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1. INTRODUCTION 

1.1 Developmental Gene Regulation in Metazoans 

Despite the vast morphological diversity from nematodes to vertebrates, all animals share a basic 

set of genes orchestrating developmental processes. The precise regulation of these genes in 

time and space is critical for proper embryogenesis and body plan establishment. A variety of 

mechanisms evolved at a cellular, molecular and genomic level to achieve such sophisticated 

transcriptional control required to coordinate one cell becoming a multicellular organism.  

The decryption of the human genetic code in 2001 revealed that only 2-3% of the mammalian 

genome contains protein-coding regions, with the remaining 97% have no immediately clear 

function (Lander et al., 2001). However, recent advances have demonstrated non-coding “junk” 

DNA harbors cis-regulatory elements (CREs) which are critical for gene regulation. Supporting 

this, the number of genes within different lineages has remained comparatively stable while CREs 

have expanded, diversified and altered during millions of years of evolution. Hence, it seems CREs 

are critical for the development of complex gene regulation patterns with changes in their activity 

driving altered target expression and evolutionary novelty. In the last decades, increasing 

evidence of how CREs facilitate such complex gene expression emerged. However, which 

features facilitate their communication remains poorly understood.  

To better characterize which factors determine the emergence of complex expression patterns, 

in this study, we focused on the well-studied gene regulation in embryonic limb development in 

mice and utilized it as an in vivo model system. In the following sections I will elaborate on the 

common and state-of-the-art knowledge within the field of transcriptional gene regulation. 

 
1.1.1 The developing limb as a model system for gene regulation 

Body axis patterning, cell fate specification, cell proliferation and cell migration are essential for 

embryogenesis and demand coordinated control in space and time. During limb organogenesis 

and morphogenesis these processes are orchestrated by a network of signaling pathways 

consisting of a largely self-regulatory signaling system (Bénazet et al., 2009). Generally, the master 

key regulators initiating interlinked pathways were well-characterized in the last decades, thereby 

making the limb bud an ideal and easy-to-assess model system to study mechanisms of gene 

regulation (Zeller et al., 2009).  

Key regulators during limb development 

Specification of positional information is crucial during limb development. The limb bud emerges 

from the flank mesenchyme of the lateral plate mesoderm during mouse embryogenesis at E9.5 
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days post coitum (dpc). In general, the limb bud develops along three major axes, defined by 

expression of specific factors in two main signaling centers, the apical ectodermal ridge (AER) 

and zone of polarizing activity (ZPA) (Fig. 1-1 A and C). For example, the proximal-distal (PD) axis 

defines limb outgrowth from the trunk of the body to the limb digits. Following outgrowth-initiation 

by Fibroblast growth factor 10 (Fgf10), progression and definition of the proximal-distal axis is 

maintained by Fgf8-signalling secreted from the AER (Fig. 1-1 C). Dorso-ventral patterning, from 

the back of the hand to the hand palm, is controlled by the signaling molecules of the Wnt family 

and Engrailed-1 (En1) (Loomis et al., 1996). Finally, Sonic Hedgehog (Shh) is secreted from cells 

located in the ZPA at the posterior margin of the limb bud, thereby defining anterior-posterior 

patterning and growth of digits I-V (Riddle et al., 1993; Tickle, 1981) (Fig. 1-1 C). When expressed, 

the Shh morphogen diffuses in a gradient-like manner along the posterior-anterior axis to define 

the number and specifying the identity of digits to be formed (Fig. 1-1C) (Lettice et al., 2012, 

2017; Osterwalder et al., 2014). Consequently, Shh expression is critical for ensuring most of the 

higher-order mammals pentadactyl and so initiate digits in the fore- and hindlimb with only the 

thumb developing independently of Shh expression. Shh achieves this through two major 

processes. Specifically, in an early patterning phase Shh first regulates digit identity and then, in 

a second phase, promotes digit outgrowth (Zhu et al., 2008). To restrict Shh signaling, its pre-

activator, the zinc finger-protein glioma-associated oncogene 3 (Gli3), is constitutively converted 

into its repressive and inactive form Gli3R at the anterior margin of the limb bud, opposite of the 

ZPA (Fig. 1-1 C) (Zúñiga and Zeller, 1999). By the counter play and feedback-loop of Gli3 and 

Shh itself a morphogen gradient can be formed (Fig. 1-1 C). Taken together, Shh-mediated 

signaling in the ZPA is critical for proper posterior-anterior patterning and outgrowth of digits. 
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Figure 1-1 Murine forelimb bud development (A) Depiction of mesenchymal condensation (light grey) and 

beginning chondrogenesis (dark grey) during embryonic stages E9.5-E13.5 dpc in the forelimb. (B) Embryonic limb 

skeleton at E18.5. Partially ossificated elements are depicted in dark grey. The limb subdivides into stylopod 

(Humerus), zeugopod (Radius and Ulna) and autopod (wrist and digits). (C) E10.5 mouse embryo with a 

magnification of the developing forelimb. The main axes and their key regulators/signaling pathways during 

patterning and axis formation are depicted in green (proximal-distal, PD) and orange (anterior-posterior, AP). Shh 

is secreted from cells localized in the ZPA, initiated by Hand2 and HoxD, and diffuses along the AP-axis, restricted 

by Gli3R counteracting from the anterior site. The proximal-distal outgrowth and patterning is determined by Fgf-

signaling. (D) Chondrogenesis and osteogenesis at embryonic stage E12.5. Whereas Sox9, initiated by BMP-

signaling, is expressed in the digital anlagen to induce chondrogenesis (orange), the stylo- and zeugopod already 

expressing Runx2 (green), thus initiating osteogenesis in the according skeletal structures. The figure was adapted 

from (Akiyama‡ et al., 2005; Taher et al., 2011; Zeller et al., 2009) 

Apart from axis determination by the AER and ZPA other essential limb features are establishing 

in parallel. As the established spatial axes pattern and polarize the limb, a fraction of cells is 

aggregates into mesenchymal condensates and builds the progenitors of the later skeleton (Fig. 

1-1 A). The limb skeleton subdivides into the stylopod consisting of the humerus, the zeugopod 

containing the radius and ulna, and the autopod comprising the wrist and digits (Fig. 1-1 B). The 

SRY-box transcription factor 9 (Sox9) is crucial to the process of differentiation and cartilage 

development. Bone morphogenetic proteins (BMPs) induce the expression of Sox9 already during 

main axis development which in turn initiates chondrogenesis in committed condensed 

mesenchymal cells (Duprez et al., 1996). Sox9’s significance for long bone development out of 

limb cartilage anlagen was shown by a conditional Sox9 KnockOut (KO). In prechondrogenic limb 

mesenchyme cells Sox9-loss results in the absence of cartilage and bone in mice (Akiyama et al., 

2002; Duprez et al., 1996). After generating a cartilage skeleton, differentiated chondrocytes 

begin drastically increasing their volume and turn into hypertrophic chondrocytes which, at later 

developmental stages, progress to osteoblasts through Runt-related transcription factor 2 

(Runx2) expression (Fig. 1-1 D) (Akiyama‡ et al., 2005; Hecht et al., 2008; Stricker et al., 2002). 

During the process of endochondral ossification, Sox9 initiates the secretion of extracellular matrix 

(ECM)-genes such as collagens e.g. Col2A1, forming a matrix which later calcifies into bone (Bell 

et al., 1997). Thus, like Shh, Sox9 forms part of an essential regulatory network that defines limb 

bud development and so requires precise spatiotemporal regulation.  

Considering the importance of these genes, perturbations in their expression mostly have a direct 

phenotypic readout observable in the limb. This predestines the limb as an easily accessible 

system to study gene regulation in a developmental context in vivo, where expression alterations 

of one of these key genes translate into abnormal limb development (Zuniga et al., 2012). For 

example, point mutations and large genomic rearrangements affecting Shh limb bud expression 
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strongly affect the formation of digits and are implicated in congenital malformations (see Figure 

1-2). Indeed, ectopic misexpression at the anterior margin of the limb bud induces Poly- and/or 

Syndactyly defined by additional or fused digits (Fig. 1-2 B). In contrast, a complete loss of Shh 

expression leads to only one remaining rudimentary Shh-independent digit (Monodactyly), no 

handplate and fusion of stylo- and autopod (Fig. 1-2 C) (Klopocki and Mundlos, 2011). Moreover, 

mutations associated with and around the Sox9-gene can be lethal. Sox9-haploinsufficiency has 

been demonstrated for human and mice, which developed severe chondrodysplasia (Bi et al., 

2001; Wagner et al., 1994). 

Collectively, these features make the limb bud perfectly suited to study the regulation of the 

interlinked master regulators. In the next sections I will elaborate on the known and unknown 

features of mammalian gene regulation on a transcriptional level.  

 

 
Figure 1-2 Alterations of Shh expression levels are causative for limb malformations. (A) Normal wildtype 

expression of Shh at the posterior margin of the developing limb bud at murine embryonic stage E10.5, resulting 

in pentadactyly (digit I-V). (B) Misexpression at the anterior site of the limb bud potentially leads to the formation 

of one or more additional digits (Polydactyly) and/or fusion of digits (Syndactyly). (C) Complete absence of Shh 

causes Monodactyly, absence of the handplate and a fusion of the stylo- and zeugopod along with severe reduction 

of the general limb size. The figure was adapted from Zuniga et al. 2011. 

1.1.2 The non-coding genome - Cis-regulatory elements (CREs) 

For a long time it was unclear how spatiotemporal expression of genes is regulated. Today, we 

know that complex gene regulation is controlled by cis-regulatory elements (CREs) which can be 

separated into distinct classes. Historically, CREs have been generally placed into two classes, 

promoters and enhancers, that each distinctly drive target gene expression in an orchestrated 

organization. However, CREs can also be repressive elements like silencers and insulators. For 

example, insulators are DNA elements binding insulating proteins to block the effect of an 

enhancer when positioned between an enhancer and its target promoter (Gaszner and Felsenfeld, 

2006; Maeda and Karch, 2011). The best characterized insulator-binding protein is the 11-zinc 

finger protein CCCTC-binding factor (CTCF), which has been associated with repressive activity. 

However, the biochemical mechanisms of this repressive activity are only recently beginning to 
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be understood (see section 1.2) (Bell et al., 1999; Klenova et al., 2001). Repressive elements 

increasingly moved into the attention of research (Jayavelu et al., 2020). However, in this study 

the focus lies on the most studied CRE classes, namely the activating elements enhancers and 

promoters. 

 
1.1.3 Promoters and Enhancers 

Complex gene expression is regulated by CREs. Among them, the activating elements enhancers 

and promoter are the most studied. Conventionally promoters and enhancers are defined as 

stretches of DNA varying in size from a few base pairs (bp) to thousands of bps and have the 

ability to activate transcription. Both CREs are generally highly conserved within species and can 

be found dispersed throughout the genome. A common feature of enhancers and promoters is 

their abundance of transcription factor binding sites that facilitate transcription. Nevertheless, 

promoters display some unique characteristics.  

Promoters - Mammalian promoters consist of core and proximal components (Fig. 1-3 A). The 

core promoters are comprised of general TFs and, by this, assist in the formation of the pre-

initiations complex (PIC) of RNA-Polymerase II (RNA PolII) within 50-100 bps of the enclosed 

transcription start site (TSS) (Haberle and Stark, 2018; Hampsey, 1998). They commonly have a 

low basal activity, general motifs like a TATA-box, frequently contain CpG-islands (70%) (Deaton 

and Bird, 2011; Saxonov et al., 2006), and bear the potential repression or activation by other 

more distal CREs. By contrast, proximal promoters are located prior to the transcription start site 

(TSS) and serve as a platform for binding of tissue-specific TFs. Functionally, it is unclear how the 

proximal promoter communicates with the core and how it confers to gene activation. One 

possibility is its communication with activating regulatory sequences like enhancers to ultimately 

release assembled RNA PolII complexes to initiate active transcription (reviewed in (Haberle and 

Stark, 2018). So far there is no coherent characterization of proximal promoters, although the 

depiction as core promoter-neighboring enhancers seems reasonable (see below). 

Enhancers - While promoters are located directly upstream of the TSS, the location of enhancers 

is highly variable. The earliest described transcription-enhancing DNA sequence was discovered 

in 1981 in the laboratories of Schaffner and Chambon (Banerji et al., 1981; Moreau et al., 1981). 

A 72bp sequence from the SV40 virus was found to significantly upregulate episomal transcription 

of the rabbit beta-globin gene in vitro. Later, it became more evident that this kind of sequence, 

termed an enhancer, can have cell-type and developmental-stage specific activities. However, 

due to their more varied positions and absence of a TSS, a common definition of enhancers is 

pending. Rather, they are defined by their function, thus, the ability to activate a genes’ 

expression. 
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Figure 1-3 Cis-Regulatory Elements: Function, Identification and Validation. (A) Promoter (grey) with proximal and 

core and adjacent or distal enhancers (green). Both CREs carry TF binding sites (red). (B) Looping of promoter and 

enhancer mediated by TFs (red circles) binding both elements, mediator complex and other co-activators like p300 

(orange) recruiting RNA PolII for active transcription (light red). Highly concentrated numerous complexes of this 

kind are also described as phase-separating membraneless condensates or active hubs. (C) Summary of the most 

common type of histone modifications used for CRE-identification and classification of activity state. *LAD marker, 

**Polycomb marker. (D) Computational process of data integration in algorithms for CRE-identification. (E) 

Schematics of reporter systems. On top, enhancer validation and below sensor insertions to map a regulatory 

landscape. In both cases a reporter gene is representing the activity of the sequence to be tested in an exogenous 

locus or endogenously. 

 
1.1.4 Identification of CREs  

The identification of CREs predominantly relies on sequence conservation between species and 

the epigenome. Conserved non-coding sequences are short stretches of DNA (200-500 bp) that 

are preserved over millions of years of evolution (Maeso et al., 2013; Vavouri and Lehner, 2009). 

Many of these have been shown to be tissue-specific enhancers in transgenic reporter assays 

(Pennacchio et al., 2006). Thus, conservation can be employed to identify enhancers. However, 

determining in which cell-types or tissues a candidate element is active in remains challenging.  

Chromatin modifications modeling the epigenome are considered to identify the state of activity 

of a regulatory region in a certain tissue or cell type. The majority of the DNA fiber is packed into 

nucleosomes, where 147 bp of DNA are wrapped around a histone-octamer complex. Different 

post-translational modifications of histone proteins, particularly on their N-terminal domains, are 

characteristic for a certain functional state of chromatin (summarized in Fig. 1-3 C) (Visel et al., 

2009). For example, active promoters and enhancers are often acetylated at lysine 27 of histone 

H3 (H3K27ac), whereas tri-methylation at the same position (H3K27me3) supports repression by 

the polycomb machinery (Kouzarides, 2007; Schwartz and Pirrotta, 2007). Nevertheless, 
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enhancers and promoters can be distinguished through differentiation methylation of lysine 4 on 

histone H3. Specifically, active promoters display enriched H3K4me3 and H3K4me1, while 

enhancers possess only elevated H3K4me1 (Bernstein and Kellis, 2005). Beyond histone 

modifications, active regulatory elements also display distinct accessibilities. Open chromatin 

regions are typically assessed with DNaseI hypersensitivity sequencing or Assay for Transposase-

Accessible Chromatin (ATAC)-seq. Thus, a combination of histone modifications, chromatin 

accessibility and sequence conservation can often be used to identify candidate enhancers. 

Accordingly, several computational tools have been developed which integrate complex 

information into specific algorithms to systematically annotate regulatory regions (Fig. 1-3 D) 

(ChromHMM, CRUP) (Ernst and Kellis, 2017; Ramisch et al., 2019). 

By definition, enhancers are characterized functionally and not by chromatin state. Computational 

annotation of potential regulatory elements based on epigenetic marks tend to give an idea of 

activity in a certain tissue. Yet, the called regions need to be validated. The evaluation of 

enhancers is typically done by transgenic reporter assays of two types. In ectopic assays an inert 

minimal promoter is fused to a lacZ reporter gene and a candidate element at an ectopic genomic 

location. Subsequent reporter expression in cells or embryos is then used to reveal the candidate 

enhancer’s pattern of activity (Fig. 1-3 E). Alternatively, minimal promoter-lacZ reports can be 

integrated into any location of interest to map the regulatory information available at that position. 

Consequently, such regulatory assays test not only an individual element at a random non-

endogenous position but rather measure the regulatory activity of all CREs in the vicinity of the 

insertion site (reviewed in (Kvon, 2015; Symmons and Spitz, 2013). Large-scale functional 

transgenics combined with high-throughput evaluation like the VISTA enhancer data base are 

testing highly conserved non-coding elements of humans in vivo by generating reporter-mouse 

embryos (Visel et al., 2007). Such higher throughput assays have revealed that enhancers display 

diverse and highly precise spatiotemporal activities that can act combinatorically to generate 

complex gene expression patterns. While housekeeping genes are mostly depleted from 

regulatory landscapes harboring distally acting elements, developmental or tissue specific genes 

are controlled by an average of five enhancers, which can appear in clusters (super enhancers, 

SEs) and have largely overlapping but not necessarily interchangeable activity (Hnisz et al., 2013; 

Will et al., 2017).  

Thus, thousands of putative enhancers in various tissues and cell-types contribute tremendously 

to the diverse spatiotemporal activity and complex regulation of genes (Ruf et al., 2011; Symmons 

et al., 2014; Visel et al., 2007). However, this also shows that 97% of the genome is dispersed 

with enhancers.  
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1.1.5 Long-range regulation by distal enhancers 

Promoters and enhancers are crucial for the regulation of genes which can be mapped and 

validated by various techniques. However, how an enhancer induces transcription remains largely 

unclear. As enhancers are thought to function in a position- and orientation-independent manner 

to activate their target genes (Bulger and Groudine, 2011a) and can be located very distal to their 

cognate promoter (Long et al., 2020), physical proximity is required to initiate transcription. 

Long-range regulation frequently occurs for developmental genes, with linear distances ranging 

from 1-1.45 Mb (Lettice et al., 2003; Long et al., 2020). The common idea of how a promoter 

and a distal enhancer find each other in the nuclear space to activate a gene’s expression is by 

the looping of the DNA fiber (Kagey et al., 2010). Chromatin loops which facilitate long-range 

regulation of distal enhancers and their target promoters, are frequently observed in regulatory 

landscapes of genes. Different models have been proposed to facilitate looping between a 

promoter and an enhancer which in turn leads to gene activation (Furlong and Levine, 2018). The 

current prevalent model for enhancer function is based on homotypic interactions between tissue-

specific TFs bound at both elements, thereby bridging their interaction and recruiting the 

transcription machinery (Fig. 1-3 B). Like proximal promoter regions, enhancers comprise specific 

TF binding motifs (see above). These specific transacting factors integrate complex information 

into active transcription at their target genes (Mitchell and Tjian, 1989; Spitz and Furlong, 2012). 

By the recognition and binding of individual DNA motifs situated in promoters and enhancers, TFs 

recruit the co-activators including Mediator and p300 that are necessary for transcription 

apparatus recruitment (Bulger and Groudine, 2011b; Malik and Roeder, 2005). 

Despite serving as a binding platform for TFs, liquid-liquid phase separation has recently been 

proposed as a possible mechanism for TF-mediated gene activation. Here, transcription is 

induced by the formation of active hubs with high concentrations of the transcription apparatus 

containing TFs, mediator and RNA PolII (Cho et al., 2018; Hnisz et al., 2017; Sabari et al., 2018). 

Formation of membrane-less condensates within the nucleus containing TFs, co-activators and 

RNA PolII, have been described for the pluripotency factor OCT4 in human induced pluripotent 

stem cells, resulting in gene activation (Boija et al., 2018). Moreover, alterations of the phase-

separating capacity of the intrinsically disordered regions (IDR) of the HoxD13-protein affects 

transcriptional regulation in vivo and has been implicated in congenital malformation (Basu et al., 

2020). 

In summary, CREs in combination with TFs are essential for establishing the complex and precise 

gene expression patterns in time and space for cell fate specification and development in 

multicellular organisms. Yet, physically, how long-range regulation is established and an enhancer 

finds and regulates its target promoter remains elusive. As they can be located very distal from 

one and another, the identification which enhancer regulates which gene is another challenge.  
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1.2 The 3-dimensional genome 

Numerous studies demonstrated the requirement of physical proximity of a given enhancer 

toward its target promoter for gene activation (Chen et al., 2018; Deng et al., 2014; Paliou et al., 

2019; Williamson et al., 2016). Yet, how this proximity is controlled mechanistically remains 

unknown. Significantly, increasing evidence from the last decades connects the 3D-organization 

of the chromatin fiber with transcriptional regulation, facilitating the functional assignment of CREs 

to specific target genes. Multiple methods exist to study genome organization, which all provide 

complementary, yet distinct insights into the 3D architecture. In general, bulk-techniques like 

proximity ligation assays complement methods on the single cell level like FISH (Huang et al., 

2020). In the following sections, I will elaborate on the current state of knowledge. 

Within the nucleus the DNA fiber is highly organized. Already in the 1960’s electron microscopy 

demonstrated the existence of dark spots within the nucleus. Later it became evident that these 

spots are inactive regions of the DNA, termed heterochromatin positioned at the nuclear 

periphery, which spatially separates from active euchromatin in the center of the nucleus. 

Moreover, the discovery of chromosome territories in the late 1980 revealed that chromosomes 

are preferentially locating in a non-random fashion at distinct nuclear areas (Lichter et al., 1988; 

Pinkel et al., 1988) (Fig. 1-4 A). Since then, the influence of spatial positioning and organization 

on gene regulation remained in the focus of research (reviewed in Cremer and Cremer, 2001; 

Haaf and Schmid, 1991).  

Technological advances, particularly with the development of Chromosome Conformation 

Capture (3C)-based techniques, have significantly increasing insights into the organization of the 

chromatin fiber on a locus-level, helping to associate enhancers with target promoters (Dekker et 

al., 2002). 

 
1.2.1 CCC-based techniques reveal several organizational layers of the 3D-genome 

3C-techniques create a snapshot of any two genomic loci in the nucleus based on reversible 

crosslinking of DNA-DNA or DNA-protein contacts that are in close 3D proximity. Through this, a 

genome-wide map of frequent chromatin interactions can be generated. Various methods have 

been developed on the principle of proximity ligation (reviewed in (Dekker et al., 2013). In brief, 

physically proximal fragments are crosslinked, subjected to digestion and finally re-ligated (Fig. 1-

4 D). This creates circular hybrid molecules whose frequency of abundance translates into 

interaction frequency, analyzed by quantitative real time-PCR (one vs. one, 3C). The combination 

of 3C with deep sequencing led to the further development of various proximity ligation based-

methods. 4C-seq is based on an additional PCR-enrichment of a genomic region of interest and 

so creates a one-versus-all interaction map for a specific viewpoint following sequencing. 
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CaptureC includes additional enrichment of multiple viewpoints of one library (e.g. several 

promoters) by (RNA) probes followed by deep sequencing (many vs. all). Finally, sequencing of 

all obtained ligation fragments generates a genome-wide interaction map (all vs. all, HiC). Capture 

HiC is a combined derivative of HiC and CaptureC which creates high-resolution interaction 

frequency maps of an enriched genomic region of interest (up to 5Mb) without sequencing all 

obtained fragments. 
 
Compartments 

Several genome-wide studies using HiC revealed numerous inter- and intrachromosomal 

organizational layers of interphase chromosomes. Generally, higher-order chromatin organization 

like compartmentalization segregates chromatin according to its functional state into active A- 

and repressed B-compartments (Fig. 1-4 B). This separation is likely based on homotypic 

interaction depending on the transcriptional level, epigenetic state, compaction (eu- vs. 

heterochromatin), replication timing and association with the nuclear envelope (Lamina-

associated domains; LADs) (Lieberman-Aiden et al., 2009).  
 

 
Figure 1-4 Organizational layers of the 3D-genome. (A) Within the nucleus chromosomes locate at distinct areas 

called chromosome territories (B) Active and repressed regions on chromosomes separate into A- and B-

compartments. Furthermore, the genome is partitioned into TADs (green circles) which largely overlap with LADs 

(red circle) and non-LADs. (C) Detailed view of two exemplary TADs (orange and green) separated by a boundary 

(red). Genes are depicted with black boxes, enhancers with orange ovals Below corresponding HiC interaction 

frequency map on a linear scale (D) Basic principles and workflow of chromosome conformation capture (3C)-based 

techniques: After tissue dissection the cells are fixed, digested with a restriction enzyme, re-ligated and the DNA 
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precipitated. Further processing of the created library depends on the applied technique. The figure was adapted 

from (Dekker et al., 2013; Robson et al., 2019). 

Topologically Associating Domains (TADs) 

Later studies discovered the partitioning of the chromosomes along their length into sub-

megabase units called topologically associating domains (TADs, Fig. 1-4 C) (Dixon et al., 2012; 

Nora et al., 2012). Interestingly, the architectural units largely overlap with the described regulatory 

landscapes of developmental genes, as demonstrated by sensor insertions (Ruf et al., 2011; 

Symmons et al., 2014). In these studies, the reporters recapitulated the gene-specific regulatory 

information until inserted into a demarcated neighboring TAD. Thus, TADs assist in the 

association of an enhancer with a promoter. 

With an average size of 850kb, TADs are defined by their preferential self-interaction and are 

highly conserved between species and cell-types (Dixon et al., 2012; Nora et al., 2012). 

Importantly, neighboring TADs are insulated by boundaries, enriched in directly DNA binding 

CTCF and the structural maintenance of chromosomes (SMC)-complex cohesin (Dixon et al., 

2012; Nasmyth and Haering, 2009; Nora et al., 2012; Rao et al., 2014). How or if CTCF 

establishes and maintains TADs, or even what TADs physically represent, remained a black box 

for some time. Currently, the most prevalent mechanism is the ATP-dependent loop extrusion 

model, strongly supported by computational polymer modelling (Fudenberg et al., 2016; Nuebler 

et al., 2018). Here, the formation of chromatin loops likely depends on the CTCF site orientation 

towards each other. Convergently orientated binding sites form loops and appear enriched in 

divergent orientation at TAD boundaries (de Wit et al., 2015; Guo et al., 2015; Sanborn et al., 

2015). After loading onto the DNA by Nipbl, cohesin progressively extrudes the chromatin fiber 

bidirectionally. For CTCF motifs oriented in direction of active extrusion, the cohesin complex is 

thought to bypass until stopped by a CTCF bound toward it (Fig. 1-5) (Fudenberg et al., 2016; 

Nuebler et al., 2018). As this process is highly dynamic, cohesin constantly dissociates from 

chromatin through the releasing factor Wapl (Fig. 1-5) (Busslinger et al., 2017; Haarhuis et al., 

2017; Wutz et al., 2017). Importantly, many predictions have now been tested experimentally. 

Yet direct evidence for the proposed mechanism in vivo is methodologically challenging, as both 

architectural proteins are critical during cell cycle. However, experiments conducted in mouse 

zygotes demonstrated cohesin (SscI) dependency of TADs and links TAD formation and size with 

the linear density of the releasing factor Wapl (Gassler et al., 2017). Furthermore, imaging of 

Xenopus egg extracts showed symmetric extrusion by cohesin during interphase (Golfier et al., 

2020). A bidirectional loop extrusion of the DNA is additionally supported by single molecule 

imaging of a homodimer formed by human cohesin (Kim et al., 2019). Moreover, depletion 

experiments of either CTCF- or cohesin, circumventing deleterious cell-cycle effects, 
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demonstrated a genome-wide TAD-loss in vitro, stressing their relevance for TAD formation (Nora 

et al., 2017; Rao et al., 2017; Schwarzer et al., 2017). 

Taken together, due to the high correlation with gene regulatory landscapes, TADs are believed 

to provide an insulated microenvironment for enhancer-promoter communication, shaped by 

CTCF and cohesin. Yet, the functional relation between TADs and gene regulations remains 

puzzling. 

 
Figure 1-5 Loop extrusion 
model. After Nipbl-

mediated loading onto the 

DNA, the cohesin complex 

starts to extrude in a 

bidirectional fashion (B), till 

stalled by CTCF orientated 

towards the direction of 

extrusion (C). CTCF sites 

directed in orientation with 

extrusion can be bypassed 

by the cohesin complex. 

 
 

1.2.2 Dynamics of intra-TAD interactions: CTCF in shaping promoter-enhancer contacts 

TADs are defined by HiC and seem to represent insulated domains, which can seemingly function 

as regulatory units due to sensor insertion studies. Although the restricting function of TADs in 

setting limits to regulatory activity seems clear, how the internal TAD structure could facilitate 

enhancer-promoter communication is less understood. De Laat and Duboule proposed a 

permissive model, where enhancers and promoters remain in an invariant state of proximity by 

the 3D architecture of the genome until activated by tissue-specific TFs. In contrast, the instructive 

model describes de-novo interactions or looping of the chromatin fiber, resulting in the immediate 

active transcription of a gene (Laat and Duboule, 2013). Yet, the direct influence of CTCF in both 

scenarios on gene activation remains controversial. Matching these models, two modes of 

contacts have been observed in various studies. 

Indeed, interactions within TADs are highly dynamic during cell-fate specification and 

development, but also within a cell population. As HiC data reflects batch analysis of a pool of 

fixed nuclei, microscopy and single cell studies have shown that TADs are highly variable. Within 

a homogenous population of cells, high-resolution FISH and single cell-HiC captured the 

dynamics of loop interaction within domains (Bintu et al., 2018; Stevens et al., 2017; Szabo et 

al., 2020). Furthermore, high-resolution HiC following the differentiation from mESC to NPCs 

demonstrated cell-type specific dynamics of TAD formation and intra-TAD interactions (Bonev et 
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al., 2017). These TAD transitions during cell-fate specification and, moreover, immediate 

transcriptional responses upon external stimuli were supported by similar results obtained in 

transdifferentiating of immune cells (Stik et al., 2020). Thus, TADs are indeed highly dynamic, yet, 

their impact on enhancer-promoter contacts remains debated.  

High-throughput techniques like HiC, microC and HiChIP have revealed numerous genome-wide 

enhancer-promoter loops at various loci (Hsieh et al., 2016; Krietenstein et al., 2020; Mumbach 

et al., 2016). Matching the permissive model, Shh and its limb enhancer ZRS are maintained in 

close proximity by two pairs of convergent CTCF sites at the edges of the Shh TAD. Paliou et al. 

demonstrated that disruption of this preformed loop reduces Shh expression by 50% in 

embryonic limb buds, indicating that tissue-invariant structures are important to sustain full 

regulatory function in some cases (Paliou et al., 2019). Besides the frequent co-occupancy at 

TAD boundaries, CTCF and cohesin are found within TAD substructures, forming mostly invariant 

chromatin loops (Bonev et al., 2017; Dixon et al., 2012; Nora et al., 2012; Phillips-Cremins et al., 

2013; Rao et al., 2014). CTCF sites within TADs are thought to support promoter enhancer 

interactions. More precisely, together with cohesin, CTCF sites proximal to a promoter likely 

facilitate its sampling of the regulatory environment for a suitable enhancer. However, tissue-

specific interactions which are CTCF-dependent have been described to be rather constitutive 

long-range interactions in invariant sub-domains than dynamic de novo-contacts (Phillips-

Cremins et al., 2013). It appears that newly established, and thus dynamic enhancer-promoter 

contacts of a certain tissue during a differentiation process, do not necessarily rely on CTCF to 

find their cognate equivalent. Rather it seems they establish de novo due to tissue-specific TF 

and/or the polycomb interaction network (Bonev et al., 2017). Accordingly, the characterization 

of hundreds of developmental gene landscapes by CaptureC in the developing mouse limb bud 

demonstrated strong association of tissue invariant loops with CTCF, whereas dynamic 

interactions during development form somewhat independently and hinge more on the epigenetic 

state (Andrey et al., 2016). Recent data confirmed these results and revealed CTCF-dependent 

and -independent promoter-enhancer contacts during neural differentiation, where the former 

seem to promote long-range interactions with promoter-proximal CTCF sites serving as an 

anchor to reel in potential regulatory elements for activation (Kubo et al., 2021).  

The dynamics of lineage-specific CTCF-dependent loops require regulating mechanisms. Active 

transcription and DNA-methylation have been described to control CTCF-mediated promoter-

enhancer contacts of genes. The deletion of the RNA-binding domain (RBDi) of CTCF led to a 

marked genome-wide decrease in strength of CTCF-dependent loops in mESCs, identifying 

mainly two regimes of CTCF-anchored loops, RNA-dependent and RNA-independent (Hansen 

et al., 2019). This potentially explains cell-type specific domain formation during development, 

where active transcription stabilizes long-range contacts. Furthermore, DNA-hypermethylation in 
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IDH mutant gliomas led to reduced CTCF-binding and consequently a loss of insulation between 

TADs. Specifically, the lost insulation allows an enhancer to ectopically activate an oncogene, 

resulting in cancer (Flavahan et al., 2016).  

Taken together, CTCF has been demonstrated in the formation of various invariant and dynamic 

chromatin loops, matching the permissive and the instructive model (Laat and Duboule, 2013). 

Yet, the minority of dynamic promoter-enhancer contacts can be explained by CTCF.  

 
1.2.3 Chromatin loop-formation beyond CTCF 

Numerous chromatin loops are CTCF-mediated, yet, other CTCF-independent contacts are 

formed within TADs. Other architectural proteins apart from CTCF have been implicated in loop 

formation. Direct evidence links the zinc finger protein Yin Yang 1 (YY1) to cell type- specific 

looping. Identified at the base of enhancer-promoter loops during neural lineage commitment, the 

knockdown of the gene specifically disrupts the previously observed tissue-specific interactions 

(Beagan et al., 2017). Moreover, YY1-HiChIP experiments demonstrated strong association with 

enhancers and promoters and their corresponding interaction (Mumbach et al., 2016). 

Additionally, artificial tethering of YY1 to a mutated DNA binding site rescued interactions lost 

prior, as seen by 4C (Weintraub et al., 2017). Another lineage-specific TF at the beta-globin locus, 

the LDB1 complex, likely mediates looping via self-interaction. Artificial tethering of LDB1 to the 

gene promoter forced loop formation independently of the mediator or cohesin complex. 

However, the complex was also described to loop directly with promoter-proximal CTCF binding 

sites (Lee et al., 2017). Furthermore, developmental genes and their regulatory sequences in a 

repressive epigenetic state are highly enriched with the polycomb repressive complex (PRC). The 

silencing of genes by PRC cooperates with and influences chromosome conformation. By the 

formation of chromatin-associated multi-protein complexes depositing H3K27me3 marks, 

repressed elements establish long range contacts, thereby shaping the chromatin structure on a 

sub-megabase scale. A classic example for this kind of interaction is the transition from repressed 

Hox domains into transcriptionally active TADs (reviewed in (Entrevan et al., 2016). 

In addition, transcription itself was described as a chromatin remodeler, dynamically changing 

genome architecture. Rapid changes and remodeling of TADs in line with compartment 

transitions from repressed B to active A were associated with active transcription. These 

dynamics were observed after influenza A infection in macrophages, where elongated RNA PolII 

disrupts cohesin-association with CTCF and therefore locus-decompaction, enabling TF binding 

(Heinz et al., 2018). In general, active transcription seems to be fundamental for dynamic 

transcriptional control itself. Since the discovery of actively transcribed enhancers resulting in so-

termed “enhancer RNAs” (eRNAs) (Kim et al., 2010; Santa et al., 2010) several studies revealed 

their functional implication in lineage-specific looping, chromatin modifications and thus 
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transcriptional regulation (Arnold et al., 2020). Further studies relate actively transcribed retroviral 

elements (RE) like ERVs with variant cell-type specific boundaries. Additionally REs are concurrent 

with the emergence of new boundaries during evolution, where jumping viruses give rise to new 

domains (Zhang et al., 2019).  

Taken together, dynamic contacts of enhancer and promoters in individual cells have many layers 

of regulation, ranging from structures mediated by architectural proteins, homotypic interactions 

of histone modifications or TF to transcription itself. 

 
1.2.4 Emerging influence of chromatin architecture on gene regulation 

Based on our understanding of TADs, functionally, they facilitate spatial proximity of enhancers 

with their target promoter and thus provide a regulatory framework for genes. In line with this, 

TADs largely overlap with regulatory landscapes of developmental genes (Ruf et al., 2011; 

Symmons et al., 2014). Accordingly, growing numbers of TAD alterations have been described 

to be causal for pathogenic phenotypes. Summarized in Figure 1-6, several genomic 

rearrangements including large-scale duplications, deletions or inversions have been associated 

with congenital malformations and cancer (Spielmann et al., 2018). For example, a tandem 

duplication of 1.7 Mb at the Sox9/Kcnj2-locus including a TAD boundary generates a so-called 

neo-TAD (Fig. 1-6 D and Fig. 1-8). Within this newly emerged domain the Sox9 regulatory 

landscape is fused with a duplicated copy of the gene Kcnj2. Misexpression of the potassium 

channel in a Sox9-like pattern in the developing limb bud results in Cooks-syndrome, 

characterized by aplasia of nails and brachydactyly, defined by missing middle, but elongated 

terminal and proximal, phalanges (Cooks et al., 1985; Franke et al., 2016). Furthermore, multiple 

megabase-scaled inter-TAD spanning structural variants including a TAD boundary at the 

WNT6/IHH/EPHA4/PAX6-locus led to a rewiring and activation of enhancers with non-target 

promoter, resulting in limb malformations (Lupiáñez et al., 2015). Moreover, this process of 

enhancer “adoption” or “hijacking” caused by the disruption of domains by structural variants has 

been described in cancer (Hnisz et al., 2016; Weischenfeldt et al., 2017). 
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Figure 1-6 Structural Variants on a megabase-scale. TAD shuffling can be causative for gene misexpression or loss 

of expression by rewiring of enhancers with new promoters or isolation from their cognate genes. (A) Wildtype 

TADs of Gene A and Gene B with their corresponding enhancers and their activity patterns, depicted in the 

embryos below. The two neighboring domains are separated via a boundary. Genes: black squares; enhancers: 

blue, red and violet circles; Boundary: grey hexagon. (B) Inter-TAD spanning Inversion including a boundary leads 

to rewiring of enhancer A1 with Gene B and isolation of enhancers A2 and B1. (C) Deletion results in TAD fusion of 

both domains, resulting in a loss of Gene B and enhancer A1. Furthermore, enhancer B1 rewires with Gene A. (D) 

Tandem duplication including a boundary leads to the formation of a neo-TAD. Additional to wildtype expression 

Gene B gets ectopically expressed in the expression pattern of Gene A driven by enhancer A2 (The figure was 

adapted from (Robson et al., 2019) 

Hence, TADs are believed to define coherent neighborhoods of developmental genes and provide 

an architectural framework for complex regulatory landscapes of genes. However, the direct 

influence of TADs on gene regulation remains poorly understood. Several experimental 

approaches aimed to unravel the significance of the architectural units for gene regulation. 

Connecting transcriptional control with nuclear organization genome-wide remains challenging 

due to side-effects during cell cycle directly influencing the results, as both CTCF and the cohesin 

complex are part of the cell division apparatus for holding together sister chromatids during 

division.  

Genome-wide depletion experiments highly support the involvement of the two architectural 

proteins in TAD formation by loop extrusion (Nora et al., 2017; Rao et al., 2017; Schwarzer et al., 
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2017). Using an auxin-inducible degron system, Nora et al. could circumvent the deleterious cell 

cycle effects of a CTCF knock out and elegantly demonstrated a loss of TADs after CTCF 

depletion in mESCs (Nora et al., 2017). Although TADs vanished, compartmentalization remained 

unchanged. Intriguingly, about 20% of analyzed boundaries were not affected. However, the 

immediate effects on gene regulation after one day of depletion and TAD-loss were surprisingly 

low (370 mis-regulated genes) and a further increase of mis-regulation (ten-fold) at later points in 

time is most likely due to cell proliferation defects. Remarkably, 80% of downregulated genes lost 

a CTCF site near their TSS. Moreover, tissue-specific cohesin deletion in mouse liver cells and a 

human cancer cell line exhibited similar results (Rao et al., 2017; Schwarzer et al., 2017). While 

TADs disappeared, compartmentalization became even more pronounced in the cells. Similar to 

the CTCF-depletion experiment, no significant transcriptional changes could be detected, 

probably because of non-dividing terminally differentiated hepatocytes and thus lack of mitotic 

effects, as hypothesized earlier (Schwarzer et al., 2017).  

However, the results outlined above stand in contrast to described alterations of TADs, 

summarized as structural variants, which potentially lead to gene misexpression by the rewiring 

of enhancer and promoter contacts, ultimately resulting in ectopic activation (Melo et al., 2020; 

Spielmann et al., 2018; Weischenfeldt et al., 2017). The large overlap of the genes’ regulatory 

landscapes with TADs could explain why TAD shuffling possibly connects wrong enhancers with 

non-target promoters or isolates regulatory information from its cognate gene. 

 

1.3 Deciphering TAD function on developmental gene regulation  

The relation between TADs and gene regulation remains puzzling. Several studies link alterations 

with severe effects in vivo, where the loss of TADs has minor effects in vitro. As the discussion 

about the influence of TADs remains controversial, here, we aimed to challenge the contradictory 

results of previous studies through investigating the loci of two well-studied developmental genes. 

 
1.3.1 Editing the regulatory genome 

Genetic targeting and the introduction of mutations of interest to study specific function of 

regulatory elements or genome architecture have been an elaborate and time-consuming 

process. Since the discovery of CRISPR/Cas9 (Clustered Regularly Interspaced Short 

Palindromic Repeats; CRISPR-associated) genome editing became significantly easier (reviewed 

in (Doudna and Charpentier, 2014). In essence, the powerful technique takes advantage of the 

primitive bacterial immune response to viruses, by guiding the endonuclease Cas9 via single 

guide RNAs to unique genomic positions in order to create efficiently targeted double strand 

breaks (DSBs) (Fig. 1-7 A). During the cell cycle, the targeted cell mainly repairs the DSB with two 

alternative pathways: the error-prone non-homologous end joining (NHEJ) occurs from G1- to M-
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phase during cell cycle and connects the two loose ends of the double-helix randomly, thereby 

creating so-called InDel-mutations of a couple of basepairs. In comparison, homology-directed 

repair (HDR) utilizes the sister chromatid as a repair template and, avoids possible mutations 

through this (Fig. 1-7 B). Applying an external template like Oligonucleotides or plasmids 

containing a sequence of interest additionally exploits the repair mechanism for the integration of 

a specific DNA-sequence. 

In vivo editing of embryonic stem cells or blastocytes can be easily applied to generate transgenic 

mouse models relatively fast. Utilizing one or two single guide RNAs (sgRNAs) in combination with 

Cas9 creates a powerful tool to generate Indels or structural variants (SV) on a megabase-scale 

(CRISVar, Fig. 1-7 C) (Kraft et al., 2015). Furthermore, the technique facilitates efficiently targeted 

insertions based on homology directed repair (HDR) ranging from a single nucleotide exchange 

using oligonucleotides to insertions of several kilobase in size and undergoes constitutive 

progress (Andrey and Spielmann, 2016; Byrne et al., 2015) 

 

 
Figure 1-7 CRISPR/Cas9 mediated genome editing. (A) CRISPR/Cas9. Red: Cas9-enzyme, Orange: PAM-sequence 

consisting of the nucleotides NGG. Green: 20 nucleotide-long locus-specific guide RNA-sequence followed by the 

tracrRNA (B) Repair mechanisms. NHEJ: error-prone Non-homologous end-joining. HDR: Homology-directed 

Repair using either the homologous sister chromatid or an externally applied template as a matrix for the repair. 

(C) Principle of CRISVar. Utilizing two sgRNAs in combination with Cas9 induces two DBS breaks which can result 

due to error-prone repair mechanism in distinct SVs.  

Here, we wanted to utilize CRISPR/Cas9-based genome editing, to create targeted mutations at 

the Sox9/Kcnj2- and Shh-locus. By generation of transgenic mouse lines we wanted to 

systematically assess the effect of TADs on developmental gene regulation at the Sox9/Kcnj2- 

and Shh-locus. 

 
1.3.2 Spatial organization at the Sox9/Kcnj2-locus 

During development the transcription factor Sox9 plays a crucial role in sex determination and 

chondrogenesis (see above). The gene itself is situated in a vast gene desert, harboring the 

regulatory information for its precise spatiotemporal expression patterns in several tissues. cHiC 

of the locus revealed its spatial organization into two TADs separated by a TAD boundary (Franke 
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et al., 2016). The self-interacting capacity of both domains was further confirmed by 4C-

experiments with viewpoints in either of the genes’ promoters in various tissues (Franke, 2017). 

Particularly interesting are the distinct expression patterns of Sox9 and its neighboring gene Kcnj2 

in the developing limb bud in the mouse at E12.5 (Fig. 1-8 A). However, we know from previous 

studies at the locus that the gene Kcnj2 generally is responsive to Sox9-enhancers. A TAD-

spanning duplication including the TAD boundary results in the formation of a neo-TAD (Fig. 1-8 

B), causing pathogenic misexpression of Kcnj2 causing a limb malformation termed Cooks-

syndrome (see above) (Franke et al., 2016). Although in wildtype some Sox9-regulatory enhancers 

are in closer proximity to Kcnj2, their activity is confined to Sox9. Yet, deletion of the separating 

TAD boundary has no significant effect on gene expression (Franke et al., 2016). This raises the 

question of the functional importance of TADs and their boundaries for gene regulation. 

 

 
Figure 1-8 Spatial Organization of the Sox9/Kcnj2-locus (A) The locus consists of two TADs harboring Kcnj2 and 

Sox9. Generally, both domains are separated by a TAD boundary (red hexagon) that restricts regulatory activity to 

the corresponding TAD. Sox9 is active in the digital anlagen of E12.5 limb buds (orange) where Kcnj2 is solely 

expressed in the proximal part (blue). A TAD-spanning duplication including the TAD boundary (grey bar) leads to 

the formation of a neo-TAD (B). In the neo-TAD (highlighted in grey), huge parts of the regulatory domain of Sox9 

(orange) are fused to a duplicated copy of Kcnj2. By this, the potassium channel becomes misexpressed in a Sox9-

like pattern resulting in limb malformation called Cooks-syndrome. 
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1.3.3 Spatial Organization at the Shh- locus 

Shh is a gene involved in a plethora of developmental processes. Aside from its well-studied 

function in the limb, Shh expression is regulated by multiple enhancers dispersed throughout its 

regulatory landscape in a vast gene desert correlating with its TAD, as shown by cHiC and 5C-

experiments (Fig. 1-9 A) (Paliou et al., 2019; Williamson et al., 2019) More than a dozen enhancers 

drive Shh activity in a variety of tissues, crucial to the development of structures of the epithelial 

linings and the central nervous system (CNS) (Anderson et al., 2014; Sagai et al., 2009, 2019; 

Seo et al., 2018). The diversity of the complex spatiotemporal expression patterns is summarized 

in figure 1-9 B and C. A prominent example for long-range interaction is the regulation of the Shh 

and its limb-specific enhancer, the zone of polarizing activity regulatory sequence (ZRS). The gene 

promoter and the ZRS are situated almost 1 Mb apart at the edges of the Shh TAD (Fig. 1-9 A 

and B). This distal ZRS-position is conserved throughout species and is the only enhancer driving 

Shh expression in the developing limb (Lettice et al., 2003; Sagai et al., 2004, 2005). Enhancers 

are thought to function orientation- and position-independently. Systematic studies of enhancers 

which do not rely on artificial assays, however, are pending. Regulatory sensors inserted 

throughout the domain recapitulate the limb-specific signal but are deprived of it once located in 

the adjacent TAD of the developmental gene Engrailed-2 (En2) (Symmons et al., 2014). Yet, the 

strength of the reporter signal differs at the various positions within the domain, raising the 

question of whether enhancers fully function at different genomic locations and to which extent 

the chromatin context at a given position influences its activity within a TAD. 
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Figure 1-9 The Shh regulatory landscape highly correlates with the 3D conformation of the locus. (A) cHiC of 

murine E10.5 limb buds. Grey box highlights the preformed structure shaped by the two pairs of CTCF-site flanking 

either the Shh promoter or the limb-specific enhancer ZRS, directed in a convergent orientation toward each other 

(The figure was adapted from Paliou et al.2019). (B) LacZ sensor insertions throughout the Shh-TAD are taking up 

the ZPA-signal. Once positioned outside the domain in the neighboring TAD the reporter signal is lost in the limb 

bud and recapitulates the expression pattern of En2 in the developing midbrain. Below: CTCF-ChIP-seq of murine 

E10.5 limb buds. Orientation of CTCF sites are indicated by arrowheads. (C) Expression domains of Shh in the 

epithelial linings of the developing mouse embryo besides the limb bud and the central nervous system and 

corresponding characterized enhancers depicted in (B) as green ovals: Oral epithelium (orange), Pharyngeal 

epithelium (red), lung-gut epithelium (green). Light grey boxes: genes; green ovals: Shh enhancers; orange oval: 

ZRS, Grey box: Tissue-invariant CTCF-mediated chromatin loop. The figure was adapted from Symmons et al. 2014; 

Sagai et al. 2009). 
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2. AIM OF THIS STUDY 

Sox9 and Shh are both key developmental genes which are particularly important during limb 

development. Their complex spatiotemporal expression patterns are controlled by numerous 

CREs embedded in gene deserts contained in their respective TADs. Despite the correlation 

between 3D structure and gene regulatory landscapes, particularly at these loci, precisely how 

TADs affect transcriptional control remains puzzling. On the one hand, SVs at the Sox9, Shh, and 

other loci have been shown to cause gene misexpression and disease in patients and mouse 

models. On the other hand, genome-wide loss of TADs has surprisingly mild effects on gene 

regulation in cell culture experiments. 

Here, we wanted to test the influence of the 3D chromatin structure for gene regulation during 

embryonic development. The easy accessibility of the limb and the rich knowledge of the gene 

regulatory networks controlling its development makes the limb an excellent model. By assessing 

the influence of TADs in two parts, we addressed two distinct questions.  
 

2.1 PART 1: Functional dissection of the Sox9/Kcnj2-TAD  

In the first part, we focused on the targeted deconstruction of the TADs at the Sox9/Kcnj2-locus. 

This approach is designed to disentangle the function of the TAD boundary and TAD substructure 

and their individual contribution to TAD formation and gene regulation. 

The systematic targeting of the TAD boundary and major intra-TAD CTCF bindings sites shows 

their combinatorial role in TAD formation and their (limited) importance for gene regulation. In 

addition, a series of SVs shows how these gain-of-function mutations actively restructure the 

TADs at the locus and induce gene misexpression. 

 

2.2 PART 2: Enhancer Shuffling at the Shh-locus  
The second part investigates the relevance of TADs for the functionality of an individual enhancer. 

Enhancers were originally defined to be able to regulate a gene regardless of its position or 

orientation. Here, we took advantage of Shh expression in the limb bud, which is controlled by a 

single non-redundant enhancer, the ZRS. In a series of mutant mice the ZRS is repositioned within 

and outside the Shh-TAD to identify the relevance of the genomic position for accurate gene 

activation and regulation within regulatory domains. By interpreting the ability of the repositioned 

ZRS to activate Shh at its new position, we show how TADs restrict enhancer activity, but are not 

the only factor in this process. 
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3. MATERIAL 
3.1 Instruments 

All instruments used in this study are listed below in table 3-1. 
Table 3-1 Instruments used in this study. 

Instrument Type  Source 
Table Top centrifuge  5414D Eppendorf 
Cooling centrifuge 5417R Eppendorf 
Cooling centrifuge Avanti J-E Beckman-Coulter 
Cooling centrifuge Rotor  JLA16.250 Beckman-Coulter 
Thermocycler GeneAmp PCR System 2700, 2720, and 

9700 
Applied Biosystems 

Real-Time Thermocycler ABIPrism HAT 79000 RT Applied Biosystems 
Steromicroscope MZ12 Discovery V12 Zeiss 
Camera DFC420 Leica 
Light Source KL1500 LCD Leica 
Photometer Nanodrop 2000 Thermo Scientific 
Clean Bench HERASafe Thermo Scientific 
CO2-Incubator HEPA Class 100 Thermo Scientific 
Tranilluminator   Hertenstein 
Micro-CT Skyscan 1172 Brucker microC 

 
3.2 Chemicals 

All chemicals were obtained from Merck (Darmstadt), Roth (Karlsruhe) or Sigma-Aldrich 

(Hamburg, Seelze, Schnelldorf and Steinheim) in analytical grade quality if not stated differently. 
 

3.3 Buffers 

All common buffers and solutions were prepared according to Green&Sambrook (Green and 

Sambrook, 2012) and are listed in table 3-2 and table 3-3. 
 
Table 3-2 Buffers and Solutions for WISH. 

Buffer Composition 

10xPBS -DEPC  1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 20mM KH2PO4, adjust pH to 7.4 with 
HCl, in DEPC- H2O, autoclave  

4%PFA-PBS  Dissolve 40 mg/ml PFA in 1x PBS (DEPC), heat to 55°C until PFA is dissolved, adjust 
pH to 7.4 with HCl  

Alkaline 
phosphatase buffer  

0.02 M NaCl, 0.05 M MgCl2, 0.1% Tween 20, 0.1 M Tris pH 9.5, and 0.05% 
levamisole/tetramisole in H2O  

Bleaching solution  6% H2O2/PBST  
DEPC-H2O  0.1% DEPC in ddH2O  
H1 hybridisation 
buffer  L1 with 0.1% tRNA and 0.05% heparin  



MATERIAL 
 

 24 

H2 hybridisation 
buffer  hybridisation buffer 1 with 0.1% tRNA and 0.05% heparin and Dig- probe  

L1 buffer  50% deionised formamide, 5x SSC, 1% SDS, 0.1% Tween 20 in DEPC; pH 4.5  
L2 buffer  50% deionised formamide, 2x SSC pH 4.5, 0.1% Tween 20 in DEPC; pH 4.5  
L3 buffer  2x SSC pH 4.5, 0.1% Tween 20 in DEPC; pH 4.5  
Proteinase K Buffer  20 mM Tris pH 7.0, 1 mM EDTA, in DEPC-H2O  
TBST 1  140mM NaCl, 2.7mM KCl, 25mM Tris-HCl, 1% Tween 20; pH 7.5  
TBST 2  TBST with 0.1% Tween 20, and 0.05% levamisole/tetramisole  
Blocking solution  TBST 1 with 2% calf-serum and 0.2% BSA  
PBST  0.1 % TWEEN-20 in 1x PBS(DEPC)  

RIPA buffer  Use DEPC treated reagents, 0.01 % SDS, 0.15 M NaCl, 0.01 % Nonidet-P40, 5 mg/ 
ml deoxycholate, 1 mM EDTA pH 8.0, 50 mM Tris pH 8.0, in DEPC- H2O  

Rnase solution  0.1 M NaCl, 0.01 M Tris pH 7.5, 0.2% Tween 20, 100 μg/ml RNase A in H2O  
 

Table 3-3 Buffers and solutions used for cHiC and ChIP-seq. 

Buffer Composition 

Lysis buffer  50 mM Tris pH7.5; 150 mM NaCl; 5 mM EDTA; 0.5 % Nonidet P- 40; 1.15 % Triton X-
100; 1x proteinase inhibitors (Roche, # 04693116001) 

37% 
Formaldehyde  

0,555g PFA in 1050 μl 10 % FCS/PBS and 15 μl 1N NaOH, dissolve at 99 °C for ~10 
min with vortexing every 2-3 min  

10x ligation 
buffer  0.4 M Tris-HCl pH=7.8; 0.1 M MgCl2; 0.1 M DTT; 8,3 mM ATP  

 
 

3.4 Antibodies and Enzymes 

All antibodies and enzymes used in this study are listed in table 3-4. 
 
Table 3-4 Antibodies and enzymes. 

Enzyme Task Supplier 
Restriction Enzymes: SalI, NotI, AatII, PvuI, 
BbsI, DpnI 

Cloning Applied Biosystems 

Restriction Enzyme: DpnII cHiC-Digest New England Biolabs 
Fusion Polymerase PCR amplification  
T4 Ligase Ligation Applied Biosytems 
Proteinase K Protein degradation Sigma-Aldrich 
RNase A RNA digestion Sigma-Aldrich 
DNaseI DNA digestion Qiagen 
Antibodies 
Anti-CTCF  CTCF ChIP-seq Active Motif (#613111) 
Sheep Anti-Digoxigenin Fab fragments 
Antibody, AP Conjugate  

WISH Roche (#11093274910)  

Anti-H3K27ac H3K27ac ChIP-seq Diagenode (#C15410174) 
 

3.5 Kits 
All molecular biology kits used in this study are listed in table 3-5 below. 
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Table 3-5 Molecular biology kits used in this study 

Kit Task Supplier 
BigDye Terminator v3.1 
Sequencing Kit 

Sanger Sequencing Applied Biosystems 

NucleoSpin Plasmid Plasmid DNA purification Macherey&Nagel 
Nucleobond PC100 EF Plasmid DNA purification Macherey&Nagel  
PCR&Gel Clean up  Qiagen 
QIAquick PCR purification kiT PCR clean up Qiagen 
RNeasy Kit RNA purification Qiagen 
SYBR green master mix qRT-PCR analysis  
NEBuilder® HiFi DNA Assembly 
Master Mix 

Gibson Assembly/Cloning New England Biolabs 

 

3.6 Plasmids and bacterial strains 

All plasmids used are listed in table 3.6.. Vector maps can be found in the appendix (Fig 10-1, 

10-2, 10-3 and 10-4). For transformation and propagation of plasmids the chemically competent 

Escherichia coli (e.coli) TOP10 strain was used (Laboratory internal preparation of Asita C. Stiege) 

. 

 
Table 3-6 Plasmids used in this study. 

Plasmid Task Supplier 
pTA-GFP Cloning of WISH-probes Asita C. Stiege 
pKan Cloning of targeting constructs Daniel M. Ibrahim 
px459 (pSpCas9(BB)-2A-Puro) Cloning of sgRNAs Addgene 

 
 

3.7 Synthetic DNA 

All fragments have been ordered from genewiz (genewiz.com, FragmentGENE) with compatible 

overhangs for Gibson cloning into the pKan backbone. According sequences are listed in the 

Appendix (10.3) (ExtraTAD1 telHR, ExtraTAD2, IntraTAD1). 

 

3.8 Primers 

All primers have been synthesized from IDT Eurofins MWG. Sequences are displayed in 5’ to 3’ 

orientation and can be found in tables 10-1 to 10-5 in the appendix. 

 

3.9 Mouse Lines 
Table 3-7 CRISPR/Cas9 generated mouse lines 

Name of transgenic mouse line Alias Genomic location (mm9) 
 

IntraTAD1 Shh mZRS KI chr5:28,797,519-28,797,539 
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IntraTAD2 GD mZRS KI chr5:29,013,316-29,013,335 
IntraTAD3 SBE2 mZRS KI chr5:29,201,903-29,201,922 
ExtraTAD1 En2 mZRS KI chr5:28,517,130-28,517,149 
ExtraTAD2* Nom1/Mnx1 mZRS KI chr5:29,747,481-29,747,500 
 
ΔBor - chr11:111,383,849-111,402,212 
ΔBorC1 - chr11:111,514,370-111,514,389 
ΔBorC1-2 - chr11:111,514,370-111,514,389 

chr11:111,765,593-111,765,612 
ΔBorC1-4 DeltaBor C1-C4 chr11:111,514,370-111,514,389 

chr11:111,765,593-111,765,612 
chr11:111,964,757-111,964,776 
chr11:112,070,905-112,070,926 

ΔCTCF DeltaBor C1-C4+KC chr11:111,307,279-111,307,298 
chr11:111,514,370-111,514,389 
chr11:111,765,593-111,765,612 
chr11:111,964,757-111,964,776 
chr11:112,070,905-112,070,926 

InvC Sox9 Inv91-B1 chr11:112514677-112514719 
chr11:111383920-111383995 

Inv-Intra Sox9 Inv91-B3 chr11:112514719-112514758 
chr11:112514773-112514821 

Bor-KockIn* KcBor KI chr11:112514690-112514710 
*Only tetraploid aggregations, no line establishment 
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4. METHODS 

 

4.1 Molecular biological methods 

Molecular biological methods such as Polymerase Chain Reaction (PCR), DNA cloning, 

transformation of competent E. coli and agarose gel electrophoresis were performed according 

to standard procedures from Green and Sambrook (Green and Sambrook, 2012). 

 
4.1.1 DNA Isolation 

Isolation of Plasmid DNA 

Plasmid DNA was isolated according to the manufacturer’s instruction using the kit Nucleospin 

plasmid (Macherey&Nagel). For transfection of mouse embryonic stem cells plasmid DNA was 

isolated with the Nucleobond PC100 EF (Macherey&Nagel). 

 
Isolation of genomic DNA 

Genomic DNA of mESC or embryonic tissue was extracted by conventional DNA precipitation 

method. Samples were incubated in 500 µl lysis buffer (17 mM Tris, pH 7.5; 17 mM EDTA; 170 

mM NaCl, 0.85 % SDS) supplemented with proteinase K (final concentration: 0.08 mg/ml) for at 

least 3h at 55°C for tissue disruption. 250 µl 5M NaCl were added, followed by incubation for 20 

minutes at 55°C while shaking and, subsequently, incubation on ice for 10 minutes. Afterwards, 

samples were centrifuged at 9000 rpm for 20 minutes at 4°C. 500 µl supernatant was mixed with 

0.6x volumes of Isopropanol and centrifuged for 30 minutes at maximum speed (>13000 rpm) at 

4°C. Precipitated DNA-pellets were washed with 70% ethanol, dried and dissolved in 50-150 µl 

water. 

Biopsies of postnatal mouse ear biopsies were incubated with 50µl of QuickExtract™ (Biozym) 

for 20 minutes at 65°C, followed by inactivation for 2 minutes at 98°C. 2µl of DNA were used for 

standard genotyping PCRs. 

 
4.1.2 Cloning of single guide RNAs for CRISPR/Cas9 

For design of single guide RNAs (sgRNAs) the CRISPR Design Tool by Feng Zhang lab 

(http://www.genome-engineering.org/crispr/) or the guide RNA selection tool CRISPOR 

(http://crispor.tefor.net/; (Haeussler et al., 2016) were utilized. A forward and a reverse 

complement reverse oligonucleotide were ordered with IDT, containing the 20bp-recognition 

sequence and a BbsI-specific overhang (Forward Oligo: 5’-caccgN20; Reverse Oligo: 5’-aaacN20). 

Complementary oligos were annealed and cloned into the pX459 vector (pSpCas9(BB)-2A-Puro, 

Addgene) containing the chimeric tracrRNA, Cas9 and the puromycin and ampicillin resistance 
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gene. Annealed Oligos were ligated into the BbsI-digested vector using T4-Ligase and 

transformed into chemically competent Top10 bacteria (produced laboratory internal by Asita 

Carola Stiege). Plasmid DNA was purified and successful integration was confirmed with Sanger 

Sequencing. 

 
4.1.3 Cloning of targeting constructs for insertions (Boundary, Enhancer, lacZ sensor) 

Targeting constructs were designed with asymmetric homology regions (HR), ranging between 

500-700 bp and 1000-2000 kb (Byrne et al., 2015). PAM sites were either mutated or disrupted 

by the fragment which should be inserted. The size of fragments for insertions varied between 1-

6 kb. All targeting constructs were designed on the mm9 genome assembly using the UCSC 

genome browser (http://genome-euro.ucsc.edu). Fragments with a maximum size of 3 kb were 

synthesized with GENEWIZ® (FragmenGENEs, dsDNA fragments) already containing 40 bp 

complementary overhangs for Gibson Cloning (Gibson et al., 2008) into the pKan plasmid 

(produced laboratory internal by Daniel M. Ibrahim) containing a Kanamycin resistance cassette 

gene or in the TelCD40 plasmid (produced laboratory internal by Martin Franke) containing an 

Ampicillin resistance gene using the NEBuilder® HiFi DNA Assembly Master Mix (NEB, #E2621). 

For cloning of lacZ Sensor constructs the b-Globin minimal promoter was fused to a lacZ reporter 

gene (Ruf et al., 2011). An overview containing cloning primers and all sequences of targeting 

constructs can be found in the appendix. 

 

4.2 Cell Culture 

The mouse ES cell culture protocol used in the laboratory was established by Katerina Kraft in 

cooperation with Heiner Schrewe and Lars Wittler (Department Developmental Genetics, Max 

Planck Institute for Molecular Genetics, Berlin) following standard procedures described in detail 

in (Behringer et al., 1994; Kraft et al., 2015; Nagy and Nichols, 2011; Nagy et al., 2010; 

Robertson, 1987; Wassarman and Soriano, 2010).  

4.2.1 Preparation and culturing of feeder cells (mouse embryonic fibroblasts) 

E13.5 and E14.5 CD1 and DR4 (puromycin/hygromycin/geneticin resistant) mouse fetuses were 

used for preperation of feeder cells. Mouse Embryonic Fibroblasts (MEFs) were cultured in regular 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% regular fetal calf serum 

(FCS Superior, Biochrom, #S0615), 1x Glutamine (100x Lonza, #BE17-605E) and 1x 

penicillin/streptomycin (Lonza, #DE17-603) and expanded until passage 5. MEFs were 

inactivated with Mitomycin C (Sigma, #M-0503)-supplemented Medium for 2 hours, then washed 

with 3x PBS and frozen in freezing medium containing 10% DMSO (Sigma, #D-2650) with a 

densitiy of 2.5x106 cells/cryovial. 
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4.2.2 Culturing of mouse embryonic stem cells (mESCs) 

The mouse embryonic stem cell (mESC)-strain G4 with a hybrid genetic background of 129Sv x 

C57BL/6 was used in all experiments (Georg et al 2007??). Generally, G4-cells were seeded on 

top of a CD1 feeder-layer, previously plated (at least 6h before) on gelatinized dishes or wells (15 

minutes, 37°C, 7.5% CO2, 0.01% gelatin, Sigma, #G-1393) in a density of 3.5 x 104 cells/cm2. 

mESCs were grown in Knockout DMEM 4,500 mg/ml glucose with sodium pyruvate (Gibco, 

#10829-018) containing 15% FCS (PANSera ES, #P30-2600), 10mM Glutamine (100x Lonza, 

#BE17-605E) and 1x penicillin/streptomycin ( Lonza, #DE17-603), 1x non-essential amino acids 

(100x Gibco, #11140-35), 1x nucleosides (100x, Chemicon, ‚ES-008D), 0.1 mM beta-

Mercaptoethanol (Gibco, #3150-010) and 1000 U/ml LIF (Murine Leukemia Inhibitory Factor 

ESGRP™, 107 U/ml, Chemicon, #ESG1107) at 37°C, 7.5% CO2. Medium was changed every 

24 hours, split every 2-3 days and cells were frozen in a density of 1x 106 cells/cryovial in ESC 

medium containing 20% FCS and 20% DMSO (Sigma, #D-2650). 

 
4.2.3 Transfection and CRISPR/Cas9-based Genome Editing of mESCs 

Genome Editing of G4 mESCs was performed as follows: CD1 feeders were plated on 6cm-

dishes (day 1). The day after, 4 x 106 G4-mESCs were seeded on top oft the feeder cells and 

medium was exchanged with ESC medium without penicillin/streptamycin 2 hours before 

transfection the next day. pX459-sgRNA vector(s) were either mixed solely or in combination with 

a targeting vector (KnockIns) in a total volume of 125 µl OptiMEM (Gibco, #51985-026) as a DNA-

Mix. An additional 100 µl OptiMEM was supplemented with 25 µl of FuGENE HD agent (Promega, 

#E2311) in a Transfection Mix. Both mixes were combined, vortexed vigorously and incubated at 

RT for 15 minutes before being added dropwise onto the mESCs (day 2-3). To create structural 

variants two different pX459-sgRNAs were transfected (4 ug each). For targeting CTCF-binding 

sites via creation of Indel-mutations only one pX459-sgRNA was used (8 ug). KnockIns were 

performed with a combination of 8 ug pX459-sgRNA and 4 ug of targeting construct. After 16-

18 hours of transfection medium was changed to regular ESC medium and puromycin-resistant 

DR4 feeders were plated on 3x 6cm-dishes (day 4). 48 hours after transfection G4-mESCs were 

split on 3x 6cm DR4 feeder cells and 48 hour-selection was initiated by supplementing ESC 

medium with puromycin (final concentration: 2 ug/ml, Sigma-Aldrich, #P8833) (day 5-7). Selection 

was abrogated by medium change to regular ESC medium and cells were cultured for recovery 

until ESC clones were visible and large enough for picking (day 8-11). Single mESC-colonies (16-

30 cells) were picked in PBS with a pipette tip and transferred into U-bottom 96well-plates 

containing 0.2% Trypsin-EDTA (Gibco, #25300-054) and incubated 10 minutes at 37°C. After 

resuspension, single cell solutions were transferred into 96well-plates containing CD1 feeder cells 
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and cultured for additional 3 days. Plates were then split into triplicates. Two replicates were 

frozen using U-bottom 96-well plates in bicarbonate-free DMEM (Gibco, #52100) containing 10 

mM HEPES pH 7.2, 20% FCS (PANSera ES, #P30-2600) and 10% DMSO (Sigma, #D-2650). 

One plate was left in culture for growth and harvesting of genomic DNA for genotyping (see 4.2.6).  

An overview of generated mutant mESC lines in this study is given in table 3-7. 

 
4.2.4 Screening and validation of targeted mESCs  

mESCs were lysed in lysis buffer (17 mM Tris, pH 7.5; 17 mM EDTA; 170 mM NaCl, 0.85 % SDS) 

supplemented with proteinase K (final concentration: 0.08 mg/ml) overnight at 55°C and 

extracted with DNA magnetic beads (MagAttract®, Qiagen) using the Thermo Fisher KingFisher™ 

Flex robot. To 8 µl of beads 50 µl of cell lysate and 32 µl of 85% ethanol were added. The 

ESC_gDNA_85_GADMI-protocol in the BindIt 3.1 Software was conducted by the extraction 

robot ((i)Binding of Beads (ii) 2x Washing with 85% EtOH, final concentration: 70% (iii) Drying of 

Beads (iv) Elution in H2O). 

Standard PCR procedures utilizing Taq-polymerase produced laboratory internal by Asita Carola 

Stiege were used for genotyping of the picked mESC clones. Generally, reagents were pipetted 

on ice in a 96well-plate and PCR products were amplified in a thermocycler and analyzed on 1-

2% agarose gels. PCR conditions for a 25 µl reaction: 2.5 µl 10x Taq buffer (750 mM TRIS/HCl 

pH 8.0; 200 mM (NH4)2SO4 ; 0.1% Tween 20; 15 mM MgCl2), 0.1 µl dNTPs (12.5 mM), 0.1 µl 

forward primer (100 µM), 0.1 µl reverse primer (100 µM), 0.5 µl Taq enzyme, 2.5 µl template (circa 

30 ng gDNA) and 19.2 µl bidest H2O. The following program was used: step 1: 95°C, 5 minutes; 

step 2: 95°C, 30 seconds; step 3: 60°C, 30 seconds; step 4: 72°C, 45 seconds; step 5: go to 

step 2 for 34x; step 6: 72°C, 5 minutes; step 7: 4°C, pause. 

A list of Primer sequences for conventional genotyping used in this study is given in table xy in the 

appendix. 

 
4.2.5 Copy Number Analysis of mutant mESC clones via qRT-PCR 

Copy Number Analysis from genomic DNA (gDNA) was conducted using the SYBR Green 

Mastermix (Applied Biosystems) on an ABIPrism Quant7 thermocycler. The Primer3Plus online 

tool was used for Primer Design with an average product size of 80-120 bp. The qRT-PCR 

reaction was set up in 384well-plate as follows: 6 µl SYBR Green Mix, 2 µl PrimerMix (1.5 µM 

each) and 4 µl gDNA (60 ng). All reactions were performed as triplicates. Standard series for each 

primer pair was generated from control gDNA containing the target sequence in 1:5 dilution steps 

(1; 0.2; 0.04; 0.008; 0.0016). For normalization relative cT-ratios of the tested region (primerpair 

within Insertion, Deletion, Inversion) to a region outside the mutated region were created and 

compared to wildtype controls.  
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4.2.6 Generation and Genotyping of mutant mouse lines (Aggregation, Crossings) 

Mutant G4 mESCs were seeded in a densitiy of 2 to 4x105 cells onto CD1 feeder cells. Mutant 

embryos or live animals were generated by diploid or tetraploid complementation (Artus and 

Hadjantonakis, 2010). CD1 female mice were used as foster mothers. 

Mouse strains were maintained by crossing them with C57BL6/J mice. All animal procedures 

were in accordance with institutional, state, and government regulations (Berlin: LAGeSo 

G0176/19, G0247/13). 

Standard PCR procedures utilizing Taq-polymerase produced laboratory internal by Asita Carola 

Stiege were used for genotyping of mouse mutants. Generally, reagents were pipetted on ice in 

a 96well-plate and PCR products were amplified in a thermocycler and analyzed on 1-2% 

agarose gels. PCR conditions for a 25 µl reaction: 2.5 µl 10x Taq buffer (750 mM TRIS/HCl pH 

8.0; 200 mM (NH4)2SO4 ; 0.1% Tween 20; 15 mM MgCl2), 0.1 µl dNTPs (12.5 mM), 0.1 µl forward 

primer (100 µM), 0.1 µl reverse primer (100 µM), 0.5 µl Taq enzyme, 2.5 µl template (circa 30 ng 

gDNA) and 19.2 µl bidest H2O. The following program was used: step 1: 95°C, 5 minutes; step 

2: 95°C, 30 seconds; step 3: 60°C, 30 seconds; step 4: 72°C, 45 seconds; step 5: go to step 2 

for 34x; step 6: 72°C, 5 minutes; step 7: 4°C, pause. 

 

4.3 Chromosome Conformation Capture(3C)-Technology 

The Capture Hi-C protocol described below was established by Martin Franke in the laboratory 

and is adapted from (Werken et al., 2012) 

 
4.3.1 CaptureHiC 

Fixation and nuclei extraction 

Embryonic tissues were dissected in PBS. After adding prewarmed Trypsin for 10 minutes at 

37°C, the reaction was stopped by adding 10% FCS/PBS and single cell suspensions were 

homogenized using a 0.40 µm cell strainer. After centrifugation at 1100 rpm for 5 minutes, pellets 

were resuspended in 5 ml 10%FCS/PBS and subsequently fixed by adding 4% Formaldehyd (FA) 

in 10%FCS/PBS for 10 minutes at RT while tumbling (final concentration: 2% FA). Crosslinking 

was quenched by adding 1 ml of 1.425 M glycine on ice and immediate centrifugation for 8 

minutes at 1500 rpm at 4°C. The cells were lysed and nuclei extracted by resuspension in 5 ml 

freshly prepared lysis buffer (see table 3-3) on ice for at least 10 minutes. For confirmation of lysis 

3 µl of nuclei suspension were mixed with 3 µl of methyl green pyronin staining solution (Waldeck, 

Pappenheim, #2C-186). The number of nuclei was determined using a standard counter chamber 

(Neubauer) and cells were pelleted by centrifugation at 2000 rpm for 5 minutes at 4°C. After 
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washing once with PBS, cells were aliquoted (2-5 x106 nuclei) and after another centrifugation 

step at 2600 rpm for 2 minutes at 4°C snap-frozen in liquid nitrogen and stored at -80°C. 

 
Capture HiC sample and library preparation 

Nuclei pellets were resuspended in 360 µl H2O bidest and supplemented with 60 µl DpnII 10x 

restriction buffer (NEB). Samples were incubated at 37°C in a thermomixer at 900 rpm. After 

adding 15 µl of 10% SDS for an hour, the remaining SDS was separated from the reaction by 

adding 150 µl of 10% Triton X-100 for 1 hour. A 15 µl aliquot was taken as a control for undigested 

chromatin. A restriction digest was started by adding 600 µl of 1x restriction buffer and 400 Units 

of DpnII, followed by adding additional 200 Units after 4 hours and overnight restriction at 37°C. 

The next day, another 200 Units of DpnII were added and incubated for 4 hours. After taking a 

digestion control aliquot (30 µl), the digest was stopped by heat inactivation of the enzyme for 20 

minutes at 64°C and transferred to a 50 ml Falcon tube. The volume was adjusted to 7 ml with 

H2O, supplemented with 1x Ligation buffer and 50 units of T4 DNA Ligase (Thermo Fisher 

Scientific, #EL0013), followed by incubation for 4 hours at 16°C and 30 minutes at RT. A 100 µl 

ligation control aliquot was taken before de-crosslinking by adding 30 µl of proteinase K (10 

mg/ml) and overnight incubation at 65°C. 

The next day, 30 µl of RNaseA (10 mg/ml) was added to the sample and incubated for 30 minutes 

at 37°C. Then, DNA was extracted by adding 7 ml of phenol-chloroform and mixed vigorously by 

inverting the tube. The water phase was separated via centrifugation at 3750 rpm for 15 minutes 

at RT and transferred to a fresh falcon tube. To precipitate the DNA, 7 ml H2O, 1 ml 3M NaAc pH 

5.3, 140 µg glycogen and 35 ml of 100% cold ethanol were added and the sample incubated at 

-20°C overnight, followed by centrifugation for 60 minutes at 6000 rpm at 4°C. The sample was 

washed once with 30 ml 70% ethanol, air dried and dissolved with 150 µl 10 mM TRIS/HCl pH 

7.5. Samples were stored at -20°C.  

Before proceeding to sequencing the efficiency of the library was tested. Chromatin from control 

aliquots obtained during the sample preparation were de-crosslinked overnight at 65°C after 

adding 5 µl proteinase K (10 mg/ml), followed by addition of 2 µl RNaseA (10 mg/ml) and 

incubation for 30 minutes at 37°C. DNA was extracted by adding 100 µl of phenol-chloroform, 

mixed and centrifuged for 15 minutes at maximum speed at RT. Supernatant was transferred into 

fresh tubes and 20 µl of the cleaned up DNA was loaded on a 1% agarose gel. 

 
4.3.2 SureSelect Design 

SureSelect enrichment probes were designed using the SureDesign online tool from Agilent 

(https://earray.chem.agilent.com/suredesign/). At the Sox9-locus, probes covered the genomic 
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interval chr11:109,010,000-114,878,000 (mm9, 3 Mb). At the Shh-locus, probes covered the 

genomic interval chr5:27,800,001-30,600,000 (mm9, 2.8 Mb). 

Library samples were measured using Qbit, sheared using a Covaris sonicator (Duty cycle: 10%, 

Intensity: 5, Cycles per Burst: 200, 6 cycles of 60 seconds, Set Mode: Frequency Sweeping) and 

adaptors were ligated for amplification, following the Agilent instructions for Illumina Sequencing. 

Next, libraries were enriched with the according custom-designed SureSelect enrichment probes. 

After indexing, samples were sequenced on the NextSeq500 or HiSeq2500 (Illumina) with a depth 

of 200 million readpairs (100 bp paired-end). 

 
4.3.3 Capture HiC Data Analysis 

Bioinformatic analysis was performed in cooperation with Robert Schöpflin (Department 

Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin). 

Processing, mapping and filtering of mapped paired-end sequencing data was performed using 

the HiCUP pipeline v0.6.1 (Wingett et al., 2015). For mapping short reads to the reference 

genome (NCBI37/mm9) the pipeline used Bowtie2 v.2.2.6 .(Langmead and Salzberg, 2012) 

Further, the Juicer tool was used to process filtered di-tags to bin di-tags (5 and 10 kb bins) and 

for Knight-Ruiz (KR) matrix balancing normalization (Durand et al., 2016; Knight and Ruiz, 2012; 

Lieberman-Aiden et al., 2009). Only reads with a MAPQ ≥30 were considered. The DNA-

capturing step enriches the genomic interval chr11:109,010,000-114,878,000 (mm9, 3 Mb) for 

Sox9. The Shh-locus probes covered the genomic interval chr5:27,800,001-30,600,000 (mm9, 

2.8 Mb). This leads to three different regimes in the cHiC-map: (a) enriched versus enriched, (b) 

enriched versus non-enriched, and (c) non-enriched versus non-enriched. Only di-tags in regime 

(b) were considered for binning and normalization. Di-tags were filtered for the enriched regions 

and mm9 coordinates were shifted by -109,010,000 bp (Sox9) or -27,800,000 bp (Shh). 

 
4.3.4 CTCF Motif Analysis with FIMO (Meme Suite) 

CTCF motif orientation in ChIP-seq peaks (CTCF ChIP-seq from E14.5 limb buds from 

ENCODE/LICR) was analyzed with the FIMO algorithm of the MEME suite (Bailey et al. 2009) with 

default parameters. The position weight matrix (PWM) from (Jerković et al., 2016) was used as a 

CTCF motif matrix. Genomic regions underlying a CTCF peak of 100-200 bp were analyzed. 

 

4.4 Chromatin Immunoprecipitaion (ChIP)-Sequencing 

After microdissection of E10.5 or E12.5 embryonic limb buds, the tissue was digested with 

Trypsin–EDTA 0.05% (Gibco) for 10 min at 37 °C. The reaction was stopped by mixing with 10% 

FCS/PBS and subsequently filtered with a 40-µm cell strainer (Falcon). The single cell suspension 

was fixed in 1% paraformaldehyde (PFA)/10% FCS/PBS for 10 min at room temperature, 
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tumbling. After stopping of fixation by adding Glycine and subsequent centrifugation, cells were 

lysed in Lysis buffer (50 mM Tris, pH 7.5; 150 mM NaCl; 5 mM EDTA; 0.5% NP-40; 1.15% Triton 

X-100; protease inhibitors (Roche)) for 10 min on ice. Nuclei were resuspended in sonication 

buffer (10 mM Tris–HCl, pH 8.0; 100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 0,1% Na-

deoxycholate; 0.5% N-lauroylsarcosine; protease inhibitors (Roche complete)). Chromatin was 

sheared using a Bioruptor until reaching a fragment size of 200–500 base pairs (bp). After 

clarification of lysates, protein–DNA complexes were immunoprecipitated overnight at 4 °C with 

the respective antibody. A total of 10–15 μg (histone) or 25 μg (transcription factor) chromatin was 

used for each replicate ChIP. Antibodies: H3K27ac (C15410174; Diagenode) and CTCF (Active 

Motif: 613111). ChIP-seq was performed according to (Andrey et al., 2016). 

 
4.4.1 ChIP-seq data analysis 

Nextera adapters were used for preparation of sequencing libraries. Samples were sequenced 

on the NextSeq500 or HiSeq2500 (Illumina) 50-100bp single-end (SE) read. Mapping was 

conducted with bowtie (v2.2.6) (Langmead and Salzberg, 2012) to the mm9 reference genome 

and filtered for mapping quality MAPQ ≥ 10. Duplicates were removed with samtools rmdup (v1.8). 

Reads were extended to 300 bp (H3K27ac) or 200 bp (CTCF) and scaled to r.p.m. (106 per 

number of unique reads) using bedtools genomecov v2.27.1 for generation of coverage tracks. 

 

4.5 RNA expression analysis 

For quantification of gene expression levels, E10.5 or E13.5 limb buds from littermates 

(wt/het/hom) of mutant mice were microdissected in cold PBS and immediately snap frozen in 

liquid nitrogen. Samples were stored at -80°C. 

 
4.5.1 RNA extraction 

To isolate RNA from embryonic tissue samples were homogenized in 350 µl RLT buffer 

supplemented with b-Mercaptoethanol using a 1 ml syringe and a size 20 cannula (G 27 x 3/4"" 

/ ø 0,40 x 20 mm). After centrifugation at full speed for 3 minutes, supernatant was transferred 

into a fresh tube and mixed with 350 µl of 70% ethanol. The sample was loaded onto a RNeasy 

Mini Kit Column (Qiagen, #74104) and proceeded following the manufacturer’s instructions 

including an on column- DNase digest (Qiagen, # 79254).  

 
4.5.2 cDNA synthesis 

For cDNA synthesis 300-500 ng of extracted RNA was used, utilizing the Superscript III™ First-

Strand Synthesis System (Invitrogen, #18080051) for reverse transcription.  
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4.5.3 Expression analysis with quantitative RT-qPCR 

Quantification of relative transcript abundance was performed for 2-6 biological replicates in 

technical triplicates using the SYBR green mix (Applied Biosystems). Samples were internally 

normalized by taking the ratio to housekeeping genes (Gapdh or Rps9). Mutant expression was 

compared to wildtype littermates (set as 1). 

 

4.6 Whole Mount In Situ Hybridization (WISH) 

Buffers and solutions used for whole mount in situ hybridization were treated with DEPC to 

inactivate RNase enzymes and are listed in table 3-2. 
 
DIG-labeled Probe generation 

mRNA expression of the genes Shh, Mnx1, En2, Sox9 and Kcnj2 was assessed by whole mount 

in situ hybridization (WISH) in E10.5 and E12.5 mouse embryos. Digoxigenin (DIG)-labeled 

antisense riboprobes (table 10-5) were generated by PCR amplification utilizing E10.5 or E12.5 

mouse limb bud cDNA and subsequently cloned into the pTA-GFP vector. For PCR amplification 

of the template the SP6 and T7 primer were used. Then, 200 ng of PCR template were mixed 

with DIG RNA labelling mix (Roche, #11277073910), transcription buffer and RNA polymerase 

SP6 or T7 (Roche, #10999644001) and incubated for 2 hours at 37°C. After DNaseI treatment 

(Roche, #04716728001) for 15 minutes at 37°C the reaction was stopped by adding 0.2 mM 

EDTA/H20-DEPC (pH 8.0), 0.4 M LiCl and 3 volumes chilled 100% ethanol and subsequently 

precipitated over night at -80 °C. After centrifugation at 13000 rpm for 20 minutes at 4°C and 

one washing step with 70% ethanol, the RNA pellet/probe was dissolved in H20-DEPC. 
 
Preparation, Hybridization and Staining of embryos for WISH 

Wildtype and Mutant embryos were dissected in PBS-DEPC and fixed overnight in 4% PFA/PBS-

DEPC at 4°C. The next day, embryos were washed twice in PBS supplemented with 0.1% Tween 

(PBST) for 30 minutes and subsequently dehydrated in a methanol/PBST series (25%, 50%, 75%, 

10 minutes each at 4 °C) and stored in 100% methanol at -20 °C. 

For WISH embryos were rehydrated at 4°C in a reverse methanol/PBST series (75%, 50%, 25%) 

and washed in PBST. Bleaching of embryos in 6% H2O2/PBST for 1 hour was followed by 

washing with PBST and Proteinase K treatment (10 ug/ml; E10.5: 3 minutes; E12.5: 5 minutes). 

After additional washing with PBST/glycine, PBST and RIPA buffer, embryos were fixed for 20 

minutes in 4% PFA/0.2% glutaraldehyd/PBST. Embryos were washed in PBST, PBST/L1 buffer 

(1:1) and incubated at 68°C for 10 minutes in L1 buffer. Prior to hybridization DIG-labeled RNA 

probes were diluted 1:100 in H1 buffer. Denaturation of probes at 80°C for 5 minutes was 

performed before being added to the embryos for hybridization over night at 68°C. The next day, 
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unbound probes were removed by washing three times with L1 buffer at 68°C for 30 minutes 

followed by washing three times with L2 buffer (30 minutes, 68°C) and L3 buffer (15 minutes, 

68°C). After cooling down to RT, embryos were treated twice with RNase solution containing 

RNaseA (100 ug/ml) for 30 minutes at 37°C and subsequently washed three times with TBST 1 

(1% Tween20) for 5 minutes at RT. Then, embryos were incubated in blocking solution for 2 hours 

at RT while incubating the DIG-antibodies 1:5000 in blocking solution on a rotating wheel at 4°C. 

Embryos and DIG-labeled probes were incubated overnight on a shaker at 4°C. The next day, 

unbound antibodies were removed via a series of washing steps (5x 5 minutes TBST2, 8x 30 

minutes TBST2 at RT) and left in TBST2 solution over night at 4°C with shaking. 

After washing three times with Alkaline phosphatase buffer for 20 minutes at RT, embryos were 

stained with BM Purple AP Substrate (Roche, #1442074) for at least 1hour at RT. When staining 

was completed, embryos were washed with PBST, fixed with 4%PFA/PBS/0.2% 

glutaraldehyd/5mM EDTA and stored at 4°C. 

Mutant embryo expression patterns were compared to wildtype littermates (if possible). The 

stained embryos were imaged with a Zeiss Discovery V.12 microscope and a Leica DFC420 

digital camera.  

 

4.7 LacZ Sensor Staining 

LacZ reporter stainings were conducted according to the protocol of LacZ reporter stainings from 

Lobe et al. 1999. Embryos were dissected in PBS and fixed in 4% PFA/PBS at 4°C for 20-30 

minutes. After washing three times with LacZ washing buffer (2mM MgCl2, 0.01% Na-

deoxycholat, 0.02% Nonidet-40 in PBS) the embryos were incubated in LacZ washing buffer 

supplemented with X-Gal DMSO (0.5 mg/ml), 5mM potassium ferrocyanide, 5mM potassium 

ferricynide at 37°C for a few hours or overnight. After the desired staining was obtained, embryos 

were washed with LacZ Washing Buffer and stored in 4%PFA/PBS at 4°C. 

 

4.8 Skeletal Preparations 

E18.5 embryos or P0 animals were decapitated and kept in water over night at RT. Next, animals 

were heat shocked at 70°C for 40 seconds and skinned, disemboweled and incubated for at 

least 3 days in 100% ethanol. After washing them with acetone for 1 hour, cartilage was stained 

with alcian blue staining solution (150 mg/L Alcian Blue 8GX, Sigma-Aldrich, #A5268, 80% 

ethanol, 20% acetic acid) for 24-48 hours at RT. After overnight fixation in 100% ethanol, animals 

were stepwise rehydrated with a ethanol series (75%, 50%, 25%, H2O at least 8 hours each). 

Next, the animals were initially cleared via incubation in 1% KOH/bidest H2O for 30-60 minutes. 

Cartilage was stained using Alizarin Red (50 mg/l, Sigma-Aldrich, #A5533) in 0.2% KOH/bidest 
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H2O for up to 48 hours and stopped after visual inspection. Remaining tissue was digested with 

KOH/bidest H2O concentrations ranging from 0.1%-1% and subsequently stopped by adding 

increasing glycerin solutions (30%, 60%, 80% glycerin/bidest H2O, 24 hours each). Preparations 

were stored in 80% glycerin at RT. 

 

4.9 Micro-computer tomography (microCT) 

Micro-computer tomography (microCT) analysis was performed in cooperation with Wing Lee 

Chan (Charité-Universitätsmedizin Berlin, Institut für Medizinische Genetik und Humangenetik, 

Berlin). For microCT of autopods of adult mice the a SkyScan 1172 X-ray microtomography 

system (Brucker microCT, Belgium) was used at 5-µm resolution. Reconstruction of 3D models 

was conducted with the SkyScan image analysis software CT-Analyser and CT-volume (Brucker 

microCT, Belgium). 
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5. RESULTS 
5.1 The Kcnj2/Sox9-locus as a model system 

Recent genome-wide depletion experiments of CTCF or subunits of the cohesin complex 

demonstrated that the immediate effect on gene expression upon the resulting loss of TADs is 

relatively mild (Nora et al., 2017; Rao et al., 2017; Schwarzer et al., 2017). However, these results 

contradict the described potential pathogenic effect of structural variants (SV) on gene regulation, 

which is caused by an altered chromatin architecture (Spielmann et al., 2018; Weischenfeldt et 

al., 2017). Here, we wanted to dissect the role of CTCF and TAD architecture for gene regulation 

in a developmental in vivo setting in mice and correlate changes in chromatin architecture with 

gene expression, expression patterns, and potential mouse phenotypes (Fig. 5-1). We did so by 

applying CRISPR/Cas9 to mouse embryonic stem cells (mESCs). We generated a series of 

mutant mESC lines from which we derived transgenic mouse lines. Then, we used embryos from 

these lines to analyze gene expression and 3D chromatin structure in the developing mouse limb. 

 
Figure 5-1 Experimental set-up and strategy. CRISPR/Cas9 genome editing of mESC was followed by generation 

of mouse lines via diploid or tetraploid complementation. Chromatin architecture of mutant E12.5 limb buds by 

cHiC was correlated with changes in gene expression assessed by qPCR and WISH and potential phenotypes with 

micro-CT and skeletal preparations. 

The Sox9/Kcnj2-locus consists of two well-defined TADs harboring the regulatory information 

required for the accurate and precisely timed expression of their target genes. The Sox9 gene is 

located on the telomeric side of its TAD of almost 2 Mb in size, situated in a vast gene desert. In 

this stretch of DNA, many described and potential CREs in the form of enhancers are embedded, 

regulating and driving the complex spatiotemporal Sox9 expression pattern (Fig. 5-2 A). In this 

study, we were particularly interested in the regulation of Sox9 in the developing cartilage anlagen 

of the limb bud at embryonic stage E12.5 (Fig. 5-2 B). The neighboring genes Kcnj2 and Kcnj16 

are potassium channels located in the adjacent centromeric TAD, whereas solely the first one is 

weakly expressed at E12.5 in the distal zeugopod (Fig. 5-2 B). Regulatory sensors (Ruf et al., 

2011) integrated in various positions in either of the two TADs are capable of recapitulating the 
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regulatory activity of the two genes vastly, although not completely (Franke, 2017). The Kcnj2-

TAD is defined by overlapping regulatory patterns in the maxilla, forebrain and proximal limb, 

varying in strength at the different positions. At some integration sites in the Sox9-TAD, the sensor 

strongly recapitulates the limb signal, while at other positions it is barely detectable. In addition to 

the limb, signal is visible in the scapula, nasal septum and capsule of the E12.5 embryos. 

However, the signal is limited to the corresponding domain, restricted by the TAD boundary (Fig. 

5-2 B). 

Ectopic interactions between the two domains are restricted by a separating TAD boundary, as 

demonstrated by 4C-experiments (Franke et al., 2016). 3D-chromatin contacts within both 

domains are shaped by CTCF sites located at the TAD boundary (Bor) but also within the TAD. 

In particular, the Sox9-TAD harbors four major binding sites (referred to as C1-C4) and an 

additional site at the promoter, forming an internal domain-substructure (Fig. 5-2 B). Equally, 

within the Kcnj2-TAD several CTCF sites are located near the promoter as well as between the 

Kcnj2 gene and the TAD boundary (CKc). It is known that Kcnj2 misexpression in a Sox9-like 

pattern results in Cooks syndrome in adult animals, as described previously (Franke et al., 2016).  

As shown in the interaction frequency maps from cHiC and CTCF ChIP-Seq from mouse limb 

buds at embryonic stage E12.5, the boundary separating the two domains consists of two pairs 

of CTCF binding sites in divergent orientation (Fig 5-2 B, magnification). Within the Sox9-TAD, the 

substructure with several loops is linked to at least four additional CTCF-binding sites, described 

previously. Deleting the boundary separating these two regulatory landscapes, however, does 

not result in gene mis-regulation (Franke et al., 2016). 

In this study we first wanted to experimentally assess the effect of chromatin structure on gene 

regulation by gradual deletion of CTCF binding sites. Secondly, we wanted to test the effect of 

structural variants on gene regulation, and, on the basis of SVs, investigate the function and 

influence of TAD boundary and substructure separately.  
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Figure 5-2: The Sox9/Kcnj2-locus consists of two TADs. (A) cHiC from E12.5 mouse limb buds (Franke et al. 2016) 

demonstrates the subdivision of the locus into the centromeric Kcnj2- and telomeric Sox9-TAD separated by a 

TAD boundary. Published and putative regulatory regions of the Sox9-TAD are depicted with purple and orange 

bars, respectively. Below are corresponding ChIP-seq tracks for CTCF and H3K27Ac and ATAC-seq (data from 

Andrey et al. 2016). (B) Mapping of the regulatory information of the locus with lacZ-sensors recapitulating 

regulatory activity of a specific location. Expression patterns are shown by WISH for comparison (Blue Box: Kcnj2; 

Orange Box: Sox9). Grey box: Magnification of the CTCF ChIP-seq track of the TAD boundary region, depicting 

the convergent orientation in 15kb window. Grey bars: genes. Arrow heads: CTCF site orientation. Red hexagons: 

TAD boundary. Major CTCF sites labeled as C1, C2, C3, C4 and CKc (Despang et al., 2019) 

 
5.1.1 Deciphering the role of CTCF in shaping elaborate chromatin domains exemplarily 

at the Sox9/Kcnj2-locus 

To elucidate the role of CTCF in shaping 3D chromatin domains we utilized a CRISPR/Cas9-

based series of CTCF-site deletions in addition to the boundary deletion. To analyze the chromatin 

structure of the locus we conducted Capture HiC from E12.5 limb buds to map all chromatin 

interactions over a 5.9 Mb region at the extended Sox9/Kcnj2-locus (chr11:109,010,000-

114,878,000, mm9). 

As mentioned before, deletion of the TAD boundary caused only a moderate increase in inter-

TAD contacts (Data from (Franke et al., 2016). In order to test if and how the intra-TAD CTCF 
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sites contribute to the formation of TADs, we subsequently targeted the intra-TAD CTCF binding 

sites by a stepwise generation of homozygous Indel-mutations within the consensus CTCF 

binding site. In addition to the TAD boundary, we deleted the C1-CTCF binding site, and then 

sequentially the C2, C3-C4 and finally, the CKc-CTCF binding site located between the Kcnj2-

promoter and the TAD boundary (DCTCF) (Fig. 5-3). 

 
5.1.2 CTCF-deletion series results in gradual TAD-fusion of neighboring domains 

cHiC of wildtype E12.5 mouse embryonic limb buds distinctly shows the separation at the locus 

into two TADs. Virtual 4C from either, the Kcnj2 or the Sox9 promoter, clearly demonstrates the 

interactions stopping at the TAD boundary (Fig. 5-3 A). Deletion of the boundary (DBor) only 

results in a slight increase of inter-TAD contacts measured by interaction score (Fig. 5-4 A), almost 

indistinguishable from wildtype. Using the boundary deletion mutant as a basis, the additional 

removal of the first C1-CTCF binding site (DBorC1) in the Sox9-substructure led to a marked 

increase in inter-TAD contacts between the neighboring Kcnj2- and Sox9-TAD, as shown by 

cHiC. An additional increase of contacts could be observed by the sequential deletion of the C2-

binding site (DBorC1-C2), successively expanding after deletion of all four binding sites (DBorC1-

C4) (Fig. 5-3 C). This was accompanied by a stepwise increase in inter-TAD interactions as 

measured by the interaction score, concomitant with decreased fractions of intra-TAD contacts 

of the Sox9- and Kcnj2-domain (Fig. 5-4 A). Remarkably, deletion of the CKc-CTCF binding site 

(DCTCF) and thus eliminating all bound CTCF sites separating the Kcnj2- and Sox9 promoter, led 

to complete TAD fusion (Fig. 5-3 C).  
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Figure 5-3: Gradual TAD fusion upon CTCF-deletion. (A) cHiC from E12.5 wildtype limb buds with corresponding 

CTCF ChIP-seq track and virtual 4C from either the Kcnj2 (blue) or the Sox9 promoter (orange) as a viewpoint. 
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Arrowheads indicate CTCF-site orientation. (B)DBor: Deletion of the boundary separating the two domains leaves 

the overall TAD configuration at the locus largely unchanged (C) DBorC1-C4: Additional removal on top of the 

boundary deletion of the C1, C2, C3 and C4 CTCF binding sites within the Sox9-TAD causes fusion of the Kcnj2- 

and Sox9-domain. (D) DCTCF: Deletion of all major CTCF sites separating the Kcnj2 and Sox9 promoter (C1, C2, 

C3, C4 and CKc) leads to further fusion of the two TADs. 

In order to assess possible changes in gene expression upon gradual TAD fusion, Sox9 and Kcnj2 

transcript abundance was measured by qRT-PCR from E13.5 limb buds and expression patterns 

were visualized by WISH in E12.5 embryos. In all CTCF-deletion alleles a significant 2-fold 

increase in Kcnj2 expression could be measured. Sox9 expression, however, was unchanged 

except for a mild downregulation to ~85% in the DCTCF mutant (Fig. 5-4 B). We used whole-

mount in situ hybridization (WISH) to visualize possible changes in gene expression patterns in 

embryos at E12.5. In the DBor, DBorC1, DBorC1-C2 alleles no Sox9-like misexpression of Kcnj2 

could be detected using WISH. Kcnj2 became slightly misexpressed in a Sox9-like pattern only 

upon deletion of the C1 to C4 sites (DBorC1-C4), and was more pronounced in the DCTCF allele. 

WISH for Sox9 expression in all alleles was indistinguishable from wildtype. Surprisingly, in all 

CTCF-deletion alleles (DBor, DBorC1, DBorC1-C2, DBorC1-C4 and DCTCF) the effects on gene 

expression were relatively mild (Fig. 5-4 C). The Kcnj2 up-regulation, although significant, seemed 

to be rather an unspecific de-repression, as no strong changes in expression patterns were 

detected by WISH.  

Importantly, the adult mice were unaffected, could breed to homozygosity and did not display 

any symptoms of a Cooks-like phenotype, as analyzed by microCT (appendix, Fig. 10-5 C), 

supporting the observations of only small changes in gene expression. 

Thus, massive reconstruction of the locus’ architecture led to only subtle changes in gene 

expression, which were almost exclusively quantitative, as expression patterns barely changed. 

This suggests that a loss of insulation between the Sox9- and Kcnj2-TAD upon CTCF-deletion is 

not causing directed rewiring of Sox9 enhancers with the Kcnj2 promoter resulting in pathogenic 

gene misexpression. Rather it leads to a leakage of activity towards the wrong target gene. 
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Figure 5-4 Changes in gene expression upon gradual CTCF-deletion and TAD fusion. (A) Changes in interaction 

score by successive removal of CTCF sites. The more CTCF sites are removed, the more inter-TAD interaction can 

be observed concomitant with a decrease in intra-TAD interactions. (B) Gene expression changes assessed by RT-

qPCR. Relative gene expression levels of Sox9 and Kcnj2 in E13.5 limb buds normalized to Gapdh expression 

(wildtype = 1). Bars indicate mean expression, error bars standard deviation. Diamonds indicate individual 

replicates. One-sided, unpaired t-test was conducted to test significance in comparison to wildtype (**p<0.01; 

***p<0.001, ns=not significant). N=2-4. (C) Changes in gene expression patterns by WISH of E12.5 embryos (n=3). 

Schematic on top summarizes observed differences for individual mutants. Magnification depicts a detailed view 

of the hindlimbs. Sox9 is expressed in the digital anlagen. Kcnj2 is expressed in the distal zeugopod. Note only 

low misexpression of Kcnj2 in the DBorC1-4 and DCTCF mutants. 

 
5.1.3 Structural Variants cause pathogenic rewiring of Sox9 enhancers with the Kcnj2 

promoter  

The unexpected results of the CTCF-deletion series raised the question how structural variants 

bear the potential to cause pathogenic misexpression of non-target genes, as we found that it 

cannot be the mere loss of insulation at the Sox9/Kcnj2-locus. In principle, Kcnj2 is able to 
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respond to Sox9 regulatory information upon formation of a so-called neo-TAD, as we know from 

duplications at this locus (Fig. 1-8) (Franke et al., 2016). Based on this and other studies, we 

predicted that a 1.1 Mb inter-TAD spanning inversion (InvC) including the majority of the Sox9 

regulatory landscape and the TAD boundary should result in redirecting Sox9 regulatory activity 

towards Kcnj2. Using CRISPR/Cas9 we created mice carrying such an inversion. 

 

 
Figure 5-5 Reorganization of TAD architecture after introduction of structural variants. (A) cHiC of E12.5 limb 

buds from wildtype with corresponding virtual 4C from either the Kcnj2 (blue) or the Sox9 promoter (orange) as a 

viewpoint. (B) Inter-TAD inversion including the boundary (InvC) leads to reorganization of the two TADs. The 

regulatory part of the Sox9 is fused with the Kcnj2-TAD whereas Sox9 remains in a much smaller domain. (C) Intra-

TAD inversion (Inv-Intra) only inverts the regulatory domain of Sox9 leaving the boundary at its wildtype position. 

Despite reorganization of CTCF-anchored loops, no striking domain reorganization can be observed. (D) Targeted 

insertion of the TAD boundary (Bor-KnockIn) restricts Sox9 from contacting its regulatory landscape and creates 

three domains. (E) Deletion of the repositioned TAD boundary in the InvC background leads to TAD fusion and 

rescues interactions of the Sox9 promoter and its substructure. (F) Fractions of contacts from the Kcnj2 (blue)- or 

Sox9 promoter (orange) with the inverted region. Arrowheads: CTCF site orientation. Grey boxes: Inverted Region. 

cHiC from E12.5 limb buds carrying the inversion (InvC) showed a comprehensive rearrangement 

of the 3D chromatin architecture of the locus. Concomitantly, the inversion isolated Sox9 from 

the inverted centromeric part of the TAD, which was now completely fused with the Kcnj2-TAD 
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(Fig. 5-5 B). The fraction of contacts from the Sox9 promoter to the inverted part of the 

substructure dramatically decreased, whereas Kcnj2 promoter contacts increased accordingly, 

as measured by virtual 4C (Fig. 5-5 F). As a consequence of the fused TADs a significant gene 

misexpression could be detected using qRT-PCR and WISH. Kcnj2 was fivefold upregulated and 

expressed in a Sox9-like pattern (WISH) (Fig. 5-6 B and C). However, Sox9, isolated from its 

regulatory domain, was downregulated to 50% of wildtype-levels, leading to a loss-of-function 

(LOF)-phenotype comparable to a heterozygous Sox9-knockout described in Bi et al. 2001. 

Homozygous InvC-animals died perinatally with a cleft palate and recapitulated other features 

observed upon heterozygous Sox9-loss, like hypoplasia and bending of many cartilage-derived 

skeletal structures like the long bones (Bi et al., 2001). Homozygous E18.5 embryos displayed 

shortened long bones, short snout and delayed ossification (appendix, Fig. 10-6 C). Importantly, 

heterozygous adult animals were viable but showed a Cooks-like syndrome, in accordance with 

the Kcnj2 expression in a Sox9-pattern. They displayed malformed terminal phalanges with high 

penetrance, including loss of the dorsal flexion, sesamoid bones, and claw-shaped form of the 

terminal phalanx in the 4th digit shown by 3D-uCT (appendix fig. 10-6 B). 

Taken together, we could demonstrate that structural variants (SVs) are capable of massively 

reorganizing chromatin architecture which in turn leads to developmental gene mis-regulation, 

ultimately resulting in pathogenic phenotypes. 

 
5.1.4 Untangling the role of the boundary and the substructure on the basis of the inter-

TAD-Inversion (InvC) 

The phenotype observed in the InvC mutant described previously revealed the power of SVs to 

cause rewiring of CREs. However, it remained unclear whether this was due to the repositioned 

TAD boundary, the re-orientated regulatory landscape of Sox9, or a combination of both. We 

decided to create three additional alleles to decipher the function of the different elements. 

To investigate the effect of the inverted substructure alone we generated a 18kb smaller intra-

TAD inversion (Inv-Intra), which carries the identical breakpoint on the telomeric side but excluding 

the TAD boundary on the centromeric side. Although CTCF sites within the substructure were re-

orientated towards the Kcnj2-TAD forming stronger loops with the TAD boundary, Sox9 was still 

able to contact all its endogenous enhancers (Fig. 5-5 C). In contrast to the InvC allele, the ~1 

Mb intra-TAD inversion led to no changes in gene expression (qRT-PCR) or patterns (WISH) 

compared to wildtype (Fig. 5-6 B and C). Accordingly, the animals were fertile, bred to 

homozygosity and displayed none of the described phenotypes (appendix fig. 10-6 D). 

In a second allele, we took advantage of the boundary deletion background mESC line (DBor) to 

insert a 6.3 kb construct carrying all four CTCF sites at the exact telomeric breakpoint of the 

inversions (Bor-KnockIn, appendix fig. 10-6 D). As clearly visible in the cHiC map from 
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homozygous E12.5 limb buds, the boundary insertion split the Sox9-TAD in two smaller domains. 

Sox9 remained isolated in a smaller telomeric TAD, whereas the centromeric part of the Sox9-

TAD formed a second domain between the C1 site and the repositioned boundary (Fig. 5-5 D). 

In contrast, the Kcnj2-TAD did not fuse with the centromeric Sox9-domain, as seen in the InvC 

allele (Fig. 5-5 B). Instead the regulatory part of the Sox9-TAD forms a new, isolated domain by 

itself, barely interacting with the Kcnj2 promoter, analyzed with virtual 4C (Fig. 5-5 F). Gene 

expression analysis using qRT-PCR and WISH showed, based on the cHiC data, expected 

expression changes. Whereas Sox9 expression was reduced to 70%, Kcnj2 was only slightly 

upregulated by twofold in the mutant (Fig. 5-6 B and C). As a consequence of the expression 

changes, homozygous animal died perinatally from a cleft palate, and analysis of E18.5 embryos 

showed a strong Sox9-LOF phenotype, yet milder than the one observed in homozygous InvC 

animals (appendix fig. 10-6 D). Importantly, the animals did not display any features of a Cooks-

related phenotype at this developmental stage (comparable to the DCTCF-mutant).  

These results demonstrated clearly that a TAD boundary consisting of divergently orientated 

CTCF-sites can serve as a very potent insulator. Even after relocation from its endogenous 

position, it was capable of isolating the Sox9 promoter from the majority of its regulatory activity.  
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Figure 5-6 Redirection of regulatory information by structural variants results in pathogenic Kcnj2-gain-of-

function and Sox9- loss-of-function phenotypes. (A) Gene expression patterns of Sox9 and Kcnj2 in Wildtype (n=7) 

(B) Gene expression changes assessed by RT-qPCR. Relative gene expression levels of Sox9 and Kcnj2 in E13.5 

limb buds normalized to Gapdh expression (wildtype = 1). Bars indicate mean expression, error bars standard 

deviation. Diamonds indicate individual replicates. One-sided, unpaired t-test was conducted to test significance 

in comparison to wildtype (*p<0.05; **p<0.01; ***p<0.001, ns=not significant). n=2-4. (C) Changes in gene 

expression patterns by WISH of E12.5 embryos (n=3). Schematic on top summarizes rearrangements of individual 

mutants and observed expression patterns. Magnification below depicts a detailed view of the hindlimbs. Sox9 is 

expressed in the digital anlagen. Kcnj2 is expressed in the distal zeugopod. Note strong misexpression of Kcnj2 

in the InvC and InvCDBor mutants. 

The Inv-Intra and Bor-KnockIn alleles demonstrated that neither of the individual structural 

variants exclusively is sufficient to cause significant and pathogenic gene misexpression, contrary 

to both combined. We hypothesized that redirecting regulatory activity by an inverted 
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substructure alone was not sufficient to cause Kcnj2-misexpression since the boundary is 

blocking interactions and the enhancers tend to have an intrinsic target promoter affinity. To 

analyze how an inverted substructure/regulatory landscape behaves without the isolating activity 

of a boundary nearby separating the two domains, we deleted the boundary in the InvC allele. 

Indeed, by deletion of the boundary in the InvC allele (InvCDBor) we could re-establish interactions 

of the Sox9 promoter with the centromeric part of its TAD (Fig. 5-5 E). On the other hand, contacts 

of the Kcnj2-TAD with the regulatory domain of Sox9 were still present, although slightly reduced 

compared to InvC (Fig. 5-5 F). Again, as shown by cHiC, we could observe a complete fusion of 

the two TADs. In accordance, expression of Sox9 was restored to 70% of wildtype levels 

measured by RT-qPCR (Fig. 5-6 B), rescuing the observed Sox9-LOF in the InvC. Remarkably, 

Kcnj2 expression was upregulated to 2.5-fold and the directed rewiring of Sox9-enhancers with 

the Kcnj2 promoter led to a pronounced Kcnj2 misexpression in a Sox9-like pattern (WISH) (Fig. 

5-6 B and C). Adult animals displayed a Cooks-like phenotype in the limb (appendix fig. 10-6 B). 

Although heterozygous males and females and homozygous females bred normally, homozygous 

males were infertile, suggesting some Sox9-LOF effects due to its role in sex determination and 

gonad development (Bi et al., 2001; Wagner et al., 1994). 

In summary we were able to demonstrate that TAD boundaries act as potent insulators regardless 

of their position within the domain, whereas TAD substructure orientation is sufficient to redirect 

regulatory activity towards non-target (responsive) promoters overcoming intrinsic promoter-

enhancer affinity. Compared to the relatively mild effects on gene regulation by TAD fusion 

through CTCF-deletions, domain fusion by TAD shuffling with SVs led to pathogenic rewiring of 

enhancers with new promoters. 
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5.2 Evaluating the impact of genomic position on enhancer function by repositioning of a 
non-redundant limb enhancer at the Shh-locus 

The results at the Sox9/Kcnj2-locus demonstrated that TADs serve as regulatory scaffolds where 

regulatory information is transmitted throughout the domain and restricted by TAD boundaries. 

Inversion of the regulatory domain alone did not lead to a decreased target gene expression (Inv-

Intra). In conclusion, enhancers at the Sox9/Kcnj2-locus can function regardless of their position, 

in line with the generally accepted paradigm of position-independency. However, Sox9 is 

regulated by partially redundant enhancers situated in the vast gene desert (Fig. 5-2 A). Therefore, 

possible changes in individual enhancer activity are not feasible to assess. Thus, we turned to the 

well-studied regulation of Shh during limb bud development by only one single highly-conserved 

enhancer, the ZRS (Fig. 5-7 B). Deletion of the enhancer entirely abrogates Shh expression in the 

limb bud (Sagai et al., 2005), thus makes it an ideal system to study individual enhancer activity. 

Regulatory sensor insertions within and outside the Shh-TAD recapitulated the ZRS-driven ZPA-

expression pattern in the posterior margin of the limb bud vastly, although not completely (Fig. 5-

7 A) (Symmons et al., 2014). As these experiment rely on an artificial system and do not reflect 

properties of the endogenous enhancer nor promoter, we decided to investigate this in vivo in 

mice. To evaluate the impact of the genomic position within and outside the Shh-TAD on the 

functionality of the endogenous enhancer, we applied CRISPR/Cas9 to relocate the ZRS and 

correlated the new position with enhancer activity assessed by qRT-PCR, WISH and possible 

phenotypes with skeletal preparations as a direct readout.  
 
5.2.1 Enhancer shuffling at the Shh-locus by targeted integrations 

In order to assess enhancer functionality in the context of genomic position, we first generated 

an ESC line carrying a homozygous deletion of the ZRS position (DZRS). Homozygosity was 

verified with copy number analysis by qRT-PCR of the mESC clone and the expected single digit 

oligodactyly was confirmed by generation of E18.5 embryos from tetraploid aggregation (Sagai 

et al., 2005). The deletion was followed by the reintegration of the enhancer applying targeted 

CRISPR/Cas9-based KnockIns in the DZRS-mESC line at two positions located in the adjacent 

TADs (ExtraTAD1 and ExtraTAD2) and three positions within the domain with increasing distance 

to the Shh promoter (IntraTAD1-3; 10 kb, 218 kb, 406 kb). The ZRS sequence was defined 

according to Sagai et al. including flanking regions of a 100 bps at each side and sequence 

accuracy was confirmed by Sanger-Sequencing (Fig. 5-7 B, grey arrow bar). From these five 

different cell lines we generated transgenic mouse lines to then evaluate the effect of the enhancer 

shuffling by examining transcript abundance, expression pattern, and possible phenotypes by 

skeletal preparations at E18.5. Every experiment was conducted from limb buds at embryonic 

stage E10.5.  
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Figure 5-7 ZRS-Repositioning at the Shh-locus. (A) Regulatory sensors recapitulate the Shh expression pattern in 

the developing limb at E10.5 in the ZPA vastly but not completely with differing strength (Symmons et al., 2014). 

Yellow arrows and ovals depict new positions for ZRS-relocation. (B) The ZRS is highly conserved throughout 

species, as shown by PhastCons. The grey arrow represents the PCR-amplified ZRS-sequence for repositioning.  

5.2.2 Relocation outside the Shh-TAD causes ZRS-loss-of-function  

Relocating the ZRS outside its endogenous TAD in either the neighboring centromeric En2-TAD 

(272 kb of Shh promoter, ExtraTAD1) or between the genes Nucleolar protein with MIF4G domain 

1 (Nom1) and Motor neuron and pancreas homeobox 1 (Mnx1) telomeric of the Shh domain (980 

kb from Shh promoter, ExtraTAD2), resulted in a loss-of-function (LOF)-phenotype analogous to 

the described ZRS knockout by Sagai et al. 2005 (Fig. 5-8 A and B). Shh expression was not 

measurable by qRT-PCR and no expression could be detected by WISH at developmental stage 

E10.5 in comparison to wildtype (Fig. 5-8C). Animals at E18.5 displayed the typical single digit 

oligodactyly like animals carrying the DZRS allele, with loss of the radial bone and a general size-

reduction and fusion of the stylo- and zeugopod (Fig. 5-8 D). However, no other organs were 

affected and we were able to maintain ExtraTAD1 as a heterozygous mouse line displaying a 

wildtype phenotype. 
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Figure 5-8 ZRS-Repositioning decreases enhancer functionality. (A) Spatial organization of the Shh-locus identified 

by cHiC of wildtype E10.5 limb buds. Schematics below show genes (light grey bars) and enhancers driving Shh-

expression in different tissues (green ovals) and the limb-specific enhancer ZRS (yellow oval). TAD boundaries are 

indicated with red hexagons. ZRS-relocation sites are depicted with vertical lines in yellow (data from (Paliou et al., 

2019). (B) Chromatin properties identified by ChIP-seq from equivalent tissue of CTCF (top panel, red) and the 

histone modifications H3K27ac (dark grey) and H3K27me3 (green) (data from (Andrey et al., 2016). Arrows point 

out CTCF sites telomeric of the Shh promoter (pShh) and flanking of the ZRS (i4 and i5). (C) Gene expression 

patterns (WISH) and quantification of Shh expression levels of different Extra- and IntraTAD mutants (dark grey 

rectangles) compared to wildtype (yellow rectangle). Magnification of forelimbs are depicted in the upper right of 

each rectangle together with gene expression quantification data. Relative gene expression levels of Shh in E10.5 

limb buds were assessed with qRT-PCR and normalized to Rps9 expression (wildtype = 1, n.m.: not measurable). 

(D) skeletal preparations of E18.5 forelimbs with alcian blue and alizarin red (Blue: bone. Red: cartilage). (n=2-8) 

5.2.3 IntraTAD positions result in decreased ZRS activity  

Next, we examined differences in ZRS-enhancer activity in the IntraTAD mutants. As mentioned 

earlier, regulatory sensor integrations within the Shh-TAD recapitulate the ZRS activity throughout 

the domain (Symmons et al., 2014). However, different integration sites display inconsistent 

strength of reporter gene expression. For example, position 4.1 compared to the 5.1 integration 
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site shows substantial differences in the intensity of the reporter (fig 5-7 B A). Keeping this in 

mind, the three IntraTAD locations were chosen due to their different chromatin properties within 

the domain, which might explain the variability in reporter gene expression. All locations differ in 

distance to target promoter, chromatin accessibility, CTCF-site abundance, histone modifications 

and proximity to other Shh enhancers. To quantify changes of Shh-transcript abundance we 

performed qRT-PCR. In addition, possible alterations in gene expression patterns were assessed 

by WISH. 

The IntraTAD3 position is the most distal of the three relocation sites. In this allele, the ZRS is 

integrated 400 kb away from the Shh promoter, centromeric to the Shh brain enhancer 2 (SBE2). 

The midbrain enhancer is active at the same developmental stage, harboring a potential CTCF-

binding site approximately 8 kb telomeric, orientated towards the Shh promoter (Fig. 5-9 H). In 

comparison, at the IntraTAD2-position the ZRS is relocated 218 kb upstream from its target 

promoter in a “chromatin desert” without any histone marks, ATAC-seq peaks, adjacent Shh-

enhancers or potential CTCF-binding sites in the limb bud at E10.5 (Fig. 5-9 G).  

Regardless of the larger distance towards the Shh promoter, in embryos carrying the IntraTAD2 

(218kb) or IntraTAD3 (400kb) allele similar levels of Shh expression were measurable in 

homozygosity compared to wildtype littermates. No differences in expression pattern or strength 

were visible in WISH from E10.5 embryos (Fig. 5-8 C). However, we found significantly reduced 

activity of the repositioned enhancer in both alleles (IntraTAD2 and IntraTAD3) assessed with qRT-

PCR. Shh expression was decreased to 40% of wildtype-levels in the IntraTAD2 allele (**; p=0,02, 

n=2-3, one-sided, unpaired t-test). Surprisingly, IntraTAD3 displayed an equal reduction with 39% 

of wildtype expression (***; p=0.0003, one-sided, unpaired t-test, n=6-8) (Fig 5-8 C). 

Homozygous embryos at E18.5 of both mutants did not display any skeletal abnormalities and 

appeared indistinguishable from wildtype-littermates (Fig. 5-8 D). 

The IntraTAD1 is the position closest to the Shh promoter, located 10 kb telomeric in a region 

depleted of any histone modifications or ATAC-seq peaks in the limb bud (Fig. 5-9 F). Moreover, 

the ZRS is relocated in the center of the Shh-floorplate enhancer (SFPE1), inactive at E10.5 in the 

limb. Surprisingly, only at the IntraTAD1 position directly upstream of the Shh promoter a size-

reduction of the forelimb at E10.5 was noticeable (Fig. 5-8 C). In the forelimb transcript abundance 

was decreased to 14% of wildtype expression levels (***; p=0.0009, one-sided, unpaired t-test; 

n=3) compared to the hindlimb with 20% (***, p=0.0003, one-sided, unpaired t-test, n=3). To 

exclude a forelimb-specific phenotype we analyzed the ratios of forelimb- to hindlimb-expression 

of Shh in comparison to wildtype expression. Equal ratios were calculated for IntraTAD1 mutants 

(0.68) and wildtype littermates (0.70). The E10.5 embryos displayed a severe reduction in Shh-

expression visible in WISH compared to wildtype littermates (Fig. 5-8 C). As a consequence of 

the drastic reduction in expression, homozygous embryos at E18.5 developed a pronounced 
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oligodactyly with only 2 digits in the forelimb and 4-5 digits in the hindlimb, visible in the skeletal 

preparations (Fig. 5-8 D).  

The surprising result of the IntraTAD mutant series raised the question of why the ZRS is not 

functioning to its full extent at the diverse positions. As we could not correlate expression level at 

the different relocation sites with distance to the Shh promoter, we took a closer look at the 

varying chromatin properties of the IntraTAD positions. 

 
5.2.4 Generation of a sensitized background at IntraTAD-positions to trigger possible 

phenotypes 

As there were similar changes in gene expression at some positions and subtle differences might 

not be detectable in homozygosity, we decided to mate the animals with a heterozygous DZRS 

mouse line carrying only a single-copy of the enhancer. Thus, we created a sensitized background 

to assess possible differences in enhancer function at the IntraTAD positions. 

We were able to confirm the reduced Shh expression in all IntraTAD alleles by qRT-PCR. In 

hemizygous embryos (DZRS/IntraTAD) of the IntraTAD2 and IntraTAD3 positions, a similar 

reduction of 33% of wildtype-levels in the IntraTAD2 mutant (*; p=0.0011, one-sided, unpaired t-

test; n=2) and 25% in the IntraTAD3 (***; p=0.0002, one-sided, unpaired t-test; n=3) could be 

detected by qRT-PCR (Fig. 5-9 E). However, the relative expression changes between both 

IntraTAD positions were not significant (n.s.; p=0.22, one-sided, unpaired t-test) (Fig. 5-9 E). 

Moreover, no changes in Shh expression patterns (WISH) were visible in a hemizygous state in 

E10.5 embryos (Fig. 5-9 C and D). Hemizygous embryos at E18.5 did not display any skeletal 

abnormalities and appeared indistinguishable from wildtype (Fig. 5-9 C and D). Again, the 

comparable Shh expression levels were remarkable, as IntraTAD2 is located in a region depleted 

of histone marks, ATAC-seq peaks, Shh enhancers or potential CTCF sites. In contrast, 

IntraTAD3 is neighboring a known midbrain enhancer (SBE2) active at the same developmental 

stage. Furthermore, a potential CTCF binding site in convergent orientation towards the Shh 

promoter is located only 8 kb telomeric to the insertion site (Fig 5-9 H).  

In line with our first set of experiments, we found an enhanced phenotype in hemizygous 

IntraTAD1 animals, showing an overall reduction of Shh expression to 13% of wildtype-levels. In 

comparison to wildtype, E10.5 embryos of the IntraTAD1 mutant carrying only one repositioned 

copy of the ZRS showed a clearly visible decrease of Shh expression specific to the ZPA, 

visualized with WISH. Moreover, the forelimb was noticeably reduced in size. Accordingly, 

hemizygous embryos at E18.5 displayed a more pronounced skeletal phenotype. In addition to 

the oligodactyly, the forelimb was characterized by additional loss of the radial bone and fusion 

of stylo- and zeugopod (Fig. 5-9 B). 
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Figure 5-9 Chromatin features at IntraTAD positions influence decreased ZRS activity. (A) Schematics show genes 

(light grey bars) and enhancers driving Shh expression in different tissues (green ovals) and the limb-specific 
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enhancer ZRS (yellow oval). TAD boundaries are indicated with red hexagons. ZRS-relocation sites are depicted 

with vertical lines in yellow. Dashed lines indicate distance of insertion sites to the Shh promoter for each mutant. 

Chromatin properties identified by ChIP-seq from equivalent tissue of CTCF (top panel, red) and the histone 

modifications H3K27ac (dark grey) and H3K27me3 (green) (data from (Andrey et al., 2016) (B)-(D) Gene expression 

patterns (WISH) of hemizygous IntraTAD mutants. Magnification of forelimbs are depicted in the upper right of 

each rectangle. Below are skeletal preparations of E18.5 forelimbs with alcian blue and alizarin red (blue: bone. red: 

cartilage). (E) Relative gene expression levels of Shh in E10.5 limb buds were assessed with qRT-PCR and normalized 

to Rps9 expression (wildtype = 1, n.m.: not measurable). Gapdh was normalized as a control. Bars indicate mean 

expression, error bars standard deviation. One-sided, unpaired t-test were conducted to test significance in 

comparison to wildtype (*p<0.05; **p<0.01; ***p<0.001, ns=not significant). n=2-4. (F)-(H) Magnifications of 

different IntraTAD ZRS-relocation sites and chromatin properties. CTCF (top panel, red), ATAC-seq (dark grey), 

H3K27me3 (green) and Mammal Conservation from PhastCons (red) (ATAC-seq data from (Paliou et al., 2019). 

Potential CTCF binding sites are indicated by a red arrow. Shh-enhancers are depicted with green bars. Insertion 

sites are represented by yellow lines (n=2-4). 

Taken together, relocating the ZRS within its endogenous TAD led to decreased enhancer activity 

in varying degree at all IntraTAD positions. As we could not correlate expression changes with 

linear distance to the target promoter, we reasoned that rather the chromatin properties present 

at the new positions seem to have an influence on full function of the enhancer. For the IntraTAD2 

and 3 positions no significant differences in Shh expression were detectable, in contrast to the 

IntraTAD1 allele. Although located directly upstream of the Shh promoter at the IntraTAD1 

position (10 kb), the ZRS activity might be impeded by the flanking inactive floor plate enhancer 

(SFPE1). Moreover, CTCF binding between the enhancer and the target promoter might influence 

the activity, suggesting an insulating function (Fig. 5-9 F). 
 
 

5.2.5 ZRS shows selectivity towards non-endogenous promoters 

As described above, the ZRS was unable to induce Shh expression when repositioned outside 

of its endogenous TAD, as it was deprived of the ability to activate the Shh promoter. However, 

several studies describe enhancer-adopted regulation of non-target promoters upon TAD-

reorganization by e.g. SVs, leading to ectopic expression. In order to test if the relocation of the 

ZRS into the adjacent TADs activates the newly neighboring genes in a Shh like pattern, we 

performed WISH and quantified transcript abundance with qRT-PCR of the ExtraTAD mutants. 

Only at the ExtraTAD1 position could we detect ectopic expression of En2, normally expressed 

in the developing midbrain at E10.5 and completely absent in the developing limb bud. In this 

allele the ZRS is located 18 kb telomeric of En2 and 11.5 kb centromeric of Cnpy1 (Fig. 5-10 A). 

En2 was upregulated 5-fold compared to wildtype littermates as shown by qRT-PCR (***, 

p=0.0008, one-sided, unpaired t-test, n=3) (Fig. 5-10 B). Using WISH we found that En2 was 
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misexpressed in a Shh-like pattern at the posterior margin of the limb bud in the ZPA (Fig. 5-10 

B, grey arrow). Accordingly, Cnpy1 located downstream of En2 was upregulated 5.5-fold (**, 

p=0.003, one-sided, unpaired t-test, n=3) (Fig. 5-10 B). The misexpression of the two genes in 

the limb bud of ExtraTAD1 heterozygous animals did not result in any skeletal phenotypes. 

At the ExtraTAD2 position the ZRS is located 23 kb centromeric to the gene Mnx1 and 19.5 kb 

telomeric to the gene Nom1 (Fig. 5-10 A). In wildtype, Mnx1 is moderately expressed in a small 

fraction of cells partially overlapping the ZPA in the limb bud at E10.5. Nom1 is a housekeeping 

gene, constitutively expressed in several tissues. To our surprise, we could not detect any 

increase or ectopic expression of the two genes by qRT-PCR or WISH (Fig. 5-10 C).  

 

 
Figure 5-10 ZRS shows selectivity towards non-target promoters upon relocation in the adjacent TADs. (A) 

Schematics show genes (light grey bars) and enhancers driving Shh expression in different tissues (green ovals) and 

the limb-specific enhancer ZRS (yellow oval). TAD boundaries are indicated with red hexagons. ZRS-relocation sites 

are depicted with vertical lines in yellow. (B) Chromatin properties identified by ChIP-seq from equivalent tissue of 

CTCF (top panel, red) and the histone modifications H3K27ac (dark grey) and H3K27me3 (green) (data from Andrey 

et al. 2016). (B) En2 expression patterns (WISH) of ExtraTAD1 mutant compared to wildtype littermate. Ectopic 

expression of En2 in the ZPA in the ExtraTAD mutant is highlighted with grey arrows. Magnification of forelimbs 

are depicted on top of the diagram. Relative gene expression levels of Shh, En2 and Cnpy1 in E10.5 limb buds were 

assessed with qRT-PCR and normalized to Rps9 expression. Gapdh was normalized as an internal control. Bars 

indicate mean expression, error bars standard deviation. One-sided, unpaired t-test were conducted to test 

significance in comparison to wildtype (*p<0.05; **p<0.01; ***p<0.001, ns=not significant, n.a.=not aplicable). (C) 
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Mnx1-gene expression patterns (WISH) of ExtraTAD2 mutant compared to wildtype of equal embryonic stage. No 

ectopic expression of Mnx1 could be detected. Magnification of forelimbs show Mnx1-wildtype expression in the 

limb partially overlapping the ZPA. Relative gene expression levels of Shh, Mnx1 and Nom1 in E10.5 limb buds 

were assessed with qRT-PCR and normalized to Rps9 expression (wildtype = 1, n.m.: not measurable). Gapdh was 

normalized as a control. Bars indicate mean expression, error bars standard deviation. One-sided, unpaired t-test 

were conducted to test significance in comparison to wildtype (*p<0.05; **p<0.01; ***p<0.001, n.s.=not significant, 

n.a.=not applicable, n=3-4). 

In summary, in the ExtraTAD alleles distinct promoters showed different responsiveness towards 

the newly positioned ZRS. This was remarkable, as enhancers are thought to promiscuously 

activate any gene in their vicinity. We were not able to explain our results with differing histone 

modifications at the different promoters at E10.5 in the developing limb bud (Fig. 5-10 A). 

Moreover, En2 and Mnx1 are both developmental genes like Shh and very likely have a similar 

promoter type. We reasoned that the ZRS shows some sort of selectivity towards non-

endogenous promoters. However, the underlying mechanisms are yet to be solved.
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6. DISCUSSION 

A plethora of cellular processes require accurate gene regulation. Particularly during embryonic 

development, spatiotemporal control of gene expression is crucial for the constitutive patterning, 

polarization and cell fate specification during lineage commitment. Such sophisticated regulation 

is accomplished by CREs. In the nuclear space, the 3D units referred to as TADs are believed to 

facilitate proximity of enhancers to their cognate promoter and restrict inappropriate contacts. 

Yet the influence of TADs as architectural microenvironments on gene regulation remains 

controversial. In this work I aimed to analyze this ambiguity in detail specifically at the domains of 

the Sox9/Kcnj2-locus and the Shh-locus. The distinct expression patterns of the corresponding 

genes together with the associated phenotypes suit both loci perfectly for this approach. By 

dissecting the role of TAD boundaries, intra-TAD CTCF sites, and orientation of TAD 

substructures for TAD formation, I was able to correlate changes in the spatial organization of the 

loci with gene expression analysis and phenotypes. This revealed important features of genome 

architecture with respect to transcriptional output in vivo during limb bud development, 

highlighting that the mere loss of insulation is not sufficient for pathogenic misexpression. 

However, massive rearrangements by reorganizing functional units of TADs identifies instructive 

roles. 

In the second part, I was able to analyze enhancer activity dependent on its location within and 

outside its TAD at the Shh-locus. This is the first study assessing enhancer function at differing 

genomic locations during development in vivo. Our results challenge the accepted paradigm of 

position-independent enhancer function. 

 

6.1 Functional dissection of TADs at the Sox9/Kcnj2-locus 

Functionally, TADs are thought of as scaffolds for regulatory landscapes of genes, facilitating 

frequent interactions within and restricting ectopic contacts outside of a domain. Long-range 

contacts by formation of chromatin loops frequently occur in complex gene regulatory landscapes 

of developmental genes, highly correlating with the CTCF-mediated structure. However, the 

functional relationship between TADs and transcriptional control remains elusive. As CTCF 

depletion in mESC demonstrated a loss of TADs genome wide with, surprisingly, only mild effects 

on gene regulation, we were curious how sequential deletion of distinct CTCF binding sites would 

impact gene regulation at a single locus in vivo during limb bud development. 

The Sox9/Kcnj2-locus consists of two TADs separated by a TAD boundary. In particular, the 

Sox9-TAD spans a genomic region of 1.7 Mb, whereas the adjacent smaller TAD of the potassium 
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channel Kcnj2 and Kcnj16 covers roughly 1 Mb (Franke, 2017). Showing the characteristic 

features of two pairs of divergently oriented CTCF binding sites, the TAD boundary forms 

chromatin loops not only with the distal neighboring boundaries, but also with CTCF sites located 

within the TAD substructures, as demonstrated by cHiC (C1-C4, CKc). We utilized capture HiC at 

the extended Sox9/Kcnj2-locus in E12.5 limb buds to analyze spatial reorganization upon gradual 

CTCF-deletion with regards to transcriptional control. 

 
6.1.1 TAD boundaries act combinatorial with intra-TAD CTCF sites and redundantly on 

spatial separation 

Previous work at the locus from Franke et al. revealed that deleting the TAD boundary has mild 

consequences on the spatial separation of the locus. Concomitantly, no significant changes in 

Sox9 or Kcnj2 expression could be detected (Franke et al., 2016). However, both TADs are 

shaped by additional CTCF sites located within the substructures, mediating the overall TAD 

structures, visible in cHiC. Taking advantage of the CRISPR/Cas9 technique we systematically 

targeted CTCF binding sites within the Sox9/Kcnj2-TADs. By sequential CTCF site removal we 

created a deletion-series that demonstrated gradual fusion of the Kcnj2- with the Sox9-TAD. 

However, not all intra-TAD CTCF binding sites contributed equally to the insulation. Most of the 

TAD fusion occurred after deletion of the boundary in combination with the C1-binding site 

(DBorC1). Surprisingly, only a moderate increase could be detected after additional deletions. 

Intriguingly, we could not correlate the differing insulation potential to binding strength or motif 

orientation of the individual CTCF binding sites. The sequential deletion of the TAD boundary in 

combination with intra-TAD CTCF sites is necessary for comprehensive TAD fusion and thus, the 

loss of insulation. This indicates that intra-TAD CTCF sites act together with the TAD boundary in 

a redundant fashion. Hence, TADs seemingly are built in a cooperative action which facilitates 

strength and robustness to the overall domain architecture. 

Similar to our results, resistance of TADs was reported at the HoxD gene cluster. The TAD 

subdivides into two enhancer-rich sub-regions centromeric and telomeric to the cluster, each of 

them controlling distinct gene expression patterns in the limb. Therefore, the HoxD cluster itself 

is considered a boundary. However, only a deletion spanning the entire HoxD cluster and two 

adjacent genes resulted in a TAD fusion, similar to the one we report here. Yet, both enhancer 

clusters continued to work independently (Rodríguez-Carballo et al., 2017).  

TAD boundaries formed by CTCF, however, do not exclusively contribute to TAD formation. A 

CTCF-deletion at the HoxA cluster implicated the involvement of Polycomb-mediated spatial hubs 

(Narendra et al., 2016). Furthermore, removing the Xist/Tsix boundary by deletion of 58kb 

surrounding a CTCF site led to domain-fusion, indicating other mechanisms of TAD formation 

(Nora et al., 2012). 
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However, the majority of altered spatial separation by TADs were results of an affected CTCF-

dependent insulation. In different pathogenic deletions at the EphA4-locus the presence of a TAD 

boundary determines whether two TADs merge. The resulting misexpression upon TAD fusion of 

Pax3 is, however, the result of a deletion that removes not only the boundary but, in addition, the 

majority of the Epha4 TAD. In comparison to the CTCF-deletion series presented here, this is the 

effect of an alteration of the overall configuration of the locus (Lupiáñez et al., 2015).  

In summary, our deletion series demonstrates the importance of intra-TAD CTCF sites for TAD 

formation through buffered and redundant mechanisms, and highlights the function of boundaries 

as strong insulators at the edges of TADs. 

 

6.1.2 Structural fusion of TADs is not a functional fusion 

We could circumvent the cytotoxic effect of CTCF-loss by systematically targeting CTCF binding 

sites of an individual locus. By this, we were able to address the role of CTCF in vivo during 

development. Surprisingly, we did not detect any major changes in gene expression levels nor 

pattern. Sox9 is regulated by a large quantity of putative enhancers located in the gene desert. 

Despite the structural fusion of the domains, the enhancers were presumably still able to contact 

and regulate their target promoters, indicating a mechanism independent of CTCF. 

This suggests that CTCF is not essential for individual enhancer function and, thus, the observed 

structural fusion of TADs is not a functional fusion. This interpretation is in agreement with the 

mild changes in gene expression observed upon CTCF-depletion in mESCs (Nora et al., 2017). 

Furthermore this suggests the presence of additional mechanisms conferring to promoter-

enhancer communication independent of a CTCF-mediated architecture.  

 

Such sophisticated mechanisms could be mediated by homotypic interactions of TFs. 

Biochemically, the formation of transcriptionally active chromatin in membrane-less condensates 

might promote the bridging of distal enhancers with their cognate promoter (Boija et al., 2018). 

Phase-separating condensates with high concentration of the transcription apparatus have been 

described recently as a mechanisms of super-enhancer function (Sabari et al., 2018). The 

recruitment of RNA PolII and other co-activators by the phase-separating capacity of TFs into 

transcriptionally active condensates would not be disturbed by CTCF-removal at the Sox9/Kcnj2-

locus. In this light, gene regulation by TFs would not be affected by the overall 3D configuration 

of the locus. Here, TADs serve as a framework for robustness and precision, supporting TF-

mediated enhancer-promoter interactions by bringing them into spatial proximity, without being 

essential to establish them. 

Another important aspect involves the loop extrusion process. CTCF-deletion per se does not 

affect the recruitment of the extruding factor cohesin on the DNA. Therefore, cohesin complexes 



DISCUSSION 
 

 62 

can still facilitate enhancer-promoter contacts. The lack of stalling elements usually set by CTCF 

bound to the DNA, might broaden the limits of these interactions upon CTCF-deletion. Sequential 

removal of the TAD boundary and additional intra-TAD CTCF sites therefore increased the contact 

frequency of the Kcnj2 promoter with Sox9-regulatory enhancers, but not with the Sox9-

promoter, as measured by virtual 4C. We could only detect a 2-fold upregulation of Kcnj2 in all 

alleles, and only upon deletion of each CTFC binding sites separating the two promoters was a 

misexpression of Kcnj2 in a Sox9-like pattern evident. Interestingly, interaction frequency of the 

Kcnj2 promoter and the Sox9-regulatory landscape of the ΔCTCF was similar to the one observed 

in the InvC, yet it was not sufficient to cause any phenotype. This suggests that contact frequency 

cannot be directly translated into regulatory activity. Variances in gene regulation might be caused 

by promoter competition for the same enhancers in the ΔCTCF, whereas interactions in the 

inversion are limited by the repositioned boundary, isolating Sox9. Assessing this mechanism in 

vivo, however, is unfeasible due to the lethality of Sox9 promoter deletions.  

Another important architectural protein which has been implemented in facilitating promoter-

enhancer contacts, is YY1. HiChIP data revealed numerous contacts mediated by YY1 (Beagan 

et al., 2017; Weintraub et al., 2017). Thus, the nearly unchanged levels in gene expression could 

be due to a mechanism involving YY1, facilitating specific interactions of the Sox9-enhancers and 

their cognate promoter, independent from CTCF. 

 
6.1.3 De-repression and activity spreading as a consequence of absent insulation 

Another interpretation of the mild Kcnj2 misexpression in the CTCF-deletion series could be as 

follows. Sox9 is only active in the digital anlagen of E12.5 limb buds, whereas Kcnj2 is expressed 

in the proximal part at the same developmental stage. Repressed genes comprise of a different 

chromatin signature compared to active ones and are often associated with the nuclear lamina in 

so-called Lamina-associated domains, frequently overlapping with TADs (Guelen et al., 2008; 

Steensel and Belmont, 2017). In the case of the Sox9/Kcnj2-locus in the limb bud the Kcnj2-TAD 

is associated with the Lamina whereas the Sox9-TAD is not (Ringel et al., unpublished data, 

personal communication). By removing CTCF and by these insulating elements activity is no 

longer delimited by spatial partitioning anymore, as proposed by Nora et al. (Nora et al., 2012). 

CTCF has been found to be enriched at domain boundaries of facultative heterochromatin 

characterized by H3K27me3-marks (Cuddapah et al., 2009). At the HoxA-locus removal of two 

CTCF binding sites which subdivide the locus into two functional chromatin domains depicted 

with different histone modifications, led to decreased K27me3-levels associated with an up-

regulation of the gene (Narendra et al., 2015). Thus, the mild upregulation of Kcnj2 might be the 

effect of a de-repression by activity spreading and release from the nuclear lamina. Additionally, 

transcription has been described as an active remodeller in compartment switching (Heinz et al., 
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2018). We cannot exclude active transcription of enhancing elements in the Sox9-TAD (Arnold et 

al., 2020; Li et al., 2016). As RNA PolII elongation is not delimited by a competing TAD boundary 

in the ΔCTCF allele, locus decompaction of the Kcnj2-TAD from a repressed B- into an active A-

compartment might be a consequence, resulting in deregulated activation of the Kcnj2-gene. 

Therefore, the TAD boundary in cooperation with intra-TAD CTCF binding sites might not only 

restrict interaction of enhancers with non-target promoters, but might also maintain the integrity 

of the state of activity within and between domains. 

Despite this, the loss of TADs and the concomitant de-insulation at the Sox9/Kcnj2-locus had no 

phenotypic consequences, indicating that there were no substantial effects on Sox9 or Kcnj2 

regulation throughout development. Presumably, Sox9 regulatory enhancers have an intrinsic 

affinity towards their target promoter, providing an additional layer of gene regulation.  

We reason that the changes in gene expression accompanied by the loss of CTCF-mediated 

insulation were induced by leakage of regulatory activity towards the wrong promoter in the 

neighboring TAD. Sox9 and Kcnj2 only had a mild de-regulation. Hence, TADs and their 

boundaries at the Sox9/Kcnj2-locus are not essential for developmental gene expression, but, 

they confer precision and robustness. In other scenarios, however, insulation might be essential 

and such spreading of regulatory activity can result in disease phenotypes (Narendra et al., 2016). 

Our findings untangle the idea of TAD structures as fundamental basis of gene regulation and 

rather hint towards to distinct regulatory layers: (i) The spatial separation by TADs provides an 

architectural framework for (ii) promoter-enhancer interaction which can function independently 

of the former. Both layers stabilize each other but are not inherently related. However, the results 

obtained in this study relating the 3D chromatin organization with gene regulation concentrates 

on one particular locus. Other TADs might differ in terms of their structure and its function, 

emphasizing the importance of comprehensive in-depth analysis of individual loci, as genome-

wide approaches are not feasible. 

 

6.1.4 Structural Variants rearrange TADs 

The results of the CTCF-deletion series stand in conflict to the pathogenic effect of altered TADs 

in structural variants. In a second series we generated inversions and knock-ins to reveal the 

relevance of rearranged TADs on gene regulation. By focusing on the TAD boundary and the TAD 

substructure separately, we could decipher the effect of both independent from one another.  

In the InvC allele we created a TAD-spanning inversion, inverting the Sox9 regulatory substructure 

together with the repositioning of the TAD boundary. By the relocation of a strong insulator, Sox9 

was isolated from its enhancers in a significantly smaller remaining domain resulting in a loss-of-

function phenotype similar to a heterozygous Sox9 KO (Bi et al., 2001). Simultaneously the re-

orientated substructure together with the Sox9 regulatory domain fuses with the Kcnj2-TAD by 
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forming new loops with the inverted CTCF binding sites. Rewiring the Kcnj2 promoter with the 

Sox9 enhancers leads to gain-of-function and pathogenic phenotypes. The misexpression is a 

consequence of the combination of both structural rearrangements. In this scenario, the intrinsic 

affinity of Sox9 enhancers towards their target promoter is blocked by the repositioned TAD 

boundary. Simultaneously, the reorientation of the TAD substructure towards Kcnj2 is sufficient 

to connect them with the wrong target promoter, thereby causing Kcnj2 mis-regulation. Similar 

results were obtained by an inversion of the bipartite spatial organization of TADs at the X-

inactivation center in mESCs. A 40kb-spanning inversion including the TAD boundary of the 

Xist/Tsix transcriptional unit changed the preferential interaction profiles of the replaced 

promoters, causing aberrant activation of Xist (Bemmel et al., 2019).  

Thus, the rearrangement of TAD structures can induce misexpression and, in case of the 

Sox9/Kcnj2-locus, phenotypes. Our findings indicate that TAD boundaries and TAD 

substructures function together, but the latter cannot override the insulating function of a strong 

boundary (see Inv-Intra and Bor-KnockIn). The inversion of the substructure, however, is 

obligatory to redirect the regulatory activity to obtain pathogenic misexpression, as seen in our 

mutant series. Again, this emphasizes that the importance of rearranged 3D chromatin structure 

for gene misexpression, e.g. in disease-causing SVs, needs to be considered independently from 

its role for “normal” gene regulation.  

However, not all TAD rearrangements result in gene misexpression. For example, Drosophila 

balancer chromosome are highly rearranged. Several structural variants like inversions, 

duplications and deletions are found, reorganizing domains by shuffling and fusions all over the 

genome. Remarkably, the majority of genes in rearranged TADs remained unaffected in the 

developing embryo (Ghavi-Helm et al., 2019). Yet subtle changes in gene expression were hard 

to detect, as no specific tissue was analyzed but the whole embryo, diluting out potentially mis-

regulated genes. In addition, selection pressure is exerted on balancer chromosomes. Strong 

misexpression of developmental genes may have lethal consequences. Regardless, the 

Drosophila genome organization differs from that of mammals and seemingly depends on 

chromatin state domains rather than on precise loops anchored by CTCF and cohesin (Matthews 

and White, 2019). A fundamentally different organization makes a direct comparison of the impact 

of TAD structure on gene regulation challenging. 

The mild effects on gene regulation upon CTCF or cohesin depletion oppose the drastic effects 

of TAD reorganization in pathogenic structural variants. The results obtained here can explain this 

discrepancy. We found a high redundancy of CTCF sites maintaining TAD structures. Because 

of this sustained scaffolding, smaller structural variants are likely to be tolerated. Based on our 

findings, gene mis-regulation needs an actively reorganized chromatin structure, where changes 

in contact are mostly an activity redirection towards a non-target gene. Duplications or inversions 
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including TAD boundaries together with adjacent CTCF binding sites reconnect regulatory 

regions. TAD boundary repositioning, however, separates a gene from its enhancers and can 

result in a loss-of-expression. Recent studies revealed the influence of the surrounding chromatin 

on the isolating potential of domain boundaries (Zhang et al., 2020), stressing the context-

dependency of TAD function at each individual locus. 

Therefore, gene misexpression induced by structural variants is not generated by the simple 

removal of barriers or single enhancer–promoter rewiring. Rather, it is the consequence of a 

comprehensive rearrangement by connecting larger regulatory structures with novel target genes 

through CTCF-mediated loops. 

 

6.2 Enhancer Shuffling at the Shh-locus 
The results at the Sox9/Kcnj2-locus demonstrated the ability of structural variants to cause 

misexpression, largely due to repositioned CTCF binding sites of the TAD substructure and 

boundary, forming new chromatin loops. However, it remains unclear how and to what extend 

TADs impact individual enhancer function. As shown with our CTCF-deletion series, the mere 

loss of TADs does not lead to severe gene deregulation. This is in line with genome-wide TAD-

loss upon depletion of CTCF, causing only mild changes in the regulation of a handful of genes 

in vitro (Nora et al., 2017). This also suggests that TADs are not absolutely necessary for enhancer 

function. Rather, TADs promote a framework for their function, although enhancers can work 

without TADs. Traditionally, enhancer function and activity is believed to be position-independent 

and enhancers can promiscuously activate any gene in their vicinity (Bulger and Groudine, 

2011b). This generally accepted paradigm, however, largely relies on artificial assays, where 

engineered reporters do not investigate enhancer function dependence on its chromatin 

environment. Hence, if TADs have no impact on transcriptional control at a given locus an 

enhancer should be able to regulate a target gene regardless of its position, as proposed in the 

earliest enhancer definition. 

To test this hypothesis, we took advantage of the well-studied Shh-locus. We repositioned the 

ZRS enhancer to various locations within and outside its TAD. By this, we were able to assess 

the role of genomic position relative to TAD structure for enhancer-driven activation of its cognate 

promoter in the developing limb bud in vivo. 

 
6.2.1 Enhancer activity is restricted via TAD-boundaries 

We observed that the limb-enhancer ZRS is deprived of its ability to activate the Shh promoter if 

positioned outside the endogenous Shh-TAD. This impaired activity is most likely constricted via 

TAD boundaries. Despite the closer genomic distance to the Shh promoter in the ExtraTAD1 

allele, the ZRS failed to activate its target gene. Similar to the effects of a separating TAD boundary 
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at the Sox9/Kcnj2-locus, activity remained restricted to the neighboring domain of En2, 

underlining the functional relevance of insulation maintained by TADs. A similar loss-of-function 

of the enhancer could be observed in the ExtraTAD2 mutant. Again, interactions of the ZRS with 

the Shh promoter were presumably blocked by an interfering TAD boundary located between the 

Shh-TAD and the adjacent Nom1/Mnx1-domain, maintained by numerous CTCF binding sites.  

Several studies, including this one, highlighted the power of CTCF-mediated TAD boundaries 

(Despang et al., 2019; Zhang et al., 2020). Boundary-spanning SVs have been shown in several 

cases to be associated with ectopic expression or isolation of genes from their regulatory 

elements (Despang et al., 2019; Franke et al., 2016; Lupiáñez et al., 2015; Weischenfeldt et al., 

2017). Moreover, ectopic activation of proto-oncogenes has been described as a consequence 

of TAD boundary disruption (Hnisz et al., 2016), emphasizing the importance of TAD boundary 

integrity for appropriate gene regulation. 

 
6.2.2 Relocation within the Shh-TAD impedes ZRS enhancer functionality 

TADs might provide microenvironments mediating regulatory activity from enhancers towards 

their target promoter. Transmission of regulatory information is supposed to be present 

throughout a domain, as shown by regulatory sensors integrated in several developmental 

landscapes (Franke, 2017; Ruf et al., 2011; Symmons et al., 2014). However, the regulatory 

information recapitulated by these sensors varies throughout the TADs, which suggests that not 

all positions within the domain are equally receptive to regulatory information. Here, we found in 

our IntraTAD series that relocation of the ZRS within its endogenous domain impedes its 

functionality. We could show that any relocation of the ZRS within the Shh-TAD influenced the 

transcriptional output and that this could not be explained by linear distance. However, not all 

generated mutant mice displayed limb malformations. The range of Shh expression levels which 

cause a phenotype is highly variable ranging from 10-50% of wildtype levels (Krebs et al., 2003; 

Lettice et al., 2014; Paliou et al., 2019). This shows that gene regulation and phenotypic effects 

of mis-regulation might be buffered, which is advantageous in context of disease, development 

and evolution, as it confers robustness.  

 
6.2.3 Effects of the surrounding chromatin for ZRS function at the IntraTAD positions 

Integration of the ZRS at the IntraTAD2 and 3 positions revealed similar levels of activity (40% of 

wt), sufficient to not cause skeletal abnormalities. The nearby chromatin features of the two 

positions differ with respect to chromatin accessibility, histone modifications, Shh enhancer 

abundance and potential CTCF binding sites in their vicinity. However, this was not reflected in 

expression levels, nor the distance to the target promoter, since both relocation sites are 

approximately 200 kb apart. Importantly, a comparable decrease of enhancer-promoter distance 
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by intra-TAD deletions did not affect Shh expression levels (Symmons et al., 2016). These 

deletions, however, did not change the overall chromatin environment of the ZRS, in contrast to 

the IntraTAD positions. 

We chose the IntraTAD3 position due to the presence of a neighboring Shh brain enhancer 

(SBE2). In the developing brain and other structures of the central nervous system (CNS), Shh is 

under the control of several partially redundant enhancers (Fig. 1-9 C). In general, we know that 

the brain enhancer is able to regulate Shh expression at the same developmental stage at E10.5, 

although in a different tissue. The IntraTAD3 position, however, displayed similar expression levels 

and therefore enhancer activity, as the IntraTAD2 position which was deficient of nearby Shh 

enhancers. The absence of advantageous effects on transcriptional output might be explained by 

fundamentally different mechanisms of gene activation in the limb compared to the CNS. 3D FISH 

at the Shh locus during NPC differentiation demonstrated an increase of physical distance of the 

Shh promoter and the SBE enhancers upon activation (Benabdallah et al., 2019). These results 

are counterintuitive and disagree with the prevalent model of activation relying on physical 

proximity, which has been shown for the ZRS and Shh (Williamson et al., 2019) (see below). 

Similar observations were obtained by live-cell imaging of mESC, where no enhanced spatial 

proximity upon activation between Sox2 and its regulating region could be detected (Alexander 

et al., 2019). The proximity-based Shh activation of the ZRS in the limb (see below) is in stark 

contrast to the activation-mode of the brain regulatory elements, conferring increased spatial 

separation (Benabdallah et al., 2019; Williamson et al., 2019). 

At the Shh-locus different mechanisms of enhancer-mediated gene activation might be present 

for the identical promoter in the same TAD. Both mechanisms co-exist but cannot compensate 

for each other or be exchanged, emphasizing the diversity of spatiotemporal gene regulation. An 

interesting experiment would be the relocation of the SBE2 enhancer to the ZRS-wildtype position 

to assess whether this activation mechanism functions in a position-independent manner. 

 

6.2.4 Chromatin topology affects enhancer function at the Shh-locus 

There were no significant differences in Shh expression levels between the IntraTAD2 and 3 

alleles. Yet both were significantly decreased compared to wildtype. Despite the general activity 

loss, no significant differences in enhancer functionality relating to chromatin features or distance 

to target promoter between both individual relocation sites were obvious, hinting towards a more 

universal origin of the decreased expression.  

A possible explanation of the decreased transcriptional output upon repositioning is the presence 

of a preformed complex. At its endogenous site, the ZRS is located in a tissue-invariant loop with 

the Shh promoter (Paliou et al., 2019; Williamson et al., 2016, 2019) The stable topology is 

maintained by two pairs of convergently oriented CTCF binding sites flanking the Shh promoter 
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and the ZRS. By stalling of cohesin complexes, the enhancer and the promoter are kept in place 

for immediate transcriptional activation. Repositioning the ZRS away from those CTCF-sites could 

result in less frequent contacts with the Shh promoter. Moreover, the proximity of the ZRS 

towards Shh has been shown to be critical for the gene’s activation. Within the preformed 

structure the promoter and enhancer stay already invariantly in close vicinity ranging from 200-

400nm distance. Upon transcriptional initiation in cells specific to the ZPA both elements are 

compacted further to less than 200 nm (Williamson et al., 2016). As a result of repositioning the 

ZRS elsewhere in the TAD, the contact frequency with the Shh promoter might be decreased, 

possibly originating from “looping” away the enhancer (Figure 6-1 A and B). However, the ZRS is 

still able to find its cognate promoter, although to a lesser degree.  

 

 
Figure 6-1 Decreased ZRS activity of IntraTAD positions as a consequence of a preformed chromatin topology 

.(A) In the wildtype position the ZRS is in close proximity to the Shh promoter, kept in place by cohesin complexes 

stalled at the two pairs of flanking CTCF binding sites. (B) At the IntraTAD3 (C) Destruction of the preformed 

complex allows cohesin complexes to further extrude the DNA fiber and reels in the ZRS more frequently. (D) Knock 

in of i4-CTCF binding site stabilizes contact frequency by chromatin loop formation with the convergently 

orientated ones flanking the Shh promoter. Green ovals: CTCF binding site; Purple rings: cohesin complex; orange 

box: ZRS. 

Despite of operating to a lesser degree, the regulation at the Shh-locus still works after ZRS-

repositioning to distinct locations within the domain, possibly mediated through an intrinsic 

promoter-enhancer affinity. The expression-loss of 60% at the IntraTAD2 and 3 positions cannot 

be explained by the mere distance to target promoter, nor properties of the surrounding 

chromatin. Interestingly, removal of the preformed complex results in a similar decrease of 

transcriptional output (50%) (Paliou et al., 2019). The preset chromatin topology has been 

hypothesized to confer robust and precise gene expression (Paliou et al., 2019). Therefore, the 

effect of removing the CTCF-mediated invariant proximity compared to the relocation in a CTCF-
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depleted area within the same domain here, might have similar consequences (50% versus 40% 

expression).  

In this scenario, breaking up the preset topology should partially re-establish prior lost contact 

frequencies. Deletion of the CTCF sites flanking the ZRS in wildtype (referred to as i4 and i5) 

should be able to rescue the loss of expression, as there is no “looping” out of the ZRS at the 

new positions (Fig. 6-1C). However, loss of the whole complex could have an even stronger effect 

on Shh regulation. Another strategy of testing this hypothesis would be the targeted knock in of 

the i4-CTCF bindings site telomeric of the integration site, simultaneously avoiding secondary 

effects (Fig. 6-1 D). By this, new chromatin loops could be formed with the convergently oriented 

binding sites flanking the Shh promoter and by this re-establish the effect of a preformed complex.  

Preformed complexes for enhancer loops have been described to remain stable during 

development (Ghavi-Helm et al., 2014). Perturbations of such structures by disruption of the 

architectural loops themselves (Paliou et al., 2019) or, as here, taking out an enhancer from its 

endogenous position, might affect the cis-integrity of regulatory elements. Relocated from its 

evolutionary optimized setting for enhancer functionality, the residual activity is sufficient to control 

Shh expression in the limb bud, yet remains impeded. 

 
6.2.5 ZRS requires long-range regulation for Shh activation 

Proximity of the ZRS to the Shh promoter has been described as crucial for ZRS functionality 

(Williamson et al., 2016). Remarkably, the enhancer displayed the most significant functionality-

loss at the proximal position. To our surprise, IntraTAD1 positioned 10 kb telomeric, and closest 

to the Shh promoter, displayed the most severe reduction of expression concomitant with a loss-

of-function phenotype. This effect of decreased ZRS activity might be due to insulation of the Shh 

promoter and the enhancer by a CTCF binding site telomeric to the gene body. Here, the CTCF 

sites would not facilitate, but insulate enhancer-promoter contacts. Williamson et al. showed that 

deletion of this 5’ CTCF binding site (CTCF2) in mESC caused a general weakening of the 

centromere Shh-TAD boundary. As a consequence, the deletion resulted in decreased 

interactions of the Shh promoter with the rest of its TAD. Despite subtle changes, FISH revealed 

that the proximity of the ZRS to the promoter was comparable to wildtype and no significant 

changes in Shh expression were detectable (Williamson et al., 2019). These results underline the 

strength of the Shh-flanking CTCF site in forming a TAD boundary and its importance for intra-

TAD interactions.  

In this light, our results suggest alternative long- and short-range effects of this promoter-proximal 

CTCF site. In the scenario of the IntraTAD1 allele it rather seems that the 5’ CTCF binding site 

blocks the interaction of the ZRS at the new position with the Shh promoter. Here, CTCF does 

not facilitate enhancer-promoter interactions but presumably insulates by preventing the ZRS 



DISCUSSION 
 

 70 

from contacting the Shh promoter (Burgess-Beusse et al., 2002). Even though the insulator 

function led to the discovery of CTCF (Bell et al., 1999), only a minority of CTCF bindings sites is 

known to act as insulators, yet, several examples exist in the literature (Braccioli and Wit, 2019). 

Rescue of Shh expression, even partially, by a deletion of the promoter-flanking CTCF binding 

site in the IntraTAD1 allele would support our hypothesis. 

Furthermore, the ZRS is inserted into a Shh-floor plate enhancer 2 (SFPE2), which it disrupts. 

SFPE2 is inactive in the developing limb bud. Although in wildtype E10.5 limb buds SFPE2 lacks 

repressive histone modifications at the IntraTAD1 integration site, we cannot exclude spreading 

of another kind of repression like DNA-methylation by the surrounding inactive enhancer, thus 

preventing ZRS-function (Smith and Meissner, 2013). It is therefore compelling to test if a slightly 

shifted integration outside the SFPE2-enhancer would result in a similar phenotype. 

 
6.2.6 Enhancer activity beyond chromatin architecture 

The results demonstrate a decreased enhancer-functionality once relocated within the 

endogenous domain. This suggests that alternative mechanisms, beyond CTCF mediated 

chromatin architecture, confer enhancer functionality. One such mechanism could be the 

transcription of enhancers (Arnold et al., 2020). In Wildtype, the ZRS is situated within intron 5 of 

the housekeeping gene Lmbr1, constitutively transcribed in the majority of tissues. A possible 

explanation for the impeded activity could be the loss of active transcription at the integration site, 

as deletion of the Lmbr1 promoter led to a moderate but significant decrease of Shh expression 

in the developing limb bud at E10.5 (Paliou et al., 2019). Several examples in the literature have 

shown that active transcription of an enhancer can be crucial for its function by correlating RNA 

PolII pausing and elongation with enhancer activity (Henriques et al., 2018). Moreover, depletion 

of an elongation factor in murine B-cells disrupted the functional interaction of a super-enhancer 

and its target gene, and, thus, gene expression (Fitz et al., 2020). In general, constitutive 

transcription at housekeeping genes is thought to keep the transcriptional apparatus already in 

place and on standby. Upon activation a rapid interaction and activation of the target promoter 

could be achieved by the phase separating capacity of RNA PolII and TF bound to the according 

regulatory elements. The absence of active transcription running constitutively over the ZRS by 

enhancer-repositioning could be less favorable to form such active hubs (Furlong and Levine, 

2018), affecting gene regulation. 

How the ZRS activates the Shh promoter independent from a preformed contact remains elusive. 

The residual 40% of Shh expression upon relocation in the IntraTAD 2 and 3 could possibly be 

explained by an intrinsic enhancer affinity towards its target promoter. Specific TFs like Ets and 

HoxD, which are known to bind the ZRS, have been implicated in bridging of contacts and, in 

case of the latter, formation of phase separating condensates, mechanism which support 
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enhancer-promoter interaction (Basu et al., 2020; Lettice et al., 2012, 2017). A loss of the motifs 

during evolution is responsible for the secondary deprivation of limbs in snakes. However, 

reintegration of a single Ets-motif is capable of rescue and development of limbs, underlining the 

relevance of these motifs for proper enhancer function beyond chromatin architecture (Kvon et 

al., 2016; Leal and Cohn, 2016). Thus, TF-mediated activation of a target gene by an enhancer 

in a developmental context seems to be an important layer of regulation despite CTCF-mediated 

chromatin architecture. Furthermore, as described previously, TFs have been implicated in the 

formation of transcription-driving condensates by liquid-liquid-phase separation (Hnisz et al., 

2017). It is possible that a high concentration of the transcription apparatus is still nucleated by 

TF bound to the ZRS, thus leading to gene activation.  

The highly conserved location of ZRS throughout species within the constitutively transcribed 

housekeeping gene Lmbr1 assumes a high relevance of the position in ensuring complete 

enhancer function. An intriguing experiment would be a targeted integration of the Lmbr1-

promoter next to the IntraTAD relocation sites to then asses a possible rescue of enhancer activity 

and thus transcriptional output. 

 
6.2.7 Selectivity of enhancer-driven promoter activation 

The relocation of the ZRS in the neighboring TADs of En2 (ExtraTAD1) and Nom1/Mnx1 

(ExtraTAD2) led to a loss of Shh expression. In addition, we could observe ectopic expression of 

En2 and Cnpy1 in the developing limb bud but not of Mnx1 nor Nom1. Ectopic gene activation 

has been described in several studies linking the process of enhancer hijacking with gene 

misexpression. Notably, not all genes react similarly to structural variants (Kraft et al., 2019). This 

is in contrast to the generally accepted idea that enhancers act promiscuously, meaning that they 

will activate any promoter in their vicinity. Instead, it appears to be a kind of enhancer-promoter 

specificity. We could observe a similar promoter selectivity at the Sox9/Kcnj2-locus. In the InvC-

allele the expression of the gene directly neighboring Kcnj2, Kcnj16, was not affected by the 

reoriented Sox9-enhancers. 

In a previous study, we could show that polycomb repressed genes, marked by high levels of 

H3K27me3, are generally more responsive to ectopic activation (Kraft et al., 2019). The histone 

modifications for all four genes (En2, Cnpy1, Nom1 and Mnx1) at the two ExtraTAD positions, 

however, cannot explain the selectivity of the ZRS towards different non-target promoter. 

Numerous reports show various mechanisms including promoter type (Zabidi et al., 2015), 

proximity to target promoter, chromatin accessibility and histone modification, which influence 

the transcriptional response of promoters to enhancers (Kraft et al., 2019); yet, the specificity 

which restricts the response of a promoter to a specific enhancer remains abstract. Several 

studies intend to answer this open question by high-throughput genome-wide assays, aiming for 
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a better understanding of gene regulation and promoter-enhancer-specificity (Trauernicht et al., 

2019). Repositioning of promoters usually located in LADs identified distinct classes of promoters 

by displaying strong variation in reporter expression depending on the integration site. In this 

context, the sensitivity to a repressive environment and the ability to overcome this determines 

promoter strength (Leemans et al., 2019), underlining the importance of genomic position for 

individual promoter function. However, this is not including the required TF composition of a cell 

type or lack of additional enhancers crucial for promoter activation. 

Apart from chromatin context, the intrinsic affinity of core promoters to specific co-activators can 

dictate transcriptional output, as tested by high-throughput promoter activity assays in drosophila 

S2 and human HCT116 cells (Haberle et al., 2019). The diversity of core promoters provides an 

explanation as to why specific promoters reply to a certain set of enhancers. 

How these compatibilities transfer to developmental gene regulation in vivo, however, needs to 

be explored and opens an exciting new field of research. 

 

6.3 Conclusion and Outlook 

My analysis revealed that enhancer function is restricted via TAD-boundaries and its position 

within a TAD highly impacts the precision and robustness of enhancer-driven gene activation: The 

results show that (i) the enhancer needs to be located within its TAD and (ii) that the surrounding 

chromatin structure and CTCF scaffold might modify enhancer activity. Finally, (iii) by analyzing 

the activation of the ZRS-neighboring genes upon relocation outside the Shh-TAD, enhancers do 

not act promiscuously but show some sort of selectivity towards non-target promoters. 

However, in combination with the results at the Sox9/Kcnj2-locus, a highly complex picture of 

gene regulation emerges. Removing the ZRS from its chromatin context showed more drastic 

effects on the regulation of the cognate gene compared to the SVs at the Sox9/Kcnj2-locus (see 

above) (Despang et al., 2019). Inversion of the regulatory substructure and, by this, changing 

orientation and distance of enhancers to the Sox9 promoter in the Inv-Intra mutant had no effect 

on Sox9 expression, despite the formation of new CTCF-mediated chromatin loops (Despang et 

al., 2019). In contrast, it has been shown that the dynamic chromatin configuration during limb 

development at the Pitx1-locus in mice determines its hindlimb-specific regulation by a pan-

enhancer (Kragesteen et al., 2018). Furthermore, inversions of a sub-domain at the HoxD cluster 

including regulatory elements demonstrated the importance of chromatin topology for temporal 

expression over spatial distribution of the transcripts (Rodríguez-Carballo et al., 2020). 

It is therefore possible that the impact of CTCF and the CTCF-mediated structure of a locus have 

differing effects on transcriptional control and require individual analysis. Our results hint towards 

distinct roles of CTCF at the Shh-locus. With our series of IntraTAD integrations we could 

demonstrate: (i) CTCF as a mediator of proximity to confer evolutionary optimized robustness of 
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expression compared to (ii) CTCFs function as an insulator at the IntraTAD1 site, blocking 

promoter-enhancer interactions. At other loci, however, the influence might be less critical on 

transcriptional control. 
 
The results achieved by this study mirror the currently conflicting results and discussion in the 

field about the influence of TADs on gene regulation. The role of CTCF in TAD formation and the 

generation of TAD boundaries seems clear, where the influence of TAD substructures on 

enhancer function is far less understood. While we found moderate effect of a lost insulation and 

depletion of the CTCF-mediated scaffold within the domain at the Sox9/Kcnj2-locus, 

repositioning the ZRS from its loop-anchored topology results in sufficient but decreased 

expression. 

However, the results are not contradictory to the largely accepted idea of TADs as an evolutionary 

optimized microenvironments facilitating promoter-enhancer contacts to confer robustness and 

precision to developmental gene regulation. Rather, they demonstrate different effects at different 

loci. 

Moreover, our analysis at the Shh-locus demonstrated that enhancers are not functioning at any 

integration site equally compared to their endogenous position. In addition, at positions outside 

the Shh-TAD the ZRS failed to promiscuously activate any non-target gene in its vicinity, 

questioning the common paradigm of enhancer function. However, further studies need to verify 

the obtained results at other loci, where the impact of genomic position might be less critical on 

transcriptional output.
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7. ABSTRACT 

Precise spatiotemporal gene expression during embryonic developmental is controlled by cis-

regulatory elements (CREs) such as enhancers and promoters. Their physical chromatin proximity 

is correlated with active transcription and thought to be restricted to topologically associated 

domains (TADs) that help establish interactions between CREs and limit inappropriate contacts. 

Accordingly, TADs frequently overlap with gene regulatory landscapes, in which are contained 

diverse enhancers that transmit their activity across the domain towards their target promoter. 

Large structural variants reorganizing TADs were shown to cause gene misexpression and 

disease thereby linking gene regulation to chromatin structure. Recently, several studies revealed 

controversial results questioning the importance of TADs for transcriptional control. Acute 

depletion of CTCF and other architectural proteins in vitro led to loss of TAD structures with 

surprisingly modest effects on gene expression. However, the cytotoxicity of such depletion 

assays hindered analysis of more complex gene regulatory scenarios and their effect during 

development. This study specifically addresses the connection between TADs and developmental 

gene regulation through two projects using the murine limb as a model system. 

First, we took advantage of the Sox9/Kcnj2-locus that is subdivided into two adjacent TADs with 

distinct expression patterns of Sox9 and Kcnj2. The systematic deletion of individual CTCF 

binding sites at the TAD boundary and within the TAD resulted in gradual fusion of the neighboring 

domains without major effects on gene expression. TAD rearrangement by TAD-spanning 

inversions and repositioning of the boundary, however, redirected the regulatory activity and 

resulted in pathogenic gene misexpression. Thus, TAD structures may not be essential for 

developmental gene regulation, yet CTCF-dependent rearrangement of TADs can lead to the 

redirection of enhancer–promoter contacts and gene misexpression.  

In the second project, we studied how enhancer position relative to its TAD influences the function 

of an individual enhancer at the Shh-locus. Therefore, we repositioned the Shh-limb enhancer 

ZRS to five alternative locations inside and outside of its TAD. As expected, the enhancer lost all 

function in the positions outside of the Shh-TAD. Interestingly, the new positions inside the TAD 

also displayed decreased enhancer activity, albeit to varying degrees. Further analysis suggests 

that CTCF likely functions in some positions as a facilitator of enhancer-promoter contacts, while 

insulating short-range contacts in others. Ultimately, the ZRS is only able to ectopically activate 

some genes if repositioned to novel TADs, displaying strong enhancer-promoter selectivity.  

In summary, the results demonstrate that TADs provide robustness and precision to gene 

regulation, guiding enhancer-promoter interaction without being essential. The findings in this 

work build a basis for future studies aiming to understand enhancer-promoter interaction and can 

help in contextualizing potential disease-causing mutations disrupting TADs.
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8. ZUSAMMENFASSUNG 

Die präzise räumliche und zeitliche Expression von Genen während der Embryonalentwicklung 

wird durch cis-regulatorische Elemente (CREs) wie Enhancern und Promotoren kontrolliert, deren 

physikalische Nähe mit aktiver Transkription korreliert wird. Dabei wird angenommen, dass diese 

Interaktionen auf topologisch assoziierende Domänen (TADs) beschränkt sind, welche helfen 

funktionale Kontakte zwischen CREs zu etablieren und inadäquate einzugrenzen. 

Dementsprechend überschneiden sich TADs häufig mit genregulatorischen Landschaften, in 

denen Enhancer-Aktivität innerhalb der gesamten Domäne in Richtung eines Zielpromoters 

übertragen wird. Es konnte gezeigt werden, dass große strukturelle Varianten TADs 

reorganisieren können, was zu einer Fehlexpression von Genen und Krankheiten führt und so 

Genregulation mit Chromatinstruktur in Verbindung bringt. Jedoch zeigten jüngere Studien 

kontroverse Ergebnisse, welche die Bedeutung von TADs für die Transkriptionskontrolle in Frage 

stellen. So führte die akute Depletion von CTCF und anderen Architekturproteinen in vitro zum 

Verlust von TAD-Strukturen, hatte aber überraschenderweise nur geringe Auswirkungen auf die 

Genexpression. Die Zytotoxizität dieser Experimente schränkt jedoch die Analyse komplexerer 

genregulatorischer Szenarien ein. Diese Studie befasst sich speziell mit dem Zusammenhang 

zwischen TADs und entwicklungsbedingter Genregulation in zwei Projekten, welche die 

Gliedmaßenentwicklung in Mäusen als Modellsystem verwenden. 

Zunächst nutzten wir den Sox9/Kcnj2-Lokus, der in zwei benachbarte TADs mit 

unterschiedlichen Expressionsmustern von Sox9 und Kcnj2 unterteilt ist. Die systematische 

Deletion einzelner CTCF-Bindungsstellen an der TAD-Grenze und innerhalb der TADs führte zu 

einer schrittweisen Fusion der benachbarten Domänen ohne größere Auswirkungen auf die 

Genexpression. Eine TAD-Umstrukturierung durch TAD-übergreifende Inversionen und eine 

Neupositionierung der TAD-Grenze lenkte jedoch die regulatorische Aktivität um und führte zu 

einer pathogenen Gen-Fehl-Expression. TAD-Strukturen scheinen also nicht essentiell für die 

entwicklungsbedingte Genregulation zu sein, jedoch kann eine CTCF-abhängige Neuanordnung 

von TADs zu einer Umlenkung der Enhancer-Promotor-Kontakte und zu Gen-Misexpression 

führen.  

Im zweiten Teil untersuchten wir den Einfluss der genomische Position eines einzelnen Enhancers 

relativ zu seiner TAD am Shh-Lokus. Dazu wurde der Shh-Gliedmaßen-Enhancer ZRS an fünf 

alternative Positionen innerhalb und außerhalb seiner TAD neu positioniert. Wie erwartet, verlor 

der Enhancer jegliche Funktion an den Positionen außerhalb der Shh-TAD. Interessanterweise 

zeigten auch die neuen Positionen innerhalb der TAD einen Verlust der Enhancer-Aktivität, wenn 

auch in unterschiedlichem Ausmaß. Die Analyse letzterer deutet darauf hin, dass CTCF 
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wahrscheinlich an einigen Positionen als Vermittler von Enhancer-Promotor-Kontakten fungiert, 

während es an anderen Positionen Kontakte mit kurzer Reichweite isoliert. Darüber hinaus 

wurden durch die ZRS nur einige Gene ektopisch aktiviert, wenn sie in benachbarte TADs 

positioniert wurde, was eine starke Enhancer-Promotor-Selektivität zeigt.  

Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass TADs Robustheit und Präzision für 

die Genregulation vermitteln, indem sie helfen Enhancer-Promotor-Interaktion zu etablieren, ohne 

dafür essentiell zu sein. Dies bildet eine Grundlage für zukünftige Studien, die darauf abzielen, 

Enhancer-Promoter-Interaktionen zu verstehen, welche helfen könnten potenziell 

krankheitsverursachende Mutationen die TADs betreffen zu interpretieren. 
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10. APPENDIX 

 

10.1 Primers 

 
Table 10-1: Primers used for cloning of targeting constructs 
Name Sequence Task 
mZRS fwd CGATgacgtcGGCCGATCCTGTCCTTACTA Amplification of ZRS 
mZRS rev CGATcgatcgTGAAAGTGGGGAAAATATCTCAC Amplification of ZRS 
IntraTAD1 cenHR 
fwd 

GATCgtcgacGCCAGGAGTGGCCATAGAAT Amplification of centromeric 
Homology region for IntraTAD1 

IntraTAD1 cenHR 
rev 

CGATgacgtcCCATTTTGTTCTCTGGGGTGA 
 

Amplification of centromeric 
Homology region for IntraTAD1 

IntraTAD1 telHR 
fwd 

CGATcgatcgCAGAGCAAAGGACTGGTAGTAAGC Amplification of telomeric 
Homology region for IntraTAD1 

IntraTAD1 telHR 
rev 

GATCgcggccgcTCTCTGGGGAAGACAGTCCA Amplification of telomeric 
Homology region for IntraTAD1 

IntraTAD1 PAM 
Mutagenesis fwd 

tccagggacccATTagcatccagaa 
 

Mutation of PAM 

IntraTAD1 PAM 
Mutagenesis rev 

ttctggatgctAATgggtccctgga 
 

Mutation of PAM 

IntraTAD2 cenHR 
fwd 

GATCgtcgacCCTGCTCCACCAATGTAAGC Amplification of centromeric 
Homology region for IntraTAD2 

IntraTAD2 cenHR 
rev 

CGATgacgtcATGGGAAATGGCGAGTGC Amplification of centromeric 
Homology region for IntraTAD2 

IntraTAD2 telHR 
fwd 

CGATcgatcgCATAATTGTCCCTGCTGCCT Amplification of telomeric 
Homology region for IntraTAD2 

IntraTAD2 telHR 
rev 

GATCgcggccgcCTACCCAACACCTGAAGGACC Amplification of telomeric 
Homology region for IntraTAD2 

IntraTAD2 PAM 
Mutagenesis fwd 

cctgtggcatcTTAgagaatcgaat 
 

Mutation of PAM 

IntraTAD2 PAM 
Mutagenesis rev 

attcgattctcTAAgatgccacagg 
 

Mutation of PAM 

IntraTAD3 cenHR 
fwd 

CGATgtcgacCCAGCAACCTCCACTGATCT 
 

Amplification of centromeric 
Homology region for IntraTAD3 

IntraTAD3 cenHR 
rev 

CGATgacgtcGAGGGCTTTAATGTGGGTGC Amplification of centromeric 
Homology region for IntraTAD3 

IntraTAD3 telHR 
fwd 

CGATcgatcgATTAAAGCCCTCCAGCGTCT 
 

Amplification of telomeric 
Homology region for IntraTAD3 

IntraTAD3 telHR 
rev 

CGATgcggccgcAAGCTGAGCCCACATTCTGT 
 

Amplification of telomeric 
Homology region for IntraTAD3 

IntraTAD3 PAM 
Mutagenesis fwd 

CTCTCCTTTCCtaTTTAACCAGGTCT Mutation of PAM 

IntraTAD3 PAM 
Mutagenesis rev 

AGACCTGGTTAAAtaGGAAAGGAGAG Mutation of PAM 
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KcBor C1 fwd gatcccgcggATTGAGAGCTGTGGGAGGTG Amplification of CTCF site 1 of the 
Sox9/Kcnj2 TAD boundary for 

pKan 
KcBor C1 rev gatcctcgagGGGGAGCACTGGATATAGCA 

 
Amplification of CTCF site 1 of the 

Sox9/Kcnj2 TAD boundary for 
pKan 

KcBor C2-C4 
Gibson fwd 

ATCCAGTGCTCCCCCACACACGTACGGGCAAATAA Amplification of CTCF sites 2-4 of 
the Sox9/Kcnj2 TAD boundary for 

pKan-C1 
KcBor C2-C4 
Gibson rev 

GACACACAGCCTCATGAAGCCCTTTATAGTCACAG 
 

Amplification of CTCF sites 2-4 of 
the Sox9/Kcnj2 TAD boundary for 

pKan-C1 
 
 
Table 10-2 Primers used for qRT-PCR. 

Gene expression analysis 
Gapdh fwd TCAAGAAGGTGGTGAAGCAG 

Gapdh rev ACCACCCTGTTGCTGTAGCC 

Shh fwd ACCCCGACATCATATTTAAGGA 

Shh rev TTAACTTGTCTTTGCACCTCTGA 

Rps90 fwd GACCAGGAGCTAAAGTTGATTGGA 

Rps90 rev TCTTGGCCAGGGTAAACTTGA 

En2 fwd TATTCTGACCGGCCTTCTTC 

En2 rev TGGTCTGAAACTCAGCCTTG 

Cnpy1 fwd* GCGAATGAACGATTACCAG 

Cnpy1 rev* AATAAGTTCGAATATCTCATCTTC 

Mnx1 fwd CATTTCATTCGGCGGTTC 

Mnx1 rev ACCCAAGCGTTTTGAGGTG 

Nom1 fwd TGGGACTCGGGGAAATAAAG 

Nom1 rev AGGAGGGATGTACTTTTCACCAC 

Sox9 fwd ACTCCCCACATTCCTCCTCC 

Sox9 rev CAGCTTGCACGTCGGTTTTG 

Kcnj2 fwd cttggttccccaatgatgtt 

Kcnj2 rev ttttatggggtggctggtta 

Copy Number Analysis 
mZRS fwd CAATGAACGCTCATGGAGTC 

mZRS rev CAGATGACTTTTCCCCTCAGTG 

KcBor KI fwd CACCCAGAATATTGCCTACAACT 

KcBor KI rev AGAACACCCAAAACAAATGAAAG 

*(Anderson et al., 2014) 
 
Table 10-3 Primers used for cloning of sgRNAs. 

Name Sequence 
Enhancer Insertions 
IntraTAD1 sgRNA fwd caccgAATAATATGTCCAGGGACCC 

IntraTAD1 sgRNA rev aaacGGGTCCCTGGACATATTATTc 

IntraTAD2 sgRNA fwd caccGCGAGTGCCATTCGATTCTC 

IntraTAD2 sgRNA rev aaacGAGAATCGAATGGCACTCGC 
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IntraTAD3 sgRNA fwd caccGGGGTAGGAGACCTGGTTAA 

IntraTAD3 sgRNA rev aaacTTAACCAGGTCTCCTACCCC 

ExtraTAD1 sgRNA fwd caccgAACATACCTTTAGCGGTCCA 

ExtraTAD1 sgRNA rev aaacTGGACCGCTAAAGGTATGTTc 

ExtraTAD2 sgRNA fwd caccgATGACCTCGTTCACGTGCCA 

ExtraTAD2 sgRNA rev aaacTGGCACGTGAACGAGGTCATc 

DZRS cen sgRNA fwd caccgCACACGGATACTAAGACGGG 

DZRS cen sgRNA rev aaacCCCGTCTTAGTATCCGTGTGc 

DZRS tel sgRNA fwd caccgCTAAGAAACCTCACTACACG 

DZRS tel sgRNA rev aaacCGTGTAGTGAGGTTTCTTAGc 

CTCF-deletion series 
DBor cen sgRNA fwd caccGATCATTTTAGGTAACGACCC 

DBor cen sgRNA rev aaacGGGTCGTTACCTAAAATGATC 

DBor tel sgRNA fwd caccGATTTAGCGTCCCCTAGCATA 

DBor tel sgRNA rev aaacTATGCTAGGGGACGCTAAATC 

DBor C1 sgRNA fwd caccgTGGATTCCAAAAGAGGGCAG 

DBor C1 sgRNA rev aaacCTGCCCTCTTTTGGAATCCAc 

DBor C2 sgRNA fwd caccgTGTAAGTGGGCATTGCCACC 

DBor C2 sgRNA rev aaacGGTGGCAATGCCCACTTACAc 

DBor C3 sgRNA fwd caccgTACTGACCTCTAGTGGTTGG 

DBor C3 sgRNA rev aaacCCAACCACTAGAGGTCAGTAc 

DBor C4 sgRNA fwd caccgAGAGTCACTGCGCCCTCTAG 

DBor C4 sgRNA rev aaacCTAGAGGGCGCAGTGACTCTC 

DKC sgRNA fwd caccgATGTGATCTCTTTCGCCCTC 

DKC sgRNA rev aaacGAGGGCGAAAGAGATCACATc 

Structural Variants 
InvC cenBP sgRNA fwd caccGATCATTTTAGGTAACGACCC 

InvC cenBP sgRNA rev aaacGGGTCGTTACCTAAAATGATC 

InvC telBP sgRNA fwd caccGAAGCAAATACGTGAGTCTAC 

InvC telBP sgRNA rev aaacGTAGACTCACGTATTTGCTTC 

InvIntra cenBP sgRNA fwd caccGATTTAGCGTCCCCTAGCATA 

InvIntra cenBP sgRNA rev aaacTATGCTAGGGGACGCTAAATC 

InvC DBor cen sgRNA fwd caccgATCCCGAAATTAAACTGCCC 

InvC DBor cen sgRNA rev aaacGGGCAGTTTAATTTCGGGATc 

InvC DBor tel sgRNA fwd caccgCTTCTTAACAAAAACCGAAC 

InvC DBor tel sgRNA rev aaacGTTCGGTTTTTGTTAAGAAGc 

KcBorKI sgRNA fwd caccgTTCTTAACAGCCCTGTTGCA 

KcBorKI sgRNA rev aaacTGCAACAGGGCTGTTAAGAAc 

 
 
Table 10-4 Primers used for genotyping of mESC and transgenic mouse lines. 

Name Sequence Task 
Enhancer Insertions 

mZRS rev CAGATGACTTTTCCCCTCAGTG Genotyping ZRS insertions 
mZRS fwd CAATGAACGCTCATGGAGTC Genotyping ZRS insertions 
IntraTAD1 GT cen fwd CCAATCACCCAGTTAAGTTTCA Genotyping of centromeric 

ZRS insertion site at IntraTAD1 
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IntraTAD1 GT tel rev GGGGCAAGAAAGTTCTGCTA Genotyping of telomeric ZRS 
insertion site at IntraTAD1 

IntraTAD1 BP fwd GCTTTGCTGACTCCCTTGAT Genotyping of IntraTAD1 
insertion site 

IntraTAD1 BP rev TTTGCTCTACACCCCAAACC 
 

Genotyping of IntraTAD1 
insertion site 

IntraTAD2 GT cen fwd GCTCATGATGACCCAAAGAGTC Genotyping of centromeric 
ZRS insertion site at IntraTAD2 

IntraTAD2 GT tel rev TGGCTGTAATGAGCAAACCAA Genotyping of telomeric ZRS 
insertion site at IntraTAD2 

IntraTAD2 BP fwd GCTTTGAATTTCATCCCTTCC Genotyping of IntraTAD2 
insertion site 

IntraTAD2 BP rev CTGCACCTCATCTGTGAAGCA 
 

Genotyping of IntraTAD2 
insertion site 

IntraTAD3 GT cen fwd GAAGTGTGGCAGCTTGTCCT Genotyping of centromeric 
ZRS insertion site at IntraTAD3 

IntraTAD3 GT tel rev TCTGGCTGGGGTTTATTTTG Genotyping of telomeric ZRS 
insertion site at IntraTAD3 

IntraTAD3 BP fwd TCCAAATTGCAACCACCTAAACA Genotyping of IntraTAD3 
insertion site 

IntraTAD3 BP rev GGGCACGATTTGCTCTCTTCA Genotyping of IntraTAD3 
insertion site 

ExtraTAD1 GT cen fwd CACTTCACTGACTGAGCCATCTC Genotyping of centromeric 
ZRS insertion site at ExtraTAD1 

ExtraTAD1 GT tel rev CTCAGCTCTGGGCATCCTGT Genotyping of telomeric ZRS 
insertion site at ExtraTAD1 

ExtraTAD1 BP fwd GTTATGGTGCCCGTGAGACT Genotyping of ExtraTAD1 
insertion site 

ExtraTAD1 BP rev CCATTGGTTTGACCGTTTCT Genotyping of ExtraTAD1 
insertion site 

ExtraTAD2 GT cen fwd GCAGCACCATTCTTCACTCTG 
 

Genotyping of centromeric 
ZRS insertion site at ExtraTAD2 

ExtraTAD2 GT tel rev GACCAAAGCCTACTCTGAGATG 
 

Genotyping of telomeric ZRS 
insertion site at ExtraTAD2 

ExtraTAD2 BP fwd CCATAGTCAATAGCACATGAGTGA Genotyping of ExtraTAD2 
insertion site 

ExtraTAD2 BP rev AGGATGAAACCAGGCAGATG Genotyping of ExtraTAD2 
insertion site 

DZRS cenBP fwd TTGGGAGCATGGTAATTAAAAG  Genotyping of ZRS deletion 
DZRS cenBP rev CCACCAACAAAACCAGACAG Genotyping of ZRS deletion 
DZRS tel BP fwd GGCTAATGAGCATGTTGATCG Genotyping of ZRS deletion 
DZRS tel BP rev ATTGCTCTGACTTGGGAAGC Genotyping of ZRS deletion 

CTCF-deletion series 
DBor C1 fwd GACACTTGTCTAACCACCTATCCTC Genotyping of C1-CTCF site 

deletion in the Sox9-TAD 
DBor C1 rev TCGCCACATAAAATTCTCTTATT Genotyping of C1-CTCF site 

deletion in the Sox9-TAD 
DBor C2 fwd ATGCCTTTGGCTATGTTTGC Genotyping of C2-CTCF site 

deletion in the Sox9-TAD 
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DBor C2 rev TTCACACCGTCAGGTGATGT Genotyping of C2-CTCF site 
deletion in the Sox9-TAD 

DBor C3 fwd ttggagggaggagagggaag Genotyping of C3-CTCF site 
deletion in the Sox9-TAD 

DBor C3 rev agatggtgtagagcagaagttgt Genotyping of C3-CTCF site 
deletion in the Sox9-TAD 

DBor C4 fwd TGGGATACAAGGGCCAGAGA Genotyping of C4-CTCF site 
deletion in the Sox9-TAD 

DBor C4 rev TCCAGGTTACCCCTCCACAA Genotyping of C4-CTCF site 
deletion in the Sox9-TAD 

DBor KC fwd CATGCTGTGTTTAGCATGGAA Genotyping of Kc-CTCF site 
deletion in the Kcnj2-TAD 

DBor KC rev AACTTCCTGGCCCTGGTG Genotyping of Kc-CTCF site 
deletion in the Kcnj2-TAD 

Structural Variants 
InvC cenBP fwd GACCCTGGGCAAGTGAATAA Genotyping centromeric 

breakpoint of InvC 
InvC cenBP rev ACAATGGATGGTGCAGAGTTAGG Genotyping centromeric 

breakpoint of InvC 
InvC telBP fwd TGGGCACAGGCAGTTATGTA Genotyping telomeric 

breakpoint of InvC/InvIntra 
InvC telBP rev GGCAGACACTGTTTTTCAAGAGG Genotyping telomeric 

breakpoint of InvC/InvIntra 
InvIntra cenBP fwd tggagaagccagtcttttgg Genotyping centromeric 

breakpoint InvIntra 
InvIntra cenBP rev ACAATGGATGGTGCAGAGTTAGG Genotyping centromeric 

breakpoint InvIntra 
InvC DBor cen fwd TTGTGGCAGGGAGAAGACAT Genotyping boundary deletion 
InvC DBor tel rev TGGAAATGTAGTGGGAGGGA Genotyping boundary deletion 
KcBorKI cen fwd CTGGGTTTATATGCTGCTGGAGAG Genotyping boundary insertion 
KcBorKI tel rev GACAGCACCTCCCACAGCTC Genotyping boundary insertion 

 
 
Table 10-5 Primers used for cloning of WISH probes. 

Name Sequence 
Shh fwd  

Shh rev  

En2 fwd* AAAGGGGACTGTTTAGGGTTTC 

En2 rev* GAAGATGATTCCAACTCGCTCT 

Mnx1 fwd GACGAGGATGATGAAGAAGAGG 

Mnx1 rev GCCACTCCTAGAAAGGGTAGGT 

Sox9 fwd CGGGCGAGCACTCTGG 

Sox9 rev TGGGGCTCAGCTGCTCC 

Kcnj2 fwd ATATGACTGGCTGATTCCGTCT 

Kcnj2 rev CTCAACACTGACGTCTTAACGTT 

*from Eurexpress (http://www.eurexpress.org/ee/) 
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10.2 Plasmid maps 
 

 
Figure 10-1 pSpCas(BB)-2A-Puro (px459) v2.0 vector map 
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Figure 10-2 pKan Backbone for cloning of targeting constructs 

 
Figure 10-3 pTA-GFP vector map utilized for subcloning of fragments and WISH probes. 
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Figure 10-4 pBSII-Sox9-KcBor-KnockIn. 

 
10.3 Synthetic DNA sequences 

 
10.3.1 ExtraTAD1 telHR 

 
TGCCTTACCTCTTTGCACCTctagtggggctcacacccagtcccaggaaccctttctagaagccttttagcctcc
catttcttgctgctttcccctcattgtgcctactcttgcccccctccttctccagccttagatggagtgtctcca
ttcccttctctccttttgtttccacagcgatctctacactgtttgctcacttaaagcaatctctgtctttcacct
tagccattctggccactgcacagagcccacagccatgtttccgtgagtgccagatgcctgaagttagccatggca
accataggcaaggaagggggctcagcctctgcctcagcttccctctgtagggaagggcaacaaggagcggcttgg
ggctcccaggagacaaaggaagaatatttcagcgaccaaactgagtccaggtactgagactgtaaagctggacag
acccaattggagctagcagtgtgggtaacacagatgccagaaactgatgtctgaatgaaacagttagcttaatcc
tgggcatatgggaaagtgctggcctctgcccatgggtgtaacttagcctttctgattagactgctgcccaggcct
tctctgcactgatgtcatagccttcccctaccctgcaactgctcttctgagcctcactgtccccaccgagcatgc
aggcaaagggggacagtccagcactgattcctgtgagagcagatgcagctacttccagagcctccctttctcttt
ggccagtggtatttcccctgttaaagtcacactcggcacagaagatgcagccatgcatgcaggcctagcagccat
ccaacactggctcttttcagggttctgcacagcatccatgcacagcttgctcctccttgaggacttcttaaccgt
aagtactgacagtggtgtcttagcagagagtgggaaaggggccctgagcttttaactccacatccccacagattc
tgcctccaccccactccatctgggccctcaatctctcaaccagccaggactgtggctggaaaaacctgctcatac
agagccctgaacaccaaatgccattcttgctcattgccagggtgcccagtgccccatgctgttatccaagcaaat
aaaaaggggtttctggtcacagcctctccctacactgagaagcaggacatagccaaagggccctgctctgtgtca
tgtttccaaattcagccaccatgctttgtcccagctcttccctcccaggatcctgctgtgactgcctctttctca
ccctccttccatctgctactatggtccccagaaacaggcctctgtcctaacccagcacagcctgtggctctggat
gtcacccaaagaagacattctccattacctttggtcatctggtattccagtccaaatgactctccttaagtgcat
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ggcgccctctcctcaactcacagccatttgtacaatgcagaccctcaccatggtctcaggagcttgccgggacag
aggagggtccccaaactctgccataacgatgtcgtaaggtccaggtccctggtgagaagatcccaaacaggactg
aatacacttagaatctcagagaagttccagtcagttgctacacccctgcatgctttgcttaagtacaagaattcc
ttaggtccctctggagactgggccctgcttccacactagtggaacagagcagaggcagactccaccccaaggagc
tgacacagagaaaccacaaggctggtgttatggtgcccgtgagactccctacccagaccaaggaactgacctgag
gctttggggctcttattaacacagaccatagccaggatccttctcaggtctgtttggcctggttctggaggggaa
gcagcccaatacctctctgctagagtctgagaaccagagatggtgcagagctaggGAGTGGATAAGGGTTATCAG
AAGG 
 

10.3.2 ExtraTAD2  

 
5‘CTCTCCCACAACCTTGGAGCTGTCTACACTCACCATATGGCAGCTTGCTTCCTCTCTCTCTTGCCTACCATGGCTAACTGG
GCCTACCATGGTTAACTAGGTCAGGATGGACCCCAAGGCACCCAACTTCAAGCTTCCAGAATTTCACCAGCCAGGGAATGTCT
CACAGAGCCTTAGTCAAGGATTCCAGAGAATGGGTGGAAAGGAAGCGTATGGCAGGAACTATACAAAGAGACATTTCACAAAG
TAGTGAGCCATGGGTCAGAGGATAACAAGACAGAATACAGAACTCATCTGCTGGTGGCATCTGGTAAGTCAGTCTAGGAGCTG
TGGATTCCTAGGTGTGCCAGCTCCACCCCACCCTCCAGGTTCTCCAGATCACTAAGGGCCCCAGGTGTGATGAGAGGTGCAAG
CTTGGATACCTGTATGAGCACAGCTGGAAGGTGGGGCAGACATGCTCACTGACCATTGCTCCACCTCAGACTAAGGTCAGGGA
TACCCAGAGTTCTATGTCCTAAATGTACTATGGAGCCGATCTGTGAGCGTATGACGTCGGCCGATCCTGTCCTTACTATTTCT
GGAAAGAAACCAGTGCTCCCTAGTGGGGGAGAGCAGAGAGTTCTGATTAATACATGACTACATCTTTTTCTTGCAGGTGTTGG
GAGAATCAAATTAACACATAGCAACAGTTAGTGAGATATGACTTCATTTTCTGTAATAAATGCCAAGATCAAAACATGCCCAA
GTCAAATTTCCTTGCAAGGTTCCCAGCAGGAGCCTTCCTCTTGCCTGTGATTTCCTTTCACCCAGCAGAACCAGACTGAGTTT
GCGCATTTGCCACTAACACTAAGCAGCACTTCCTGAATCGCTCATTTCCAACAATTTATGGATCATCAGTGGCAAAAAAAACA
AGCAAAAATAATGAAAGAATCCAATGAACGCTCATGGAGTCCCAGGCTGGACTTCCTACTCTCTTCTCTTTAAGATGGAGGCC
TGAGACAAATTAGCCACTGAGGGGAAAAGTCATCTGGTCATAAAATACAGTACAAGGTCACTTTTATGTAAGTTTGCCAAAAG
CGACATAAACCAGGACAATCTCAAACTGTGACACAGGATAGAAACATATTAAAACGATCTTAGTTCCTCCTCTATTGTGCTGT
CATGTTGCTTGGCTTTATGGACAGCCTGAGCCCAGCAAAGTGCTTCGCCTCCACCTGGTCAGTGCAACTAATTAAGAGAGGAA
GTGACCTCAGATTTTGTGCATTTTACTTTTATTATGAAAGTACTTTGTTTGAAGTTACAGGAGCTAACCTCTTAATCCTATAG
ATCATGTGTGAGGTTCTGGACACTCTAGGATGGCTGGATGGTTTGGATAATTGGTCAGGATGTTGCTGTCATTATGTTAAGTT
TTATGCCAGGACTTCAAATCAAAGATAGGCATTAAAGTAAAGGGCAATATAAATCTGCTACCAGAAAAAGTCCTGGGCTTTAT
GAATTAATCTGTCGTCATATTTACATTACACTTACAAAACAATCATATGGTGAGATATTTTCCCCACTTTCACGATCGGCTGC
CTGCTGCTCTCTCACACCCCTGCAGCTCTTGTGAAGTTGGCGGTCCGTTTTCCAACACAGCAGCCTGACTGTTAGCACTTCCC
AAGATTATCCTACAAGTCAGCCCTGAGGCCAGACGTGACTTCCAGCGTCCCCTGCAGCAACTTTCTTTTGCTGAAATCACATG
CGCTCCTGAAGAGATGAGATGGTAAGACTTGGACTCTCAGGGTGATGTGGCCTCTGCTTAGCAGCCACATTCCCTTGGAGGTT
GCTGGAATGATCTCTGTTTTGTTCTCTGGAAAACTCTGGTTTTCCTCCACTGGCTGCATCACAGTGTAGCAATGGATTAGGAA
AGTGCAAAGTGGGTAAGTATATAGCCACCTAGCATCCCATTCACAAAGAGCATCACTGCAGGAGGCCAGTGGCAGTACCTTCC
CAGGGCAGCACCCTATGACTTGATGACTTCCCACAAGGCCTTCCTTTTAAATGCTTTACAGGCCCCACACGGCCATCCTGGGG
CCCAGCTCCCAACACAAACCTTGGAAGCAAACCACACCACTGCAGTAATGGACACTGCTCAGAATTTGGAGGCTAAGAAGAGG
GCATGTGGAGAAAGGCTAGTTTGGTGTAAGGCACACTGCATTTTCTCAGACCTGAGAGATCTGTGGTGGTCAGGACCAGGCAG
ACATCACCACTCTACCTCTGGAAGGAGCCTGTGGACTTCCAGCATCTAGGATCCCTGGAGAAGAATAAAGTCAGGAGGAAAGA
GTGCTATGAGTGAACTTCTGGACAGCTAAACATAGACCACAGTTGTCCAATCAAGTGAGCCACATGCTGGGAGGTCAGATTCC
GGGATGGGAGGATTTGGCTATTGCTCCCCAGATCCTCCTTAGCACCCTGCCCAGAAAAAAACAAAACATGTCTGTTGGAATGC
TTGGGCTATGAGTCCATGTGACCACAGAGGGATTAAAGATCCATGTGAAGGTAGCCCTGACAGGCAGGGGTACTTGGCCTTCC
CTCCCCTTTATGCCTTGTGTCATGGGTTACAGCACAGTGATAGTAGGGACTTGGCTGTTTGGAGGTAAAGCTCAAGAGAAGGG
TACATTTATCTTGAGTAGAGCAGAATAATAGTGAAATATTTATGTTTGCATGAGATGGTCAAGGGTGACATTGGGTCCAGTGT
GACAAGGTCCAGGTTGAAGGGTGATCTCAGGGCTGTGGCTCTTGTACACGCAAAAGACAACCGTATAGCATGTGCCCCACTGG
AAGGCAACTTTGCCCATGCTGAGCAGCTGTGACTTTGGACAAGTCCAGAGAAGGACATGGCAGCTGCCAACCTTCCCTGGGTC
CCCAGCTCATGTTTGCAAC-3‘ 
 

10.3.3 IntraTAD1 
 
GTTATTAATGAGAGCTCATGGCGCGCCATGACTAGTATCGGAAATGTGGCCGAATTCTTAGCTTAGTCTCCGCTTTAGGGGCC
CAGGGAGAGCCATGGTTCATTCCTTTTCTCTGCCTCGGAAGGTGGGACCTCAAGTGAGCTGTGCACTAATTTTGAACTTAATT
CTCCTAACCTAAGACTTGAACTTCCAGGAGGGCCCAGTGTTCAGGTGCTGTCCAGCACTCACTCAAAGTCATTTCCTTCCCCA
CTAAGGACTAACATGGACTGACATTCTGAGAGGGGGCTGGCTGTTCCTACCAGCAGCCTGTCCACAGCAAGGGGAGACTCCTC
ATAGCCTGTTCCCCAGAGAGTGCCTTGGTGCCATTTTTCCACAGATGGGAGGGCTGAGAAGCCTGGATGGTGTCTCACTGGGG
GAGGGCAGGATGCCAAGAGAGACCCAAAGGTATGAGAAGGAGCCAAACTCCACTTCTCCCCTGGCCTTTTCAGTGTGAGGTGG
CTTGCCCCAAAGTACACAGACCCTCAGATGAATCCAGCTTTCTGTTTGAGTAGCACCCAGACAAAGCCTGCCCTCGGGGATGC
TCCTCTGCTCCCTCCCACCATGGTAACTCTGGCATTCACTGGACCATGGGAGCAGGttAAGTATGCGTGTGATTGTCTCGATT
CGGCCGATCCTGTCCTTACTAtttctggaaagaaaccagtgctccctagtgggggagagcagagagttctgattaatacatga
ctacatctttttcttgcaggtgttgggagaatcaaattaacacatagcaacagttagtgagatatgacttcattttctgtaat
aaatgccaagatcaaaacatgcccaagtcaaatttccttgcaaggttcccagcaggagccttcctcttgcctgtgatttcctt
tcacccagcagaaccagactgagtttgcgcatttgccactaacactaagcagcacttcctgaatcgctcatttccaacaattt
atggatcatcagtggcaaaaaaaacaagcaaaaataatgaaagaatccaatgaacgctcatggagtcccaggctggacttcct
actctcttctctttaagatggaggcctgagacaaattagccactgaggggaaaagtcatctggtcataaaatacagtacaagg
tcacttttatgtaagtttgccaaaagcgacataaaccaggacaatctcaaactgtgacacaggatagaaacatattaaaacga
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tcttagttcctcctctattgtgctgtcatgttgcttggctttatggacagcctgagcccagcaaagtgcttcgcctccacctg
gtcagtgcaactaattaagagaggaagtgacctcagattttgtgcattttacttttattatgaaagtactttgtttgaagtta
caggagctaacctcttaatcctatagatcatgtgtgaggttctggacactctaggatggctggatggtttggataattggtca
ggatgttgctgtcattatgttaagttttatgccaggacttcaaatcaaagataggcattaaagtaaagggcaatataaatctg
ctaccagaaaaagtcctgggctttatgaattaatctgtcgtcatatttacattacacttacaaaacaatcatatgGTGAGATA
TTTTCCCCACTTTCATCTTGTTTCTTCACATTGGCAGACAGTGTTTGAATGTTGTGTACATGTTTTTCTTTCTCATCCTGACA
TATTTATACCCTAGTTTTGTTTTGTTTTATTTGGCCCGGTGGAGAAGGGATGTGTGTGGGAGGTGACAGAGTGACAGGGACAC
CCTTTGAATTAGATTTGTTGTGAATGCCCATCTAAGGATCTTAGAATTTGATCACGGAAGGAAGGAACTTGGAAGCATTCTTA
AAACTGCGTGCCAATGTAATTGCACCACATTCTGATCCAGCTATTAATGAATCAAATGAAGCAGGTATAAAGGCTTCACATAC
GCAGGCAACAGTTCCATAAAGGAGGAAGTAAAACACGTAATTAGGCAAATCAAATAAGGCACGGAAACAGCTTTCAAATATTT
AGTCACATGCCATTTCCCATTAGTTTACTGTGTGCTTAAATGAGCCTGTGGTTTTATGGCCTGGTTAAACGAGAGGCAACTGC
AGACACATGGTTTTTAAAGGTTGCTTCTTCACACCTCAGGGTGTTGAGCAGGGCCAGTTATACCTAATAGAAGGGGAGAACAG
GAATAGGACTTCCCAAAGATGGCCTGGAGATTGCCAGGGTCACATGAACATCAGTTCATGAGGCTGCAGCTAGAGGGGTCTCT
GGGGGGTACACCCCCATCCCATTTCCACAAGGTGGATGGTCTTTTGAACAATTACAGAACTTTTGTTCAAATCTGCTGCAATG
TGGCAACTATTGGTCAAGCCATTGGTCGCCTTTCTTTGTATAAATAATCAATTCTAATCAGTAATTGCATCTGGGCAACAGCT
CAACTCTGCTGTCATCTTTTGGCTTCCAGCACCGTGACTCTGAGGGCAGCAATACACTTTACTATAACGGTACTGAAGGCCAG
GCAGCATTTATTCTTATGTTTAACTGTCTGGTTAACAGAGTGTCATTTCAGTTCCATCTCCACCGTATGTAAAAGAAAGGTAG
GTAAGAGGCAGAATCTTTAGAATATCCACTATATGAGCTCCCAGAGAGGAGAAGGACCATCTCTCTTAGTTTTCATAGCTGCA
TCCTGGGATTGTTGAAGAGATTTCTTGGGCAAGTACCTTTTAAAATCAAtctctctttctctctctctctctcCTTGTTTGAT
ACAGAACAGAATGGAGGACTGAGGGATAAAAATAGCTATTAAGTCAAAGATAAACTCAAAACCCTCTGCAAAGAGCTTTCAGC
TTATCGACTCTAGATCATAATCAGCCATACCACATTTGTAG 
 

10.4 Supplementary Figures  

 

 
Figure 10-5 Subtle changes in gene expression and absence of phenotypes in the CTCF-deletion series. (A) Gene 

expression changes assessed by RT-qPCR. Relative gene expression levels of Sox9 and Kcnj2 in E13.5 limb buds 

normalized to Gapdh-expression (wildtype = 1). Bars indicate mean expression, error bars standard deviation. 

Diamonds indicate individual replicates. One-sided, unpaired t-test was conducted to test significance in 

comparison to wildtype (*p<0.05; **p<0.01; ***p<0.001, ns=not significant). n=2-4. (B) Changes in gene 

expression patterns by WISH of E12.5 embryos (n=3). S Magnification depicts a detailed view of the hindlimbs. 

Sox9 is expressed in the digital anlagen. Kcnj2 is expressed in the distal zeugopod. Note strong misexpression of 

Kcnj2 in the DBorC1-2 mutants. (C) 3D microcomputed tomography scan of terminal phalanges of adult animals 

from adult animals of the CTCF-deletion series and wildtype (n=2-4, 7-12 weeks). 
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Figure 10-6 Sox9-LOF and Kcnj2-GOF phenotypes upon redirection of interactions in the SVs series. (A) Gene 

expression changes assessed by RT-qPCR. Relative gene expression levels of Sox9 and Kcnj2 in E13.5 limb buds 

normalized to Gapdh-expression (wildtype = 1). Bars indicate mean expression, error bars standard deviation. 

Diamonds indicate individual replicates. One-sided, unpaired t-test was conducted to test significance in 

comparison to wildtype (*p<0.05; **p<0.01; ***p<0.001, ns=not significant). n=2-4. (B) 3D microcomputed 

tomography scan of terminal phalanges of adult animals from adult animals of the SV series and wildtype (n=2-4, 

7-12 weeks). InvC and InvCDBor animals display loss of dorsal flexion, sesamoid bones and claw-shaped form of 

the terminal phalange. (C) Phenotypes of homozygous InvC E18.5 embryos compared to wt-littermates. Lateral 

view of the head on top. Note, shortening of the snout and micrognathy in the mutant embryo. Below, skeletal 
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preparations shows distinct defects characteristic for a Sox9-LOF. (D) Phenotypes of homozygous Bor-KnockIn 

E18.5 embryos derived from tetraploid aggregation. Top left, design of the targeting construct containing all four 

CTCF bindings sites of the TAD boundary (C1-C4, 6.3kb, HR: 2 and 4kb). Top rigt, lateral view of homozygous P0 

newborn with a short snout and micrognathy. Below, skeletal preparations shows distinct defects characteristic for 

a Sox9-LOF. Overall, Bor-KnockIn animals displayed a milder Sox9-LOF phenotype compared to homozygous InvC 

animals and no phenotype in the digits.  
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10.7 List of Abbreviations  
 
°C degrees celsius 
µ micro (prefix) 
∞ infinite 
3C chromatin conformation capture 
3D Three-dimensional  
4C circular chromatin conformation capture 
AER Apical ectodermal ridge 
bp basepair 
cDNA complementary DNA 
cen centromeric 
cHiC Capture HiC 
ChIP Chromatin immunoprecipitation 
Chr Chromosome 
CTCF CCCTC-binding factor 
del deletion 
DEPC diethylpyrocarbonate 
DIG digoxygen 
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DMEM Dulbecco’s modified eagle’s medium 
DMSO dimethylsulfoxide 
DNA deoxyribonucleic acid 
dNTP deoxyribonucleotide 
DSB Double Strand Break 
E Embryonic stage 
E.coli Escherichia coli 
EDTA Ethylenediaminetetraacetic acid 
ENCODE Encyclopedia of DNA elements 
ESC embryonic stem cell 
EtOH Ethanol 
FL forelimb 
g Gram 
h Hour 
het heterozygous 
HL hindlimb 
hom homozygous 
kb kilobases 
Kcnj2/16 potassium inwardly rectifying channel 

subfamily J member 2/16 
KI KnockIn 
KO KnockOut 
l liter 
LIF Leukemia Inhibiting Factor 
m Milli (prefix) 
Mb Megabase 
mESC Mouse embryonic stem cell 
MeOH Methanol 
min minute 
mm Mus musculus 
mol Moles 
mRNA Messenger RNA 
n Nano (prefix) 
ON Over night 
PBS Phosphate-buffered saline 
PCR Polymerase chain reaction 
PFA paraformaldehyd 
PIC Preinitiation complex 
qRT-PCR Quantitative real-time PCR 
RNA Ribonucleic acid 
rpm Rounds per minute 
RT Room temperature 
s second 
sgRNA Single guide RNA 
Shh Sonic Hedgehog 
Sox9 SRY-box transcription factor 9 
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SSC Saline sodium citrate buffer 
TAD Topologically associating domain 
taq Thermus aquatius 
tel telomeric 
TF Transcription factor 
Tm Melting temperature 
TSS Transcriptional start site 
U Units 
UCSC University of California, Santa Cruz 
Vol Volume 
WISH Whole Mount In-Situ Hybridization  
w/v Weight per volume 
wt Wildtype 
ZPA Zone of polarizing activity 
ZRS ZPA regulatory sequence 

 



DANKSAGUNG 

 105 

11. DANKSAGUNG 

An aller erster Stelle möchte ich mich bei Prof. Dr. Stefan Mundlos bedanken für die Möglichkeit 

Teil eines so hilfsbereiten und dynamischen Teams zu sein, in welchem ich meine Doktorarbeit 

anfertigen konnte, die Diskussionen, Hilfe und die richtigen Fragen an der richtigen Stelle. Mein 

besonderer Dank gilt auch Prof. Dr. Sigmar Stricker für die Übernahme des Zweitgutachtens. 

Daniel - Du hast mir vor allen Dingen beigebracht meinen eigenen Kopf zu benutzen und Dinge 

nicht einfach nur auszuführen, sondern zu verstehen, kritisch zu hinterfragen und eigene Ideen zu 

entwickeln. Dafür bin ich dir sehr dankbar und ich finde wir sind ein klasse Team. Meine Arbeit, 

ja schon von vornherein ein Aprilscherz. ChIP kann ich immer noch nicht richtig mappen, weil ich 

mir keine Notizen machen darf. Und meine Triplikate bei qPCRs SIND einfach sauberer als deine. 

Danke für alles, die wichtigen Tritte an den richtigen Stellen, deine ehrliche Meinung, Inspiration, 

Motivation und ich freue mich schon auf Song 6 der Band. 

Besondere Dank geht an Asita- du hast mich direkt an die Hand genommen als ich angefangen 

habe und bist immer eine tolle Unterstützung! Ute, danke für deine freundliche, liebe Art und 

jegliche Hilfe. Norbert, du hast selbst die schlimmsten Aufnahmen in hübsche Fotos verwandelt-

Danke! Nicht zu vergessen, einen riesen Dank an die beste Studentin der Welt: Cinzia. Durch 

meine Arbeit habe ich nicht nur Kollegen, sondern auch vor allen Dingen fantastische Freunde 

gewonnen. Danke Alessa-ohne dich wäre Alexa einfach unvollständig; Bjørt, für dein 

inspirierendes und herzliches Naturell; Mike, da fehlen mir in general die Worte; und Sala, für 

deinen steten Beistand in Team-Brahim und darüber hinaus. 

Danke, danke, danke an die ganze AG Mundlos. Ich wünsche mir für jeden eine so soziale und 

freundliche Gruppe. Danke für alle Diskussionen, Hilfe und noch viel mehr die zahlreichen schönen 

Momente: Alicia, Andreas, Blanka, Carola, Cesar, Chiara, Christina, Fany, Felix, Fiona, Friederike, 

Giulia, Guillaume, Henrike, Ivana, Jana, Jessy, Josh, Juliane, Katerina, Konrad, Lila, Magdalena, 

Malte, Martin, Masha, Mikie, Mira, Patricia, Pedro, Philine, Robert, Rocío, Tobi, Uirá, Vanessa, 

Vera und Verena.  

Besonders Dank gilt meinen Freunden: Grüße und Küsse gehen raus an das Kleeblatt, die 

Sektschwestern, das Blumenküble, Team Tropical und die Geflügelsalamis. Ihr seid die 

allerbesten die ich mir wünschen kann. Nur mit euch kann ich rheinisches Lebensgefühl im kalten 

Osten erleben. Und Georg: das ist mein persönlicher Bester! 

Ich danke meiner Familie und besonders Mama und Papa. Ich denke ihr wisst wie unfassbar 

verbunden ich euch bin und ich freue mich einfach wenn ihr euch freut!  

Yes the picture's changing, every moment; And your destination, you don't know it. (Roxy Music) 



DECLARATION OF INDEPENDENT WORK 

 106 

12. DECLARATION OF INDEPENDENT WORK 

 

I hereby declare the present work has been independently conceived and written, and that no 

technical aid has been used. I assure that this work or any part of it has not been submitted to, 

approved, or rejected by any other academic institution.  

 

Berlin, 30.01.2021 

____________________________ 
Alexandra Despang 
 



SCIENTIFIC PUBLICATIONS 

 107 

13. SCIENTIFIC PUBLICATIONS  

 

 

Despang, A., Schöpflin, R., Franke, M., Ali, S., Jerković, I., Paliou, C., Chan, W., Timmermann, 

B., Wittler, L., Vingron, M., Mundlos, S. & Ibrahim, D.M. et al. Functional dissection of the Sox9–

Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat Genet 51, 1263–

1271 (2019). https://doi.org/10.1038/s41588-019-0466-z 
 

Kraft, K., Magg, A., Heinrich, V., Riemenschneider, C., Schöpflin, R., Markowski, J., Ibrahim, 

D.M., Acura-Hidalgo, R., Despang, A., Andrey, G., Wittler, L., Timmermann, B., Vingron, M. & 

Mundlos, S. / Serial genomic inversions induce tissue-specific architectural stripes, gene 

misexpression and congenital malformations. Nat Cell Biol 21, 305–310 (2019). 

https://doi.org/10.1038/s41556-019-0273-x 


