (2007). analyse de la stabilité d’horaires ferroviaires cadencés sur un réseau
maillé: Bedienungshandbuch. Lausanne: FASTA II.

Dahms, Florian et al. (2019). Transforming automatic scheduling in a working application
for a railway infrastructure manager. Rail Norrköping Conference.

Even, S., A. Itai, and A. Shamir (1975). “On the complexity of time table and multi-
commodity flow problems”. In: 16th Annual Symposium on Foundations of Computer
Science (sfcs 1975), pp. 184–193.

Fischetti, Matteo and Michele Monaci (2009). “Light Robustness”. In: Robust and On-
line Large-Scale Optimization: Models and Techniques for Transportation Systems. Berlin,
Heidelberg: Springer-Verlag, pp. 61–84. ISBN: 9783642054648. URL: https://doi.
org/10.1007/978-3-642-05465-5_3.

Ford, L. R. and D. R. Fulkerson (1956). “Maximal Flow Through a Network”. In: Cana-
dian Journal of Mathematics 8, pp. 399–404. DOI: 10.4153/CJM-1956-045-5.

12

https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.1007/978-3-642-05465-5_3
https://doi.org/10.1007/978-3-642-05465-5_3
https://doi.org/10.4153/CJM-1956-045-5

Goerigk, Marc and Anita Schöbel (2010). “An Empirical Analysis of Robustness Con-
cepts for Timetabling”. In: 10th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS’10). Ed. by Thomas Erlebach and
Marco Lübbecke. Vol. 14. OpenAccess Series in Informatics (OASIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 100–113. ISBN:
978-3-939897-20-0. DOI: 10.4230/OASIcs.ATMOS.2010.100. URL: http://drops.
dagstuhl.de/opus/volltexte/2010/2753.

Großmann, Peter et al. (2012b). “Solving Periodic Event Scheduling Problems with
SAT”. In: Advanced Research in Applied Artificial Intelligence. Ed. by He Jiang et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 166–175. ISBN: 978-3-642-
31087-4.

Hansen, Ingo and Jörn Pachl (2014). Railway Timetabling & Operations. Analysis - Mod-
elling - Optimisation - Simulation - Performance Evaluation.

Huisman, Tijs and Richard J. Boucherie (2001). “Running times on railway sections
with heterogeneous train traffic”. In: Transportation Research Part B: Methodologi-
cal 35.3, pp. 271–292. ISSN: 0191-2615. DOI: https://doi.org/10.1016/S0191-
2615(99)00051-X. URL: http://www.sciencedirect.com/science/article/pii/
S019126159900051X.

Liebchen, Christian (2006). Periodic Timetable Optimization in Public Transport. disserta-
tion.de.

— (2008). “The First Optimized Railway Timetable in Practice”. In: Transportation Sci-
ence 42.4, pp. 420–435. DOI: 10.1287/trsc.1080.0240. eprint: https://doi.org/
10.1287/trsc.1080.0240. URL: https://doi.org/10.1287/trsc.1080.0240.

Lindner, Niels and Julian Reisch (2020). Parameterized Complexity of Periodic Timetabling.
eng. Tech. rep. 20-15. Takustr. 7, 14195 Berlin: ZIB.

Maróti, Gábor (July 2017). “A branch-and-bound approach for robust railway timetabl-
ing”. English. In: Public Transport 9.1-2, pp. 73–94. ISSN: 1866-749X. DOI: 10.1007/
s12469-016-0143-x.

Nachtigall, Karl (1998). “Periodic Network Optimization and Fixed Interval Timeta-
bles”. Habilitation thesis. Universität Hildesheim.

Nachtigall, Karl and Jens Opitz (2014). Modelling and Solving a Train Path Assignment
Model. Proceedings of the International Conference on Operations Research, Aachen.

Odijk, Michiel (1994). Construction of Periodic Timetables: A Cutting Plane Algorithm. in:
Technical Report, TU Delft.

Reisch, Julian, Peter Großmann, Daniel Pöhle, et al. (2021). “Conflict resolving – A
local search algorithm for solving large scale conflict graphs in freight railway
timetabling”. In: European Journal of Operational Research. ISSN: 0377-2217. DOI: doi.
org/10.1016/j.ejor.2021.01.006. URL: https://www.sciencedirect.com/
science/article/pii/S0377221721000084.

Reisch, Julian and Natalia Kliewer (2020). “Black-Box Optimization in Railway Sim-
ulations”. In: Operations Research Proceedings 2019. Ed. by Janis S. Neufeld et al.
Cham: Springer International Publishing, pp. 717–723. ISBN: 978-3-030-48439-2.

Schöbel, Anita and Albrecht Kratz (2009). “A Bicriteria Approach for Robust Timetabl-
ing”. In: Robust and Online Large-Scale Optimization: Models and Techniques for Trans-

13

https://doi.org/10.4230/OASIcs.ATMOS.2010.100
http://drops.dagstuhl.de/opus/volltexte/2010/2753
http://drops.dagstuhl.de/opus/volltexte/2010/2753
https://doi.org/https://doi.org/10.1016/S0191-2615(99)00051-X
https://doi.org/https://doi.org/10.1016/S0191-2615(99)00051-X
http://www.sciencedirect.com/science/article/pii/S019126159900051X
http://www.sciencedirect.com/science/article/pii/S019126159900051X
https://doi.org/10.1287/trsc.1080.0240
https://doi.org/10.1287/trsc.1080.0240
https://doi.org/10.1287/trsc.1080.0240
https://doi.org/10.1287/trsc.1080.0240
https://doi.org/10.1007/s12469-016-0143-x
https://doi.org/10.1007/s12469-016-0143-x
https://doi.org/doi.org/10.1016/j.ejor.2021.01.006
https://doi.org/doi.org/10.1016/j.ejor.2021.01.006
https://www.sciencedirect.com/science/article/pii/S0377221721000084
https://www.sciencedirect.com/science/article/pii/S0377221721000084

portation Systems. Ed. by Ravindra K. Ahuja, Rolf H. Möhring, and Christos D.
Zaroliagis. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 119–144. ISBN: 978-
3-642-05465-5. DOI: 10.1007/978-3-642-05465-5_5. URL: https://doi.org/10.
1007/978-3-642-05465-5_5.

Serafini, Paolo and Walter Ukovich (1989a). A Mathematical Model for Periodic Schedul-
ing Problems. in: SIAM Journal on Discrete Mathematics, 2, pp. 550-581.

Zhang, Yongxiang et al. (2019). “Solving cyclic train timetabling problem through
model reformulation: Extended time-space network construct and Alternating Di-
rection Method of Multipliers methods”. In: Transportation Research Part B: Method-
ological 128, pp. 344–379. ISSN: 0191-2615.

14

https://doi.org/10.1007/978-3-642-05465-5_5
https://doi.org/10.1007/978-3-642-05465-5_5
https://doi.org/10.1007/978-3-642-05465-5_5

Part I.

Practical Applications of Automatic
Railway Timetabling

15

3. Conflict Resolving - A Local Search
Algorithm for Solving Large Scale
Conflict Graphs in Freight Railway
Timetabling

Chapter is omitted due to copyright.

17

4. Bestimmung der
Kapazitätssteigerung durch
Einführung der Mittelpufferkupplung
und ep-Bremse

Chapter is omitted due to copyright.

43

Part II.

Algorithms and Computability in
Timetable Generation

51

5. Conflict Resolving - A Maximum
Independent Set Heuristics for
Solving MaxSAT

Chapter is omitted due to copyright.

53

6. Stable Resolving - A Randomized
Local Search Heuristic for MaxSAT

Abstract

Many problems from industrial applications and AI can be encoded as Maximum Sat-
isfiability (MaxSAT). Often, it is more desirable to produce practicable results in very
short time compared to optimal solutions after an arbitrary long computation time. In
this paper, we propose Stable Resolving (SR), a novel randomized local search heuris-
tic for MaxSAT with that aim. SR works for both weighted and unweighted instances.
Starting from a feasible initial solution, the algorithm repeatedly performs the three
steps of perturbation, improvements and solution checking. In the perturbation, the
search space is explored at the cost of possibly worsening the current solution. The
local improvements work by repeatedly flipping signs of variables in over-satisfied
clauses. Finally, the algorithm performs a solution checking in a simulated anneal-
ing fashion. We compare our approach to state-of-the-art MaxSAT solvers and show
by numerical experiments on benchmark instances from the annual MaxSAT competi-
tion that SR performs comparable on average and is even the best solver for particular
problem instances.

Contents

6.1. Introduction . 62

6.2. Related Work . 63

6.3. Algorithm . 64

6.4. Experimental Results . 68

6.5. Conclusion and Outlook . 70

61

6.1. Introduction

We consider the Constraint Satisfaction Problem of Maximum Satisfiability (MaxSAT).
Many NP-hard optimization problems from applications in industry and AI can be
encoded as MaxSAT and existing solution algorithms have proved to yield results
that are competitive to domain specific solvers. The applications vary from peri-
odic scheduling (Großmann et al., 2012c), to causal discovery (Hyttinen et al., 2014),
Bayesian network structure learning (Berg, Järvisalo, and Malone, 2014), correlation
clustering (Berg and Järvisalo, 2017), reasoning over bionetworks (Guerra and Lynce,
2012), probabilistic inference (Park, 2002) and many more. A MaxSAT encoding con-
sists a Boolean formula that we assume to be in conjunctive normal form (CNF) which
means that the literals are grouped in clauses where they are connected disjunctively
(or) and the clauses are connected conjunctively (and).

Example. A Boolean formula in CNF: F = (¬x ∨ ¬y) ∧ (¬y ∨ ¬z).

A literal is a variable together with a positive or negative sign. A clause is satisfied
if at least one of its literals has the same sign as the variable in the solution. We also
say the literal is true and denote the number of true literals in a clause its stability. An
unsatisfied clause has a stability of zero. When a clause has a stability greater than 1,
we say that the clause is over-satisfied. A solution is an assignment of the variables
to true or f alse and is called feasible if all hard clauses are satisfied. We assume the
formula to consist of both hard clauses and (possibly weighted) soft clauses. The sum
of (the weights of) satisfied soft clauses is the objective function value. Then, the task
is to find a feasible solution maximizing the objective function value.

Example. Let F = H1 ∧ H2 ∧ S1 ∧ S2 ∧ S3 where

H1 : ¬x ∨ ¬y
H2 : ¬y ∨ ¬z
S1 : x weight(S1) = 2
S2 : y weight(S2) = 3
S3 : z weight(S3) = 2

are hard and soft clauses with according weights respectively. Then, the optimal solu-
tion of value 4 is x = z = true and y = f alse.

Due to its generic form, almost any problem from combinatorial optimization and
many optimization problems in AI can be encoded as MaxSAT and practice shows that
this conversion often works well. In this paper, we propose a novel heuristic solution
approach to the MaxSAT problem called Stable Resolving (SR). The aim is to solve
even large problem instances with millions of clauses and variables within short time,
that is, up to 60 seconds, to a practicable solution. To do so, SR repeatedly performs the
three steps of perturbation, improvements and solution checking, starting from an ini-
tial feasible solution. In the perturbation, the search space is explored by satisfaction

62

of randomly picked unsatisfied (soft) clauses at the cost of other clauses becoming un-
satisfied. More precisely, we consider the randomly picked clauses as hard clauses and
call a SAT solver on them, together with the original hard clauses. If other, formerly
satisfied soft clauses become unsatisfied by this perturbation, we write them in a list of
unsatisfied candidate clauses. Then, in the improvement part, a local search technique
is employed that builds on the clauses’ stabilities. Starting with the first member of
the list of unsatisfied candidate clauses, clauses with stability zero are being satisfied
by flipping the sign of a randomly chosen variable. Flipping the sign of one of its
variables increases the clause’s stability by 1 but might cause other clauses to become
unsatisfied. These unsatisfied clauses are added to the (local) search space and will
be tried to be satisfied later. On the other hand, if flipping a variable’s sign increases
other clauses’ stabilities to a number larger 1, that is, they become over-satisfied, they
can have at least one literal falsified without becoming unsatisfied. This falsification
can hence satisfy yet other clauses that contain the same variable with opposite sign
and improve the objective function again. In this way, the local search space grows un-
til all unsatisfied clauses have been tried to satisfy. Then, the improvement step ends
and if the objective function value has decreased, the previous solution is restored.
Else, newly unsatisfied clauses are added to the list of unsatisfied candidate clauses.
As candidate clauses are only added when the objective function value increases, and
one candidate is erased when it decreases, this list will eventually be empty. Then,
the solution checking part begins. Here, a worsening of the objective value is allowed
with a probability that decreases during the run of the algorithm.

The outline of the paper will be as follows. After a literature overview over exist-
ing approaches in Section 6.2, we explain the algorithm in detail in Section 6.3. In
Section 6.4, we present and discuss our results on common benchmark instances and
finally give a conclusion and outlook in Section 6.5.

6.2. Related Work

There are numerous solution approaches for the MaxSAT problem both exact and
heuristic ones. Let us point out the differences between SR and other state-of-the-art
MaxSAT solvers. In the 2019’s MaxSAT competition1, the solver Loandra performed
best in the incomplete unweighted track. It combines a core-guided approach for find-
ing a lower bound (Berg, Demirović, et al., 2019) and a linear algorithm for an upper
bound. As the linear algorithm, the authors use LinSBPS (Demirović and Stuckey,
2019) that performs a neighborhood search in a complete algorithmic setting by re-
peatedly calling the SAT Solver glucose (Audemard and Simon, 2009). In contrast to
LinSPBS, we only call glucose once at the beginning for an initial solution and for the
perturbation of a solution but not in order to achieve an improvement. Moreover, we
do not calculate lower bounds at all. The local search algorithms MaxRoster (a descrip-
tion can be found in Bacchus, Järvisalo, et al. (2019)) which is based on Ramp (Fan et
al., 2016) and SATLike (Lei and Cai, 2018) which iteratively flips the sign of variables

1https://maxsat-evaluations.github.io/2019/index.html

63

that bring the best improvement work differently than our solver in the respect that
they adapt weights of clauses in order to leave local optima. We, however, perturb a
current solution for that purpose and instead of changing weights. (Max-)WalkSAT
and GSAT (Selman et al., 1995) are local search approaches similar to SR in the sense
that unsatisfied clauses are picked at random and one of their variables’ sign is flipped.
The difference to our approach is that SR searches a larger neighborhood with a more
complex improvement heuristics based on stabilities. In fact, one can consider SR a
large neighborhood search, as pursued in the OR world (cf. e.g. Pisinger and Ropke
(2010)), with the difference that SR finds improvements in the neighborhood heuristi-
cally and without calling an exact solver whereas the repair procedure in large neigh-
borhood searches often involve an exact solver. At the end of each iteration, SR checks
the solution in a simulated annealing fashion. Simulated annealing with reset has
been used also for MaxSAT (Hoos, 1996; Bouhmala, 2019). Finally, let us point out that
the splitting of our algorithm into perturbation, improvement and solution checking
was introduced for a state-of-the-art Maximum Independent Set (MIS) heuristic (An-
drade et al., 2012) that in a previous work, we have been able to extend by a differ-
ent improvement technique and simulated annealing solution checking in order to
solve MaxSAT instances that have been transformed to MIS (Reisch, Großmann, and
Kliewer, 2019). In contrast, in this paper we propose an algorithm that works directly
on the Boolean formula.

6.3. Algorithm

The overall procedure of SR is shown in Algorithm 1. We first apply a SAT-based
preprocessing on the formula. That is, we label the soft clauses meaning that each soft
clause gets an additional variable l and will be considered a hard clause. In addition,
for each label, we introduce a unit soft clause¬l with the weight the original soft clause
had (Belov et al., 2013). For the obtained equivalent formula, we apply unit clause
propagation and bounded variable elimination (cf. e.g. Davis and Putnam (1960)) on
the hard clauses, as long as it is possible. Note that the label variables are excluded
from the propagations since these operations are only sound for hard clauses. Then,
for an initial feasible solution the SAT solver glucose (Audemard and Simon, 2009) is
called.

The algorithm then repeatedly executes the three steps of perturbation, improve-
ment and solution checking.

Algorithm 1 StableResolving()
Preprocess()
CalculateInitialSolution()
while timeout has not been reached do

Perturb()
StableImprove()
CheckSolution()

end

64

Let us explain the single parts in greater detail. In the perturbation part shown in
Algorithm 2, we explore the search space. More precisely, we first sample a random
number k from the geometric distribution with parameter p and select k unsatisfied
clauses uniformly at random. Then, we call the SAT solver glucose on all hard clauses
and the selected clauses. Additionally, we give the previous solution as an initial so-
lution to the solver in order to speed up the computation. If this formula is feasible,
we have altered the solution, but maybe at the cost of a lower objective function value
because formerly satisfied clauses are now unsatisfied. These unsatisfied clauses are
added to the back of a list of candidates that potentially can be satisfied by improve-
ments. We keep and update this list throughout the algorithm.

Algorithm 2 Perturb()
k = random number where P[k = i] = p(1− p)i−1

C = set of k unsatisfied clauses picked uniformly at random
Call SAT solver on C and all hard clauses and overwrite the solution
Add newly unsatisfied clauses to the back of candidates

Example. Consider the example formula F from above. An initial feasible solution
is given by all variables set to f alse. The perturbation might set k = 1, choose the
unsatisfied clause C = S2 and the SAT solver returns the feasible solution of y = true
and x = z = f alse. No clause gets unsatisfied by this step.

Remark. In some large instances from industrial applications, sampling a random
unsatisfied clause is computationally expensive when all clauses are iterated through
in order to detect the unsatisfied ones and sample among them. This is why we keep
a superset of the unsatisfied clauses where every time a clause gets unsatisfied, it is
added to. Moreover, we apply a heuristic in this superset and sample 1000 clause
indices at random and only return if the corresponding clause indeed is unsatisfied.
Only if all 1000 sampled clauses are satisfied, we iterate through the superset to find
the unsatisfied clauses and sample among them.

65

Algorithm 3 StableImprove()
while candidates 6= ∅ do

C = pop first clause from candidates
Init A = ∅ and C = {C}
while ∃v = variable picked uniformly at random in vars(C) \ A do

Flip sign of v and add v to A
Add newly unsatisfied clauses to C
Stab1→2 = set of clauses whose stability has grown to 2
foreach S ∈ Stab1→2 do

w = variable of second true literal in S
if w is in no clause of stability 1 nor in A then

Flip sign of w and add w to A
end

end
end
if objective function value has decreased then

Revert flips of variables in A
end
else

Add C at the back of candidates
end

end

In the improvement part shown in Algorithm 3, we iteratively pick a variable uni-
formly at random of an unsatisfied clause (at first from the candidates and later from
the clauses that have been unsatisfied during this improvement step) and flip its sign.
A flip might lead to other clauses becoming unsatisfied now and we store them in the
set C. Note that also hard clauses can become temporarily unsatisfied. On the other
hand, there might be a set Stab1→2 of clauses whose stability grows from 1 to 2 which
means that there exists now a second true literal whose variable’s sign can now be
flipped without unsatisfying this clause. This optimization technique of considering
variables in over-satisfied constraints is well-known in mathematical optimization (cf.
e.g. Simplex Method (Dantzig, 1963)) and we apply it here as a local improvement
heuristics. In our algorithm, the clauses in Stab1→2 are iterated through and checked
for such an improvement. When no more variables are found that can be flipped, ei-
ther because C is empty or all variables from C, denoted vars(C), are flipped already,
the improvement step ends. Either the objective function value has increased, then
the now unsatisfied clauses are added to the candidates, or it has not and the flips,
stored in A, are reverted. Note that the feasible solution remains feasible as the objec-
tive function value cannot increase when hard clauses have become unsatisfied. The
improvement part ends when there are no more candidate clauses.

Remark. In some test instances, the set C monotonously grows and never shrinks
because there are more new unsatisfied clauses than clauses that can either be sat-

66

Figure 6.1.: Stabilities of clauses during an improvement step.

isfied or whose variables have all been considered for an improvement. In order to
avoid that we spend too much time in a single local improvement step, we set an iter-
ations limit of 25 for the inner while-loop.

Note that both while-loops terminate. For the outer one, candidate clauses are only
added if the objective function value has increased which cannot be infinitely often as
MaxSAT instances are always bounded. The inner one ends - besides the iterations
limit - when A contains all variables.

Example. Consider the example formula F with solution

(x, y, z) = (f alse, true, f alse)

from above. The stabilities of the following steps are illustrated in Figure 6.1. S1 is
unsatisfied and might be the first candidate clause (a). Flipping the sign of its only
variable x unsatisfies H1 because y has been set to true in the perturbation already (b).
Hence, H1 gets added to C and x to A. Flipping the sign of one of the variables of H1
(the only clause in C) that has not already been flipped (i.e. that is not in A) means
flipping y to f alse. Note that H2 has now stability 2 and gets added to Stab1→2 as both
variables y and z are f alse (c). The variable z is the second true literal that has been true
before, so its sign gets flipped because no further clause is being unsatisfied by that
flip. The improvement step ends with a objective function value that has increased
from 3 to 4 (d).

67

Let us mention that during an improvement step (and after the perturbation), it is
possible that formerly satisfied hard clauses become unsatisfied. Hard clauses have
a weight greater than the sum of the weights of the soft clauses. Therefore, breaking
hard clauses (without satisfying other formerly unsatisfied hard clauses) worsens the
solution. In order to leave local optima, however, a worsening is possible in our algo-
rithm - with decreasing probability according to the simulated annealing step, as will
be explained in the remainder of this section.

Algorithm 4 CheckSolution()
if objective function value has increased to the best one ever seen then

Save new best solution
end
else if objective function value has decreased then

if number of iterations without improvement has exceeded m then
Restore best solution

end
else

Restore previous solution with probability exp(−prob)
end

end

After the improvements we have arrived in a local optimum. The current solution
might be of smaller objective function value than the previous solution from before
this iteration of Algorithm 1 if the improvements could not compensate the perturba-
tion. Still, we sometimes allow such a worsening in the simulated annealing approach
shown in Algorithm 4 in order to be able to leave local optima. More precisely, we re-
store the previous solution if it had a better objective function value with a probability
growing exponentially with a factor prob that decreases linearly during the course of
the algorithm from 1 to 0 and represents the temperature of the simulated annealing.
If, however, the number of iterations without an improvement exceeds a parameter
m, we reset to the best solution ever seen. When SR terminates, this best solution is
returned.

6.4. Experimental Results

We have applied SR to problem instances and compared it to results that are taken
from the 2019’s MaxSAT competition2. The instances encode various industrial appli-
cations’ and theoretical problems, such as scheduling, fault diagnosis, tree-width com-
putation, max clique problems, causal discovery, Ramsey number approximation and
many more. An overview of the competing solvers can be found in Bacchus, Järvisalo,
et al. (2019). For all calculations, we set the parameters for the geometric distribution
and maximum steps in SR to p = 0.75 and m = 1000, respectively, because they yield

2We have submitted SR to the 2020’s MaxSAT competition.

68

Table 6.1.: Sum of scores by solver on unweighted instances
Loandra LinSBPS

2018
SR SATLike* Open

WBO g
sls mcs* sls mcs

lsu*
Open
WBO
ms

251.7327 238.3298 231.1436 227.4589 204.1828 202.7803 202.7158 190.9274

Table 6.2.: Sum of scores by solver on weighted instances
Loandra 236.2272
TT Open WBO Inc* 233.4784
LinSBPS2018 231.6581
Open WBO Inc (inc bmo
satlike)*

220.3607

Open WBO Inc (inc bmo
complete)*

218.6454

SR 213.3262
Open WBO g* 212.1081
SATLike* 210.6802
sls mcs2* 203.1498
Open WBO ms* 194.5451
sls mcs* 191.4503
uwrmaxsat inc* 190.7841

the best results on average. We performed all computations on an Intel Core i7-8700K
and with a time limit of 60 seconds. Note that if a solver from the MaxSAT competition
yields worse results on our machine than in the results of the 2019’s MaxSAT compe-
tition where computations were performed on the StarExec Cluster3, we include the
better results for the analysis here. We mark such solvers with an asterisk*.

Table 6.1 and Table 6.2 show the sum of scores of the competing solvers on the un-
weighted and weighted benchmark instances, respectively, from the incomplete track
of the MaxSAT competition against the scores of SR. The score of a solver on an in-
stance is calculated in the following way. Maximizing the sum (of weights) of satis-
fied soft clauses is equivalent to minimizing the sum (of weights) of unsatisfied soft
clauses, which is denoted by the gap. The score of a solver on an instance is the fraction
of the best gap known divided by the gap of the particular solver. If a solver’s solution
violates a hard clause, its score is zero and its gap infinity.

Example. Consider the example above. In the optimal solution, only S2 is unsatis-
fied which yields the optimal gap of 3. If solver A has achieved this optimum, solvers
B and C satisfy only S2 and not S1 and S3, then their scores are 3/4 while solver A has
the maximal score of 1 on this instance.

3https://www.starexec.org/starexec/public/about.jsp

69

Figure 6.2.: Accumulated sum of scores of unweighted instances after 60 sec computa-
tion time

The score hence reflects the ratio of the achieved result to the optimal (or best known)
one. In Figure 6.2 and Figure 6.3, we see the accumulated sum of scores of the single
instances, ordered by SR’s scores and grouped by the competing solvers for the un-
weighted and weighted instances, respectively. The figures illustrate that SR (black)
has the highest sum of scores on a large subset of instances. Counting all instances,
including those where SR has low scores, we conclude that SR still has a competitive
performance. More precisely, in 210 and 179 of the 299 unweighted and 297 weighted
instances, SR has a score at least the mean of the other solvers. Furthermore, SR per-
forms especially well on the unweighted instances, in comparison to the other solvers.

What is more, SR often has the best result among all solvers for particular instances.
We observe that in the unweighted case, SR performs especially well on instances from
atcos, extension enforcement and set covering. In the weighted case, SR is best on many
instances encoding the Minimum Weight Dominating Set Problem. See Tables 6.3 and 6.4
for complete lists of such instances in the unweighted and weighted case, respectively.
For a better comparison, we include a column showing the gaps of the winning solver
Loandra, as well.

6.5. Conclusion and Outlook

In this paper, we have proposed a novel local search algorithm for solving large MaxSAT
problems in short time. We could prove by numeric experiments on benchmark in-
stances encoding problems from combinatorial optimization and AI that our algo-
rithm yields results that are comparable to and for some problem families even better

70

Table 6.3.: Gaps of unweighted instances where SR performs best
Benchmark SR Loandra

1 aes/sbox-8.wcnf.gz 443 690
2 atcoss/mesat/atcoss-mesat-04.wcnf.gz 97 Inf
3 atcoss/mesat/atcoss-mesat-05.wcnf.gz 74 Inf
4 atcoss/mesat/atcoss-mesat-10.wcnf.gz 32 40
5 atcoss/mesat/atcoss-mesat-18.wcnf.gz 80 Inf
6 atcoss/sugar/atcoss-sugar-15.wcnf.gz 133 Inf
7 extension-enforcement/extension-enforcement-non-

strict-stb-200-0.05-1-10-0.wcnf.gz
7 18

8 extension-enforcement/extension-enforcement-non-
strict-stb-200-0.05-2-10-2.wcnf.gz

12 20

9 extension-enforcement/extension-enforcement-non-
strict-stb-200-0.05-3-10-1.wcnf.gz

8 9

10 extension-enforcement/extension-enforcement-non-
strict-stb-200-0.05-3-10-4.wcnf.gz

10 16

11 extension-enforcement/extension-enforcement-non-
strict-stb-200-0.05-4-10-1.wcnf.gz

7 17

12 extension-enforcement/extension-enforcement-non-
strict-stb-200-0.05-4-10-2.wcnf.gz

6 13

13 extension-enforcement/extension-enforcement-non-
strict-stb-200-0.05-4-10-4.wcnf.gz

8 18

14 min-fill/MinFill-R3-miles1000.wcnf.gz 3634 3755
15 optic/gen-cvc-add7to3-9999.wcnf.gz 197 204
16 pseudoBoolean/garden/normalized-

g100x100.opb.msat.wcnf.gz
2163 2526

17 railway-transport/d4.wcnf.gz 8296 8524
18 SeanSafarpour/wb-4m8s1.dimacs.filtered.wcnf.gz 58 282
19 SeanSafarpour/wb-4m8s4.dimacs.filtered.wcnf.gz 220 230
20 set-covering/crafted/scpclr/scpclr13-

maxsat.wcnf.gz
27 28

21 set-covering/crafted/scpcyc/scpcyc07-
maxsat.wcnf.gz

145 149

22 set-covering/crafted/scpcyc/scpcyc08-
maxsat.wcnf.gz

363 390

23 set-covering/crafted/scpcyc/scpcyc09-
maxsat.wcnf.gz

835 972

24 set-covering/crafted/scpcyc/scpcyc10-
maxsat.wcnf.gz

1967 2242

25 set-covering/crafted/scpcyc/scpcyc11-
maxsat.wcnf.gz

4771 5623

26 uaq/uaq-ppr-nr200-nc66-n5-k2-rpp4-ppr12-
plb100.wcnf.gz

75 78

27 xai-mindset2/liver-disorder.wcnf.gz 316 318

71

Figure 6.3.: Accumulated sum of scores of weighted instances after 60 sec computation
time

Table 6.4.: Gaps of weighted instances where SR performs best
Benchmark SR Loandra

1 causal-discovery/causal-Water-10-1000.wcnf.gz 11339025 16041455
2 causal-discovery/causal-Wdbc-8-569.wcnf.gz 1446339 2541316
3 correlation-clustering/Rounded-

CorrelationClustering-Vowel-BINARY-N740-
D0.200.wcnf.gz

120199215 130874895

4 correlation-clustering/Rounded-
CorrelationClustering-Vowel-BINARY-N760-
D0.200.wcnf.gz

120800405 132256968

5 drmx-cryptogen/geffe128-7.wcnf.gz 812 846
6 min-width/MinWidthCB-mitdbsample-100-43-1k-5s-

2t-5.wcnf.gz
32010 32200

7 min-width/MinWidthCB-mitdbsample-200-64-1k-2s-
1t-4.wcnf.gz

76975 78325

8 min-width/MinWidthCB-mitdbsample-300-43-1k-6s-
1t-8.wcnf.gz

45780 45825

9 MinimumWeightDominatingSetProblem/delaunay-
n24.wcnf.gz

304532225 350820532

10 MinimumWeightDominatingSetProblem/hugebubbles-
00020.wcnf.gz

694937186 753286458

11 MinimumWeightDominatingSetProblem/inf-road-
usa.wcnf.gz

840126999 903206743

12 MinimumWeightDominatingSetProblem/sc-
rel9.wcnf.gz

15590036 16746750

13 MinimumWeightDominatingSetProblem/web-
wikipedia2009.wcnf.gz

28120892 37674803

14 pseudoBoolean/miplib/normalized-mps-v2-20-10-
p0548.opb.msat.wcnf.gz

12451 25494

15 spot5/log/1401.wcsp.log.wcnf.gz 463106 469110
16 spot5/log/1407.wcsp.log.wcnf.gz 459591 465638

72

than state-of-the-art solvers.

As a possible prospect, we aim at developing more sophisticated improvement
methods that take into account not single over-satisfied clauses but sets of such. Also,
we can think of caching unsuccessful local improvements so that they will never be
performed a second time. Finally, we want to analyse the different components of our
algorithm by replacing each of the perturbation, stable improvements and simulated
annealing by a naive technique. This will give an insight into the contribution of each
component to the solvers performance.

References

Andrade, Diogo Vieira, Mauricio G. C. Resende, and Renato Fonseca F. Werneck (2012).
“Fast local search for the maximum independent set problem”. In: J. Heuristics 18.4,
pp. 525–547.

Audemard, Gilles and Laurent Simon (2009). “Predicting Learnt Clauses Quality in
Modern SAT Solvers”. In: Proceedings of the 21st International Jont Conference on Ar-
tifical Intelligence. IJCAI’09. Pasadena, California, USA, pp. 399–404.

Bacchus, Fahiem, Matti Järvisalo, and Ruben Martins (Sept. 2019). “MaxSAT Evalu-
ation 2018: New Developments and Detailed Results”. In: Journal on Satisfiability,
Boolean Modeling and Computation 11, pp. 99–131. DOI: 10.3233/SAT190119.

Belov, Anton, António Morgado, and Joao Marques-Silva (2013). “SAT-Based Prepro-
cessing for MaxSAT”. In: Logic for Programming, Artificial Intelligence, and Reasoning.
Ed. by Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 96–111. ISBN: 978-3-642-45221-5.

Berg, Jeremias, Emir Demirović, and Peter J. Stuckey (2019). “Core-Boosted Linear
Search for Incomplete MaxSAT”. In: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. Ed. by Louis-Martin Rousseau and Kostas Ster-
giou. Cham: Springer International Publishing, pp. 39–56. ISBN: 978-3-030-19212-9.

Berg, Jeremias and Matti Järvisalo (2017). “Cost-optimal constrained correlation clus-
tering via weighted partial Maximum Satisfiability”. In: Artificial Intelligence 244.
Combining Constraint Solving with Mining and Learning, pp. 110–142. ISSN: 0004-
3702. DOI: https://doi.org/10.1016/j.artint.2015.07.001.

Berg, Jeremias, Matti Järvisalo, and Brandon Malone (22–25 Apr 2014). “Learning Op-
timal Bounded Treewidth Bayesian Networks via Maximum Satisfiability”. In: Pro-
ceedings of the Seventeenth International Conference on Artificial Intelligence and Statis-
tics. Ed. by Samuel Kaski and Jukka Corander. Vol. 33. Proceedings of Machine
Learning Research. Reykjavik, Iceland: PMLR, pp. 86–95.

Bouhmala, Noureddine (Feb. 2019). “Combining simulated annealing with local search
heuristic for Max-SAT”. In: Journal of Heuristics 25.1, pp. 47–69.

Dantzig, George B. (1963). “Linear Programming and Extensions”. In: Princeton Uni-
versity Press, Princeton.

73

https://doi.org/10.3233/SAT190119
https://doi.org/https://doi.org/10.1016/j.artint.2015.07.001

Davis, Martin and Hilary Putnam (July 1960). “A Computing Procedure for Quantifi-
cation Theory”. In: J. ACM 7.3, pp. 201–215. ISSN: 0004-5411. DOI: 10.1145/321033.
321034.

Demirović, Emir and Peter J. Stuckey (2019). “Techniques Inspired by Local Search for
Incomplete MaxSAT and the Linear Algorithm: Varying Resolution and Solution-
Guided Search”. In: Principles and Practice of Constraint Programming. Ed. by Thomas
Schiex and Simon de Givry. Cham: Springer International Publishing, pp. 177–194.
ISBN: 978-3-030-30048-7.

Fan, Yi et al. (2016). “Ramp: A Local Search Solver based on Make-positive Variables”.
In: MaxSAT Evaluation.

Großmann, Peter et al. (2012c). Solving Periodic Event Scheduling Problems with SAT.
in: International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, pp. 166-175, Springer.

Guerra, João and Inês Lynce (2012). “Reasoning over Biological Networks Using Max-
imum Satisfiability”. In: Principles and Practice of Constraint Programming. Ed. by
Michela Milano. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 941–956. ISBN:
978-3-642-33558-7.

Hoos, Holger H. (1996). “Solving hard combinatorial problems with GSAT — A case
study”. In: KI-96: Advances in Artificial Intelligence. Ed. by Günther Görz and Steffen
Hölldobler. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 107–119. ISBN: 978-
3-540-70669-4.

Hyttinen, Antti, Frederick Eberhardt, and Matti Järvisalo (2014). “Constraint-based
Causal Discovery: Conflict Resolution with Answer Set Programming”. In: Pro-
ceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 340–349.

Lei, Zhendong and Shaowei Cai (July 2018). “Solving (Weighted) Partial MaxSAT by
Dynamic Local Search for SAT”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on
Artificial Intelligence Organization, pp. 1346–1352. DOI: 10.24963/ijcai.2018/
187.

Park, James D. (2002). “Using Weighted Max-SAT Engines to Solve MPE”. In: Proc.
18th Nat’l Conf. Artificial Intelligence, pp. 682–687.

Pisinger, David and Stefan Ropke (2010). “Large Neighborhood Search”. In: Hand-
book of Metaheuristics. Ed. by Michel Gendreau and Jean-Yves Potvin. Boston, MA:
Springer US, pp. 399–419.

Reisch, Julian, Peter Großmann, and Natalia Kliewer (2019). “Conflict Resolving - A
Maximum Independent Set Heuristics for Solving MaxSAT”. In: Proceedings of the
22nd International Multiconference Information Society 1, pp. 67–71.

Selman, Bart, Henry Kautz, and Bram Cohen (1995). “Local Search Strategies for Sat-
isfiability Testing”. In: DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pp. 521–532.

74

https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.24963/ijcai.2018/187
https://doi.org/10.24963/ijcai.2018/187

7. Parameterized Complexity of
Periodic Timetabling

Abstract

Public transportation networks are typically operated with a periodic timetable. The
Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling
tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a
natural question to ask whether there are polynomial-time algorithms for input net-
works of bounded treewidth. We show that deciding the feasibility of a PESP instance
is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth
is 3. Analogous results hold for the optimization of reduced PESP instances, where
the feasibility problem is trivial. To complete the picture, we present two pseudo-
polynomial-time dynamic programming algorithms solving PESP on input networks
with bounded tree- or branchwidth. We further analyze the parameterized complex-
ity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For
event-activity networks with a special – but standard – structure, we give explicit and
sharp bounds on the branchwidth in terms of the maximum degree and the carving-
width of an underlying line network. Finally, we investigate several parameters on
the smallest instance of the benchmarking library PESPlib.

Contents

7.1. Introduction . 77

7.2. The Periodic Event Scheduling Problem 78

7.3. PESP on Networks of Treewidth Two 82

7.3.1. Subset Sum . 82

7.3.2. Treewidth . 83

7.3.3. Branchwidth . 84

7.3.4. Carvingwidth . 85

7.4. Dynamic Programs . 87

7.4.1. PESP and Vertex Separators 87

7.4.2. A Branch Decomposition Approach 88

7.4.3. A Tree Decomposition Version 90

75

7.5. Fixed-parameter tractable algorithms 93

7.5.1. Cyclomatic Number . 93

7.5.2. Vertex Cover Number . 96

7.6. Structure of Realistic Event-Activity Networks 97

7.6.1. Line-Based Event-Activity Networks 97

7.6.2. Branchwidth of Line-Based Networks 98

7.6.3. Parameters of R1L1 . 101

7.7. Conclusion . 104

76

7.1. Introduction

Creating and optimizing timetables is substantial for planning and operating public
transportation networks. As well as in local traffic as in long-distance train networks,
timetables are often periodic, i.e., the schedule of trips repeats after a certain period
time T, e.g., 60 minutes.

Mathematically, periodic timetabling is captured by the Periodic Event Scheduling
Problem (PESP, Serafini and Ukovich, 1989b). The idea behind PESP is to model arrival
and departure events of trips in a public transportation network as vertices (events)
of a directed graph. Dependencies between events, such as driving of a vehicle or
changing at a station, are modeled as arcs (activities) connecting pairs of events. These
activities come with restrictions on their duration, e.g., driving from one station to the
next might take at least 7 minutes. Then, a solution to PESP is an assignment of times
in [0, T) to each event (a periodic timetable) such that the activity duration restrictions
are respected. We refer to Section 7.2 for rigorous formulations.

Deciding whether a periodic timetable exists is an NP-complete problem, even if
T ≥ 3 is not considered as part of the input. This result can be proved by a polynomial-
time reduction of T-VERTEX COLORING, where a T-coloring of a graph corresponds to
event times in {0, 1, . . . , T − 1} (M. A. Odijk, 1994). This suggests a close relationship
between PESP and coloring problems. In fact, both PESP and VERTEX COLORING are
solvable in linear time on trees, regardless of T. Furthermore, for any T, deciding
if a graph admits a T-coloring is fixed-parameter tractable when parameterized by
treewidth. More precisely, there is a function f such that for a given graph G on n
vertices with a nice tree decomposition of treewidth ≤ k and a natural number T,
there is an O(f (k) · n) algorithm deciding the T-VERTEX COLORING problem on G
(Arnborg and Proskurowski, 1989).

We show in Section 7.3 that no such result holds for PESP: Even if the event-activity
network has treewidth 2 or branchwidth 2, i.e., every connected component is series-
parallel, it is an NP-complete problem to decide whether a feasible periodic timetable
exists. When considering reduced PESP instances, where the activities carry only lower
bounds, but no (non-trivial) upper bounds, we prove that it is NP-complete to decide
if there exists a periodic timetable whose weighted periodic slack is below a given
threshold. Both proofs work by a reduction of the SUBSET SUM problem. As a byprod-
uct, we also obtain an NP-hardness result on networks of carvingwidth 3. As a con-
sequence, if P 6= NP, then there are only pseudo-polynomial time algorithms available
for both the feasibility and the reduced optimality problem. We give two such al-
gorithms based on dynamic programming in Section 7.4, one in terms of a branch
decomposition, and the other one in terms of a nice tree decomposition.

In Section 7.5, we prove that the feasibility version of PESP is fixed-parameter tract-
able when parameterized by the cyclomatic number, i.e., the dimension of the cycle
space of the event-activity network. For computing periodic timetables with mini-
mum weighted periodic slack, we give a polynomial-time algorithm when the cyclo-
matic number is bounded. We further discuss the diameter as a parameter. Some
generalizations of the VERTEX COLORING problem like, e.g., L(2, 1)-LABELING, are
also NP-complete on graphs of treewidth ≥ 2, but are fixed-parameter tractable when

77

parameterized by the vertex cover number, i.e., the cardinality of a minimum vertex
cover (Fiala et al., 2011). We prove that deciding the feasibility of a PESP instance is
W[1]-hard when parameterized by the vertex cover number.

As PESP instances arising from public transportation networks typically have a spe-
cial structure, we show in Section 7.6 that on this type of event-activity networks,
the branchwidth can be related to invariants of an underlying line network: Roughly
speaking, the number of lines at a station of a public transport network is a (sharp)
lower bound on the branchwidth of the event-activity network. The carvingwidth of
the often planar line network provides an upper bound, which is also sharp. Finally,
we consider the smallest instance R1L1 of the PESP benchmarking library PESPlib, and
use the relation to line networks in order to compute bounds on the width parameters
discussed in this paper.

The presentation finishes with a few concluding remarks in Section 7.7.

7.2. The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) was introduced in (Serafini and Ukovich,
1989b). PESP instances comprise the following ingredients:

• a directed graph G (often called event-activity network) with vertex set V(G)
(events) and arc set A(G) (activities),

• a period time T ∈N,

• lower bounds ` ∈ Z
A(G)
≥0 , ` < T,

• upper bounds u ∈ Z
A(G)
≥0 , u ≥ `,

• weights w ∈ Q
A(G)
≥0 .

In the application of periodic timetabling in public transport, the events are typically
arrivals or departures of a line at a station, and activities model driving between sta-
tions, dwelling at a station, passenger transfers, or safety constraint such as minimum
distances between vehicles (Christian Liebchen and Möhring, 2007). The weights often
reflect the number of passengers using an activity.

Definition 7.2.1. Given (G, T, `, u) as above, a periodic timetable is a vector π ∈ [0, T)V(G)

such that there exists a periodic tension x ∈ R
A(G)
≥0 satisfying

∀ij ∈ A(G) : `ij ≤ xij ≤ uij and πj − πi ≡ xij mod T. (7.1)

Intuitively, π gives the cyclic order of the events, and x corresponds to the duration
of the activities. If there exists a periodic timetable π, then a periodic tension can be
computed by

xij := [πj − πi − `ij]T + `ij, ij ∈ A(G), (7.2)

78

where [·]T denotes the modulo-T-operator taking values in [0, T). Conversely, from a
vector x ∈ R

A(G)
≥0 with ` ≤ x ≤ u, one can construct a periodic timetable with tension

x by a graph traversal, see also Lemma 7.2.7.
In terms of the incidence matrix B ∈ {−1, 0, 1}V(G)×A(G), condition (7.1) can be

rewritten as
` ≤ x ≤ u and Btπ ≡ x mod T.

Since B and hence are Bt are totally unimodular (Schrijver, 1986, Example 19.2) and
the bounds `, u are integer, it follows that if a periodic timetable exists, then there is
also an integer timetable with an integer periodic tension. However, in general, it is
not at all clear that a periodic timetable exists:

Definition 7.2.2 (T-PESP-FEASIBILITY). Given a tuple (G, T, `, u) as above, decide if
there exists a periodic timetable π.

Theorem 7.2.3 (M. A. Odijk, 1994). T-PESP-FEASIBILITY is NP-complete for fixed T ≥ 3.

Proof. It is clear that T-PESP-FEASIBILITY is in NP, as a feasible timetable π with
periodic tension x serves as certificate. We recall the proof in order to emphasize the
natural relationship between PESP and VERTEX COLORING. Fix T ≥ 3. Given an
undirected graph H, construct a T-PESP-FEASIBILITY instance (G, T, `, u) as follows:
G is obtained from H by arbitrarily directing the edges, and set ` := 1, u := T −
1. Then, H admits a T-coloring if and only if (G, T, `, u) has a periodic timetable π.
Namely, if f : V(H) → {0, . . . , T − 1} is a T-coloring, then setting πi := f (i) for
all i ∈ V(G) is a periodic timetable, as for every arc ij ∈ A(G) then holds xij =
[πj − πi]T = [f (j) − f (i)]T ∈ [1, T − 1]. Vice versa, if the PESP instance is feasible,
then there is an integer timetable, giving rise to a T-coloring.

So far, we have neglected the weight vector w ∈ Q
A(G)
≥0 . The weights come into

play in the optimization variant of PESP, which we state as its corresponding decision
version. If x is a periodic tension, we call y := x− ` ≥ 0 the periodic slack.

Definition 7.2.4 (T-PESP-OPTIMALITY). Given (G, T, `, u, w) as above and a number
M, find a periodic timetable π with periodic slack y such that wty ≤ M.

Minimizing the weighted periodic slack, or equivalently, the weighted periodic ten-
sion, can be interpreted as minimizing the total travel time of all passengers in a pub-
lic transportation network. Clearly, T-PESP-OPTIMALITY is an NP-hard optimization
problem. However, in many non-railway public transport networks, minimum dis-
tances are neglected for planning, and the driving and dwelling times of vehicles have
a rather small span, so that they can be assumed as fixed. Contracting the correspond-
ing activities yields a graph where only transfer activities remain, and these have typi-
cally no restrictions on their durations in the sense that lower and upper bounds differ
by at least T− 1. This motivates the following specialization of PESP, sometimes called
reduced PESP:

Definition 7.2.5 (T-RPESP-OPTIMALITY). Given (G, T, `, u, w) as above with u ≥ `+
T − 1 and a number M, find a periodic timetable π with periodic slack y such that
wty ≤ M.

79

Note that the feasibility problem is trivial to solve: Any integral vector π ∈ [0, T)V(G)

is a periodic timetable, because for any acitivity ij ∈ A(G),

`ij ≤ xij = [πj − πi − `ij]T + `ij ≤ T − 1 + `ij ≤ uij.

Theorem 7.2.6 (Nachtigall, 1993). T-RPESP-OPTIMALITY is NP-hard for any fixed T ≥
3.

Proof. We adapt the proof of Nachtigall to our notions and notations. Fix some pe-
riod time T ≥ 3. We reduce T-PESP-FEASIBILITY to T-RPESP-OPTIMALITY. Let
(G, T, `, u) be a T-PESP-FEASIBILITY instance. Without loss of generality, assume that
u− ` < T, because if the instance is feasible, then there is a periodic tension x satis-
fying x < `+ T by (7.2). Add to each arc a ∈ A(G) from i to j a reverse copy a with
`a := [−ua]T. Set all weights w to 1. For this T-RPESP-OPTIMALITY instance, let π
be a periodic timetable with tension x as defined in (7.2). Then for any original arc a
holds `a ≤ xa < `a + T and xa ≡ −xa mod T. For the slacks ya and ya, we obtain

ya + ya = [xa − `a]T + [ua − xa]T.

Since 0 ≤ xa − `a ≤ ua − `a < T and −T < `a − xa ≤ ua − xa ≤ ua − `a < T,

ya + ya =

{
ua − `a if ua − xa ≥ 0,
ua − `a + T if ua − xa < 0.

In particular, for the weighted slack of the T-RPESP-OPTIMALITY instance holds

∑
a∈A(G)

(ya + ya) ≥ ∑
a∈A(G)

(ua − `a),

and equality holds if and only if xa ≤ ua for all a ∈ A(G). This means that the T-PESP-
FEASIBILITY instance is feasible if and only if the described T-RPESP-OPTIMALITY
instance has weighted periodic slack at most M := ∑a∈A(G)(ua − `a).

We turn now to simple algorithms for T-PESP-OPTIMALITY. Consider at first in-
stances where undirecting the event-activity network results in a tree (shortly, G is a
tree):

Lemma 7.2.7. If G is a tree on n vertices, then T-PESP-OPTIMALITY on (G, T, `, u, w) can
be solved in O(n) time. Morever, ` is an optimal periodic tension, and the minimum weighted
periodic slack is 0.

Proof. If undirecting G results in a tree on n vertices, then the transpose Bt of the inci-
dence matrix B of G is a (n− 1)× n matrix of full rank n− 1. In particular, Btπ = `
has a solution over Z, and reducing modulo T gives a feasible periodic timetable π∗

with periodic tension ` and hence weighted periodic slack 0.
Avoiding linear algebra, π∗ can as well be obtained by traversing the tree, starting

with π∗v = 0 at an initial vertex v and setting π∗j := [π∗i + `ij]T when traversing ij ∈
A(G), and π∗j := [π∗i − `ij]T if ji ∈ A(G) is traversed. A depth-first traversal takes
O(|V(G)|+ |A(G)|) = O(n) time.

80

On general networks, there are several ways to give naive exponential-time algo-
rithms for T-PESP-OPTIMALITY:

Lemma 7.2.8. On instances (G, T, `, u, w) with n events and m activities, T-PESP-OPTIMALITY
can be solved in

1. O∗(Tn−1), or

2. O∗(2n−1nn−2), or

3. O∗(3m) time,

where O∗(·) means O(·) ignoring polynomial factors.

Proof.

1. Enumerate all Tn integral vectors in [0, T)V(G), compute x by (7.2), and check
the bounds. This is an O(mTn) algorithm. If π is a periodic timetable, then
for any d ∈ R, π′ defined by π′i := [πi + d]T for all i ∈ V(G) is a periodic
timetable with the same periodic tension. In particular, only Tn−1 vectors have
to be enumerated.

2. By Nachtigall (1998), if G is weakly connected and the instance is feasible, there is
an optimal periodic tension x∗ and a spanning tree F of G such that x∗a ∈ {`a, ua}
for all a ∈ A(F). Enumerate all O(nn−2) spanning trees F of G. For each such
F, enumerate all 2n−1 vectors x ∈ ∏a∈A(F){`a, ua}. Interpreting x as a periodic
tension defines a periodic timetable π ∈ [0, T)V(G) which can be computed by an
O(n + m) depth-first traversal as in the proof of Lemma 7.2.7 (replacing ` by x).
Use (7.2) to compute the periodic tension xa of all O(m) remaining co-tree arcs
a /∈ A(F) and check if the bounds are satisfied. If G is not connected, T-PESP-
OPTIMALITY can be solved on each component individually.

3. Let B denote the incidence matrix of G. Then the modulo constraint Btπ ≡
x mod T is satisfied if and only if there is a vector p ∈ ZA(G) such that Btπ =
x− Tp. Since any entry of Btπ lies in the interval (−T, T), and any tension com-
puted by (7.2) satisfies x ∈ [0, 2T), it suffices to consider p ∈ {0, 1, 2}A(G) , cf.
C. Liebchen (2006, Lemma 9.2). The algorithm is now to solve the problem

Minimize wty

s.t. Btπ = x− Tp,
` ≤ x ≤ u

for each fixed p ∈ {0, 1, 2}A(G). This is a series of 3m linear programs.

Somewhat unsurprisingly, Lemma 7.2.8 implies that all three presented PESP vari-
ants are solvable in polynomial time when the number of events or the number of ac-
tivities is fixed. In the remainder of the paper, we investigate several graph parameters
and their effects on the parameterized complexity of PESP, starting with treewidth.

81

7.3. PESP on Networks of Treewidth Two

7.3.1. Subset Sum

Definition 7.3.1 (Garey and Johnson, 1979, SP13). The SUBSET SUM problem is the
following: Given r ∈ N, c ∈ Zr

≥0 and C ∈ Z≥0 with C ≤ ∑r
i=1 ci, is there a z ∈ {0, 1}r

such that ctz = C?

The SUBSET SUM problem is weakly NP-complete (Karp, 1972). We will at first
construct a polynomial-time reduction of SUBSET SUM to T-PESP-FEASIBILITY.

Definition 7.3.2. Let (r, c, C) be a SUBSET SUM instance as above. Define I(r, c, C) as
the instance (G, T, `, u) for T-PESP-FEASIBILITY as depicted in Figure 7.1 with T :=
∑r

i=1 ci + 1.

0 1 2 3 . . . r− 1 r

[0, c1]

[c1, T]

[0, c2]

[c2, T]

[0, c3]

[c3, T]

[0, cr]

[cr, T]

[C, C]

Figure 7.1.: Instance I(r, c, C): arcs a are labeled with [`a, ua], T := ∑r
i=1 ci + 1

Lemma 7.3.3. The SUBSET SUM instance (r, c, C) has a solution if and only if T-PESP-
FEASIBILITY has a solution on the instance I(r, c, C).

Proof. Let π be a periodic timetable for I(r, c, C). Then [πi − πi−1]T ∈ {0, ci} holds for
all i ∈ {1, . . . , r}. Set

zi :=

{
1 if [πi − πi−1]T = ci,
0 otherwise,

i = 1, . . . , r.

For the arc (0, r), we then obtain

C = [C]T = [πr − π0]T =

[
r

∑
i=1

(πi − πi−1)

]
T

=

[
r

∑
i=1

zici

]
T

=
r

∑
i=1

zici,

and found a positive answer to the SUBSET SUM problem on (r, c, C). Conversely, any
vector z ∈ {0, 1}r such that ctz = C yields a feasible periodic timetable π by setting

π0 := 0 and πi := πi−1 + zici, i = 1, . . . , r.

82

7.3.2. Treewidth

Definition 7.3.4 (e.g., Neil Robertson and P.D Seymour, 1984). Given a graph G, a
tree decomposition of G is a pair (T ,X) consisting of a tree T and a family of bags
X = (Xt)t∈V(T) with Xt ⊆ V(G) for each t ∈ V(T) such that

1.
⋃

t∈V(T) Xt = V(G),

2. for each a ∈ A(G), there is a bag Xt containing both endpoints of a,

3. for each v ∈ V(G), the subforest of T induced by {t ∈ V(T) | v ∈ Xt} is
connected.

The width of a tree decomposition is maxt∈(T) |Xt| − 1, and the treewidth of G is defined
as the minimum possible width of a tree decomposition, i.e.,

tw(G) := min
{

max
t∈V(T)

|Xt|
∣∣∣∣ (T ,X) is a tree decomposition of G

}
− 1.

This definition applies to both undirected and directed graphs, and as well to multi-
graphs. According to Definition 7.3.4. the treewidth of a graph with multiple edges
equals the treewidth of the graph where all multiple edges between two vertices are
replaced by a single edge. The simple connected graphs of treewidth 1 are precisely
the trees.

Lemma 7.3.5. For any SUBSET SUM instance (r, c, C) with r ≥ 2, the event-activity network
G of the instance I(r, c, C) has treewidth 2.

Proof. The path of length r depicted in Figure 7.2, where each node is labeled with its
bag, is a tree decomposition of G. Checking the properties of a tree decomposition is

0, 1, 2 0, 2, 3 0, 3, 4 . . . 0, r− 1, r

Figure 7.2.: An optimal tree decomposition of width 2 for the I(r, c, C) network

straightforward. The maximum bag size is 3, and hence tw(G) ≤ 2. Removing one of
the two arcs from i to i + 1, i = 0, . . . , r− 1, does not change the treewidth in the sense
of Definition 7.3.4. As r ≥ 2, this results in a simple graph containing a cycle, so that
tw(G) ≥ 2.

An alternative way to see that the network G of I(r, c, C) has treewidth at most 2
is to observe that G is series-parallel (see, e.g., Bodlaender and Antwerpen-de Fluiter,
2001, Lemma 3.4). Combining Lemma 7.3.3 and Lemma 7.3.5, we obtain:

Theorem 7.3.6. T-PESP-FEASIBILITY is NP-complete on networks of treewidth at most 2.

Since the transformation in the proof of Theorem 7.2.6 reduces the T-PESP-FEASIBILITY
problem to T-RPESP-OPTIMALITY by adding antiparallel arcs, which does not alter
the treewidth, we have moreover:

83

Theorem 7.3.7. T-RPESP-OPTIMALITY is NP-complete on networks of treewidth at most
2.

Remark 7.3.8. If simple graphs are desired, one can dispose of the parallel arcs in
I(r, c, C) by subdividing any arc with bounds [0, ci] into two arcs with bounds [0, ci]
and [0, 0] without affecting the feasibility of the PESP instance. Moreover, one checks
that this does not increase the treewidth of I(r, c, C).

Remark 7.3.9. In the proof of Lemma 7.3.3, the period time T is chosen very large. The
above NP-completeness theorems hence do not hold when T is fixed. We will give
a pseudo-polynomial algorithm for T-PESP-OPTIMALITY with bounded treewidth in
Section 7.4, showing that fixing both T and the treewidth results in a polynomial-time
algorithm.

Remark 7.3.10. We want to remark that there has already been a paper (Heuven van
Staereling, 2018) titled Tree Decomposition Methods for the Periodic Event Scheduling Prob-
lem. However, the title is misleading, as the algorithm there is about finding trees in
the network rather than considering tree decompositions in the usual sense.

7.3.3. Branchwidth

Definition 7.3.11 (Neil Robertson and P.D Seymour, 1991). Given a graph G, a branch
decomposition of G is a pair (B, ϕ), where B is a tree such that every non-leaf node has
degree 3, and ϕ is a bijection from the leaves of B to A(G). Deleting an edge e of B
disconnects B into two subtrees and hence partitions the leaves of B into two sets.
Applying ϕ, this yields a partition A = A1

e
.
∪ A2

e . This defines in turn a vertex separator
Se ⊆ V as the set of vertices that are incident both to an edge in A1

e and to an edge in
A2

e .
The width of a branch decomposition (B, ϕ) is defined as maxe∈E(B) |Se|. The branch-
width of G is then the minimum possible width of a branch decomposition, i.e.,

bw(G) := min
{

max
e∈E(B)

|Se|
∣∣∣∣ (B, ϕ) is a branch decomposition of G

}
.

Treewidth and branchwidth are related as follows:

Theorem 7.3.12 (Neil Robertson and P.D Seymour, 1991, 5.1). If bw(G) ≥ 2, then

bw(G) ≤ tw(G) + 1 ≤
⌊

3
2

bw(G)

⌋
.

It follows immediately that the problems T-PESP-FEASIBILITY and T-RPESP-OPTIMALITY
are NP-complete on networks with branchwidth 3. We prove below that the NP-
completeness is already given for branchwidth 2.

Lemma 7.3.13. For any SUBSET SUM instance (r, c, C), the event-activity network G of the
instance I(r, c, C) has branchwidth 2.

84

(0, 1)(0, 1)′(1, 2)(1, 2)′(2, 3)(2, 3)′ (n− 1, n)(n− 1, n)′

(0, n). . .

2 2 2 2 2 2 2 2

2 22 2 2 2

Figure 7.3.: An optimal branch decomposition of width 2 for the I(r, c, C) network

Proof. Figure 7.3 shows a branch decomposition of G, where the leaves are labeled
with the corresponding arc, and the edges are labeled with the cardinality of the cor-
responding vertex separator. This is clearly a branch decomposition. Checking the
cardinalities of the vertex separators is again straightforward, and hence bw(G) ≤ 2.
The network G cannot have branchwidth 1, as in any branch decomposition, the edge
incident to the leaf representing (0, r) always induces the vertex separator {0, r} of size
2.

Theorem 7.3.14. T-PESP-FEASIBILITY and T-RPESP-OPTIMALITY are NP-complete on
networks with branchwidth at most 2.

Proof. For T-PESP-FEASIBILITY, this follows from Lemma 7.3.3 and Lemma 7.3.13.
Introducing anti-parallel arcs in the network of I(r, c, C) does not increase the branch-
width of 2: In the branch decomposition of the proof of Lemma 7.3.13, replace a leaf
with a vertex of degree 3 adjacent to two new leaves corresponding to the two anti-
parallel arcs. The new edges have vertex separators of size 2. Consequently, the trans-
formation in the proof of Theorem 7.2.6 does not alter the branchwidth, and T-RPESP-
OPTIMALITY is NP-complete on networks with branchwidth at most 2.

Another approach to prove Lemma 7.3.13 and Theorem 7.3.14 is to exploit that a
graph of treewidth at most 2 has branchwidth at most 2 (combine, e.g., Bodlaender
and Antwerpen-de Fluiter, 2001, Lemma 3.5 with Neil Robertson and P.D Seymour,
1991, 4.2).

7.3.4. Carvingwidth

Carvingwidth is defined analogously to branchwidth, by labeling the leaves of an un-
rooted binary tree with the vertices of the original graph instead of the edges.

Definition 7.3.15 (P. D. Seymour and Thomas, 1994). Given a graph G, a carving de-
composition of G is a pair (C, ψ), where C is a tree such that every non-leaf node has
degree 3, and ψ is a bijection from the leaves of C to V(G). Removing an edge e of C
induces a partition of the leaves of C, and hence via ψ also a partition V(G) = V1

e
.
∪V2

e .
Let δ(V1

e) (= δ(V2
e)) denote the set of cut edges.

The maximum cardinality of δ(V1
e) taken over all e ∈ E(C) is the width of (C, ψ). The

carvingwidth of G is defined as

cw(G) := min
{

max
e∈E(C)

|δ(V1
e)|
∣∣∣∣ (C, ψ) is a carving decomposition of G

}
.

85

The definition of carvingwidth applies to multigraphs as well, but in contrast to
branch- and treewidth, it is sensitive to multiple edges: The carvingwidth is at least
the maximum vertex degree ∆(G), as cw(G) ≥ deg(v) = |δ(v)| for each v ∈ V(G).
Carvingwidth is related to branchwidth as follows:

Theorem 7.3.16 (Nestoridis and Thilikos, 2014; Eppstein, 2018). Let G be a graph with
maximum vertex degree ∆(G). Then

max
(

∆(G),
⌈

1
2

bw(G)

⌉)
≤ cw(G) ≤ ∆(G) · bw(G).

Theorem 7.3.17. T-PESP-FEASIBILITY is NP-complete on networks of carvingwidth at
most 3, and T-RPESP-OPTIMALITY is NP-complete on networks of carvingwidth at most
6.

Proof. Let r ≥ 2 and consider again an instance of the form I(r, c, C) with event-activity
network G. Then ∆(G) = 4, so that cw(G) ≥ 4. For all i ∈ {1, . . . , r− 1}, split vertex i
into two new vertices i+ and i−, connected by a single directed arc (i+, i−) with bounds
`i+,i− = ui+,i− = 0. The splitting is done in such a way that the arcs entering i are now
entering i+, and the arcs leaving i are leaving i−. Any periodic timetable has the same
value at i+ and i−, so that the proof of Lemma 7.3.3 carries over. However, the modi-
fied graph has maximum degree 3. The carving decomposition in Figure 7.4, where the
edges labeled with the number of cut edges, has width 3. Hence T-PESP-FEASIBILITY

0

1+ 1− 2+ 2− (r− 1)+ (r− 1)−

r. . .3 2 3 2 2 3
3 3 3 3 3 3

Figure 7.4.: An optimal carving decomposition of width 3 of the modified I(r, c, C)
network

is NP-complete on networks of carvingwidth 3. As a consequence, keeping in mind
the arc duplication occurring in the proof of Theorem 7.2.6, T-RPESP-OPTIMALITY is
NP-complete for carvingwidth 6.

Remark 7.3.18. T-PESP-OPTIMALITY is trivial to solve on graphs G with cw(G) = 1,
as then ∆(G) ≤ 1 by Theorem 7.3.16. If cw(G) = 2, then ∆(G) ≤ 2, so that any weakly
connected component of G, seen as an undirected graph, is either a path or a cycle.
T-PESP-OPTIMALITY is solvable in linear time on paths (Lemma 7.2.7). We will see
later in Theorem 7.5.6 that T-PESP-OPTIMALITY admits a polynomial-time algorithm
for bounded cyclomatic number, and in particular on a single cycle.

86

7.4. Dynamic Programs

The SUBSET SUM problem is weakly NP-complete and can be solved by pseudo- poly-
nomial-time algorithms. In the following, we present two dynamic programs for T-
PESP-OPTIMALITY running in pseudo- polynomial time for event-activity networks
of bounded treewidth and branchwidth, respectively. Since T-PESP-OPTIMALITY
comprises both T-PESP-FEASIBILITY and T-RPESP-OPTIMALITY, this implicitly gives
pseudo-polynomial time algorithms for these problems as well.

7.4.1. PESP and Vertex Separators

The key insight for our dynamic programming approach is the following decompo-
sition property: Let I = (G, T, `, u, w) be a T-PESP-OPTIMALITY instance. For any
partition A(G) = A1 .

∪ A2, we can partition I into two subinstances I1 resp. I2 re-
stricted to the activities in A1 resp. A2. If y is a feasible periodic slack on I, then the
restrictions y1 resp. y2 to I1 resp. I2 yield feasible periodic slacks with the property

∑
a∈A(G)

waya = ∑
a∈A1

way1
a + ∑

a∈A2

way2
a. (7.3)

On the level of timetables, we obtain from a timetable π on I two timetables π1 resp.
π2 on I1 resp. I2 such that π, π1 and π2 all coincide when restricted to the events of
the vertex separator S associated to the partition of A(G) as in Definition 7.3.11.

Conversely, we can glue two periodic timetables π1 and π2 together to a timetable π
on I if the restrictions to a vertex separator S satisfy π1|S = π2|S. For the correspond-
ing periodic slacks then holds Equation (7.3).

Definition 7.4.1. Let I = (G, T, `, u, w) be a T-PESP-OPTIMALITY instance, and let
S ⊆ V(G). For a vector ρ ∈ [0, T)S, define OPT(I, S, ρ) as the minimum weighted
slack of a periodic timetable π on I when additionally π|S = ρ is required.

For minimum weighted slacks, the above discussion shows the following:

Lemma 7.4.2. Let I = (G, T, `, u, w) be a feasible T-PESP-OPTIMALITY instance. Let
A(G) = A1 .

∪ A2 be a partition with vertex separator S giving subinstances I1 and I2 of I.
Then

OPT(I) = min{OPT(I1, S, π|S)+OPT(I2, S, π|S) | π is a feasible periodic timetable on I}.

More generally, if additionally the timetable on W ⊆ V(G) is fixed to ρ ∈ [0, T)W , then

OPT(I, W, ρ) = min{OPT(I1, S ∪W1, π|S∪W1) + OPT(I2, S ∪W2, π|S∪W2) |
π is a feasible periodic timetable on I with π|W = ρ},

where W i = W ∩Vi denotes the intersection of W with the set of events Vi of Ii, i = 1, 2.

87

7.4.2. A Branch Decomposition Approach

Since branch decompositions naturally encode vertex separators, we describe at first
a branch-decomposition-based dynamic program for T-PESP-OPTIMALITY. Let I =
(G, T, `, u, w) be a T-PESP-OPTIMALITY instance. We assume that G is 2-edge-con-
nected when seen as undirected graph. Let (B, ϕ) be a branch decomposition of G
with node set V(B) and edge set E(B). Subdivide an arbitrary edge of E(B) and
call the new node τ the root. Recall from Definition 7.3.11 that every edge e ∈ E(B)
corresponds to a partition A = A1

e
.
∪ A2

e with vertex separator Se. We assume that A1
e is

the subset of activities coming from the component of B \ {e} not containing the root
τ.

Algorithm 7.4.3. For each edge e ∈ E(B), we compute an |Se|-dimensional table Fe
having an entry for each π ∈ {0, . . . , T − 1}Se . The table Fe is filled by a dynamic
program starting from the edges e ∈ E(B) incident to leaves and with decreasing
distance to the root:

1. If e ∈ E(B) is incident to a leaf corresponding via ϕ to an activity ij ∈ A(G), then
set

Fe(π) :=

{
wij[πj − πi − `ij]T if [πj − πi − `ij]T ≤ uij − `ij,
∞ otherwise.

2. If e is incident to two edges e1, e2 with larger distance from the root, then set

Fe(π) := min{Fe1(π
′|Se1

) + Fe2(π
′|Se2

) | π′ ∈ {0, . . . , T − 1}Se1∪Se2 , π′|Se = π}.

3. If the tables of the two edges e1, e2 incident to τ have been computed, return

min{Fe1(π) + Fe2(π) | π ∈ {0, . . . , T − 1}Se1}.

Lemma 7.4.4. Let e ∈ E(B), π ∈ {0, . . . , T − 1}Se . Denote by Ie the subinstance of I
containing precisely the activities in A1

e .

1. If Fe(π) < ∞, then Fe(π) = OPT(Ie, Se, π).

2. If Fe(π) = ∞, then Ie is infeasible.

Proof. Recall from Section 7.2 that it suffices to consider timetables with values in the
discrete set {0, . . . , T − 1}, as ` and u are integer.

If e is incident to a leaf associated to an activity ij ∈ A(G), then A1
e = {ij} and

Se = {i, j}, as G is 2-edge-connected. Hence OPT(Ie, Se, π) is the minimum weighted
slack of the activity ij when the timetable at i resp. j is fixed to πi resp. πj. Therefore
we set Fe(π) to wij[πj − πi − `ij]T if the slack [πj − πi − `ij]T is feasible and otherwise
to ∞.

Otherwise, let e be adjacent to e1, e2 ∈ E, with e1, e2 having larger distance from the
root than e. Then A1

e = A1
e1

.
∪ A1

e2
and hence Se ⊆ Se1 ∪ Se2 . Moreover, (Se1 ∪ Se2) \ Se

is the vertex separator of the partition of A1
e = A1

e1

.
∪ A1

e2
. Applying Lemma 7.4.2 for

W = Se and S = (Se1 ∪ Se2) \ Se yields the formula in Algorithm 7.4.3.

88

Lemma 7.4.5. If k = maxe∈E(B) |Se| and m = |A(G)|, then Algorithm 7.4.3 computes
OPT(I) or decides that I is infeasible in O(mTb3k/2c) time.

Proof. We first consider correctness. At the root τ with incident edges e1, e2, Algo-
rithm 7.4.3 computes the tables Fe1 , Fe2 such that Fei(π) = OPT(Iei , Sei , π) for all π and
i = 1, 2 by Lemma 7.4.4. Observe that A1

e1
= A2

e2
, A2

e1
= A1

e2
, and Se1 = Se2 , so that by

the first equation in Lemma 7.4.2, OPT(I) = min{OPT(Ie1 , Se1 , π) + OPT(Ie2 , Se2 , π) |
π ∈ {0, . . . , T − 1}V feasible timetable}. This is precisely reflected in the third step of
Algorithm 7.4.3, treating infeasible subinstances with infinite objective value.

Concerning running time, Step 1 can be done in O(T2) time and is called m times.
Step 3 takes O(Tk) time since |Se1 | ≤ k. As any node in the rooted branch decom-
position has either 0 or 2 children and there are m leaves, there are m − 1 edges for
which Step 2 is called. Each of the |Se| table entries requires to take a minimum over
|(Se1 ∪ Se2) \ Se| previously computed table entries.

We claim that
2|Se1 ∪ Se2 | ≤ |Se1 |+ |Se2 |+ |Se|.

If i ∈ Se1 \ Se2 , then i is adjacent to an activity a ∈ A1
e1

and a′ /∈ A1
e1

. Since A1
e1

and
A1

e2
are disjoint, a /∈ A1

e2
. As i /∈ Se2 , then also a′ /∈ A1

e2
, and consequently a′ /∈ A1

e =

A1
e1
∪ A1

e2
. It follows that i ∈ Se, and any such i appears hence twice in the right-hand

side of the above inequality. By symmetry, the same holds for all i ∈ Se2 \ Se1 . Clearly,
any i ∈ Se1 ∩ Se2 is counted both in |Se1 | and |Se2 |. This proves the claim. The relation
between the separators is also depicted in Figure 7.5.

A1
e1

A1
e2

Se1
Se2Se

Figure 7.5.: Relation between Se, Se1 and Se2

Since the size of any of the three vertex separators is bounded by k, we obtain

|Se|+ |(Se1 ∪ Se2) \ Se| = |Se1 ∪ Se2 | ≤
⌊

3k
2

⌋
.

Thus, Step 2 accounts in total for a running time of O(mTb3k/2c), and this dominates
the other steps, as k ≥ 2 since |Se| = 2 for every edge e incident to a leaf of B.

Having presented the core dynamic program, we now turn to the surrounding prob-
lems:

Finding an optimal branch decomposition. If bw(G) ≤ k, then there is a linear-time
algorithm computing a branch decomposition of width ≤ k (Bodlaender and Thilikos,
1997).

89

Computing an optimal timetable. By additional bookkeeping, we can not only com-
pute the minimum weighted slack, but also a periodic timetable realizing this slack.

2-edge-connectedness. It is clear from the description of T-PESP-OPTIMALITY that
the problem can be solved on each weakly connected component of G individually.
Moreover, if one of these components is not 2-edge-connected, then the optimal pe-
riodic slack of any bridge will be zero (Borndörfer et al., 2019, §3.2). Hence one can
safely assume w.l.o.g. that G is 2-edge-connected. Note that this assumption implies
bw(G) ≥ 2.

Fixing. If π is a feasible periodic timetable and d ∈ R, then the timetable π′ defined
by π′i := [πi + d]T for all i ∈ V(G) is feasible as well and produces the same periodic
slack. In particular, in Algorithm 7.4.3, for all e ∈ E, one can choose an event i ∈ Se
and then fix πi = 0. Thus Algorithm 7.4.3 can be adapted to run in O(mTb3k/2c−1)
time.

As a consequence, in conjunction with Lemma 7.2.7 and Theorem 7.3.14, we obtain:

Theorem 7.4.6. For k ∈N, there is an O(mTb3k/2c−1) algorithm solving T-PESP-OPTIMALITY
on event-activity networks G with m activities and bw(G) ≤ k. In particular, if k ≥ 2 is
fixed, then T-PESP-OPTIMALITY, T-PESP-FEASIBILITY and T-RPESP-OPTIMALITY are
all weakly NP-complete.

7.4.3. A Tree Decomposition Version

In this subsection, we develop a tree decomposition analogue of Algorithm 7.4.3. Let
I = (G, T, `, u, w) be a T-PESP-OPTIMALITY instance. Let (T ,X) be a tree decomposi-
tion. We assume that (T ,X) is rooted, i.e., we pick an arbitrary leaf node τ ∈ V(T) and
turn T into an arborescence where all edges point away from τ. Further suppose that
the tree decomposition is nice (Kloks, 1994, Definition 13.1.15), i.e., each node t ∈ V(T)
with bag Xt fits into precisely one of the following categories:

• Root: t = τ,

• Leaf : t 6= τ, t has no children, and |Xt| = 1,

• Introduce: t has exactly one child u and one parent, Xu ⊆ Xt, and |Xt| = |Xu|+ 1,

• Forget: t has exactly one child u and one parent, Xt ⊆ Xu, and |Xt| = |Xu| − 1,

• Join: t has exactly two children u1, u2 and one parent, and Xt = Xu1 = Xu2 .

Algorithm 7.4.7. For each node t ∈ V(T), we compute a |Xt|-dimensional table Dt
having an entry for each π ∈ {0, . . . , T − 1}Xt . The table Dt is filled by the following
dynamic program from the leaves to the root, depending on the role of the node t in
the nice tree decomposition:

90

• If t 6= τ is a leaf, then Xt = {i} for a single event i ∈ V. For all π ∈ {0, . . . , T− 1},
set Dt(π) := 0.

• If t is an introduce vertex with child u, then Xt = Xu ∪ {i} for some event i. Put

Dt(π) := Du(π|Xu) + ∑
ij∈A(G): j∈Xu

wijyij + ∑
ji∈A(G): j∈Xu

wjiyji,

where, for ij ∈ A(G),

yij :=

{
[πj − πi − `ij]T if [πj − πi − `ij]T ≤ uij − `ij,
∞ otherwise.

• If t is a forget vertex with child u, then Xt = Xu \ {i} for some event i. Set

Dt(π) := min{Du(π
′) | π′ ∈ {0, . . . , T − 1}Xu , π′|Xt = π}.

• If t is a join vertex with children u1 and u2, then Xt = Xu1 = Xu2 . If Du1(π) < ∞
and Du2(π) < ∞, define

Dt(π) := Du1(π) + Du2(π)− ∑
ij∈A: i∈Xt,j∈Xt

wij[πj − πi − `ij]T,

otherwise set Dt(π) := ∞.

• If t = τ is the root, then compute Dτ treating τ as a forget node. Return

min{Dτ(π) | π ∈ {0, . . . , T − 1}Xτ}.

For a node t ∈ V(T), define Gt as the subnetwork of G induced by the events in the
bag of Xt and the bags of all descendants of t in T . Denote by It the corresponding
T-PESP-OPTIMALITY subinstance of I.

Lemma 7.4.8. Let t ∈ V(T) be a node of the tree decomposition and π ∈ {0, . . . , T − 1}Xt .

1. If St(π) < ∞, then St(π) = OPT(It, Xt, π).

2. If St(π) = ∞, then there is no feasible peridoic timetable on It coinciding with π on Xt.

Proof. Let Gt = (Vt, At). If t 6= τ is a leaf, then At = ∅, and both statements are trivial.
Introducing an event i at t with child u means that

Vt = Vu
.
∪ {i}, At = Au

.
∪ ({ij ∈ A : j ∈ Xu}

.
∪ {ji ∈ A : j ∈ Xu}).

The latter is a partition of the activities of Gt whose vertex separator is contained in
Xu. By Lemma 7.4.2, Dt(π) must hence equal Du(π|Xu) plus the minimum weighted
slack of the subinstance associated to At \ Au fixing the timetable at Xt, and the latter
is precisely given by the formula in Algorithm 7.4.7.

91

When forgetting an event i at t with child u, then Gt = Gu. However, the timetable
has to be fixed at Xt which containes one vertex less than Xu, so that we minimize over
all table entries where the timetable restricted to Xu is the same.

If t is a join vertex with u1 and u2 as children, then Gt = Gu1 ∪ Gu2 . We apply
Lemma 7.4.2 to At = Au1

.
∪ (Au2 \ Au1) and to Au2 = (Au2 \ Au1)

.
∪ (Au1 ∩ Au2). Note

that by the connectedness property of the tree decomposition, any activity Au1 ∩ Au2

has both endpoints in Xt = Xu1 = Xu2 , so that Xt contains the vertex separators of
both partitions. Now the minimum weighted slack on Gt is the sum of the minimum
weighted slacks on Gu1 and Gu2 , subtracting the minimum weighted slack of the ac-
tivities that have been counted twice, i.e., Au1 ∩ Au2 . Hence the minimum weighted
slack on Gt can be computed as described in Algorithm 7.4.7. If fixing the timetable
π on Xt yields an infeasible timetable, then either Du1(π) or Du2(π) must have been
infinite, and vice versa.

Finally, if t = τ is the root, then τ has degree one and hence has a unique child u, so
that we can treat it as a forget node.

Lemma 7.4.9. If I is feasible, then Algorithm 7.4.7 returns OPT(I), and otherwise ∞. More-
over, Algorithm 7.4.7 runs in O(|V(T)|Tk+1) time, where k := maxt∈V(T) |Xt| − 1.

Proof. By Lemma 7.4.8, at the root τ, the table entry Dτ(π) is the minimum weighted
slack on the subnetwork Gτ = G fixing the timetable at Xτ to π (or ∞). Minimiz-
ing over all entries in Dτ hence gives the minimum weighted slack of the T-PESP-
OPTIMALITY instance (or detects infeasibility). The running time estimate is straight-
forward, as we need to fill each of the |V(T)| tables with at most Tk+1 entries and only
employ summation and minimization.

Theorem 7.4.10. For k ∈ N, there is an O(nTk) algorithm solving T-PESP-OPTIMALITY
on event-activity networks G with n events and tw(G) ≤ k.

Proof. By Bodlaender (1996), if tw(G) ≤ k, then a tree decomposition with O(n) nodes
realizing width tw(G) can be found in O(f (k) · n) time. This can be transformed into a
nice tree decomposition on O(n) nodes within O(n) time (Kloks, 1994, Lemma 13.1.3).
Applying Lemma 7.4.9 provides an O(nTk+1) algorithm. Using the same fixing strat-
egy as for Theorem 7.4.6, we obtain an O(nTk) algorithm.

Remark 7.4.11. The branch-decomposition based algorithm of Theorem 7.4.6 has a
running time of O(mTb3 bw(G)/2c−1) time, and the tree-decomposition based one runs
in O(nTtw(G)), see Theorem 7.4.10. By Theorem 7.3.12, if G is 2-edge-connected, then
nTtw(G) ≤ mTb3 bw(G)/2c−1, so that the tree-decomposition-based algorithm is expected
to be asymptotically superior.

Remark 7.4.12. In terms of memory, Algorithm 7.4.3 with the fixing strategy needs
to store at most Tbw(G)−1 table entries per edge, whereas Algorithm 7.4.7 (with fix-
ing) stores at most Ttw(G)−1 entries per node. In both cases, at most 3 tables need to
be stored at the same time, as any node in one of the decompositions has at most 2
children. Since bw(G)− 1 ≤ tw(G) if bw(G) ≥ 2, the branch-decomposition-based
method potentially requires less space.

92

Remark 7.4.13. We omit a carving-decomposition-based algorithm. Bounding the
carvingwidth by k means that the branchwidth is bounded by 2k according to The-
orem 7.3.16 and we can invoke Algorithm 7.4.3.

7.5. Fixed-parameter tractable algorithms

We have already seen in Lemma 7.2.8 that fixing the number of events or the number
of activities leads to fixed-parameter tractable algorithms for T-PESP-OPTIMALITY. In
this section, we discuss fixed-parameter tractability by cyclomatic number, diameter,
and vertex cover number. The cyclomatic number is a common measure for the diffi-
culty of PESP instances, as it counts the number of integral variables in a cycle-based
mixed integer programming formulation (Borndörfer et al., 2019). The size of a mini-
mum vertex cover has led to fixed-parameter algorithms for several coloring problems
where bounding the treewidth does still result in NP-hard problems (Fiala et al., 2011),
as it is the case for the PESP family.

7.5.1. Cyclomatic Number

Definition 7.5.1. Let G be a graph on n vertices, m edges and c weakly connected
components. The cyclomatic number of G is defined as µ(G) := m− n + c.

Alternatively, the cyclomatic number is the dimension of the cycle space of G.

Lemma 7.5.2. Let G be a graph. Then tw(G) ≤ µ(G) + 1.

Proof. We give a proof by induction on µ(G). If µ(G) = 0, then G is a forest and
therefore tw(G) = 1.

Now let G be a graph with µ(G) > 0. Then G contains a cycle and hence an edge
e such that G′ := G \ {e} has the same number of connected components as G, and
µ(G′) = µ(G) − 1. By induction hypothesis, tw(G′) ≤ µ(G′) + 1 = µ(G), so that
we find a tree decomposition (T ,X) of G′ with maximum bag size at most µ(G) +
1. If there is a bag containing both endpoints of e, then (T ,X) is also a valid tree
decomposition for G, and so tw(G) ≤ µ(G). Otherwise let i be an endpoint of e and
add i to each bag of (T ,X). This is a tree decomposition for G of width µ(G) + 1, so
that tw(G) ≤ µ(G) + 1.

While it is true that treewidth and branchwidth can be bounded in terms of each
other (see Theorem 7.3.12), this does not hold for treewidth and cyclomatic number:

Lemma 7.5.3. For k ≥ 2, there is a class Ck of simple connected graphs such that tw(G) ≤ k
holds for all G ∈ Ck, but for any N ∈N, there is a graph G ∈ C with µ(G) ≥ N.

Proof. Let C be the class of graphs G built from a finite disjoint union of cliques of size
k with vertex sets V1, . . . , Vr together with one additional vertex v joined to each vertex
from each clique. Let T be a path on the vertices {1, . . . , r}, and set Xi := Vi ∪ {v},

93

i = 1, . . . , r. Then (T ,X) is a tree decomposition of G and, as |Xi| = k + 1, we have
tw(G) ≤ k. The cyclomatic number of G is given by

µ(G) =

(
r · k(k− 1)

2
+ rk

)
− (rk + 1) + 1 = r · k(k− 1)

2
,

and for k ≥ 2, this goes to infinity as r → ∞.

Theorem 7.5.4. On networks where no vertex has degree 2, T-PESP-OPTIMALITY is fixed-
parameter tractable when parameterized by the cyclomatic number.

Proof. Let (G, T, `, u, w) be a T-PESP-OPTIMALITY instance. We can safely remove
all i ∈ V(G) with deg(i) = 1, as in any optimal solution, the incident activity must
have periodic slack 0. Hence we can assume that G has minimum degree 3. By the
Handshaking Lemma,

2m = ∑
i∈V(G)

deg(i) ≥ 3n,

and hence
µ = m− n + c ≥ n

2
+ 1,

so that n ≤ 2µ− 2. This means that fixing µ provides a fixed bound on the number n
of events, and we conclude by Lemma 7.2.8.

Corollary 7.5.5. T-PESP-FEASIBILITY is fixed-parameter tractable when parameterized by
the cyclomatic number.

Proof. Let (G, T, `, u) be a T-PESP-FEASIBILITY instance. Remove all events of degree
1 from G, as this does neither affect feasibility nor alter the cyclomatic number. Now
all degree 2 vertices of G are arranged on (undirected) paths between two vertices
of degree ≥ 3. Consider such a path from s to t with deg(s), deg(t) ≥ 3, forward
activities a1, . . . , ar and backward activities b1, . . . , bs. Delete all intermediate vertices
between s and t and insert a single activity a from s to t with

`a :=
r

∑
i=1

`ai −
s

∑
j=1

ubj and ua :=
r

∑
i=1

uai −
s

∑
j=1

`bj .

Clearly, if x is a feasible tension with `ai ≤ x ≤ uai and `bj ≤ xbj ≤ ubj for all i and j,
then also `a ≤ xa ≤ ua with xa := ∑r

i=1 xai − ∑s
j=1 xbj . Conversely, any xa with `a ≤

xa ≤ ua can be split into feasible tensions on all ai and bj. Thus, this transformation
preserves feasibility. Moreover, contracting vertices of degree 2 does not change the
cyclomatic number, so that we can assume that G has minimum degree 3. Invoke
Theorem 7.5.4.

Theorem 7.5.6. For fixed cyclomatic number µ, T-PESP-OPTIMALITY is polynomial-time
solvable.

94

Proof. Let F be a spanning forest of G and let γ1, . . . , γµ be its fundamental cycles, seen
as incidence vectors {−1, 0, 1}A(G). Then (e.g., Nachtigall, 1998) x ∈ RA(G) is a feasible
periodic tension if and only if

` ≤ x ≤ u and ∀i ∈ {1, . . . , µ} : γt
i x ≡ 0 mod T.

Decomposing γi = γi,+ − γi,− into positive resp. negative part γi,+, γi,− ∈ {0, 1}A(G),
the modulo constraints are equivalent to

∀ ∈ {1, . . . , µ} : γt
i x = Tzi,

⌈
γt

i,+`− γt
i,−u

T

⌉
≤ zi ≤

⌊
γt

i,+u− γt
i,−`

T

⌋
, zi ∈ Z.

These are the so-called cycle inequalities (M. A. Odijk, 1994). In particular, for each i,
one has to check at most⌊

γt
i,+u− γt

i,−`

T

⌋
−
⌈

γt
i,+`− γt

i,−u
T

⌉
+ 1 ≤ (γi,+ + γi,−)

t(u− `)

T
+ 1

values for zi. Since, as in the proof of Theorem 7.2.6, we can assume w.l.o.g. that
u− ` < T, we have the estimate

zi ≤ |{a ∈ A(G) : γi,a 6= 0}|+ 1 ≤ n + 1,

as the γi are simple cycles and hence contain at most n vertices.
The description of the polynomial-time algorithm is now: Enumerate all O((n+ 1)µ)

integral vectors (z1, . . . , zµ) satisfying the cycle inequalities and solve the problem

Minimize wtx subject to ` ≤ x ≤ u and ∀ ∈ {1, . . . , µ} : γt
i x = Tzi.

This is a minimum cost network tension problem and can be solved in polynomial time
by network flow approaches (Hadjiat and Maurras, 1997; Nachtigall and Opitz, 2008).
Alternatively, the above minimization problem can be solved by linear programming.

It remains open whether T-PESP-OPTIMALITY can be solved with a fixed-parameter
algorithm w.r.t. the cyclomatic number. The main problem is that the cyclomatic num-
ber does not bound the number of vertices. However, if, e.g., one additionally fixes the
diameter of a graph, i.e., the maximum length of an undirected shortest path between
two vertices, then also T-PESP-OPTIMALITY becomes fixed-parameter tractable:

Corollary 7.5.7. T-PESP-OPTIMALITY is fixed-parameter tractable when parameterized by
cyclomatic number and diameter.

Proof. We adapt the proof of Theorem 7.5.6. In our final estimate of zi, the number of
activities contained in γi can be bounded from above by 2d if d denotes the diameter
of the graph.

95

We want to remark that fixing both cyclomatic number and diameter does not bound
the number of vertices:

Lemma 7.5.8. For any k ∈N, there is an infinite class of simple connected graphs of diameter
at most 2 and cyclomatic number at most k.

Proof. For r ≥ k, let G be a star graph on r leaves. Connect k distinct pairs of leaves by
an edge. Then µ(G) = (k + r)− (r + 1) + 1 = k and G has diameter 2.

7.5.2. Vertex Cover Number

Definition 7.5.9. For a graph G, its vertex cover number vc(G) is defined as the mini-
mum cardinality of a vertex cover of G.

Lemma 7.5.10 (Fiala et al., 2011, §2). Let G be a graph. Then tw(G) ≤ (G) + 1.

The vertex cover number does neither limit the number of vertices (consider star
graphs) nor the cyclomatic number (complete bipartite graphs K2,q), but it does bound
the diameter: On a simple path of length d, at least d/2 vertices have to be part of a
vertex cover. It follows that fixing both cyclomatic number and vertex cover number
gives a fixed-parameter algorithm for T-PESP-OPTIMALITY by Corollary 7.5.7. We
show in the following that T-PESP-FEASIBILITY is W[1]-hard when parameterized by
the vertex cover number only, so that the existence of a fixed-parameter algorithm is
unlikely. It remains unclear if T-PESP-OPTIMALITY admits a polynomial-time algo-
rithm for fixed vertex cover number.

Theorem 7.5.11. T-PESP-FEASIBILITY is W[1]-hard when parameterized by the vertex
cover number.

Proof. We provide a fixed-parameter reduction of the LIST COLORING problem, which
is known to be W[1]-hard (Fiala et al., 2011, Theorem 1). An instance consists of a
graph H together with a finite list L(v) ⊆ Z≥0 for each v ∈ V(H), and the task is to
find a vertex coloring of H such that each vertex v is colored with a color in L(v).

Given (H, L), we construct a T-PESP-FEASIBILITY instance (G, T, `, u) as follows:
Define T := maxv∈V(H) L(v) + 1. Let G be any orientation of H. For each edge of
G, the corresponding activity a in A(G) obtains the bounds `a := 1 and ua := T − 1.
Further add a new vertex v0 to G. Let v ∈ V(H) with L(v) = {c1, . . . , cr}, c1 < · · · < cr.
Add r parallel activities a1, . . . , ar from v0 to v, with bounds

`ai := ci, uai := ci−1 + T, i = 1, . . . , r,

where we set c0 := cr − T. This way, we model the disjunctive constraints of choosing
a color in L(v) as a PESP instance (Christian Liebchen and Möhring, 2007, §3.3).

We claim that (H, L) has a feasible list coloring if and only if (G, T, `, u) admits a
feasible periodic timetable. Thus, let π ∈ [0, T)V(H) be a list coloring for (H, L). If
ij ∈ A(H), then πj 6= πj, so that [πj − πi − 1]T ≤ T − 2 is a feasible periodic slack.
Extend π to a timetable on G by setting πv0 := 0. Let v ∈ V(H), and assume that v is

96

colored with the j-th color from its list, i.e., πv = cj ∈ L(v). For i ∈ {1, . . . , r}, for the
i-th activity ai from v0 to v, the periodic tension would be

[πv − πv0 − `ai]T + `ai = [cj − ci]T + ci =

{
cj if i ≤ j,
cj + T if i > j.

In the first case cj ≤ T ≤ ci−1 + T, and in the second ci > cj implies cj + T ≤ ci−1 + T.
We conclude that π is a feasible periodic timetable.

Conversely, consider a feasible periodic timetable π ∈ [0, T)V(G). By a shift replac-
ing π by [π− πv0]T, we can assume that πv0 = 0. By restriction, using that πj 6= πi for
all ij ∈ A(H), π yields a coloring of H. It remains to check that this is a feasible list
coloring. The periodic tension on an activity ai from v0 to v must satisfy

[πv − πv0 − `ai]T + `ai = [πv − ci]T + ci ≤ ci−1 + T for all i ∈ {1, . . . , r}.

Suppose that there is an index j such that cj ≤ πv < cj+1. Then the above inequality
for i = j + 1 means

πv + T = [πv − cj+1]T + cj+1 ≤ cj + T,

hence πv = cj. If πv ≥ cr, then πv ≤ c0 + T = cr. Finally if πv < c1, then πv ≤
cr − T < 0, contradicting πv ≥ 0. This shows that πv ∈ {c1, . . . , cr}, so that π is indeed
a feasible list coloring.

Since all arcs in G not present in H are connected to v0, we obtain (G) ≤ (H) + 1.
In particular, any fixed-parameter algorithm for T-PESP-FEASIBILITY yields a fixed-
parameter algorithm for LIST COLORING.

7.6. Structure of Realistic Event-Activity Networks

In this section, we discuss the size of the so far discussed graph parameters on realistic
periodic timetabling instances. We consider networks with a special structure based
on line networks. This structure is the direct outcome of a typical modeling process
(Nachtigall, 1998; Christian Liebchen and Möhring, 2007; Schöbel, 2017; Pätzold et
al., 2017). For example, the railway networks in the benchmarking library PESPlib
(Goerigk, 2012) are found as subgraphs of networks with this structure. For this type
of networks, we give lower and upper bounds on the branchwidth in terms of the
underlying line network. We use this theoretical result to compute bounds on the
branchwidth of the smallest PESPlib instance R1L1.

7.6.1. Line-Based Event-Activity Networks

Public transportation systems of cities, but also railway services, are typically orga-
nized in lines.

Definition 7.6.1. A line network (N,L) is a directed multigraph N, together with a set
L of directed walks on G such that the arc set A(N) is the disjoint union of A(`) over
all lines ` ∈ L.

97

Line networks reflect the maps public transport companies offer for passenger in-
formation, displaying stations and lines. Depending on the precise application, lines
may also constitute non-simple paths or contain cycles (e.g., London’s Circle Line or
Berlin’s Ringbahn). In the context of line planning, we interpret a line network as a
frequency-expanded line plan, i.e., some lines might have the same vertex sequence.
Given a line network (N,L), construct an event-activity network G as follows:

1. For each line ` ∈ L and each arc ij ∈ A(`), create a departure event (i, `, dep)
and an arrival event (j, `, arr), and connect these by a driving activity ((i, `, dep),
(j, `, arr)).

2. For each vertex i ∈ V(N) and each line ` ∈ L, add a dwelling activity ((i, `, arr),
(i, `, dep)) if both events exist.

3. For each vertex i ∈ V(N) and each pair (`1, `2) of distinct lines, add a transfer
activity ((i, `1, arr), (i, `2, dep)) if both events exist.

Definition 7.6.2. An event-activity network G is line-based if it arises from a line net-
work (N,L) by the above construction. Shortly, G is based on (N,L).

Denote by deg+(i) resp. deg−(i) the number of outgoing resp. ingoing arcs at i. We
summarize some straightforward structural properties of line-based networks in the
following lemma:

Lemma 7.6.3. Let G be based on (N,L).

1. G is bipartite, the parts being the departure and arrival events, respectively.

2. Every departure event has a unique outgoing activity and every arrival event has a
unique ingoing activity. In both cases, these are driving activities.

3. The driving activities in G form a perfect matching in G.

4. Deleting the driving activities from G and undirecting the arcs results in the disjoint
union of complete bipartite graphs Kdeg+(i),deg−(i) over i ∈ V(N).

7.6.2. Branchwidth of Line-Based Networks

To give bounds on the branchwidth of line-based event-activity networks, we start
with a well-known result on the branchwidth of minors:

Theorem 7.6.4 (Neil Robertson and P.D Seymour, 1991, 4.1). If G is a graph and H is a
minor of G, then bw(H) ≤ bw(G).

By Lemma 7.6.3, this implies that if G is based on (N,L), then

bw(G) ≥ max
i∈V(N)

bw(Kdeg+(i),deg−(i)).

As we did not manage to find a reference in the literature for the branchwidth of
complete bipartite graphs, we give a proof here:

98

Lemma 7.6.5. The complete bipartite graph Kp,q has branchwidth min(p, q).

Proof. Assume p ≤ q. Let P and Q denote the two parts, |P| = p, |Q| = q. The vertex
separator associated to any neighborhood δ(w) for w ∈ Q is given by P. Moreover, if
E (δ(w) is a proper subset, then the cardinality of the corresponding vertex separator
is |E|+ 1 ≤ p. Take any ternary tree with q leaves labeled with the vertices in Q. Then
replace each leaf w by any ternary tree with p leaves, labeled by the edges in δ(w). The
result is a branch decomposition of Kp,q of width p. This shows bw(Kp,q) ≤ p.

To show that bw(Kp,q) ≥ p, we make use of tangles. That is, if we can find a collec-
tion T of subsets of E(Kp,q) such that

1. for each A ∈ T , the size of the corresponding vertex separator is at most p− 1,

2. for each A ⊆ E(Kp,q) inducing a separator of size ≤ p− 1, either A or its com-
plement is in T ,

3. for any three sets A1, A2, A3 ∈ T , their union is not E(Kp,q),

4. for each A ∈ T , the subgraph induced by A does not contain all vertices of Kp,q,

then bw(Kp,q) ≥ p or p ≤ 2 holds (Neil Robertson and P.D Seymour, 1991, p. 4.3).
Clearly, bw(K1,q) = 1, as these are star graphs, and bw(K2,q) = 2, as these are series-
parallel and contain cycles. Hence suppose p ≥ 3 and define

T := {A ⊆ E(Kp,q) | sep(A) ≤ p− 1, |V(Kp,q[A])∩P| ≤ p− 1, |V(Kp,q[A])∩Q| ≤ p− 1},

where sep(A) denotes the cardinality of the vertex separator associated to A, and
Kp,q[A] is the subgraph induced of Kp,q by A. We check the above properties:

1. This is clear.

2. Let A ⊆ E(Kp,q) with sep(A) ≤ p − 1 and suppose that Kp,q[A] contains all
vertices of P. Then there must be a vertex v ∈ P incident to some edge of A, but
not contained in the separator. Hence, A must contain δ(v), and every vertex
w ∈ Q is incident to the edge vw ∈ A. Similarly, if A contains at least p vertices
from Q, then it contains δ(w) for at least |V(Kp,q[A]) ∩Q| − (p− 1) vertices w ∈
Q.
This means if sep(A) ≤ p− 1 and A /∈ T , then A contains δ(v) for some v ∈ P
and δ(w) for at least q− (p− 1) vertices w ∈ Q. The subgraph induced by the
complement of A hence does not contain v, and it also does not contain at least
q− (p− 1) vertices of Q. Therefore the complement of A is in T .

3. It follows by the argument in 2. that for each A ∈ T , the vertex separator is given
by V(Kp,q[A]). Now Kp,q[A] is a simple bipartite graph on at most p− 1 vertices.
It follows that |A| ≤ (p− 1)2/4. Now if A1, A2, A3 ∈ T , the cardinality of their
union is at most 3(p− 1)2/4 < p2 ≤ pq = |E(Kp,q)|.

4. This follows as |V(Kp,q[A])| ≤ 2p− 2 < 2p ≤ p + q = |V(Kp,q)|.

99

Hence we conclude bw(Kp,q) = p.

Theorem 7.6.6. Let G be a line-based event activity network, based on the line network
(N,L). Then

max
i∈V(N)

min(deg+(i), deg−(i)) ≤ bw(G) ≤ cw(N),

and both bounds are sharp.

Recall from Subsection 7.3.4 that cw(N) denotes the carvingwidth of N, and that

cw(N) ≥ max
i∈V(N)

(deg+(i) + deg−(i)).

Speaking more intuitively, the carvingwidth is hence bounded by the maximum num-
ber of lines departing and arriving at a stop of the line network. In practice, line
networks are often planar, and the carvingwidth of planar graphs can be computed in
polynomial time by the ratcatcher algorithm (P. D. Seymour and Thomas, 1994).

Proof. The lower bound follows from Lemma 7.6.3, Theorem 7.6.4 and Lemma 7.6.5.
For r ∈ N, let Nr be a graph on the vertex set {0, 1, . . . , 2r}, and arcs (i, 0) for i ∈
{1, . . . , r} and (0, i) for i ∈ {r + 1, . . . , 2r}. The lines are given by L := {(i, 0, i + r) |
i ∈ {1, . . . , r}}. The resulting line-based event-activity network Gr has the structure
of a complete bipartite graph Kr,r plus 2r activities connecting the Kr,r with events of
degree 1 each. It follows that

bw(Gr) = r = max
i∈V(Nr)

min(deg+(i), deg−(i)).

As Nr is a star graph on 2r rays, its carvingwidth is easily determined to be 2r. Hence,
we found a family of graphs for which the lower bound is sharp, and the upper bound
is larger than the lower bound.

Concerning the upper bound, we first partition the activities of G: For each i ∈
V(N), let Ai denote the set of all activities incident to some departure event at i. Then
{Ai | i ∈ V(N)} partitions A(G) because of the bipartite structure of G. For i ∈ V(N),
let (Bi, ϕi) be a branch decomposition of the subgraph of G induced by Ai. Add a
root bi to each Bi by subdividing an arbitrary edge. Let (C, ψ) be an optimal carving
decomposition of N. Attach to every leaf v of C the tree Bψ(v), identifying v with bψ(v).
This results in a branch decomposition (B, ϕ) of G.

Now let e ∈ E(B) and let A(G) = A1
e

.
∪ A2

e be the induced partition. If e ∈ E(Bi),
then one of A1

e , A2
e is contained in Ai, so that the vertex separator Se has size at most

deg+(i) + deg−(i): Se contains at most all deg−(i) arrival events at i, and every other
vertex in Se must be either a departure event or the unique arrival event following a
departure event. Observe that deg+(i) + deg−(i) ≤ cw(N) due to Theorem 7.3.16. In
the other case that e ∈ E(C), there is a subset We ⊆ V(G) such that A1

e =
⋃

i∈We Ai.
Each vertex of the vertex separator Se is hence an arrival event at some i ∈We. The set
Se is in bijection to δ(We) by mapping (j, `, arr) to ij ∈ A(`) ⊆ A(N), where (i, `, dep)
is the unique driving activity entering (j, `, arr). Hence, as C was chosen to be optimal,
|Se| = |δ(We)| ≤ cw(N).

100

Parameter Value
no. of vertices 3664
no. of arcs 6385
cyclomatic number 2722
vertex cover number 1832
diameter 88
maximum degree 26
branchwidth ∈ [58, 70]
treewidth ∈ [57, 97]
carvingwidth ∈ [29, 1820]

Table 7.1.: Parameters of R1L1

Finally, we show that the upper bound is sharp: For r ∈ N, let N′r be a directed
simple cycle on r vertices. Then cw(N′r) = 2. The event-activity network G′r based on
N′r is then a directed simple cycle on 2r vertices and has branchwidth 2. On the other
hand, the lower bound does not equal 2, as maxi∈V(N′r) min(deg+(i), deg−(i)) = 1.

7.6.3. Parameters of R1L1

The benchmarking library PESPlib contains 20 difficult T-PESP-OPTIMALITY instances,
created with the LinTim toolbox with data of the German railway network (Goerigk,
Schachtebeck, et al., 2013). None of the instances is currently solved to proven opti-
mality.

For the event-activity network G of the smallest PESPlib instance R1L1, the values
of the parameters discussed in this paper are summarized in Table 7.1. Most of the
parameters are easy to obtain, therefore we elaborate only on the width parameters.

An upper bound on branchwidth

The network G in its original shape does not satisfy the properties of Lemma 7.6.3.
However, with small modifications, we can find a line network N such that G is a
subgraph of an event-activity network based on N.

Transfer activities a ∈ A(G) are in practice typically recognized by a large span
ua − `a. As the period time is T = 60, we let At := {ij ∈ A(G) | ua − `a ≥ 59}. We
call any vertex i with ij ∈ At for some j an arrival event, and analogously any vertex j
with ij ∈ At for some i is called a departure event. This is well-defined and extends to
a bipartition of G into arrival resp. departure events.

Now we interpret any activity from a departure to an arrival is called a driving ac-
tivity. The set of driving activities is not quite a perfect matching in G: There are two
arrival events (84 and 256) with two ingoing driving activities, and two arrival events
(53 and 177) with no ingoing driving activity. This is due to four mysterious activi-
ties with lower and upper bound 0 breaking the structure at this particular spot, see

101

3664

53

68

69

84

177

216

217

256
[0, 0]

pa
th

[0, 0]

pa
th

[0, 0]

pa
th

[0, 0]

pa
th

Figure 7.6.: Removed part of R1L1, events recognized as departures are marked yellow

Figure 7.6. However, the vertices 53 to 84 and 177 to 256 can be removed from G by se-
quentially deleting vertices of degree 1. Since the remaining network has branchwidth
at least two, removing vertices of degree 1 has no effect on branchwidth:

Lemma 7.6.7. Let G be a connected graph, and let v ∈ V(G) be a vertex of degree 1. If
bw(G \ {v}) ≥ 2, then bw(G) = bw(G \ {v}).

Proof. By Theorem 7.6.4, bw(G \ {v}) ≤ bw(G). For the reverse inequality consider
a branch decomposition (B, ϕ) of G \ {v}. Since G is connected, v is adjacent to some
vertex w of degree ≥ 2. Choose an edge e 6= {v, w} incident with w, and replace the
leaf of B corresponding to e by a node with the two children e and {v, w}. This is a
branch decomposition of G. The size of the vertex separator corresponding to {v, w}
is 1, the size of the separator w.r.t. e is at most 2, and all other vertex separators remain
unchanged. This shows bw(G) ≤ bw(G \ {v}).

With this adjustment, G has 3552 vertices and 6273 arcs. G satisfies now properties
1-3 of Lemma 7.6.3. Deleting the driving activities yields a disjoint union of bipartite
graphs Gi, but they are not all complete. We define N now as the network obtained
from G by contracting all these bipartite graphs Gi to a single vertex i. Then G is a
subgraph of an event-activity network based on N, choosing, e.g., L as the set of all
single-arc walks. By Theorem 7.6.4 and Theorem 7.6.6, bw(G) ≤ cw(N).

The network N obtained in this way is unfortunately not planar. The maximum de-
gree in N is 62, so that cw(N) ≥ 62. To compute an upper bound, we first preprocess
N by removing vertices of degree 2, as this does not alter carvingwidth (Belmonte et
al., 2013, Lemma 6). We use then the Kuratowski subgraph detection algorithm imple-
mented in the Python package networkx (Hagberg et al., 2008) to recursively remove
(multi-)arcs from N until the graph becomes planar. We prefer arcs of low multiplicity,
and a sequence of 20 removals of simple arcs finally yields a planar graph N′. We im-
plemented the ratcatcher method of Robertson and Seymour to compute cw(N′) = 62
and an optimal carving decomposition. As V(N′) = V(N), this is also a carving de-
composition of N, but the width increases to 70. We hence conclude cw(N) ∈ [62, 70]
and bw(G) ≤ 70.

102

A lower bound on branchwidth

Since G is only realized as a subgraph of an event-activity network based on N, we
cannot use Theorem 7.6.6 directly. Of course, it remains true that bw(G) is at least
the branchwidth of the (disconnected) subgraph G′ obtained by deleting the driving
activities. G′ is reasonably small, but there seems to be no freely available software for
exact branchwidth computations. However, there are treewidth codes, and we use the
algorithm by Tamaki (2019), which has been implemented for the PACE 2017 challenge
on exact treewidth computations (Dell et al., 2018). It turns out that tw(G′) = 20, hence
bw(G) ≥ 14.

The largest of the components of G′ is a bipartite graph with maximum part size 31.
If this component were complete, then Theorem 7.6.6 would have predicted bw(G) ≥
31.

To obtain a better bound on bw(G), we use balanced vertex separators:

Lemma 7.6.8 (N. Robertson and P.D. Seymour, 1995, 3.1). Let G be a graph. Then there is
a vertex separator S with |S| ≤ bw(G) and

max(|V1|, |V2|) ≤ 2
3
|V(G)| − 1

2
|S|,

where V(G) = V1 .
∪V2 .

∪ S, and no vertex in V1 is adjacent to a vertex in V2 and vice versa.

We now compute a minimum cardinality vertex separator subject to the balance
constraint of Lemma 7.6.8 by plugging in a straightforward integer program into the
CPLEX1 12.10 solver. We do not use the full network G as input, but take a smaller net-
work that is obtained after standard preprocessing for T-PESP-OPTIMALITY instances
(Borndörfer et al., 2019, §3.2). This network is a minor of G, so that we obtain a valid
bound on the branchwidth. CPLEX finds a vertex separator of cardinality 58 and is
able to solve the instance to optimality. We conclude bw(G) ≥ 58.

Treewidth and Carvingwidth

Since bw(G) ∈ [58, 70], we obtain by Theorem 7.3.12 that tw(G) ∈ [58, 104]. As the
maximum degree in R1L1 is 26, cw(G) ∈ [29, 1820] by Theorem 7.3.16. Determining
the exact treewidth of G turns out to be computationally infeasible. We instead use
TCS-Meiji (Tamaki, 2019) and FlowCutter (Hamann and Strasser, 2018), the best two
submissions of the PACE 2017 challenge on heuristic treewidth computations (Dell et
al., 2018), with different random seeds to obtain a better upper bound on tw(G). The
best bound we could find was tw(G) ≤ 97.

Practical Implications

The instance R1L1 has a period time of T = 60. It becomes clear from Table 7.1 that nei-
ther the dynamic programs of Section 7.4 nor the algorithms presented in Section 7.5

1https://www.ibm.com/analytics/cplex-optimizer

103

https://www.ibm.com/analytics/cplex-optimizer

can be applied for solving R1L1 in practice. E.g., storing Tbw(G)−1 ≥ 6057 table entries
for the branch-decomposition based algorithm 7.4.3 as 32-bit integers would require
roughly 9 · 10101 bytes of space.

7.7. Conclusion

The results of this paper underline that PESP is a notoriously hard problem. Although
there are several primal heuristics available, the promising global approaches fail to
compute provably optimal solutions: E.g., Mixed-integer programming formulations
suffer from weak linear programming relaxations and transformations to Boolean sat-
isfiability problems scale badly. It fits into this picture that exploiting structural pa-
rameters such as treewidth does not lead to a polynomial-time algorithm unless P 6=
NP. Moreover, the pseudo-polynomial dynamic programs of Section 7.4 are only of
theoretical interest. It is even unclear for tentatively large parameters as cyclomatic
number and vertex cover number if T-PESP-OPTIMALITY becomes fixed-parameter
tractable.

On the positive side, it has been demonstrated in (Lindner and Christian Liebchen,
2019) that balanced edge separators lead to benefits when computing lower bounds
of T-PESP-OPTIMALITY instances. We think that this should also carry over to vertex
separators, and that good heuristic tree or branch decompositions may be useful as a
source for separators in order to tackle PESP by a divide-and-conquer approach.

References

Arnborg, Stefan and Andrzej Proskurowski (1989). “Linear time algorithms for NP-
hard problems restricted to partial k-trees”. In: Discrete Applied Mathematics 23.1,
pp. 11–24. ISSN: 0166-218X. DOI: https://doi.org/10.1016/0166- 218X(89)
90031-0.

Belmonte, Rémy et al. (2013). “Characterizing graphs of small carving-width”. In: Dis-
crete Applied Mathematics 161.13, pp. 1888–1893. ISSN: 0166-218X. DOI: https://
doi.org/10.1016/j.dam.2013.02.036. URL: http://www.sciencedirect.com/
science/article/pii/S0166218X13001236.

Bodlaender, Hans L. (1996). “A Linear-Time Algorithm for Finding Tree-Decompositi-
ons of Small Treewidth”. In: SIAM Journal on Computing 25.6, pp. 1305–1317. DOI:
10.1137/S0097539793251219. URL: https://doi.org/10.1137/S0097539793251219.

Bodlaender, Hans L. and Babette van Antwerpen-de Fluiter (2001). “Parallel Algo-
rithms for Series Parallel Graphs and Graphs with Treewidth Two”. In: Algorith-
mica 29, pp. 534–559.

Bodlaender, Hans L. and Dimitrios M. Thilikos (1997). “Constructive linear time al-
gorithms for branchwidth”. In: Automata, Languages and Programming. Ed. by Pier-
paolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 627–637. ISBN: 978-3-540-69194-5.

104

https://doi.org/https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/https://doi.org/10.1016/j.dam.2013.02.036
https://doi.org/https://doi.org/10.1016/j.dam.2013.02.036
http://www.sciencedirect.com/science/article/pii/S0166218X13001236
http://www.sciencedirect.com/science/article/pii/S0166218X13001236
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219

Borndörfer, Ralf, Niels Lindner, and Sarah Roth (2019). “A concurrent approach to
the Periodic Event Scheduling Problem”. In: Journal of Rail Transport Planning &
Management, pp. 100–175. ISSN: 2210-9706. DOI: https://doi.org/10.1016/j.
jrtpm.2019.100175. URL: http://www.sciencedirect.com/science/article/
pii/S2210970619300769.

Dell, Holger et al. (2018). “The PACE 2017 Parameterized Algorithms and Computa-
tional Experiments Challenge: The Second Iteration”. In: 12th International Sympo-
sium on Parameterized and Exact Computation (IPEC 2017). Ed. by Daniel Lokshtanov
and Naomi Nishimura. Vol. 89. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
30:1–30:12. ISBN: 978-3-95977-051-4. DOI: 10.4230/LIPIcs.IPEC.2017.30. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/8558.

Eppstein, David (2018). “The Effect of Planarization on Width”. In: Journal of Graph
Algorithms and Applications 22.3, pp. 461–481. DOI: 10.7155/jgaa.00468.

Fiala, Jiřı́, Petr A. Golovach, and Jan Kratochvı́l (2011). “Parameterized complexity of
coloring problems: Treewidth versus vertex cover”. In: Theoretical Computer Sci-
ence 412.23. Theory and Applications of Models of Computation (TAMC 2009),
pp. 2513–2523. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2010.10.
043.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability. W. H. Freeman and
Company, San Francisco.

Goerigk, Marc (2012). PESPlib – A benchmark library for periodic event scheduling. http:
//num.math.uni-goettingen.de/~m.goerigk/pesplib/.

Goerigk, Marc, Michael Schachtebeck, and Anita Schöbel (2013). “Evaluating line con-
cepts using travel times and robustness”. In: Public Transport 5, pp. 267–284.

Hadjiat, Malika and Jean François Maurras (1997). “A strongly polynomial algorithm
for the minimum cost tension problem”. In: Discrete Mathematics 165-166. Graphs
and Combinatorics, pp. 377–394. ISSN: 0012-365X. DOI: https://doi.org/10.
1016/S0012-365X(96)00185-9. URL: http://www.sciencedirect.com/science/
article/pii/S0012365X96001859.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). “Exploring Network
Structure, Dynamics, and Function using NetworkX”. In: Proceedings of the 7th
Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod
Millman. Pasadena, CA USA, pp. 11–15.

Hamann, Michael and Ben Strasser (Feb. 2018). “Graph Bisection with Pareto Opti-
mization”. In: J. Exp. Algorithmics 23. ISSN: 1084-6654. DOI: 10.1145/3173045. URL:
https://doi.org/10.1145/3173045.

Heuven van Staereling, Irving van (2018). “Tree Decomposition Methods for the Pe-
riodic Event Scheduling Problem”. In: 18th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2018). Ed. by Ralf
Borndörfer and Sabine Storandt. Vol. 65. OpenAccess Series in Informatics (OA-
SIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 6:1–
6:13. ISBN: 978-3-95977-096-5. DOI: 10.4230/OASIcs.ATMOS.2018.6. URL: http:
//drops.dagstuhl.de/opus/volltexte/2018/9711.

105

https://doi.org/https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/https://doi.org/10.1016/j.jrtpm.2019.100175
http://www.sciencedirect.com/science/article/pii/S2210970619300769
http://www.sciencedirect.com/science/article/pii/S2210970619300769
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
http://drops.dagstuhl.de/opus/volltexte/2018/8558
https://doi.org/10.7155/jgaa.00468
https://doi.org/https://doi.org/10.1016/j.tcs.2010.10.043
https://doi.org/https://doi.org/10.1016/j.tcs.2010.10.043
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
https://doi.org/https://doi.org/10.1016/S0012-365X(96)00185-9
https://doi.org/https://doi.org/10.1016/S0012-365X(96)00185-9
http://www.sciencedirect.com/science/article/pii/S0012365X96001859
http://www.sciencedirect.com/science/article/pii/S0012365X96001859
https://doi.org/10.1145/3173045
https://doi.org/10.1145/3173045
https://doi.org/10.4230/OASIcs.ATMOS.2018.6
http://drops.dagstuhl.de/opus/volltexte/2018/9711
http://drops.dagstuhl.de/opus/volltexte/2018/9711

Karp, Richard M. (1972). “Reducibility among Combinatorial Problems”. In: Complex-
ity of Computer Computations: Proceedings of a symposium on the Complexity of Com-
puter Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research,
Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathemat-
ical Sciences Department. Boston, MA: Springer US, pp. 85–103. ISBN: 978-1-4684-
2001-2.

Kloks, Ton (1994). Treewidth, Computations and Approximations. Vol. 842. Lecture Notes
in Computer Science. Springer. ISBN: 3-540-58356-4. DOI: 10.1007/BFb0045375.
URL: https://doi.org/10.1007/BFb0045375.

Liebchen, C. (2006). “Periodic timetable optimization in public transport”. PhD thesis.
Technische Universität Berlin.

Liebchen, Christian and Rolf H Möhring (2007). “The modeling power of the Peri-
odic Event Scheduling Problem: railway timetables – and beyond”. In: Algorithmic
methods for railway optimization. Springer, pp. 3–40.

Lindner, Niels and Christian Liebchen (2019). “New Perspectives on PESP: T-Partitions
and Separators”. In: 19th Symposium on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2019). Ed. by Valentina Cacchiani
and Alberto Marchetti-Spaccamela. Vol. 75. OpenAccess Series in Informatics (OA-
SIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2:1–
2:18. ISBN: 978-3-95977-128-3. DOI: 10.4230/OASIcs.ATMOS.2019.2. URL: http:
//drops.dagstuhl.de/opus/volltexte/2019/11414.

Nachtigall, Karl (1993). Exact Solution Methods for Periodic Programs. Tech. rep. 14/93.
Hildesheimer Informatikberichte.

— (1998). “Periodic Network Optimization and Fixed Interval Timetables”. Habilita-
tion thesis. Universität Hildesheim.

Nachtigall, Karl and Jens Opitz (2008). “Solving Periodic Timetable Optimisation Prob-
lems by Modulo Simplex Calculations”. In: 8th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (ATMOS’08). Ed. by Matteo
Fischetti and Peter Widmayer. Vol. 9. OpenAccess Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz- Zentrum für Informatik. ISBN: 978-
3-939897-07-1.

Nestoridis, Nestor V. and Dimitrios M. Thilikos (2014). “Square roots of minor closed
graph classes”. In: Discrete Applied Mathematics 168. Fifth Workshop on Graph Clas-
ses, Optimization, and Width Parameters, Daejeon, Korea, October 2011, pp. 34–
39. ISSN: 0166-218X. DOI: https://doi.org/10.1016/j.dam.2013.05.026. URL:
http://www.sciencedirect.com/science/article/pii/S0166218X13002552.

Odijk, M. A. (1994). Construction of periodic timetables, Part 1: A cutting plane algorithm.
Tech. rep. 94-61. TU Delft.

Pätzold, Julius et al. (2017). “Look-Ahead Approaches for Integrated Planning in Pub-
lic Transportation”. In: ATMOS. Vol. 59. OASICS. Schloss Dagstuhl - Leibniz-Zen-
trum für Informatik, 17:1–17:16.

Robertson, N. and P.D. Seymour (1995). “Graph Minors. XIII. The Disjoint Paths Prob-
lem”. In: Journal of Combinatorial Theory, Series B 63.1, pp. 65–110. ISSN: 0095-8956.

106

https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.4230/OASIcs.ATMOS.2019.2
http://drops.dagstuhl.de/opus/volltexte/2019/11414
http://drops.dagstuhl.de/opus/volltexte/2019/11414
https://doi.org/https://doi.org/10.1016/j.dam.2013.05.026
http://www.sciencedirect.com/science/article/pii/S0166218X13002552

DOI: https://doi.org/10.1006/jctb.1995.1006. URL: http://www.science%
20direct.com/science/article/pii/S0095895685710064.

Robertson, Neil and P.D Seymour (1984). “Graph minors. III. Planar tree-width”. In:
Journal of Combinatorial Theory, Series B 36.1, pp. 49–64. ISSN: 0095-8956. DOI: https:
//doi.org/10.1016/0095-8956(84)90013-3. URL: http://www.sciencedirect.
com/science/article/pii/0095895684900133.

— (1991). “Graph minors. X. Obstructions to tree-decomposition”. In: Journal of Com-
binatorial Theory, Series B 52.2, pp. 153–190. ISSN: 0095-8956. DOI: https://doi.
org/10.1016/0095-8956(91)90061-N. URL: http://www.science%20direct.com/
science/article/pii/009589569190061N.

Schöbel, Anita (2017). “An eigenmodel for iterative line planning, timetabling and ve-
hicle scheduling in public transportation”. In: Transportation Research Part C: Emerg-
ing Technologies 74, pp. 348–365. ISSN: 0968-090X. DOI: https://doi.org/10.1016/
j.trc.2016.11.018. URL: http://www.sciencedirect.com/science/article/
pii/S0968090X1630242X.

Schrijver, Alexander (1986). Theory of Linear and Integer Programming. John Wiley &
Sons, Inc. ISBN: 0471908541.

Serafini, Paolo and Walter Ukovich (1989b). “A mathematical model for periodic schedul-
ing problems”. In: SIAM Journal on Discrete Mathematics 2.4, pp. 550–581.

Seymour, P. D. and R. Thomas (June 1994). “Call routing and the ratcatcher”. En-
glish (US). In: Combinatorica 14.2, pp. 217–241. ISSN: 0209-9683. DOI: 10 . 1007 /
BF01215352.

Tamaki, Hisao (May 2019). “Positive-Instance Driven Dynamic Programming for Tree-
width”. In: J. Comb. Optim. 37.4, pp. 1283–1311. ISSN: 1382-6905. DOI: 10.1007/
s10878-018-0353-z. URL: https://doi.org/10.1007/s10878-018-0353-z.

107

https://doi.org/https://doi.org/10.1006/jctb.1995.1006
http://www.science%20direct.com/science/article/pii/S0095895685710064
http://www.science%20direct.com/science/article/pii/S0095895685710064
https://doi.org/https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/https://doi.org/10.1016/0095-8956(84)90013-3
http://www.sciencedirect.com/science/article/pii/0095895684900133
http://www.sciencedirect.com/science/article/pii/0095895684900133
https://doi.org/https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/https://doi.org/10.1016/0095-8956(91)90061-N
http://www.science%20direct.com/science/article/pii/009589569190061N
http://www.science%20direct.com/science/article/pii/009589569190061N
https://doi.org/https://doi.org/10.1016/j.trc.2016.11.018
https://doi.org/https://doi.org/10.1016/j.trc.2016.11.018
http://www.sciencedirect.com/science/article/pii/S0968090X1630242X
http://www.sciencedirect.com/science/article/pii/S0968090X1630242X
https://doi.org/10.1007/BF01215352
https://doi.org/10.1007/BF01215352
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z

Part III.

Delay Propagation in Railway Networks

109

8. Modeling Delay Propagation and
Transmission in Railway Networks

Chapter is omitted due to copyright.

111

9. Discerning Primary and Secondary
Delays in Railway Networks using
Explainable AI

Chapter is omitted in the online version due to copyright.

129

10. Black-Box Optimization in Railway
Simulations

Chapter is omitted in the online version due to copyright.

141

11. Conclusion

In this cumulative dissertation, we studied selected aspects in railway timetable
optimization. Let us now conclude the core findings of the contributions and name
possible directions for further research. We grouped the contributions into the three
dimensions of Practical Applications of Automatic Railway Timetabling, Algorithms
and Computability in Timetable Generation and Delay Propagation in Railway Net-
works. In the papers of the first dimension, we developed a column generation ap-
proach for scheduling multiple trains simultaneously. In the computational experi-
ments, we were able to schedule more than 5000 freight trains in Germany and thus
contributed to the field by extending the applications scope. For the pricing problem in
the column generation, we applied a slot construction algorithm that we furthermore
used for measuring the railway network capacity. In particular, we computed in a case
study that when equipping freight trains with electro-pneumatic brakes and middle
buffer couplings, the capacity grows by 4%. This method for measuring railway net-
work capacity is the second research contribution of the first dimension. As a possible
outlook of the first contribution, we see the role-out to plan the annual timetable auto-
matically. In terms of compatibility, we claim that the column generation approach is
also applicable for multi-day planning when slots differ between different days. The
open research question here is to partition the requested operation periods of the trains
so that there are no conflicts between any two trains on any day within the year. In
the second contribution, we proposed a novel method for measuring railway capac-
ities. Other methods quantify capacity as a function that depends on the amount of
follow-up delays that are allowed. Future work for this research branch should there-
fore incorporate operational quality and count the number of constructed slots such
that the expected follow-up delays are bounded.

For the second dimension, we developed local search heuristic algorithms for solv-
ing large scale MaxSAT problems. MaxSAT is a problem class that occurs both in mul-
tiple train scheduling and periodic scheduling. We could prove that the local search
algorithms perform competitive compared to state-of-the-art solvers from the 2019
MaxSAT evaluation. Moreover, we proved that the Periodic Event Scheduling prob-
lem is NP-complete even for graphs of bounded treewidth, branchwidth and carving-
width. Unless P = NP, these statements prove that there is no polynomial algorithm
parameterized by any of these structural graph parameters for the PESP. Hence, we
conject that solving the PESP should rather be tackled by heuristic approaches. As we
made good experiences with local search techniques for solving the Independent Set
problem and MaxSAT, developing a local search PESP heuristic could be a possible
research direction.

149

In the third dimension, we developed a framework for deriving delay transmission
rules from historical railway operations data. In selected stations, we could identify
train interactions and conclude necessary timetable adjustments that prevent the prop-
agation of delays. Furthermore, we proposed to apply the SHAP value method from
Explainable AI for the application of discerning primary from secondary causes in
the railway delay data. Finally, we presented black-box optimization rules for robust
timetable optimization in a simulation framework. This method opens the opportu-
nity for any simulation approach to consider it a black-box and incorporate optimiza-
tion rules. We see the open task of this dimension to unify these approaches in a
proper simulation environment. That is, discern primary from secondary delay dis-
tributions in the historical data at first. Then, use the primary delay distributions for
simulating the stochastically occurring disturbances in the operations. Finally, adjust
the timetable with black-box optimization rules. The optimization rules can be based
on the transmission rules that are detected between the secondary delay data and the
evaluation is performed by the simulation.

150

Global References

Amaran, Satyajith et al. (2017). “Simulation optimization: A review of algorithms and
applications”. In: CoRR abs/1706.08591. URL: http://arxiv.org/abs/1706.08591.

Andrade, Diogo Vieira, Mauricio G. C. Resende, and Renato F. Werneck (2012). “Fast
local search for the maximum independent set problem”. In: J. Heuristics 18.4,
pp. 525–547. DOI: 10.1007/s10732- 012- 9196- 4. URL: https://doi.org/10.
1007/s10732-012-9196-4.

Andrade, Diogo Vieira, Mauricio G. C. Resende, and Renato Fonseca F. Werneck (2012).
“Fast local search for the maximum independent set problem”. In: J. Heuristics 18.4,
pp. 525–547.

Arnborg, Stefan and Andrzej Proskurowski (1989). “Linear time algorithms for NP-
hard problems restricted to partial k-trees”. In: Discrete Applied Mathematics 23.1,
pp. 11–24. ISSN: 0166-218X. DOI: https://doi.org/10.1016/0166- 218X(89)
90031-0.

Audemard, Gilles and Laurent Simon (2009). “Predicting Learnt Clauses Quality in
Modern SAT Solvers”. In: Proceedings of the 21st International Jont Conference on Ar-
tifical Intelligence. IJCAI’09. Pasadena, California, USA, pp. 399–404.

Bacchus, Fahiem, Jeremias Berg, et al., eds. (2020). MaxSAT Evaluation 2020: Solver and
Benchmark Descriptions. English. Vol. B-2020-2. Department of Computer Science
Report Series B. Finland: Department of Computer Science, University of Helsinki.

Bacchus, Fahiem, Matti Järvisalo, and Ruben Martins (Sept. 2019). “MaxSAT Evalu-
ation 2018: New Developments and Detailed Results”. In: Journal on Satisfiability,
Boolean Modeling and Computation 11, pp. 99–131. DOI: 10.3233/SAT190119.

Barrett, C., R. Jacob, and M. Marathe (2000). “Formal-Language-Constrained Path Prob-
lems”. In: SIAM Journal on Computing 30.3, pp. 809–837.

Belmonte, Rémy et al. (2013). “Characterizing graphs of small carving-width”. In: Dis-
crete Applied Mathematics 161.13, pp. 1888–1893. ISSN: 0166-218X. DOI: https://
doi.org/10.1016/j.dam.2013.02.036. URL: http://www.sciencedirect.com/
science/article/pii/S0166218X13001236.

Belov, Anton, António Morgado, and Joao Marques-Silva (2013). “SAT-Based Prepro-
cessing for MaxSAT”. In: Logic for Programming, Artificial Intelligence, and Reasoning.
Ed. by Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 96–111. ISBN: 978-3-642-45221-5.

Berg, Jeremias, Emir Demirović, and Peter J. Stuckey (2019). “Core-Boosted Linear
Search for Incomplete MaxSAT”. In: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. Ed. by Louis-Martin Rousseau and Kostas Ster-
giou. Cham: Springer International Publishing, pp. 39–56. ISBN: 978-3-030-19212-9.

Berg, Jeremias, Antti Hyttinen, and Matti Jarvisalo (2019). “Applications of MaxSAT in
Data Analysis”. In: Proceedings of Pragmatics of SAT 2015 and 2018. Ed. by Daniel Le

151

Berre and Matti Jarvisalo. Vol. 59. EPiC Series in Computing. EasyChair, pp. 50–64.
DOI: 10.29007/3qkh. URL: https://easychair.org/publications/paper/6HpF.

Berg, Jeremias and Matti Järvisalo (2017). “Cost-optimal constrained correlation clus-
tering via weighted partial Maximum Satisfiability”. In: Artificial Intelligence 244.
Combining Constraint Solving with Mining and Learning, pp. 110–142. ISSN: 0004-
3702. DOI: https://doi.org/10.1016/j.artint.2015.07.001.

Berg, Jeremias, Matti Järvisalo, and Brandon Malone (22–25 Apr 2014). “Learning Op-
timal Bounded Treewidth Bayesian Networks via Maximum Satisfiability”. In: Pro-
ceedings of the Seventeenth International Conference on Artificial Intelligence and Statis-
tics. Ed. by Samuel Kaski and Jukka Corander. Vol. 33. Proceedings of Machine
Learning Research. Reykjavik, Iceland: PMLR, pp. 86–95.

Bodlaender, Hans L. (1996). “A Linear-Time Algorithm for Finding Tree-Decompositi-
ons of Small Treewidth”. In: SIAM Journal on Computing 25.6, pp. 1305–1317. DOI:
10.1137/S0097539793251219. URL: https://doi.org/10.1137/S0097539793251219.

Bodlaender, Hans L. and Babette van Antwerpen-de Fluiter (2001). “Parallel Algo-
rithms for Series Parallel Graphs and Graphs with Treewidth Two”. In: Algorith-
mica 29, pp. 534–559.

Bodlaender, Hans L. and Dimitrios M. Thilikos (1997). “Constructive linear time al-
gorithms for branchwidth”. In: Automata, Languages and Programming. Ed. by Pier-
paolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 627–637. ISBN: 978-3-540-69194-5.

Bondy, John Adrian, Uppaluri Siva Ramachandra Murty, et al. (1976). Graph theory
with applications. Macmillan Press.

Bonett, Douglas G and Thomas A Wright (2000). “Sample size requirements for esti-
mating Pearson, Kendall and Spearman correlations”. In: Psychometrika 65.1, pp. 23–
28.

Borndörfer, Ralf, Niels Lindner, and Sarah Roth (2019). “A concurrent approach to
the Periodic Event Scheduling Problem”. In: Journal of Rail Transport Planning &
Management, pp. 100–175. ISSN: 2210-9706. DOI: https://doi.org/10.1016/j.
jrtpm.2019.100175. URL: http://www.sciencedirect.com/science/article/
pii/S2210970619300769.

— (2020). “A Concurrent Approach to the Periodic Event Scheduling Problem”. In:
Journal of Rail Transport Planning & Management 15, pp. 100–175. DOI: 10.1016/j.
jrtpm.2019.100175.

Borndörfer, Ralf and Thomas Schlechte (2007). “Models for Railway Track Allocation”.
In: ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation Mod-
eling, Optimization, and Systems. Ed. by Christian Liebchen, Ravindra Ahuja, and
Juan Mesa. Vol. 07/001.

Bouhmala, Noureddine (Feb. 2019). “Combining simulated annealing with local search
heuristic for Max-SAT”. In: Journal of Heuristics 25.1, pp. 47–69.

Brys, Guy, Mia Hubert, and Anja Struyf (2004). “A robust measure of skewness”. In:
Journal of Computational and Graphical Statistics 13.4, pp. 996–1017.

152

Büker, Thorsten and Bernhard Seybold (2012). “Stochastic modelling of delay propa-
gation in large networks”. In: Journal of Rail Transport Planning & Management 2.1-2,
pp. 34–50.

Butts, Carter T. (2009). “Revisiting the foundations of network analysis”. In: science
325.5939, pp. 414–416.

Cacchiani, Valentina, Alberto Caprara, and Paolo Toth (2010). “Non-cyclic train time-
tabling and comparability graphs”. In: Operations Research Letters 38.3, pp. 179–184.
ISSN: 0167-6377.

Caprara, A. et al. (2002). “Solution of real-world train timetabling problems”. In: Pro-
ceedings of the 34th Annual Hawaii International Conference on System Sciences.

Caprara, Alberto (2015). “Timetabling and assignment problems in railway planning
and integer multicommodity flow”. In: Networks 66.1, pp. 1–10.

Caprara, Alberto, Matteo Fischetti, and Paolo Toth (2002). “Modeling and Solving
the Train Timetabling Problem”. In: Operations Research 50.5, pp. 851–861. ISSN:
0030364X, 15265463.

Carey, Malachy and Andrzej Kwieciński (1994). “Stochastic approximation to the ef-
fects of headways on knock-on delays of trains”. In: Transportation Research Part B:
Methodological 28.4, pp. 251–267.

Clarke, Edmund et al. (July 2001). “Bounded Model Checking Using Satisfiability Solv-
ing”. In: Formal Methods in System Design 19.1, pp. 7–34. ISSN: 1572-8102. DOI: 10.
1023/A:1011276507260. URL: https://doi.org/10.1023/A:1011276507260.

Cleveland, Robert B, William S Cleveland, and Irma Terpenning (1990). “STL: A season-
al-trend decomposition procedure based on loess”. In: Journal of Official Statistics
6.1, p. 3.

Cox, David R (1972). “The analysis of multivariate binary data”. In: Applied statistics,
pp. 113–120.

Curchod, Anne (2007). analyse de la stabilité d’horaires ferroviaires cadencés sur un réseau
maillé: Bedienungshandbuch. Lausanne: FASTA II.

Dahms, Florian et al. (2019). Transforming automatic scheduling in a working application
for a railway infrastructure manager. Rail Norrköping Conference.

Dantzig, George B. (1963). “Linear Programming and Extensions”. In: Princeton Uni-
versity Press, Princeton.

Davis, Martin and Hilary Putnam (July 1960). “A Computing Procedure for Quantifi-
cation Theory”. In: J. ACM 7.3, pp. 201–215. ISSN: 0004-5411. DOI: 10.1145/321033.
321034.

Dell, Holger et al. (2018). “The PACE 2017 Parameterized Algorithms and Computa-
tional Experiments Challenge: The Second Iteration”. In: 12th International Sympo-
sium on Parameterized and Exact Computation (IPEC 2017). Ed. by Daniel Lokshtanov
and Naomi Nishimura. Vol. 89. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
30:1–30:12. ISBN: 978-3-95977-051-4. DOI: 10.4230/LIPIcs.IPEC.2017.30. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/8558.

Demirović, Emir and Peter J. Stuckey (2019). “Techniques Inspired by Local Search for
Incomplete MaxSAT and the Linear Algorithm: Varying Resolution and Solution-

153

Guided Search”. In: Principles and Practice of Constraint Programming. Ed. by Thomas
Schiex and Simon de Givry. Cham: Springer International Publishing, pp. 177–194.
ISBN: 978-3-030-30048-7.

Eppstein, David (2018). “The Effect of Planarization on Width”. In: Journal of Graph
Algorithms and Applications 22.3, pp. 461–481. DOI: 10.7155/jgaa.00468.

Erickson, Jeff (2019). Lecture Notes on NP-Hardness. http://jeffe.cs.illinois.edu/
teaching/algorithms/book/12-nphard.pdf.

Even, S., A. Itai, and A. Shamir (1975). “On the complexity of time table and multi-
commodity flow problems”. In: 16th Annual Symposium on Foundations of Computer
Science (sfcs 1975), pp. 184–193.

Fan, Yi et al. (2016). “Ramp: A Local Search Solver based on Make-positive Variables”.
In: MaxSAT Evaluation.

Fiala, Jiřı́, Petr A. Golovach, and Jan Kratochvı́l (2011). “Parameterized complexity of
coloring problems: Treewidth versus vertex cover”. In: Theoretical Computer Sci-
ence 412.23. Theory and Applications of Models of Computation (TAMC 2009),
pp. 2513–2523. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2010.10.
043.

Fischetti, Matteo and Michele Monaci (2009). “Light Robustness”. In: Robust and On-
line Large-Scale Optimization: Models and Techniques for Transportation Systems. Berlin,
Heidelberg: Springer-Verlag, pp. 61–84. ISBN: 9783642054648. URL: https://doi.
org/10.1007/978-3-642-05465-5_3.

Ford, L. R. and D. R. Fulkerson (1956). “Maximal Flow Through a Network”. In: Cana-
dian Journal of Mathematics 8, pp. 399–404. DOI: 10.4153/CJM-1956-045-5.

Freeman, Linton C (1978). “Centrality in social networks conceptual clarification”. In:
Social networks 1.3, pp. 215–239.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability. W. H. Freeman and
Company, San Francisco.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman.

Ghofrani, Faeze et al. (2018). “Recent applications of big data analytics in railway
transportation systems: A survey”. In: Transportation Research Part C: Emerging Tech-
nologies 90, pp. 226–246.

Goerigk, Marc (2012). PESPlib – A benchmark library for periodic event scheduling. http:
//num.math.uni-goettingen.de/~m.goerigk/pesplib/.

Goerigk, Marc, Michael Schachtebeck, and Anita Schöbel (2013). “Evaluating line con-
cepts using travel times and robustness”. In: Public Transport 5, pp. 267–284.

Goerigk, Marc and Anita Schöbel (2010). “An Empirical Analysis of Robustness Con-
cepts for Timetabling”. In: 10th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS’10). Ed. by Thomas Erlebach and
Marco Lübbecke. Vol. 14. OpenAccess Series in Informatics (OASIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 100–113. ISBN:
978-3-939897-20-0. DOI: 10.4230/OASIcs.ATMOS.2010.100. URL: http://drops.
dagstuhl.de/opus/volltexte/2010/2753.

154

Gong, Guanglu, Yong Liu, and Minping Qian (2001). “An adaptive simulated anneal-
ing algorithm”. In: Stochastic Processes and their Applications 94.1, pp. 95–103. ISSN:
0304-4149. URL: https://doi.org/10.1016/S0304-4149(01)00082-5.

Goverde, Rob MP (2010). “A delay propagation algorithm for large-scale railway traf-
fic networks”. In: Transportation Research Part C: Emerging Technologies 18.3, pp. 269–
287.

Großmann, Peter et al. (2012a). “Solving Periodic Event Scheduling Problems with
SAT”. In: Advanced Research in Applied Artificial Intelligence. Ed. by He Jiang et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 166–175. ISBN: 978-3-642-
31087-4.

— (2012b). “Solving Periodic Event Scheduling Problems with SAT”. In: Advanced
Research in Applied Artificial Intelligence. Ed. by He Jiang et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 166–175. ISBN: 978-3-642-31087-4.

— (2012c). Solving Periodic Event Scheduling Problems with SAT. in: International Con-
ference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems, pp. 166-175, Springer.

— (2012d). Solving Periodic Event Scheduling Problems with SAT. in: International Con-
ference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems, pp. 166-175, Springer.

Großmann, Peter et al. (2016). “Capacity-utilized Integration and Optimization of Rail
Freight Train Paths into 24 Hours Timetables”. In: Proceedings of the 3rd International
Conference on Models and Technologies for Intelligent Transportation Systems.

Grosso, Andrea, Marco Locatelli, and Wayne Pullan (Dec. 2008). “Simple ingredients
leading to very efficient heuristics for the maximum clique problem”. In: Journal of
Heuristics 14.6, pp. 587–612. ISSN: 1572-9397. DOI: 10.1007/s10732-007-9055-x.
URL: https://doi.org/10.1007/s10732-007-9055-x.

Guerra, João and Inês Lynce (2012). “Reasoning over Biological Networks Using Max-
imum Satisfiability”. In: Principles and Practice of Constraint Programming. Ed. by
Michela Milano. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 941–956. ISBN:
978-3-642-33558-7.

Hadjiat, Malika and Jean François Maurras (1997). “A strongly polynomial algorithm
for the minimum cost tension problem”. In: Discrete Mathematics 165-166. Graphs
and Combinatorics, pp. 377–394. ISSN: 0012-365X. DOI: https://doi.org/10.
1016/S0012-365X(96)00185-9. URL: http://www.sciencedirect.com/science/
article/pii/S0012365X96001859.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). “Exploring Network
Structure, Dynamics, and Function using NetworkX”. In: Proceedings of the 7th
Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod
Millman. Pasadena, CA USA, pp. 11–15.

Hamann, Michael and Ben Strasser (Feb. 2018). “Graph Bisection with Pareto Opti-
mization”. In: J. Exp. Algorithmics 23. ISSN: 1084-6654. DOI: 10.1145/3173045. URL:
https://doi.org/10.1145/3173045.

Hansen, Ingo and Jörn Pachl (2014). Railway Timetabling & Operations. Analysis - Mod-
elling - Optimisation - Simulation - Performance Evaluation.

155

Hauck, Florian and Natalia Kliewer (2019). “Big data analytics im Bahnverkehr”. In:
HMD Praxis der Wirtschaftsinformatik. URL: https://doi.org/10.1365/s40702-
019-00524-7.

Heuven van Staereling, Irving van (2018). “Tree Decomposition Methods for the Pe-
riodic Event Scheduling Problem”. In: 18th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2018). Ed. by Ralf
Borndörfer and Sabine Storandt. Vol. 65. OpenAccess Series in Informatics (OA-
SIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 6:1–
6:13. ISBN: 978-3-95977-096-5. DOI: 10.4230/OASIcs.ATMOS.2018.6. URL: http:
//drops.dagstuhl.de/opus/volltexte/2018/9711.

Hoos, Holger H. (1996). “Solving hard combinatorial problems with GSAT — A case
study”. In: KI-96: Advances in Artificial Intelligence. Ed. by Günther Görz and Steffen
Hölldobler. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 107–119. ISBN: 978-
3-540-70669-4.

Huber, Peter J. and Elvezio M. Ronchetti (Apr. 2009). Robust statistics. Second. Wi-
ley Series in Probability and Statistics. John Wiley & Sons, Inc, New York. ISBN:
9780470129906. DOI: 10.1002/9780470434697.

Hubert, Mia and Ellen Vandervieren (2008). “An adjusted boxplot for skewed distri-
butions”. In: Computational statistics & data analysis 52.12, pp. 5186–5201.

Huisman, Tijs and Richard J. Boucherie (2001). “Running times on railway sections
with heterogeneous train traffic”. In: Transportation Research Part B: Methodologi-
cal 35.3, pp. 271–292. ISSN: 0191-2615. DOI: https://doi.org/10.1016/S0191-
2615(99)00051-X. URL: http://www.sciencedirect.com/science/article/pii/
S019126159900051X.

Hyttinen, Antti, Frederick Eberhardt, and Matti Järvisalo (2014). “Constraint-based
Causal Discovery: Conflict Resolution with Answer Set Programming”. In: Pro-
ceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 340–349.

Jégou, Philippe (1993). “Decomposition of Domains Based on the Micro-structure of Fi-
nite Constraint-satisfaction Problems”. In: Proceedings of the Eleventh National Con-
ference on Artificial Intelligence. AAAI’93. Washington, D.C.: AAAI Press, pp. 731–
736. ISBN: 0-262-51071-5. URL: http://dl.acm.org/citation.cfm?id=1867270.
1867379.

Karp, Richard M. (1972). “Reducibility among Combinatorial Problems”. In: Complex-
ity of Computer Computations: Proceedings of a symposium on the Complexity of Com-
puter Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research,
Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathemat-
ical Sciences Department. Boston, MA: Springer US, pp. 85–103. ISBN: 978-1-4684-
2001-2.

Kecman, P., F Corman, and L Meng (2015). “Train delay evolution as a stochastic pro-
cess”. English. In: Proceedings of the 6th International Conference on Railway Opera-
tions Modelling and Analysis. Ed. by N Tomii, CPL Barkan, and al et. IAROR.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (May 1983). “Optimization by Simulated
Annealing”. In: Science 220, pp. 671–680. DOI: 10.1126/science.220.4598.671.

156

Kloks, Ton (1994). Treewidth, Computations and Approximations. Vol. 842. Lecture Notes
in Computer Science. Springer. ISBN: 3-540-58356-4. DOI: 10.1007/BFb0045375.
URL: https://doi.org/10.1007/BFb0045375.

Kono, Ami, H Yakubi, and Norio Tomii (2016). “Identifying the cause of delays in
urban railways using datamining technique”. In: Asian conference on Railway infras-
tructure and Transportation, pp. 227–230.

Kümmling, Michael, Peter Großmann, and Jens Opitz (2015). Maximisation of homoge-
nous rail freight train paths at a given level of quality. 27th European Conference on
Operational Research, Glasgow.

Lei, Zhendong and Shaowei Cai (July 2018). “Solving (Weighted) Partial MaxSAT by
Dynamic Local Search for SAT”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on
Artificial Intelligence Organization, pp. 1346–1352. DOI: 10.24963/ijcai.2018/
187.

Liebchen, C. (2006). “Periodic timetable optimization in public transport”. PhD thesis.
Technische Universität Berlin.

Liebchen, Christian (2006). Periodic Timetable Optimization in Public Transport. disserta-
tion.de.

— (2008). “The First Optimized Railway Timetable in Practice”. In: Transportation Sci-
ence 42.4, pp. 420–435. DOI: 10.1287/trsc.1080.0240. eprint: https://doi.org/
10.1287/trsc.1080.0240. URL: https://doi.org/10.1287/trsc.1080.0240.

Liebchen, Christian and Rolf H Möhring (2007). “The modeling power of the Peri-
odic Event Scheduling Problem: railway timetables – and beyond”. In: Algorithmic
methods for railway optimization. Springer, pp. 3–40.

Lindner, Niels and Christian Liebchen (2019). “New Perspectives on PESP: T-Partitions
and Separators”. In: 19th Symposium on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2019). Ed. by Valentina Cacchiani
and Alberto Marchetti-Spaccamela. Vol. 75. OpenAccess Series in Informatics (OA-
SIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2:1–
2:18. ISBN: 978-3-95977-128-3. DOI: 10.4230/OASIcs.ATMOS.2019.2. URL: http:
//drops.dagstuhl.de/opus/volltexte/2019/11414.

Lindner, Niels and Julian Reisch (2020). Parameterized Complexity of Periodic Timetabling.
eng. Tech. rep. 20-15. Takustr. 7, 14195 Berlin: ZIB.

Little, Roderick J. A. and Donald B. Rubin. (2002). Statistical analysis with missing data.
eng. 2nd ed. Wiley Series in Probability and Statistics. Hoboken, New Jersey: John
Wiley & Sons, Inc. ISBN: 1-119-01356-9.

Long, Jeffrey D. and Norman Cliff (1997). “Confidence intervals for Kendall’s tau”. In:
British Journal of Mathematical and Statistical Psychology 50.1, pp. 31–41.

Lundberg, Scott M and Su-In Lee (2017). “A unified approach to interpreting model
predictions”. In: Advances in neural information processing systems, pp. 4765–4774.

Maróti, Gábor (July 2017). “A branch-and-bound approach for robust railway timetabl-
ing”. English. In: Public Transport 9.1-2, pp. 73–94. ISSN: 1866-749X. DOI: 10.1007/
s12469-016-0143-x.

157

Martin, Ullrich, Carlo von Molo, et al. (2015). “Umfassende Einführung der Mittelpuf-
ferkupplung (in German)”. In: Neues verkehrswissenschaftliches Journal - Ausgabe 13.

Martin, Ullrich, Niels Neuberg, et al. (2015). “Automatische Mittelpufferkupplung mit
elektrischer Leitungsverbindung – Perspektiven für EIU und EVU (in German)”.
In: ETR – Eisenbahntechnische Rundschau, Ausgabe 11/2015.

Molnár, Botond et al. (2018). “A high-performance analog Max-SAT solver and its ap-
plication to Ramsey numbers”. In: CoRR abs/1801.06620. arXiv: 1801.06620. URL:
http://arxiv.org/abs/1801.06620.

Nachtigall, Karl (1993). Exact Solution Methods for Periodic Programs. Tech. rep. 14/93.
Hildesheimer Informatikberichte.

— (1998). “Periodic Network Optimization and Fixed Interval Timetables”. Habilita-
tion thesis. Universität Hildesheim.

Nachtigall, Karl and Jens Opitz (2008). “Solving Periodic Timetable Optimisation Prob-
lems by Modulo Simplex Calculations”. In: 8th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (ATMOS’08). Ed. by Matteo
Fischetti and Peter Widmayer. Vol. 9. OpenAccess Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz- Zentrum für Informatik. ISBN: 978-
3-939897-07-1.

— (2014). Modelling and Solving a Train Path Assignment Model. Proceedings of the In-
ternational Conference on Operations Research, Aachen.

Nestoridis, Nestor V. and Dimitrios M. Thilikos (2014). “Square roots of minor closed
graph classes”. In: Discrete Applied Mathematics 168. Fifth Workshop on Graph Clas-
ses, Optimization, and Width Parameters, Daejeon, Korea, October 2011, pp. 34–
39. ISSN: 0166-218X. DOI: https://doi.org/10.1016/j.dam.2013.05.026. URL:
http://www.sciencedirect.com/science/article/pii/S0166218X13002552.

Odijk, M. A. (1994). Construction of periodic timetables, Part 1: A cutting plane algorithm.
Tech. rep. 94-61. TU Delft.

Odijk, Michiel (1994). Construction of Periodic Timetables: A Cutting Plane Algorithm. in:
Technical Report, TU Delft.

Ohrimenko, Olga, Peter J. Stuckey, and Michael Codish (2007). “Propagation = Lazy
Clause Generation”. In: Principles and Practice of Constraint Programming – CP 2007.
Ed. by Christian Bessière. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 544–
558. ISBN: 978-3-540-74970-7.

Opsahl, Tore, Filip Agneessens, and John Skvoretz (2010). “Node centrality in weighted
networks: Generalizing degree and shortest paths”. In: Social Networks 32.3, pp. 245–
251. ISSN: 0378-8733. DOI: https://doi.org/10.1016/j.socnet.2010.03.006.
URL: http://www.sciencedirect.com/science/article/pii/S0378873310000183.

Park, James D. (2002). “Using Weighted Max-SAT Engines to Solve MPE”. In: Proc.
18th Nat’l Conf. Artificial Intelligence, pp. 682–687.

Pätzold, Julius et al. (2017). “Look-Ahead Approaches for Integrated Planning in Pub-
lic Transportation”. In: ATMOS. Vol. 59. OASICS. Schloss Dagstuhl - Leibniz-Zen-
trum für Informatik, 17:1–17:16.

158

Pisinger, David and Stefan Ropke (2010). “Large Neighborhood Search”. In: Hand-
book of Metaheuristics. Ed. by Michel Gendreau and Jean-Yves Potvin. Boston, MA:
Springer US, pp. 399–419.

Pöhle, Daniel (2016). “Strategische Planung und Optimierung der Kapazität in Eisen-
bahnnetzen unter Nutzung automatischer Taktfahrplanung (in German)”. In: Dis-
serta Verlag.

Pöhle, Daniel and Matthias Feil (2016). “Optimierte Belegung von Systemtrassen im
industrialisierten Fahrplan: Herausforderungen und erfolgreiche Ansätze (in Ger-
man)”. In: Tagungsband der 25. Verkehrswissenschaftliche Tage 2016, Dresden.

Pöhle, Daniel, Anna-Lena Frank, et al. (2020). “Automatisierte Fahrplanerstellung bei
der DB Netz (in German)”. In: Tagungsbericht Heureka 2021.

Reisch, Julian (2020). State of the Art Overview on Automatic Railway Timetable Generation
and Optimization. eng. URL: http://dx.doi.org/10.17169/refubium-28658.

Reisch, Julian, Peter Großmann, and Natalia Kliewer (2019). “Conflict Resolving - A
Maximum Independent Set Heuristics for Solving MaxSAT”. In: Proceedings of the
22nd International Multiconference Information Society 1, pp. 67–71.

— (2020). “Stable Resolving - A Randomized Local Search Heuristic for MaxSAT”.
In: KI 2020: Advances in Artificial Intelligence. Ed. by Ute Schmid, Franziska Klügl,
and Diedrich Wolter. Cham: Springer International Publishing, pp. 163–175. ISBN:
978-3-030-58285-2.

Reisch, Julian, Peter Großmann, Daniel Pöhle, et al. (2021). “Conflict resolving – A
local search algorithm for solving large scale conflict graphs in freight railway
timetabling”. In: European Journal of Operational Research. ISSN: 0377-2217. DOI: doi.
org/10.1016/j.ejor.2021.01.006. URL: https://www.sciencedirect.com/
science/article/pii/S0377221721000084.

Reisch, Julian and Natalia Kliewer (2020). “Black-Box Optimization in Railway Sim-
ulations”. In: Operations Research Proceedings 2019. Ed. by Janis S. Neufeld et al.
Cham: Springer International Publishing, pp. 717–723. ISBN: 978-3-030-48439-2.

Reisch, Julian, Natalia Kliewer, et al. (2021). “Bestimmung der Kapazitätssteigerung
durch Einführung der Mittelpufferkupplung und ep-Bremse (in German)”. In: ETR
– Eisenbahntechnische Rundschau, Ausgabe 1-2/2021.

Robertson, N. and P.D. Seymour (1995). “Graph Minors. XIII. The Disjoint Paths Prob-
lem”. In: Journal of Combinatorial Theory, Series B 63.1, pp. 65–110. ISSN: 0095-8956.
DOI: https://doi.org/10.1006/jctb.1995.1006. URL: http://www.science%
20direct.com/science/article/pii/S0095895685710064.

Robertson, Neil and P.D Seymour (1984). “Graph minors. III. Planar tree-width”. In:
Journal of Combinatorial Theory, Series B 36.1, pp. 49–64. ISSN: 0095-8956. DOI: https:
//doi.org/10.1016/0095-8956(84)90013-3. URL: http://www.sciencedirect.
com/science/article/pii/0095895684900133.

— (1991). “Graph minors. X. Obstructions to tree-decomposition”. In: Journal of Com-
binatorial Theory, Series B 52.2, pp. 153–190. ISSN: 0095-8956. DOI: https://doi.
org/10.1016/0095-8956(91)90061-N. URL: http://www.science%20direct.com/
science/article/pii/009589569190061N.

159

Rosin, Christopher D. (2014). “Unweighted Stochastic Local Search can be Effective
for Random CSP Benchmarks”. In: CoRR abs/1411.7480. arXiv: 1411.7480. URL:
http://arxiv.org/abs/1411.7480.

Rößler, David, Natalia Kliewer, and Julian Reisch (Feb. 2019). “Modeling delay prop-
agation and transmission in railway networks”. In: Proceedings of the 14th Interna-
tional Conference on Wirtschaftsinformatik. Vol. 14, pp. 98–111.

Rößler, David et al. (2021). “Discerning Primary and Secondary Delays in Railway
Networks using Explainable AI”. In: vol. 52. 23rd EURO Working Group on Trans-
portation Meeting, EWGT 2020, 16-18 September 2020, Paphos, Cyprus, pp. 171–
178. DOI: https : / / doi . org / 10 . 1016 / j . trpro . 2021 . 01 . 018. URL: https :
//www.sciencedirect.com/science/article/pii/S2352146521000405.

Ruan, Jianhua, Angela K Dean, and Weixiong Zhang (2010). “A general co-expression
network-based approach to gene expression analysis: comparison and applica-
tions”. In: BMC systems biology 4.1, p. 8.

Rubin, Donald B. (1976). “Inference and missing data”. In: Biometrika 63.3, pp. 581–592.
Schlaich, Johannes and Daniel Pöhle (2017). “Einsatz von Optimierungsverfahren in

der Fahrplanerstellung (in German)”. In: Tagungsbericht Heureka 2017.
Schöbel, Anita (2007). “Integer programming approaches for solving the delay man-

agement problem”. In: Algorithmic methods for railway optimization. Springer, pp. 145–
170.

— (2017). “An eigenmodel for iterative line planning, timetabling and vehicle schedul-
ing in public transportation”. In: Transportation Research Part C: Emerging Technolo-
gies 74, pp. 348–365. ISSN: 0968-090X. DOI: https://doi.org/10.1016/j.trc.
2016.11.018. URL: http://www.sciencedirect.com/science/article/pii/
S0968090X1630242X.

Schöbel, Anita and Albrecht Kratz (2009). “A Bicriteria Approach for Robust Timetabl-
ing”. In: Robust and Online Large-Scale Optimization: Models and Techniques for Trans-
portation Systems. Ed. by Ravindra K. Ahuja, Rolf H. Möhring, and Christos D.
Zaroliagis. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 119–144. ISBN: 978-
3-642-05465-5. DOI: 10.1007/978-3-642-05465-5_5. URL: https://doi.org/10.
1007/978-3-642-05465-5_5.

Schoenberg, I. J. (1988). “Contributions to the Problem of Approximation of Equidis-
tant Data by Analytic Functions”. In: I. J. Schoenberg Selected Papers. Ed. by Carl
de Boor. Boston, MA: Birkhäuser Boston, pp. 3–57. ISBN: 978-1-4899-0433-1. DOI:
10.1007/978-1-4899-0433-1_1. URL: https://doi.org/10.1007/978-1-4899-
0433-1_1.

Schranil, Steffen (2013). Prognose der Dauer von Störungen des Bahnbetriebs (in German).
Vol. 164. ETH Zurich.

Schrijver, Alexander (1986). Theory of Linear and Integer Programming. John Wiley &
Sons, Inc. ISBN: 0471908541.

Schwarz, Adam J and John McGonigle (2011). “Negative edges and soft threshold-
ing in complex network analysis of resting state functional connectivity data”. In:
Neuroimage 55.3, pp. 1132–1146. DOI: 10.1016/j.neuroimage.2010.12.047.

160

Selman, Bart, Henry Kautz, and Bram Cohen (1995). “Local Search Strategies for Sat-
isfiability Testing”. In: DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pp. 521–532.

Serafini, Paolo and Walter Ukovich (1989a). A Mathematical Model for Periodic Schedul-
ing Problems. in: SIAM Journal on Discrete Mathematics, 2, pp. 550-581.

— (1989b). “A mathematical model for periodic scheduling problems”. In: SIAM Jour-
nal on Discrete Mathematics 2.4, pp. 550–581.

Seymour, P. D. and R. Thomas (June 1994). “Call routing and the ratcatcher”. En-
glish (US). In: Combinatorica 14.2, pp. 217–241. ISSN: 0209-9683. DOI: 10 . 1007 /
BF01215352.

Sloane, Neil J. A. (2015). Challenge Problems: Independent Sets in Graphs. URL: https:
//oeis.org/A265032/a265032.html.

Sutskever, Ilya et al. (17–19 Jun 2013). “On the importance of initialization and momen-
tum in deep learning”. In: Proceedings of the 30th International Conference on Machine
Learning. Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of
Machine Learning Research 3. Atlanta, Georgia, USA: PMLR, pp. 1139–1147. URL:
http://proceedings.mlr.press/v28/sutskever13.html.

Szmidt, Eulalia and Janusz Kacprzyk (2011). “The Spearman and Kendall rank corre-
lation coefficients between intuitionistic fuzzy sets.” In: EUSFLAT Conf. Pp. 521–
528.

Tamaki, Hisao (May 2019). “Positive-Instance Driven Dynamic Programming for Tree-
width”. In: J. Comb. Optim. 37.4, pp. 1283–1311. ISSN: 1382-6905. DOI: 10.1007/
s10878-018-0353-z. URL: https://doi.org/10.1007/s10878-018-0353-z.

Taylor, Richard (1990). “Interpretation of the correlation coefficient: a basic review”.
In: Journal of diagnostic medical sonography 6.1, pp. 35–39.

Thistlethwaite, D. L. and D. T. Campbell (1960). “Regression-discontinuity analysis:
An alternative to the ex post facto experiment”. In: Journal of Educational Psychology
51.6, pp. 309–317.

Tukey, John W (1977). Exploratory data analysis. Vol. 2. Reading, Mass.
Voth-Gaeddert, Lee and Devin Cornell (2016). “Improving health information systems

in Guatemala using weighted correlation network analysis”. In: Global Humanitar-
ian Technology Conference (GHTC), 2016. IEEE, pp. 686–693.

Xu, Ke (2005). BHOSLIB: Benchmarks with hidden optimum solutions for graph problems.
URL: http:%20//www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.
htm.

Yuan, Jianxin (2006). Stochastic modelling of train delays and delay propagation in stations.
Vol. 2006. Eburon Uitgeverij BV.

Zhang, Bin and Steve Horvath (2005). “A general framework for weighted gene co-
expression network analysis”. In: Statistical applications in genetics and molecular bi-
ology 4.1, pp. 1–45.

Zhang, Yongxiang et al. (2019). “Solving cyclic train timetabling problem through
model reformulation: Extended time-space network construct and Alternating Di-
rection Method of Multipliers methods”. In: Transportation Research Part B: Method-
ological 128, pp. 344–379. ISSN: 0191-2615.

161

Zwaneveld, Peter J. et al. (1996). “Routing Trains Through Railway Stations: Model
Formulation and Algorithms”. In: Transportation Science 30.3, pp. 181–194. ISSN:
1526-5447. DOI: 10.1287/trsc.30.3.181. URL: http://dx.doi.org/10.1287/
trsc.30.3.181.

162

	List of Figures
	Introduction
	Motivation
	Thesis Outline

	State of the Art Overview on Automatic Railway Timetable Generation and Optimization
	Introduction
	Slot Construction
	(A-)Periodic Timetabling
	Train Path Assignment Problem
	Timetable Robustness
	Conclusion

	Practical Applications of Automatic Railway Timetabling
	Conflict Resolving - A Local Search Algorithm for Solving Large Scale Conflict Graphs in Freight Railway Timetabling
	Bestimmung der Kapazitätssteigerung durch Einführung der Mittelpufferkupplung und ep-Bremse

	Algorithms and Computability in Timetable Generation
	Conflict Resolving - A Maximum Independent Set Heuristics for Solving MaxSAT
	Stable Resolving - A Randomized Local Search Heuristic for MaxSAT
	Introduction
	Related Work
	Algorithm
	Experimental Results
	Conclusion and Outlook

	Parameterized Complexity of Periodic Timetabling
	Introduction
	The Periodic Event Scheduling Problem
	PESP on Networks of Treewidth Two
	Subset Sum
	Treewidth
	Branchwidth
	Carvingwidth

	Dynamic Programs
	PESP and Vertex Separators
	A Branch Decomposition Approach
	A Tree Decomposition Version

	Fixed-parameter tractable algorithms
	Cyclomatic Number
	Vertex Cover Number

	Structure of Realistic Event-Activity Networks
	Line-Based Event-Activity Networks
	Branchwidth of Line-Based Networks
	Parameters of R1L1

	Conclusion

	Delay Propagation in Railway Networks
	Modeling Delay Propagation and Transmission in Railway Networks
	Discerning Primary and Secondary Delays in Railway Networks using Explainable AI
	Black-Box Optimization in Railway Simulations
	Conclusion

