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Abstract
Rips complexes are important structures for analyzing topological features of metric
spaces. Unfortunately, generating these complexes is expensive because of a combi-
natorial explosion in the complex size. For n points in R

d , we present a scheme to
construct a 2-approximation of the filtration of the Rips complex in the L∞-norm,
which extends to a 2d0.25-approximation in the Euclidean case. The k-skeleton of the
resulting approximation has a total size of n2O(d log k+d). The scheme is based on the
integer lattice and simplicial complexes based on the barycentric subdivision of the d-
cube. We extend our result to use cubical complexes in place of simplicial complexes
by introducing cubical maps between complexes. We get the same approximation
guarantee as the simplicial case, while reducing the total size of the approximation to
only n2O(d) (cubical) cells. There are two novel techniques that we use in this paper.
The first is the use of acyclic carriers for proving our approximation result. In our
application, these are maps which relate the Rips complex and the approximation in a
relatively simple manner and greatly reduce the complexity of showing the approxi-
mation guarantee. The second technique is what we refer to as scale balancing, which
is a simple trick to improve the approximation ratio under certain conditions.
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1 Introduction

Context. Persistent homology (Carlsson 2009; Edelsbrunner and Harer 2010; Edels-
brunner et al. 2002) is a technique to analyze data sets using topological invariants. The
idea is to build a multi-scale representation of data sets and to track its homological
changes across the scales.

A standard construction for the important case of point clouds in Euclidean space
is the Vietoris-Rips complex (usually abbreviated as simply the Rips complex): for
a scale parameter α ≥ 0, it is the collection of all subsets of points with diameter
at most α. When α increases from 0 to ∞, the Rips complexes form a filtration, an
increasing sequence of nested simplicial complexes whose homological changes can
be computed and represented in terms of a barcode.

The computational drawback of Rips complexes is their sheer size: the k-skeleton
of a Rips complex (that is, where only subsets of size at most k+1 are considered) for
n points consists of�(nk+1) simplices because every (k+1)-subset joins the complex
for a sufficiently large scale parameter. This size bound makes barcode computations
for large point clouds infeasible even for low-dimensional homological features1. This
difficulty motivates the question of what we can say about the barcode of the Rips
filtration without explicitly constructing all of its simplices.

We address this question using approximation techniques. The space of barcodes
forms a metric space: two barcodes are close if similiar homological features occur
on roughly the same range of scales. More precisely, the bottleneck distance is used
as a distance metric between barcodes. The first approximation scheme by Sheehy
(2013) constructs a (1+ε)-approximation of the k-skeleton of the Rips filtration using
only n( 1

ε
)O(λk) simplices for arbitrary finite metric spaces, where λ is the doubling

dimension of the metric. Further approximation techniques for Rips complexes (Dey
et al. 2014) and the closely related Čech complexes (Botnan and Spreemann 2015;
Cavanna et al. 2015; Kerber and Sharathkumar 2013) have been derived subsequently,
all with comparable size bounds. More recently, we constructed an approximation
scheme (Choudhary et al. 2019) for the Čech filtrations of n points inRd that had size

n
( 1

ε

)O(d)
2O(d log d+dk) for the k-skeleton, improving the size bound from previous

work.
In Choudhary et al. (2017b), we constructed an approximation scheme for Rips

filtration in Euclidean space that yields a worse approximation factor of only O(d),
but uses only n2O(d log k+d) simplices. In Choudhary et al. (2017b), we also show a
lower bound result on the size of approximations: for any ε < 1/ log1+c n with some
constant c ∈ (0, 1), any ε-approximate filtration has size n�(log log n).

1 An exception are point clouds in R2 and R3, for which alpha complexes (Edelsbrunner and Harer 2010)
are an efficient alternative.
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There has also been work on using cubical complexes to compute persistent homol-
ogy, such as in Wagner et al. (2012). Cubical complexes are typically smaller than
their simplicial counterparts, simply because they avoid triangulations. However, to
our knowledge, there has been no attempt to utilize them in computing approxima-
tions of filtrations. Also, while there are efficient methods to compute persistence for
simplicial complexes connected with simplicial maps (Dey et al. 2014; Kerber and
Schreiber 2017), we are not aware of such counterparts for cubical complexes.
Our contributions. For the Rips filtration of n points in Rd with distances taken in the
L∞-norm,wepresent a 2-approximationwhose k-skeletonhas size atmostn6d−1(2k+
4)(k + 3)!

{
d

k + 2

}
= n2O(d log k+d) where

{
a
b

}
denotes Stirling numbers of the

second kind. This translates to a 2d0.25-approximation of the Rips filtration in the
Euclidean metric and hence improves the asymptotic approximation quality of our
previous approach (Choudhary et al. 2017b) with the same size bound. Our scheme
gives the best size guarantee over all previous approaches.

On a high level, our approach follows a straightforward approximation scheme:
given a scaled and appropriately shifted integer grid on R

d , we identify those grid
points that are close to the input points and build an approximation complex using
these grid points. The challenge lies in how to connect these grid points to a simplicial
complex such that close-by grid points are connected, while avoiding too many con-
nections to keep the size small. Our approach first selects a set of active faces in the
cubical complex defined over the grid, and defines the approximation complex using
the barycentric subdivision of this cubical complex.

We also describe an output-sensitive algorithm to compute our approximation. By
randomizing the aforementioned shifts of the grids, we obtain a worst-case running
time of n2O(d) log� + 2O(d)M in expectation, where � is the spread of the point set
(that is, the ratio of the diameter to the closest distance of two points) and M is the
size of the approximation.

Additionally, this paper makes the following technical contributions:

– We follow the standard approach of defining a sequence of approximation
complexes and establishing an interleaving between the Rips filtration and the
approximation. We realize our interleaving using chain maps connecting a Rips
complex at scale α to an approximation complex at scale cα, and vice versa, with
c ≥ 1 being the approximation factor. Previous approaches (Choudhary et al.
2017b; Dey et al. 2014; Sheehy 2013) used simplicial maps for the interleaving,
which induce an elementary form of chain maps and are therefore more restrictive.

The explicit construction of such maps can be a non-trivial task. The novelty
of our approach is that we avoid this construction by the usage of acyclic car-
riers (Munkres 1984). In short, carriers are maps that assign subcomplexes to
subcomplexes under some mild extra conditions. While they are more flexible,
they still certify the existence of suitable chain maps, as we exemplify in Sect. 2.
We believe that this technique is of general interest for the construction of approx-
imations of cell complexes.
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428 A. Choudhary et al.

– We exploit a simple trick that we call scale balancing to improve the quality of
approximation schemes. In short, if the aforementioned interleaving maps from
and to the Rips filtration do not increase the scale parameter by the same amount,
one can simply multiply the scale parameter of the approximation by a constant.
Concretely, given maps

φα : Rα → Xα ψα : Xα → Rcα

interleaving the Rips complex Rα and the approximation complex Xα , we can
define X ′

α := Xα/
√
c and obtain maps

φ′
α : Rα → X ′√

cα ψα : X ′
α → R√

cα

which improves the interleaving from c to
√
c. While it has been observed that the

same trick can be used for improving the worst-case distance between Rips and
Čech filtrations,2 our work seems to be the first to make use of it in the context of
approximations.

– We extend our approximation scheme to use cubical complexes instead of sim-
plicial complexes, thereby achieving a marked reduction in size complexity. To
connect the cubical complexes at different scales, we introduce the notion of cubi-
cal maps, which is a simple extension of simplicial maps to the cubical case.
While we do not know of an algorithm that can compute persistence for the case
of cubical complexes with cubical maps, we believe that this is a first step towards
advocating the use of cubical complexes as approximating structures.

Our technique can be combined with dimension reduction techniques in the same
way as in Choudhary et al. (2017b) (see Theorems 19, 21, and 22 therein), with
improved logarithmic factors. We state the main results in the paper, while omitting
the technical details.
Updates from the conference version. An earlier version of this paper appeared at the
25th European Symposium on Algorithms (Choudhary et al. 2017a). In that version,
we achieved a 3

√
2-approximation of the L∞ Rips filtration and correspondingly,

a 3
√
2d0.25-approximation of the L2 case. In this version, we improve the weak

interleaving of Choudhary et al. (2017a) to a strong interleaving to get improved
approximation factors. We expand upon the details of scale balancing, among other
proofs that were missing from the conference version. We add the case of cubical
complexes in this version.

There is a subtle yet important distinction between the approximation complexes
used in the conference version and the current result. In the conference version, our
simplicial complex was built using only active faces, while the current version uses
both active and secondary faces (please see Sect. 4 for definitions). This makes it
easier to relate the simplicial and the cubical complexes in the current version. On the
other hand the complexes are different, hence the associated proofs have been adapted
accordingly.

2 Ulrich Bauer, private communication.
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Improved approximate rips filtrations with shifted… 429

Outline. We start by explaining the relevant topological concepts in Sect. 2. We give
details of the integer grids thatweuse inSect. 3. InSect. 4wepresent our approximation
scheme that uses the barycentric subdivision, and present the computational aspects
in Sect. 5. The extension to cubical complexes is presented in Sect. 6. We discuss
practical aspects of our scheme and conclude in Sect. 7. Some details of the strong
interleaving from Sect. 4 are deferred to Appendix A.

2 Preliminaries

Webriefly review the essential topological concepts needed.More details are available
in standard references (see Bubenik et al. 2015; Chazal et al. 2009; Edelsbrunner and
Harer 2010; Hatcher 2002; Munkres 1984).
Simplicial complexes.A simplicial complex K on a finite set of elements S is a collec-
tion of subsets {σ ⊆ S} called simplices such that each subset τ ⊂ σ is also in K . The
dimension of a simplex σ ∈ K is k := |σ | − 1, in which case σ is called a k-simplex.
A simplex τ is a sub-simplex of σ if τ ⊆ σ . We remark that, commonly a sub-simplex
is called a “face” of a simplex, but we reserve the word “face” for a different structure.
For the same reason, we do not introduce the common notation of of “vertices” and
“edges” of simplicial complexes, but rather refer to 0- and 1-simplices throughout.
The k-skeleton of K consists of all simplices of K whose dimension is at most k. For
instance, the 1-skeleton of K is a graph defined by its 0-simplices and 1-simplices.

Given a point set P ⊂ R
d and a real number α ≥ 0, the (Vietoris-)Rips complex on

P at scale α consists of all simplices σ = (p0, · · · , pk) ⊆ P such that diam(σ ) ≤ α,
where diam denotes the diameter. In this work, we writeRα for the Rips complex at
scale 2α with the Euclidean metric, andR∞

α when using the metric of the L∞-norm.
In either way, a Rips complex is an example of a flag complex, which means that
whenever a set {p0, · · · , pk} ⊆ P has the property that every 1-simplex {pi , p j } is in
the complex, then the k-simplex {p0, · · · , pk} is also in the complex.

A related complex is the Čech complex of P at scale α, which consists of simplices
of P for which the radius of the minimum enclosing ball is at most α. We do not
study Čech complexes in this paper, but we mention them briefly while showing a
connection with the Rips complex later in this section.

A simplicial complex K ′ is a subcomplex of K if K ′ ⊆ K . For instance, Rα is a
subcomplex of Rα′ for 0 ≤ α ≤ α′. Let L be a simplicial complex. Let ϕ̂ be a map
which assigns a vertex of L to each vertex of K . A simplicial map is a map ϕ : K → L
induced by a vertex map ϕ̂, such that for every simplex {p0, · · · , pk} in K , the set
{ϕ̂(p0), · · · , ϕ̂(pk)} is a simplex of L . For K ′ a subcomplex of K , the inclusion map
inc : K ′ → K is an example of a simplicial map. A simplicial map is completely
determined by its action on the 0-simplices of K .
Chain complexes. A chain complex C∗ = (Cp, ∂p) with p ∈ Z is a collection of
abelian groups Cp and homomorphisms ∂p : Cp → Cp−1 such that ∂p−1 ◦ ∂p = 0. A
simplicial complex K gives rise to a chain complex C∗(K ) for a fixed base field F :
define Cp for p ≥ 0 as the set of formal linear combinations of p-simplices in K over
F , and C−1 := F . The boundary of a k-simplex with k ≥ 1 is the (signed) sum of
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its sub-simplices of co-dimension one3; the boundary of a 0-simplex is simply set to
1. The homomorphisms ∂p are then defined as the linear extensions of this boundary
operator. Note that C∗(K ) is sometimes called augmented chain complex of K , where
the augmentation refers to the addition of the non-trivial group C−1.

A chain map φ : C∗ → D∗ between chain complexes C∗ = (Cp, ∂p) and D∗ =
(Dp, ∂

′
p) is a collection of group homomorphisms φp : Cp → Dp such that φp−1 ◦

∂p = ∂ ′
p ◦ φp. For simplicial complexes K and L , we call a chain map φ : C∗(K ) →

C∗(L) augmentation-preserving if φ−1 is the identity. A simplicial map ϕ : K → L
between simplicial complexes induces an augmentation-preserving chain map ϕ̄ :
C∗(K ) → C∗(L) between the corresponding chain complexes. This construction is
functorial, meaning that for ϕ the identity function on a simplicial complex K , ϕ̄ is
the identity function on C∗(K ), and for composable simplicial maps ϕ, ϕ′, we have
that ϕ ◦ ϕ′ = ϕ̄ ◦ ϕ̄′.
Homology. The p-th homology group Hp(C∗) of a chain complex is defined as
ker ∂p/im ∂p+1. The p-th homology group of a simplicial complex K , Hp(K ), is
the p-th homology group of its induced chain complex C∗(K ). Note that this defi-
nition is commonly referred to as reduced homology, but we ignore this distinction
and consider reduced homology throughout. Hp(C∗) is anF-vector space because we
have chosen our base ring F as a field. Intuitively, when the chain complex is gener-
ated from a simplicial complex, the dimension of the p-th homology group counts the
number of p-dimensional holes in the complex. We write H(C∗) for the direct sum of
all Hp(C∗) for p ≥ 0.

A chain map φ : C∗ → D∗ induces a linear map φ∗ : H(C∗) → H(D∗) between
the homology groups. Again, this construction is functorial, meaning that it maps
identity maps to identity maps, and it is compatible with compositions.
Acyclic carriers. We call a simplicial complex K acyclic, if K is connected and all
homology groups Hp(K ) are trivial. For simplicial complexes K and L , an acyclic
carrier � is a map that assigns to each simplex σ in K , a non-empty acyclic subcom-
plex �(σ) ⊆ L , and whenever τ is a sub-simplex of σ , then �(τ) ⊆ �(σ). We say
that a chain c ∈ Cp(K ) is carried by a subcomplex K ′, if c takes value 0 except for
p-simplices in K ′. A chain map φ : C∗(K ) → C∗(L) is carried by �, if for each sim-
plex σ ∈ K , φ(σ) is carried by �(σ). We state the acyclic carrier theorem (Munkres
1984, Thm 13.3), adapted to our notation:

Theorem 1 Let � : K → L be an acyclic carrier. Then,

– There exists an augmentation-preserving chain map φ : C∗(K ) → C∗(L) carried
by �.

– If two augmentation-preserving chain maps φ1, φ2 : C∗(K ) → C∗(L) are both
carried by �, then φ∗

1 = φ∗
2 .
4

We remark that “augmentation-preserving” is crucial in the statement: without it, the
trivial chain map (that maps everything to 0) turns the first statement trivial and easily
leads to a counter-example for the second claim.

3 To avoid thinking about orientations, it is often assumed that F = Z2 is the field with two elements.
4 In the language of Munkres (1984), this result is stated as the existence of a chain homotopy between φ1
and φ2. As evident from Munkres (1984), Theorem 12.4, this implies that the induced linear maps are the
same.
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Filtrations and towers. Let I ⊆ R be a set of real values which we refer to as scales.
A filtration is a collection of simplicial complexes (Kα)α∈I such that Kα ⊆ K ′

α

for all α ≤ α′ ∈ I . For instance, (Rα)α≥0 is a filtration which we call the Rips
filtration. A (simplicial) tower is a sequence (Kα)α∈J of simplicial complexes with
J being a discrete set (for instance J = {2k | k ∈ Z}), together with simplicial maps
ϕα : Kα → Kα′ between complexes at consecutive scales. For instance, the Rips
filtration can be turned into a tower by restricting to a discrete range of scales, and
using the inclusion maps as ϕ. The approximation constructed in this paper will be
another example of a tower.

We say that a simplex σ is included in the tower at scale α′, if σ is not in the image
of the map ϕα : Kα → Kα′ , where α is the scale preceding α′ in the tower. The size
of a tower is the number of simplices included over all scales. If a tower arises from a
filtration, its size is simply the size of the largest complex in the filtration (or infinite,
if no such complex exists). However, this is not true in general for simplicial towers,
because simplices can collapse in the tower and the size of the complex at a given
scale may not take into account the collapsed simplices which were included at earlier
scales in the tower.
Barcodes and Interleavings. A collection of vector spaces (Vα)α∈I connected with
linear maps λα1,α2 : Vα1 → Vα2 is called a persistence module, if λα,α is the identity
on Vα and λα2,α3 ◦ λα1,α2 = λα1,α3 for all α1 ≤ α2 ≤ α3 ∈ I for the index set I .

We generate persistence modules using the previous concepts. Given a simplicial
tower (Kα)α∈I , we generate a sequence of chain complexes (C∗(Kα))α∈I . By func-
toriality, the simplicial maps ϕ of the tower give rise to chain maps ϕ between these
chain complexes. Using functoriality of homology, we obtain a sequence (H(Kα))α∈I
of vector spaces with linear maps ϕ∗, forming a persistence module. The same con-
struction applies to filtrations as a special case.

Persistencemodules admit a decomposition into a collection of intervals of the form
[α, β] (with α, β ∈ I ), called the barcode, subject to certain tameness conditions. The
barcode of a persistencemodule characterizes themodule uniquely up to isomorphism.
If the persistence module is generated by a simplicial complex, an interval [α, β] in
the barcode corresponds to a homological feature (a “hole”) that comes into existence
at complex Kα and persists until it disappears at Kβ .

Two persistence modules (Vα)α∈I and (Wα)α∈I with linear maps φ·,· and ψ·,· are
said to beweakly (multiplicatively) c-interleaved with c ≥ 1, if there exist linear maps
γα : Vα → Wcα and δα : Wα → Vcα , called interleaving maps, such that the diagram

· · · Vαc

γ

φ
Vαc3 · · ·

· · · Wα

ψ

δ

Wαc2

δ

· · ·

(1)

commutes, that is,ψ = γ ◦δ and φ = δ◦γ for all {. . . , α/c2, α/c, α, cα, . . . } ∈ I (we
have skipped the subscripts of the maps for readability). In such a case, the barcodes
of the two modules are 3c-approximations of each other in the sense of Chazal et al.
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(2009). We say that two towers are c-approximations of each other if their persistence
modules are c-approximations.

Under the more stringent conditions of strong interleaving, the approximation ratio
can be improved. Two persistence modules (Vα)α≥0 and (Wα)α≥0 with respective
linear maps φ·,· andψ·,· are said to be (multiplicatively) strongly c-interleaved if there
exist a pair of families of linear maps γα : Vα → Wcα and δα : Wα → Vcα for c > 0,
such that Diagram (2) commutes for all 0 ≤ α ≤ α′ (the subscripts of the maps are
excluded for readability). In such a case, the persistence barcodes of the two modules
are said to be c-approximations of each other in the sense of Chazal et al. (2009).

Vα
c

φ

γ

Vcα′ Vcα
φ

Vcα′

Wα

ψ
Wα′

δ

Wα

ψ

δ

Wα′

δ

Vα
φ

Vα′
γ

Vα
φ

γ

Vα′
γ

W α
c

ψ

δ

Wcα′ Wcα
ψ

Wcα′

(2)

Finally, we mention a special case that relates equivalent persistence mod-
ules (Carlsson and Zomorodian 2005; Goodman et al. 2017). Two persistencemodules
V = (Vα)α∈I andW = (Wα)α∈I that are connected through linear maps φ,ψ respec-
tively are isomorphic if there exists an isomorphism fα : Vα → Wα for each α ∈ I
for which the following diagram commutes for all α ≤ β ∈ I :

. . . Vα
φ

fα

Vβ

fβ

. . .

. . . Wα

ψ
Wβ . . .

(3)

Isomorphic persistence modules have identical persistence barcodes.
Scale balancing. Let V = (Vα)α∈I and W = (Wα)α∈I be two persistence modules
with linear maps fv, fw, respectively. Let there be linear maps φ : Vα/ε1 → Wα and
ψ : Wα → Vαε2 for 1 ≤ ε1, ε2 such that all α, α/ε1, αε2 ∈ I . Suppose that the
following diagram commutes, for all α ∈ I .

· · · Wα

ψ

fw
Wαε1ε2 · · ·

. . . Vα/ε1

fv

φ

Vαε2

ψ

· · ·

(4)
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Let ε := max(ε1, ε2). Then, by replacing ε1, ε2 by ε in Diagram (4), the diagram still
commutes, so V is a 3ε-approximation ofW.

We define a new vector space V ′
cα := Vα , where c =

√
ε1
ε2

and cα ∈ I . This gives

rise to a new persistence module, V′ = (Vcα)α∈I . The maps φ and ψ can then be
interpreted as φ : V ′

α/
√

ε1ε2
→ Wα , or φ : V ′

α → Wα
√

ε1ε2 and ψ : Wα → V ′
α
√

ε1ε2
.

Then, Diagram (4) can be re-interpreted as

· · · Wα
√

ε1ε2

ψ

fw
Wα(ε1ε2)3/2

· · ·

. . . Vα′
fv

φ

V ′
αε1ε2

ψ

· · ·

(5)

which still commutes. Therefore, V′ is a 3
√

ε1ε2-approximation of W, which is an
improvement over V, since

√
ε1ε2 ≤ max(ε1, ε2). V and V

′ have the same barcode
up to a scaling factor.

This scaling trick also works whenV andW are strongly interleaved. If we have the
following commutative diagrams: (where we have skipped the maps for readability):

Wα Wα′ε1ε2 Wαε1 Wα′ε1

Vαε2 Vα′ε2 Vα Vα′

Wαε1 Wα′ε1 Wα Wα′

Vα Vα′ε1ε2 Vαε2 Vα′ε2

(6)

thenV andW aremax(ε1, ε2)-approximations of each other. By definingV′ as before,
the following diagrams

Wα Wαd2 Wαd Wα′d

V ′
αd V ′

α′d V ′
α V ′

α′

Wαd Wα′d Wα Wα′

V ′
α V ′

α′d2 V ′
αd V ′

α′d

(7)
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commute for d = cε2 = √
ε1ε2, so we can improve a max(ε1, ε2)-approximation to

an
√

ε1ε2-approximation.
We end the section by discussing a basic but important relation between Čech and

Rips filtrations. It is well-known that for any α ≥ 0, Cα ⊆ Rα ⊆ C√
2α (Edelsbrunner

and Harer 2010). This gives a strong interleaving between the towers (Cα)α≥0 and
(Rα)α≥0 with ε1 = 1 and ε2 = √

2. Applying the scale balancing technique, we get
that

Lemma 1 The scaled Čech persistence module (H(C 4√2α))α≥0 and the Rips persis-

tence module (H(Rα))α≥0 are
4
√
2-approximations of each other.

3 Shifted integer lattices

In this section, we take a look at simple modifications of the integer lattice.
We denote by I := {αs := λ2s | s ∈ Z} with λ > 0, a discrete set of scales. For

each scale in I , we define grids which are scaled and translated (shifted) versions of
the integer lattice.

Definition 1 (Scaled and shifted grids) For each scale αs ∈ I , we define the scaled
and shifted grid Gαs inductively as:

– For s = 0, Gαs is simply the scaled integer grid λZd , where each basis vector has
been scaled by λ.

– For s ≥ 0, we choose an arbitrary point Oαs ∈ Gαs and define

Gαs+1 = 2
(
Gαs − Oαs

) + Oαs + αs

2
(±1, · · · ,±1) , (8)

where the signs of the components of the last vector are chosen independently and
uniformly at random (and the choice is independent for each s).

– For s ≤ 0, we define

Gαs−1 = 1

2

(
Gαs − Oαs

) + Oαs + αs−1

2
(±1, · · · ,±1) , (9)

where the last vector is chosen as in the case of s ≥ 0.

Equations (8) and (9) are consistent at s = 0. A simple example of the above
construction is the sequence of grids with Gαs := αsZ

d for even s, and Gαs :=
αsZ

d + αs−1
2 (1, · · · , 1) for odd s.

Next, we motivate the shifting of the grids. Let VorGs (x) denote the Voronoi cell of
any point x ∈ Gs with respect to the point set Gs . It is clear that the Voronoi cell is a
cube of side length αs centered at x . The shifting of the grids ensures that each x ∈ Gαs

lies in the Voronoi region of a unique y ∈ Gαs+1 . Using an elementary calculation, we
show a stronger statement:

Lemma 2 Let x ∈ Gαs , y ∈ Gαs+1 be such that x ∈ VorGαs+1
(y). Then,

VorGαs
(x) ⊂ VorGαs+1

(y).
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Fig. 1 Gαs is represented by
small disks (yellow), while
Gαs+1 is represented by larger
disks (green). Possible locations
of x are indicated with their
Voronoi regions. The Voronoi
regions of the larger grid contain
those of x

(1, 1)

2

x

x

x x

x

x

x x

Proof Without loss of generality, we can assume that αs = 2 and x is the origin, using
an appropriate translation and scaling. Also, we assume for the sake of simplicity that
Gαs+1 = 2Gαs + (1, · · · , 1); the proof is analogous for any other translation vector.
In that case, it is clear that y = (1, · · · , 1). Since Gαs = 2Zd , the Voronoi region of
x is the set [−1, 1]d . Since Gαs+1 is a translated version of 4Zd , the Voronoi region
of y is the cube [−1, 3]d , which covers [−1, 1]d . The claim follows. For an example
look to Fig. 1. 
�

3.1 Cubical complex ofZd

The integer grid Z
d naturally defines a cubical complex, where each element is an

axis-aligned, k-dimensional cube with 0 ≤ k ≤ d. To define it formally, let � denote
the set of all integer translates of faces of the unit cube [0, 1]d , considered as a convex
polytope in Rd . We call the elements of � faces of Zd .

Each face has a dimension k; the 0-faces, or vertices are exactly the points in Z
d .

The facets of a k-face E are the (k − 1)-faces contained in E . We call a pair of facets
of E opposite facets, if they are disjoint. Naturally, these concepts carry over to scaled
and shifted versions of Zd , so we define �αs as the cubical complex defined by Gαs .

We define a map gαs : �αs → �αs+1 as follows: for vertices of �αs , we assign to
x ∈ Gαs the (unique) vertex y ∈ Gαs+1 such that x ∈ VorGαs+1

(y) (see Lemma 2). For
a k-face f of �αs with vertices (p1, · · · , p2k ) in Gαs , we set gαs ( f ) to be the convex
hull of {gαs (p1), · · · , gαs (p2k )}; the next lemma shows that this is a well-defined
map. In this paper, we sometimes call gαs a cubical map, since it is a counterpart of
simplicial maps for cubical complexes.

Lemma 3 Let f be k-face of �αs with vertices {p1, · · · , p2k } ⊂ Gαs . Then

– the set of vertices {gαs (p1), · · · , gαs (p2k )} form a face e of �αs+1 .
– for every face e1 ⊂ e, there is a face f1 ⊂ f such that gαs ( f1) = e1.
– if e1, e2 are any two opposite facets of e, then there exists a pair of opposite facets

f1, f2 of f such that gαs ( f1) = e1 and gαs ( f2) = e2.
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Proof First claim: We prove the first claim by induction on the dimension of faces
of Gαs . Base case: for vertices, the claim is trivial using Lemma 2. Induction case: let
the claim hold true for all (k − 1)-faces of Gαs . We show that the claim holds true for
all k-faces of Gαs .

Let f be a k-face of Gαs . Let f1 and f2 be opposite facets of f , along the m-th
coordinate. Let us denote the vertices of f1 by (p1, · · · , p2k−1) and those of f2 by
(p2k−1+1, · · · , p2k ) taken in the same order, that is, p j and p2k−1+ j differ in only
the m-th coordinate for all 1 ≤ j ≤ 2k−1. By definition, all vertices of f1 share
the m-th coordinate, and we denote coordinate of these vertices by z. Then, the m-th
coordinate of all vertices of f2 equals z + αs . Then gαs (p j ) and gαs (p2k−1+ j ) have
the same coordinates, except possibly the m-th coordinate. By induction hypothesis,
e1 = gαs ( f1) and e2 = gαs ( f2) are two faces of Gs+1. This implies that e2 is a
translate of e1 along the m-th coordinate.

There are two cases: if e1 and e2 share the m-th coordinate, then e1 = e2 and
therefore gαs ( f ) = e1 = e2 = e, so the claim follows. On the other hand, if e1 and
e2 do not share the m-th coordinate, then they are two faces of �αs+1 which differ in
only one coordinate by αs+1. So they are opposite facets of a co-dimension one face
e of Gαs+1 . Using induction, the claim follows.

Second claim: We prove the claim by induction over the dimension of e1. Base
case: e1 is a vertex. The vertices of f in Voronoi region of e1 form f1. Since f is
an axis parallel face and the Voronoi region is also axis-parallel, it is immediate that
f1 is a face of f . Assume that the claim is true up to dimension i . For e1 a face of
dimension i +1, consider opposite facets ea and eb of e. By the induction claim, there
exist faces fa, fb ⊂ f that satisfy gαs ( fa) = ea, gαs ( fb) = eb. fa and fb are disjoint
since otherwise gαs ( fa ∩ fb) would be common to both ea and eb, a contradiction.
If ea is a translate of eb along the m-th coordinate, then fa is also a translate of fb
along the same coordinate. Therefore fa and fb are opposite faces of a face f1 and
gαs ( f1) = e1.

Third claim: Without loss of generality, assume that x1 is the direction in which
e2 is a translate of e1. Using the second claim, let h denote the maximal face of f such
that gαs (h) = e1. Clearly, h �= f , since that would imply gαs ( f ) = e1 = e, which is
a contradiction.

Suppose h has dimension less than k − 1. Let h′ be the facet of f that contains h
and has the same x1 coordinates for all vertices. Then gαs (h

′) = e1, which contradicts
the maximality of h.

Therefore, the only possibility is that h is a facet f1 of f such that gαs ( f1) = e1.
Let f2 be the opposite facet of f1. From the proof of the first claim, it is easy to see
that gαs ( f2) = e2. The claim follows. 
�

3.2 Barycentric subdivision

We discuss a special triangulation of �αs . A flag in �αs is a set of faces { f0, · · · , fk}
of �αs such that

f0 ⊆ · · · ⊆ fk .
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Fig. 2 A portion of the grid in
two dimensions. The dots are the
grid points which form the
0-faces of the cubical complex

Fig. 3 The barycentric
subdivision of the grid. The tiny
squares are barycenters of the
1-faces and 2-faces of the
cubical complex

The barycentric subdivision of �αs , denoted by sdαs , is the (infinite) simplicial com-
plex whose simplices are the flags of �αs (Munkres 1984).

In particular, the 0-simplices of sdαs are the faces of �αs . An equivalent geometric
description of sdαs can be obtained by defining the 0-simplices as the barycenters
of the faces in sdαs , and introducing a k-simplex between (k + 1) barycenters if the
corresponding faces form a flag. For a simple example, see Figs. 2 and 3. It is easy
to see that sdαs is a flag complex. Given a face f in �αs , we write sd( f ) for the
subcomplex of sdαs consisting of all flags that are formed only by faces contained in
f .
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4 Approximation schemewith simplicial complexes

We define our approximation complex for a finite set of points in R
d . Recall from

Definition 1 that we can define a collection of scaled and shifted integer grids Gαs

over a collection of scales I := {αs = 2s | s ∈ Z} in R
d . To make the exposition

simple, we define our complex in a slightly generalized form.

4.1 Barycentric spans

Fix some s ∈ Z and let V denote any non-empty subset of Gαs .
Vertex span. We say that a face f ∈ �αs is spanned by V , if the set of vertices
V ( f ) := f ∩ V

– is non-empty, and
– not contained in any facet of f .

Trivially, the vertices of �αs which are spanned by V are precisely the points in V .
Any face of �αs which is not a vertex must contain at least two vertices of V in order
to be spanned. We point out that the set of spanned faces of �αs is not closed under
taking sub-faces. For instance, if V consists of two antipodal points of a d-cube, the
only faces spanned by V are the d-cube and the two vertices; all other faces of the
d-cube contain at most one vertex and hence are not spanned.

It is simple to test whether any given k-face f ∈ �αs is spanned by the set of
points V ( f ). Let T ⊆ [1, · · · , d] be the set of common coordinates of the points in
V ( f ). V ( f ) spans f if and only if the standard basis vectors of Rd corresponding to
T span f . T can be computed in |V ( f )|O(d) = O(2kd) time by a linear scan of the
coordinates. The coordinate directions spanned by f can also be found and compared
with T within the same time bound.
Barycentric span. The barycentric span of V is the subcomplex of sdαs obtained by
taking the union of the complete barycentric subdivisions of the maximal faces of
�αs that are spanned by V . The barycentric span of V is indeed a simplicial complex
by definition. Moreover, the barycentric span is a flag complex. Then for any face
f ∈ �αs , the barycentric span of V ( f ) is either empty or acyclic.
Furthermore, for any non-empty subset W ⊆ V , the faces of �αs that are spanned

byW are also spanned by V . Consequently, the barycentric span ofW is a subcomplex
of the barycentric span of V .

4.2 Approximation complex

We denote by P ⊂ R
d a finite set of points. We define two maps:

– aαs : P → Gαs : for each point p ∈ P , we let aαs (p) denote the grid point in Gαs

that is closest to p, that is, p ∈ VorGαs
(aαs (p)). We assume for simplicity that this

closest point is unique, which can be ensured using well-known methods (Edels-
brunner and Mücke 1990). We define the active vertices of Gαs as

Vαs := im
(
aαs

) = aαs (P) ⊂ Gαs ,
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that is, the set of grid points that have at least one point of P in their Voronoi cells.
– bαs : Vαs → P: the map bαs takes an active vertex of Gαs to its closest point in P .
By taking an arbitrary total order on P to resolve multiple assignments, we ensure
that this assignment is unique.

Naturally, bαs (v) is a point inside VorGαs
(v) for any v ∈ Vαs . It follows that the map

bαs is a section of aαs , that is, aαs ◦ bαs : Vαs → Vαs is the identity on Vαs . However,
this is not true for bαs ◦ aαs in general.

Recall that the map gαs : �αs → �αs+1 takes grid points of Gαs to grid points of
Gαs+1 . Using Lemma 2, it follows at once that:

Lemma 4 For all αs ∈ I and each x ∈ Vαs , gαs (x) = (aαs+1 ◦ bαs )(x).

Recall that R∞
α denotes the Rips complex at scale α for the L∞-norm. The next

statement is a direct application of the the triangle inequality; let diam∞() denote the
diameter in the L∞-norm.

Lemma 5 Let Q ⊆ P be a non-empty subset such that diam∞(Q) ≤ αs . Then, the
set of grid points aαs (Q) is contained in a face of �αs .

Equivalently, for any simplex σ = (p0, · · · , pk) ∈ R∞
αs/2

on P, the set of active
vertices {aαs (p0), · · · , aαs (pk)} is contained in a face of �αs .

Proof We prove the claim by contradiction. Suppose that the set of active vertices
aαs (Q) is not contained in a face of �αs . Then, there exists at least one pair of points
{x, y} ∈ Q such that aαs (x), aαs (y) are not in a common face of�αs . By the definition
of the gridGαs , the grid points aαs (x), aαs (y) therefore have L∞-distance at least 2αs .
Moreover, x has L∞-distance less than αs/2 from aαs (x), and the same is true for y
and aαs (y). By the triangle inequality, the L∞-distance of x and y is more than αs ,
which is a contradiction to the fact that diam∞(Q) ≤ αs . 
�

We now define our approximation tower. For any scale αs , we define Xαs as the
barycentric span of the active vertices Vαs ⊂ Gαs . See Figs. 4, 5 and 6 for a simple
illustration.

To simplify notation, we denote

– the faces of �αs spanned by Vαs as active faces, and
– the faces of active faces that are not spanned by Vαs as secondary faces.

To complete the description of the approximation tower, we need to define simplicial
maps of the form g̃αs : Xαs → Xαs+1 , which connect the simplicial complexes at
consecutive scales. We show that such maps are induced by gαs .

Lemma 6 Let f be any active face of �αs . Then, gαs ( f ) is an active face of �αs+1 .

Proof Using Lemma 3, e := gαs ( f ) is a face of �αs . If e is a vertex, then it is active,
because f contains at least one active vertex v, and gαs (v) = e in this case. If e is not
a vertex, we assume for a contradiction that it is not active. Then, it contains a facet
e1 that contains all active vertices in e. Let e2 denote the opposite facet of e1 in e. By
Lemma 3, f contains opposite facets f1, f2 such that gαs ( f1) = e1 and gαs ( f2) = e2.
Since f is active, both f1 and f2 contain active vertices; in particular, f2 contains an
active vertex v. But then the active vertex gαs (v) must lie in e2, contradicting the fact
that e1 contains all active vertices of e. 
�
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Fig. 4 A two-dimensional grid, shown along with its cubical complex. The green points (small dots) denote
the points in P and the red vertices (encircled) are the active vertices (color figure online)

Fig. 5 The active faces are shaded. The closure of the active faces forms the cubical complex
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Fig. 6 The generated approximation complex, whose vertices consist of those of the cubical complex and
the blue vertices (small dots), which are the barycenters of active and secondary faces

As a result, g is well defined for each face e ∈ �αs , since there exists some active
face e′ ∈ �αs with e ⊆ e′, and g(e) ⊆ g(e′). By definition, a simplex σ ∈ Xαs is a
flag ( f0 ⊆ · · · ⊆ fk) of faces in �αs . We set

g̃αs (σ ) := (
gαs ( f0) , · · · , gαs ( fk)

)
,

where (gαs ( f0) ⊆ · · · ⊆ gαs ( fk)) is a flag of faces in �αs+1 by Lemma 6, and hence
is a simplex in Xαs+1 . It follows that g̃s : Xαs → Xαs+1 is a simplicial map. This
completes the description of the simplicial tower

(Xαs

)
s∈Z .

4.3 Interleaving with the Rips module

First, we show that our tower is a constant-factor approximation of the the L∞-Rips
filtration of P . We then show the relation between our approximation tower and the
Euclidean Rips filtration of P .

We start by defining two acyclic carriers. First, we set λ = 1 and abbreviate α :=
αs = 2s to simplify notation.

– Cα
1 : R∞

α/2 → Xα: for any simplex σ = (p0, · · · , pk) in R∞
α/2, we set C

α
1 (σ ) as

the barycentric span ofU := {as(p0), · · · , as(pk)}, which is a subcomplex ofXα .
Using Lemma 5,U lies in a maximal active face f of�α , so thatCα

1 (σ ) is acyclic.
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The barycentric span of any subset of U is a subcomplex of the barycentric span
of U , so Cα

1 is a carrier. Therefore, Cα
1 is an acyclic carrier.

– Cα
2 : Xα → R∞

α : let σ be any flag of Xα and let E be the smallest active face of
�α that contains σ (we break ties by making use of an arbitrary global order � on
P)5. We collect all the points of P that map to vertices of E under the map aα and
set Cα

2 (σ ) as the simplex on this set of points. By an application of the triangle
inequality, we see that the L∞-diam of Cα

2 (σ ) is at most 2α, so Cα
2 (σ ) ∈ R∞

α and
is acyclic. It is also clear that Cα

2 (τ ) ⊆ Cα
2 (σ ) for each τ ⊆ σ , so Cα

2 is an acyclic
carrier.

Using the acyclic carrier theorem (Theorem 1), there exist augmentation-preserving
chain maps

cα
1 : C∗

(
R∞

α/2

)
→ C∗ (Xα) and cα

2 : C∗ (Xα) → C∗
(R∞

α

)
,

between the chain complexes, which are carried by Cα
1 and Cα

2 respectively, for each
α ∈ I . We obtain the following diagram of augmentation-preserving chain maps:

· · · C∗(R∞
α )

c1

inc C∗(R∞
2α) · · ·

. . . C∗(Xα)
g̃

c2

C∗(X2α)

c2

· · ·

(10)

where inc corresponds to the chain map for inclusion maps, and g̃ denotes the chain
map for the corresponding simplicial map g (we removed indices of the maps for
readability).

The chain complexes give rise to a diagram of the corresponding homology groups,
connected by the induced linear maps c∗

1, c
∗
2, inc

∗, g̃∗:

· · · H(R∞
α )

c∗
1

inc∗
H(R∞

2α) · · ·

. . . H(Xα)
g̃∗

c∗
2

H(X2α)

c∗
2

· · ·

(11)

Lemma 7 For all α ∈ I , the linear maps in the lower triangle of Diagram (11)
commute, that is,

g̃∗ = c∗
1 ◦ c∗

2 .

5 We define an order between the active faces of �α , using �: for each active face F ∈ �α , there are at
least two points of P whose images under gα are vertices of F ; say {q1 � q2 � · · · � qm } ⊆ P are the

points that map to F . We assign to F the string of length n: q1q2 · · · qm
n−m

︷ ︸︸ ︷
ø, · · · , ø. Each active face has a

unique string associated to it. A total order on the faces is obtained by taking the lexicographic orders of
the strings of each active face.
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Proof We look at the corresponding triangle in Diagram (10). We show that the
(augmentation-preserving) chain maps g̃ and c1 ◦ c2 are both carried by an acyclic
carrier D : Xα → X2α . The claim then follows from the acyclic carrier theorem.

Let σ ∈ Xα be any flag and let E ∈ �α denote the minimal active face containing
σ . Let {q1, . . . , qk} be the active vertices of E . Let {p1, . . . , pm} be the set of points of
P that map to {q1, . . . , qk} under the map aα . Since the L∞-diameter of {p1, . . . , pm}
is at most 2α, using Lemma 5 we see that {a2α(p1), . . . , a2α(pm)} is a face of �2α .
We set D(σ ) as the barycentric span of {a2α(p1), . . . , a2α(pm)}. It follows that D is
an acyclic carrier.

Further, {a2α(p1), . . . , a2α(pm)} = {g2α(q1), . . . , g2α(qk)} from Lemma 2, so
D(σ ) is the barycentric subdivision of g2α(E). As a result D = C1 ◦ C2 so that
it carries c1 ◦ c2. We show that D also carries the map g̃.

By definition, for each face e ⊆ E , g(e) ⊆ g(E) and g̃(sd(e)) ⊆ g̃(sd(E)). This
means that g̃(σ ) is contained in g(E). This shows that g̃(σ ) ∈ C1 ◦ C2(σ ) implying
that g̃ is carried by C1 ◦ C2, as required. 
�
Lemma 8 For all α ∈ I , the linear maps in the upper triangle of Diagram (11)
commute, that is,

inc∗ = c∗
2 ◦ c∗

1 .

Proof The proof technique is analogous to the proof of Lemma 7.We define an acyclic
carrier D : R∞

α → R∞
2α which carries inc and c2◦c1, both of which are augmentation-

preserving.
Let σ = (p0, · · · , pk) ∈ R∞

α be any simplex. The set of active vertices

U := {a2α (p0) , · · · , a2α (pk)} ⊂ G2α

lie in a face f of G2α , using Lemma 5. We can assume that f is active, as otherwise,
we argue about a facet of f that containsU . We set D(σ ) as the simplex on the subset
of points in P , whose closest grid point in G2α is any vertex of f . Using the triangle
inequality we see that D(σ ) ∈ R∞

2α , so D is an acyclic carrier. The vertices of σ are
a subset of D(σ ), so D carries the map inc. Showing that D carries c2 ◦ c1 requires
further explanation.

Let δ be any simplex in X2α for which the chain c1(σ ) takes a non-zero value.
Since c1(σ ) is carried by C1(σ ), we have that δ ∈ C1(σ ), which is the barycentric
span of U . Furthermore, for any τ ∈ C1(σ ), C2(τ ) is a simplex on the set of vertices
{p ∈ P | a2α(p) ∈ V ( f )}. It follows that C2(τ ) ⊆ D(σ ). In particular, since c2 is
carried by C2, c2(c1(σ )) ⊆ D(σ ) as well. 
�

Using Lemmas 7 and 8, we see that the two persistence modules
(
H(Xαs )

)
s∈Z and(

H(R∞
α )

)
α≥0 are weakly 2-interleaved.

With elementary modifications in the definition of X and g̃, we can get a tower of
the form (Xα)α≥0. Furthermore, with minor changes in the interleaving arguments,
we show that the corresponding persistence module is strongly 4-interleaved with the
L∞-Ripsmodule.Using scale balancing, this result improves to a strong 2-interleaving
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(see Lemma 16). Since the techniques used in the proof are very similar to the concepts
used in this section, for the sake of brevity we defer all further details to Appendix A.

Using the strong stability theorem for persistence modules and taking scale balanc-
ing into account, we immediately get that:

Theorem 2 The scaled persistencemodule
(
H(X2α)

)
α≥0 and the L∞-Rips persistence

module
(
H(R∞

α )
)
α≥0 are 2-approximations of each other.

For any pair of points p, p′ ∈ R
d , it holds that

‖p − p′‖∞ ≤ ‖p − p′‖2 ≤ √
d ‖p − p′‖∞.

This in turn shows that the L2- and the L∞-Rips filtrations are strongly
√
d-interleaved.

Using the scale balancing technique for strongly interleaved persistence modules, we
get:

Lemma 9 The scaled persistence module (H(Rα/d0.25))α≥0 and (H(R∞
α ))α≥0 are

strongly d0.25-interleaved.

Using Theorem 2, Lemma 9 and the fact that interleavings satisfy the trian-
gle inequality (Bubenik and Scott 2014, Theorem 3.3), we see that the module
(H(X2α))α≥0 is strongly 2d0.25-interleaved with the scaled Rips persistence mod-
ule (H(Rα/d0.25))α≥0. We can remove the scaling in the Rips filtration simply by

multiplying the scales on both sides with d0.25 and obtain our final approximation
result:

Theorem 3 The module
(
H(X2 4√dα

)
)
α≥0 and the Euclidean Rips persistence module(

H(Rα)
)
α≥0 are 2d

0.25-approximations of each other.

5 Computational complexity

In this section, we discuss the computational aspects of constructing the approximation
tower. In Sect. 5.1wediscuss the size complexity of the tower.An algorithm to compute
the tower efficiently is presented in Sect. 5.2.
Range of relevant scales. Set n := |P| and let CP(P) denote the closest pair distance
of P . At scale α0 := CP(P)

3d and lower, no two active vertices lie in the same face of
the grid, so the approximation complex consists of n isolated 0-simplices. At scale
αm := diam(P) and higher, points of P map to active vertices of a common face
(by Lemma 5), so the generated complex is acyclic. We inspect the range of scales
[α0, αm] to construct the tower, since the barcode is explicitly known for scales outside
this range. For this, we set λ = α0 in the definition of the scales. The total number of
scales is

�log2 αm/α0� =
⌈
log2

diam(P)3d

CP(P)

⌉
= �log2 � + log2 3d� = O(log� + log d),

where � = diam(P)
CP(P)

is the spread of the point set.
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5.1 Size of the tower

The size of a tower is the number of simplices that do not have a preimage, that is, the
number of simplex inclusions in the tower. We start by counting the number of active
faces used in the tower.

Lemma 10 The number of active faces without pre-image in the tower is at most n3d .

Proof At scale α0, there are n inclusions of 0-simplices in the tower, due to n active
vertices. Using Lemma 2, g is surjective on the active vertices of � (for any scale).
Hence, no further active vertices are added to the tower.

It remains to count the maximal active faces of dimension ≥ 1 without preimage.
We will use a charging argument, charging the existence of such an active face to one
of the points in P . We show that each point of P is charged at most 3d − 1 times,
which proves the claim. For that, we first fix an arbitrary total order ≺ on P . Each
active vertex on any scale has a non-empty subset of P in its Voronoi region; we call
the maximal such point with respect to the order ≺ the representative of the active
vertex.

For each active face f of dimension at least one, we define the signature of f as
the set of representatives of the active vertices of f . If for any set of active vertices
u1, . . . , uk we have that v = g(u1) = · · · = g(uk), then the representative of v is one
of the representatives of u1, . . . , uk , using Lemma 2. Therefore, the signatures of the
active faces that are images of f under g are subsets of the signature of f . This implies
that each maximal active face that is included has a unique maximal signature. We
bound the number of maximal signatures to get a bound on the number of maximal
active face inclusions. We charge the addition of each maximal signature to the lowest
ordered point according to ≺.

Each signature contains representatives of active vertices from a face of �α . Since
each active vertex v has 3d − 1 neighboring vertices in the grid that lie in a common
face, the representative p of v can be charged 3d − 1 times. There is a canonical
isomorphism between the neighboring vertices of v at each scale. Then, for p to be
charged more times, the image of v and some neighboring vertex u must be identical
under g at some scale. But then, the representative of g(v) = g(u) is not p anymore,
since p was the lowest ranked point in its neighborhood, hence the representative
changes when the Voronoi regions are combined. So, p could not have been charged
in such a case. Therefore, each point p ∈ P is indeed charged at most 3d − 1 times.

There are n active faces of dimension 0 and at most n(3d −1) active faces of higher
dimension. The upper bound is n + n(3d − 1) = n3d , as claimed. 
�
Theorem 4 The k-skeleton of the tower has size at most

n6d−1(2k + 4)(k + 3)!
{

d
k + 2

}
= n2O(d log k+d),

where

{
a
b

}
denotes the Stirling number of the second kind.
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Proof Each k-simplex that is included in the tower at any given scale α is a part of the
barycentric subdivision of an active face that is also included at α. Therefore, we can
account for the inclusion of this simplex by including the barycentric subdivision of
its parent active face.

From Lemma 10 at most n3d active faces are included in the tower over all dimen-
sions. We bound the number of k-simplices in the barycentric subdivision of a d-cube.
Multiplying with n3d gives the required bound.

Let c be any d-cube of�α . To count the number of flags of length (m+1) contained
in c that start with some vertex and end with c, we use similar ideas as in Edelsbrunner
and Kerber (2012): first, we fix any vertex v of c and count the flags of the form
v ⊆ · · · ⊆ c. Every �-face in c incident to v corresponds to a subset of � coordinate
indices, in the sense that the coordinates not chosen are fixed to the coordinates of v

for the face.With this correspondence, a flag from v to c of length (m+1) corresponds
to an ordered m-partition of {1, · · · , d}. The number of such partitions is known as

m! times the quantity

{
d
m

}
, which is the Stirling number of second kind (Rennie and

Dobson 1969), and is upper bounded by 2O(d logm). Since c has 2d vertices, the total

number of flags v ⊆ · · · ⊆ c of length (m + 1) with any vertex v is hence 2dm!
{
d
m

}
.

We now count the number of flags of length k + 1. Each such flag is (k + 1)-subset
of some flag of length m = k + 3 that start with a vertex and end with c. There

are 2d(k + 2)!
{

d
k + 2

}
such flags and each of them has

(k+3
k+1

) = (k + 3)(k + 2)/2

subsets of size (k + 1). The number of (k + 1)-flags is upper bounded by 2d(k +
2)!

{
d

k + 2

}
(k+3)(k+2)

2 = 2d−1(k + 2)(k + 3)!
{

d
k + 2

}
. The k-skeleton has size at

most

n3d2d−1(k + 2)(k + 3)!
{

d
k + 2

}
= n6d−1(2k + 4)(k + 3)!

{
d

k + 2

}
.


�

5.2 Computing the tower

From Sect. 3, we know that Gαs+1 is built from Gαs by making use of an arbitrary
translation vector (±1, · · · ,±1) ∈ Z

d . In our algorithm, we pick the components
of this translation vector uniformly at random from {+1,−1}, and independently for
each scale. The choice behind choosing this vector randomly becomes more clear in
the next lemma.

From the definition, the cubicalmaps gαs : �αs → �αs+1 can be composed formul-
tiple scales. For a fixed αs , we denote by g( j) : �αs → �αs+ j the j-fold composition
of g, that is,

g( j) = gαs+ j−1 ◦ gαs+ j−2 ◦ · · · ◦ gαs+1 ◦ gαs ,
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for j ≥ 1.

Lemma 11 For any k-face f ∈ �αs with 1 ≤ k ≤ d, let Y denote the minimal integer
j such that g( j)( f ) is a vertex, for a given choice of the randomly chosen translation
vectors. Then, the expected value of Y satisfies

E[Y ] ≤ 3 log k,

which implies that no face of �αs survives more than 3 log d scales in expectation.

Proof Without loss of generality, assume that the grid under consideration isZd and f
is the k-face spanned by the vertices {{0, 1}, · · · , {0, 1}︸ ︷︷ ︸

k

, 0, · · · , 0}, so that the origin

is a vertex of f . The proof for the general case is analogous.
Let y1 ∈ {−1, 1} denote the randomly chosen first coordinate of the translation

vector, so that the corresponding shift is one of {−1/2, 1/2}.
– If y1 = 1, then the grid G ′ on the next scale has some grid point with x1-
coordinate 1/2. Clearly, the closest grid point in G ′ to the origin is of the form
(+1/2,±1/2, · · · ,±1/2), and thus, this point is also closest to (1, 0, 0, · · · , 0).
The same is true for any point (0, ∗, · · · , ∗) and its corresponding point
(1, ∗, · · · , ∗) on the opposite facet of f . Hence, for y1 = 1, g( f ) is a face where
all points have the same x1-coordinate.

– On the other hand, if y1 = −1, the origin is mapped to some point
which has the form (−1/2,±1/2, · · · ,±1/2) and (1, 0, · · · , 0) is mapped to
(3/2,±1/2, · · · ,±1/2), as one can directly verify. Hence, in this case, in g( f ),
points do not all have the same x1 coordinate.

We say that the x1-coordinate collapses in the first case and survives in the second.
Both events occur with the same probability 1/2. Because the shift is chosen uniformly
at random for each scale, the probability that x1 did not collapse after j iterations is
1/2 j .

f spans k coordinate directions, so it must collapse along each such direction to
contract to a vertex. Once a coordinate collapses, it stays collapsed at all higher scales.
As the random shift is independent for each coordinate direction, the probability of
a collapse is the same along all coordinate directions that f spans. Using the union
bound, the probability that g j ( f ) has not collapsed to a vertex is at most k/2 j . With
Y as in the statement of the lemma, it follows that

P(Y ≥ j) ≤ k/2 j .

Hence,

E[Y ] =
∞∑

j=1

j P(Y = j) =
∞∑

j=1

P(Y ≥ j)

≤ log k +
∞∑

c=1

(c+1) log k∑

j=c log k

P(Y ≥ j)
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≤ log k +
∞∑

c=1

(c+1) log k∑

j=c log k

P(Y ≥ c log k)

≤ log k +
∞∑

c=1

log k
k

2c log k

≤ log k + log k
∞∑

c=1

1

kc−1

≤ log k + 2 log k ≤ 3 log k.


�
As a consequence of the lemma, the expected “lifetime” of k-simplices in our tower

with k > 0 is rather short: given a flag e0 ⊆ · · · ⊆ e�, the face e� will be mapped to
a vertex after O(log d) steps, and so will be all its sub-faces, turning the flag into a
vertex. It follows that summing up the total number of k-simplices with k > 0 over
Xα for all α ≥ 0 yields an upper bound of n2O(d log k+d) as well.

Algorithm description

Recall that a simplicial map can be written as a composition of simplex inclusions and
contractions of vertices (Dey et al. 2014; Kerber and Schreiber 2017). That means,
given the complex Xαs , to describe the complex at the next scale αs+1, it suffices to
specify

– which pairs of vertices in Xαs map to the same image under g̃, and
– which simplices in Xαs+1 are included at scale Xαs+1 .

The input is a set of n points P ⊂ R
d . The output is a list of events, where each

event is of one of the three following types:

– A scale event defines a real value α and signals that all upcoming events happen
at scale α (until the next scale event).

– An inclusion event introduces a new simplex, specified by the list of vertices on
its boundary (we assume that every vertex is identified by a unique integer).

– A contraction event is a pair of vertices (i, j) from the previous scale, and signifies
that i and j are identified as the same from that scale.

In a first step, we estimate the range of scales that we are interested in. We com-
pute a 2-approximation of diam(P) by taking any point p ∈ P and calculating
maxq∈P ‖p − q‖. Then we compute CP(P) using a randomized algorithm in n2O(d)

expected time (Khuller and Matias 1995).
Next, we proceed scale-by-scale and construct the list of events accordingly. On

the lowest scale, we simply compute the active vertices by point location for P in a
cubical grid, and enlist n inclusion events (this is the only step where the input points
are considered in the algorithm).

For the data structure, we use an auxiliary container S and maintain the invariant
that whenever a new scale is considered, S consists of all simplices of the previous
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scale, sorted by dimension. In S, for each vertex, we store an id and a coordinate
representation of the active face to which it corresponds. Every �-simplex with � > 0
is stored just as a list of integers, denoting its boundary vertices. We initialize S with
the n active vertices at the lowest scale.

Let α < α′ be any two consecutive scales with �,�′ the respective cubical com-
plexes andX ,X ′ the approximation complexes, with g̃ : X → X ′ being the simplicial
map connecting them. Suppose we have already constructed all events at scale α.

– First, we enlist the scale event for α′.
– Then, we enlist the contraction events. For that, we iterate through the vertices
of X and compute their value under g, using point location in a cubical grid. We
store the results in a list S′ (which contains the simplices of X ′). If for a vertex j ,
g( j) is found to be equal to g(i) for a previously considered vertex i , we choose
the minimal such i and enlist a contraction event for (i, j).

– We turn to the inclusion events:

– We start with the case of vertices. Every vertex of X ′ is either an active face
or a secondary face of �′. Each active face must contain an active vertex,
which is also a vertex of X ′. We iterate through the elements in S′. For each
active vertex v encountered, we go over all faces of the cubical complex �′
that contain v as a vertex, and check whether they are active. For every active
face E encountered that is not in S′ yet, we add it to S′ and enlist an inclusion
event of a new 0-simplex. Additionally, we go over each face of E , add it to S′
and enlist a vertex inclusion event, thereby enumerating the secondary faces
that are in E . At termination, all vertices of X ′ have been detected.

– Next, we iterate over the simplices of S of dimension ≥ 1, and compute their
image under g̃ using the pre-computed vertex map; we store the result in S′.

– To find the simplices of dimension≥ 1 included atX ′, we exploit our previous
insight that they contain at least one vertex that is included at the same scale
(see the proof of Theorem 4). Hence, we iterate over the vertices included in
X ′ and find the included simplices inductively in dimension.
Let v be the current vertex under consideration; assume that we have found all
(p − 1)-simplices in X ′ that contain v. Each such (p − 1)-simplex σ is a flag
of length p in �′. We iterate over all faces e that extend σ to a flag of length
p + 1. If e is active, we have found a p-simplex in X ′ incident to v. If this
simplex is not in S′ yet, we add it and enlist an inclusion event for it. We also
enqueue the simplex in our inductive procedure, to look for (p+ 1)-simplices
in the next round. At the end of the procedure, we have detected all simplices
in X ′ without preimage, and S′ contains all simplices of X ′. We set S ← S′
and proceed to the next scale.

This ends the description of the algorithm.

Theorem 5 To compute the k-skeleton, the algorithm takes

n2O(d) log� + 2O(d)M
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time in expectation and M space, where M denotes the size of the tower. In particular,
the expected time is bounded by

n2O(d) log� + n2O(d log k+d)

and the space is bounded by n2O(d log k+d).

Proof In the analysis, we ignore the costs of point locations in grids, checking whether
a face is active, and searches in data structures S, since all these steps have negligible
costs when appropriate data structures are chosen.

Computing the image of a vertex of X costs O(2d) time. Moreover, there are at
most n2O(d) vertices altogether in the tower in expectation (using Lemma 10), so this
bound in particular holds on each scale. Hence, the contraction events on a fixed scale
can be computed in n2O(d) time. Finding new active vertices requires iterating over
the cofaces of a vertex in a cubical complex. There are 3d such cofaces for each vertex.
This has to be done for a subset of the vertices inX ′, so the running time is also n2O(d).
Further, for each new active face, we go over its 2O(d) faces to enlist the secondary
faces, so this step also consumes n2O(d) time. Since there are O(log�+ log d) scales
considered, these steps require n2O(d) log� over all scales.

Computing the image of g̃ for a fixed scale costs at most O(2d |X |). M is the size of
the tower, that is, the simplices without preimage, and I is the set of scales considered.
The expected bound for

∑
α∈I |Xα| = O(log dM), because every simplex has an

expected lifetime of at most 3 log d by Lemma 11. Hence, the cost of these steps is
bounded by 2O(d)M .

In the last step of the algorithm, we find the simplices of X ′ included at α′. We
consider a subset of simplices of X ′, and for each, we iterate over a collection of
faces in the cubical complex of size at most 2O(d). Hence, this step is also bounded
by 2O(d)|X | per scale, and hence bounded 2O(d)M as well.

For the space complexity, the auxiliary data structure S gets as large as X , which
is clearly bounded by M . For the output complexity, the number of contraction events
is at most the number of inclusion events, because every contraction removes a vertex
that has been included before. The number of inclusion events is the size of the tower.
The number of scale events as described is O(log�+ log d). However, it is simple to
get rid of this factor by only including scale events in the case that at least one inclusion
or contraction takes place at that scale. The space complexity bound follows. 
�

5.3 Dimension reduction

When the ambient dimension d is large, our approximation scheme can be combined
with dimension reduction techniques to reduce the final complexity, very similar to the
application in Choudhary et al. (2017b). For a set of n points P ⊂ R

d , we apply the
dimension reduction schemes of Johnson-Lindenstrauss (JL) (Johnson et al. 1986),
Matoušek (MT) (Matoušek 1990), and Bourgain’s embedding (BG) (Bourgain 1985).
We then compute the approximation on the lower-dimensional point set. We only state
the main results in Table 1, leaving out the proofs since they are very similar to those
from Choudhary et al. (2017b).
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Table 1 Comparison of dimension reduction techniques: here the approximation ratio is for the Rips
persistence module, and the size refers to the size of the k-skeleton of the approximation

technique approximation ratio size runtime

JL O(log0.25 n) nO(log k) nO(1) log� + nO(log k)

MT O((log n)0.75(log log n)0.25) nO(1) nO(1) log�

BG + MT O((log n)1.75(log log n)0.25) nO(1) nO(1) log�

6 Approximation schemewith cubical complexes

We extend our approximation scheme to use cubical complexes in place of simplicial
complexes. We start by detailing a few aspects of cubical complexes.

6.1 Cubical complexes

We now briefly describe the concept of cubical complexes, essentially expanding
upon the contents of Sect. 3.1. For a detailed overview of cubical homology, we refer
to Kaczynski et al. (2004).

6.1.1 Definition

We define cubical complexes over the grids Gαs . For any fixed αs , the grids Gαs

defines a natural collection of cubes. An elementary cube γ is a product of intervals
γ = I1 × I2 × · · · × Id , where each interval is of the form I j = (x j , x j + m j ), such
that the vertex (x1, · · · , xm) ∈ Gαs and each m j is either 0 or αs . That means, an
(elementary) cube is simply a face of a d-cube of the grid. An interval I j is said to be
degenerate if m j = 0. The dimension of γ is the number of non-degenerate intervals
that defines it. We define the boundary of any interval as the two degenerate intervals
that form its endpoints and denote this by ∂(I j ) = (x j , x j ) + (x j + m j , x j + m j ).
Taking the boundary of any fixed subset of the intervals defining γ consecutively gives
a sum of faces of γ . A cubical complex of Gαs is a finite collection of cubes of Gαs .

We define chain complexes for the cubical case in the same way as in simplicial
complexes. The chain complexes are connected by boundary homomorphisms, where
the boundary of a cube is defined as:

∂ (I1 × · · · × Id) = (∂(I1) × I2 × · · · × Id) + · · · + (I1 × · · · × Id−1 × ∂(Id)) ,

where (I1 × · · · × ∂(I j ) × · · · × Id) denotes the sum

(I1 × · · · × (xi , xi ) × · · · × Id) + (I1 × · · · × (xi + mi , xi + mi ) × · · · × Id) .

It can be quickly verified that for each cube γ , ∂ ◦ ∂(γ ) = 0 since each term appears
twice in the expression and the addition is over Z2.
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6.1.2 Cubical maps and induced homology

Let Tαs and Tαt denote the cubical complexes defined by the grids Gαs and Gαt ,
respectively, for s ≤ t . We use the vertexmap g : Gαs → Gαt to define amap between
the cubical complexes. Note that if (a, b) are vertices of a cube of Tαs that differ in one
coordinate, then (g(a), g(b)) are vertices of a cube of Tαt that differ in at most one
coordinate. A cubical map is a map f : Tαs → Tαt defined using g, such that for each
cube γ = [a1, b1]×· · ·×[ad , bd ] of Tαs , f (γ ) := [g(a1), g(b1)]×· · ·×[g(ad), g(bd)]
spans a cube of Tαt . The cubical map can also be restricted to sub-complexes of Tαs

and Tαt , provided that the image f (γ ) is well-defined.
Each cubical map also defines a corresponding continuous map between the under-

lying spaces of the respective complexes. Let x ∈ |γ | be a point in γ . Then, the
coordinates of x can be uniquely written as x = [λ1a1 + (1−λ1)b1, · · · , λdad + (1−
λd)bd ] where each λi ∈ [0, 1]. The image of x under the continuous extension of f is
the point [λ1g(a1)+ (1−λ1)g(b1), · · · , λdg(ad)+ (1−λd)g(bd)] in the cube g(γ ).

The cubical map f gives rise to a chain map f# : Cp(Tαs ) → Cp(Tαt ) between
the p-th chain groups of the complexes, for each p ∈ [0, · · · , d]. For each cube γ ,
f#(γ ) = f (γ ) if dim(γ ) = dim( f (γ )) and 0 otherwise. For any chain c = ∑

i γi ,
the chain map is defined linearly f#(c) = ∑

i f#(γi ). It is simple to verify that ∂ ◦ f# =
f# ◦ ∂ , so this gives a homomorphism between the chain groups.
Moving to the homology level, we get the respective homology groups H(Tαs )

and H(Tαt ) and the chain map from above induces a linear map between them. The
concept of reduced homology and augmentation maps is also applicable to the cubical
chain complexes. For a sequence of cubical complexes connected with cubical maps,
this generates a persistence module.

Cubical filtrations and towers are defined in a similar manner to the simplicial case.
A cubical filtration is a collection of cubical complexes (Tα)α∈I such that Tα ⊆ T ′

α

for all α ≤ α′ ∈ I . A (cubical) tower is a sequence (Tα)α∈J of cubical complexes with
J being an index set together with cubical maps between complexes at consecutive
scales. A cubical tower can be written as a sequence of inclusions and contractions,
where an inclusion refers to the addition of a cube and a contraction refers to collapsing
a cube along a coordinate direction to either of the endpoints of the interval.

6.2 Description

We choose the simplest possible cubical complex to define our approximation cubical
tower: for each scale αs , we define the cubical complex Uαs as the set of active faces
and secondary faces spanned by Vαs . Hence the cubical complex is closed under taking
faces and is well-defined. See Fig. 5 for a simple example.

Recall from Sect. 4 that for each s ∈ Z,Uαs andUαs+1 are related by a cubical map
gαs , which gives rise to the cubical tower

(
Uαs

)
s∈Z .
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We extend this to a tower (Uα)α≥0 by using techniques fromAppendixA. In Sect. 4 we
saw that the tower (Xα)α≥0 gives an approximation to the Rips filtration. The relation
between the simplicial and cubical towers is trivial: Xαs is simply a triangulation of
|Uαs |. Hence Xαs and Uαs have the same homology (Munkres 1984). Moreover, the
simplicial map is derived from an application of the cubical map. In particular, the
continuous versions of both maps are the same. For any 0 ≤ α ≤ β, let

– f1 : H∗(Uα) → H∗(Uβ) denote the homomorphism induced by the cubical map,
– f2 : H∗(Xα) → H∗(Xβ) denote the homomorphism induced by the simplicial
map, and

– f0 : H∗(|Xα| = |Uα|) → H∗(|Xβ | = |Uβ |) denote the homomorphism induced
by the common continuous map.

It is well-established that f1 = f0 (Kaczynski et al. 2004, Chapter. 6) and f2 =
f0 (Munkres 1984, Chapter. 2). Therefore, we conclude that the persistence modules(
H(Uα)

)
α≥0 and

(
H(Xα)

)
α≥0 are persistence-equivalent. Combining this observation

with the result of Theorem 3, we get

Theorem 6 The scaled persistence modules

–
(
H(U2α)

)
α≥0 and the L∞-Rips module

(
H(R∞

α )
)
α≥0 are 2-approximations of

each other, and
–

(
H(U2 4√dα

)
)
α≥0 and the Rips module

(
H(Rα)

)
α≥0 2d0.25-approximate each

other.

To compute the cubical tower, we simply re-use the algorithm for the simplicial
case, with small changes:

– In the simplicial case, we used a container S to hold the simplices from the previous
scale. We alter S to store the cubes from the previous scale. For each interval, we
store an id and its coordinates. Each cube is stored as the set of ids of the intervals
that define it.

– At each scale, we enumerate the image of the cubical map by computing the
image of each interval, and then use this pre-computed map to compute the image
of (≥ 1)-dimensional cubes.

– For the inclusions, we find all the active and secondary faces but do not compute
the simplices. The inclusions in the cubical tower correspond exactly to the inclu-
sions of active and secondary faces in the simplicial tower, so this enumerates all
inclusions correctly.

From Lemma 10 at most n3d active faces are added to the tower. Hence at most
n3d3d = n6d active and secondary faces are added to the tower. Computing the tower
takes time as in Theorem 5 by replacing M with the size bound. We conclude that:

Theorem 7 The cubical tower has size at most n6d and takes at most n6d log� time
in expectation to compute, where � is the spread of the point set.
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7 Discussion

7.1 Practicality

We now touch upon the practical aspects of our constructions. An implementation of
our approximation schemewould be a tool that computes the (approximate) persistence
barcode for any input data set. For any scheme to be useful in practice, it should be able
to compute sufficiently close approximations using a reasonable amount of resources.

Our cubical tower consists of cubical complexes connected via cubical maps. To
our knowledge, there are no algorithms to compute barcodes in this setting where
the cubical maps are more than just trivial inclusions. As such, although our cubical
scheme has exponentially lower theoretical guarantees compared to the simplicial
tower, we can not hope to test it in practice unless the appropriate primitives are
available. It could be an interesting research direction to develop this primitive and in
particular investigate whether the techniques used in computing persistence barcodes
for a simplicial tower allow a generalization to the cubical case.

It makes more sense to inspect the simplicial tower. We saw in Theorem 4 that

the size of the tower is n6d−1(2k + 4)(k + 3)!
{

d
k + 2

}
. Unfortunately, this bound

is already too large so that the storage requirement of the Algorithm (Theorem 7)
explodes exponentially. Let us assume a conservative bound of 1 Byte of memory
requirement per simplex. For a point set ind = 8dimensions and k = 4, the complexity
bound is already at least 4000 Terabytes, before factoring in n. For a point set in d = 10
dimensions and k = 5, this explodes to 1020 Terabytes. While these are upper bounds,
in practice the complexity will still need to be many orders of magnitude smaller to be
feasile, which is unlikely. Even with conservative estimates our storage requirement
is impractical.

Therefore we are not very hopeful that implementing the scheme in its current
state will provide any useful insight for high dimensional approximations. Making
it implementation-worthy demands more optimizations and tools at the algorithmic
level. This is worth another Algorithmic engineering project in its own right. We plan
to pursue this line of research in the future. Since our focus in this paper was geared
towards theoretical aspects of approximations, we exclude experimental results in the
current work. We hope that a more careful implementation-focussed approach may
prove more practical.

On the other hand, the upper bound for the cubical case is simply n6d . Even for
d = 10, the storage requirement would be less than 100 Megabytes before factoring
in n. This is far more attractive than the simplicial case. As such, it may make more
sense to invest time and effort in developing tools to compute barcodes in the cubical
setup.

7.2 Summary

We presented an approximation scheme for the Rips filtration, with improved approx-
imation ratio, size and computational complexity than previous approaches for the
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case of high-dimensional point clouds. In particular, we are able to achieve a marked
reduction in the size of the approximation by using cubical complexes in place of
simplicial complexes. This is in contrast to all other previous approaches that used
simplicial complexes as approximating structures.

An important technique that we used in our scheme is the application of acyclic car-
riers to prove interleaving results. An alternative would to be explicitly construct chain
maps between the Rips and the approximation towers; unfortunately, this make the
interleaving analysis significantly more complex. While the proof of the interleaving
in Sect. 4.3 is still technically challenging, it greatly simplifies by the usage of acyclic
carriers. There is also no benefit in knowing the interleaving maps because they are
only required for the analysis of the interleaving, and not for the actual computation
of the approximation tower. We believe that this technique is of general interest for
the construction of approximations of cell complexes.

Our simplicial tower is connected by simplicialmaps; there are (implemented) algo-
rithms to compute the barcode of such towers (Dey et al. 2014; Kerber and Schreiber
2017). It is also quite easy to adapt our tower construction to a streaming setting (Ker-
ber and Schreiber 2017), where the output list of events is passed to an output stream
instead of being stored in memory.
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A Strong interleaving for barycentric scheme

Recall that we build the approximation tower over the set of scales I := {αs = 2s |
s ∈ Z}. The tower (Xα)α∈I connected with the simplicial map g̃ can be extended to
the set of scales {α ≥ 0} with simple modifications:

– for α ∈ I , we define Xα in the usual manner. The map g̃ stays the same as before
for complexes at such scales.
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– for all α ∈ [αs, αs+1), we set Xα = Xαs , for any αs ∈ I . That means, the complex
stays the same in the interval between any two scales of I , so we define g̃ as the
identity within this interval.

These give rise to the tower (Xα)α≥0, that is connected with the simplicial map g̃. This
modification helps in improving the interleaving with the Rips persistence module.

First, we extend the acyclic carriers C1 and C2 from before to the new case:

– Cα
1 : R∞

α → X4α, α > 0: we define C1 as before, simply changing the scales
in the definition. It is straightforward to see that C1 is still a well-defined acyclic
carrier.

– Cα
2 : Xα → R∞

α , α ≥ 0: this stays the same as before. It is simple to check that
C2 is still a well-defined acyclic carrier.

These give rise to augmentation-preserving chain maps between the chain complexes:

cα
1 : C∗

(R∞
α

) → C∗ (X4α) and cα
2 : C∗ (Xα) → C∗

(R∞
α

)
,

using the acyclic carrier theorem as before (Theorem 1).

Lemma 12 The diagram

C∗(R∞
α )

inc

c1

C∗(R∞
α′ )

c1

C∗(X4α)
g̃ C∗(X4α′)

(12)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof Consider the acyclic carrier C1 ◦ inc : R∞
α → X4α′ . It is simple to verify that

this carrier carries both c1 ◦ inc and g̃ ◦ c1, so the induced diagram on the homology
groups commutes, from Theorem 1. 
�
Lemma 13 The diagram

C∗(R∞
α )

inc C∗(R∞
α′ )

C∗(Xα)
g̃

c2

C∗(Xα′)

c2

(13)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof We construct an acyclic carrier D : Xα → R∞
α′ which carries inc◦c2 and c2◦ g̃,

thereby proving the claim (Theorem 1).
Consider any simplex σ ∈ Xα and let E ∈ �α be the minimal active face of

containing σ . We set D(σ ) as the simplex on the set of input points of P , which lie
in the Voronoi regions of the vertices of g(E). By the triangle inequality, D(σ ) is a
simplex of R∞

α′ , so that D is a well-defined acyclic carrier. It is straightforward to
verify that D carries both c2 ◦ g̃ and inc ◦ c2. 
�
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Lemma 14 The diagram

C∗(R∞
α )

inc C∗(R∞
α′ )

c1

C∗(Xα)
g̃

c2

C∗(X4α′)

(14)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof The diagram is essentially the same as the lower triangle of Diagram 10, with
a change in the scales. As a result, the proof of Lemma 7 also applies for our claim
directly. 
�
Lemma 15 The diagram

C∗(R∞
α )

inc

c1

C∗(R∞
4α′)

C∗(X4α)
g̃ C∗(X4α′)

c2

(15)

commutes on the homology level, for all 0 ≤ α ≤ α′.

Proof The diagram can be re-interpreted as:

C∗(R∞
α )

inc

g̃◦c1
C∗(R∞

4α′)

C∗(X4α′)

c2

(16)

The modified diagram is essentially the same as the upper triangle of Diagram 10,
with a change in the scales and a replacement of c1 with g̃ ◦ c1, that is equivalent to
the chain map at the scale α′. Hence, the proof of Lemma 8 also applies for our claim
directly. 
�

Using Lemmas 12, 13, 14, 15, and the scale balancing technique for strongly inter-
leaved persistence modules, it follows that

Lemma 16 The persistence modules
(
H(X2α)

)
α≥0 and

(
H(R∞

α )
)
α≥0 are strongly

2-interleaved.
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