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ABSTRACT A combined experimental and theoretical method to simultaneously determine diffusivity and free-energy profiles
of particles that penetrate into inhomogeneous hydrogel systems is presented. As the only input, arbitrarily normalized concen-
tration profiles from fluorescence intensity data of labeled tracer particles for different penetration times are needed. The method
is applied to dextran molecules of varying size that penetrate into hydrogels of polyethylene-glycol chains with different lengths
that are covalently cross-linked by hyperbranched polyglycerol hubs. Extracted dextran bulk diffusivities agree well with fluores-
cence correlation spectroscopy data obtained separately. Empirical scaling laws for dextran diffusivities and free energies inside
the hydrogel are identified as a function of the dextran mass. An elastic free-volume model that includes dextran as well as poly-
ethylene-glycol linker flexibility quantitively describes the repulsive dextran-hydrogel interaction free energy, which is of steric
origin, and furthermore suggests that the hydrogel mesh-size distribution is rather broad and particle penetration is dominated
by large hydrogel pores. Particle penetration into hydrogels for steric particle-hydrogel interactions is thus suggested to be
governed by an elastic size-filtering mechanism that involves the tail of the hydrogel pore-size distribution.
SIGNIFICANCE The barrier function of mucus and other biological hydrogels against particles and pathogens depends
on their diffusivity and free-energy profiles. We introduce a method that allows for simultaneous extraction of these
quantities from non-normalized concentration profiles measured in penetration experiments. We apply our method to
fluorescently labeled dextran polymers diffusing into polyethylene-glycol-based hydrogels and explain the results by an
elastic free-volume model. We conclude that the penetration is governed by the large pores of the broad pore-size
distribution, which is most likely a general characteristic of hydrogels. Our method is generally applicable to various kinds of
labeled particles, including bacteria and virions, and can be used to help unravel the mechanisms behind mucus barrier
function.
INTRODUCTION

The penetration of particles into hydrogels is relevant for
technological applications (1,2), drug delivery (3), and bio-
logical systems such as biofilms (4), the extracellular ma-
trix (5), and mucus (6). Mucus, which is the most
common biological hydrogel, lines the epithelial tissues of
different organs, such as the respiratory, gastrointestinal,
and urogenital tracts. Mucus is mainly composed of mucins,
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which are glycoproteins of varying length that absorb large
amounts of water and thereby lend mucus its hydrogel na-
ture, and additional components such as enzymes and ions
(7). Mucins are relevant in the cell signaling context and
presumably also play a role in the development of cancer
(8). But primarily, mucus is a penetration barrier against
pathogens, e.g., virions or bacteria, whereas it allows the
permeation of many nonpathogens, e.g., nutrients, that are
absorbed through the mucosa of the small intestine (9).
Studies have suggested that based on the type of mucus,
the combination of different mechanisms gives rise to the
protective barrier function (10,11), in addition to the advec-
tive transport of pathogens through mucus shedding
or clearance (12,13), which is not considered here. One
typically distinguishes steric size-filtering mechanisms
from interaction-filtering mechanisms (6,14); the latter
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presumably play a major role in the defense of organisms
against pathogens because they allow for precise regulation
of the passage of wanted and unwanted particles and mole-
cules (15,16). Recent studies demonstrated that attractive
electrostatic interactions reduce the particle diffusivity in-
side hydrogels substantially and much more than repulsive
electrostatic interactions (17,18) and that salt concentration
and the distribution of charges and pore sizes are important
parameters that influence the permeation properties of
charged hydrogels (19,20).

Particle penetration into mucus and biofilms has been
studied by single-particle tracking techniques (21,22) as
well as by methods in which a diffusor ensemble is observed
(15,16,23,24). On short timescales, transient particle bind-
ing to the hydrogel (16–18) is important and leads to anom-
alous particle diffusion (25). On spatial length scales larger
than the hydrogel mesh size and on timescales larger than
typical binding escape times, particle diffusion is in a con-
tinuum description determined by the free-energy and diffu-
sivity profiles across an inhomogeneous hydrogel system. In
this framework, particle binding is effectively taken into ac-
count via a reduction of the diffusivity and a lowering of the
free energy. If the free-energy and diffusivity profiles are
known, particle penetration can be quantitatively predicted,
provided the particle concentration is low and the particles
do not modify the hydrogel properties in an irreversible
manner. In this context, it should be noted that both profiles
depend on the interactions between particle and hydrogel
and therefore are different for each distinct hydrogel-parti-
cle pair. Because of method restrictions, experiments pri-
marily focus on determining either the particle diffusivity
inside the hydrogel (6,10,21) or on the partitioning between
hydrogel and the bulk solution (26), from which the free en-
ergy inside the hydrogel (relative to the bulk solution) can
be determined. However, for prediction of the penetration
or permeation speed of particles into the hydrogel, both
the diffusivity and the free energy in the hydrogel are
needed.

In this work, we study synthetic hydrogels that consist of
polyethylene-glycol (PEG) linkers of different molecular
masses that are permanently cross-linked by hyperbranched
polyglycerol (hPG) hubs (2). Such synthetic hydrogels can
be regarded as simple models for mucus because they display
size-dependent particle permeabilities (14,27) similar to
mucus. As diffusing particles, we employ fluorescently
labeled dextran molecules of varying sizes. When using
confocal laser-scanning fluorescence microscopy to investi-
gate particle penetration into hydrogels, the sample can be
oriented such that the hydrogel-bulk interface is either paral-
lel (16) or perpendicular (28) to the optical axis, which makes
no significant difference from a scanning perspective. How-
ever, for laterally extended samples like cell cultures that
grow on a substrate, the parallel alignment causes the light
path to span substantially larger distances, making this setup
more prone to distortions in the imaging process. A perpen-
464 Biophysical Journal 120, 463–475, February 2, 2021
dicular alignment, as employed in this work and sketched in
Fig. 1, is therefore preferable for biological samples (28) and
is also compatible with future extensions of such penetration
assays to mucus-producing cell cultures.

We investigate the filtering function of hydrogels by theo-
retical analysis of time-resolved concentration profiles of
the labeled dextran molecules as they penetrate into the hy-
drogel. The employed numerical method allows for simulta-
neous extraction of free-energy and diffusivity profiles from
relative concentration profiles at different times and is a sig-
nificant extension of earlier methods (29–31) because it
does not require absolute concentration profiles but works
with relative, i.e., arbitrarily normalized, concentrations.
This is a crucial advantage because often fluorescence inten-
sity profiles are subject to significant perturbation due to,
e.g., laser light intensity fluctuations or fluorescence dye
bleaching over the course of the experiment, and using rela-
tive concentrations makes the often-difficult conversion of
measured intensity data into absolute particle concentra-
tions obsolete. The analysis framework we introduce here
can thus be used for a wide range of experimental setups
to simultaneously extract free-energy and diffusivity pro-
files from a variety of different biological systems. As a
check on the robustness of the method, the extracted dextran
bulk diffusivities are shown to agree well with fluorescence
correlation spectroscopy (FCS) data that are obtained sepa-
rately. The obtained particle free energies and diffusivities
inside the hydrogel are shown to obey empirical scaling
laws as a function of the dextran mass. The dextran free en-
ergy inside the hydrogel is described by a free-volume
model based on repulsive steric interactions between the
dextran molecules and the hydrogel linkers, which includes
dextran as well as hydrogel linker flexibility. This model
constitutes a modified size-filtering mechanism for repul-
sive particle-hydrogel interactions, according to which par-
ticle penetration into hydrogel pores is assisted by the elastic
widening of pores and the elastic shrinking of dextran mol-
ecules and matches the extracted particle free energies in the
hydrogel quantitatively. The model furthermore suggests
that the hydrogel mesh-size distribution is rather broad
and that particle penetration is dominated by the fraction
of large pores in the hydrogel.
MATERIALS AND METHODS

Hydrogel preparation

The hydrogel is formed by cross-linking end-functionalized polyethylene-

glycol-bicyclo[6.1.0]non-4-yne (PEG-BCN) linkers with hyperbranched

polyglycerol azide (hPG-N3) hubs via strain-promoted azide-alkyne cyclo-

addition. The two macromonomers PEG-BCN and hPG-N3 are synthesized

as previously described (2,32). The ‘‘click’’ reaction of binding the PEG-

BCN linkers to the hPG-N3 hubs works in water, at room temperature,

without the addition of a catalyst or external activation like heat or ultravi-

olet radiation and without the formation of byproducts. Two different sizes

of PEG-BCN linkers are employed, having a molecular weight of either

MPEG ¼ 6 or MPEG ¼ 10 kDa (for details about the mass distributions,



A B FIGURE 1 (A) Schematic drawing of the experi-

mental setup. Concentration profiles of fluorescently

labeled dextran molecules (green) are measured as

they penetrate from the bulk solution (blue) into

the hydrogel (black). The origin of the z axis is posi-

tioned such that experimentally measured profiles

range from z ¼ 0 to z ¼ zbot. The hydrogel-bulk so-

lution interface is located at z ¼ zint. In the range

from z ¼ �ztop to z ¼ 0, only numerically deter-

mined concentration profiles are available. (B)

Exemplary experimental concentration profiles for

two different penetration times for Mdex ¼ 4 kDa

dextran diffusing into the hPG-G10 hydrogel are

given; positions of the hydrogel-bulk solution inter-

face zint and the hydrogel-glass bottom interface zbot
are indicated. To see this figure in color, go online.
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see Supporting Materials and Methods, Section S1), the hydrogels are de-

noted as hPG-G6 and hPG-G10, respectively. The number ratio of the

PEG-BCN linkers to the hPG-N3 hubs (MhPG ¼ 3 kDa, 20% azide) is

kept constant at 3:1 for both hPG-G6 and hPG-G10. This ratio can ideally

lead to a cubic lattice structure if each hPG-hub exactly binds to six PEG

linkers. The chemical structure of the hPG-N3 hubs, however, allows on

average for eight binding sites, making the hydrogel presumably quite

disordered.

The two components of the hydrogel are stored as aqueous stock solu-

tions at concentrations of 8.5 wt% (6 kDa PEG-BCN), 8.4 wt% (10 kDa

PEG-BCN), and 5 wt% (hPG-N3). After very long storage times of the

stock solutions of about 1 year, the cross-linking click reaction of PEG

linkers and hPG hubs starts to become impaired, which is why storage

times are kept short. To minimize aging effects of the hydrogels, hydrogel

formation is always initiated shortly before the start of the experiments

by mixing the components according to Table 1. The resulting gel solution

is thoroughly vortexed before being placed as 1 mL drops on the glass

substrate. Both hydrogel solutions are adjusted to have the same mass

concentration. However, after drying and reswelling on the glass

substrate, volumes of the formed hydrogels are different and measured

as VhPG�G6
tot ¼ 0.42 5 0.03 mL and VhPG�G10

tot ¼ 0.31 5 0.04 mL

for hPG-G6 and hPG-G10, respectively (see Fig. S1 in Supporting

Materials and Methods, Section S2). This results in a final hydrogel

concentration of 9 wt% (�90 mg/mL) for hPG-G6 and 12 wt%

(�120 mg/mL) for hPG-G10.
Estimate of mean hydrogel mesh size

Assuming an idealized cubic hydrogel network structure, the mean mesh

size can be easily estimated. The length of a cubic unit cell l0,ideal follows

from the total gel volume Vtot and the total number of hPG hubs ntothPG in

mol as

l0;ideal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtot

ntothPGNA

3

s
; (1)
TABLE 1 Composition of the Hydrogels Used in this Study

nPEG Vsol
PEG

a nhPG Vsol
hPG

b

hPG-G6 142 nmol 10 mL 47 nmol 2.8 mL

hPG-G10 84 nmol 10 mL 28 nmol 1.7 mL

Here, Vsol
PEG and Vsol

hPG denote the volumes of the stock solutions, VH2O is the volum

denote the amount of PEG linkers and hPG hubs in the gel solutions. From the to

a gel spot on the glass substrate, leading to the combined applied amount napp
aSolution is of 8.5 wt% for 6 kDa PEG and 8.4 wt% for 10 kDa PEG.
bhPG solution is of 5 wt%.
where NA is the Avogadro constant. The total volumes for the rehydrated

gels are VhPG�G6
tot ¼ 0.42 mL and VhPG�G10

tot ¼ 0.31 mL as mentioned above.

The total number of hPG hubs is given as ntothPG ¼ nhPG � Vapp=V
sol
gel , with the

values from Table 1 for the respective gel and in which we account for the

fact that only Vapp¼ 1 mL of the total gel solution Vsol
gel is applied onto the gel

substrate. This results in rough estimates for the mesh size of

lhPG�G6
0;ideal ¼ 7.1 nm and lhPG�G10

0;ideal ¼ 7.5 nm, which shows that even though

PEG linkers of significantly different masses were used, the mesh sizes

of the two gels differ only slightly. In deriving Eq. 1, one assumes an ideal

hydrogel pore connectivity that corresponds to a perfect cubic lattice. There

is no reason why the hydrogel should consist of a perfect cubic lattice; on

the contrary, entropy favors a disordered network topology. For cubic pores

with lower connectivity, Fig. 2 illustrates how the pore size l0 can increase

for a fixed PEG end-to-end distance RPEG. Thus, except for the case of an

ideal cubic lattice, the pore size l0 will be larger than the estimate of Eq. 1,

as indeed suggested by our elastic free-volume model.
Dextran preparation

Dextrans conjugated with the dye fluorescein isothiocyanate (FITC) are ob-

tained from Sigma-Aldrich as d4-FITC, d10-FITC, d20-FITC, d40-FITC,

and d70-FITC, the number stating the molecular weight in kDa of the com-

mercial product. To remove unbound FITC from the dextran solutions, all

batches are subjected to a desalting PD-10 column, which eliminates low-

molecular weight compounds such as free FITC dye. This step is done

according to the manufacturer’s recommendations, and the column is equil-

ibrated using phosphate-buffered saline (PBS). Afterwards, the molecular

weight distribution of all dextrans is determined by gel permeation chroma-

tography (see Supporting Materials and Methods, Section S1).
Penetration assay of FITC-labeled dextrans

After preparation of the hydrogel solutions and purification of the dextrans

(see above), penetration assays are performed with five different dextran so-

lutions and two different gels. For these assays, coverslips (Menzel #1;
VH2O Vsol
gel Vapp mapp napp

13.0 mL 25.8 mL 1 mL 38 mg 7.3 nmol

12.7 mL 24.4 mL 1 mL 38 mg 4.6 nmol

e of purified water added to the resulting gel solutions, and nPEG and nhPG
tal resulting volume of the gel solutions Vsol

gel , only Vapp¼ 1 mL was placed as

and the combined applied mass mapp of PEG linkers and hPG hubs.

Biophysical Journal 120, 463–475, February 2, 2021 465



FIGURE 2 A cubic pore with lower connectivity to the right, containing

two PEG linkers per edge instead of one, leads to an effectively larger unit-

cell length l0 at the same PEG end-to-end distance RPEG. Only for a perfect

cubic lattice to the left is the estimate of Eq. 1 valid and l0 ¼ l0,ideal ¼ RPEG.

Wolde-Kidan et al.
VWR, Darmstadt, Germany) with a diameter of 25 mm and a thickness of

0.13–0.16 mm are thoroughly washed with water and absolute ethanol and

subsequently dried under a stream of nitrogen. For every experiment, 1 mL

of the respective hydrogel solution is placed on the center of the coverslip.

The substrates with the applied gel spots are kept in a humid environment

overnight, allowing hydrogel formation to be completed before the hydro-

gel spots are left to dry for 30 min at ambient conditions. Permeation exper-

iments are performed within 1 day after hydrogel formation. To start a

permeation experiment, a home-made polydimethylsiloxane stamp (1 �
1 cm) prepared with a cylindrical cavity in the middle (5 mm diameter)

is placed on the coverslip, so that the dried hydrogel is located in the middle

of the stamp’s cavity. The polydimethylsiloxane surrounding the dried hy-

drogel allows for the addition of solutions such as buffer or dextran. Before

the measurement, 30 mL of PBS buffer are added to reswell the hydrogel for

30 min, which typically creates hydrogel volumes of semispheroid shape

with a base radius of 1050 mm and heights of �150 mm for hPG-G10

and �210 mm for hPG-G6 (see Supporting Materials and Methods, Section

S2). Afterwards, the coverslip is mounted on a Leica SP8 confocal laser-

scanning microscope (CLSM; Leica, Wetzlar, Germany) and imaged using

a 20� objective (0.75 HC PL APO water immersion objective with correc-

tion ring). In a first step, the hydrogel is visually identified by imaging the

sample with a 488 nm laser and collecting the transmitted light using the

transmission photomultiplier tube of the CLSM, allowing us to place the

optical axis of the CLSM in the center of the hydrogel and to place the focal

plane 30 mm below the glass-hydrogel interface. After aligning the sample

like this, the PBS buffer is removed from the cavity and replaced by 35 mL

of the FITC-dextran solution (0.07 mg/mL for all dextrans). This fixes the

total length from the bottom of the glass dish at z ¼ zbot to the air-water

interface at z¼ ztop, where z¼ 0 corresponds to the end of the measurement

region (see Fig. 1 A). The total length of the solution is thus ztot ¼ ztop þ
zbot ¼ 1780 mm. The individual contributions to ztot vary because of

different gel thicknesses changing the extent of the measured region,

ranging from z ¼ 0 to z ¼ zbot (cf. also Fig. 1 A).

About 10 s after the application of the dextran solution, the spatial distri-

bution of the FITC-based fluorescence intensity is measured using a z-stack

that starts 30 mm below and ends 410 mm above the glass-hydrogel interface

(with 10 mm increments). The recorded intensities are afterwards truncated

to probe the spatial FITC distribution within the hydrogel starting from the

glass bottom (located at zbot) and extending�100 mm into the bulk solution,

away from the gel-water interface located at z ¼ zint (cf. Fig. 1 A). In these

measurements, the sample is excited at l ¼ 488 nm, and the emission is re-

corded between 500 and 550 nm using a photomultiplier tube. For the

Mdex ¼ 4 kDa to theMdex ¼ 40 kDa dextrans, one z-stack is recorded every
466 Biophysical Journal 120, 463–475, February 2, 2021
Dt¼ 10 s, yielding time-resolved FITC distributions after the penetration of

the dextran molecules into the hydrogel network over time. For the Mdex ¼
70 kDa dextrans, a period of Dt ¼ 30 s is used instead to account for the

much smaller diffusion coefficient of the larger dextran molecules. The em-

ployed temporal resolutions can be easily estimated to be larger than time-

scales on which effects of anomalous diffusion are present; for diffusion

over length scales larger than the mesh size of the hydrogel, normal diffu-

sion is expected. An upper bound for the corresponding crossover timescale

can be estimated as t ¼ l20/Dgel, where l0 ¼ 24 nm is an upper estimate for

the hydrogel mesh size andDgel¼ 0.15 mm2/s is the smallest obtained diffu-

sion constant in the hydrogel (see below for explicit results). The resulting

value of t z 0.2 ms, beyond which normal diffusion is expected, is several

orders of magnitude lower than the experimental temporal resolution. Thus,

anomalous diffusion cannot be observed in the experimental data, and the

normal diffusion equation that is used to model the time-dependent exper-

imental concentration profiles should be valid.

For all dextran types, measurements are performed at least three times

with total measurement times of �30 min, with the exception of the

Mdex ¼ 70 kDa dextrans. Here, only one measurement is performed for

each gel, but with a longer recording time of �1 h.
FCS of FITC-labeled dextrans

Reference diffusion coefficients for the FITC-labeled dextran molecules in

the bulk solution are obtained using FCS. The measurements are performed

on a Leica TCS SP5 II CLSM with an FCS setup from PicoQuant (Berlin,

Germany). The CLSM is equipped with an HCX PL APO 63�/1.20 W

CORR CS water immersion objective. Samples are put on high-precision

cover glasses (18 � 18 mm, 170 5 5 mm thick) and excited with the

488 nm Argon laser line. The fluorescent light is passed through a 50/50

beam splitter with a lower wavelength cutoff of l ¼ 515 nm. Both channels

are detected separately with a single photon avalanche diode. Afterwards, a

pseudo-cross correlation is performed between both channels to eliminate

the influence of detector afterpulsing. Before a measurement, the optical

setup is calibrated with the water-soluble Alexa-Fluor 488 dye. The corre-

lated signal is fitted with two components and accounting for triplet states.

The first component is fixed to a freely diffusing FITC dye molecule for

which only the fraction is a fit parameter. The second component is set to

a log-normal distributed species. The component fractions and means of

distribution are fitted, and the width of distribution is taken from previously

performed gel permeation chromatography measurements (for details about

the fitting procedure, see Supporting Materials and Methods, Section S3).

The fitted diffusion times are used to calculate the diffusion coefficients

and hydrodynamic radii using the Stokes-Einstein relation.
Numerical model and discretization

Extending a previously introduced method (29–31), spatially resolved

diffusivity and free-energy profiles are estimated from experimentally

measured concentration profiles. Numerical profiles are computed by dis-

cretizing the entire experimental setup from the glass bottom of the sub-

strate to the air-water interface (zbot to �ztop in Fig. 1 A). In the regime

in which concentration profiles are measured (z ¼ 0 to z ¼ zbot), the

experimental resolution is used as the numerical discretization width

Dz ¼ 10 mm. For the range without experimental data (z ¼ 0 to z ¼ �ztop),

in total, six bins are employed. Two of those bins are spaced with Dz ¼
10 mm; for the other four bins, discretization spacings between Dz ¼ 300

and 400 mm are used, depending on the z-length measured in the respective

experiment zbot. The z-dimension of the total system is the same for all ex-

periments and given as ztot ¼ ztop þ zbot ¼ 1780 mm. The experimentally

measured region always extends from the glass bottom through the gel

and at least 100 mm into the bulk solution, away from the hydrogel-bulk

interface, which leads to values of zbot z 300 mm, depending on the exact

thickness of the hydrogel in the respective measurement.
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The numerical optimization problem is given by the cost function, which

is defined as

s2
�
D;F;~f

�
: ¼ 1

N�M

PN
j¼ 1

PM
i¼ 1

�
cnumi

�
tj
�� fj � cexpi

�
tj
��2

;

(2)

with N the total number of experimental profiles, M the total number of

experimental data points per concentration profile and s2(D, F, ~f ) being
the mean squared deviation between the experimental and numerical pro-

files. The diffusivity profile D ¼ D(z), the free-energy landscape F ¼
F(z), and the vector containing all scaling factors (see below for details)
~f ¼ (f1, ., fj, ., fN) are all optimized to find the minimal value of s2.

This nonlinear regression is performed using the trust region method imple-

mented in Python’s scipy package (33).

The numerical profiles

~cnum
�
tj
� ¼ �

cnum1

�
tj
�
;.; cnumi

�
tj
�
;.; cnumM

�
tj
��T

are computed from the diffusivity and free-energy profiles as

~cnum
�
tj
� ¼ eWtj � ~cinit; (3)

where the rate matrix W(D, F) is defined as

Wi;k ¼ Di þ Dk

2Dz2
e
�Fi�Fk

2kBT ; with k ¼ i5 1

as explained previously (29). Numerical profiles at time tj depend on the

initial profile~cinit at t ¼ 0, which is determined as explained below.

The numerically computed profiles are fitted to the rescaled experi-

mental profiles~cexpðtjÞ at time tj > 0. The scaling factors~f are obtained

simultaneously from the fitting procedure and correct drifts in

the experimentally measured fluorescence intensity profiles (see

Supporting Materials and Methods, Section S4). As a check, the numer-

ical model is compared to the analytical solution for a model with piece-

wise constant values of the diffusivity and free energy in the respective

regions. Results from the numerical model agree perfectly with those

from the analytical solution (see Supporting Materials and Methods,

Section S5).
Construction of the initial concentration profile

The initial profile~cinit, used for the computation of all later profiles accord-

ing to Eq. 3, needs to cover the entire computational domain and is gener-

ated by extending the first experimentally measured profile~cexp (t ¼ 0) into

the bulk regime (from z¼ 0 to z¼�ztop, cf. Fig. 1 A). We define t¼ 0 as the

time of the first measurement, which is performed�10 s after application of

the dextran solution onto the gel-loaded substrate. For the spatial extension

of the profile, a constant initial concentration is assumed in the bulk, the

value of which is taken as the experimentally measured value furthest

into the bulk c0 :¼ cexp1 (t ¼ 0) at z ¼ 0. This leads to the following expres-

sion used for the initial profile

ciniti : ¼
�
c0; if � ztop%zi%0

cexpi ðt ¼ 0Þ; if 0< zi%zbot
; (4)

which by construction is continuous at z ¼ 0. The initial profiles used

for the fit procedure are shown in Fig. 3, B and F as black lines. To obtain

concentration profiles in physical units, we set the first measured value

furthest into the bulk equal to the applied dextran concentration c0 ¼
70 mg/L.
Free-energy and diffusivity profiles

Because the experimental system consists of two regions, namely the hy-

drogel and the bulk solution, and to reduce the number of parameters of

the numerical model to avoid overfitting, we employ sigmoidal profiles

for the diffusivity D(z) and free energy F(z), which transition continuously

from the value in the bulk solution to their values in the hydrogel. This

sigmoidal shape is modeled using the following expressions:

DðzÞ ¼ Dsol þ Dgel

2
þ Dsol � Dgel

2
erf

�
z� zintffiffiffi
2

p
dint

	
;

DFgel DFgel

�
z� zint

	

FðzÞ ¼

2
þ

2
erf ffiffiffi

2
p

dint
; (5)

where erf(z) :¼ 1/
ffiffiffi
p

p R z
�z e

�z02 dz0 is the error function. The fit parameters

zint and dint determine the transition position and width, respectively, and

are the same for the free-energy and diffusivity profiles. Because only

free-energy differences carry physical meaning, the free energy in the

bulk solution is set to zero so that Fsol ¼ 0. The values of the diffusivity

and free energy in the hydrogel and in the bulk solution are thus determined

by fitting the five parameters of Eq. 5, namelyDgel,DFgel,Dsol, zint, and dint,

to the experimentally measured concentration profiles.

Confidence intervals for the obtained parameters of Dsol, Dgel, and DFgel

are estimated by determining the parameter values that change s by not

more than 50% (for details, see Supporting Materials and Methods, Section

S6). The error bars shown in Fig. 5 are then obtained by averaging the con-

fidence intervals over all measurements.
RESULTS AND DISCUSSION

Fluorescence intensity profiles of FITC-labeled dextran
molecules penetrating into PEG-based hydrogels are
analyzed using the procedure explained in the Materials
and Methods. The analysis is based on numerical solutions
of the one-dimensional generalized diffusion equation (35)

vcðz; tÞ
vt

¼ v

vz



DðzÞe�bFðzÞ v

vz

�
cðz; tÞebFðzÞ��; (6)

where c(z, t) is the concentration at time t and depth z (see
Fig. 1), D(z) and F(z) are the spatially resolved diffusivity
and free-energy profiles that the dextran molecules experi-
ence, and b ¼ 1/kBT is the inverse thermal energy. Whereas
the diffusivity D(z) describes the mobility of dextran mole-
cules at position z, the free-energy profile F(z) uniquely de-
termines the equilibrium partitioning of dextran molecules.
The numerical solution of Eq. 6 provides a complete model
of the penetration process into the hydrogel and at the same
time allows for extraction of the diffusivity and free-energy
profiles by comparison with experimentally measured con-
centration profiles. A direct conversion of measured fluores-
cence intensities into absolute concentrations is often
difficult because of drifts of various kinds. The method
developed here circumvents this problem and allows for
in-depth analysis of arbitrarily normalized concentration
profiles, as explained in Numerical Model and Discretiza-
tion. Complete profiles of free energies and diffusivities,
Biophysical Journal 120, 463–475, February 2, 2021 467
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FIGURE 3 Exemplary time-dependent dextran concentration profiles from experimental measurements (circles) and numerical modeling (solid lines) for

the hPG-G10 hydrogel. Results for the smallest dextran with Mdex ¼ 4 kDa in (A)–(D) are compared with results for Mdex ¼ 40 kDa in (E)–(H). (A and E)

Experimental and modeled concentration profiles agree very accurately; note that concentration profiles are shifted vertically for better visibility. The initial

bulk concentration of dextran is c0 ¼ 70 mg/L. (B and F) Modeled concentration profiles are presented for a wide range of penetration times. The initial

profile c!init (black line) is based on experimental data (see Construction of the Initial Concentration Profile). (C and G) Extracted diffusivity profiles are

given, showing that the diffusivity in the hydrogel is only slightly reduced compared to the bulk solution. (D andH) Extracted free-energy profiles are shown.

Significant exclusion of dextran from the hydrogel is observed, with a stronger effect for the larger dextran. To see this figure in color, go online.
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both in the bulk and in the PEG hydrogel, are obtained, and
the results for different hydrogels and dextran molecules of
varying sizes will be analyzed in the following.
Comparison between experimental and modeled
concentration profiles

Fig. 3, A and E shows exemplary concentration profiles for
dextran molecules with molecular masses of Mdex ¼ 4 kDa
and Mdex ¼ 40 kDa penetrating into the hPG-G10 hydrogel
(see Hydrogel Preparation). Measurements are performed
over a total time span of �30 min, and concentration pro-
files are recorded every 10 s, leading to a total of �180 con-
centration profiles as input for the numerical extraction of
the diffusivity and free-energy profiles. The first measured
concentration profile at t ¼ 0 min represents the start of
the experiment,�10 s after the dextran solution was applied
onto the gel (see Penetration Assay of FITC-Labeled Dex-
trans). The numerically determined concentration profiles
(lines) reproduce the experimental data (data points) very
accurately, as seen in Fig. 3, A and E. The deviation is esti-
mated from the normalized sum of residuals, s (according to
Eq. 2), which is below 2 mg/L for both measurements. A
stationary concentration profile is obtained in the theoretical
468 Biophysical Journal 120, 463–475, February 2, 2021
model only after 4 h of penetration for the smaller 4 kDa
dextran (see Fig. 3 B); for the larger dextran molecule, the
stationary profile is reached only after an entire day (see
Fig. 3 F). These times significantly exceed the duration of
the experiments.

The extracted diffusivity and free-energy profiles in
Fig. 3, C, D, G, and H reveal the selective hydrogel perme-
ability for dextran molecules of varying size. The free-en-
ergy difference in the hydrogel is positive DFgel > 0 for
both dextran sizes, indicating that dextran is repelled from
the hydrogel. The dextran partition coefficient Kgel between
the hydrogel and the bulk solution is related to the change in
the free energy DFgel as

Kgel ¼ e�bDFgel : (7)

According to Eq. 7, the obtained free-energy differences
DFgel ¼ 0.6 kBT and DFgel¼ 1.9 kBT correspond to partition
coefficients of about Kgel z 1/2 and Kgel z 1/7 for the
smaller and the larger dextran molecules, respectively,
which illustrates a significant exclusion in particular for
the larger dextran. Compared with the partition coefficients,
the diffusion constants in the hydrogel decrease only
slightly as a function of the dextran mass. This suggests
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that the dextran molecules are only modestly hindered in
their motion, a conclusion that will be rationalized by our
elastic free-volume model further below.

Fig. 4 shows the temporal evolution of the average
dextran concentration c in three different regions, namely
inside the gel for zint < z < zbot, in the near solution for
0 < z < zint, and in the far solution for �ztop < z < 0 for
the same data shown in Fig. 3. The lines show the predic-
tions based on the extracted diffusivity and free-energy pro-
files and the circles the experimental data, which are not
available in the far solution range. The average concentra-
tion in the gel (black) increases monotonically and saturates
after about 1 h for both dextran sizes. Note that the station-
ary final concentration in the hydrogel is considerably less
for the larger dextran with Mdex ¼ 40 kDa. In contrast, the
average concentration in the far solution saturates more
A

B

FIGURE 4 Comparison of experimental results (circles) and modeling

results based on the extracted diffusivity and free-energy profiles (lines)

for the mean dextran concentration c over time in three different regions,

the far solution (�ztop < z < 0), the near solution (0 < z < zint), and the

gel (zint < z < zbot); see Fig. 1. The systems are the same as shown in

Fig. 3. A nonmonotonic dextran concentration is measured over time in

the near and far solution regions. The fact that c in the gel does not vanish

for t/ 0 reflects that the first measurement at t ¼ 0 is done�10 s after the

application of the dextran solution onto the gel. The initially employed bulk

dextran concentration is c0¼ 70 mg/L. To see this figure in color, go online.
slowly and shows a slight nonmonotonicity for both dextran
masses (blue). This nonmonotonicity is more pronounced in
the near solution (red) and is caused by the fact that dextran
molecules diffuse quickly into the hydrogel from the near
solution in the beginning of the experiment, whereas the
replenishment from the bulk solution takes a certain time,
as also seen in the concentration profiles in Fig. 3, B and
F. Very good agreement between experiments and modeling
results is observed.
Influence of dextran size on hydrogel penetration

The same analysis is performed for dextran molecules of
molecular masses ranging from Mdex ¼ 4 kDa to Mdex ¼
70 kDa that penetrate into PEG hydrogels with two different
linker lengths, namely hPG-G6 with a PEG linker size of
MPEG ¼ 6 kDa and hPG-G10 with MPEG ¼ 10 kDa. Fig. 5
shows the extracted diffusivities and free energies, which
result from averages over at least three experiments for
each system, except for Mdex ¼ 70 kDa dextran, for which
only one experiment was performed.

Fig. 5 A shows the bulk diffusivities Dsol extracted from
measured concentration profiles as colored symbols; in prin-
ciple, there should be no difference between results for hPG-
G6 and hPG-G10. A power-law relation between the dextran
mass and the diffusivity according toDsolfM�n

dex is shown as
straight lines for n ¼ 1 (broken line) and for n ¼ 1/2 (dotted
line). An exponent of n¼ 1/2 agrees nicely with our FCS data
(solid black triangles; see FCS of FITC-Labeled Dextrans) as
well as with literature fluorescence recovery after photo-
bleaching (FRAP) measurements (34) (open black triangles).
The value n ¼ 1/2 follows from combining the generally
applicable Stokes-Einstein relation Dsol ¼ kBT/6phwr0 (36)
with the scaling of the dextran hydrodynamic radius accord-
ing to r0fMn

dex (37,38) by assuming that the bulk solution is
a theta solvent for dextran polymers (39,40) (see Supporting
Materials andMethods, Section S7 for details). The exponent
n¼ 1/2 is only expected for linear polymers, whereas dextran
is in fact a branched polymer. The good agreement of FCS
and FRAP data with the power law for n ¼ 1/2 suggests
that the degree of branching is low (41) or that branching
effectively compensates self-avoidance effects. The dextran
hydrodynamic radii estimated from the FCS measurements
compare well with the values reported by the supplier (see
Table 2). The data for Dsol obtained from the time-dependent
dextran concentration profiles show rather large uncer-
tainties, which is due to the fact that the concentration pro-
files are rather insensitive to the bulk diffusivities; they are
within error bars consistent with our FCS results but do not
allow extraction of the power-law scaling with any reason-
able confidence.

Values for the diffusion constant in the hydrogel Dgel are
compared with power laws with exponents n¼ 1/2 and n¼1
in Fig. 5 B. The difference of the diffusion constants be-
tween the two different hydrogels is within the error bars,
Biophysical Journal 120, 463–475, February 2, 2021 469
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FIGURE 5 Results for the diffusivity and free energy obtained from the experimental measurements as a function of dextran mass. (A) Fitted diffusivities

in the bulk solution (squares and circles) agree within the error with FCS data measured in this work (solid black triangles) and with FRAP measurements

from literature (34) (open black triangles). (B) Fitted diffusivities in the hydrogel are reduced relative to the bulk values and are compared to different power

laws. (C) Dextran molecules are excluded from the hydrogel and DFgel > 0 for all dextran masses. For larger dextran molecules, DFgel increases as a square

root with the dextran mass. The results from the free-volume model of Eq. 12 (continuous lines) agree nicely with the measurements. Error bars have been

estimated as explained in Supporting Materials and Methods, Section S6. The inset in (B) presents a schematic depiction of the two different gels. Even

though the hPG-G10 gel is composed of larger linkers, the mass density is larger than in the hPG-G6 gel, which results in an effectively smaller pore

size. To see this figure in color, go online.
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which reflects the fact that the estimated mean hydrogel
mesh sizes, using a very simplistic hydrogel network model

with a perfect cubic structure, are lhPG�G6
0;ideal ¼ 7.1 nm and

lhPG�G10
0;ideal ¼ 7. 5nm (see Estimate of Mean Hydrogel Mesh

Size) and thus quite similar to each other. It is to be noted
that for Mdex % 20 kDa, the estimated mesh sizes are larger
than twice the dextran hydrodynamic radii from Table 2,
which would not suggest any dramatic confinement effect
on the diffusion constant (42). Interestingly, for the data
for which Mdex T 20 kDa, the hydrogel with the larger
linker length (hPG-G10), which has a slightly higher
mesh size, is seen to reduce the diffusion constant slightly
more, which at first sight is counterintuitive. This finding
can be rationalized by the fact that the hPG-G10 gel has a
higher mass density compared to the hPG-G6 gel (see Hy-
drogel Preparation), and thus, the effective pore size is pre-
sumably substantially smaller. This is schematically
illustrated in the inset in Fig. 5 B. A diffusivity scaling
with an exponent n ¼ 1, which describes the data for
hPG-G10 slightly better, could be rationalized by screened
hydrodynamic interactions or by reptation-like diffusion
(43). In fact, a crossover in the scaling of the diffusivity
with increasing hydrogel density from n ¼ 1/2 to n ¼ 1
has been described before for dextran penetrating into
hydroxypropyl cellulose (38). However, because of the large
TABLE 2 Dextran Radii

Mdex r0 rFCS

4 kDa 1.4 nm 1.5 nm

10 kDa 2.3 nm 2.7 nm

20 kDa 3.3 nm 3.2 nm

40 kDa 4.5 nm 4.3 nm

70 kDa 6.0 nm 6.4 nm

Hydrodynamic radius r0 as reported by the supplier, in comparison to esti-

mated hydrodynamic radius rFCS based on our FCS measurements using the

Stokes-Einstein relation and the viscosity of water as hw ¼ 0.8 �10�3 Pa s.
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error bars, extraction of the diffusivity scaling with respect
to dextran mass in the two gels is not uniquely possible.
This is mostly due to the fact that the diffusivities change
rather mildly with varying dextran mass. This is why we
do not attempt to model the scaling of the extracted diffusiv-
ities, as was done elsewhere before (18,19,44), but rather
focus on the mechanism behind the extracted free-energy
differences in the following.

Fig. 5 C shows the extracted values of DFgel for the two
hydrogels as a function of the dextran mass. In all measure-
ments, we find DFgel > 0, which suggests exclusion of the
dextran molecules from the hydrogel. Also, the value of
DFgel increases with the dextran mass. Because dextran,
as well as the PEG-hPG based hydrogels, is uncharged
(45), this exclusion must be due to steric repulsion, possibly
enhanced by hydration repulsion (46,47).
Elastic free-volume model for dextran penetration
in hydrogels

For the larger dextran molecules, the hydrogel with the
smaller PEG linkers, hPG-G6, displays a slightly stronger
exclusion. The power-law relation between the hydrogel
free energy and dextran mass according to DFgel f Ma

dex

with an exponent of a¼ 1/2 describes the data well for larger
dextran massesMdexT 20 kDa, as shown by the dotted black
line in Fig. 5 C. This power-law behavior is in fact compat-
ible with a simplistic elastic free-volume model for the pene-
tration of dextran molecules into hydrogels, which yields the
solid lines and will be derived in the following.

The model geometry is sketched in Fig. 6 A and consists
of a single dextran molecule of radius r (green sphere) in-
side a cubic unit cell of the PEG-based hydrogel (gray cyl-
inders), similar to previous coarse-grained hydrogel models
(18–20). The presence of the hPG hubs connecting the
PEG linkers is neglected in the following. The dextran
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FIGURE 6 Elastic free-volume model for the partitioning of a particle in a hydrogel. (A) Schematic sketch of the cubic unit-cell model for the hydrogel is

given, made up of connected linkers of length l and a finite radius of a. The diffusing particle is modeled as a sphere of radius r. Both the particle and the

linkers are elastic and can stretch or contract. (B) Partition coefficient Kgel extracted from the experimentally measured dextran concentration profiles (sym-

bols) is shown in comparison with the elastic free-volumemodel predictions according to Eq. 12 (solid lines). The results of the nonelastic model according to

Eq. 9 are shown as dashed lines. Error bars have been estimated as explained in Supporting Materials and Methods, Section S6. The inset shows the equi-

librium values of l* and r* obtained for the hPG-G6 gel. (C) Illustration of a disordered pore in the hydrogel that has a mesh size l0 and consists of more than

four linkers is given (see also Fig. 2). To see this figure in color, go online.
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experiences a reduction of its free volume compared with
the bulk solution because of steric interactions with the
PEG linkers. In the simple model geometry, the PEG linkers
are located at the edges of the cubic unit cell and are
modeled as impenetrable cylinders of radius a and length
l. Conformational fluctuations of the PEG linkers are not
treated explicitly in this model; instead, the linker length l
and radius a are to be understood as average values over
different confirmations of the linker chains. The excluded
volume Vex for dextran in the cubic unit cell consists of a
quarter of each of the 12 cylinders at the edges. The acces-
sible or free volume in the hydrogel Vfree depends on the
sum of sphere radius r and cylinder radius a and is given by

Vfree ¼ Vunit � Vex

¼ l3 � 12

4
pðr þ aÞ2lþ 2Vcyl:

(8)

Here, Vunit ¼ l3 is the volume of the unit cell and Vcyt ¼
ð16 =3Þ(r þ a)3 is the volume of two intersecting cylinders
(48), which is subtracted from the excluded volume to avoid
over counting of the unit-cell corners. The entropic contri-
bution to the total free energy is given by

DFvol ¼ �kBT ln

�
Vfree

Vunit

	

¼ �kBT ln

�
1� 3p



r þ a

l

�2
þ 32

3



r þ a

l

�3	
:

(9)

Because dextran and the PEG linkers are elastic poly-
mers, they are both flexible and can deform. For small defor-
mations, the polymers behave like Gaussian chains (39,40).
The elastic deformation free energy for a cubic unit cell con-
sisting of 12 equally deformed PEG linkers can be written as
(for a detailed derivation, see Supporting Materials and
Methods, Section S8)
DFPEG ¼ 12

2
kBT

0
BB@


l

l0

�2
þ
1� 4

h
l
l0

i2
2þ

h
l
l0

i2
1
CCA: (10)

Here, l/l0 is the relative stretching of the PEG linkers,
where l0 denotes the edge length of the unit cell in the
absence of dextran molecules. The elastic deformation en-
ergy of dextran is obtained in the same fashion and reads

DFdex ¼ 3

2
kBT

�

r

r0

�2
þ
hr0
r

i2
� 2

	
; (11)

where r denotes the deformed dextran radius and the unper-
turbed dextran radius is denoted by r0 and is taken from
Table 2. The complete free energy follows as

DFgelðr; lÞ ¼ DFvolðr; lÞ þ DFPEGðlÞ þ DFdexðrÞ: (12)

The equilibrium free energy is given by the minimal value
of this free-energy expression, obtained for the optimally
stretched unit-cell length l* and the optimal dextran radius
r*, which are determined numerically. The values of the
unit-cell length l0 and the PEG linker thickness a are adjusted
by fits to the experimental data. The model results are shown
in Fig. 6 B in terms of the partition coefficient as solid lines
and compared with the experiments (circles and squares) as a
function of the length ratio r0/l0. The inset shows the obtained
equilibrium values for l* and r* for the hPG-G6 gel. A
considerable stretching of PEG linkers and compression of
dextran are observed, which shows that elasticity effects of
both PEG linkers and dextran molecules are important and
cannot be neglected when estimating the free volume.

The fit to the experimental data yields lhPG�G6
0 ¼ 16.7 nm,

lhPG�G10
0 ¼ 23.7 nm, ahPG-G6 ¼ 3.4 nm, and ahPG-G10 ¼
5.4 nm. The fit values of a certainly represent an effective
Biophysical Journal 120, 463–475, February 2, 2021 471



Wolde-Kidan et al.
PEG linker radius and include the layer of tightly bound hy-
dration water. They are indeed, close to the respective equi-

librium PEG radii RPEG ¼ bfl N
3=5
PEG=

ffiffiffi
3

p
, given as

RhPG�G6
PEG ¼ 4.4 nm and RhPG�G10

PEG ¼ 5.99 nm, where bfl ¼
0.4 nm denotes the Flory monomer length (49) and NPEG

is the respective number of PEG monomers. In fact, the
free-volume model yields estimates of the number of hydra-
tion waters per PEG monomer that scatter around 8, in
rough agreement with literature values (see Fig. S8; Sup-
porting Materials and Methods, Section S9).

The fit values for the unit-cell length l0 are significantly
larger than the mean mesh size estimated based on Eq. 1,
which for a perfectly ordered cubic lattice predicts

lhPG�G6
0;ideal ¼ 7.1 nm and lhPG�G10

0;ideal ¼ 7.5 nm, but still consider-

ably shorter than the PEG contour lengths L ¼ bPEG0 NPEG,
which are LhPG-G6¼ 48.5 nm and LhPG-G10¼ 80.9 nm, where

bPEG0 ¼ 0.356 nm is the PEG monomer length (49). Although
the large unit-cell lengths obtained from the fit to the elastic
free-volume model could reflect a substantial stretching of
individual PEG polymers, there is no a priori reason why
the linkers should be stretched to such a considerable fraction
of their contour length. We therefore rationalize this surpris-
ing result in terms of a broad distribution of pore sizes that
exhibit different topologies. To illustrate this, a random
pore is schematically shown in Fig. 6 C. Based on the 3:1
number ratio of linkers/cross-linkers in the hydrogel formu-
lation (cf. Hydrogel Preparation and Fig. 2), a perfectly cubic
lattice could form, in which each hub is connected to six
different linkers. Such an ideal cubic connectivity is, of
course, entropically highly unfavorable, and the connectivity
distribution of hubs, i.e., the distribution of the number of
linkers that connect to one hub, will be rather broad and
the network topology disordered, in which case the PEG
end-to-end distance RPEG will be significantly smaller than
the pore size l0 (cf. also Estimate of Mean Hydrogel Mesh
Size). Whereas in a cubic lattice, each cubic facet consists
of four hubs and four linkers, the pores present in the actual
hydrogel will show a broad distribution of the number of
participating linkers. For illustration, the pore shown in
Fig. 6 C consists of eight linkers. Clearly, dextran molecules
will tend to be located in larger pores to maximize their free
volume, and therefore, the fit parameters of our model will be
dominated by the tail of the pore-size distribution, which ex-
plains the large fit values for l0. This finding also allows us to
rationalize the larger extracted free energy in the hydrogel in
the case of the hPG-G6 gel, even though the hPG-G10 gel
mass density is higher (cf. Fig. 5 C). The tail of the pore-
size distribution of the hPG-G10 gel presumably contains
larger pores that can stretch even further to minimize the un-
favorable dextran-PEG interactions. Clearly, the precise to-
pology and compositional distribution of pores cannot be
predicted by our analysis; our results should thus be merely
interpreted as an indication of the presence of large pores
and a disordered network topology.
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An approximate nonelastic version of the free-volume
model is obtained by neglecting the polymer deformation
term and just keeping the excluded volume term, Eq. 9,
which becomes accurate in the limit of l0 >> r0, where
r* z r0 and l* z l0. These approximate results are shown
as broken lines in Fig. 6 B and describe the experimental
data only for small values of r0/l0. When additionally
approximating the logarithm in Eq. 9, the obtained expres-
sion for the free energy is similar to results derived for a
random-fiber network (50). Our free-volume model is
valid only for short-ranged steric and hydration repulsive
interactions between diffusor and linkers; if long-ranged
and, in particular, attractive interactions are present—for
example, electrostatic interactions for low salt concentra-
tions—the model would need to be adjusted accordingly.
Derivation of particle permeabilities through
hydrogel barriers

Permeation through biological barriers is quantified by the
permeability coefficient P, which is defined as (51)

Pðz1; z2Þ ¼ J

cðz1Þ � cðz2Þ; (13)

where c(z1) and c(z2) are the particle concentrations at the
two sides z1 and z2 of the barrier and J denotes the particle
flux through the barrier. Based on the diffusion equation
(Eq. 6), the inverse permeability can be written as (for a
detailed derivation, see Supporting Materials and Methods,
Section S10)

1

Pðz1; z2Þ ¼
Z z2

z1

ebFðzÞ

DðzÞ dz: (14)

For a step-like barrier, one obtains

1

P
¼ ebDFgel

Dgel

L: (15)

Here, DFgel and Dgel are the particle free energy relative
to the solution and the diffusivity inside the hydrogel, and
L denotes the width of the hydrogel barrier.

Fig. 7 A shows normalized permeability coefficients PL
for a single step-like barrier according to Eq. 15, which are
independent of the thickness of the barrier L, as a function
of the gel free energy and the gel diffusivity. The values ex-
tracted from the experimental data for different dextran
molecules in the two gels from Fig. 5 are indicated by
data points. Obviously, the highest permeability is
observed for a low free-energy barrier and a high particle
diffusivity, as is the case for the smallest dextran molecules
(lower right corner in Fig. 7 A). On the other hand, perme-
ation is hindered by either a high free-energy barrier or a
low diffusivity in the hydrogel, both of which are observed
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FIGURE 7 (A) Normalized permeability coefficient PL through a single

box-like hydrogel barrier of width L as a function of the hydrogel free en-

ergyDFgel and the hydrogel diffusivity Dgel from Eq. 15. High permeability

is observed for low free-energy barriers and high diffusivities in the hydro-

gel. The symbols denote the experimental data from Fig. 5. Because of

opposing trends in the free-energy barrier and the diffusivity, both hydro-

gels display comparable permeability coefficients. (B) Schematic layered

structure of a mucous membrane, as found in the stomach, is given. Exam-

ples for different diffusors are shown, including nutrients such as glucose

and pathogens such as virions or bacteria. The diffusors have to penetrate

different layers of varying permeabilities to enter the tissue below the mu-

cous membranes, the total permeability of a layered structure follows from

Eq. 16. To see this figure in color, go online.
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for dextran molecules with larger molecular weights.
Because of counterbalancing effects of stronger exclusion
from the hPG-G6 gel and increased immobilization in the
case of hPG-G10, both hydrogels display comparable
permeability coefficients for the chosen dextran molecular
masses.
CONCLUSIONS

The method introduced in this work allows for the simulta-
neous extraction of diffusivity and free-energy profiles of
particles that permeate into spatially inhomogeneous hydro-
gel systems; we demonstrate the method using concentra-
tion profile measurements of fluorescently labeled dextran
molecules permeating into PEG-hPG-based hydrogels.
The advantage over alternative methods is that both diffu-
sivity and free-energy profiles are obtained from a single
experimental setup. This is important because only the com-
bination of diffusivity and free-energy profiles completely
determines the diffusion of particles.

The extracted diffusivities and free energies are analyzed in
terms of empirical scaling laws as a function of the dextran
mass, and a modified elastic free-volume model is developed
that quantitatively accounts for the particle free energy in
the hydrogel. Although the free volume accessible to a
diffusor inside a hydrogel has been previously shown to deter-
mine diffusion properties in biological systems, such as
crowded cellular membranes (52), our modified free-volume
model additionally includes the elasticity of linkers and of
the diffusing molecules and thereby quantitatively accounts
for the free energies we extracted from the experimental
data of dextran diffusing in PEG-based hydrogels. This dem-
onstrates that elastic deformations of both the diffusor and
the hydrogel network are important, in line with previous
computational (53–55) and experimental studies (56). Our
model furthermore unveils significant topological disorder
of the hydrogel pores and suggests that the dextran molecules
preferentially partition into exceptionally large pores, which
are locally even more enlarged because of PEG strand
elasticity.

Diffusional barriers in biological systems often show
a layered structure, as previously demonstrated for skin
(29–31) and also known to be true for mucous membranes,
which are found, for instance, in the gastrointestinal tract,
schematically indicated in Fig. 7 B. For a layered system,
Eq. 14 shows that the individual piecewise constant perme-
ability coefficients Pi add up inversely as

1

Ptot

¼
X
i

1

Pi

¼
X
i

ebDFi

Di

Li ¼
X
i

Li

DiKi

; (16)
where the sum goes over all layers, represented by their
respective diffusion constants Di, free-energy values DFi

or partition coefficients Ki, and thicknesses Li. Here, Ptot de-
notes the total permeability, which is dominated by the
smallest permeability in the inverse sum.

Fig. 7 B schematically illustrates permeation through a
layered system which represents the mammalian stomach
(57). The outermost layer of mucus is only loosely bound
and characterized by the permeability P1; it is followed
by a layer of more tightly bound mucus, characterized by
P2, and adheres onto the first layer of epithelial cells, char-
acterized by P3. The total thickness of this diffusional bar-
rier is about a millimeter, with the two mucus layers
spanning a few hundred micrometers only (58). Measure-
ments in rat gastrointestinal mucosa suggest typical values
Biophysical Journal 120, 463–475, February 2, 2021 473



Wolde-Kidan et al.
of L1 ¼ 109 mm, L2 ¼ 80 mm, and L3 z L2 (59), which are
close to the range of gel thicknesses studied in this work.

The total permeability is determined by the free energies
and the mobilities inside all layers. Nutrients, for instance,
can easily penetrate through the epithelia of the gastrointes-
tinal tract, displaying large permeabilities in the different
layers. Pathogens, on the other hand, are in healthy environ-
ments kept from reaching the epithelium because of low
permeability in the tightly bound mucus layer (P2 << P1)
(57). From Eq. 16, it is apparent that the lowest permeability
in such a layered system dominates the total permeability,
leading to an effective barrier function that for different parti-
cles can be caused by different parts of the layered barrier
structure.

The method introduced in this work determines free-en-
ergy and diffusivity profiles from experimental data and
thereby can be used to predict effective permeabilities of
different kinds of molecules, particles, or even organisms
into various layered systems, including systems that contain
hydrogels and mucus. A multilayered structure, as shown in
Fig. 7 B, can be produced by cultivating mucous-producing
cells in vitro and can be studied using the framework intro-
duced in this work. This would allow the detailed analysis of
permeabilities of different diffusors through an in vitro rep-
resentation of an actual biological barrier. We believe
that the technical advances described in this work will
help to shed light on the underlying mechanisms of the func-
tion of general biological barriers including mucous
membranes.
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