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Abstract

The East Asian summer monsoon (EASM) is an important part of the global climate system
and plays a vital role in the Asian climate. It influences the livelihood and the socio-
economic status of over a billion residents who live in the EASM dominated region. Accurate
predictions of the EASM can provide enormous socio-economic advantages. This study
employs multi-prediction systems to investigate the seasonal predictability of EASM. Six
prediction systems consisting of coupled atmosphere-ocean general circulation models
(AOGCMs: BCC-CSM1-1, CanCM4, GFDL-CM2p1, HadCM3, MIROCS and MPI-ESM-
LR) were applied in initialised experiments. Applying full-field and anomaly initialisation,
these six prediction systems show significant improvement in predicting the zonal winds
(850 hPa) as compared to a non-initialised forecast. Two of the prediction systems (GFDL-
CM2pl and MIROCYS) increase the forecast skill of the EASM index substantially in the
initialisation. The variability of EASM is evaluated in the eight re-analysis datasets (i.e.
20CR, CFSR, ERA-20C, ERA-Interim, JRA-55, MERRA, NCEPI and NCEPII). There is no
significant difference of EASM index which has been calculated by the eight re-analyses.
However, the spread of the EASM index is larger in the prediction systems than in the
re-analysis datasets. One possible reason is the different depiction of EASM-ENSO coupled
mode in the prediction systems. Because of the coarse resolution of the prediction systems,
there is a spatial scale gap between them and the input needed for applications at high
resolution. This study employs regional climate models to downscale the AOGCMs output.
Five regional climate models (RCMs: COSMO-CLM, HadGEM3-RA, RegCM4, SNU-MM5
and YSU-RSM) contribute to this study. They follow a world-wide regional downscaling
framework in East Asia (i.e. CORDEX-East Asia). These five RCMs have been assessed
in their ability in representing the EASM. The five models are able to capture the major
characteristics of monsoon precipitation. There is significant difference between models
in presenting the monsoon precipitation features (e.g. mean state, inter-annual variability,
monsoon precipitation intensity etc.). In general, the set up of the five RCMs can be used for
dynamical downscaling in East Asia. One particular prediction system (MPI-ESM-LR) and
one RCM (COSMO-CLM) are selected for studying the further dynamical downscaling in
detail. Although both the simulations capture the monsoon precipitation and its associated
general circulation, the RCM shows more details. The simulating skill of EASM index by
the RCM strongly depends on the prediction system' s driving data. Overall, the prediction
systems combined with dynamical downscaling provide a perspective for a skilful seasonal
prediction of EASM.






Zusammenfassung

Der Ostasiatische Sommermonsun (EASM) ist ein wichtiger Bestandteil des globalen Kli-
masystems und spielt eine wichtige Rolle im asiatischen Klima. Er beeinflusst den Leben-
sunterhalt und den sozio6konomischen Status iiber 1 Milliarde Einwohner, die in der EASM
dominierten Region leben. Genaue Vorhersagen des EASM konnen diese Verluste entschei-
dend mindern. Diese Studie stellt Multi-Vorhersage-Systeme vor, um die saisonale Vorher-
sagbarkeit des EASM zu untersuchen. In initialisierten Experimenten wurden sechs Vorher-
sagesysteme angewendet, die aus gekoppelten Atmosphire-Ozean-Zirkulationsmodellen
bestehen (AOGCMs: BCC-CSM1-1, CanCM4, GFDL-CM2p1, HadCM3, MIROCS und
MPI-ESM-LR). Bei der Anwendung der Absolut -und Anomalie-Initialisierung zeigen die
sechs Vorhersagesysteme eine signifikante Verbesserung bei der Vorhersage der Zonal-
winde (850 hPa) im Vergleich zur nicht-initialisierten Vorhersage. Zwei der Vorhersagesys-
teme (GFDL-CM2p1 und MIROCS) verbessern durch eine Initialisierung die Prognose
des EASM-Indexes. Die Variabilitidt des EASM in verschiedenen Analysen wird in acht
Reanalyse-Datensitzen (20CR, CFSR, ERA-20C, ERA-Interim, JRA-55, MERRA, NCEPI
und NCEPII) betrachtet. Die verschiedenen Reanalysen weisen keinen signifikanten Unter-
schied bei der Reparédsentation des EASM-Index auf. Die Variationsbreite des EASM ist
mit den Vorhersagesystemen grofer als bei den Reanalysen. Ein moglicher Grund ist die
unterschiedliche Simulation der EASM-ENSO-Kopplung in den Vorhersagesysteme. Bedingt
durch die grobe Auflosung der verwendeten Modelle gibt es eine rdumliche Skalenliicke zwis-
chen den Vorhersagesystemen und den fiir Klimafolge-Modelle bentigen Antriebsdaten. In
dieser Studie werden regionale Klimamodelle verwendet, um ein dynamisches Downscaling
mit den AOGCM-Ergebnissen durchzufiihren. Fiinf regionale Klimamodelle (COSMO-
CLM, HadGEM3-RA, RegCM4, SNU-MMS5 und YSU-RSM) werden dabei ausgewertet.
Die RCMs, die alle innerhalb eines internationalen Verbunds (CORDEX-Ostasien) zum
regionalen Downscaling in Ostasien beitragen, wurden beziiglich ihrer Simulationsgiite
des EASMs bewertet. Die fiinf CORDEX-Modelle sind in der Lage, die Hauptmerkmale
des Monsun-Niederschlags zu erfassen. Im Allgemeinen konnen diese regionalen Kli-
mamodelle fiir das dynamische Downscaling in Ostasien genutzt werden. Es gibt allerdings
signifikante Unterschiede zwischen den Modellen bei der Simulation des Niederschlags
(mittlerer Zustand, mehrjdhrige Variabilitidt, Monsun-Niederschlagsintensitit). Ein spezielles
Vorhersagesystem (MPI-ESM-LR) und ein RCM (COSMO-CLM) wurden ausgewéhlt, um
das dynamische Downscaling weiter im Detail zu untersuchen. Beide Simulationen erfassen
den Monsun-Niederschlag und die damit verbundene allgemeine Zirkulation, das RCM zeigt
jedoch mehr Details. Die Simulationsfahigkeit des EASM-Index durch das RCM hingt stark
von den Antriebsdaten der Vorhersagesystem ab. Insgesamt bieten die Vorhersagesysteme
gekoppelt mit dynamischem Downscaling eine Perspektive fiir eine realistische saisonale
Vorhersage des EASM.






Table of contents

List of figures
List of tables
1 Introduction

2 EASM Representation in Re-analysis Datasets
2.1 Introduction . . . . . . . . L
2.2 Re-analysis datasetsand methods . . . . . . .. .. .. ... ... ...
23 Results. . . . . .
2.3.1 Inter-annual variability . . . . . ... ... ... ... ... ...
2.3.2  Spatial difference in re-analysis datasets . . . . . . . ... ... ..
2.3.3 Monsoonstrength . . . . ... ... L
2.4 Summary and discussion of Chapter2 . . . . . .. ... ... ... ....

3 Multi-regional Climate Model Simulations of EASM: Validation
3.1 Introduction . . . . . . . . . . L
3.2 RCMs, comparison data and methods . . . . . ... .. ... .......
33 Results. . . . ..
3.3.1 Extremerainfallevents . . . . . ... ... ... .. ........
332 Seasonality . . . . .. ...
333 Annualcycle . . ... ... .
3.3.4 Inter-annual variability . . . . . .. ... ...
3.3.5 Monsoon characteristics . . . . . . . . . . .. .. ...

3.4 Summary and discussion of Chapter3 . . . . . . .. ... ... ......

4 Dynamical Downscaling with COSMO-CLM in East Asia
4.1 Introduction . . . . . . . . . . . e e e

4.2 Experiment design and comparisondata . . . . . ... ... ... ...

11

15



10

Table of contents

4.3

4.4

Result . . . . . . . e 50
43.1 Seasonality . . . .. ... ... 50
4.3.2 Monsoon characteristics . . . . . . ... ... Lo 51
Summary and discussion of Chapter4 . . . . . ... ... ... ...... 55

5 Seasonal Predictability of East Asian Summer Monsoon in CMIPS models 57

5.1 Introduction . . . . . . .. L 57
5.2 Models,dataand methods . . . . . ... . ... ... ... ... ..., 58
5.3 Seasonal prediction skillof the EASM . . . . . . ... ... ... ..... 63
5.4 EASM-ENSO coupled mode inCMIPS . . .. ... ... ......... 65
5.5 Summary and discussion of Chapter5 . . . . . . ... ... ... ... .. 73
6 Summary, Conclusions and Outlook 77
6.1 Summary and conclusions . . . . ... ... Lo Lo 77
6.2 Outlook . . . . . . . e 80
References 81
A Abbreviations 105
B Methods 107
B.1 BIAS . . 107
B.2 Root Mean Square Error . . . . . .. .. ... Lo oo 108
B.3 Anomaly Correlation Coefficient . . . . . . .. .. ... ... ... .... 108
B.4 Pattern Correlation Coefficient . . . . . . .. ... ... ... ... .... 109



List of figures

1.1
1.2
1.3

2.1

2.2

23

24

2.5

2.6

2.7

3.1
3.2

3.3
3.4

3.5

Global monsoon system . . . . . . . . . .. ...
The dominant summer general circulations for East Asian summer monsoon 4

The structure of dynamical downscaling and prediction project for East Asian

SUIMMET MONSOOIL . &+ & v v v v e v e e e e e e e e e e e e e e e e 5

Geographic distributions of the IGRA stations . . . . . . .. ... ... .. 14
Temporal statistics describing inter-annual variability of the re-analysis
datasets in terms of the JJA precipitation, winds at 850 hPa, and mean
sealevel pressure . . . . . ... L 16
Spatial distribution of the multi-reanalysis ensemble deviation for summer
precipitation, mean sea level pressure, and winds at 850 hPa . . . . . . .. 17
Summer precipitation and the precipitation anomalies ‘re-analysis minus
GPCP’ . . . e 18
Summer mean sea level pressure, winds at 850 hPa, mean sea level pressure

anomalies and winds anomaliesat850hPa . . . . . . . . . ... ... ... 19

Correlation map between EASM index and June-July-August precipitation

andwindsat850hPa . . . . . .. ... ... ... o 20
East Asian summer monsoon index in observation and re-analysis datasets . 24
CORDEX-East Asiadomain . . . ... ... ... ............. 28
Total precipitation and wind vectors at 850 hPa (m s~!) over the period 11-20

June 1998 . . . . L 33
Summer (JJA) rainfall of the GPCP and the rainfall anomalies . . . . . . . 34
Winter (December-January-February; DJF) rainfall of the GPCP and the

rainfall anomalies . . . . . . . . . ... L L oL 35

Annual cycle of monthly precipitation averaged over the 4 sub-monsoon

domains . . . . . . .. 39



12

List of figures

3.6

3.7

3.8

4.1

4.2
4.3

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8
59

Temporal statistics describing inter-annual variability of the models in terms
of the JJA and DJF mean precipitation, the MME and the ERA-Interim . . . 41

Comparison of the precipitation climatology between the GPCP, the merged
observationandthe MME . . . . . . . . .. .. Lo o000 42

Performance of the regional climate models and their MME on precipitation
climatology . . . . . . . . . . . 43

Seasonal precipitation and wind vectors at 850 hPa (m s~ 1), and precipitation

anomalies, and winds anomalies . . . . . . . . . . ... ... ... ... 53
Observed and model simulated EASMI . . . .. ... ... ........ 54
Correlation map between the EASMI and summer precipitation . . . . . . . 54

ACC of six variables between MME and observation in non-initialisation
and initialisation . . . . . . . . . ... e e e e e 62

Taylor diagrams display of pattern (PCC) and temporal (ACC) correlation
metrics of six variables between observation and model simulation in the
EASM region (0°-50°N, 100°-140°E) . . . . . . .. ... ... ... ... 63

Performance of the model ensemble member (hollow marker) and its ensem-
ble mean (solid marker) on the EASM index. The abscissa and ordinates are
the temporal correlation coefficient (ACC) and the root-mean-square-error
(RMSE), respectively . . . . . . . . ... e 64

Spatial distribution of observational the first leading EOF mode and the
associated principal component. . . . . . ... ... ... 66

Portrait diagram display of correlation metrics between the observation and
the model simulation of the first lead EOF mode for the six fields in the
non-initialisation (left) and the initialisation (right) . . . . ... ... ... 67

Portrait diagram display of correlation metrics between the observation and
the model simulation of the second-to-fourth lead EOF modes for the six
fields in the non-initialisation (left) and the initialisation (right) . . . . . . . 68

Fraction variance (per cent) explained by the first EOF mode for six fields in

the non-initialisation (left) and the initialisation (right). . . . . . ... . .. 69
Same as Fig. 5.7, but for the second-to-fourth lead EOF modes. . . . . . . . 70

Model prediction skill in representing the observed Nifio3.4 index (red), the
SOI (blue) from the DJF to SON in non-initialisation (left) and initialisation
(right) . . . . 71



List of figures 13

5.10 Lead-lag correlation coefficients between the EASM index and Nifio3.4
(upper), and SOI (lower) in non-initialised simulations (left) and initialised
ones (right) for observation (marker line) and models (marker) from JJA(-1)
O JJA(HL) . . . e 72






List of tables

2.1
2.2

3.1
3.2
3.3

4.1

4.2

5.1
5.2

Basic information of re-analyses investigated in Chapter 2. . . . . . . . .. 12
Brief summary of the eight re-analysis datasets in Chapter 2 with their

strength and limitation. . . . . . . . . ... ... .o 13

Details of the regional climate models (RCMs) investigated in this study . . 30
Main characteristics of the observational and re-analysis precipitation datasets. 31
BIAS, RMSE and PCC between the simulated precipitation and the GPCP

for JJA and DJF over the 4 sub-monsoon domains . . . . . . ... ... .. 38

BIAS, RMSE and PCC between the simulated precipitation and the GPCP

for DJF-to-SON over the CORDEX-East Asiadomain . . . . .. ... .. 52
Cross correlation coefficient between the observed and the model simulated

EASMI . . . . s, 53
Detail of the prediction system investigated in Chapter3 . . . . . . .. .. 60

Brief summaries of initialisation strategies used by modelling groups in
Chapter3 . . . . . . . e 61






Chapter 1
Introduction

Monsoon has long been the focus of scientific investigations. Sir Edmund Halley (1686)
first proposed that the monsoon is caused by the differential heating of the land and oceans.
Subsequently, his hypothesis was modified by Hadley (1735) to include the effect of earth's
rotation that deflects the winds from cold oceans to warmer land. In the 20th century,
climatologists discovered that the monsoon is associated with a seasonal reversal of surface
wind field (Hann, 1908; Khromov, 1957). Ramage (1971) summarised the definition of
monsoon as 1) the prevailing wind direction shifts at least 120 degrees between January
and July; 2) average frequencies of the prevailing wind direction in January and July is
>40 per cent. In general, monsoons are driven by the annual cycle of solar heating and the
land-sea surface temperature contrast, leading to seasonal reversal of surface winds as well
as contrasting wet summers and dry winters, accompanied by a global-scale atmospheric
overturning circulation (Trenberth ef al., 2000; Wang and Ding, 2008).

There are eight sub-monsoon systems in the world (Wang et al., 2012; Fig. 1.1). The
East Asian summer monsoon (EASM) plays an important role in the global monsoon system.
It affects approximately one-third of the global population, influencing the climate of Japan
(including Okinawa), Korea, Taiwan, Hong Kong, Macau, the Philippines, Indochina, and
much of mainland China (Ding and Chan, 2005). The EASM is an essential component
of the Asian climate system (Chen and Chang, 1980; Ding, 1992; Lau et al., 1988; Tao
and Chen, 1987), and interacts with other components of the Asian monsoon system (i.e.
the South Asian summer monsoon and the Australian monsoon). However, the EASM
cannot be regarded as a simple eastward extension of the South Asian summer monsoon
as it has its own general circulation patterns and independent climate behaviour (Ding and
Chan, 2005; Ding, 1994; Tao and Chen, 1987; Fig. 1.2). It is composed of Australian High,
cross-equatorial jet, south-west monsoon, monsoon trough (Inter Tropical Convergence
Zone—ITCZ), trade winds, western Pacific subtropical high, Meiyu/Baiu/Changma and mid-
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latitudinal turbulence (Tao and Chen, 1987). The EASM exhibits strong internal variability
(Chang et al., 2000a,b; Ding and Chan, 2005; Jiang et al., 2008; Ju et al., 2005; Lau et al.,
1988; Wang et al., 2001; Zhang et al., 2003) and is closely associated with the internal
forcing, i.e. El Nifio—Southern Oscillation (ENSO; Chang et al., 2000a; Ding and Chan,
2005; Wang et al., 2000), North Atlantic Oscillation (NAO; Wu et al., 2009) and Indian
Ocean dipole (I0D; Ding et al., 2009; Guan and Yamagata, 2003). Therefore, accurate
simulation and prediction of the EASM is a long-standing challenge for climate scientists
(Lee et al., 2013b, 2008a,b; Wang et al., 2007, 2009; Wu et al., 2009).

60°N

30°N
0° |

30°S

Figure 1.1 Global monsoon system and its local components, illustrated by the differences
between mean 850 hPa winds and mean precipitation between the June-July-August and
December-January-February months, modified from Wang ef al. (2008a). The regional
monsoon systems are the North African monsoon (NAF), the South African monsoon (SAF),
the Indian/South Asian monsoon (IND), the East Asian monsoon (EAS), the Western North
Pacific monsoon (WNP), the Australian monsoon (AUS), the North American monsoon
(NAM), and the South American monsoon (SAM).

There are two approaches to predict the EASM: statistical prediction and dynamical
prediction. The statistical method seeks the relationship between the EASM and a strong
climate signal (e.g. ENSO, NAO; Wang et al., 2015; Wu et al., 2009; Yim et al., 2014).
This method is, however, limited by the strength of the climate signal. The other method is
dynamical prediction which employs climate model to predict the EASM (Kang and Shukla,
2006; Kim et al., 2012; Lee et al., 2010; Sperber et al., 2001; Wang et al., 2009; Yang
et al., 2008). Two kinds of climate models have been developed in the past few decades, the
atmosphere general circulation model (AGCM) and the coupled atmosphere-ocean general
circulation model (AOGCM). Both the models have been used to predict the EASM (Kang
et al., 2004; Wang et al., 2005, 2007, 2009; Zhou et al., 2009). For AGCMs, the lower



boundary conditions (i.e. SST: sea surface temperature) are required. An additional ocean
model is applied to predict the SST. Subsequently, the prescribed SST is employed as the
lower boundary condition to force the AGCMs. This predictive method is a “tier 2”” method.
It has been developed as an application tool to predict climate. For example, the International
Research Institute for Climate and Society (IRI) employs 4 AGCMs (ECHAM4.5, CCM3.6,
COLA and GFDL-AM2pl) to predict global climate at seasonal time-scale (Barnston ef al.,
2010). However, this method shows low prediction success over East Asia, especially in
the monsoon season (Barnston et al., 2010; Wang et al., 2005) because the AGCMs fail
to produce realistic SST-rainfall relationships in the monsoon season (Wang et al., 2005).
Therefore, the monsoon community endeavours to predict the EASM with AOGCMs (Jiang
et al., 2013b; Kim et al., 2012; Wang et al., 2009; Zhou et al., 2009).

AOGCMs have proved to be the most valuable tools in predicting the EASM (Jiang
et al., 2013b; Kim et al., 2012; Wang et al., 2009; Zhou et al., 2009). Though the horizontal
resolution of most present-day AOGCMs is still coarse (Meehl et al., 2007), there has
been significant progress in these models in the past two decades due to an improved
representation of earth sub-systems (e.g. atmospheric and earth surface processes, efc.) and
enhanced computational capabilities. The coarse resolution prevents them from capturing the
regional effects and limits their application in the monsoon regions (Fu et al., 2005; Huang
et al.,2015b). A fundamental spatial scale gap still exists between the climate information
provided by AOGCMs and the input needed for impact assessment work (Giorgi et al.,
2009). Dynamical downscaling (or regional climate downscaling) is an important method
to address the spatial scale gap problem (Giorgi et al., 2001; Giorgi and Mearns, 1991). It
uses regional climate models (RCMs) to downscale the AOGCMs. The RCMs could capture
local-scale climate information (Giorgi and Gutowski, 2015; Laprise, 2008; Rummukainen,
2010) and show potential to add value to the AOGCMs (Feser et al., 2011; Flato et al., 2013;
Rummukainen, 2016). This also has been found to be true in the EASM region (Gao et al.,
2011; Lee et al., 2014; Oh et al., 2014; Wang et al., 2013b).

The RCM success in reproducing regional climate is strongly dependent upon the phys-
ical parametrisation (Hong and Kanamitsu, 2014; Lee et al., 2013a, 2014), the boundary
conditions (Laprise, 2008; Rummukainen, 2010; Staniforth, 1997), its domain size (Leduc
and Laprise, 2009), and its horizontal resolutions (Gao et al., 2006), especially in steeply
orographic regions, in order to capture sub-grid scale processes (Hong and Kanamitsu, 2014;
Nikulin et al., 2012). Following a common framework can reduce the model's uncertainty and
is also an advantage in inter-comparison of model performances (Gates, 1992). For regional
climate modelling, Giorgi et al. (2009) set up a common framework with the aim of obtaining

comprehensive RCM data to study regional climate change, i.e. the Coordinated Regional
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Figure 1.2 The dominant summer general circulations for East Asian summer monsoon,
modified from Chang (2004).

Climate Downscaling Experiment (CORDEX). This study will follow the guidelines of
CORDEX to set up the regional modelling experiment and evaluate the model performance

in capturing monsoon characteristics.

The RCMs have ability to present high resolution climate information. But they cannot
be directly used to predict the climate for which the boundary condition is required. Given
observed initial condition, the AOGCMs can predict the climate on seasonal-to-yearly time-
scale (Goddard et al., 2001; Shukla et al., 2000). Therefore, employing the initialised
AOGCMs output to drive the RCMs can predict the climate at high resolution. The initial
conditions are the dominating factor in predicting the climate at seasonal time-scale (Kirtman
et al., 2013; Meehl et al., 2009). Different initialisation strategies lead to different prediction
skills. Inter-comparison between different initialisation strategies in various models can
test the predictability of EASM, and also help in understanding the mechanism of seasonal
prediction for EASM.

The main objective of this study is seasonal prediction the EASM at high resolution.
Multi-datasets and various statistical methods have been used to address this objective. It has
been discussed in four separate chapters (Chapter 2 to 5). Figure 1.3 shows the framework of

downscaling and prediction for EASM.



East Asian Summer Monsoon
Downscaling and Prediction

II1: Prediction

Study on the seasonal
predictability of EASM in
multi-prediction system
(Chapter 5)

II: Downscaling

Application: Dynamical downscaling
simulation of EASM (Chapter 4)

Validation: Test parameterisation of CORDEX-
East Asia models (Chapter 3)

I: Evaluation

Spread of observations in representing the EASM(Chapter 2)

Figure 1.3 The structure of dynamical downscaling and seasonal prediction project for East
Asian summer monsoon.

Chapter 2 analyses the spread in the representation of the EASM in different re-analysis
datasets. Re-analysis datasets have been widely used in climate science. They have been
applied as reference data to evaluate the model output (Flato et al., 2013), drive RCM (Giorgi
et al., 2009), and provide initial condition for climate prediction (Meehl et al., 2014). Since
1990s, four generations of re-analysis have been developed by different organisations. The re-
analyses employ different observations and data assimilation methods. Previous studies show
that significant differences have been found between re-analyses in representing precipitation
(Bosilovich et al., 2008; Lin et al., 2014; Newman et al., 2000), wind diurnal cycle (Chen
et al., 2014) and temperature (Wang and Zeng, 2012). However, there is no work dedicated

to assessing the EASM characteristics in re-analysis datasets. It is important to describe the
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differences between re-analyses, as they are used as the reference data for RCM's output,
especially for investigating the monsoon system in East Asia. Therefore, evaluation of the

re-analyses in capturing the EASM addresses the question:
(I) How large is the spread of the re-analysis datasets in representing the EASM?

This chapter has been submitted to an international journal (Huang and Cubasch, 2017,

Advance in Meteorology, under review)

Chapter 3 addresses the regional dynamical downscaling in the EASM region. Several
papers have been published on the topic of regional climate downscaling in East Asia (Gao
etal., 2011, 2008, 2012; Hong et al., 2013; Lee et al., 2014; Liu et al., 1994; Oh et al., 2014;
and many others). The studies are based upon a single RCM and have different resolution and
research domain. For example, Gao et al. (2011) employed the Abdus Salam International
Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) with 20-km
grid spacing to research climate change over China whereas Lee et al. (2014) selected the
Global/Regional Integrated Model system—Regional Model Program (RMP) with 50-km
horizontal resolution to investigate the climate change over East Asia. There are limitations
to the model performance that preclude derivation of accurate climate information. Therefore,
a world-wide inter-model comparison project was launched to guide the regional climate
downscaling study (Giorgi et al., 2009). It set up a common framework to evaluate the RCM
performance. There are more than 12 domains contributing to the project. In East Asia, it is
CORDEX-East Asia (https://cordex-ea.climate.go.kr/). Following the evaluation framework
of CORDEX-East Asia, this chapter set up a regional climate downscaling experiment which
employs the COSMO-CLM (COSMO: the Consortium for Small-scale Modelling; CLM:
Climate Limited-area Modelling or climate version of “Lokalmodell”) regional climate
model. The simulation participates in the CORDEX-East Asia as well as the other four
RCMs. Therefore, an inter-comparison of the performance of five RCMs in representing the

precipitation climatology over East Asia was undertaken to answer the questions:

(I) What is the difference between CORDEX-East Asia models in representing the
precipitation climatology?

(IIT) How good are the CORDEX-East Asia models in capturing the EASM?

This chapter has been published in Climate Research (Huang et al., 2015b).

Chapter 4 extends the analysis of regionalisation undertaken in Chapter 3. The main goal
of regional climate community is applying the RCM output for impact and adaptation studies.

To address this aim, the lateral and boundary conditions are provided by AOGCMs which


https://cordex-ea.climate.go.kr/

could simulate present and future climate (Giorgi et al., 2009). Under the joint effort of global
climate model community, many global model simulations have been produced to support
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC
ARS5). The simulations include a large number of experiments to investigate present climate
variability (i.e. historical experiments), future climate change under new greenhouse-gas
scenario simulations for the 21st century (i.e. Representative Concentration Pathways—RCPs
experiments), climate prediction (i.e. decadal prediction experiments), carbon cycle, and
individual feedback mechanisms to climate change (Taylor ef al., 2012). It provides a large
number of datasets as forcing data to the regional climate community working on different
research topics. The historical experiment data is the reference data for model evaluation, for
the baseline of climate prediction and for the calculation of climate changes. Based upon
the historical simulation, a new downscaling experiment has been set up. Following the
climate projection framework of CORDEX-East Asia, the COSMO-CLM was driven by the
MPI-ESM-LR in 1979-2005. The following question will be answered:

(IV) Is the downscaling method improving the model performance in representing the
EASM?

Chapter S evaluates the predictive skill of AOGCMs to predict the EASM on a seasonal
time-scale. Research on EASM prediction began in the early 2000s with “state-of-the-art
model predictability studies” and focused on the predictability of EASM rainfall on seasonal
time-scale (Kang et al., 2004; Wang et al., 2005). As mentioned, the AGCMs are unable to
predict the EASM rainfall due to the incorrect rainfall-SST relationship (Wang et al., 2005).
However, the AOGCMs are a valuable tool to study the predictability and prediction skill
of the EASM (Wang et al., 2005). In the coupled model inter-comparison project phase 5
(CMIPS) era, the AOGCMs show significant improvement in capturing the EASM (Sperber
et al., 2013). They have the ability to simulate the mean state of EASM (Sperber et al.,
2013), but cannot capture its year-to-year variations (Huang et al., 2013; Song and Zhou,
2014). The CMIP5 models accurately represent the relationship between EASM and ENSO
at inter-annual time-scale (Sperber et al., 2013). Previous studies show that the EASM-ENSO
relationship is the determining factor in predicting EASM in climate model (Lee et al., 2010;
Wang et al., 2015; Wu et al., 2009). Additionally, given observed initial conditions, the
CMIPS5 models add skill to predict the ENSO on seasonal-to-decadal time-scale (Choi et al.,
2016; Meehl et al., 2014; Meehl and Teng, 2012). This extended prediction skill of the
ENSO suggests that the EASM can be predicted on a seasonal time-scale if the dynamic
link between the ENSO and the monsoon circulations is well represented in the CMIP5

models. For this purpose, six prediction systems which participate in the CMIPS5 will be
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inter-compared to test their ability to predict the EASM on seasonal time-scale. The main

research questions of this chapter are:

(V) How are the six prediction systems capturing the EASM under forcing by observed
initial conditions?
(VI) What is the difference between the six systems in predicting the EASM on seasonal

time-scale?

This chapter has been submitted to an international journal (Huang et al, 2017, Earth

System Dynamics, under review)

Chapter 6 summarises the main results, and suggests possible directions for future

research.



Chapter 2

EASM Representation in Re-analysis
Datasets

2.1 Introduction

In the past decades, extensive research has been conducted to increase our knowledge of
monsoon variability and predictability, and to improve projections of the impact of human
activities on monsoonal systems over East Asia (Wang et al., 2012). The extensive work
strongly depends on observations. A global observation network was built up in 20th century
(Peterson and Vose, 1997). The observation network collects data from in-situ stations, ships,
buoys, satellite and aircraft ezc. It provides the best estimate of the state of the atmosphere,
land and ocean. However, the data is inhomogeneous due to the fact that there are gaps in
spatial and temporal coverage. Global atmospheric assimilated datasets, called re-analysis,
have been developed, which combine observation and geophysical fluid-dynamical models
(Kalnay et al., 1996). Because of the parametrisation for important physical processes (e.g.
radiative transfer, convection, turbulent transfer efc.), the model has its own uncertainty and
biases to the real atmosphere. The re-analysis uses observations to constrain the model output

to optimise the spatial&temporal coverage and accuracy.

Since the early 1990s, several generations of atmospheric re-analyses have been pro-
duced at different organisations. The National Centers for Environmental Predictions
(NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis (NCEPI; Kalnay
et al., 1996) is the original re-analysis effort. Then NCEP/Department of Energy (DOE)
updated the forecast model with better physical parametrisations and fixed the data assimila-
tion errors (e.g. assorted data assimilation errors) to produce a new version of re-analysis
(i.e. NCEPII; Kanamitsu et al., 2002). Both the NCEPI and the NCEPII belong to the
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first-generation re-analysis. The European Centre for Medium Range Weather Forecasts
(ECMWEF) 45-year Reanalysis (ERA-40; Uppala et al., 2005) and the Japanese 25-year
Reanalysis (JRA-25; Onogi et al., 2007) are the second-generation re-analysis. These re-
analysis datasets have the same data assimilation approach (i.e. 3D-Var; three-dimensional
variational data assimilation) as in the first-generation re-analysis. The second-generation
re-analyses show some errors in climate study, e.g. the JRA-25 illustrates a clod bias in the
lower stratosphere (Onogi et al., 2007) and a dry bias in the Amazon basin (Bosilovich et al.,
2008). Therefore, a third-generation re-analysis datasets have been developed, which include
the Climate Forecast System Re-analysis (CFSR; Saha et al., 2010, 2006), the ECMWF
Interim Reanalysis (ERA-Interim; Dee et al., 2011), the Japanese 55-year Reanalysis (JRA-
55; Kobayashi et al., 2015), and the Modern Era Retrospective-Analysis for Research and
Applications (MERRA; Rienecker et al., 2011). The new generation re-analyses apply a
more advanced data assimilation method (e.g. analysis increments and 4D-Var) and models
and addressed issues discovered in the second-generation re-analysis efforts. Sequential, the
ECMWEF and the National Oceanic and Atmospheric Administration (NOAA) developed
a new generation re-analysis to provide a long time cover observational validation dataset
to assess climate model simulations of the 20th century, the ECMWF's first atmospheric
re-analysis of the 20th century (ERA-20C; Stickler ef al., 2014) and the Twentieth Century
Reanalysis v2 (20CR; Compo et al., 2011), respectively.

The re-analysis datasets have been widely used in studying climate variability and climate
change. It is a reference data for climate model output (Flato et al., 2013) and a driving
data for RCMs in simulating present climate (Giorgi et al., 2009; Huang et al., 2015b).
As mentioned, the re-analyses are produced by different organisations, employ various
forecast models and data assimilation approaches. There is a discrimination between each
re-analysis. Newman et al. (2000) firstly described the difference between the ECMWEF,
NCEP and NASA (National Aeronautics and Space Administration's Goddard Laboratory for
Atmospheres) re-analysis. Then, Betts et al. (2006) described the strengths, weaknesses, and
usefulness of re-analysis datasets. Several works assess precipitation in re-analyses due to it is
a “forecast” variable from the forecast model (Bosilovich er al., 2008; Lin ef al., 2014). Both
the Bosilovich et al. (2008) and the Lin et al. (2014) compared the re-analysis performance
in reproducing precipitation on large scale. Bosilovich ef al. (2008) assessed precipitation
climatology of five re-analyses in nine sub-regions (North Pacific, Eurasia, Indian monsoon
region efc.). Lin et al. (2014) evaluated five re-analyses performance in capturing global
monsoon metrics. The monsoon metrics include climatology of global monsoon modes,
inter-annual variability, and long-term trend of global monsoon precipitation. Then, Chen
et al. (2014) found that four re-analyses (i.e. JRA-55, ERA-Interim, CFSR and MERRA)
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exhibit similar structure and summer progress of mean wind diurnal cycle, but illustrate some
differences in the low-level meridional wind. Wang and Zeng (2012) analysed six re-analysis
products in representing observational precipitation, temperature and radiation over Tibetan
Plateau where is the surrounding area of EASM. However, there is little work focusing on
the re-analysis performance in capturing the EASM.

Based on the relative dependence of the model and the assimilated observational data,
Kalnay et al. (1996) classified the output variables into four classes. The precipitation is
categorised into “C” variable due to it is completely determined by the model during the data
assimilation. Because of the zonal and meridional wind, and geopotential height are directly
assimilated from observational data, they are the most reliable variable in the first, second
and third-generation re-analysis. These data are categorised into “A” variable. However, the
extended generation re-analysis (20CR and ERA-20C) only takes surface data (e.g. pressures
and winds) into data assimilation. Therefore, pressure level variables (e.g. wind fields and
geopotential height) in extended generation reanalysis are classified into “C” class. These
variables should be compared to the observations when they are used for scientific research,
especially for studying the EASM.

2.2 Re-analysis datasets and methods

In this study, eight re-analyses are evaluated and inter-comparison. The concise information
of the eight re-analyses is presented in Table 2.1. Because of the spatial (EASM region)
and temporal (1979-2010) coverage, monthly data of the eight re-analyses will be selected
to analyse. They are the first-generation re-analysis (i.e. NCEPI and NCEPII), the third-
generation re-analysis (i.e. CFSR, ERA-Interim, MERRA, and JRA-55), and the extended-
generation re-analysis (i.e. 20CR and ERA-20C). Table 2.1 shows a brief summary of
each re-analysis datasets focusing on their main strength and limitation. The detailed
description of each re-analysis datasets can be found from Climate Data Guide website
https://climatedataguide.ucar.edu/climate-data.

The Global Precipitation Climatology Project (GPCP; Adler et al., 2003) has been
employed as the precipitation observational data. Reference dataset of the mean sea level
pressure is the extended Hadley Centre's monthly historical mean sea level pressure dataset
(HadSLP2r; Allan and Ansell, 2006). The Integrated Global Radiosonde Archive (IGRA;
Durre et al., 2006) is applied to evaluate the uncertainty of multi-pressure level wind fields
in re-analysis datasets. Over 1500 global distributed stations contribute to the IGRA which
consists of radiosonde and pilot balloon observations (Durre et al., 2006). More than 150

stations locate in our study area (Fig. 2.1). The station data is interpolated to grid dataset
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Table 2.1 Basic information of re-analyses investigated in Chapter 2.

Name Standard Name Orangisation Resolution Data assimilation Reference
method
20CR Twentieth Century Reanalysis NOAA T62L.28 Ensemble Kalman Filter Compo et al. (2011)
v2 ESRL/PSD
and CIRES
CFSR Climate Forecast System Re- NCEP T382L.64 3D-VAR Saha et al. (2010)
analysis
ERA-20C ECMWFs first atmospheric re- ECMWF T159 L91 and 4D-VAR Stickler et al. (2014)
analysis of the 20th century N8O reduced
Gaussian
ERA-Interim ECMWEF re-analysis ECMWF T255 L60 and 4D-VAR Dee et al. (2011)
N128  reduced
Gaussian
JRA-S55 Japanese 55-year Reanalysis JMA T319 L60 4D-VAR Kobayashi et al. (2015)
MERRA NASA Modern Era Reanaly- NASA GMAO 1/2 lat x 2/3 lon; 3D-VAR, with incre- Rienecker eral. (2011)
sis for Research and Applica- 72 sigma levels mental analysis update
tions
NCEPI NCEP/NCAR Reanalysis NCEP/NCAR T621L.28 3D-VAR Kalnay et al. (1996)
NCEPII NCEP/DOE Reanalysis NCEP/DOE T62L.28 3D-VAR Kanamitsu er al. (2002)




Table 2.2 Brief summary of the eight re-analysis datasets in Chapter 2 with their strength and limitation.

Name Temporal cover- Strength Limitation Internet
age
20CR 1850-2014 The longest re-analysis record Data assimilation with a few https://www.esrl.noaa.gov/
observations psd/data/20thC_Rean/

CFSR 1979-2011 Improved and finer resolution Few comparisons https://rda.ucar.edu/pub/cfsr.
model, and advanced assimila- html
tion schemes (4D-Var)

ERA-20C 1900-2010 Higher horizontal and vertical ~Shorter than 20CR and a few www.ecmwf.int/en/research/

ERA-Interim

JRA-55

MERRA

NCEPI

NCEPII

1979-to-present

1958-to-present

1979-to-present

1948-to-present

1979-to-present

resolution than 20CR

High horizontal and vertical
resolution; improved low-
frequency variability and
stratospheric circulation than
ERA40

The longest third-generation
re-analysis with full observa-
tions

Improved the precipitation
and water vapour climatology

First effort of re-analysis
and the longest running re-
analysis that uses rawind-
sonde data

Improvement of surface flux
files, hydrological budget,
short wave radiation flux

observations for data assimila-
tion

Large intensity of a water cy-
cling over the oceans, posi-
tive biases in temperature and
humidity at the lower tropo-
sphere (below 850 hPa) and
not capture low-level inver-
sions in the Arctic

Dry bias in upper and mid-
dle troposphere and in regions
deep convection, time-varying
warm bias in the upper tropo-
sphere

Assimilation routine is frozen
and will not be updated for
new satellite instruments
Low spatial and temporal
moisture variability over
oceans and a relatively poor
climate state in Southern
Hemisphere

Drawbacks in the outgoing
long-wave radiation over trop-
ical warm pool and upper-
level tropical moisture

climate/reanalysis/era-20C

www.ecmwf.int/en/
research/climate-reanalysis/
era-interim

www._jra.kishou.go.jp/
JRA-55/index_en.html

https://gmao.gsfc.nasa.gov/
reanalysis/MERRA/

https://www.esrl.noaa.gov/
psd/data/gridded/data.ncep.
reanalysis.html

https://www.esrl.noaa.gov/
psd/data/gridded/data.ncep.
reanalysis.html
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Figure 2.1 Geographic distributions of the Integrated Global Radiosonde Archive stations.
Black dots mark all stations, green dots denote deleted stations, and red dots indicate added
stations. The red dashed box illustrates the east Asian summer monsoon region (0°-50°N,
100°-140°E).

by iterative improvement objective analysis. To eliminate the uncertainty associated with
different data resolution, the validation data and the re-analyses are remapped onto a common
gird of 2.5°x2.5° by bi-linear interpolation. All the abbreviation of each meteorological
variable is following the guide of CMIPS, i.e. pr for precipitation, psl for mean sea level
pressure, ua850 for zonal wind at 850 hPa and va850 for meridional wind at 850 hPa.

The quality of re-analysis data is measured by anomaly correlation coefficient (ACC),
root-mean-square error (RMSE) and BIAS. The PCC statistic method is the un-centred
statistical measure which is without removal of the global mean. Appendix B presents the
detail for all the methods.

2.3 Results

2.3.1 Inter-annual variability

Taylor diagram is a valuable tool in evaluating the model data performance regarding the
matching of temporal variability using temporal correlation and standard deviation (Taylor,
2001). This section shows the temporal correlations from summer (June-July-August) mean
precipitation and associated three meteorological fields averaged over the EASM region
(0°-50°N, 100°-140°E) for all the re-analyses versus the reference data (Fig. 2.2). Compared

to the GPCP, the re-analyses show a large spread with the normalised standard deviations
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(NSD) range from 0.87 to 1.52 and the correlation range from 0.37 to 0.66. The JRA-55 has
the highest correlation (0.66), while the ERA-Interim illustrates the lowest correlation (0.37)
to the observed precipitation. The JRA-55 and the NCEPI demonstrates a small inter-annual
variation than the reference data with the NSD < 1. The other six re-analyses exhibit a larger
year-to-year variation in precipitation than that in the GPCP, especially the CFSR and the
MERRA with the NSD, 1.52 and 1.50, respectively.

The re-analysis datasets illustrate high consistency in the psl and the ua850. The range of
psl's correlation is 0.71 to 0.81, and NSD is 0.95 to 1.17. We can find the re-analyses have the
same performance in representing the ua850 as the psl, with a high correlation (0.88-0.93)
and an approximate inter-annual variation (NSD: 1.05-1.29) to the IGRA. Obviously, the
va850 presents a lower year-to-year variation than that in the reference data. To our notice,
the CFSR and the MERRA have a worse performance in capture the va850 variation than the
other six re-analyses with NSD, 1.48 and 1.58, respectively.

A further evaluation is focusing on the re-analysis datasets and their ensemble mean
in representing the inter-annual variability of the three variables over land (Fig. 2.2b) and
ocean (Fig. 2.2c). In general, the pr and the va850 exhibit better performance (with higher
correlation coefficient) over land than over oceans, while the psl and the ua850 show a versus
performance. We find that the CFSR and the NCEPII have a lower correlation and a higher
NSD than the other re-analysis datasets. The re-analysis mean captures a more realistic
year-to-year variation of the four variables. It shows a higher correlation coefficient than an

individual re-analysis dataset.

2.3.2 Spatial difference in re-analysis datasets

Figure 2.3 presents the ensemble standard deviation (ESD) of the eight re-analyses for the
four meteorological variables. It shows the inter-reanalysis difference. The precipitation's
spread reduces with the latitude increasing. A large ESD ( 3 mm day~!) occurs in the low
latitudes, especially in the western Indo-China Peninsula where the ESD is >5 mm day .
There is no prominent difference among the re-analyses in representing the psl over ocean.
However, we can find a large ESD of psl over land, especially in the western EASM region
(i.e. the Tibetan Plateau; ESD >3 hPa). For the ua850 and the va850, the re-analyses show
high consistency with ESD 1 mm s~! in the entire EASM region.

For specific variable (e.g. pr and psl) and region, the re-analysis members show significant
disagreement to each other. This study employed the BIAS analysis to quantify their
magnitude of deviation from observation (Fig. 2.4 and 2.5). In monsoon season, the inter-
tropical convergence zone (ITCZ) reaches its northernmost location. The water moisture is

transported by northward wind from ocean to land. Two precipitation belts are located in the
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Figure 2.2 Temporal statistics describing inter-annual variability of the re-analysis datasets
and the multi-datasets ensemble mean in terms of June-July-August (JJA) mean precipitation
(black), zonal winds (blue) and meridional winds (green) at 850 hPa, and mean sea level
pressure (red) over the East Asian summer monsoon (EASM) region (0°-50°N, 100°-140°E;
a), the EASM land (b), and the EASM ocean (c) from 1979 to 2010.

East Asia, the south branch stretches from the Bay of Bengal, the Indo-China Peninsula and
the Philippine Sea; and the north branch occurs from the east of China, the Korean peninsula
and the south of Japan (Fig. 2.4; ¢f. Observation).

The eight re-analysis datasets capture the major feature of precipitation spatial distribution
in monsoon season (Fig. 2.4). However, these datasets tend to generate a significant wetter
condition in southern EASM region (i.e. the South China Sea and the Philippine) and a
prominent drier condition over the Korean peninsula and the Japan. The third generation of
re-analysis datasets present a better performance (with small BIAS) in capturing the summer
precipitation, especially in the mainland of China, the Korean Peninsula and the Japan than
the first and the extended generation re-analysis datasets. It is worth mentioning that only
the ERA-Interim and the ERA-20C produce more precipitation in the Indo-China Peninsula
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Figure 2.3 Spatial distribution of the multi-reanalysis ensemble deviation for June-July-
August mean precipitation (pr), mean sea level pressure (psl), and winds at 850 hPa (ua850
and va850) from 1979 to 2010. The red box represents the East Asian summer monsoon
region (0°-50°N, 100°-140°E).
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Figure 2.4 Summer (JJA) precipitation of the Global Precipitation Climatology Project
(GPCP) and the precipitation anomalies ‘re-analysis minus GPCP’ in 1979-2010. The
presented anomalies of precipitation pass the Student's #-test at 0.05 level. The green box
represents the East Asian summer monsoon region (0°-50°N, 100°-140°E).
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Figure 2.5 Summer (JJA) mean sea level pressure (observation shaded) of the extending
Hadley Centre's monthly historical mean sea level pressure dataset (HadSLPr2) and wind
fields at 850 hPa (Observation vector) of the Integrated Global Radiosonde Archive (IGRA)
and the mean sea level pressure anomalies ‘re-analysis minus HadSLPr2; shaded’, and the
winds anomalies ‘re-analysis minus IGRA; vector’ in 1979-2010. The presenting anomalies
of precipitation pass the Student's z-test at 0.05 level. The green box represents the East
Asian summer monsoon region (0°-50°N, 100°-140°E).
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where the other six re-analysis datasets generate less precipitation. The large precipitation
BIAS occurs along with the lower level general circulation (i.e. wind fields at 850 hPa) BIAS.
There is a significant wind BIAS over the South China Sea and the Philippine Sea. In the
northern China, the 20CR shows a large north-westward wind than the observation, but the

other seven re-analysis datasets illustrate a good agreement with the observation (Fig. 2.4).
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Figure 2.6 Correlation map between EASM index and June-July-August precipitation
(shaded) and winds at 850 hPa (vector). Presenting correlation coefficient between EASM
index and winds at 850 hPa pass the Student's ¢-test at 0.05 level. Green dotted areas are the
correlation coefficient between EASM index and precipitation pass the significant test at 0.05
level. The color shows the correlation to the GPCP precipitation while the arrow represents
the correlation of winds to the ERA-Interim dataset. The EASM index is calculated by the
ERA-Interim. The red box represents the East Asian summer monsoon region (0°-50°N,
100°-140°E).

In summer season, the land (ocean) is a heat source (sink) with lower (higher) mean
sea surface pressure (Fig. 2.5; Observation). The Tibetan Plateau presents a prominent low
pressure centre due to the fact of its huge topography height. The first-generation re-analysis
datasets produce higher psl in the Tibetan Plateau, the western of Indo-China Peninsula and
the Indonesia; and lower psl in the Japan and the Sea of Japan (Fig. 2.5; NCEPI; NCEPII).
The CFSR and the ERA-Interim have the same performance in presenting the psl over the
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Tibetan Plateau and Japan, and illustrate no significant BIAS in the Indo-China Peninsula
and the Indonesia. However, these two datasets generate lower psl over the East China Sea.
Both the JRA-55 and the MERRA show the prominent negative BIAS of psl in the western
(e.g. the Tibetan Plateau, south-west of China efc.) and the northern (e.g. Mongolia, northern
China etc.) EASM region. The 20CR indicates a positive BIAS centre of psl in the south of
Tibetan Plateau, the north-east of China, and the northern Sea of Japan; but produces lower
psl in the western South China Sea and the Philippines Sea. Compared to the HadSLP2r, the
ERA-20C generates higher psl over the Tibetan Plateau and in the western of Indo-China

Peninsula, but lower psl in the northern EASM region.

2.3.3 Monsoon strength

The EASM is characterised by strong year-to-year variability. To measure the strength and
study the long-term change of EASM, more than 25 monsoon indices have been produced
in the last few decades. Wang et al. (2008b) classified these monsoon indices into five
categories: 1) “east-west thermal contrast” index, 2) “north-south thermal contrast” index, 3)
shear vorticity index, 4) “south-west monsoon” index, and 5) “South China Sea monsoon”
index. Wang et al. (20080) found that the Wang and Fan index (1999) outperforms the other
24 monsoon indices in capturing the three-dimensional circulation and total variance of
the precipitation over East Asia. Figure 2.6 shows the correlation map between the Wang
and Fan index and summer precipitation and winds at 850 hPa. The index can indicate the
summer precipitation distribution and also the general circulation change over East Asia.
Therefore, the Wang and Fan index was selected for the further study. The Wang and Fan
index belongs to shear vorticity index. Its definition is standardised average zonal wind at
850 hPa in (5°-15°N, 90°-130°E) minus in (22.5°-32.5°N, 110°-140°E).

Figure 2.7a illustrates the observed (IGRA) and the multi-reanalysis ensemble mean
produced EASM index (EASMI). The re-analysis ensemble mean shows good agreement
with the observation in representing the EASMI. For the individual re-analysis, it can capture
the phase of EASMI, only has a slight difference in capturing the EASMI magnitude (Fig.
2.7b). The range of correlation coefficient between the EASMI in observation and in re-
analyses is from 0.97 to 0.99. The 20CR indicates an extremely strong monsoon year
(EASMI >1) in 1997 and 2007, but the observation and the other re-analysis datasets show a
normal monsoon year (EASMI >-1 and EASMI <1).
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2.4 Summary and discussion of Chapter 2

In this chapter, eight current re-analysis datasets (20CR, CFSR, ERA-20C, ERA-Interim,
JRA-55, MERRA, NCEPI, and NCEPII) have been inter-comparison to identify their dif-
ference in representing the EASM precipitation and general circulation. This chapter firstly
analysed the inter-annual variability of four variables which are closely associated with the
EASM behaviour (Fig. 2.2). The re-analyses show a high correlation coefficient and close
normalised standard deviation to the observed regional mean zonal winds at 850 hPa and
mean sea level pressure, but a large spread of this metrics for the precipitation and meridional
winds at 850 hPa. The re-analyses generate a different precipitation due to its “forecast”
intrinsic. MERRA is the only dataset which assimilates the rain rate from SSM/I and TRMM
(section 2.2). However, it is not the best re-analysis in capturing the inter-annual variability
of precipitation in the study region. The quality of precipitation strongly depends on the
numerical weather models and data assimilation system (Bosilovich et al., 2008; Lin et al.,
2014). CFSR shows a better estimation of observed precipitation due to the fact that it
employs an advanced model and an updated convection parametrisation (modified Tiedtke
shallow convection) than the NCEPI and NCEPII (Saha et al., 2010).

The re-analyses exhibit a large spread in producing the precipitation and mean sea
level pressure than the winds at 850 hPa (Fig. 2.3). The BIAS metric (Fig. 2.4-2.5) of each
variable in different re-analysis datasets have been inter-compared. Due to the performance of
forecast model, there is significant difference between each re-analysis dataset in representing
precipitation (Fig. 2.4). The psl is directly assimilated from observation. However, we can
find the prominent discrepancy among the re-analyses occurring in the west and north-east of
China where the complex topography occupies. In these regions, the JRA-55 and the MERRA
present negative biases to the observed psl, while the other six re-analyses illustrate positive
biases (Fig. 2.5). The JRA-55 and the MERRA share the same data assimilation achieve with
the ERA-Interim. The differences of psl between the re-analysis datasets might caused by
the different land-surface model. A different land-surface-process might lead to a significant
BIAS in the region where the surface pressure observation is sparse (Kobayashi et al., 2015;
Yi et al., 2011). Another reason is the different horizontal resolution of re-analysis datasets
which affected by the local topography. The local terrain height is an important factor to gain
the psl.

The Wang and Fan monsoon index is calculated by zonal wind at 850 hPa, which can
indicate the monsoon strength and precipitation distribution in East Asia. The EASM index
in re-analyses show good agreements with observations, characterised by higher correlation
coefficients (Fig. 2.7). Only the 20CR exhibits a slight difference in representing the
magnitude of EASM index in specific years (e.g. 1997 and 2007). We, thus, can omit the
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re-analysis difference in representing the EASM strength. The 20CR and ERA-20C are
optional datasets to analyse the long-term variability of EASM in 20th century.
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Chapter 3

Multi-regional Climate Model
Simulations of EASM: Validation

3.1 Introduction

RCMs are able to capture sub-grid scale processes (e.g. sea breeze, mountain precipitation
etc.) over complex land surface, because they provide a high resolution forcing (Hong
and Kanamitsu, 2014). RCMs simulations generate useful datasets to study the regional
climate variability and climate change. To validate the RCM's performance, the re-analysis
datasets are employed as boundary condition. Different boundary conditions lead to different
performance of RCM (Laprise, 2008; Rummukainen, 2010; Staniforth, 1997). There are
noticeable differences between each re-analysis datasets (Chapter 2). Thus, by using only
one re-analysis to drive the RCMs is able to isolate the differences caused by individual

boundary conditions.

RCM studies generally tend to over-estimate or under-estimate monsoon precipitation
and temperature when compared with observations (Fu et al., 2005; Gbobaniyi et al., 2014;
Nikulin et al., 2012; Xue et al., 2010). In this regard, it is important to evaluate the capability
of RCMs in reproducing the present climate before using them for future scenarios (Flato
et al., 2013; Wang et al., 2004b), especially in monsoon regions (Fu et al., 2005; Nikulin
et al., 2012). In the last decade, numerous international RCM downscaling projects have
been carried out focusing on monsoons, but over specific areas of interest (Giorgi et al., 2009;
Laprise, 2008). These projects include the Regional Model Inter-comparison Project for Asia
(RMIP Asia; Fu ef al. 2005) to evaluate and improve RCM simulations for the East Asian
monsoonal region, the African Monsoon Multidisciplinary Analyses (AMMA; Redelsperger

et al. 2006; Ruti et al. 2011) to address the main uncertainties in the atmospheric processes
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controlling the monsoon system (Hourdin et al., 2010), and the West African Monsoon
Modelling and Evaluation (WAMME; Druyan et al. 2009; Xue et al. 2010) to study the
role of land-atmosphere-aerosol interaction on West African monsoon processes. Each
of these projects has made significant contributions to improve RCM simulations and to
understand the evolution of monsoon mechanisms. However, the projects have been limited
by international co-ordination and by the limited transfer of knowledge between the projects
and the regions of interest. A world-wide inter-model comparison project with the common
framework (i.e. CORDEX) was set up with the aim of obtaining comprehensive RCM data
to study regional climate change (Giorgi et al., 2009). East Asia is one of the focus areas
within CORDEX, which is characterised by a complex monsoon system (Ding and Chan,
2005) and a heterogeneous land cover (Fu et al., 2005; Gao et al., 2006). Furthermore, the
application of RCMs is in particular important over East Asia due to their better performances
in reproducing the present monsoon climate. In addition, these models provide more reliable
climate change signals over that region due to their high spatial resolutions (Gao et al., 2006,
2013; Qian and Leung, 2007; Yu et al., 2010).

Several studies have examined the performance of a single RCM in simulating precipita-
tion over CORDEX-East Asia (CORDEX-EA). For example, COSMO-CLM (Rockel et al.,
2008) is able to capture precipitation patterns in a small river basin (Fischer et al., 2013),
but has a significant wet bias over steep orographic region (Wang et al., 2013b). RegCM
(Giorgi et al., 1993) shows close agreement with the observed precipitation (Gao et al., 2011,
2006), but a large positive bias over northern Asia during the cold season (Giorgi et al.,
2012), the performance of which is substantially dependent on model resolution (Gao et al.,
2008) and geographical regions (Gao et al., 2012; Oh et al., 2014). YSU-RSM (Hong and
Kanamitsu, 2014) resembles the inter-annual variations of precipitation as well as extreme
precipitation events (Lee et al., 2014). These RCMs can represent the main climatological
features of precipitation at different levels of accuracy (Giorgi et al., 2012; Lee and Hong,
2014; Oh et al., 2014; Wang et al., 2013b). However, none of these studies have focused on

an inter-comparison of the different models in simulating precipitation in this region.

This chapter presents the first evaluation results of the CORDEX-EA project using an
ensemble of 5 RCM simulations driven by the ERA-Interim re-analysis data (Dee et al.,
2011). It examines the capacity of the individual RCMs and their multi-model ensemble
means (MME) to reproduce the present climatology and to capture the Asian-Australian

monsoon system.
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3.2 RCMs, comparison data and methods

There are five RCMs participating in CORDEX-EA (Table 3.1). Following the modelling
framework of the CORDEX project, the simulations are driven by ERA-Interim re-analysis
data (1989-2008) at the lower and lateral boundaries, and are integrated over East Asia (Fig.
3.1) with a spatial horizontal resolution of 0.44 ( 50 km). The CORDEX-EA domain includes
four sub-monsoon systems (i.e. the South Asian Summer Monsoon (SAS), the East Asian
Summer Monsoon (EAS), the Western North Pacific Tropical Monsoon (WNP), and the
Australian-Maritime Continent Monsoon (AUSMC); Fig. 3.1) (Christensen et al., 2013).

COSMO-CLM (COSMO: the Consortium for Small-scale Modelling; CLM: Climate
Limited-area Modelling or climate version of “Lokalmodell”) is a non-hydrostatic regional
climate model, which has a Arakawa-C horizontal grid (Arakawa and Lamb, 1981) and
a terrain following height co-ordinate (Schir et al., 2002) with rotated geographical co-
ordinates in the vertical level. Wang et al. (2013b) adapted the COSMO-CLM in East Asia,
but it is driven by the ERA-40 re-analysis (Uppala et al., 2005). Following the CORDEX-EA
framework, we re-run the simulation driven by the ERA-Interim. The model set-up has
been adapted from Wang er al. (2013b), but using the Runge-Kutta split-explicit scheme
for time integration and time step of 240s. The physical parametrisation schemes used in
the simulation are the Tiedtke mass-flux convection scheme (Tiedtke 1989), the prognostic
turbulent kinetic energy (TKE) turbulence scheme, the § two-stream radiation scheme with
full cloud-radiation feedback (Ritter and Geleyn, 1992), and the multi-layer soil scheme
(Jacobsen and Heise, 1982).

HadGEMB3-RA is a regional version of the atmospheric component of Hadley Centre
Global Environment Model (HadGEM3-A). It is a non-hydrostatic regional climate model,
which has a Arakawa-C horizontal grid and a terrain following, height-based vertical co-
ordinate. The model includes semi-Lagrangian advection of all prognostic variables except
density, permitting relatively long time steps to be used at high resolution (Davies et al.,
2005; Martin et al., 2006). The simulation set-up with the general 2-stream radiation scheme
(Cusack et al., 1998; Edwards and Slingo, 1996), the non-local mixing scheme for unstable
layers (Lock et al., 2000), the local Richardson number scheme for stable layers (Smith
et al., 1990), the mixed phase micro-physics scheme (Wilson and Ballard, 1999), the revised
mass flux scheme (Gregory and Rowntree, 1990) for deep and shallow convection (Grant
and Brown, 1999), the MOSES-II with nine surface tile types plus coastal tiling (Essery
et al., 2003), and the (Smith et al., 1990) scheme using parametrized RHcrit (critical value
of grid-box mean relative humidity) for cloud (Cusack et al., 1998).

The new version of the RegCM regional climate modelling system version 4 (RegCM4)

is a hydrostatic, compressible model with sigma-p vertical co-ordinates and a Arakawa-B
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Figure 3.1 CORDEX-East Asia domain at 0.44° grid resolution with topography and the 4
sub-monsoon domains including the South Asian Summer monsoon (SAS), the East Asian
Summer monsoon (EAS), the Western North Pacific Tropical monsoon (WNP) and the
Australian-Maritime Continent monsoon (AUSMC).

horizontal grid (Giorgi et al., 2012). The dynamical core of RegCM4 is the same as the
Pennsylvania State University/National Centre for Atmospheric Research (PSU/NCAR)
meso-scale model (MMYS) (Grell et al., 1994). The parametrization scheme of this study
includes MIT-Emanuel cumulus scheme (Emanuel, 1991; Emanuel and Zivkovic-Rothman,
1999), modified Holtslag planetary boundary layer (PBL) scheme (Holtslag ef al., 1990),
NCAR CCM3 (Community Climate Model version 3) radiation scheme (Kiehl ef al., 1996),
and NCAR CLM3.5 (Community Land Model version 3.5) land surface scheme (Bonan
et al., 2002; Steiner et al., 2009).

SNU-MMS is an evolution version of MMS (Lee et al., 2004), which implemented the
Von Strock et al. (2000) spectral nudging technique for lateral boundary handling. It uses a
non-hydrostatic primitive equation system with a terrain-following sigma vertical co-ordinate.
The Kain-Fritsch cumulus convective parametrization scheme (Kain and Fritsch, 1990),
the Reisner II explicit moisture scheme (Reisner ef al., 1998), the CCM2 radiative transfer
scheme (Briegleb, 1992), the CLM3 land surface model (Bonan et al., 2002), and the Yonsei
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University planetary boundary layer (YSUBL) scheme (Hong et al., 2006) was configured in
this study.

The perturbation model YSU-RSM is described by a two-dimensional sine series for the
perturbation of vorticity, but by a two-dimensional cosine series for perturbations of pressure,
divergence, temperature, and mixing ratio. Linear computations of horizontal diffusion
and semi-implicit adjustment are only considered as perturbations, thus the error due to the
re-evaluation of the linear forcing from the base fields is eliminated (Juang et al., 1997; Juang
and Kanamitsu, 1994). Lee et al. (2014) presents the detail of the parametrization scheme

for the simulation.

For model evaluation of precipitation climatology and monsoon characteristics, the Asian
Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of the
Water Resources (APHRODITE; Yatagai et al., 2009), the Climatic Research Unit (CRU;
Harris et al., 2014), the Global Precipitation Climatology Centre (GPCC; Schneider et al.,
2014), the GPCP (Adler et al., 2003), the Tropical Rainfall Measuring Mission (TRMM;
Huffman et al., 2007) and the ERA-Interim re-analysis datasets have been used (Table
3.2). In addition, low level wind fields (850 hPa) from the ERA-Interim re-analysis dataset
are compared against model results. To eliminate the small difference in the assimilation
approach in order to derive the ERA-Interim precipitation, this study followed Nikulin ez al.
(2012) with base times 0000 UTC and 1200 UTC and forecast steps of 12h to obtain the daily
precipitation. Then, the daily and monthly means was calculated. It is worthy to mention
that the difference between APHRODITE, CRU and GPCC is not significant in terms of
climatology. The pattern correlation co-efficient between APHRODITE and CRU (GPCC)
climatology is 0.96 (0.97) for annual mean, 0.96 (0.96) for MAM, 0.95 (0.97) for JJA, 0.96
(0.97) for SON, and 0.97 (0.97) for DJF, respectively. Therefore, a merged APHRODITE,
CRU and GPCC dataset is used to compare monsoon characteristics in CORDEX-EA. These
precipitation datasets cover the time from 1989-2008, except APHRODITE (1989-2007) and
TRMM (1998-2008). The validation data are remapped onto a common grid of 0.44° by
bi-linear interpolation.

Three different skill measurements are applied to validate the performance of the RCMs
on seasonal time scale for summer (JJA) and winter (DJF) from 1989-2008: the mean bias
(BIAS), the pattern correlation co-efficient (PCC), and the root-mean-square error (RMSE).

Detail information of the three skills are presented in Appendix B.

In addition, this study employed four monsoon metrics which are defined by Wang
and Ding (2008). These metrics contribute to a new monsoon index which is based upon
the physical processes of the coupled atmosphere-ocean-land system and its response to

solar radiative forcing (Wang et al., 2011). There are four parameters used for this index:
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Table 3.1 Details of the regional climate models (RCMs) investigated in Chapter 3. Projection (Proj.)—RP: rotated polar, M: Mrcator,
LC: Lamberg Conformal; Dynamics (Dyn.) —H: hydrostatic, NH: non-hydrostatic; PBL: planetary boundary layer

Proj. Horizontal Dyn. Vertical Convection Radiation Cloud mi- Land surface PBL
resolu- coordi- scheme scheme crophysics  scheme
tion nates/levels
COSMO- RP 0.44° NH Terrain fol- Tiedtke (1989) Ritter and Ge- Baldauf Jacobsen and Davies and
CLM*“ lowing/40 leyn (1992) and Schulz Heise (1982) Turner (1977)
(2004)

HadGEM3- RP 0.44° NH Terrain fol- Grant and Cusack et al. Cusack MOSES-I Lock et al

RA? lowing/60 Brown (1999); (1999); Ed- et al. (Essery et al., (2000); Smith
Gregory and wards and (1998) 2003) et al. (1990)
Rowntree Slingo (1996)
(1990)

RegCM4° M 50km H sigma 18 MIT (Emanuel NCAR CCM3 Pal er al. NCAR Modified Holt-
and Zivkovic- (Kiehl et al., (2000) CLM3.5 slag (Holtslag
Rothman, 1996) (Bonan et al., etal., 1990)
1999) 2002; Steiner

et al.,2009)

SNU- M 50 km NH sigma 24 Kain-Fritsch CCM2 Lynn et al. NCAR YSU (Hong

MM5¢4 (Kain and (Briegleb, (2005) CLM3.5 et al., 2006)
Fritsch, 1990) 1992) (Bonan et al.,

2002)

YSU- LC 50 km H sigma 28 Arakawa- Chou (1992); Hong et al. NOAH (Chen YSU (Hong

RSM¢ Achubert Chou er al. (1998) and Dudhia, eral., 2006)
(Hong and Pan, (1999) 2001)
1998)

Institute running the models: “Freie Universitit Berlin, Germany; bNational Institute of Meteorological Research, South Korea;
“National Institute of Meteorological Research, South Korea; 4Seoul National University, South Korea; ¢ Yonsei University, South

Korea



Table 3.2 Main characteristics of the observational and re-analysis precipitation datasets.

Data set Product Full name Temporal Reference
resolution
APHRODITE APHRO_V1003R1 Asian Precipitation-Highly- Daily Yatagai et al. (2009)
(www.chikyu.ac.jp/precip/) Monsoon Asia + Resolved Observational Data
Russia Integration Towards Evaluation of

the Water Resources
CRU (www.cru.uea.ac.uk) TS 3.21 Climatic Research Unit Monthly Harris et al. (2014)
ERA-Interim Re-analysis Re-analysis data from European Daily Dee et al. (2011)
(www.ecmwf.int) Centre for Medium-Range Weather

Forecasts
GPCC (http://gpcc.dwd.de) v6 Global Precipitation Climatology Monthly Schneider et al. (2014)

Centre
GPCP v2.2 Global Precipitation Climatology Monthly Adler et al. (2003)
(http://precip.gsfc.nasa.gov/) Project
TRMM 3B42 Tropical Rainfall Measuring Mis- 3 hourly Huffman et al. (2007)

(http://mirador.gsfc.nasa.gov/)

sion

spoylouwr pue eiep uostredwod ‘SNDY '€

1€



32 Multi-regional Climate Model Simulations of EASM: Validation

(1) the annual mean precipitation (AM); (2+3) the first and second annual cycle modes of
the annual variation of the precipitation (AC1 and AC2); and (4) monsoon precipitation
intensity and monsoon domain (MPI and monsoon domain) (Lee and Wang, 2014; Wang
etal.,2011). Following Lee and Wang (2014), this chapter analysed the four parameters of
each model simulation and MME to evaluate the capacities of the models in reproducing the
Asian monsoon system. The PCC and the normalised RMSE (NRMSE) are used to evaluate
the models' capacities. The NRMSE is defined as the RMSE normalised by the standard
deviation of observation that is calculated with reference to regional mean of CORDEX-EA.

3.3 Results

3.3.1 Extreme rainfall events

We first checked the ability of each model to simulate an extreme rainfall event which
caused severe flooding in the Yangtze River valley and north-east China in the summer of
1998 (Fu et al., 2005). Figure 3.2 shows the total precipitation and mean wind vectors at
850hPa from 11-20 June 1998 of each RCM, the GPCP, the TRMM and the ERA-Interim,
respectively. The GPCP, the TRMM and the ERA-Interim show much better consistency,
although some significant differences can still be depicted on smaller spatial scales (e.g.
in the Bay of Bengal and in the tropical eastern Pacific Ocean). The PCC between the
GPCP and the TRMM, and the ERA-Interim is 0.90, and 0.85, respectively. All the three
datasets capture the rainfall belts along 20°-35°N, 105°-150°E. The RCMs reveal high
consistency in reproducing low-level winds compared to the ERA-Interim. Furthermore,
the characteristic clockwise (anti-clockwise) circulation patterns over the Western Pacific
Ocean-WPO (over north-east China and east Mongolia) which indicate anticyclone (cyclone)
cells in corresponding regions are well captured by all the RCMs. The evaporated water
vapour is transported within south-westerly monsoonal low-level winds. Over the western
part of the WPO High, the moisture flux convergences resulting in rainfall belts along the
Yangtze River valley, the East China Sea and the south of Japan, and in the Bay of Bengal.
When compared to the observation, most of the models capture the rainfall distribution. More
than 200 mm of precipitation accumulation is simulated along the rainfall bands and the
calculated PCC ranges from 0.57 to 0.76. The RegCM4 (YSU-RSM) has the best (worst)
performance to simulate the flooding, which is able (is not able) to simulate rainfall bands
accurately. The MME improves both the precipitation (PCC: 0.84) and the low-level wind

patterns when compared to all RCMs with a significant reduction of bias.
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Figure 3.2 Total precipitation and wind vectors at 850 hPa (m s~!) over the period 11-20
June 1998. The numbers in the lower/bottom left-hand corners show the pattern correlation
coefficient (PCC) between the observed and simulated rainfall patterns (CORDEX-East
Asia).

3.3.2 Seasonality

In summer months (June-July-August; JJA), the observed rain bands stretch from northern
India, the Bay of Bengal, the northern Indo-China peninsula and the south of China (Fig.
3.3; GPCP). Meanwhile, the ITCZ reaches its northernmost location. The TRMM shows
strong agreement with the GPCP in CORDEX-EA region, which slightly over-estimates
(under-estimates) precipitation in the tropics (sub-tropics). The significant difference occurs
at the western Tibetan Plateau and the western Indo-China peninsula (Fig. 3.3; TRMM).
The ERA-Interim reveals similar summer rainfall patterns as the GPCP, but significantly
over-estimates (under-estimates) precipitation in the equatorial Pacific Ocean and the western
China (the south of Japan, the Korean peninsula, and the 35°-50°N, 155°-170°E Pacific
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Ocean) (Fig. 3.3; ERA-Interim). Figure 3.3 illustrates the gauge-based precipitation datasets
and the GPCP demonstrating much better consistency, although some significant differences
are shown on smaller spatial scales (e.g. in southern India, western Indo-China peninsula,
and western Tibetan Plateau).
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Figure 3.3 Summer (June-July-August; JJA) rainfall of the Global Precipitation Climatology
Project (GPCP) and the rainfall anomalies ‘observation minus GPCP’, and ‘model minus
GPCP’from 1989-2008. The magenta grids illustrate the significance level at 0.001. MME:
multi-model ensemble mean.

RCMs indicate good performance over north-east Asia (40°-50°N, 105°-120°E) and
the north-west Pacific Ocean (140°-165°E, 30°-50°N), in which the absolute model bias

is less than 1 mm day !

while compared to the observations (Fig. 3.3). RCMs simulate
a drier Indian sub-continent, except the COSMO-CLM reproduces a slight wetter central

India. The COSMO-CLM, the HadGEM3-RA, the RegCM4 and the SNU-MMS tend to
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over-estimate the precipitation over the Tibetan Plateau, especially at the Himalayas (>4 mm
day~!), where the YSU-RSM simulates less precipitation (~3 mm day~!). COSMO-CLM
and HadGEM3-RA (RegCM4, SNU-MMS5 and YSU-RSM) exhibits negative (positive) bias
over Indo-China peninsula. In Indonesia and Malaysia, the SNU-MMS calculates wetter

conditions (>4 mm day_l) while other models simulate a drier conditions.
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Figure 3.4 As in Fig.3.3, but for the winter season (DJF).

In the winter (DJF) season, the rain bands withdraw to the south with maximum of
precipitation (>16 mm day~!) in Indonesia and Malaysia (Fig. 3.4; GPCP). The TRMM
shows a good agreement with the GPCP, which has a significant negative bias over the
northern Pacific (Fig. 3.4; TRMM). The ERA-Interim and the gauge-based precipitation
datasets have the same winter precipitation pattern as the GPCP. Significant negative biases

(<1 mm dayfl) occur over the central Asia and the east of Siberia.
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The RCMs have tendency to simulate wetter conditions in most part of the CORDEX-EA
domain (Fig. 3.4). RCMs tend to over-estimate the winter precipitation (~1 mm day~!) in
the Tibetan Plateau and the equatorial ocean, while they have tendency to under-estimate it
over central Asia. In south China and the South China Sea, the RCM biases show opposite
signs among the individual simulations, where the YSU-RSM (COSMO-CLM) simulates
a significant wetter (drier) bias while the other three models have non-significant bias. We
found that the YSU-RSM demonstrates too much precipitation over 20°-40°N, 120°-165°E
Pacific Ocean.

The statistical evaluation of the model performances in simulating the spatial precipitation
patterns over four sub-monsoon domains during the present (1989-2008) climate period are
presented in Table 3.3. For summer season, the TRMM is a good agreement with the GPCP
over the four sub-monsoon domains, while the ERA-Interim significantly under-estimates
(over-estimates) precipitation in the EAS (WNP). Compared to the GPCP, the APHRODITE
has a significant dry bias, while the CRU and the GPCC are showing consistency.

The RCMs tend to simulate more precipitation in the SAS, the EAS and the WNP, but less
precipitation in the AUSMC. In the SAS, the bias ranges from -0.07 to 1.51 mm day~!, but
only the YSU-RSM simulates a significant wetter condition (1.51 mm day~!). The COSMO-
CLM (BIAS: -1.00 mm day~!) simulates a drier EAS, while the other four RCMs are wetter
with the BIAS range from 0.38 to 1.93 mm day— I The same as in the EAS, the RCMs have
a tendency to simulate more precipitation in the WNP, except the HaddGEM3-RA (BIAS:
-1.30 mm day~!). RCMs slightly under-estimate the JJA rainfall in the AUSMC where the
COSMO-CLM simulates the wettest condition (BIAS: 0.98 mm day~!). Furthermore, the
RCMs show higher RMSEs (1.28-5.50 mm day_l) in the SAS and lower RMSEs (0.03-0.19
mm day ') in the AUSMC. The RCMs capture summer precipitation patterns better in the
EAS (PCC: 0.95-0.97) than in the other three regions.

In winter season, the TRMM and the ERA-Interim show good agreement to the GPCP.
The re-gridded gauge datasets slightly under-estimate the precipitation in the four sub-
monsoon regions, especially in the EAS (BIAS: -0.52, -0.53, -0.56 mm day !, respectively).
The APHRODITE has the significant negative bias for the DJF rainfall in the CORDEX-EA.
When compared to summer season, the RCMs tend to over-estimate the winter precipitation
in the four sub-monsoon regions, except in the AUSMC. It is worth mentioning that the
COSMO-CLM simulates noticeable dry bias in the SAS and the WNP, where the other RCMs
present significant wet bias. The RMSEs (0.68-1.43 mm day~!) in the AUSMC are larger
than in the SAS (<0.47 mm day_l), in the EAS (<1.28 mm day_l) and in the WNP (<0.64
mm day ).
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In both seasons, the MME captures the precipitation patterns better than the individual
models, leading to the highest PCC and the lowest BIAS and RMSE (Table 3.3). In JJA,
the precipitation difference between the MME and the observations is from -1.0 to 1.0 mm
day~! in most parts of the CORDEX-EA (Fig. 3.3). The significant positive (negative) bias
occurs at the 5°-15°N, 135°-165°E Pacific Ocean (the Indian sub-continent). For DJF, the
MME shows wetter conditions than the GPCP (e.g. in central China, the Mongolia and the
28°-55°N, 140°-165°E Pacific Ocean), especially in the equatorial area (>3 mm day ') (Fig.
3.4). The bias between the MME and the GPCP is significant in the EAS and in the WNP for
JJA, in the SAS, in the EAS, and in the WNP for DJF, respectively (Table 3.3).

3.3.3 Annual cycle

Figure 3.5 illustrates the mean annual cycle of precipitation averaged over four sub-monsoon
regions as presented in Figure 3.1. The annual cycle depicts the prominent features of the
precipitation in this region associated with the summer monsoon: dry conditions in the winter
and a rainy season from May to September (November to March) in the northern (southern)
hemisphere. The ERA-Interim and the TRMM show consistency to the GPCP in the EAS
and the AUSMC, while slightly over-estimate the peak in the SAS and the WNP. In general,
the two datasets exhibit good agreement to the GPCP in the monsoon process (i.e. onset and
retreat).

In the SAS, most of the RCMs are in close agreement with the observations, only the
YSU-RSM simulates a slightly wetter (<1 mm day~') summer and winter. In the EAS, the
RCMs simulate two peaks in June and August. Furthermore, the RCMs demonstrate a large
spread in simulating summer precipitation and a small amplitude in the pre-monsoon and
post-monsoon seasons. The COSMO-CLM identifies a negative bias, while other models
tend to a positive bias, especially in the summer. The YSU-RSM simulates a much wetter
winter (2 mm day~!) and summer. Over the WNP, most of the RCMs indicate an earlier
onset of the rainy season (May) compared to observations (June) and indicates that it is much
wetter throughout the year. As well as in the EAS, the YSU-RSM shows a much wetter
winter (2 mm day ') and summer. The HadGEM3-RA calculates a consistent onset of the
rainy season, but fails to simulate the maximum and the withdrawal of the monsoon. In
the AUSMC, the models demonstrate the annual cycle well, only the YSU-RSM fails to
exhibit the peak of the summer rainfall (January-March), while the HaddGEM3-RA and the
COSMO-CLM both over-estimate the rainy season rainfall.

The MME is closer to the observed annual cycle than the individual models. The RCMs
have a better performance in simulating the annual cycle in the SAS and the AUSMC than in
the EAS and the WNP.
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Table 3.3 BIAS (mm day’l), root-mean-square error (RMSE, mm day’l) and pattern correlation coefficient (PCC) between the
simulated precipitation and the observation (Global Precipitation Climatology Project, GPCP) for JJA and DJF over the 4 sub-monsoon
domains (SAS: South Asian Summer monsoon, EAS: East Asian Summer monsoon, WNP: Western North Pacific tropical monsoon,
AUSMC: Australian-Maritime Continent monsoon). MME: multi-model mean. *p < 0.01; **p < 0.001

SAS EAS WNP AUSMC

BIAS RMSE PCC BIAS RMSE PCC BIAS RMSE PCC BIAS RMSE PCC

JJA.  TRMM 0.96 1.15 0.96 0.07 0.11  0.99 0.82 0.39 097 -0.02 0.02 095
ERA-Interim 0.28 0.64 0.96 -0.22** 0.28  0.97 1.13* 0.39 097 0.20 0.03 097
APHRODITE -1.71* 0.70 092 -0.95**  0.10  0.99 -2.39* 0.16  0.95 -0.44* 0.01  0.96
CRU -0.47* 041 0.96 -0.37 0.05 099 -0.79 0.09 0.96 0.04 0.00 0.95
GPCC 0.62** 1.28 091 -0.35 0.08  0.98 -0.81 0.16 0.94 0.01 0.01  0.95
COSMO-CLM -0.07 1.27 093 -1.00 0.51 095 3.35% 243 092 -0.98*  0.11  0.88
HadGEM3-RA 0.40 552 0.81 0.38* 0.54 095 -1.30* 0.70 092 -0.07 0.04 092
RegCM4 -0.07 282  0.86 0.83** 0.72 095 2.16™ 1.22 095 -0.19 0.07  0.85
SNU-MM5 0.29 265 0.89 1.93* 1.02  0.96 3.12% 1.60  0.94 -0.03 0.14  0.83
YSU-RSM 1.51* 345  0.90 1.83* 0.84 097 2.33* 098  0.96 0.11 0.19 0.80
MME 0.41 1.56 093 0.80** 034 0.97 1.93** 0.75 0.96 -0.24 0.04 090
DJF TRMM 0.01 0.01 095 0.10 0.03  0.96 0.15 0.05 0.95 0.80 020 099
ERA-Interim 0.25% 0.04 0.86 0.09 0.04 095 0.63 0.10  0.95 0.57 0.18  0.98
APHRODITE -0.10* 0.00 094 -0.52* 0.00 0.98 -0.47* 0.01 0.90 -2.28 0.08  0.98
CRU -0.10 0.00 094 -0.53**  0.00 0.98 -0.09 0.01  0.87 0.68* 0.03 099
GPCC 0.06 0.00 091 -0.56**  0.01  0.97 -0.20 0.01  0.85 0.11 0.05 0.98
COSMO-CLM -0.14* 0.02  0.75 -0.22 0.06 0.90 -0.50* 0.04 095 2.48* 141 094
HadGEM3-RA 0.49* 0.09 0.79 0.41* 0.08 0.95 0.12 0.07 093 1.24* 0.67 095
RegCM4 0.35% 0.06 0.76 0.31% 0.06 0.93 -0.08 0.05 093 0.26 097 091
SNU-MM5 0.00 0.02  0.89 -0.01 0.05 092 1.30** 039 093 0.35 0.82 093
YSU-RSM 1.82% 047 093 2.24* 1.31  0.90 2.36™ 0.65 0.90 -0.33 0.83 092
MME 0.50* 0.05 0.93 0.55* 0.08 0.96 0.64™ 0.09 0.96 0.74 0.35 097
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Figure 3.5 Annual cycle of monthly precipitation averaged over the 4 sub-monsoon domains
for the period 1989-2008 for the Global Precipitation Climatology Project (GPCP, solid black
line), the ERA-Interim (solid green line), the TRMM (solid blue line), each of the regional
climate models (RCMs, coloured dashed lines) and their multi-model ensemble mean (MME,
solid red line).
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3.3.4 Inter-annual variability

The temporal statistics describing inter-annual variability of the JJA and the DJF mean
precipitation averaged over the four sub-monsoon domains is shown in Figure 3.6 for the
ERA-Interim, each of the RCM members and the MME compared to the GPCP. For the JJA,
the inter-annual variability of the precipitation is less prominent over the SAS. The ERA-
Interim calculates a low correlation co-efficient (0.33) with the GPCP. The majority of the
RCMs fail to reproduce the year-to-year variations of the precipitation with a relatively low
correlation co-efficient. We note that the RegCM4 shows a better performance in representing
the inter-annual variations of rainfall with a higher correlation co-efficient of 0.60 and
medium normalised standard deviations of 1.64. For the HadGEM3-RA, we calculated
the lowest correlation co-efficient (0.11). The GPCP and the ERA-Interim represent a
strong correspondence in the sign and magnitude of the inter-annual variability in the EAS
with a high correlation co-efficient of 0.81. The RCMs exhibit a lesser discrepancy to the
observations, with a generally higher correlation co-efficient in the EAS compared to the SAS.
The HadGEM3-RA and the YSU-RSM have a worse performance to capture the inter-annual
variability comparing to the other models. In the WNP, the RCMs exhibit a wide spread
(ranging from 4 to 8 mm day ') in simulating the precipitation. The models fail to capture
the inter-annual variability. The best performance is shown in the RegCM4 (correlation
co-efficient: 0.72). Compared to GPCP, the RCMs capture the sign and magnitude of the
inter-annual variability well. In the AUSMC, for the majority of the RCMs, the correlation
co-efficient is above (.76, while the correlation of the SNU-MMS is much higher (0.91).

Similar as in summer season, RCMs illustrate an insufficient performance in representing
the winter precipitation inter-annual variability over the SAS (Fig. 3.6; ¢f. DJF). The RCMs
exhibit a good performance in capturing winter precipitation year-to-year variation over the
EAS, the WNP and the AUSMC, with a closer agreement of inter-annual rainfall variability
and a higher correlation co-efficient compared to the GPCP. The ERA-Interim shows a close
correspondence in reproducing the sign and magnitude of winter precipitation to the GPCP
over the four regions. The SNU-MMS5 exhibits the best performance in capturing the winter
precipitation inter-annual variability with a relative higher correlation co-efficient (>0.80)
and closer year-to-year variation (~1.10) to the GPCP over the four sub-monsoon regions.
We found that the YSU-RSM significantly over-estimates the winter precipitation (>2 mm
day~!) compared to the observation in the SAS, the EAS and the WNP. In addition, the
YSU-RSM calculates the lowest correlation co-efficient compared to the other four models,
especially in the SAS.

In summer and winter season, the MME shows a better overall variability than most

RCM:s in the four regions, with a relative smaller bias and higher correlation co-efficient. Note
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Figure 3.6 Temporal statistics describing inter-annual variability of the models in terms
of the JJA and DJF mean precipitation, the multi-model ensemble mean (MME) and the
ERA-Interim compared with the Global Precipitation Climatology Project (GPCP) over the
South Asian Summer monsoon (red), the East Asian Summer monsoon (green), the Western
North Pacific Tropical monsoon (orange) and the Australian-Maritime Continent monsoon
(blue).

that the MME shows a relative larger difference of winter precipitation than the ERA-Interim,
and several of the RCMs in the SAS.

3.3.5 Monsoon characteristics

Compared to the GPCP, the merged observation (APHRODITE, CRU and GPCC; PCC: 0. 98,
NRMSE: 0.21) has small negative biases (-1 mm day~!) of the annual mean precipitation over
western India and the central China, whereas small positive biases occur over the Himalayas
(Fig. 3.7a; c¢f. Observation). The MME is able to reproduce the observed spatial distribution
features of the annual mean precipitation as well as the major tropical convergence zones
over the ocean and the main rainfall belts in the extra-tropical Pacific. The differences
between the observations and the individual model simulations show that the MME simulates
wetter conditions over equatorial Indian Ocean, the Bay of Bengal, the equatorial western
Pacific and southern Himalayas, but a drier central Asia and Indian sub-continent (Fig.
3.7a; ¢f. MME). Furthermore, over the tropics, the HidGEM3-RA simulates more accurate
precipitation patterns, while the COSMO-CLM, the SNU-MMS5 and the YSU-RSM show
wetter and the RegCM4 drier conditions. The PCC of the individual models vary from 0.91 to
0.95, and the NRMSEs vary from 0.66 to 1.19. Compared to other RCMs, the HadGEM3-RA
(SNU-MMS5) has a relative better (worse) performance (NRSME: 0.66 (1.19)) in reproducing
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Figure 3.7 Comparison of the precipitation climatology (1989-2008) between the Global
Precipitation Climatology Project (GPCP), the merged observation (APHRODITE, CRU,
GPCC,; datasets are described in Table 3.2) and the multi-model ensemble mean (MME): (a)
annual precipitation rate (mm d—1); (b) the first annual cycle mode (AC1, June-September
minus December-March); (c) the second annual cycle model (AC2, April-May minus October-
November); and (d) monsoon precipitation intensity (non-dimensional) and domain. The
numbers in the bottom left-hand corners show the pattern correlation coefficient (PCC)
between the observed and the simulated patterns (CORDEX-East Asia).
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spatio-temporal patterns of annual mean precipitation. The MME is significantly better than
the individual models in simulating the annual mean precipitation with a PCC of 0.98 and a
NRMSE of 0.61 (Fig. 3.8).
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Figure 3.8 Performance of the regional climate models and their multi-model ensemble
mean (MME) on precipitation climatology (1989-2008): the annual mean precipitation
(orange), the first annual cycle mode (June-September minus December-March; green), the
second annual cycle mode (April-May) minus October-November; red, and the monsoon
precipitation intensity (the ratio of ‘summer minus winter’ to annual total precipitation; blue).
The abscissa and ordinates are pattern correlation coefficient (PCC) and domain-averaged
root-mean-square error normalised by the observed spatial standard deviation (NRMSE),
respectively.

The first annual cycle mode (AC1, summer-winter asymmetric mode) is the difference in
the precipitation between June-September (JJAS) and December-March (DJFM), while the
second annual cycle mode (AC2, spring-fall asymmetric mode) is the difference between
April-May (AM) and October-November (ON) (Lee and Wang, 2014; Wang and Ding, 2008).
Compared to the GPCP, the Observation represents the first and the second annual cycle
mode with a high degree of accuracy. The MME tends to over-estimate the magnitude of the

ACI over the extra-tropical Pacific Ocean and to under-estimate it over the East China Sea
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(Fig. 3.7b; ¢f. MME). The model simulations can reproduce the observed AC] realistically
with PCCs ranging from 0.71 to 0.83 and NRMSEs ranging from 0.74 to 1.07, respectively
(Fig. 3.8). However, the SNU-MMS5 simulates a stronger AC1 over both the NWP and
the EAS. At the same time, the SNU-MMS5 has almost the worst performance (PCC: 0.71,
NRMSE: 0.99) in representing the AC1. Furthermore, the model simulations have difficulties
in capturing the AC2, as the model spread for this mode is much larger. The PCCs vary
from 0.72 to 0.81 and the NRMSEs vary from 0.73 to 1.22, respectively (Fig. 3.8). The
MME out-performs to show the AC1 and AC2 better than the individual models, and is more
effective for the AC1 than the AC2. The MMEs PCC is 0.89 (0.86) and its NRMSE is 0.60
(0.73) for the AC1 (AC2), respectively, averaged over the CORDEX East Asia region.

Wang et al. (2011) defined the monsoon precipitation intensity (MPI) as the ratio of
“summer minus winter” compared to annual total precipitation, and the monsoon domain as
the regions where the “summer minus winter” precipitation exceeds 2.5 mm day ! and the
summer precipitation exceeds 55 percent of the annual total. Compared to the GPCP, the
Observation captures the MPI and monsoon domain over land well with a PCC of 0.98 and an
NRMSE of 0.43. The individual models show a good performance in representing the MPI
pattern with PCCs ranging from 0.74 to 0.93 and NRMSEs ranging from 0.55 to 1.02 (Fig.
3.8). The YSM-RSM has the worst performance in simulating the MPI with the lowest PCC
(0.74) and NRMSE (1.02), and the MPI is significantly under-estimated. The HadGEM3-RA
shows the best agreement in the MPI (PCC: 0.93, NRMSE: 0.55) and the monsoon domain
compared to the GPCP. The MME exhibits an eastern extension of the WNP domain towards
the middle Pacific and a northern extension of the EAS domain towards eastern Siberia, while
it fails to show the monsoon domain over the East China Sea. Similar to other three metrics,
the MME improves the performance to reproduce the MPI when compared to the individual
models with a higher PCC (0.94) and a lower NRMSE (0.50).

3.4 Summary and discussion of Chapter 3

This is the first evaluation of the precipitation climatology based upon an ensemble of
regional climate model simulations performed within the CORDEX-EA project. In this
regard, five different RCMs, driven by the ERA-Interim, have been run at ~50 km horizontal
resolution over the period from 1989-2008. We examined the performance of the individual
models and the ensemble mean in reproducing present-day inter-annual variability, annual
cycle, and seasonal mean precipitation as well as monsoon characteristics. Gridded monthly
precipitation datasets (i.e. the GPCP and the ERA-Interim) have been used as comparison

data to evaluate the model performances.
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(1) The RCMs from the CORDEX-EA are able to capture the pronounced extreme rainfall
event as observed from 11-20 June 1998 (Fig. 3.2), which could not be reproduced well by
former RCM studies (e.g. RMIP Asia; Fu e al. 2005). Models from the RMIP Asia tend to
over-estimate the precipitation at high latitudes (Fu et al., 2005) and fail to reproduce the
heavy rainfall belts along the Yangtze River valley, the East China Sea and the south of Japan.
This might be due to a new RCM generation (e.g. RegCM4) used for the CORDEX-EA with
better physical parametrisation compared to the RCMs (e.g. RegCM?2) from RMIP Asia
(Giorgi et al., 2012). Furthermore, the SNU-MMS3 also joined in the RMIP (named as SNU
RCM). The SNU-MMS5 and the SNU RCM have the same physical package, but a different
convection scheme, Kain-Fritsch and Grell, respectively (Fu et al., 2005; Hong et al., 2006).
The SNU-MMS shows a better performance in capturing the extreme rainfall event than the
SNU RCM from RMIP. Kain-Fritsch convection scheme is able to better capture the extreme
rainfall than the Grell in SNU-MMS5/SNU RCM.

(2) In general, most of the CORDEX-EA RCMs capture the main features of the seasonal
mean rainfall patterns (Fig. 3.3 and Fig. 3.4), the annual cycles (Fig. 3.5), and the inter-
annual variability (Fig. 3.6). However, we found significant biases in the individual models
depending on both the region and the season. In summer, the RCMs tend to over-estimate
the precipitation over the Tibetan Plateau, except the YSU-RSM, which simulates a drier
Tibetan Plateau. All the RCMs simulate a significant drier Indian sub-continent (>3 mm
day~!) (Fig. 3.3). In winter, the RCMs have tendency to reproduce a wetter continent. The
HadGEM3-RA and the RegCM4 capture the precipitation well, while the COSMO-CLM,
SNU-MMS5 and YSU-RSM are too wet (>4 mm day~!) in the tropics (Fig. 3.4). The RCMs
simulate the annual cycle better in the SAS and the AUSMC than in the EAS or the WNP
(with less difference from the observation), especially in summer (Fig. 3.5). Furthermore,
the models show the precipitation inter-annual variability better in the EAS and the AUSMC
than in the SAS and the WNP (Fig. 3.6). The MME generally out-performs many of the
individual models with biases of similar magnitude compared to observational datasets.
Similar as earlier findings in multi-model studies (Gbobaniyi et al., 2014; Nikulin et al.,
2012; Paeth et al., 2011), the good performance is mostly influenced by the elimination of

the opposite-signed biases among the models, e.g. in south China and the Tibetan Plateau.

Compared to the GPCP, the significant bias over the south Himalayas and the Kunlun
Mountains owning to the low density of meteorological station (Wu et al., 2011; Yatagai
et al., 2009). Therefore, the bias of the RCMs in small-scale region is not accurate due to
the uncertainty of observations (Stephens et al., 2012). In addition, the models substantially
differ in simulating monsoon precipitation indicating that the internal dynamics and physics
playing an essential role on the RCMs performance. The RegCM4 and the SNU-MMS5
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show the same pattern in the precipitation bias over the continent due to using the same land
surface scheme and a similar radiation scheme. However, the RegCM4 and the SNU-MM5
present a different bias pattern over ocean (Fig. 3.3, c.f. RegCM4 and SNU-MMS5). We
can conclude that the convection scheme plays an important role on simulating monsoon
precipitation, especially over the ocean, which coincides to the finding from Sylla et al.
(2011). Furthermore, the RegCM4 and the SNU-MMS has the same dynamic core, but the
RegCM4 (SNU-MMS) adapts hydrostatic (non-hydrostatic) primitive equations (Giorgi et al.,
2012; Lee et al., 2004). Additionally, the RegCM4 shows better performance in capturing
short-to-long term temporal scale of precipitation than the SNU-MMS5. Non-hydrostatic
model do not outperform hydrostatic model. It is worth mentioning that only the HadGEM3-
RA does not implement the spectral nudging technique. The HadGEM3-RA exhibits an
acceptable performance in capturing the pattern and the annual cycle of precipitation, but a

relative worse performance in representing the inter-annual variability of precipitation.

The COSMO-CLM and the SNU-MMS have significant positive bias over the extra-
tropical Pacific (10°-20°N, 120°-165°E), but the COSMO-CLM under-estimates the summer
precipitation over south China while the SNU-MMS over-estimates it. Hence, the COSMO-
CLM and the SNU-MMS illustrate a compelling discrepancy of annual cycle over the EAS
and the WNP. Moreover, The HadGEM3-RA fails to capture the annual cycle in the WNP
(Fig. 3.5) because the significant under-estimating precipitation over the South China Sea
(Fig. 3.3, c.f. HadGEM3-RA). In SAS, the RCMs show a large discrepancy among each other
in simulating seasonal rainfall on inter-annual time scale due to the un-coupled RCMs do not
capture the large-scale Ocean oscillation (Jiang et al., 2013a). In addition, ENSO provides
the most systematic forcing of inter-annual variability for Asian monsoon system (Annamalai
et al., 2007; Wang, 2006; Wang et al., 2000). RCMs exhibit the different performance in
describing the year-to-year variation in the four sub-monsoon regions. In East Asia, the
RCMs might be having the ability to capture the Pacific-East Asian teleconnection which
is a mechanism that links central Pacific SST anomalies with East Asian climate variations
(Wang et al., 2000). However, the RCMs show the worst performance in capturing the
inter-annual variability in South Asia due to most of the climate models could not represent
the correlation between observed precipitation and ENSO (Annamalai et al., 2007). After
fixing this problem, the coupled RCM will be a helpful approach in the future regional
dynamic downscaling.

(3) For the monsoon characteristics, the RCMs show close correspondence to the obser-
vations (Fig. 3.7 and Fig. 3.8). The monsoon is characterised by an annual reversal of the
low-level winds and well-defined dry and wet seasons (Wang and Ding, 2008), the variability

of which is of great importance for simulating future climate impacts (Colman et al., 2011;
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Turner and Annamalai, 2012; Wang, 2006). The metric of annual mean precipitation, the AC1
and the AC2 is the basis for MPI and monsoon domain. The accuracy of MPI and monsoon
domain indicates the model performance in capturing the intra-seasonal rainfall variations.
The MPI strongly depends on the difference of precipitation between rainy and dry season.
YSU-RSM shows an insufficient performance in capturing the annual cycle, especially in
winter season over the SAS, the EAS and the WNP (Fig. 3.5). Hence, YSU-RSM has fewer
skills (higher NRMSE and lower PCC) to represent the AC1 and MPI (Fig. 3.8). Furthermore,
the IPCC ARS indicates that multi-model ensemble means from CMIPS5 fails to capture the
MPI and the monsoon domain over the Western North Pacific-East Asia monsoon region,
while its performance is improved when compared to CMIP3 (Flato et al., 2013), because the
high resolution RCMs are able to resolve the topography and coastlines. The RCMs better
capture the monsoon characteristics over the Korean Peninsula, the Korea Strait and southern
Japan than the CMIP5 models.

This chapter discussed the CORDEX-East Asia models in representing the precipitation
climatology and monsoon characteristics under validation framework. Current set up of
the RCMs can be used for further dynamical downscaling. A downscaling application will
be launched (in Chapter 4) to address if the set up improve the model performance (from
AOGCM to RCM) in producing the EASM. It employs a prediction system (MPI-ESM-LR)
from Chapter 5 to drive the COSMO-CLM.






Chapter 4

Dynamical Downscaling with
COSMO-CLM in East Asia

4.1 Introduction

Chapter 3 has validated the set up of CORDEX models in representing the precipitation
climatology and monsoon characteristics in East Asia. Current set up of the five RCMs
can be used to provide useful information on a fine resolution. Toward the major target of
this thesis, this chapter uses a particular downscaling simulation to test the improvement
by a high resolution RCM. COSMO-CLM (CCLM) was selected for the simulation. The
model parametrization scheme is the same as the one used in chapter 3. The driving data
is generated by MPI-ESM-LR which contributes to the chapter 5 for studying the seasonal
prediction of EASM. This chapter compares the performance of CCLM and MPI-ESM-LR,

in simulating the seasonal precipitation and the EASM index.

4.2 Experiment design and comparison data

In this chapter, two experiments (1979-2005) are analysed, which participate in the CORDEX-
East Asia project. The boundary condition of the two simulations are the ERA-Interim and
the MPI-ESM-LR. The MPI-ESM-LR is a low resolution (atmosphere: T63L47; ocean:
GR15L40) of Max Planck Institute for Meteorology (MPI-M) earth system model (MPI-
ESM). The first run (rlilpl) of MPI-ESM-LR is used as the boundary condition in this
study. Monthly precipitation, mean sea level pressure, zonal and meridional winds from
ERAI-CCLM (boundary condition: ERA-Interim) and MPI-CCLM (boundary condition:
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MPI-ESM-LR) are used in this study. Section 3.2 shows the details of CCLM and its
parameter schemes.

The GPCP was selected as comparison data for precipitation. The reference data for
general circulation is ERA-Interim re-analysis dataset. The MPI-ESM-LR was also applied
into comparison. All the datasets are remapped to CORDEX-East Asia grids by bi-linear

interpolation.

4.3 Result

4.3.1 Seasonality

The main rainfall band migrates with ITCZ shifting. In winter months (Fig. 4.1; DJF), the
rainfall band occurs in the tropics of south Hemisphere. In summer (Fig. 4.1; JJA), the ITCZ
reaches its northernmost location. There are two rainfall branches in the East Asia. The south
branch is from the Bay of Bengal to the Philippine Sea, while the north branch occurs from
the eastern China to the north-west of Pacific Ocean. The GCM (Fig. 4.1; i.e. MPI-ESM-LR)
can capture the shifting of rainfall band. However, it simulates a wetter-drier-wetter condition
from the south to the north in the CORDEX-East Asia region. In all the fourth seasons, the
MPI-ESM-LR shows a significant negative BIAS of rainfall in the India, the Indo-China
peninsula, the south-east of China and the north-west of Pacific Ocean.The MPI-ESM-LR
does not simulate the accurate location of the rainfall bands in summer months. It simulates
less precipitation in both of the north and south precipitation branches.

Compared to the GPCP, the CCLM produces a significant BIAS of precipitation in
specific region and season (Fig. 4.1; ERAI-CCLM). The BIAS centre is shifting with the
season change. In the winter, a prominent positive BIAS (>4 mm day~!) centre occurs in the
tropics of southern Hemisphere. Then it northward transforms to the north hemisphere in the
spring. In the summer months, the positive BIAS centre reaches its northernmost location. It
moves southward to the equator in the autumn.

The BIAS of the MPI-CCLM simulated precipitation has the same distribution as the
MPI-ESM-LR. However, the CCLM enlarges the BIAS of precipitation. In the summer
months, the MPI-CCLM shows a significant negative BIAS (<-4 mm day~!) in the east and
south of China where the MPI-CCLM illustrates a slight negative BIAS (~-1 mm day~!).

The large difference of precipitation is associated to the prominent BIAS of general
circulation. In the northern Hemisphere, a northward wind BIAS brings a wetter condition
(e.g. the western Pacific Ocean) while a southward wind BIAS leads to a dryer condition in
the east and south of China.
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The statistical evaluation of model performance in simulating the spatial precipitation,
zonal and meridional winds at 850 hPa over the CORDEX-East Asia domain during the
present (1979-2005) climate period are presented in Table 4.1. The MPI-CCLM exhibits a
worse performance in representing the precipitation and wind fields than the ERAI-CCLM
and the MPI-ESM-LR. It simulates a larger BIAS and RMSE, but a smaller PCC than its
driven data (MPI-ESM-LR).

4.3.2 Monsoon characteristics

Figure 4.2 shows the CCLM and its driven data in capturing the EASM index (EASMI). The
EASMI is widely used in studying the variability of EASM (Wang et al., 2008b). Its definition
has been presented in the Section 2.3.3. There is no doubt that the EASMI simulated by
RCM strongly depends upon its driven GCM. The cross correlation coefficient between
the ERA-Interim, the MPI-ESM-LR, the ERAI-CCLM, and the MPI-CCLM is presented
in Table 4.2. The EASMI produced by ERAI-CCLM exhibits a good agreement with the
observation. Compared to the observation, the ERAI-CCLM can capture the phase of EASMI
(i.e. strong, weak and normal monsoon) in most years. Its EASMI shows a high correlation
coefficient (0.92) to the observed.

The MPI-ESM-LR does not capture the inter-annual variation of observed EASMI with a
low correlation coefficient (0.24). In specific monsoon year (e.g. 1985, 1998 etc.), the MPI-
ESM-LR does not accurately represent the EASMI. The MPI-CCLM exhibits the consistent
as the MPI-ESM-LR in producing the EASMI. It shows a worse EASMI than its driven GCM
(i.e. MPI-ESM-LR).

The EASMI can indicate the summer rainfall distribution in the East Asia (Fig. 4.3). The
Asian summer monsoon rainfall shows a “Sandwich” pattern. In strong monsoon years, the
maximum rainfall bands occur from the Indo-China peninsula to the Philippine Sea, and the
north-east of Asia; while the maximum rainfall bands occur in the Indonesia and Malaysia,
and from the Yangtze River to the north-west of Pacific. The ERAI-CCLM exhibits the
similar correlation pattern as the observation. But it cannot represent the significant negative
centre in the Yangtze River and Japan.

The correlation between the MPI-ESM-LR simulated EASMI and precipitation shows the
negative-positive-negative-positive distribution from south to north. The main precipitation
band is shifted southwards. Furthermore, the correlation map does not capture the prominent
negative band from the Yangtze River to the Japan. The MPI-CCLM shows a similar
correlation map as the MPI-ESM-LR.
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Table 4.1 BIAS (mm dayfl), root-mean-square error (RMSE, mm day’l) and pattern correlation coefficient (PCC) between the
simulated precipitation and the observation (Global Precipitation Climatology Project, GPCP) for DJF-to-SON over the CORDEX-East
Asia domain. *p < 0.01; **p < 0.001

pr ua850 va850

BIAS RMSE PCC BIAS RMSE PCC BIAS RMSE PCC

DJF MPI-ESM-LR  1.02** 1.24 091 -0.01 0.19 094 0.06 0.06 0.86
ERAI-CCLM  0.68**  0.54 092 -0.43* 022 097 0.00 0.00 0091
MPI-CCLM .34 202 0.89 -0.08 024 092 -0.27* 0.13 0.81

MAM MPI-ESM-LR  0.64** 052 091 0.50* 039 094 0.16™  0.05 0.86
ERAI-CCLM  0.77**  0.64  0.89 -0.36"*  0.15 095 0.17%*  0.03  0.82
MPI-CCLM .56  2.61 0.87 0.22* 0.19 0.80 028  0.11  0.69

JJA. MPI-ESM-LR 0.66" 051 0.90 0.09 0.17 0091 0.04 0.02 0.90
ERAI-CCLM  0.33*  0.14 0.89 0.01 0.01 094 0.13**  0.01 0.85
MPI-CCLM 1.15* 145 0.85 046" 049 0.82 043 020 0.72

SON MPI-ESM-LR 0.74**  0.77 0.93 0.06 0.11 094 0.13**  0.03 0.86
ERAI-CCLM 051" 029 090 -0.26"  0.08 0.94 0.14  0.02 0.85
MPI-CCLM .34 214 0.89 0.04 0.14  0.86 021  0.07 0.76
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Table 4.2 Cross correlation coefficient between the observed and the model simulated East
Asian summer monsoon index. **p < 0.001

ERA-Interim  MPI-ESM-LR ERAI-CCLM  MPI-CCLM

ERA-Interim 1.00 0.25 0.92** 0.11
MPI-ESM-LR 1.00 0.25 0.77*
ERAI-CCLM 1.00 0.15
MPI-CCLM 1.00

Observation MPI-ESM-LR ERAI-CCLM MPI-CCLM
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Figure 4.1 Seasonal mean precipitation and wind vectors at 850 hPa (m s~ 1), and seasonal
anomalies of precipitation ‘model minus GPCP’, and seasonal anomalies of winds ‘model
minus ERA-Interim’. The presented anomalies of precipitation and winds pass the Student's
t-test at 0.05 level.
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Figure 4.2 Observed and model simulated East Asian summer monsoon index (EASMI). The
number following the model presents the correlation coefficient between the model produced
and observed EASMI. The two black dotted lines indicate the category of monsoon year. The
strong monsoon year is defined as EASMI >1, while the weak monsoon is EASMI <-1.

Observation MPI-ESM-LR

45°N

30°N

15°N

€ e 3
.;qm N
L

15°S | L i 1 7 O
ERAI-CCLM
e A

90°E 105°E 120°E 135°E 150°E 90°E 105°E 120°E 135°E 150°E

-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 4.3 Observed and model simulated correlation map between the East Asian summer
monsoon index (EASMI) and the summer (June-July-August) precipitation. The black dots
indicate 0.05 significant level based upon the Student's #-test.
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4.4 Summary and discussion of Chapter 4

Following the CORDEX-East Asia projection framework, this chapter has introduced an
application of dynamical downscaling in East Asia. The model employs the same set up
as Chapter 3. The performance of RCM (CCLM) in presenting the seasonality of general
circulation and precipitation (Fig. 4.1), the monsoon characteristics (Fig. 4.2 and 4.3) have
been discussed. Compared to the observed condition, the CCLM shows significant BIAS in
specific regions. The BIAS centre is shifting with the season/ITCZ change. The possible
reason is the CCLM overestimating precipitation in ITCZ region. This might be resolved by
the improvement of model parametrisation. Furthermore, the CCLM's performance strongly
depends upon its boundary condition. The RCM tends to amplify the error when it is given
an unrealistic boundary condition. For example, the MPI-ESM-LR underestimates (-2 to -1
mm day ') the summer rainfall band from the Yangtze River to the south of Japan where the
MPI-CCLM produces a larger negative BIAS (-4 to -2 mm day ).

There is a smaller correlation coefficient between the RCM simulated EASM index and
observation than that in the GCM (Fig. 4.2). The RCM does not add value to the GCM in
producing the year-to-year variation of the EASM index. In general, the RCMs have potential
to add value to the GCMs on specific processes and forcing acting at sub-GCM grid scales
(Giorgi and Gutowski, 2015). Actually, the EASM is a large scale rather than a sub-GCM
grid scale phenomena (Ding and Chan, 2005; Tao and Chen, 1987). This might be the reason
for the poor performance of RCM than GCM in capturing the inter-annual variability of
EASM index. Both of the RCM and GCM do not depict the relationship between the EASMI
and the monsoon precipitation (Fig. 4.3). There is a potential to improve the model ability in
capturing the EASM index and the monsoon precipitation.

This chapter is a preparation work for downscaling the prediction results to a finer
resolution. A reliable prediction results is required for further downscaling. Next chapter
will discuss the MPI-ESM-LR and the other five prediction systems in predicting the EASM

on seasonal time-scale.






Chapter 5

Seasonal Predictability of East Asian
Summer Monsoon in CMIPS5 models

5.1 Introduction

As the evolution and variability of EASM critically impacts on both the economy and society,
accurate EASM prediction is an important and long-standing issue in climate community.
The internal processes of the atmosphere comprise various short time-scales and associated
stochastic non-linear processes. The predictability of such internal processes are only possible
for a few days (Lorenz, 1960). Thus, the source of predictability on a longer time-scale must
come from the lower boundary conditions (Charney and Shukla, 1981; Shukla, 1998). The
ocean gives the climate system a memory that can result in monthly to yearly atmospheric
deviations due to its large heat storage capacity. Therefore, the teleconnection between the
SST and the EASM can provide us with the capability to predict the variation of the EASM
(Chang et al., 2000a; Kang et al., 2004; Wang et al., 2005). ENSO is the most useful factor
to indicate SST anomalies. In general, a weak (strong) EASM is associated with the warm
(cold) phase of the ENSO (Wang et al., 2000). A strong relationship between the EASM and
the ENSO has been found since the 1970s (Yun et al., 2010). It provides a reliable predictor
for the empirical/statistical model of EASM prediction (Sohn et al., 2012; Wang et al., 2015;
Wu et al., 2009). Nevertheless, it cannot fully depict the variability on a multi-time scale.

In the last two decades, numerous articles have presented the performance of GCMs to
simulate and predict the EASM (Kang et al., 2004; Sohn et al., 2012; Wang et al., 2005,
2007; and many others). The AGCMs studies, however, show the limitations of dynamical
monsoon prediction due to the non-linear characteristics of the atmosphere and the inaccurate
performance of the AGCMs (Kang et al., 2004; Wang et al., 2005; Zhou et al., 2009). A new
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generation of GCMs, coupled atmosphere-ocean-land GCMs (AOGCMs) or earth system
models (ESMs) are widely used to evaluate the predictability of the EASM (Wang et al., 2007,
2009). These simulations with prescribed SST simulations improve the model performance in
representing the seasonal to inter-annual lead modes of the EASM (Wang et al., 2007, 2009),
but still behave poorly in reproducing the EASM rainfall over land due to the prescribed
SST which leads to an incorrect rainfall-SST teleconnection (Wang et al., 2004a). Sperber
et al. (2013) assessed the progress of the model from coupled model inter-comparison project
phase 3 (CMIP3) (Meehl et al., 2007) to phase 5 CMIPS5 (Taylor et al., 2012) in simulating
the Asian summer monsoon. They found that there is no single model that performs superior
to the other models in all aspects of the predictive skill metric (i.e. the time mean, the
climatological annual cycle, the inter-annual variability, and the intra-seasonal variability of
the ASM). The models simulate not only a too weak ENSO-monsoon teleconnection, but
also a too weak East Asian zonal wind-rainfall teleconnection (Sperber et al., 2013).

Initial conditions as well as physical processes and the resolution of the model play a vital
role in predicting climate (Smith et al., 2007). Initialised simulations (i.e. decadal hindcast)
add skills to simulate the ENSO, compared to non-initialised simulations (i.e. historical)
on seasonal-to-decadal time-scale in CMIPS5 (Meehl et al., 2014; Meehl and Teng, 2012).
After initialised with the observed initial conditions and boundary forcing, the models in
CMIP5 can predict the ENSO up to 15 months in advance (Choi et al., 2016). This extended
prediction skill of the ENSO suggests that the EASM can be predicted on a seasonal time-
scale if the dynamic link between the ENSO and monsoon circulations is well represented
in these models. Following scientific issues will be addressed: What is the CMIP5 models

performance in predicting the EASM and do the models improve with the initialisation?

5.2 Models, data and methods

In this chapter, six prediction systems are assessed, which contribute to CMIPS in historical
(i.e. non-initialised) and decadal hindcast (i.e. initialised) simulations (Table 5.1). This
study only employs the six prediction systems because only these systems have performed a
yearly initialisation. The BCC-CSM1-1 has three ensemble members which are initialised
on 1st September, 1st November and 1st January, respectively. The initialisation of HadCM3
takes place on each pre-year 1st November while the other four systems are initialised on
Ist January. The full-field initialisation is named HadCM3-ff to distinguish it from the
anomaly initialisation in HadCM3. Because of the better spatial coverage of the observation
precipitation. The satellite era (1979-2005) is selected for this study. The first lead year
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results from initialised simulations are used to assess the seasonal predicting skills of the
CMIPS models. Table 5.2 shows the brief configurations of the six prediction systems.

The main datasets which are used for the comparison in this study include: (1) monthly
precipitation data from the Global Precipitation Climatology Project (GPCP; Adler et al.,
2003); (2) monthly general circulation data from ECMWF Interim re-analysis (ERA-Interim;
Dee et al., 2011); and (3) monthly mean SST from National Oceanic and Atmospheric
Administration (NOAA) improved Extended Reconstructed SST version 4 (ERSST v4;
Huang et al., 2015a). All the model data and the comparison data are remapped onto a
common grid of 2.5°x2.5° by bi-linear interpolation to reduce the uncertainty associated with
different data resolutions.

The pattern correlation coefficient (PCC) is applied to analyse the model performance in
capturing the spatial pattern with reference to the observational data. There are two types
of pattern correlation statistics: centred and un-centred. The centred (un-centred) statistic
measures the similarity of two patterns after (without) the removal of the global mean. The
un-centred PCC is used due to the fact that centred correlations alone are not sufficient for
the attribution of seasonal prediction. This chapter also employs the anomaly correlation
coefficient (ACC) to analyse the model performance in reproducing observational variations
on a different time-scale, which is calculated by the anomaly of each variable. The root-
mean-square error (RMSE) is employed to test the model deviation from the observation.
Appendix B presents the detail of definition for PCC, ACC and RMSE.
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Table 5.1 Detail of the prediction system investigated in Chapter 3

System Institute Resolution Non- Initialisation Reference
Initialisation
Atmospheric Oceanic Members Members Type

BCC-CSM1-1 Beijing Climate T42L26 Ilonx1.33lat 3 3 Full-field Wu et al. (2014)
Center, China L40

CanCM4 Canadian Centre T63L35 256x192 10 10 Full-field Arora et al. (2011)
for Climate Mod- L40
elling and Analy-
sis, Canada

GFDL-CM2p1 Geophysical N45L.24 1lonx0.33- 10 10 Full-field Delworth et al. (2006)
Fludi Dynamics 11at L50
Laboratory, USA

HadCM3 Met Office N48L19 1.25x1.25 10 10+10 Full- Smith et al. (2013)
Hadley Centre, L20 field and
UK Anomaly

MIROCS Atmosphere and T85L40 246x192 5 6 Anomaly Tatebe et al. (2012)
Ocean Research L40
Institute, Japan

MPI-ESM-LR Max Planck Insti- T63L47 GR15L20 3 3 Anomaly Matei et al. (2012)

tute for Meteorol-
ogy, Germany




Table 5.2 Brief summaries of initialisation strategies used by modelling groups in Chapter 3. ECMWF: European Centre for Medium-
Range Weather Forecasts; GODAS: Global Ocean Data Assimilation System; NCEP: National Centers for Environmental Prediction;
S: Salinity; SODA: Simple Ocean Data Assimilation; T: Temperature.

Model Atmosphere Ocean Internet
BCC-CSM1-1 - integration with ocean T http://forecast.bcccsm.ncc-cma.net/
nudged to SODA product
above 1500 m
CanCM4 ECMWF re- off-line assimilation of SODA http://www.cccma.ec.gc.ca/
analysis and GODAS subsurface ocean
T and S adjuusted to reserve
model T-S
GFDL-CM2pl1 GFDL re-analysis assimilates observations of T, https://www.gfdl.noaa.gov/multi-
S from World Ocean Database decadal-prediction-stream/
HadCM3 ECMWF re- off-line ocean re-analysis http://cera-
analysis product www.dkrz.de/WDCC/CMIP5/
MIROCS - integration using observa- http://amaterasu.ees.hokudai.ac.jp/
tional gridded ocean T and
S
MPI-ESM-LR NCEP re-analysis off-line ocean hindcast forced http://cera-
with NCEP www.dkrz.de/WDCC/CMIP5/
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Figure 5.1 Anomaly correlation coefficient of six variables (i.e. precipitation, mean sea level pressure, and winds over 850 hPa and 200
hPa) between multi-model ensemble mean and observations in non-initialisation and initialisation. The green dotted grids illustrate the
significant level at 0.05. The number at lower left corner indicates the ratio of significant grid points to entire grids. The GPCP was
employed as the reference data for precipitation (pr) while winds (i.e. ua850, va850, ua200 and va200) and mean sea level pressure
(psl) were compared with ERA-Interim re-analysis.
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5.3 Seasonal prediction skill of the EASM

The EASM has complicated spatial and temporal structures that encompass the tropics,
subtropics, and mid-latitudes (Ding, 1994; Tao and Chen, 1987). In late spring, an enhanced
rainfall pattern is observed in the Indochina Peninsula and in South China Sea. Then,
the rainfall belt advances northwards to the south of China. In early summer, the rainfall
concentration occurs in the Yangtze River Basin and in southern Japan, namely, the Meiyu
and Baiu season, respectively. The rainfall belt can arrive as far as northern China, the Korean
Peninsula (called the Changma rainy season) and central Japan in July (Ding, 2004; Ding
and Chan, 2005).

Non-Initialisation Initialisation

; , ! , |
1.0 075 05 025 0O 0.25 0.50 0.75 1.0 1.0 075 05 025 O 0.25 0.50 0.75 1.0
PCC PCC
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X pr . psl + ua850 Xua200 gva850 @ va200

Figure 5.2 Taylor diagram display of pattern (PCC) and temporal (ACC) correlation metrics
of six variables between observation and model simulation in the EASM region (0°-50°N,
100°-140°E). Each coloured marker represents a model, i.e. the BCC-CSM1-1 (black), the
CanCM4 (green), the GFDL-CM2p1 (red), the HadCM3 (blue), the MIROCS (brown), the
MPI-ESM-LR (light-sea-blue), the HadCM3-ff (orange) and the multi-model ensemble mean
(grey). The reference datasets are same as that in Fig. 5.1.

The EASM is characterised by both seasonal heterogeneous rainfall distribution and
associated large-scale circulation systems (Wang ef al., 2008a). In summer, water moisture
is transported from the Pacific Ocean to central and eastern Asia by the south-west surface
winds. Generally, a strong summer monsoon year is followed by precipitation in northern
China, while a weak summer monsoon year is usually accompanied by heavier rainfall along
the Yangtze River basin (Ding, 1994; Zhou and Yu, 2005).

For multi-model ensemble mean (MME), the prediction skill of the EASM precipitation
and the associated general circulation variables (i.e. zonal and meridional wind, and mean

sea level pressure) is presented in Figure 5.1. Compared to the non-initialised experiment, a
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larger predictability area can be found in the initialised experiment. The individual model
shows an acceptable performance (high PCC) in capturing the observational spatial variation
of the six variables, which are related to EASM, but a poor performance in calculating
the observational temporal variation (low ACC) (Fig. 5.2). There is no improvement in
estimating the spatial variation of the six variables with initialisation. We can see that the
models show a higher ACC in the initialised simulations than in the non-initialised ones. The
improvement of simulating the temporal variation of zonal winds (i.e. ua850 and ua200) is
larger than the rainfall and meridional winds. Therefore, the monsoon index based on general

circulation parameters is a potential tool to predict the EASM.
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Figure 5.3 Performance of the model ensemble member (hollow marker), its ensemble
mean (solid marker) and multi-model ensemble mean (black solid square) on the EASM
index. The abscissa and ordinates are the temporal correlation coefficient (ACC) and the
root-mean-square error (RMSE), respectively. The observed EASM index is calculated
by zonal wind at 850 hPa from the ERA-Interim re-analysis data. Vertical black dot lines
indicate the significant level at 0.1. The vertical black line indicates the correlation between
the simulating and the observational EASM index is 0.

In the last few decades, more than 25 general circulation indices have been produced to
research the variability and long-term change of the EASM. Wang et al. (2008a) classified
them into five categories and discussed their ability to capture the main features of the EASM.

It found that the Wang and Fan index (1999) shows the best performance in capturing the
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total variance of the precipitation and three-dimensional circulation over East Asia. I, thus,
select the Wang and Fan index for the further analysis. Its definition is standardised average
zonal wind at 850hPa in (5°-15°N, 90°-130°E) minus in (22.5°-32.5°N, 110°-140°E).

In the non-initialised simulations, the CanCM4 and the GFDL-CM2p1 simulate the
EASM index at a negative phase, while the BCC-CSM1-1, the HadCM3, the MIROCS5 and
the MPI-ESM-LR all represent a positive phase. Without initialisation, all the models do
not capture the observed EASM as indicated by a low ACC (Fig. 5.3). Compared to the
non-initialised simulations, the CanCM4, the GFDL-CM2p1 and the MIROCS improve
the skill simulating the EASM, while the BCC-CSM1-1 and the HadCM3 show a worse
performance with initialisation. Particularly, the HadCM3 significantly loses its predictive
skill in capturing the EASM in the anomaly initialised simulation. There is only small change

in the MPI-ESM-LR from non-initialised simulation to initialised simulation.

5.4 EASM-ENSO coupled mode in CMIPS

Two methods are usually applied to identify the leading modes of geophysical fields: singular
value decomposition (SVD), and empirical orthogonal function (EOF). The SVD is used to
analyse the co-variability modes between two geophysical fields (Bretherton et al., 1992).
However, the SVD modes are not orthogonal and cannot be used to re-construct the full
variability; in addition, the SVD modes of precipitation and SST are strongly dominated by
the SST variability in the tropics, not by the rainfall variability (Lau and Wu, 2001). This
study employs the EOF method to analyse the leading EOF modes of six meteorological
variables anomaly in the EASM region (0°-50°N, 100°-140°E). The first EOF mode of
precipitation is characterised by a “sandwich” pattern which shows sharp contrast between
the prominent rainfall centre over Malaysia, the Yangtze River valley and the south of
Japan, and the enhanced rainfall over the Indo-China Peninsula and the Philippine Sea (Fig.
5.4). The increased precipitation is associated with cyclones in the low-level (850 hPa) and
anti-cyclones in the upper level (200 hPa).

The correlation coefficient of the first eigenvector and the associated principal compo-
nent (PC) between the model simulation and the observation in the non-initialised and the
initialised simulation is presented in Figure 5.5. The models capture the eigenvector of the
first EOF for the six meteorological fields in non-initialised simulation. However, they fail to
reproduce the associated PC of the first leading EOF mode. Compared to the non-initialised
simulation, the initialised models show no improvement simulating the first leading EOF
mode of rainfall. However, they exhibit a better performance in representing the first leading
EOF mode of zonal wind. The CanCM4 and the GFDL-CM2p1 capture the first PC of ua850,
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Figure 5.4 Spatial distribution of observational of the first leading EOF mode of June-July-
August precipitation and winds over 850 hPa (a), mean sea level pressure and winds over
200 hPa (c) and the associated principal component (PC; b, d). The GPCP and ERA-Interim
data from 1979-2005 were used for the EOF analysis in the EASM domain.

contrary to the other five models. For the zonal wind at 200 hPa, the BCC-CSM1-1 fails to
simulate its first EOF mode while the other six models can. Then, only the GFDL-CM2p1
accurately simulates the first EOF eigenvectors and the associated PC of va850, which is not
reproduced in the other models. All models do not capture the spatial-temporal variation of
the first EOF mode of meridional wind at 200 hPa. The GFDL-CM2p1 and the MIROCS
simulates a reasonable leading EOF mode and associated PC of psl, while the other models

cannot capture it.

Figure 5.7 shows the fractional (percentage) variances of the six variables of the first
EOF mode with the total variances from the observation, and the model simulation in non-
initialisation and in initialisation. The observational total variances for the pr, the ua850, the
ua200, the va850, the va200 and the psl, are depicted by the first lead EOF mode in 21.2,
59.0, 36.5, 20.6, 28.5 and 50.0 (percent), respectively. The models simulate the comparable
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Figure 5.5 Portrait diagram display of correlation metrics between the observation and
the model simulation of the first lead EOF mode for the six fields in the non-initialisation
(left) and the initialisation (right). Each grid square is split by a diagonal in order to show
the correlation with respect to both the eigenvector (upper left triangle) and its associated
principal components (lower right triangle) reference data sets.

explained variances, which show a slight discrepancy for the first leading mode in the non-
initialisation. From non-initialised simulation to initialised simulation, the CGCMs tend to
enhance the first EOF lead mode due to the fact that they show larger fractional variances
of the total variances of the six variables. We note that the CanCM4 and the GFDL-CM2pl1

significantly increase the fractional variances from non-initialisation to initialisation.

The ENSO is a dominant mode of the inter-annual variability of the coupled ocean
and atmosphere climate system, which has strong effects on the inter-annual variation of
the EASM (Wang et al., 2000; Wu et al., 2003). Wang et al. (2015) summarised the first
EOF lead mode of the ASM is the ENSO developing mode. As previously mentioned, the
first EOF mode is improved in the initialised simulations, compared to the non-initialised
simulation. This also can be found in the ENSO indices (Fig. 5.9). Nifio3.4 and southern
oscillation index (SOI) represent the oscillation of two components in the earth system (ocean
and atmosphere). Nifio3.4 is calculated by the SST anomaly in the central Pacific (5°S-5°N,
190°-240°E), while SOI is based upon the anomaly of the sea level pressure differences
between Tahiti (17.6°S, 210.75°E) and Darwin (12.5°S, 130.83°E). To calculate the SOI, the
grid data have been interpolated to the Tahiti and the Darwin point by bilinear interpolation.
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Figure 5.6 Same as Fig. 5.5, but for the second, third and fourth lead EOF modes.
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Figure 5.7 Fraction variance (per cent) explained by the first EOF mode for six fields in the
non-initialisation (left) and the initialisation (right).

The individual members and their ensemble mean of the six models show a low correlation
coefficient to the observational Nifio3.4 and the SOI in the non-initialised simulations. These
two indices show strong anti-phase in the observation, with correlation range is -0.94 to
-0.92 for four seasons. The models can describe the anti-correlation between Nifio3.4 and the
SOI, but with a weaker correlation. Compared to the non-initialisation, there is a significant
improvement in capturing the observational Nifio and the SOI in initialised experiments. The
initialisation lowers the spread of Niflo3.4 and the SOI simulations in all the six models.
There is a noticeable change between the model in producing the relationship between the
Nifno3.4 and the SOI. We can find that the GFDL-CM2p1 (HadCM3) shows a lower (higher)
Nifo3.4 -SOI correlation in initialisation than that in non-initialisation. With initialisation,
the ensemble mean of each model outperforms its individual members in capturing Nifio3.4
and the SOI, while without initialisation it shows a worse performance than individual

members in simulating Nifio3.4 and the SOI.

The EASM strongly relies on the pre-season ENSO due to the lag response of the
atmosphere to the SST anomaly (Wu et al., 2003). The lead-lag correlation coefficients
between the EASM index and Nifio3.4, and the SOI from JJA(-1) to JJA(+1) are illustrated
in Figure 5.10. The pre-season Nifio3.4 (SOI) presents a significant negative (positive)
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Figure 5.9 Model prediction skill in representing the observed Nifio3.4 index (red), the
SOI (blue) from the DJF to SON in non-initialisation (left) and initialisation (right). The
correlation coefficient between the model simulated Nifio3.4 and the SOI (green). Box and
whisker diagram shows ensemble mean of each model (asterisk), median (horizontal line),
25th and 75th percentiles (box), minimum and maximum (whisker). The two black dotted

lines indicate 0.05 significant level based on Student's 7-test.
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correlation to the EASM, while the post-season Nifio3.4 (SOI) shows a notable positive

(negative) correlation.

Non-initialisation Initialisation
Nifio3.4 Nifio3.4

Correlation Coefficient

08 -

0.4

0.0

-0.4

Correlation Coefficient

-0.8

JUA(-1) SON(-1)D(-1)JF(0) MAM(0) JJA() SON(0) D(O)F(1) MAM(1) JJA(1) JJA(-1) SON(-1) D(-1)JF(0) MAM(0) JJA(0) SON(0) D(O)JF(1) MAM(1) JJA(1)
Time (Season) Time (Season)

O bee-csml-1 /A GFDL-CM2pl ¥/ HadCM3
<& MIROC5 %% MPI-ESM-LR —¥—Obs. Nifio3.4 —<—Obs. SOl [l MME

Figure 5.10 Lead-lag correlation coefficients between the EASM index and Nifio3.4 (upper),
and SOI (lower) in non-initialised simulations (left) and initialised ones (right) for observation
(marker line) and models (marker) from JJA(-1) to JJA(+1). The two black dotted lines are
0.05 significant level based upon Student's -test. The vertical line represents JJA(0), where
the simultaneous correlations between the EASM index and Nifio3.4, and SOI are shown.

This lead-lag correlation coefficient phase is called the Nifio3.4-/SOI-EASM coupled
mode (Wang et al., 2008a). In the non-initialised cases, the models do not produce the
teleconnection between the ENSO and the EASM. The CanCM4, the HadCM3 and the
MPI-ESM-LR fail to represent the lead-lag correlation coefficient difference between pre-
/post-season ENSO and EASM. The BCC-CSM1-1, the GFDL-CM2p1 and the MIROC5
capture the coupled mode of the ENSO and the EASM. However, the pre-season ENSO
has a weak effect on the EASM. Compared to the non-initialised cases, the MIROCS5
and the GFDL-CM2p1 both demonstrate a significant improvement in simulating Nifo3.4
(SOI)-EASM coupled mode with initialisation. The BCC-CSM1-1, the HadCM3, and the
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HadCM3-ff show no improvement, with insignificant correlation between Nifio3.4 (SOI)
and the EASM. The CanCM4 and the MPI-ESM-LR illustrate a high correlation between
the EASM and the simultaneous-to-post-season ENSO, rather than the pre-season ENSO.
Therefore, the depiction of Nifio3.4-/SOI-EASM coupled mode is a dominating factor for

models in response to the initialisation.

5.5 Summary and discussion of Chapter 5

Six earth system models from CMIP5 have been selected in this study. The improvement of
the rainfall, the mean sea level pressure, the zonal wind and the meridional wind in the EASM
region from non-initialised experiments to initialised experiments have been discussed. The
models show a better performance in capturing the inter-annual variability of zonal wind
than precipitation in initialised experiments (Fig. 5.2). Thus, the zonal wind index is an
additional factor which can be used to improve the prediction skill of the model. Additionally,
the prediction skill of the Wang and Fan monsoon index in both the two experiments have
been calculated. The GFDL-CM2pl, the CanCM4 and the MIROCS show a significant
advancement in simulating the EASM from non-initialised to initialised simulation with a
lower RMSE and a higher ACC (Fig. 5.3). There is a slight change of the MPI-ESM-LR
in initialisation. Compared to the non-initialised simulation, the BCC-CSM1-1 and the
HadCM3 loses prediction skill.

To test the possible mechanisms of the models' negative performance in the non-initialisation
and the initialisation, the leading mode of the six fields have been calculated, which are
associated to the EASM. The models demonstrate a better agreement with the observational
first EOF mode in the initialised simulations (Fig. 5.5). The first lead mode of zonal wind
at 200 hPa shows a significant improvement in the models except the BCC-CSM1-1 in
initialisation. Therefore, a potential predictor could be an index based upon the zonal wind at
200 hPa.

Compared to the non-initialised simulations, the models enhance the first EOF mode
with a higher fraction of variance to the total variance in initialisation (Fig. 5.7). The
first EOF mode of the EASM is the ENSO developing mode (Wang et al., 2015). I have,
thus, analysed the seasonal simulating skill of Nifio3.4 and the SOI in each model (Fig.
5.9). The models show a poor performance in representing Nifio3.4 and the SOI in the
non-initialised simulation. Initialisation improves the model simulating skill of Nifio3.4 and
the SOI. We can find a noticeable change of simulated Nifio3.4-SOI correlation coefficient

while the models were initialised (Fig. 5.9). This shows the change of ocean-atmosphere
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interaction between the non-initialised and initialised simulations. Additionally, the initialised

simulations decrease the spread of simulated Nifio3.4 index and SOI in ensemble members.

In general, the pre-season warm phase of the ENSO (i.e. El Nifio) leads to a weak EASM
producing more rainfall over the South China Sea and north-west China, and less rainfall
over the Yangtze River Valley and the south of Japan; the cold phase of the ENSO (La Nifia)
illustrates a reverse rainfall pattern to El Nifio in East Asia. The pre-season Nifio3.4 (SOI)
exhibits a strong negative (positive) correlation to the EASM, while the correlation between
the post-season Nifio3.4 (SOI) and the EASM illustrates an anti-phase as the pre-season (Fig.
5.10). In the non-initialised experiments, the models do not capture Nifio3.4-/SOI-EASM
coupled mode. Only the MIROCS has the ability to represent the Nifio3.4-EASM coupled
mode in the initialised simulations. For the SOI-EASM coupled mode, the GFDL-CM2pl1
and the MIROCS capture it with initialisation, while the BCC-CSM1-1, the HadCM3, the
HadCM2-ff, the CanCM4 and the MPI-ESM-LR do not.

On seasonal time-scale, the initialised models exhibit a better performance in representing
the general circulation of the EASM than that without initialisation. There are two initiali-
sation methods in this study, full-field and anomaly initialisation (Table 5.1). The full-field
initialisation produces more skillful predictions on the seasonal time-scale in predicting
regional temperature and precipitation (Magnusson et al., 2013; Smith et al., 2013). In
this study, the GFDL-CM2p1 and the MIROCS5 show positive response to the initialisation,
with full-field and anomaly initialisation, respectively. Only the HadCM3 was initialised
by the two initialisation techniques. However, there is no major difference between the two
initialised cases in simulating the EASM. We argue that the model parametrisation plays a
more important role than the initialisation method to predict the EASM.

In the study, the models are initialised by observed atmospheric component (i.e. zonal
and meridional wind, geopotential height, efc.) and the oceanic component (i.e. SST; Meehl
et al. 2014, 2009; Taylor et al. 2012). Because of the large heat content of ocean, the ocean
oscillation index (i.e. Nifio3.4) shows seasonal-to-decadal prediction skills in initialised
experiments (Choi et al., 2016; Jin et al., 2008; Luo et al., 2008). The models demonstrate a
comparable prediction skill in simulating Nifio3.4 and the SOI. The Southern Oscillation
is the atmospheric response to the ocean oscillation. The changing correlation between
the simulated Nifio3.4 and the SOI is detectable while the models were initialised with
observations. We can conclude that the ocean-atmosphere interaction is also effected by the
initialisation.

Wang et al. (2015) found that the second EOF mode of ASM is the Indo-western Pacific
monsoon-ocean coupled mode, the third is the Indian Ocean dipole (I0D) mode, and the

fourth is the trend mode. The Indo-western Pacific monsoon-ocean coupled mode is the
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atmosphere-ocean interaction mode (Wang et al., 2013a; Xiang et al., 2013), which is
supported by positive thermodynamic feedback between the western North Pacific (WNP)
anticyclone and the underlying Indo-Pacific sea surface temperature anomaly dipole over
the warm pool (Wang et al., 2015). The IOD leads to a noticeable increased precipitation
from the South Asian subcontinent to south-eastern China and conspicuously suppressed
the precipitation over the WNP (Wang et al., 2015). It affects the Asian monsoon by the
meridional asymmetry of the monsoonal easterly shear during the boreal summer, which can
particularly strengthen the northern branch of the Rossby wave response to the south-eastern
Indian Ocean SST cooling, leading to an intensified monsoon flow as well as an intensified
convection (Wang et al., 2015, 2003; Wang and Xie, 1996; Xiang et al., 2011). We noted that
the models simulate a reasonable first EOF mode (Fig. 5.5), but show no skill in capturing
the other EOF leading modes (Fig. 5.6). We argue that the models cannot well represent
the monsoon-ocean interaction, even initialised by observed conditions. The models cannot
simulate the third EOF leading mode of the EASM due to the fact that the predictability of
the IOD is only on a three-month time-scale (Choudhury et al., 2015). Current initialisation
strategy enhances the ENSO signal in the model simulation, but depresses the other climate
signals (Fig. 5.8). It might be caused by the difference resolution between atmosphere
and ocean (Marotzke et al., 2016). Therefore, reducing the resolution jump between the

components of earth system might improve the model prediction skill.

It is worth mentioning that it is an extremely weak monsoon and strong El Nifio year
in 1998. The CanCM4, the GFDL-CM2pl1, the MIROCS and the MPI-ESM-LR have the
ability to simulate the extreme monsoon event, while the BCC-CSM1-1, and the HadCM3 do
not capture it even with initialisation. There is potential for the BCC-CSM and the HadCM
models to improve the teleconnection between the ENSO and the EASM.

This chapter presents a research level study for seasonal prediction of EASM. There is an
application level for global climate prediction system which is the International Research
Institute for Climate and Society (IRI) real-time seasonal climate forecast system (http:
/firi.columbia.edu/our-expertise/climate/forecasts/#Seasonal_Climate_Forecasts). It provides
a real-time prediction information. This prediction system employs 4 AGCMs (ECHAMA4.5,
CCM3.6, COLA and GFDL-AM2p14) which are forced by prescribed SST. The system
shows a low skill in predicting climate over East Asia (Barnston ef al., 2010). This is a “tier
2” prediction strategy. It is not suitable to predict the EASM due to the incorrect SST-rainfall
relationship (Jiang et al., 2013b; Wang et al., 2005, 2009). Therefore, monsoon community
employs a “tier 1” method to study the prediction of EASM (Jiang et al., 2013b; Kim et al.,
2012; Wang et al., 2009; Zhou et al., 2009). The method uses AOGCMs which are initialised

by observations.
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For the “tier 1” prediction system, it is an initial value problem to predict monsoon
variability (Palmer et al., 2004). Furthermore, to predict the climate on seasonal time-scale,
the prediction performance strongly depends upon the initial conditions (Smith ez al., 2007).
Therefore, initialisation certainly important for seasonal prediction of EASM. Previous
studies are partly initialisation, only initialisation with ocean (Wang et al., 2009; Zhou et al.,
2009). This initialisation method shows the improvement in predicting the EASM on seasonal
time-scale (Wang et al., 2009; Zhou et al., 2009). A new initialisation strategy (initialisation
in both ocean and atmosphere) has been implemented in CMIPS5 models (Meehl et al., 2014).
The new initialisation method exhibits significant advantage in predicting the ENSO signal
(Choit et al., 2016; Meehl et al., 2014; Meehl and Teng, 2012). This study has tested the
prediction skill of EASM in CMIP5 models under the new initialisation strategy. There is
prominent diversity of CMIP5 models in response the initialisation. The future research will

focus on optimise the models to improve their response to the initialisation.



Chapter 6

Summary, Conclusions and Outlook

6.1 Summary and conclusions

This study presents a comprehensive investigation of the dynamical downscaling and seasonal
prediction for the EASM. Its final objective is predicting the EASM at fine resolution. The
path is set up a one way nest downscaling method to predict the EASM. The prediction
systems' output will be selected as the boundary condition for dynamical downscaling over
East Asia. This work evaluates the parametrisations of models for dynamical downscaling
over East Asia and initial strategies for the seasonal prediction of the EASM. Multi-datasets
(i.e. re-analyses, RCM simulations, and GCM simulations) have been used in this study.
Firstly, the study assesses the spread of eight re-analysis datasets (i.e. 20CR, CFSR, ERA-
20C, ERA-Interim, JRA-55, MERRA, NCEPI and NCEPII) in representing the EASM due to
the re-analysis datasets are employed as the boundary condition for dynamical downscaling
and the initial condition for climate prediction (Chapter 2). The re-analysis datasets have
been compared to observations, i.e. GPCP, IGRA and HadSLP2r. Then, the study investigates
five RCMs (i.e. COSMO-CLM, HadGEM3-RA, RegCM4, SNU-MMS5 and YSU-RSM) to
capture the precipitation climatology and monsoon characteristics over East Asia (Chapter 3).
The RCMs follow a common evaluation framework (CORDEX-East Asia) to validate their
current climate simulation driven by the ERA-Interim re-analysis. In addition, the COSMO-
CLM is also used for dynamic downscaling over East Asia, which is driven by MPI-ESM-LR
(Chapter 4). Its set up has been tested in Chapter 3. Finally, six prediction systems (i.e.
BCC-CSM1-1, CanCM4, GFDL-CM2p1, HadCM3, MIROCS and MPI-ESM-LR) have been
applied for investigating the seasonal predictability of the EASM (Chapter 5).

To conclude this study, I return to the original research questions and summarise the main
findings:
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a.) How large is the spread of the re-analysis datasets in representing the EASM?

Over East Asia, the eight re-analysis datasets show a small spread in representing the year-
to-year variation of mean sea level pressure and zonal winds. However, there is significant
difference between the eight re-analysis datasets in capturing the year-to-year variation in
precipitation and meridional wind, especially over the ocean. One can also find a spatial
disparity between the various datasets in representing the precipitation, the low level winds
and the mean sea level pressure. For the EASM index, the eight re-analysis datasets show
good consistency. In general, all the re-analysis datasets can be selected as the boundary

condition for regional climate downscaling and as the initial condition for EASM prediction.

b.) What is the difference between CORDEX-East Asia models in capturing the
precipitation climatology?

The CORDEX-East Asia models are able to capture the principal features of the seasonal
mean precipitation patterns, the annual cycles and the inter-annual variability in precipitation.
However, significant biases in the individual models can be found in specific regions during
some seasons. For example, in summer, the RCMs tend to over-estimate the precipitation
over the Tibetan Plateau, except the YSU-RSM, which simulates a drier Tibetan Plateau. In
dry season, the RCMs have tendency to produce a wetter continent. In the EASM region,
the RCMs also show noticeable biases in representing the regional mean precipitation. The
SNU-MMS5 and the YSU-RSM simulate more summer precipitation, whereas the COSMO-
CLM produces less summer precipitation. Regarding the inter-annual variability of summer
precipitation in EASM region, the COSMO-CLM, the RegCM4, and the SNU-MMS5 exhibit
a high correlation coefficient (>0.8) and a normalised standard deviation (~1.0) comparable
to the observations. The HadGEM3-RA and the YSU-RSM show a lower simulation skill

(low correlation coefficient).

c.) How good are the CORDEX-East Asia models in producing the monsoon char-

acteristics?

Under the current set up, the models generally performs well characterised by their ability
in capturing a reasonable monsoon metrics, i.e. annual mean precipitation, first and second
annual cycle mode, and monsoon precipitation intensity. The HadGEM3-RA shows a better
performance than the other four models in producing the monsoon metrics. However, no
individual model represents all the monsoon features (e.g. mean state, inter-annual variability,
metrics efc.) significantly better than the other models. The multi-model ensemble mean
outperforms an individual model in simulating the monsoon characteristics as it averages out

the variability in the individual model realisations (Tebaldi and Knutti, 2007). In general,
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the current set up of the CORDEX-East Asia models can be used for further dynamical
downscaling of the EASM.

d.) Is the downscaling method improving the model performance in representing
the EASM?

Both the global climate model (MPI-ESM-LR) and the regional climate model (COSMO-
CLM) generally capture the mean state of climate. In the complex terrain areas (e.g. Tibetan
Plateau, Indonesia and Malaysia efc.), the COSMO-CLM presents a more reliable (smaller
BIAS) climate than the MPI-ESM-LR. However, in the core region of the EASM (i.e. the
Indo-China Peninsula, China, Korea and Japan), the COSMO-CLM produces an inferior pre-
cipitation pattern than the MPI-ESM-LR. The large bias in precipitation is always associated
with a significant difference of low level general circulation. Regarding the EASM index,
both the MPI-ESM-LR and the COSMO-CLM do not simulate its year-to-year variation. The
RCM produced EASM-index strongly depends upon the GCM-data which is MPI-ESM-LR.
In the case analysed here (Chapter 4), there is no improvement of RCM in simulating the
EASM precipitation and also the corresponding general circulation. Because the verification
data are smooth, the benefit of the enhanced horizontal resolution might not be seen due to

technical reasons.

e.) How are the six prediction systems capturing the EASM under forcing by ob-

servations?

Given observed initial conditions, the AOGCMs show the ability to predict the climate
on seasonal time-scale. In East Asia, it is difficult to predict the precipitation even with
the model initialised by observations. Compared to the precipitation, there is a significant
improvement in the prediction of general circulation (e.g. zonal winds) when models were
initialised with observation data. A general circulation based index has the potential to better
predict the EASM.

f.) What is the difference between the six systems in predicting the EASM on sea-

sonal time-scale?

The six prediction systems exhibit different response to the initialisation. Initialisation
adds skill in predicting the EASM index in the GFDL-CM2p1 and the MIROCS5 model, no
significant change can be seen in the CanCM4 and the MPI-ESM-R simulations, while the
HadCM3 and the BCC-CSM1-1 lose the prediction skill. The current system that initialises
both the atmosphere and the ocean amplifies the ENSO signal. The simulation of the ENSO-
EASM linkage determines the model's performance in predicting the EASM. The different
performance of the models are caused by the different reproduction of this ENSO-EASM
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coupled mode in the model. The GFDL-CM2p1 and the MIROCS capture this mode, while
the other models fail to simulate it. The MPI-ESM-LR fails to predict an accurate EASM
which limits its usefulness for dynamical downscaling application.

6.2 OQOutlook

This study has introduced a framework to predict the EASM on seasonal time-scale at high
resolution. It can be developed as an application level of prediction system. To optimise the

prediction framework, there are some topics for further study.

Improvement of models: The CORDEX-East Asia RCMs produce acceptable precipita-
tion climatology in East Asia. However, noticeable bias in precipitation occurs in the regions
dominated by the EASM. The COSMO-CLM underestimates (overestimates) the summer
precipitation in the south-east of China (South China Sea and west Pacific Ocean). An ad-
vanced convection scheme might be able to address this issue. The large bias in precipitation
is always associated to the large bias in low level general circulation. Furthermore, both
the GCM (MPI-ESM-LR) and the RCM (COSMO-CLM) fail to produce the relationship
between the EASM index and the monsoon precipitation resulting in a low prediction skill in
monsoon precipitation. There is strong need to improve the simulation of low level winds

over East Asia.

Improving the skill of individual prediction systems: This study has analysed the
predictability of EASM in six prediction systems. Several systems (i.e. HadCM3 and
BCC-CSM1-1) show a negative response to the current initialised method. Testing a new
initialisation strategy has the potential to resolve the negative response problem in the two
prediction systems. Additionally, the MPI-ESM-LR shows a higher skill in predicting the
climate under a new initialisation (Marotzke et al., 2016). This might improve the prediction
skill of EASM in the MPI-ESM-LR system. We can introduce the MPI-ESM-LR with the
new initialisation into our prediction framework to replace the previous one. It will be helpful

to improve the prediction skill of the framework.

Developing a new monsoon index: The zonal winds over 200 hPa show a higher pre-
dictability than the lower level winds (over 850 hPa) and the surface precipitation. However,
current monsoon index is based upon the zonal wind over 200 hPa and cannot accurately rep-
resent the monsoon precipitation distribution and monsoon structure (Wang et al., 2008b). A

new monsoon index which can be used to monitor and predict the EASM needs be developed.
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Abbreviations

20CR

3D-Var
4D-Var

ACC
AMSU-A
AOGCMs
APHRODITE

BC

BOM
CFSR
CGCMs
CIRES
CMIP3
CMIP5
CORDEX
CRU
DOE
EASM
EASMI
ECMWF
ENSO
EOF
ERA-20C
ERA-40
ERA-Interim
ERS

ESA

Twentieth Century Reanalysis

Three-Dimensional Variational data assimilation
Four-Dimensional Variational data assimilation

Anomaly Correlation Coefficient

Advanced Microwave sounding Unit-A

Coupled atmosphere-ocean general circulation models
Asian Precipitation-Highly-Resolved Observational Data Integration
Towards Evaluation of the Water Resources

Boundary Condition

Bureau of Meteorology

Climate Forecast System Re-analysis

Coupled General Circulation Models

Cooperative Institute for Research Environmental Sciences
Coupled Model Inter-comparison Project phase 3

Coupled Model Inter-comparison Project phase 5
Coordinated Regional Climate Downscaling Experiment
Climatic Research Unit

Department of Energy

East Asian summer monsoon

EASM index

European Centre for Medium Range Weather Forecasts

El Nifio-Southern Oscillation

Empirical orthogonal function

ECMWEFs first atmospheric re-analysis of the 20th century
ECMWEF 45-year Reanalysis

ECMWEF Interim Re-analysis

European Remote Sensing Satellite

European Space Agency
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ESD Ensemble Standard Deviation

ESMs Earth System Models

ESRL Earth System Research Laboratory

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
GEOS Goddard Earth Observing System

GMAO Global Modeling and Assimilation Office

GPCC Global Precipitation Climatology Centre

GPCP Global Precipitation Climatology Project

HadISST Hadley Centre Sea Ice and SST dataset
HadSLPr2r  extending Hadley Centres monthly historical mean sea level pressure

dataset

ICOADS International Comprehensive Ocean-Atmosphere Data Set

IFS Integrated Forecasting System

IGRA Integrated Global Radiosonde Archive

10D Indian Ocean Dipole

IPCC Intergovernmental Panel on Climate Change

ISPD International Surface Pressure Databank

ITCZ Inter Tropical Convergence Zone

IMA Japan Meteorological Agency

JRA-25 Japanese 25-year Reanalysis

JRA-55 Japanese 55-year Re-analysis

MERRA Modern Era Retrospective-Analysis for Research and Applications

MPI Max-Planck-Institut

MPI-ESM Earth system model of MPI

MSU Microwave Sounding Unit

NASA National Aeronautics and Space Administration's Goddard Laboratory
for Atmospheres

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Predictions

NOAA National Oceanic and Atmospheric Administration

NSD Normalised Standard Dviations

PBL Planetary Boundary Layer

PCC Pattern Correlation Coefficient

PSD Physical Sciences Division

RCMs Regional Climate Models

RMSE Root-Mean-Square-Error

SBUV Solar Backscattered UltraViolet

SODA Simple Ocean Data Assimilation

SSM/I Special Sensing Microwave/Imager

SST Sea Surface Temperature

SVD Singular Value Decomposition

TIROS Television Infrared Observation Satellite

TOVS TIROS Operational Vertical Sounder

TRMM Tropical Rainfall Measuring Mission



Appendix B

Methods

B.1 BIAS

BIAS, also called mean error, represents the mean value of deviations between comparison

and verification values. BIAS is defined as follows:

n n
BIAS = < wl-D,-> /Y wi (B.1a)
i=1 i=1

1=

Di=F—A (B.1b)
1

w; = — (or cos®;, and so on) (B.1c¢)
n

where F;, A;, D; represent comparison, verifying value, and the deviation between comparison
and verifying value, respectively. Also, w; indicates weighting coefficient, n is the number
of samples, and g; is latitude. In general, observational values, initial values, or objective
analyses are often used as the verifying values. When the comparison data is perfectly correct,
called perfect dataset, BIAS is equal to zero.

In calculating the average in a wide region, e.g., the Northern/Southern hemisphere, the
average should be evaluated with the wighting coefficients, taking into account the differences
of areas due to the latitudes. In this thesis, the equal weighting coefficient was employed due
to the research is focusing on a regional scale. The other indices in Appendix B will be dealt

with in the same manner.
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B.2 Root Mean Square Error

Root-mean-square error (RMSE) is often used for indicating the accuracy of comparison,
and its definition is:

RMSE = \/ i w;D?/ \/ i W (B.2)
i=1 i=1

where D; represents the deviation between comparison and verifying value in Eq. (B.1b),
w; represents the weighting coefficient in Eq. (B.1c), and n is the number of samples. If

RMSE is closer to zero, it means that the comparisons are closer to the verifying values.

B.3 Anomaly Correlation Coefficient

Anomaly Correlation Coefficient (ACC) is one of the most widely used measures in climate
sciences, and is the correlation between anomalies of forecasts and those of verifying values
with the reference values, such as climatological values (Drosdowsky and Zhang, 2003).
ACC is defined by:

Y wi(fi—f) (ai—a)

ACC = —
\/Z?:lwi(fi—f) n o wilai—a)’

fi=FC. [= (bm) /Y wi (B.3)

n n
a=A;—C;, a= (Z Wﬂi) /Zwi (B.3c)
i=1 i=1

where n is the number of samples, and F;, A;, C; represent comparison, verifying value,
and reference value such as climatological value, respectively. Also, f is the mean of f;, a
is the mean of a;, and w; indicates the weighting coefficient in Eq. (B.1c). If the variation
of anomalies of comparison dataset is perfectly coincident with that of the anomalies of
verifying value, ACC will take 1 (the maximum value). Otherwise, if the variation is

completely reversed, ACC is -1 (the minimum value).
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B.4 Pattern Correlation Coefficient

The Pattern Correlation Coefficient (PCC) is used for pattern correlation studies. It is the
Pearson product-moment coefficient of linear correlation between two variables that are
respectively the values of the same variables at corresponding locations on two different
patterns (Barnett and Schlesinger, 1987). There are two types of PCC, centred correlation
and un-centred correlation, respectively. The centred (un-centred) statistic measures the
similarity of two patterns after (without) removal of the global mean (Mitchell et al., 2001).
The centred PCC is defined by:

Yot i Weey) (Flay) = F) (Ay) =)

PCCcentred = — — (B.4a)
\/anl Z;nzl Wi(x,y) (F ry) = F ) =1 va”:l Wix,y) (A(x,y) —A)
F = (Zl le(x,y)F(xy)) /Zl Z]W(xy) (B4b)
X=1y= x=1y=

A= (Z ) W(w)A(x,y)) /XY Wy (B.4c)

x=1y=1 x=1y=1
and the un-centred PCC is defined as following:
Yoot Z;nzl W) Fley)Aley)
2 2
\/ Yoot Lymt W Fy) Boemt Bymi Wi A )

PCCun—centred = (BS)

where n and m are grids on longitude and latitude, respectively. F{, ;) and A, ,) represent
two dimensions comparison and validating value. Also, F' is the mean of Fiey)s A is the mean

of A, ). and w(, ,) indicates the weighting coefficient in Eq. (B.1c).
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