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Abstract 

 

In epithelia, large amounts of water pass by transcellular and paracellular pathways, 

driven by the osmotic gradient built up by solutes’ movement. The transcellular pathway 

has been molecularly characterized by the discovery of aquaporin membrane channels. 

Unlike this, the existence of a paracellular pathway for water through the tight junctions 

(TJ) was discussed controversially for many years until two molecular components of 

paracellular water transport, claudin-2, and claudin-15, were identified.  

 

A main protein of the tricellular TJ (tTJ), tricellulin, was shown to be downregulated in 

ulcerative colitis leading to increased permeability to macromolecules. In addition to 

tricellulin, the family of angulin proteins is known to be able to recruit tricellulin to the tTJ. 

Recently, Gong and colleagues found that angulin-2 knockout increases water transport 

on isolated mouse kidney tubules, and its overexpression reduces the water transport in 

MDCK II cells. Whether or not tricellulin regulates water transport or angulin-1 also 

mediates a direct effect on water permeability independent of tricellulin, or act indirectly 

via tricellulin regulation, is unknown yet.  

 

To answer our research question, two epithelial cell lines featuring properties of the tight 

and intermediate-tight epithelium, MDCK C7 and HT-29/B6, respectively, were stably 

transfected with shRNA targeting tricellulin or sgRNA along with CRISPR/Cas9 targeting 

angulin-1, proteins of the tTJ essential for the barrier against passage of solutes up to 10 

kDa. Interestingly, tricellulin knockdown and angulin-1 knockout reduced the 

transepithelial resistance (TER) in both cell lines and increased 4-kDa FITC-dextran 

permeability, especially in HT-29/B6 cell line. In addition, the expression and location of 

different TJ proteins in control cells and in knockdown or knockout clones were 

investigated. In MDCK C7 cells, tricellulin knockdown and angulin-1 knockout 

downregulated the expression of some tight junction proteins, while on HT-29/B6 cells, 

the opposite effect was observed; some TJ proteins were upregulated.  

 

Finally, water flux was induced by osmotic gradients using mannitol, 4-kDa, and 40-kDa 

dextran or albumin and measured in both cell lines. In MDCK C7 cells, tricellulin 

knockdown and angulin-1 knockout increased the water flux compared to that of vector 
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controls, indicating a direct role of tricellulin in regulating water permeability in a tight 

epithelial cell line; nevertheless, in HT-29/B6 cells, water flux was unchanged between 

the control and the tricellulin knockdown or angulin-1 knockout clones. We conclude that 

tricellulin and angulin-1, the latter acting indirectly via tricellulin displacement, increase 

water permeability at reduced expression only in MDCK C7 cells, i.e., in the tight 

epithelium. 
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Zusammenfassung 

 

In Epithelien werden große Wassermengen über transzelluläre und parazelluläre Wege 

transportiert, angetrieben durch den osmotischen Gradienten, der durch die Bewegung 

der gelösten Stoffe aufgebaut wird. Der transzelluläre Weg ist durch die Entdeckung der 

Aquaporin-Membrankanäle molekular charakterisiert worden. Im Gegensatz dazu wurde 

die Existenz eines parazellulären Weges für Wasser durch die Tight Junctions (TJ) viele 

Jahre lang kontrovers diskutiert, bis zwei molekulare Komponenten des parazellulären 

Wassertransports, Claudin-2 und Claudin-15, identifiziert wurden.  

 

Es wurde gezeigt, dass ein Hauptprotein der trizellulären TJ (tTJ), Tricellulin, bei Colitis 

ulcerosa herunterreguliert ist, was zu einer erhöhten Permeabilität für Makromoleküle 

führt. Zusätzlich zu Tricellulin ist bekannt, dass die Familie der Angulin-Proteine in der 

Lage ist, Tricellulin an die tTJ zu rekrutieren. Kürzlich fanden Gong und Kollegen, dass 

der Knockout von Angulin-2 den Wassertransport an isolierten Nierentubuli der Maus 

erhöht und seine Überexpression den Wassertransport in MDCK II-Zellen reduziert. Ob 

Tricellulin den Wassertransport reguliert oder Angulin-1 auch einen direkten, von 

Tricellulin unabhängigen Effekt auf die Wasserpermeabilität vermittelt, oder indirekt über 

die Tricellulin-Regulation wirkt, ist noch nicht bekannt.  

 

Zur Beantwortung unserer Forschungsfrage wurden zwei Epithelzelllinien mit 

Eigenschaften des tighten und intermediär-tight Epithels, MDCK C7 bzw. HT-29/B6, stabil 

mit shRNA, die auf Tricellulin abzielt, oder sgRNA zusammen mit CRISPR/Cas9, die auf 

Angulin-1 abzielt, transfiziert, Proteine der tTJ, die für die Barriere gegen die Passage 

von gelösten Stoffen bis zu 10 kDa essentiell sind. Interessanterweise reduzierte das 

Knockdown von Tricellulin und Angulin-1 die TER in beiden Zelllinien und erhöhte die 4-

kDa-FITC-Dextran-Permeabilität, insbesondere in der HT-29/B6-Zelllinie. Zusätzlich 

wurden die Expression und Lokalisation verschiedener TJ-Proteine in Kontrollzellen und 

in Knockdown- bzw. Knockout-Klonen untersucht. In MDCK-C7-Zellen wurde durch 

Tricellulin-Knockdown und Angulin-1-Knockout die Expression einiger Tight-Junction-

Proteine herunterreguliert, während in HT-29/B6-Zellen der gegenteilige Effekt 

beobachtet wurde; einige TJ-Proteine wurden hochreguliert.  
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Schließlich wurde der Wasserfluss durch osmotische Gradienten mit Mannitol, 4-kDa- 

und 40-kDa-Dextran oder Albumin induziert und in beiden Zelllinien gemessen. In MDCK-

C7-Zellen erhöhten Tricellulin-Knockdown und Angulin-1-Knockout den Wasserfluss im 

Vergleich zu den Vektor-Kontrollen, was auf eine direkte Rolle von Tricellulin bei der 

Regulierung der Wasserpermeabilität in einer dichten Epithelzelllinie hinweist; in HT-

29/B6-Zellen war der Wasserfluss zwischen der Kontrolle und den Tricellulin-Knockdown- 

oder Angulin-1-Knockout-Klonen jedoch unverändert. Wir schlussfolgern, dass Tricellulin 

und Angulin-1, wobei letzteres indirekt über die Tricellulin-Verdrängung wirkt, die 

Wasserpermeabilität bei reduzierter Expression nur in MDCK-C7-Zellen, d.h. im tighten 

Epithel, erhöhen. 
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1. Introduction 

1.1 Epithelium 

Tissue functionality is assured by the accurate regulation of its barriers, i.e., the 

epithelium and the endothelium (Schnoor and Parkos, 2008). While the endothelium lines 

the vasculature and ensures tissue supply with nutrients and oxygen, the epithelium 

creates the barrier between tissues and the outward environment, thus protecting organs 

from invading damaging agents. Both epithelium and endothelium form a cellular 

monolayer that is connected and more or less sealed by a junctional complex. The 

junctional complex consists of tight junctions (TJ) that regulate the permeability of the 

monolayer and subjacent adherens junctions (AJ) that mediate intercellular adhesive 

interactions (Ivanov and Naydenov, 2013; Van Itallie and Anderson, 2014) (Figure 1-1d). 

Epithelial cells also form desmosomes that are located more basally and further 

strengthen adhesive interactions (Figure 1-1d). All these junctions are composed of 

several transmembrane proteins and cytosolic adaptor molecules that connect the 

adhesion molecules to the cytoskeleton. Desmosomes are connected to cytokeratins, 

whereas TJ and AJ are connected to actin. The connection of TJ and AJ to the actin 

cytoskeleton is critical for barrier functionality (Garcia-Ponce et al., 2015; Ivanov et al., 

2010). In addition, the epithelial membrane acts as a selectively permeable polarized 

membrane (different proteins in the apical and basolateral membrane), which determines 

which substances will be able to enter the epithelium (Suzuki, 2013). Therefore, the 

epithelium allows the absorption of nutrients while providing a physical barrier to the 

permeation of proinflammatory molecules, such as pathogens, toxins, and antigens, from 

the luminal environment into the underlying mucosal tissues and circulatory system 

(Buckley and Turner, 2018).  

1.2 Transport across epithelia 

The transport of molecules across the epithelial layer occurs through two major pathways: 

the transcellular pathway (i.e., across the cell membranes and protein carrier/receptor-

mediated transport) and the paracellular pathway (i.e., between the spaces through 

adjacent cells). The sum of both pathways represents total transepithelial transport 

(Figure 1-1a). 
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Figure 1-1. Transepithelial transport pathways and intercellular junctions. (a) Paracellular 
and transcellular pathways across an epithelial layer. (b and c) Structure and localization 
of TJ strands, including (b) freeze-fracture electron microscopic image (scale bar, 200 
nm) and (c) ultrathin sectional view (scale bar, 50 nm). Mv: Microvilli; Ap: Apical 
membrane; Bl: Basolateral membrane. (d) Schematic representation of the intercellular 

space and the junctional protein complex. It was adapted from (Yeste et al., 2018). 

1.2.1 Transcellular pathway 

The transcellular route for hydrophilic molecules, for example, ions and nutrients including 

sugars, amino acids, peptides, fatty acids, minerals, and vitamins, is governed by the 

profile of membrane pumps, carriers, and channels expressed in a particular cell type 

(Suzuki, 2013). The passive movement across the lipid component of the membrane is 

limited for uncharged and hydrophilic molecules. The profile of transport proteins differs 

among epithelia, which explains their unique functions. Individual transporters show a 

polarized distribution to the apical or basolateral membrane surface as the basis for 

directional transport (Figure 1-1a) (Anderson and Van Itallie, 2009). 

1.2.2 Paracellular pathway 

The paracellular pathway is associated with transport through the intercellular space 

between the adjacent epithelial cells (Figure 1-1a). It is regulated by an apical junctional 

complex, which is composed of tight junctions (TJs), adherence junctions (AJs), and 
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desmosomes (Figure 1-1c and 1-1d) (Buckley and Turner, 2018; Suzuki, 2013). The TJs 

encircle the apical ends of the lateral membranes of epithelial cells (Figure 1-1b and 1-

1c), and it is this structure that determines the selective paracellular permeability to 

solutes and water (Buckley and Turner, 2018; Suzuki, 2013). The AJ, along with 

desmosomes, provides strong adhesive bonds between the epithelial cells and also aids 

intercellular communication but does not determine paracellular permeability. 

1.3 The tight junction (TJ) 

The tight junction provides both a barrier to potentially harmful molecules and a pathway 

for the permeation of ions, solutes, and water. Paracellular transport through the TJs is 

passive, driven by electrochemical gradients, and demonstrates channel-like properties 

such as electric conductance, charge-, and size-selectivity (pore and leak pathways) 

similar to those found in membrane ion channels (Buckley and Turner, 2018; Suzuki, 

2013).  

1.3.1 Protein components of the TJ 

The tight junction comprises several transmembrane proteins, including claudins, TJ-

associated marvel proteins (TAMP), and angulins. Also, the junctional adhesion 

molecules (JAM) belong to the tight junction, although their barrier function is not fully 

understood (Günzel and Fromm, 2012). Numerous other proteins are related to or interact 

with the tight junction like zonula occludens (ZOs), cingulin, and several others, which 

interact with each other, as well as with the cytoskeleton, and form a complex architecture 

(Figure 1-2). Only the “true” tight junction proteins are integral membrane proteins that 

extend into the paracellular spaces between the cells. Cingulin and ZOs are cytoskeletal 

linker proteins, which interact with the cytoplasmic peripheral membrane proteins, 

occludin, claudins, and JAMs to form strong cross-links and interact with the membrane 

cytoskeleton composed of F-actin and myosin (Figure 1-2) (Varadarajan et al., 2019). 

Together with intracellular signaling proteins, tight junction proteins activate many cellular 

processes to maintain barrier integrity. Tight junction complexes are the rate-limiting 

factor for paracellular permeability; they are programmed to quickly open and seal the 

barrier in the case of damage and additional signals. They form a highly dynamic entity 

that undergoes a series of regulations to improve or modulate the integrity of the intestinal 

barrier through the continuous transmission of signals to its individual components 
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(Chelakkot et al., 2018). There are two types of TJ arrangements, the bicellular tight 

junction (bTJ) and the tricellular tight junction (tTJ) (Friend and Gilula, 1972). 

 

  

Figure 1-2. The claudin family of transmembrane proteins (yellow and orange), 
oligomerize into strands and mesh with their counterparts on neighboring cells to 
selectively regulate passage through the paracellular space. Whereas “pore-forming” 
claudins facilitate ion flux by forming size- and charge-specific pores, “barrier-forming” 
claudins primarily restrict it (Günzel and Yu, 2013). Together with claudin strands, 
junctional adhesion molecules (JAMs, dark blue) also help limit macromolecule flux (Otani 
et al., 2019). TJ-associated MARVEL proteins (TAMPs, green), such as occludin, 
tricellulin, and MarvelD3, play various roles in signaling, barrier development, and TJ 
strand morphology (Raleigh et al., 2010; Krug et al., 2009a; Cording et al., 2013). ZO 
proteins (light blue) facilitate the formation of a dense plaque of proteins associated with 
TJs (Otani et al., 2019; Beutel et al., 2019). A ZO protein can multimerize with itself and 
other ZO proteins and can bind claudins, JAMs, TAMPs, F-actin (red), scaffolding proteins 
(e.g., cingulin, pink), and signaling molecules (Shen et al., 2011). It was adapted from 
(Varadarajan et al., 2019). 

1.3.2 Morphology of the bicellular tight junction (bTJ) 

Key components for the structural and functional properties of the bicellular TJ of 

mammals are the claudin family, occludin, marvelD3, and junctional adhesion molecules 

(JAMs) (Anderson and Van Itallie, 2009; Mineta et al., 2011; Günzel and Yu, 2013). All TJ 

proteins mentioned above, except JAMs, contain four transmembrane domains with N- 

and C-terminal cytoplasmic tails, two extracellular loops, and a short intracellular loop. 

Expression of these proteins varies among different tissues, and the pattern of a given set 
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of claudins determines the properties of the intercellular seal formed by TJ strands (see 

Chapter 1.4) (Furuse et al., 1999). 

1.3.2.1 Claudins 

The discovery of claudins in 1998 significantly forward-thinking our understanding of the 

TJ barrier as it was first demonstrated that claudins have the ability to form strands and 

confer cell-to-cell adhesion (Tsukita and Furuse, 1998). There are several isoforms of 

claudin, each having potentially different roles, and a fine balance between them is 

needed to maintain paracellular integrity. Alterations in the claudin levels can affect the 

barrier integrity differently depending on the type of claudin isoform (Chelakkot et al., 

2018). 

 

Claudins are tetraspan proteins consisting of a family with at least 27 members whose 

molecular weight ranges from 20 to 28 kDa (Mineta et al., 2011; Overgaard et al., 2011). 

The claudin proteins are characterized by a conserved amino acid motif in the first 

extracellular loop (W-GLW-C-C). These first extracellular loops are highly conserved, 

range from 41 to 55 residues, and appear to contribute to TJ ion selectivity and barrier 

function. Site-directed mutagenesis of specific residues within the first extracellular loop of 

claudins can reverse the TJ pore's charge selectivity, while the inclusion of both acidic 

and basic residues in that region can reduce permeability to both cations and anions. The 

second loops, which are also highly conserved, range from 10 to 21 residues and appear 

to be more involved in homotypic and heterotypic adhesion and are also the site of 

Clostridium perfringins enterotoxin binding in claudin-3 and -4 (Colegio et al., 2002; 

Colegio et al., 2003). The claudin cytoplasmic tails range from 21 to 44 residues and are 

the least well-conserved regions. Except for claudin-12, all claudin cytoplasmic tails end in 

PDZ binding motifs, which bind PDZ domains in the cytoplasmic scaffolding proteins ZO-1 

and MUPP1, and other proteins. PDZ-mediated interactions of claudins with ZO-1 and 

ZO-2 are required for efficient delivery to the TJ, although this may not be universally true 

(Van Itallie and Anderson, 2006). 

 

Leaving aside its structure and talking a little more about its function, it appears that each 

claudin protein has its unique property of ion permeability: the claudins making 

paracellular cation channels include claudin-2, -10b, -12, -15, -16, and -21; the claudins 
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making paracellular anion channels include claudin-4, -7, -8, -10a, and -17 and the 

barrier-forming claudins include claudin-1, -3, -4, -5, -8, -11, -14, and -19 (Günzel and 

Fromm, 2012; Günzel and Yu, 2013; Rosenthal et al., 2017b). For claudin-4, -7, -8, and -

16, a sealing or channel-forming function has not been unequivocally determined 

(Heinemann and Schuetz, 2019). Notably, the measurement of claudin permeability 

depends upon the background of the endogenous claudins expressed in the epithelium. 

Because the TJ's transport property is determined by the combination of all the claudin 

proteins present in the cells, studying any individual claudin will need to take into account 

the permeabilities of the remaining claudins (Anderson and Van Itallie, 2009; Nakamura et 

al., 2019). 

1.3.2.2 Occludin 

Although occludin was the first transmembrane TJ component discovered almost three 

decades ago, its physiological functions' full scope has remained controversial (Furuse et 

al., 1993). Occludin belongs to the TJ-associated marvel protein (TAMP) family, as well 

as MarvelD3 and tricellulin, based on their sequence homology within the shared marvel 

domain (MAL and related proteins for vesicle trafficking and membrane link) (Cording et 

al., 2013); nonetheless, the three-dimensional structures of TAMPs are unknown. 

Occludin is a protein with approximately 65 kDa, bearing four transmembrane domains 

and not showing any sequence similarity with claudins (Mariano et al., 2011). Its C-

terminus contains a coiled-coil domain that is involved in a redox-sensitive dimerization of 

occludin and the association of ZO-1 (Cording et al., 2015; Buschmann et al., 2013).  

 

According to in vivo experiments, occludin-deficient mice possess morphologically normal 

TJs, despite the various complex phenotypes including chronic inflammation and 

hyperplasia of the gastric epithelium, calcification in the brain, testicular atrophy, loss of 

cytoplasmic granules in striated duct cells of the salivary gland, and thinning of the 

compact bone (Kitajiri et al., 2014). These phenotypes cannot be explained in terms of 

barrier dysfunction of TJs and suggest that occludin may be involved in epithelial 

differentiation as well (Mariano et al., 2011). Thus, occludin is involved in maintaining the 

barrier function in vivo (Raleigh et al., 2011). In addition, occludin does not regulate basal 

permeability to macromolecules in epithelial sheets. Neither lack nor re-expression of 

occludin had a consistent impact on macromolecule permeability. Therefore, occludin is 

likely not directly involved in the passage of macromolecules across epithelial barriers. 
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Instead, it appears to mediate responses to environmental changes in epithelium and thus 

may have a more regulatory function (Richter et al., 2019; Zhou et al., 2020). 

1.3.2.3 MarvelD3 

MarvelD3 was identified as the latest member of TAMP member (Steed et al., 2009), 

which is expressed as two isoforms that show a broad tissue distribution (Steed et al., 

2009). MarvelD3 has an extended N-terminal and a short C-terminal tail, and it was found 

at both bicellular and tricellular TJs of Caco-2 intestinal epithelial monolayers as well as 

murine jejunum, hepatocytes, and renal tubules (Cording et al., 2013). Like occludin, 

regular MarvelD3 expression is not essential for tight junction formation (Steed et al., 

2009). Nevertheless, knockdown of MarvelD3 affects the paracellular barrier properties of 

tight junctions by mechanisms that still have to be identified (Steed et al., 2009).  

1.3.2.4 Junctional adhesion molecules (JAM) 

The third class of integral membrane proteins comprises members of the immunoglobulin 

superfamily and can be subdivided into a group consisting of JAM proteins and a group 

consisting of CAR, CLMP, ESAM, and JAM-4/JAM-L. To date, at least three JAM 

isoforms have been described (JAM-1, -2, and -3, or JAM-A, -B, and -C, respectively), 

which are expressed differentially in epithelial and endothelial cells, but also cells devoid 

of TJ strands like leukocytes (Heinemann and Schuetz, 2019). In contrast to claudins and 

occludin, JAMs are single-pass transmembrane proteins of approximately 40 kDa, with a 

transmembrane domain and an extracellular portion folded into two immunoglobulin-like 

domains. JAMs are concentrated at TJs, where they associate laterally with the claudin-

based backbone of TJ strands in epithelial cells. They appear to be clustered at 

intercellular contacts, playing a role in TJs formation and endothelial cell polarity, as well 

as in paracellular permeability (Otani et al., 2019; Mariano et al., 2011). 

1.3.3 Morphology of the tricellular tight junction (tTJ) 

Tricellular TJs (tTJs) are generated within tricellular contacts (TCs) in the mammalian 

epithelial cell sheet and comprise multiple transmembrane proteins (e.g., angulin-1, 

angulin-2, angulin-3, and tricellulin; Figure 1-3) (Ikenouchi et al., 2005; Higashi et al., 

2013; Anderson and Van Itallie, 2009; Wade and Karnovsky, 1974). Here, the elements of 

adjacent bTJ strands join and extend in a basal direction forming a vertical central tube-
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like space at the tricellular contacts of assumedly 1 m in length and 10 nm in diameter 

(Staehelin, 1973; Higashi and Miller, 2017). These central tubes are critical points for the 

TJ barrier integrity and are sealed by the transmembrane proteins mention above. 

 

 

Figure 1-3. Tricellulin and angulin family proteins. (a) Membrane-spanning model of 
tricellulin, angulins, and claudins (Masuda et al., 2011). (b) Immunofluorescence staining 
images of tricellulin and angulin-1/LSR in EpH4 mouse mammary epithelial cells (upper 
panel (Masuda et al., 2011)) and angulin-2/LSR in kidney collecting ducts and angulin-
3/ILDR2 in choroid plexus (lower panel (Higashi et al., 2013)). Bars: 10 μm. 

1.3.3.1 Tricellulin 

Tricellulin, also known as MarvelD2, is a member of the MARVEL protein family. In 

mature tissues, tricellulin strongly localizes at the tricellular cell-cell contacts where the TJ 

network is extended basolaterally, whereas it is also present to a lesser extent in bicellular 

junctions yielding a typical punctate pattern (Figure 1-3). Tricellulin is an essential tTJs 

component, ensuring their proper formation, maintenance, and barrier function both in 
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vivo and in vitro (Ikenouchi et al., 2005; Lohmann et al., 2020). Four isoforms of human 

tricellulin have been described so far (Riazuddin et al., 2006): TRIC-a is the most 

lengthened form (558 aa) and is meant in this as well as in other studies when simply 

termed “tricellulin”. It contains seven exons and has a C-terminal ELL sequence with an 

overall identity of 32% (51% similarity) to occludin. Despite this homology, occludin and 

tricellulin are differentially phosphorylated in their C-terminal tails. Mutations of TRIC-a 

lead to nonsyndromic deafness, DFNB49. The isoform TRIC-a1 lacks the exon three, and 

TRIC-b is a shorter isoform (458 aa) of tricellulin lacking the occludin-ELL. The 

occurrence of TRIC-b is hypothesized in basal cell layers of keratinocyte cultures. TRIC-c 

(442 aa) is predicted to be a two-transmembrane domain protein with an alternatively 

spliced exon two (Riazuddin et al., 2006). 

 

Tricellulin has extended cytoplasmic N- and C-terminal domains, with the C-terminal tail 

exhibiting homology to the occludin C-terminus. It has been shown that the C-terminus 

binds to ZO-1 (Riazuddin et al., 2006) and is vital for the basolateral translocation of 

tricellulin and its binding to the lipolysis-stimulated lipoprotein receptor (LSR/angulin-1). 

Angulin-1 builds a landmark for tricellular TJs, and the N-terminal domain of tricellulin 

appears to be involved in directing tricellulin to tricellular contacts.  

 

Tricellulin severely influences TJ organization not only at tricellular contacts but also at 

the level of bicellular TJs (Cording et al., 2013). The knockdown of tricellulin results in 

redistribution of occludin at bicellular TJs, i.e., tear-drop shaped accumulation of occludin 

close to tricellular TJs. Therefore, it is assumed that tricellulin and occludin may at least 

partially compensate for each other. On the other hand, after overexpression, tricellulin is 

also strongly detectable at bicellular contacts. Remarkably, mutations in the cytoplasmic 

C-terminal domain of tricellulin, which were most often truncations that disrupted ZO-1 

binding, caused deafness without creating a syndrome involving other organs. This limited 

distribution of disease does not reflect the absence of tricellulin expression in other 

tissues, suggesting that another protein may compensate for tricellulin loss (Cording et 

al., 2013). 
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1.3.3.2 Angulin protein family 

The angulin protein family comprises angulin-1 (also known as lipolysis-stimulated 

lipoprotein receptor [LSR]), angulin-2 (also known as immunoglobulin [Ig]-like domain-

containing receptor [ILDR1]), and angulin-3 (also known as ILDR2, LISCH-like, or 

C1orf32) (Figure 1-3) (Higashi et al., 2013; Masuda et al., 2011). Angulins have a single 

transmembrane domain, an amino-terminal extracellular Ig-like domain, and a carboxyl-

terminal cytoplasmic domain (Masuda et al., 2011). The angulin subtypes are expressed 

complementarily in many epithelial cell types, although angulin-1/LSR and angulin-

2/ILDR1 are co-expressed in some regions. Previous studies using cultured epithelial 

cells showed that tricellulin and angulins are required for the full barrier function of 

epithelial cells with high transepithelial electrical resistance. Importantly, angulins recruit 

tricellulin to TCs through direct or indirect interaction between the cytoplasmic domain of 

angulins and the C-terminal cytoplasmic domain of tricellulin (Higashi et al., 2015). It has 

recently been revealed that angulin-2 is the causative gene for a familial nonsyndromic 

deafness, DFNB42 (MIM 609646) (Higashi et al., 2013). Angulin-3 was reported to be a 

candidate modifier of susceptibility to type-2 diabetes (Higashi et al., 2013). Angulin 

proteins 2 and 3, but not angulin-1, are involved in alternative pre-mRNA splicing via 

binding to splicing factors transformer 2 protein homolog alpha (TRA2A), transformer 2 

protein homolog beta (TRA2B), and serine/arginine-rich splicing factor 1 (SRSF1) which 

are also SR protein family members (Liu et al., 2017). Sugawara and colleagues recently 

described that in MDCK II tricellulin KO cells, angulin-1 was localized at TCs extending 

along the apicobasal axis. The plasma membrane contacts, and the central sealing 

elements were maintained, but the central sealing elements lacked connection of short TJ 

strands. In addition, they found that in MDCK II angulin-1 KO cells, a paracellular gap was 

observed at TCs in horizontal ultrathin sections and freeze-fracture replicas, the vertical 

TJ strands at TCs were separated and did not form the central sealing elements, 

concluding that the epithelial barrier function was impaired in angulin-1 KO cells, but not 

in tricellulin KO cells (Sugawara et al., 2020). 

1.3.4 Adjacent tight-junctional proteins 

The interface between the transmembrane proteins and most cytoplasmic components is 

formed by a set of scaffolding proteins with multiple PDZ domains. PDZ domains, named 

for the proteins PSD-95, large discs, and ZO-1, are protein binding modules that 
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recognize target sequences at the extreme C-termini of transmembrane proteins. PDZ-

proteins at the TJ include the ZO-MAGUK proteins ZO-1, ZO-2, and ZO-3; the MAGUK 

relatives MAGI-1, MAGI-2, and MAGI-3; a protein with 13 PDZ called MUPP-1; and the 

three conserved cell polarity protein complexes; namely the Par-aPKC complex, Crb3 

(Crumbs) complex, and the Scribble-Lgl-Dlg complex which are crucial to maintaining 

balanced communication and proper barrier function. The Crumbs complex co-localizes to 

tight junctions with the Par-aPKC complex, which are stabilized via mutually antagonistic 

phosphorylations with the basolateral Scribble complex (Heinemann and Schuetz, 2019; 

O'Leary et al., 2021). Following assembly of the adherens junction, the ZO-1 and ZO-2 

coordinate the polymerization of the claudin proteins to the TJ strands. In addition to the 

role for ZO proteins in TJ assembly, recent work has defined a role of these proteins, 

particularly ZO-1, in barrier regulation. ZO-1, but not ZO-2, knockdown in MDCK layers 

increased paracellular permeability of large solutes, such as the leak pathway (Figure 1-7) 

(Otani et al., 2019). Although charge selectivity was not examined, ZO-1 knockdown did 

not affect the paracellular flux of small polyethylene glycols, suggesting that pore pathway 

barrier function was intact (Otani et al., 2019).  

1.4 Barrier properties: resistance, flux, and selective 
permeability 

The characteristics of the selectively permeable TJ barrier vary widely among different 

epithelia, within different cell types of a single tissue, and respond to physiological and 

pathophysiological stimuli. Thus, while the paracellular barrier is most often assessed by 

electrical conductance, its reciprocal transepithelial electrical resistance, or transepithelial 

flux of small fluid phase markers, such as mannitol, measurement of only one or two of 

these parameters provides a half-finished picture of overall barrier function (Johnson, 

2012; Shen et al., 2011). 

1.4.1 Electrical resistance, “leaky” and “tight” epithelia  

The transepithelial resistance (TER) represents the sum of two ion-conductive pathways, 

the paracellular and the transcellular one. The TER is a reciprocal indicator of the 

summed-up permeability of all involved ions and their concentrations (e.g., increased TER 

indicates decreased ion permeability). This parameter is used to monitor the cell barrier 
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integrity during experiments and roughly judge the tightness of epithelial and endothelial 

tissues for ions (Yeste et al., 2018; Johnson, 2012; Shen et al., 2011).  

By definition, a “leaky epithelium” is defined by a ratio of paracellular resistance over 

transcellular resistance below one (Rpara / Rtrans < 1), while a “tight epithelium” is defined 

by a ratio of paracellular over transcellular resistance above one (Rpara / Rtrans > 1) 

(Diamond, 1974). Measurements of Rpara and Rtrans have been established by the method 

of two-path impedance spectroscopy (Krug et al., 2009b).  

Practically, most leaky epithelia possess highly ion-permeable tight junctions so that their 

TER is low. On the other hand, most tight epithelia possess tight junctions of rater low or 

almost no ion permeability and a lesser density of ion-conductive membrane transporters; 

therefore, their TER is very high. Along these lines, the two epithelial cell lines used in this 

study, HT-29/B6 and MDCK C7, have been characterized and classified as “medium-

tight” and plain “tight”, respectively (Krug et al., 2014).  

Functionally, tight epithelia are characterized by the ability to maintain high 

electrochemical gradients produced by active transcellular transport without considerable 

back-leak through the tight junction (Figure 1-4). This configuration allows producing 

highly concentrated (or highly diluted) luminal content, as in the distal nephron, which can 

produce urine with osmolarity several times higher (or lower) than plasma. In contrast, 

“leaky” epithelia can move large amounts of solutes and water in an isosmotic way 

(Figure 1-4). 

As a general rule, in organs forming tubular-shaped epithelia like nephron, intestine, and 

ducts of sweat or salivary glands, the proximally located segments are covered by leaky 

epithelia, and the functionally distal segments are covered by tight epithelia (Günzel and 

Fromm, 2012). An excellent example of that is the human gastrointestinal tract, which 

secretes and then reabsorbs about 10 L of fluid each day (Anderson and Van Itallie, 

2009). While the small intestine is covered by leaky epithelia, especially the distal part of 

the colon is covered by tight epithelia, steep electrochemical gradients can be produced 

to reabsorb ions water and to form solid stool (Anderson and Van Itallie, 2009). 
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Figure 1-4. Flow across a leaky and tight epithelium. (a) The tight junction in a “leaky” 
epithelium (e.g., proximal renal tubule) is highly permeable and allows ions to pass the TJ 
by channel-forming claudins. All TJs, either “leaky” or “tight”, are not much permeable to 
other solutes like sugars, amino acids, etc.; nevertheless, water passes through relatively 
easily. Leakiness prevents an epithelium from creating strong ion concentration gradients 
between external and internal surfaces but are capable of transporting a large number of 
solutes and water, in part via the paracellular pathway. (b) Tight junctions in “tight” 
epithelia effectively bar paracellular flow of solutes and water, and they allow these 
epithelia to generate high concentration gradients, but only lower transport rates. It was 
adapted from (Preston, 2013).  

1.4.2 Charge selectivity 

Study of leaky epithelia revealed another interesting and variable property, namely that 

tight junctions (TJs) have ionic charge selectivity. Charge selectivity is most relevant in 

leaky tight junctions, where higher amounts of ions flow (Anderson and Van Itallie, 2009). 

Experimentally, ion charge selectivity is determined as the ratio of cation to anion 

permeability. Almost the TJs of most leaky epithelia show a preference for Na+ over Cl−, 

and the permeability ratio (expressed as PNa+/PCl-) ranges from about 10 to 0.1 among 

different epithelia and experimental cultured cell models. This represents only a modest 

ability to distinguish compared with membrane ion channels (Anderson and Van Itallie, 

2009). Charge selectivity is a characteristic feature of paracellular barriers and is essential 

for creating transepithelial gradients that direct passive paracellular transport (Figure 1-5). 

(a) (b)
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For instance, in the kidney, charge selectivity of the pore pathway varies along the length 

of the nephron, and such variance is critical to the physiology of tubular reabsorption 

(Shen et al., 2011). Nonetheless, paracellular permeability differences between nephron 

segments are relatively fixed, except for the stimuli that modify synthesis and turnover of 

tight junction proteins over extended intervals (Shen et al., 2011).  

 

 

Figure 1-5. A paracellular solute’s view of a hypothetical tight junction comprising various 
claudins in homotypic and heterotypic interactions (Mullin et al., 2005). Claudin protein 
alignment in pairs can create aqueous pores at points where similar charge alignment 
results in strand repulsion (a). Pores created by such charge repulsion would support the 
passage of specific solutes based on their charge and size. This model oversimplifies but 
serves to highlight two types of changes of permeability. In the event of downregulation of 
a specific claudin (b), the decreased expression of neutrally charged claudin-X creates 
opportunities for the increased paracellular flow of moderately large electrolytes and 
nonelectrolytes between wider separations of claudin strands. Another possibility (c) is 
that events such as the phosphorylation in claudin-Y creates steric changes in the 
intercellular loops, resulting in claudin-Y misalignment. The claudin-Y homotypic 
interactions then produce, in turn, pores created by interstrand repulsion of similar 
charges. As in (b), the net result is decreased transepithelial resistance or increased 
nonelectrolyte flux, or both. It was adapted from (Mullin et al., 2005). 

1.4.3 Size selectivity 

In addition to charge selectivity, the TJ discriminates between solutes based on size. This 

barrier's function is complex, with at least two mechanisms of trans–tight junction flux: a 

pore pathway and a leak pathway (Johnson, 2012; Shen et al., 2011). 

1.4.3.1 Paracellular pore pathway 

TJ selectivity is regulated through claudin pores, channels formed by the extracellular 

domains of claudins, that conduct ions and small molecules based on size and charge 

(diameter of ≤ 8 Å (Van Itallie et al., 2008)). Paracellular permeability through claudin 

pores is commonly stated to as the “pore pathway”. Selectivity is based on the 

(b)(a) (c)
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composition of pore-forming claudins (both cation and anion pores) and barrier-forming 

claudins, restricting the flux of small solutes (Figure 1-5 and 1-6). TJs' barrier properties 

can change in response to various stimuli by "claudin switching", e.g., by replacing a 

pore-forming claudin with a barrier-forming claudin. Owing to the large number of highly 

selective pores, the pore pathway is characterized by its high capacity and high selectivity 

(Varadarajan et al., 2019). 

1.4.3.2 Paracellular leak pathway 

A second pathway, known as the “leak pathway”, allows larger molecules to cross TJs, 

although with less selectivity and a much lower capacity than the pore pathway. To date, 

there are three possible routes that larger molecules can use to cross the epithelium:  

 

1) The predominant theory is that leak pathway flux occurs due to the breaking and 

annealing of claudin strands, which may be influenced by intermolecular associations 

between claudins, occludin, ZO-1, and the actin cytoskeleton; for example, loss of 

occludin is associated with a ~62.5 Å barrier defect suggests a model of leak associated 

with large paracellular channels (Buschmann et al., 2013). On the other hand, despite a 

lack of structural understanding, components of the signal transduction machinery that 

regulates leak pathway permeability have been studied extensively. The most well-

characterized of these is myosin light chain kinase (MLCK), which regulates paracellular 

permeability during physiological, Na+-nutrient cotransport. Expression of constitutively-

active MLCK is sufficient to increase leak pathway permeability in vitro and in vivo. The 

interaction with ZO-1 may be central to MLCK-dependent leak pathway regulation 

because ZO-1, but not occludin, binds directly to F-actin (Zuo et al., 2020). Consistent 

with this idea, the actin-binding region of ZO-1 is required for in vitro barrier regulation by 

MLCK. Moreover, ZO-1 knockdown increases the leak pathway permeability of epithelial 

monolayers (Figure 1-6) (Liang and Weber, 2014).  

 

2) The second potential leak pathway regulator, JAM-A, is sufficient to limit the flux of 

macromolecules in the absence of claudin strands, suggesting that JAMs serve as a stop-

gap measure to protect barrier integrity when claudin strands are disrupted or newly 

forming (Figure 1-6) (Varadarajan et al., 2019).  
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Figure 1-6. Size selectivity in MDCK II, ZO-1/ZO-2 dKO, claudin quinKO, JAM-A KO, and 
claudin/JAM-A KO cells. (a) In MDCK II cells, claudins and JAM-A are concentrated at the 
TJs with ZO-1/ZO-2. The membranes are closely connected to each other, and kissing 
points are formed, and paracellular diffusion of electrolytes and macromolecules is 
banned. Epithelial polarity is maintained. (b) In ZO-1/ZO-2 dKO cells, claudins and JAM-A 
are diffusely localized, and membrane associations and kissing points are lost. 
Intercellular space is widened, and electrolytes and macromolecules diffuse across the 
paracellular space. Epithelial polarity is disorganized. (c) In claudin quinKO cells, JAM-A 
and ZO-1/2 are concentrated at the apical junctions, and membrane associations are 
formed despite the lack of kissing points. Although electrolytes can diffuse across the 
paracellular space, the paracellular diffusion of macromolecules is prohibited. No 
epithelial polarity defects are observed. (d) In JAM-A KO cells, claudins and ZO-1/2 
localize to TJs, and kissing points are formed. The epithelial barrier and polarity are not 
perturbed. (e) In claudin quinKO/JAM-A KO cells, ZO-1 can localize to apical junctions, 
but discontinuity is observed. Intercellular space is widened, although focal membrane 
associations are observed in some cases. Electrolytes and macromolecules can diffuse 
across the paracellular space, and epithelial polarity is disorganized in some regions. It 
was adapted from (Otani et al., 2019). 

 

3) The third possible regulator that has been postulated is the central tube in the tTJ 

owing to its large dimension (∼10 nm in diameter). Compatible with this hypothesis, 

knockdown of angulin-1 in the mouse mammary gland Eph4 epithelial cells significantly 

increased the permeability of macromolecules ranging in sizes from 0.9 to 9.0 nm in 

diameter (equivalent to 300 – 40000 Da in molecular weight) (Higashi et al., 2013; 

Sugawara et al., 2020). On the other hand, when tricellulin was overexpressed at low 

levels in the MDCK II cells (only at the tTJ), impeded the permeation of macromolecules 

with sizes from 1.3-4.6 nm in diameter (900 – 10000 Da in molecular weight) but showed 

no effect on molecules smaller than 1.3 nm in diameter (<900 Da in molecular weight) 

(a) (b) (c) (d) (e)
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(Krug et al., 2009a). Nevertheless, when tricellulin is overexpressed in bTJs and tTJs, the 

permeabilities to ions and midsize to large solutes decreased (Krug et al., 2009a). In 

contrast, in tTJs tricellulin overexpression did not alter permeability to ions but strongly 

diminished the permeability to macromolecules of 4-10 kDa. The presence of redundant 

mechanisms to regulate the leak pathway highlights the importance of restricting 

macromolecules' flux via the leak pathway (Varadarajan et al., 2019).  

 

In summary, in leaky epithelia, many channel-forming claudins within the bTJ account for 

most ion conductance because tTJs are too rare to contribute significantly. In contrast, in 

tight epithelia, bTJ pathways for ion passage are rare, so the ion conductance of the tTJ 

becomes an essential contributor to overall flux (Figure 1-7). Especially under 

pathological conditions, changes in the composition of the tTJ may lead to severe defects 

affecting the macromolecular barrier and the ionic barrier in tight epithelia. 
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Figure 1-7. Tricellulin as a regulator of the paracellular leak pathway. (a) Leaky epithelia. 
(1) Low tricellulin levels: tTJs allow ionic passage but are too rare to contribute because 
ions predominantly pass via abundant paracellular claudin channels located in the bTJ. 
Macromolecules can pass via rare, reversible, and coincidental strand breaks or the 
comparably frequent tTJ. (2) High tricellulin levels: The tTJ is virtually sealed. For ions, 
the main route via bTJ claudin channels is unaffected, leaving TER unchanged, while for 
macromolecules, the main pathway is closed. Only the rare events of strand breaks may 
allow paracellular macromolecule passage. (b) Tight epithelia. (1) High tricellulin levels: 
The tTJ is nearly completely sealed to both macromolecule and ion passage. Additionally, 
ion-conductive claudin channels are low, leading to a low ion permeability and thus a high 
TER. (2) Very low tricellulin levels: The tTJ is open, now not only being of importance for 
macromolecule passage but also for being the predominant route for ion passage. Under 
these conditions, the tTJ makes a considerable contribution to ion permeability and TER 
changes. It was adapted from (Krug, 2017). 

(a)

(b)
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1.5 Water transport across the epithelia 

1.5.1 Transcellular water pathway 

Water transport through cell membranes is so intricate that there are still some debates. 

There are two general transcellular water transport mechanisms: water is either 

transported through aquaporins (AQPs) driven by the transmembrane difference in water 

osmosis or transported through various carriers that transport specific solutes organic 

molecules across the cell membrane but also act as water transporters. The most 

representative non-AQP water channel is urea transporter B (UT-B) (Yang and Verkman, 

2002; Ogami et al., 2006) and the SGLT1 cotransporter, which temporarily form a 

continuous water channel through the transporter that allows the water to penetrate the 

protein (Adelman et al., 2014). 

1.5.1.1 Aquaporin channels 

Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly 

transport water across the cell, and some facilitate low-molecular-weight solutes. AQPs 

consist of 13 members (AQP0–AQP12) in mammals and are widely distributed in various 

tissues and organs (He and Yang, 2019). According to their primary structure, they have 

been classified into three subfamilies: 1) Water-selective AQPs or orthodox aquaporins 

include AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8. 2) Aquaglyceroporins are 

permeable to water and some small uncharged solutes, such as glycerol and urea, this 

subfamily includes AQP3, AQP7, AQP9, and AQP10. For instance, AQP3, AQP8, and 

AQP9 have been demonstrated to transport hydrogen peroxide (H2O2) in mammalian 

cells. 3) The third subfamily, named superaquaporins, including AQP11 and AQP12, has 

low homology at its amino acid level with other classical AQPs (He and Yang, 2019). 

Cells expressing AQPs on their plasma membrane have an ~5- to 50-fold higher osmotic 

water permeability than membranes that do not. AQP-expressing cells generally contain 

several thousand or more AQPs per μm2 of the membrane compared with ten or fewer ion 

channels per μm2 of the membrane (Verkman, 2011). Due to a broad spectrum of 

pathophysiological function in balancing water homeostasis, modulating intracellular 

signaling, and regulating cell proliferation and oxidative stress response, AQPs have been 

proven to participate in renal diseases, dermatosis, bowel disease, and cancer (He and 

Yang, 2019). 
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 The digestive system 

Secretion and absorption, two of the digestive system's primary functions, both require 

fluid transfer across cellular membranes. Daily secretion in the form of saliva, gastric 

juices, intestinal mucous, bile, and pancreatic juice comprise a total volume of 

approximately 7.5 L of fluid in the human digestive system; approximately 9 L of fluid is 

absorbed daily (Day et al., 2014). The digestive system is a major site of fluid movement 

and has a comprehensive AQP expression profile within its organ network. A polarized 

AQP expression pattern suggests that an organized transcellular route for water is an 

essential role of AQPs in facilitating high secretion and absorption rates (Day et al., 2014). 

However, and in contrast to the kidney, AQPs in the intestine are considered not 

quantitatively abundant enough to do the full job; therefore, SGLT1 may play a major role 

(Zeuthen et al., 2016). The general distribution of AQPs in the digestive system is 

summarized in Figure 1-8. 

 

 

Figure 1-8. Distribution of aquaporins in the digestive system (Zhu et al., 2017). AQP1, 
AQP5, and AQP8 are expressed in salivary glands. AQP1, AQP3, and AQP5 are present 
in the oral cavity. In the stomach, AQP1 is expressed in the endothelial cells of capillaries 
and small vessels; AQP3 is expressed in the basolateral membrane of surface mucous 
cells; AQP4 is expressed in the basolateral membrane of parietal cells, and AQP5 is 
present at the apical membrane of parietal cells. Small intestine expresses AQP1, AQP3, 
AQP4, AQP5, AQP8, and AQP9. Large intestine expresses AQP1, AQP3, AQP4, and 
AQP8. In the liver AQP1, AQP8, and AQP9 are expressed. AQP1 is diversely expressed 
in gallbladder, bile duct and pancreas, while AQP8 is present in the pancreas as well. 
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 The renal system 

Kidney AQPs form a highly organized system that facilitates water homeostasis 

maintenance (Day et al., 2014). To be more precise, eight AQPs are expressed in 

different segments and various cells of the kidney to maintain normal urine concentration 

function, tissue development, and substance metabolism (AQP1, AQP2, AQP3, AQP4, 

AQP5, AQP6, AQP7, and AQP11) (He and Yang, 2019). The general distribution of AQPs 

in the renal system is summarized in Figure 1-9. 

 

 

Figure 1-9. Expression and localization of AQPs in the kidney. AQP1 is located in the 
proximal tubule, descending thin limbs of Henle, and vasa recta; AQP2, AQP3, AQP4, 
AQP5, and AQP6 are in the collecting duct; AQP7 and AQP11 are expressed in the 
proximal tubule (He and Yang, 2019). 

1.5.1.2 Urea transporter B 

The urea transporter B (UT-B) is widely expressed in many tissues, such as the kidney, 

colon, small intestine, brain, liver, pancreas, among others. UT-B is a homotrimer, and 

each protomer contains a urea conduction pore with a narrow selectivity filter. The 

transport of water and urea are weakly temperature-dependent, and mostly inhibited by 

the urea transport inhibitors, but not inhibited by the AQP inhibitors HgCl2. In summary, 

the fact that urea and water share the same pathway through the pore of UT-B also 

indicates that UT-B acts as a water channel (Huang et al., 2017; Yang and Verkman, 

2002; Ogami et al., 2006).  
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1.5.1.3 Cotransporters 

Some cotransporters transport not only their specific substrates but also water. The water 

transport by cotransporters may well be significant because of the large number of 

cotransporters per cell and their considerable unit water permeability (Huang et al., 2017; 

Zeuthen, 2010; Zeuthen, 2002; Zeuthen et al., 2016; Zeuthen and MacAulay, 2012). The 

cotransport of water is independent of the osmotic gradient and even occurs in the 

presence of adverse osmotic gradients (Huang et al., 2017; Loo et al., 1996). Some 

cotransporters are summarized in Table 1-1. 

 

 Sodium-glucose transporters (SGLT) 

The human SGLT family is a group of twelve members (Hu et al., 2013). Except for 

SGLT1-5 co-transporting for sugars, they include Na+ cotransporters for myo-inositol, 

iodide, short-chain fatty acids, and choline. As a multifunctional protein, SGLT1 works as 

a water channel and transporter, which couples’ water and glucose. The passive osmotic 

permeability of the hSGLT1 plays an important role in the final achievement of isotonic 

transport, and the water cotransport (4 L of water with 1 M of glucose) in the human small 

intestine plays a vitally important role in reuptake (total 9 L per day) (Huang et al., 2017; 

Meinild et al., 1998; Tappenden, 1999). SGLT1 has three modes in isotonic water 

transport: First, water influx is directly correlated with Na+ and glucose in the ratio of 

260H2O/2Na+/1glucose with no delay in humans. Second, it acts as a water channel. Last, 

it generates an osmotic driving force that is employed by other pathways (Huang et al., 

2017; Loo et al., 1996). In accordance with the above, Zeuthen et al. concluded that in the 

mouse small intestine SGLT1 accounted for two-thirds of the passive water flow across 

the gut (Zeuthen et al., 2016).  

 

Table 1-1. Water-transport properties of cotransporters, uniporters, and channels. 

Protein Substrates 

Number of water 

molecules 

transported 

per turnover 

(Zeuthen, 2010) 

Osmotic water 

permeability 

per transporter 

(10-14 cm3s-1) 

(Zeuthen, 2010) 

K-Cl cotransporter 

(KCC4) 
K+/Cl-  500 NA 

Na-K-Cl 

cotransporter 
Na+/K+/2Cl-  590 NA 
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(NKCC1) 

Monocarboxylate 

transporter (MCT1) 
H+/lactate  500 NA 

GABA transporter 

(GAT-1) 
2Na+/Cl-/GABA   330 0.7 

Na+-coupled 

glutamate 

transporter (EAAT1) 

2Na+/H+/K+/glutamate  440 0.2 

Na+-dicarboxylate 

cotransporter 

(NaDC-1) 

2Na+/dicarboxylate  175 1.5 

Glucose transporter 

(GLUT1) 
Glucose  40 0.2 

Glucose transporter 

(GLUT2) 
Glucose  40-110 0.1 

UT-B Urea ND 7.3 

AQP-1 H2O NA 4.0 

NA: not applicable, ND: not determined. 

1.5.2 Paracellular water pathway 

Whether or not the TJ at all is permeable to water was highly controversial for a long time. 

Across both epithelium and endothelium, significant water permeability remains when 

transcellular water channels are removed from the plasma membrane (Fischbarg, 2010; 

Steward et al., 1990). Furthermore, claudins can convey the paracellular solute transport, 

but at least two claudins, claudin-2 and claudin-15, can also mediate paracellular water 

flux. 

 

A computational study analyzing the water and ion permeability of a claudin pore 

suggested that, in physiological solutions, ions drag a shell of water molecules with them 

through pores (Laghaei et al., 2016). Several channels with diameters from 3.8 to 8.0 Å 

were simulated, and it was shown that the relation between water flux and pore size is not 

linear. The number of water molecules passing the pores decreases with decreasing pore 

size between 5.0 and 8.0 Å, whereas water permeability of a pore ≤ 5 Å seems to be 

independent of the pore diameter and very low (Laghaei et al., 2016).  
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1.5.2.1 Bicellular tight junction 

 Cation and water channel-forming claudins: claudin‐2 and claudin-15 

Similar to claudin‐2, claudin‐15 was identified as a cation‐selective channel‐forming 

claudin. The tight junction protein claudin‐2 is predominantly expressed in leaky epithelia, 

such as the proximal tubule and small intestine, which are characterized by high 

paracellular ion permeability (Amasheh et al., 2002). Endogenous expression of 

claudin‐15 was predominantly found in the gut, with the highest abundance in the small 

intestine, but claudin‐15 is also present in colon segments. Nevertheless, claudin‐15 is 

not expressed in the kidney tubule system (Tamura et al., 2011).  

 

The function of claudin‐2 was analyzed in overexpression studies, and it was found to be 

permeable to cations but not to anions or larger, uncharged molecules, such as mannitol, 

lactulose, or 4‐kDa dextran (Amasheh et al., 2002). In vivo studies on claudin-2 knockout 

mice revealed the involvement of claudin‐2 in paracellular water permeability, especially 

in the proximal tubule, with strong claudin‐2 expression (Wilmes et al., 2014). Muto et al. 

found a decreased net transepithelial reabsorption of Na+, Cl-, and water in isolated 

proximal tubules of claudin‐2–deficient mice (Muto et al., 2010). On the other hand, 

overexpression of claudin‐15 in the anion‐selective cell line LLC‐PK1 increased in cation 

permeability, whereas overexpression in the cation‐selective cell line MDCK II had no 

effect (Colegio et al., 2002; Van Itallie et al., 2003). Studies on claudin‐15–deficient mice 

show that they develop megaintestine and revealed that claudin‐15 is essential for Na+ 

homeostasis in the small intestine, which guarantees effective glucose and galactose 

reuptake through the sodium-glucose symporter SGLT1 (Tamura et al., 2011). 

 

Regarding water transport, monovalent cations pass the claudin‐2 pore in a partially 

dehydrated form and the cation and water fluxes are coupled and share a common pore 

(Rosenthal et al., 2017a; Rosenthal et al., 2010). Na+ flux through the claudin‐2 pore 

induces water flux, and conversely, the osmotic gradient‐induced water flux causes Na+ 

movement through the claudin-2 pore (Rosenthal et al., 2017a; Rosenthal et al., 2010). In 

contrast, Na+ and water's concomitant passage through the claudin‐15 pore does not 

occur since cations pass the claudin‐15 pore in a more strongly hydrated form compared 

to the claudin‐2 pore (Rosenthal et al., 2019). The presence of a partially hydrated ion like 

Na+ could impair or even inhibit additional water passage. Additionally, osmotic water flux 
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through claudin‐15 induced by mannitol could impede the passage of Na+ through 

claudin‐15 (Rosenthal et al., 2019). Thus, claudin‐15 allows the passage of either Na+ or 

water, but not a simultaneous passage of both as found for claudin‐2 (Luettig et al., 2015; 

Rosenthal et al., 2017a; Rosenthal et al., 2019). 

 

 Ion channel-forming claudins: e.g., claudin‐10a and ‐10b and claudin-17 

The tight junction protein claudin‐10 exists in two major isoforms, claudin‐10a and 

claudin‐10b. Overexpression of these isoforms in MDCK II and MDCK C7 cells without 

endogenous claudin‐10 expression reveals that claudin‐10a acts as an anion channel, 

whereas claudin‐10b forms a cation channel (Milatz and Breiderhoff, 2017). On the other 

hand, claudin‐17 was identified as an anion channel‐forming tight junction protein by 

overexpression as well as knockdown experiments. Overexpression in MDCK C7 cells 

without endogenous claudin‐17 resulted in increased permeability for anions, including  

Cl-, HCO3
–, and small organic anions, and knockdown in LLC‐PK1 cells resulted in a 

decrease of anion permeability (Krug et al., 2012). 

 

Analysis of osmotically driven water flux in the claudin-10a, -10b or ‐17–expressing cell 

line MDCK C7 revealed no alteration in water permeability compared with the 

corresponding vector controls. Although the Na+ permeability of claudin‐10b is 

comparable to claudin‐2, claudin‐10b is not permeable to water (Rosenthal et al., 2010). 

Besides, the finding that claudin‐17 has a similar or even larger pore diameter than 

claudin‐2 and is impermeable to water indicates that other, currently unknown parameters 

of the pore structure provide or prevent permeability water. It is possible that specific 

amino acids within the first extracellular loop, which is known to form the pore, form a 

hydrophobic gate, and contribute to the missing water permeability of this claudin.  

 

 Barrier-forming claudins: e.g., claudin‐1 and claudin-3 

Claudin‐1 and claudin-3 are expressed ubiquitously in most body tissues (Günzel and 

Fromm, 2012). Overexpression or knockdown of claudin‐1 and claudin-3 in different cells 

indicated that claudin‐1 acts as a profound barrier for ions (Milatz et al., 2010; Inai et al., 

1999).  
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Claudin‐1 in the epidermis is essential to the skin barrier, either directly or indirectly, is 

crucial for sealing the epidermis against ions, larger molecules, and water. However, 

water flux measurement revealed no significant difference in water permeability between 

keratinocytes from wild‐type and claudin‐1–deficient mice. Similarly, knockdown of 

claudin‐1 in human keratinocytes did not alter the permeability to water, although here, 

the permeability to ions, fluorescein, and 4- and 40-kDa FITC-dextran was increased 

(Kirschner et al., 2013). It is not yet known whether the overexpression of claudin-1 would 

further strengthen the water barrier in the TJs. In summary, claudin‐1 forms a water 

barrier, but a loss of claudin‐1 does not impair the water barrier of the tight junction 

(Rosenthal et al., 2017b). 

 

On the other hand, overexpression of claudin‐3 in the low‐resistance cell line MDCK II 

revealed that claudin‐3 seals the tight junction against ions of either charge and against 

uncharged solutes, such as fluorescein and 4‐kDa FITC-dextran. Surprisingly, 

overexpression of claudin‐3 did not cause increased sealing of the tight junction against 

water flux (Milatz et al., 2010). It is not yet known whether the downregulation of claudin-3 

would weaken the water barrier within the TJs. In summary, an increase of claudin‐3 

abundance within the tight junctions of claudin‐2–expressing cells augments the seal 

against ions and other solutes, but not against water (Rosenthal et al., 2017b). 

1.5.2.2 Tricellular tight junction 

The tricellular tight junction is found where three cells meet and where three bicellular 

tight junction strands converge. The tricellular tight junction is thought to be important for 

the paracellular permeability of ions and water in epithelial tissues because the regular 

bicellular tight junctions cannot seal the tricellular corners. In fact, the tricellular tight 

junction is made of two types of proteins, tricellulin, and angulins, which are different from 

the components of the bicellular tight junction. Unlike the bicellular tight junction that is 

only permeable for small ions and molecules with a diameter of ≤ 8 Å, the tricellular tight 

junction can allow the passage of macromolecules with sizes up to 100 Å in diameter. 

 

 Angulin-2/ILDR1 

Angulin-2/ILDR1 is localized to tricellular tight junctions of the distal tubules in the mouse 

kidney. Gong and coworkers described that the angulin-2 knockout mice developed 
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phenotypes similar to a hereditary human disease, diabetes insipidus, which included 

polydipsia, polyuria and renal concentrating defect (Gong et al., 2017). Surprisingly, the 

renal tubular epithelium that was impermeable to water in wild-type mice became highly 

permeable to water in angulin-2 knockout mice. Outstandingly, molecular analyses 

revealed normal gene expression profiles and subcellular localization patterns for the TJ 

structural components, claudins, tricellulin, and ZO-1, in the knockout mouse kidney 

(Gong et al., 2017). More importantly, the transcellular water pathway remained intact 

when the paracellular water pathway was perturbed. Besides, in cultured renal epithelial 

cells, normally lacking the expression of angulin-2, overexpression of angulin-2 reduces 

the paracellular water permeability (Gong et al., 2017). These results have provided 

evidence that the tTJ contains a paracellular water pathway, which is usually inhibited by 

angulin-2 and is independent of the transcellular water pathway. In contrast to the Gong 

findings, Hempstock et al. concluded that angulin-2 KO mice have no detectable water 

transport abnormalities. In addition, they found that in the colon and the kidney of angulin-

2 KO mice, another tTJ protein, angulin-1, changes its expression pattern, and this 

change in tissue localization of angulin-1 compensates for the loss of angulin-2 and 

maintains the barrier function of the epithelia (Hempstock et al., 2020).  

1.5.3 Interaction between transcellular and paracellular water 
transport pathways 

The potential physiological interactions between the transcellular and paracellular 

pathways of water transport were evaluated by deletion of aquaporin 5 (AQP5), the major 

transcellular water transporter in salivary acinar cells (Kawedia et al., 2007). It was found 

that the paracellular transport of 4-kDa FITC-dextran (FD4) was affected, which is 

transported through the paracellular but not the transcellular pathway (Kawedia et al., 

2007). Besides, an increase in the number of tight junction strands of both AQP5+/+ and 

AQP5−/− male mice after pilocarpine stimulation was found. Furthermore, expression of 

occludin, and claudin-3 and -7, critical proteins that regulate the permeability of the tight 

junction barrier, were significantly decreased in AQP5−/− compared with AQP5+/+ salivary 

glands (Kawedia et al., 2007). In conclusion, Kawedia et al. revealed the existence of a 

gender-influenced molecular mechanism involving AQP5 that allows transcellular and 

paracellular paths of water transport to act in conjunction. Nevertheless, the quantitative 

contribution of each pathway to total fluid transport remains to be established. 
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1.6 Purpose and objectives 

A highly specialized and thus most interesting part of the overall TJ is formed by the 

tricellular TJ, where three or more cells meet. Its major components are tricellulin and 

angulin-1 (LSR), -2 (ILDR1), and -3 (ILDR2).  

 

The permeation property of tTJ, therefore, remains a major mystery, especially 

concerning water transport. Its major component is tricellulin, a tetraspan protein that 

plays a critical role in sealing the tTJ against medium-sized and large molecules (Krug et 

al., 2009a; Higashi and Miller, 2017). Furthermore, although tricellulin is ubiquitously 

expressed in epithelial tissues, no other clinical manifestations were co-segregated with 

hearing loss in two DFNB49 families with tricellulin mutations (Nayak et al., 2013). 

Recently, in our research group, Krug and colleagues found that in the early stages of 

ulcerative colitis, tricellulin is downregulated, and this would be of clinical importance 

because it may be increasing the macromolecule and water permeability of the intestinal 

epithelia and thus contributes to leak-flux diarrhea (Krug et al., 2018). In addition to 

tricellulin, the angulin protein family is also part of tTJ. The angulins play a regulative role 

and act as precursors in tTJ formation, and the phenotypes caused by angulin 

deficiencies are diverse and severe. Angulin-1-deficient mice exhibit embryonic lethality 

with blood-brain barrier failure (Sohet et al., 2015), while angulin-2-deficient mice show 

polyuria and polydipsia arising from renal concentrating defects in addition to hearing loss 

(Higashi et al., 2015; Gong et al., 2017). Most exciting, in pilot experiments, it was found 

that overexpression of tricellulin in MDCK II, epithelial cells with low endogenous tricellulin 

content, seals against paracellular water flux, similar to that found with angulin-2.  

 

This doctoral thesis aimed to clarify the contribution of tricellulin and angulin-1 to epithelial 

water permeability, which may lead to new insights concerning overall transport 

characteristics in epithelia with different tightness. With these findings, we wanted to 

address the physiological mechanisms associated with increased epithelial water 

permeability due to changes in tricellulin or angulin-1 expression. To this end, the 

research used the following strategy: 
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1.6.1 Effect of the tricellular tight junction on paracellular water 
transport 

To gain insights into the role of tricellulin and angulin-1 in the paracellular water pathway, 

we investigated the effect of the partial reduction of tricellulin and complete removal of 

angulin-1 inside of the TJ environment of HT-29/B6 cells (human colon adenocarcinoma 

cell line) and MDCK C7 cells (canine kidney cell line), two epithelial cell lines with different 

tightness. The knockdown and knockout cells were evaluated regarding the expression 

and localization of the endogenous proteins and the tight junction morphology and 

paracellular permeability for ions, macromolecules, and water. The results may improve 

understanding of whether the tricellular TJ, specifically tricellulin and angulin-1, may or 

may not establish a new-size independent paracellular pathway for water permeation. In 

addition, the results may improve understanding of whether angulin-1 can regulate the 

water permeability of tTJ similarly as does angulin-2 or whether it is indirectly associated 

with the expression or localization of tricellulin. 





 

 
 

2. Materials and methods 

 

2.1 Materials 

2.1.1 Devices 

All devices, the version and the supplier are listed in Table 2-1. 

 

Table 2-1. Devices. 

Device Version Supplier 

Centrifuge 

PerfectSpin 24R 

Refrigerated Microcentrifuge 

PEQLAB Biotechnology 

GmbH, Germany 

Universal 320R  
Hettich, Wehingen, 

Germany 

CO2 incubator Model CB-60 170 260 
Binder GmbH, Tuttlingen, 

Germany 

Electric pipetting device Pipetboy acu 
INTEGRA Biosciences, 

Zizers, Switzerland 

Freezing Container CoolCell® LX Corning Inc., NY, USA 

Heating block 
AccuBlockTM 

Digital Dry Bath 

Labnet International, Inc. 

NJ, USA 

Inverted microscope Olympus CK2 

Olympus Optical Co. 

(Europa) GmbH, Hamburg, 

Germany  

Lab Water System 
Arium® pro UV Ultrapure 

Water System 

Sartorius, Göttingen, 

Germany 

Laminar Flow Workbench 

SAFE 2020  

Thermo Electron 

Corporation, Waltham, MA, 

USA 

LaminAir HB2472 
Heraeus Instruments, 

Hanau, Germany 

HERA safe 

Thermo Electron 

Corporation, Waltham, MA, 

USA 

Laser-Scanning Microscope LSM 780  
Carl Zeiss Microscopy 

GmbH, Jena, Germany 

Magnetic stirring Ikamag® REO/RCT Merck, Darmstadt, Germany 

Micropipette 10, 100, 200 and 1000 μL Eppendorf, Hamburg, 
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Germany 

Microplate reader 

Tecan Infinite M200 PRO 

(Absorbance 96 well plates) 

Tecan Trading AG, 

Switzerland 

Tecan Sunrise  

(Absorbance 96 well plates) 

Tecan Trading AG, 

Switzerland 

Mini centrifuge Sprout  
Thermo Fisher Scientific 

Inc., Waltham, MA, USA 

Objective 63x Immersion oil 

 

Plan-Apochromat 63x/1.4 

Oil DIC M27 

Carl Zeiss Microscopy 

GmbH, Jena, DE 

Osmometer Osmomat 3000 Gonotec®, Berlin, Germany 

pH meter  HI 9017 microprocessor 
Hanna Instruments, Kehl, 

Germany 

Power supply Blotting device 200/2.0 
Bio-Rad Laboratories 

GmbH, Munich, Germany 

Resistance measuring 

device 
-- 

Institut für Klinische 

Physiologie, CBF, 

Charité Berlin, Germany 

Scale -- 
Musahl Waagenservice 

GmbH, Berlin, Germany 

Shaker 

Rocking platform VWR 
VWR International GmbH, 

Vienna, Austria 

Rocking platform WT12 
Biometra, Göttingen, 

Germany 

Rocking platform WT17 
Biometra, Göttingen 

Germany 

Vortex device LSETM Vortex mixer Corning Inc., NY, USA 

Water bath 

GFL 1083 
Burgwedel Biotech GmbH, 

Rheinland-Pfalz, Germany 

B4E5 
Medingen, Dresden, 

Germany 

SW20C (Shaking) 
JULABO GmbH, Seelbach, 

Germany 

Water transport device -- 

Institut für Klinische 

Physiologie, Charité, 

Berlin, Germany 
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2.1.2 Consumable supplies 

Consumable supplies are listed in Table 2-2. 

 

Table 2-2. Consumables supplies. 

Consumable supplies  Supplier 

25 cm2-tissue culture flask  Corning Inc., NY, USA 

75 cm2-tissue culture flask Corning Inc., NY, USA 

15 mL PPN tube Corning Inc., NY, USA 

50 mL PPN tube 
Greiner Bio-One GmbH, Frickenhausen, 

Germany 

6-well-tissue culture plate 

(10 cm2 per well) 
Corning Inc., NY, USA 

12-well-tissue culture plate 

(4 cm2 per well) 
Corning Inc., NY, USA 

24-well-tissue culture plate 

(2 cm2 per well) 
Corning Inc., NY, USA 

96-well microplates for BCA assays Corning Inc., NY, USA 

Biosphere filter tips 10, 200, 1000 μL 
SARSTEDT AG & CO. KG, Nümbrecht, 

Germany many 

Cell culture dish (35x10 mm) SPL, Life Sciences 

Stirring rod 120 mm 
SARSTEDT AG & CO. KG, Nümbrecht, 

Germany 

CryoPure Tubes 1.6 mL 
SARSTEDT AG & CO. KG, Nümbrecht, 

Germany 

Gel-Blotting-papers, Whatman® 3MM Carl Roth, Karlsruhe, Germany 

Microscope slides Menzel/Glaser, Braunschweig, Germany 

Microtiter plate 96 wells (Round bottom) 
SARSTEDT AG & CO. KG, Nümbrecht, 

Germany 

Serological Pipet (5, 10 and 25 mL) Corning Incorporated, NY, USA 

Polyscreen (R) PVDF transfer membrane PerkinElmer, Boston, MA, USA 

SafeSeal tube 1.5 mL 
SARSTEDT AG & CO. KG, Nümbrecht, 

Germany 

Safe-Lock tubes 0.5 mL Eppendorf AG, Hamburg, Germany 

Surgical disposable scalpels B BraunTM, Thermo Fisher Scientific 

Syringe 20 mL  BD DiscarditTM II, Spain 

Tissue culture dish (100x20 mm) Corning Incorporated, NY, USA 

Transwell filters (Millicell-HA, 0,6 cm²) MilliporeSigma, Darmstadt, Germany 
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2.1.3 Chemicals and kits 

Chemicals and kits are listed in Table 2-3. 

 

Table 2-3. Chemicals and kits. 

Chemicals  Supplier 

1,4 Dithiothreitol (DTT) 
Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) 

Sigma-Aldrich Chemie GmbH, Schnelldorf, 

Germany 

4', 6-diamidino-2-phenylindole (DAPI) 
Sigma-Aldrich Chemie GmbH, München, 

Germany 

4-kDa dextran (Lot: 181176 and 200190) Serva, Heidelberg, Germany 

4-kDa FITC-dextran (FD4) TdB Consultancy, Uppsala, Sweden 

-Mercaptoethanol Clontech, Heidelberg, Germany 

Ammonium persulfate (APS) Sigma-Aldrich, Schnelldorf, Germany 

AquaResist VWR International GmbH, Vienna, Austria 

BCA-Protein Assay (Reagents A and B) Pierce, Rockford, Illinois, USA 

Bovine serum albumin (BSA)  Biomol GmbH, Hamburg, Germany 

Calcium chloride, dihydrate Carl Roth GmbH, Karlsruhe, Germany 

Carbogen Linde AG, München, DE 

cOmplete mini, EDTA free, Protein Inhibitor 

Cocktail  
Roche, Basel, Switzerland 

DMSO (cell culture quality) Carl Roth GmbH, Karlsruhe, Germany 

Dulbecco's PBS with Mg2+/Ca2+  Gibco, Waltham, Massachusetts, U.S. 

Dulbecco's PBS without Mg2+/Ca2+  Gibco, Waltham, Massachusetts, U.S. 

Emersion oil for microscopy  
VWR International GmbH, Darmstadt, 

Germany 

Ethanol 100% 

Fisher scientific, UK/Acros organics, 

Belgium 

T.J. Baker, Poland 

Ethanol 80% 
Chemsolute, TH Geyer, Renningen, 

Germany 

Fetal Bovine Serum (FBS) 
Gibco, ThermoFisher Scientific, Berlin, 

Germany 

Glucose Carl Roth GmbH, Karlsruhe, Germany 

Glycine Carl Roth GmbH, Karlsruhe, Germany 

Hydrochloric acid (32%) Merck, Darmstadt, Germany 

Lipofectamine-Reagent (shRNA 

transfection) 
Invitrogen, Karlsruhe, Germany 

Lipofectamine-Reagent (CRISPR/Cas9 

transfection) 

Santa Cruz Biotechnology, Inc., Heidelberg, 

Germany 
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Magnesium chloride, hexahydrate Carl Roth GmbH, Karlsruhe, Germany 

Mannitol Sigma-Aldrich, Schnelldorf, Germany 

Methanol Merck, Berlin, Germany 

Milk powder  

(Blotting grade blocker non-fat dry milk)  
Carl Roth, Karlsruhe, Germany 

N,N,N',N'-Tetramethylethylenediamine 

(TEMED) 

ThermoFisher Scientific, Waltham, MA, 

USA 

PageRuler Plus Prestained Protein Ladder 
ThermoFisher Scientific, Waltham, MA, 

USA 

Paraformaldehyde 16% 
Electron microscopy sciences, Hatfield, PA, 

USA 

Penicillin/Streptomycin (P/S) Corning, Manassas, VA, USA 

Polyacrylamide mix (30%) Carl Roth GmbH, Karlsruhe, Germany 

Potassium chloride Carl Roth GmbH, Karlsruhe, Germany 

ProTaqs® MountFluor Biocyc, Luckenwalde, Germany 

Puromycin (Hydrochloride) 
Cayman Chemical Company, Michigan, 

USA 

Resolving Gel Buffer 

Tris-HCl 1.5M, pH 8.8 

Bio-Rad Laboratories GmbH, Munich, 

Germany 

SOC medium Invitrogen, Karlsruhe, Germany 

Sodium azide Carl Roth GmbH, Karlsruhe, Germany 

Sodium chloride  Carl Roth GmbH, Karlsruhe, Germany 

Sodium dihydrogen phosphate, 

monohydrate 
Carl Roth GmbH, Karlsruhe, Germany 

Sodium Dodecyl Sulfate (SDS) Carl Roth GmbH, Karlsruhe, Germany 

Sodium hydrogen carbonate Carl Roth GmbH, Karlsruhe, Germany 

Sodium hydroxide 
Fisher scientific, UK/Acros organics, 

Belgium 

Sodium phosphate dibasic, dodecahydrate Carl Roth GmbH, Karlsruhe, Germany 

Stacking Gel Buffer 

Tris-HCl 0.5M, pH 6.8 

Bio-Rad Laboratories GmbH, Munich, 

Germany 

SuperSignalTM West Pico PLUS 

Luminol/Enhancer solution 

ThermoFisher Scientific, Waltham, MA, 

USA 

SuperSignalTM West Pico PLUS  

Stable peroxide solution 

ThermoFisher Scientific, Waltham, MA, 

USA 

Tris-Base Carl Roth GmbH, Karlsruhe, Germany 

Tris-Hydrochloride Carl Roth GmbH, Karlsruhe, Germany 

Triton X-100 Roche, Basel, Switzerland 

Trypsin/EDTA Biochrom, Berlin, Germany 

Tween-20 
Fisher scientific, UK/Acros organics, 

Belgium 

Water for molecular biology MilliporeSigma, Darmstadt, Germany 

Water for cell culture  MilliporeSigma, Darmstadt, Germany 
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Water (HPLC Gradient Grade) J.T. Baker, Gliwice, Poland 

 

2.1.4 Cultivation media  

Table 2-4 comprises the cultivation media for eukaryotic cells, as well as their 

composition. 

 

Table 2-4. Cultivation media. 

Cultivation medium Composition Supplier 

Gibco  

MEM (1X) GlutaMAXTM 

(Minimum Essential Medium  

+ Earle’s salts) 

Earle’s salts 

L-glutamine 

10% (v/v) FBS 

1% (v/v) penicillin (100 U/mL) 

1% streptomycin (100 μg/mL) 

1.5 g/mL puromycin 

ThermoFisher Scientific, 

Waltham, MA, USA  

Gibco  

RPMI Medium 1640 (1X) 

GlutaMAXTM  

10% (v/v) FBS 

1% (v/v) penicillin (100 U/mL) 

1% streptomycin (100 μg/mL) 

1.5 g/mL puromycin 

ThermoFisher Scientific, 

Waltham, MA, USA 

Transfection medium: 

MEM (1X) GlutaMAXTM or 

RPMI Medium 1640 (1X) 

GlutaMAXTM 

10% (v/v) FBS 
ThermoFisher Scientific, 

Waltham, MA, USA 

Plasmid Transfection 

Medium 
-- 

Santa Cruz Biotechnology, 

Inc., Heidelberg, Germany 

 

2.1.5 Buffers and solutions 

All buffers and solutions as well as the composition are listed in Table 2-5. 

 

Table 2-5. Buffers and solutions. 

Buffers and solutions Composition 

Immunofluorescence labeling  

Blocking buffer 

PBS (pH 7.4) 

5% goat serum 

1% BSA 

0.05% Tween 20 

0.01% Triton X-100 
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Washing buffer 
PBS (pH 7.4) 

1% BSA 

Protein extraction  

Cell lysis extraction buffer 

10 mM Tris-HCl pH 7.5 

150 mM NaCl 

0.5% Triton X-100 

0.1% SDS 

protease inhibitor (1 tablet per 10 mL) 

SDS-PAGE  

SDS running buffer 

25 mM Tris (pH 8.3) 

192 mM glycine 

0.1% (w/v) SDS 

5x SDS loading buffer 

500 mM Tris-HCl (pH 6.8) 

10% (w/v) SDS 

50% (v/v) glycerol 

500 mM DTT 

0.001% (w/v) bromophenol blue 

Separation gel (12%) 

0.35 M Tris (pH 8.8) 

12% acrylamide mix 

0.1% SDS 

0.1% ammonium persulfate 

0.1% TEMED 

Stacking gel 

0.125 M Tris (pH 6.8) 

5.1% acrylamide mix 

0.1% SDS 

0.1% ammonium persulfate 

0.1% TEMED 

Western blotting  

Transfer buffer 

25 mM Tris (pH 8.3) 

192 mM glycine 

10% (v/v) methanol 

TBS-T buffer 

10 mM Tris (pH 7.4) 

137 mM NaCl 

0.001% (v/v) Tween-20 

Blocking solution 
1% PVP-40 

0.05% Tween-20 

Dilution potential  

Standard-Ringer (Eisenman) 

21 mM NaHCO3 

119 mM NaCl 

5.4 mM KCl 

1.2 mM CaCl2 

1.0 mM MgCl2 

10 mM D(+)-glucose 
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3 mM HEPES (pH 7.8)  

Mannitol-Ringer (Eisenman) 

21 mM NaHCO3 

238 mM Mannitol 

5.4 mM KCl 

1.2 mM CaCl2 

1.0 mM MgCl2 

10 mM D(+)-glucose 

3 mM HEPES (pH 7.8)  

Transepithelial water transport  

HEPES-buffered solution 

134.6 mM NaCl 

2.4 mM Na2HPO4.12H2O 

0.6 mM NaH2PO4.H2O 

5.4 mM KCl 

1.2 mM MgCl2.6H2O 

1.2 mM CaCl2.2H2O 

10 mM D(+)-glucose 

10.6 mM HEPES (pH 7.4) 

Macromolecular permeability   

Standard-Ringer 111 

113.6 mM NaCl 

21 mM NaHCO3 

2.4 mM Na2HPO4.12H2O 

0.7 mM NaH2PO4.H2O 

5.4 mM KCl 

1.2 mM MgCl2.6H2O 

1.2 mM CaCl2.2H2O 

10 mM D(+)-glucose 

 

2.1.6 Plasmids  

Plasmids used for stable transfection of shRNA targeting tricellulin are listed in Table 2-6. 

 

Table 2-6. shRNA plasmids. 

Plasmid  TRCN Clone ID shRNA sequence Supplier 

920  -- 
SHC001 

 

pLKO.1-puro 

Empty Vector Control Plasmid DNA 

Contains no shRNA insert 

Sigma-

Aldrich, 

Schnelldorf, 

Germany 

922 
000007

2635 

NM_14472

4.1-

989s1c1 

5’-

CCGGGCAGCCATAGTCTATGTGA

ATCTCGAGATTCACATAGACTAT

GGCTGCTTTTTG-3’ 

Sigma-

Aldrich, 

Schnelldorf, 

Germany 
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923 
000007

2633 

NM_14472

4.1-

2011s1c1 

5’-

CCGGGCAGCATCTATCATGTAGA

TACTCGAGTATCTACATGATAGA

TGCTGCTTTTTG-3’ 

Sigma-

Aldrich, 

Schnelldorf, 

Germany 

924 
000007

2634 

NM_14472

4.1-

1097s1c1 

5’-

CCGGGCTGCAATGATCTTCCTGT

TTCTCGAGAAACAGGAAGATCAT

TGCAGCTTTTTG-3’ 

Sigma-

Aldrich, 

Schnelldorf, 

Germany 

 

Plasmids used for stable transfection of angulin-1 sgRNA, CRISPR/Cas9 and HDR are 

listed in Table 2-7. 

 

Table 2-7. sgRNA, CRISPR/Cas9 and HDR plasmids. 

Plasmid  Clone ID sgRNA sequence Supplier 

CRISPR/Cas9 

negative control 
-- -- 

Santa Cruz 

Biotechnology, 

Inc. 

Heidelberg, 

Germany 

sgRNA A sc-401518 A 5’-GAGATCGCCAGTCGTCCTCG-3’ 

sgRNA B sc-401518 B 5’-AAGGACGATGAGCTCTGCGT-3’ 

sgRNA C sc-401518 C 5’-TACGCAGAGCTCATCGTCCT-3’ 

HDR plasmid A 

sc-401518 - 

HDR plasmid 

A 

-- 

HDR plasmid B 

sc-401518 - 

HDR plasmid 

B 

-- 

HDR plasmid C 

sc-401518 - 

HDR plasmid 

C 

-- 
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2.1.7 Antibodies 

Antibodies used for immunostaining or immunoblotting are listed with catalogue number 

(Cat. No.) and supplier in Table 2-8. Additionally, the required dilution factors with regard 

to application are denoted. 

 

Table 2-8. Antibodies. 

Antibody 

(host)  

Dilution for 

immunostaining 

(in blocking 

buffer) 

Dilution for 

immunoblotting 

(in TBST 

buffer) 

Cat. No. Supplier 

Primary antibody 

-actin 

(mouse)  
 -- 1:10000 A5441 

Sigma-Aldrich, 

Schnelldorf, 

Germany 

Claudin-1 

(rabbit) 
1:500 1:1000 51-9000 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Claudin-2 

(rabbit)  
1:250 1:1000 516100 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Claudin-3 

(rabbit)  
1:300 1:1000 341700 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Claudin-4 

(mouse)  
1:300 1:1000 329400 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Claudin-5 

(mouse)  
1:300 1:1000 322500 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Claudin-5 

(Rabbit)  
1:300 1:1000 341600 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Claudin-7 

(rabbit)  
1:300 1:1000 349100 

ThermoFisher 

Scientific, 

Waltham, MA, 
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USA 

Claudin-8 

(rabbit)  
1:300 1:1000 710222 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Occludin 

(mouse)  

1:250 

1:500 
-- 331500 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Occludin 

(rabbit)  

1:250 

1:500 
1:1000 711500 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Tricellulin 

(rabbit)  
1:500 1:2000 700191 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

Angulin-1 

(rabbit)  
1:1000 1:3000 HPA007270 

Sigma-Aldrich, 

Schnelldorf, 

Germany 

Angulin-2 

(rabbit)  
-- 1:1000 

ARP55751_

P050 

Aviva Systems 

Biology 

Corporation, San 

Diego, CA, USA 

Angulin-2 

(rabbit)  
-- 1:1000 orb518224 

Biorbyt LLC, St 

Louis, MO, USA 

Angulin-3 

(rabbit)  
-- 1:1000 HPA012545 

Sigma-Aldrich, 

Schnelldorf, 

Germany 

Angulin-3 

(rabbit)  
-- 1:1000 

ARP70574_

P050 

Aviva Systems 

Biology 

Corporation, San 

Diego, CA, USA 

AQP-1 

(mouse)  
-- 1:1500 CF502357 

OriGene 

Technologies 

GmbH, Herford, 

Germany 

AQP-3 

(rabbit)  
-- 1:1500 

LS-

B9821/5898

6 

LifeSpan 

BioScience, 

Seattle, WA, USA 

AQP-4 

(rabbit)  
-- 1:1500 

LS-

B12547/128

405 

LifeSpan 

BioScience, 

Seattle, WA, USA 
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AQP-7 

(mouse)  
-- 1:1500 SC-376407 

Santa Cruz 

Biotechnology, 

Inc. 

Heidelberg, 

Germany 

SGLT1 

(rabbit)  
-- 1:1000 

LS-

C179216/71

050 

LifeSpan 

BioScience, 

Seattle, WA, USA 

LI-Cadherin 

(mouse) 
-- 1:1000 SC-393533 

Santa Cruz 

Biotechnology, 

Inc. 

Heidelberg, 

Germany 

ZO-1 

(rabbit) 
1:500 -- 61-7300 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

ZO-1 

(mouse) 
1:500 -- 610967 

BD Biosciences, 

Heidelberg, 

Germany 

Secondary antibody 

Peroxidase

-conjugate 

affiniPure 

F(ab’)2 

Fragment 

Goat anti-

rabbit IgG 

(H+L) 

-- 1:1000 
111-036-

003 

Jackson 

ImmunoResearch 

Laboratories, 

Cambridge House, 

UK 

Peroxidase

-conjugate 

affiniPure 

F(ab’)2 

Fragment 

Goat anti-

mouse IgG 

(H+L) 

-- 1:1000 
115-036-

003 

Jackson 

ImmunoResearch 

Laboratories, 

Cambridge House, 

UK 

Goat anti-

Rabbit IgG 

(H+L) 

Highly 

Cross-

Adsorbed, 

Alexa Fluor 

1:500 -- A-11034 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 
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488 

Goat anti-

Mouse IgG 

(H+L) 

Highly 

Cross-

Adsorbed, 

Alexa Fluor 

594 

1:500 -- A11032 

ThermoFisher 

Scientific, 

Waltham, MA, 

USA 

DAPI 1:1000 -- -- 

Sigma-Aldrich 

Chemie GmbH, 

München, 

Germany 

 

2.1.8 Cell lines  

Table 2-9 outlines cell lines and the originating species, tissue and cell type. 

 

Table 2-9. Cell lines. 

Cell line RRID Species/tissue/cell type Reference/supplier 

HT-29/B6 CVCL_LJ30 

Human/colon/ 

intermediate-tight 

epithelial cell line/low 

transepithelial resistance 

(Kreusel et al., 1991; 

Zeissig et al., 2004) 

MDCK C7 CVCL_0423 

Dog/kidney/tight epithelial 

cell line/high 

transepithelial resistance 

(Zak et al., 2000; 

Wunsch et al., 1995) 

 

2.1.9 Software 

Microsoft® Office 2011-2016, GraphPad Prism® 8, Image Studio Lite, image processing 

packages (ImageJ (Schindelin et al., 2015) and Fiji (Schindelin et al., 2012)), and Zeiss 

ZEN 2009. 
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2.2 Cell biological methods  

2.2.1 Cell culture 

The kidney cell line MDCK C7 (RRID: CVCL_0423) exhibits a very high ratio of 

paracellular resistance over transcellular resistance as well as very high transepithelial 

resistance (TER), which therefore makes it an excellent model of a tight epithelium (see 

Table 2-9). On the other hand, the colon adenocarcinoma cell line HT-29/B6 (RRID: 

CVCL_LJ30) exhibits a medium-high ratio of paracellular resistance over transcellular 

resistance as well as an intermediate TER, which therefore makes it an excellent model of 

an intermediate-tight epithelium (see Table 2-9). Both cell lines were transfected in order 

to get a knockdown of tricellulin or knockout of angulin-1 (see Chapter 2.2.2). 

 

The transfected cells were incubated at 37°C, and 5% CO2 in sterilization incubators held. 

For the cultivation of the cells, sterile culture vessels made of plastic were used. The 

MDCK C7 cells were cultured in a nutrient medium Earl's salts MEM (minimal essential 

medium), and HT-29/B6 cells were cultured in RPMI 1640 AQ Media, both supplemented 

with 10% FCS as well as 100 U/mL penicillin / 100 μg/mL streptomycin and 1.5 g/mL of 

puromycin (see Table 2-4). Every second to third day, the medium was changed. The 

consumption of nutrients generated a change in the color of the medium due to the 

change in the pH of the indicator. 

 

For protein lysates, water flux measurements and electrophysiological and flux studies, 

cell monolayers were cultured on porous culture plate inserts (Millicell PCF filters, pore 

size 0.4 m, effective area 0.6 cm2, Millipore GmbH, Schwalbach, Germany) for 7–10 

days before they were used for experiments. 

2.2.2 Transfection of cells 

Transfection is the transfer of DNA into eukaryotic cells. There are several transfection 

methods (microinjection, calcium phosphate precipitation, electroporation, liposomes, 

DEAE-dextran), resulting in handling and transfection efficiency sometimes very different. 

For transfection with tricellulin shRNA, lipofectamine was used. This transfection reagent 

consists of liposomes, which pack the DNA in and then into the transport cell via 
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hydrophobic interaction with the membrane. In the cell, the DNA is transcribed and 

translated.  

 

For stable tricellulin knockdown, HT-29/B6 and MDCK C7 cells were transfected with 

pLKO.1-puro vector containing a sequence for shRNA targeting tricellulin or pLKO.1-puro 

empty vector as a negative control (see Table 2-6). For stable angulin-1 knockout, HT-

29/B6 and MDCK C7 cells were transfected with CRISPR/Cas9 plasmids (Santa Cruz 

Biotechnology, Inc. Heidelberg, Germany) containing three different sgRNA sequences 

targeting different exons of angulin-1 and their respective HDR plasmids (Santa Cruz 

Biotechnology, Inc. Heidelberg, Germany) for homologous recombination (see Table 2-7). 

The CRISPR/Cas9 negative control plasmid (Santa Cruz Biotechnology, Inc. Heidelberg, 

Germany) was used as a negative control (see Table 2-7). 

2.2.2.1 shRNA plasmids 

Cells were transfected at high cell density for high efficiency, high expression levels, and 

to minimize cytotoxicity. One day before transfection, in 6-well plates, 3x105 - 5x105 cells 

were seeded in 4 mL of growth medium without antibiotics so that cells will be 50-80% 

confluent at the time of transfection. On the transfection day, the cells were washing once 

in 2 mL serum-free medium (Ø serum, Ø P/S).   

 

For each transfection sample, complexes were prepared as follows: 

 4 μg of DNA (vector control: pLKO1.puro; tricellulin shRNA: 922, 923, and 924) 

were diluted in 200 μL of serum-free medium (Ø serum, Ø P/S). The solution was 

mixed gently and incubated for 5 minutes at room temperature. 

 10 μL of lipofectamine 2000 were diluted in 200 μL of serum-free medium (Ø 

serum, Ø P/S) and incubated for 5 minutes at room temperature. 

 After the 5 minutes incubation, the diluted DNA was incubated with diluted 

Lipofectamine 2000 (total volume = 500 μL). The complexes were mixed gently 

and incubated for 30 minutes at room temperature. 

 

The complexes were added to each well-containing cells and medium and mixed gently 

by rocking the plate back and forth. The medium was changed after 6 hours for medium 

containing serum and P/S. The cells were incubated at 37°C in a CO2 incubator for 48 
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hours prior to testing for tricellulin expression. Forty-eight hours after transfection, the 

cells were split from one well to four big dishes and resuspended in medium without 

puromycin. The day after, the media was changed for medium containing puromycin at 

the appropriate concentration. For effective selection, cells should be subconfluent. Prior 

to using the puromycin antibiotic, it was titrated to determine the optimal concentration for 

target cell line. The lowest concentration that kills 100% of non-transfected cells in 3–5 

days from the start of puromycin selection was used (2 g/mL for HT-29/B6 and 6 g/mL 

for MDCK C7 cells).  

For the next two weeks the antibiotic-containing medium was replaced every two to three 

days (or as needed). During the second week, the cells were monitored for distinct 

“islands” of surviving cells. Depending on the cell type, drug-resistant clones appeared in 

2–3 weeks. Large (500-1000 cells) and healthy colonies were isolated using cloning 

cylinders and maintained in medium containing puromycin (1.5 g/mL). Successfully 

transfected clones were frozen in liquid nitrogen for later analysis. Selected clones were 

then used for tricellulin KD characterization. 

2.2.2.2 sgRNA, CRISPR/Cas9, and HDR plasmids  

In a 6-well tissue culture plate, 1.5x105 - 2.5x105 cells were seeded in 3 mL of antibiotic-

free standard growth medium per well 24 hours prior to transfection. The cells were grown 

to a 50-80% confluency. Healthy and subconfluent cells are required for successful KO 

and HDR Plasmid transfection.  

 

For each transfection sample, complexes were prepared as follows: 

Plasmid DNA/UltraCruz® Transfection Reagent amounts: 1 µg/10 µL, 2 µg/10 µL, and 3 

µg/10 µL. Because more than one plasmid was transferred (i.e., the CRISPR/Cas9 KO 

plasmid with the HDR plasmid), the DNA of the plasmids was mixed in equivalent 

proportions. No antibiotics were added to the plasmid transfection medium (sc-108062). 

 

 Solution A: For each transfection, 1-3 µg of Plasmid DNA were diluted into 

Plasmid Transfection Medium to bring the final volume to 150 µL. It was pipetted 

up and down to mix and incubated for 5 minutes at room temperature. 

 Solution B: For each transfection, 10 µL of UltraCruz® Transfection Reagent were 

diluted with enough Plasmid Transfection Medium to bring the final volume to 150 
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µL. It was pipetted up and down to mix and incubated for 5 minutes at room 

temperature. 

 

The Plasmid DNA solution (Solution A) was added dropwise directly to the dilute 

UltraCruz® Transfection Reagent (Solution B) using a pipette. It was vortexed immediately 

and incubated for no less than 20 minutes at room temperature. Prior to transfection, the 

media was replaced with fresh antibiotic-free growth medium. The 300 µL Plasmid 

DNA/UltraCruz® Transfection Reagent Complex (Solution A + Solution B) were added 

dropwise to every well and mixed gently by swirling the plate. The cells were incubated for 

24-72 hours under conditions generally used to culture the cells. No media replacement 

was necessary during the first 24 hours post-transfection. The media was replaced as 

needed 24-72 hours post-transfection. Forty-eight hours post-transfection, the cells were 

split from one well to four big dishes and resuspended in fresh medium. The day after, the 

cells were resuspended in fresh medium containing puromycin at the appropriate 

concentration (2 g/mL for HT-29/B6 and 6 g/mL for MDCK C7 cells). Cell colonies were 

selected for a minimum of 7–14 days, similar to how it was done for tricellulin KD 

colonies. Approximately every 2–3 days, the media was aspirated and replaced with 

freshly prepared selective media (1.5 g/mL puromycin). Successful transfection of 

angulin-1 CRISPR/Cas9 KO Plasmid was confirmed by Western blot. 

2.2.3 Cryopreservation and thawing of cells 

In addition, the cells must be viable and in exponential growth. The cells were harvested 

by spinning as gently as possible (speed should not exceed 400 x g). The cells were 

resuspended in growth medium with serum at room temperature to a concentration of 

2x106 - 2x107 cells per mL. To avoid damage to the cell during freezing, DMSO in 7.5% 

concentration, a cryoprotectant, was added to the growth medium in which the cells were 

frozen. The cells were slowly frozen at -80°C before being transferred into liquid nitrogen 

(-140°C to -196°C). 

 

To obtain the best possible survival, the thawing of the cells must be performed as quickly 

as possible. Once the CryoTube vial was removed from the liquid nitrogen tank, it was 

placed directly into a 37°C water bath and shaken until it was completely thawed. To 

avoid transfer of microorganisms from the liquid nitrogen tank or the water bath to the 
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laminar flow cabinet and subsequently to the culture, the CryoTube vials were soaked in 

70% ethanol before they were transferred to the laminar flow cabinet. For cultivation, the 

cells were transferred into the respective culture medium. In order to avoid physical 

damage of cells that form a monolayer, such cultures were left untouched in the incubator 

for at least 16 hours before assessing the result. 

2.2.4 Cell passage 

To obtain cells from culture bottles, they were first washed with PBS and then treated with 

trypsin solution. The trypsin activity was at 37°C until all cells detached from the bottom of 

the flask (about 30-120 min). Then the cells were diluted in 10 mL of medium and potted 

up with a pipette. The FBS contained in the medium inhibited the trypsin. As needed, the 

cells were counted in a Neubauer counting chamber (Stone et al., 2009) and then 

converted to the required volume seeded in new vessels: 

 

- Small bottles (25 cm2)    450 μL to 7 mL medium 

- Medium-sized bottles (75 cm2)   1000 μL to 19 mL medium 

- 6-well plates     350-700 μL to 4 mL/well 

- 12-well plates     200 μL to 2 mL/well 

- 24-well plates     100 μL to 1 mL/well 

- HA filter (0.6 cm²)     450 μL 

 

After that, the cells were cultured again in the incubator at 37°C / 5% CO2. 

2.2.5 Immunofluorescence labeling and microscopy 

Immunofluorescence studies were performed on culture-plate inserts. Confluent 

monolayers were rinsed with PBS, fixed with 4% paraformaldehyde for 20 min and 

permeabilized for 10 min with PBS containing 0.5% (v/v) Triton X-100. To block non-

specific binding sites, cells were then incubated in PBS containing 1% (w/v) BSA and 5% 

(v/v) goat serum (blocking solution; Biochrom) for 60 min (see Table 2-5). All subsequent 

washing procedures were performed with this blocking solution. After blocking, cells were 

incubated overnight at 4ºC with the corresponding primary antibody (see Table 2-8), 

followed by washing steps and incubation for 60 min at room temperature with the 

respective secondary antibody (see Table 2-8) and 4’,6-diamidino-2-phenylindole (DAPI, 
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1:1000). Images were obtained with a confocal laser-scanning microscope (LSM 780, 

Zeiss, Jena, Germany) and processed using ZEN software (Zeiss). 

 

For whole-mount STED imaging, the cell filters were washed gently in PBS, fixed for 20 

min in 4% PFA and subjected to the standard IF protocol described previously. Highly 

cross-absorbed secondary antibody Atto 647N (Active Motif 15038) was used together 

with Occludin monoclonal antibody, mouse (OC-3F10), Alexa Fluor® 594 conjugate 

(Invitrogen 331594). Cell membranes were flat mounted in ProLong Gold Antifade 

Mountant (Invitrogen P36934) to obtain optimal resolution. The STED images of the 

MDCK C7 cells were taken with a STEDYCON microscope (Abberior Instruments). Dual-

color STED imaging was performed by sequential excitation of Occludin-Alexa Fluor® 594 

at 590 nm and Atto 647N at 647 nm. For emission depletion, the 775 nm STED laser was 

used. Time-gated detection was set from 0.3 to 6 ns. Images were sequentially acquired 

with a HC PL APO CS2 100x/1.40 NA oil immersion objective (Leica Microsystems), and 

a scanning format of 1024x1024 pixels, 8-bit sampling, 16x line averaging and 6x optical 

zoom, yielding a voxel dimension of 18.9x18.9 nm. To minimize thermal drift, the 

microscope was housed in a heatable incubation chamber. Raw data obtained from 

STED imaging were analyzed by custom macro (ImageJ). 

2.2.6 Topology measurements 

Morphometric parameters of MDCK C7 and HT-29/B6 cells were obtained from stained 

cells (tricellulin, angulin-1, occludin, and ZO-1). Epithelial cell membrane images were 

segmented using a macro written to use in FIJI-ImageJ (Appendix C. Table 7-7). Cells at 

the edge of the field of view were excluded from the analysis. The number of cells, area, 

and perimeter were calculated using the Analyze Particles tool. The tTJs were counted 

manually, and the number of cell sides (vertices) was identified using the “Neighbor 

analysis” macro from the BioVoxxel Toolbox using water shedding and Voronoi analysis. 

 

Using the number of cells counted in each area analyzed, the average cell surface area 

and cell density was estimated. The total length of TJs within the studied areas was 

measured and normalized to m/cm2. As each bicellular TJ is shared by two cells, TJ 

length per cell was doubled. For calculating of the TJ length/cell, the total length in m/cm2 

was calculated from cell density. Tricellular contacts were counted and normalized to 
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within the analyzed area. As each tricellular contact is shared by three cells (very seldom 

by four contacts), the tricellular contact number was tripled and quadrupled to obtain the 

average tricellular contact number per cell. These measurements are based on at least 

three independent seedings of cells (between 3 and 10 immunofluorescence images). 

2.2.7 Freeze-fracture electron microscopy 

At a confluency of 100%, cells were washed with PBS (containing Ca2+/Mg2+) and fixed 

with 2.5% glutaraldehyde at RT for 2 hours. After washing twice with PBS (containing 

Ca2+/Mg2+), the cells were stored at 4°C in 0.25% glutaraldehyde. Small rectangles of the 

bottom of the cell culture filters were cut out, and the attached cells were cryoprotected in 

30% glycerol for 30 min, placed between two gold specimen holders and shock frozen in 

R422D (TEGA GmbH, Würzburg, Germany) cooled by liquid nitrogen (-210°C). The 

samples were fractured using the freeze-fracture device Denton DV-502 (Denton 

Vacuum, Moorestown, NJ, USA) at -100°C and 2x10-7 mTorr. The samples were 

vaporized at -150°C (2x10-7 mTorr) with a platinum layer and then a layer of carbon. This 

result in a thin metal film on the broken sample. The replicas were cleaned with 12% 

sodium hypochlorite, washed several times in ddH2O, and mounted on a copper mesh 

grid. The Zeiss 902A electron microscope was used to examine the replicas at 80kV. 

Magnification between 3000 and 20000 (for thin sections) or 20000 to 50000 (for freeze-

fracture) was used. 

2.3 Biochemical methods  

2.3.1 Preparation of cell lysates 

For total protein extraction, cells grown on culture plate inserts were first washed with 

PBS and then scraped and homogenized in 100 µL lysis buffer (see Table 2-5). The cell 

suspension was transferred to a 1.5 mL reaction vessel, and after 90 to 120 minutes 

incubation at 4°C and intermediate vortexing was centrifuged at 15000 g, 4°C for 30 min. 

The supernatant contained the total protein extract and was stored at -20°C. 

2.3.2 Determination of the protein concentration 

The principle of Pierce protein concentration determination is the reaction of proteins with 

copper at alkaline pH, resulting in a colored copper complex, which by absorption 
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measurement at 562 nm for the calculation of the contained protein concentration is used. 

This is compared with a calibration series of known protein concentrations. This method is 

also called BCA assay (Bicinchoninic acid assay) [reagents were purchased from Pierce 

(Perbio Science, Bonn, Germany)].  

 

The preparation was carried out in microtiter plates, always working in duplicate. One 

calibration set of 10 μL BSA solutions each at concentrations of 0.2 mg/mL, 0.8 mg/mL 

and 1.2 mg/mL, and also 10 µL of lysis buffer were also presented as the samples to be 

measured. Upon adding the protein samples (10 μL), 190 μL of the BCA solution was 

added to each batch pipetted and the entire microtiter plate incubated at 37°C for 30 min. 

After cooling at room temperature, the plate was measured in the Tecan Spectra 

photometer (Tecan Deutschland, Crailsheim, Germany) at 562 nm, and the concentration 

can be determined. 

2.3.3 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) 

Proteins were separated according to their electrophoretic mobility by one-dimensional 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). SDS, an anionic 

detergent, linearizes the polypeptide and imparts an even distribution of negative charge 

per mass unit that allows a fractioning by approximate size via electrophoresis. The 

composition of the stacking, as well as the separation gel, is listed in Table 2-5. The 

protein probes were incubated with 5x SDS loading buffer (Table 2-5) for 10 min at 95°C 

and loaded to the SDS-polyacrylamide gel. The separation was performed at 100 V in an 

SDS-PAGE chamber containing 1x SDS running buffer to the desired running distance; 

recognizable by the running front of blue of bromophenol contained in the sample buffer. 

The gel was then removed from the chamber and from the glass plates to be treated 

further. 

2.3.4 Western blotting 

Western blot analysis was performed as reported (Amasheh et al., 2002). Aliquots 

between 10 and 15 µg protein samples were separated by 12% SDS-polyacrylamide gel 

electrophoresis and then transferred to a PVDF membrane (Perkin Elmer, Rodgau, 

Germany) for the detection of different proteins. After blocking for 2 hours in 1% PVP-40 
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and 0.05% Tween-20, membranes were incubated overnight with the corresponding 

primary antibody (see Table 2-8) at 4ºC. After removing the first antibody and three 

washing steps, the membranes were incubated for 2 hours with the second peroxidase-

conjugated antibody (anti-mouse or anti-rabbit) in 1-2% of milk powder prepared in TBST 

1X at room temperature. For detection of the chemiluminescence signal induced by the 

addition of Lumi-LightPLUS western blotting kit (Roche), a Fusion FX7 (Vilber Lourmat, 

Eberhardzell, Germany) were used. Densitometric analysis was performed with 

quantification software (Image Studio™ Lite, LI-COR Biosciences, Lincoln, Nebraska 

USA). Equal protein loading in each lane was verified by comparison with signals for β-

actin (Sigma-Aldrich). For Western blot analysis, lysates of at least three individual cell 

cultures were used, and one representative experiment is shown. 

2.4 Biophysical methods  

2.4.1 Transepithelial electrical resistance measurements 

Transepithelial electrical measurements permit quantifying ion permeability and barrier 

function in cell cultures (Yeste et al., 2018). This technique is based on the measurement 

of the cellular sheet's electrical properties employing extracellular electrodes. In particular, 

a voltage or current perturbation is applied between electrodes placed on both sides of 

the barrier. The measurements that give primary information about a cellular barrier are 

transepithelial voltage (Vte), transepithelial resistance (TER), and short-circuit current (Isc) 

(Yeste et al., 2018). 

 

Transepithelial resistance (TER) was measured at 37°C using chopstick electrodes 

(STX2, World Precision Instruments, Friedberg, Germany). Electrodes were reproducibly 

positioned by a semi-automatic motor-driven device and signals were processed by a low-

frequency clamp (both own design of Clinical Physiology labs). The bathing solution's 

resistances and the blank filter support were subtracted from measured values, which 

were finally converted to Ω·cm². 

2.4.2 Dilution potential measurements 

Dilution potential measurements for the determination of ion permeabilities were 

performed in conventional Ussing chambers Water-jacketed gas lifts kept at 37°C were 
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filled with 10 mL circulating fluid on each side. Bathing solution contained (in mM) 119 

NaCl, 21 NaHCO3, 5.4 KCl, 1.2 CaCl2, 1 MgSO4, 3 HEPES and 10 D(+)-glucose (see 

Table 2-5), and was gassed with 95% O2 and 5% CO2 to ensure a pH value of 7.4. All 

experimental data were corrected for the resistance of the empty filter and the bathing 

solution. Dilution potentials were measured with a modified bathing solution on the apical 

or basolateral side of the epithelial monolayer. In the modified bathing solution used for 

the determination of Na+ und Cl- permeability, NaCl was iso-osmotically replaced by 

mannitol. The ratio of PNa+ and PCl- and the absolute permeabilities for Na+ and Cl- were 

calculated as described before (Krug et al., 2012). 

2.4.3 Measurement of 4-kDa FITC-dextran flux  

Permeability assays consist of tracer diffusion measurements in which the tracers are 

added in a donor compartment (i.e., the apical or basolateral side) and quantified in a 

received compartment (i.e., the opposite side) along time (Yeste et al., 2018). This 

methodology permits to assess the transepithelial transport in both directions, 

distinguishing between active and passive transport mechanisms (Yeste et al., 2018). To 

ensure the barrier integrity during permeation assays, especially at the end of the 

experiments, these studies are usually combined with transepithelial electrical 

measurements (Yeste et al., 2018).  

 

Flux studies were performed in conventional Ussing chambers under voltage-clamp 

conditions. Dextran flux was measured in 5 mL circulating 111-Ringer's (see Table 2-5) 

containing 37 mM unlabeled 4-kDa dextran on both sides of the cells for isosmotic 

conditions and only on the apical side for osmotic conditions. After the addition of 0.2 mM 

4-kDa FITC-labeled dialyzed dextran (Sigma-Aldrich) to the apical chamber (final 

concentration), basolateral samples (200 μL) were collected at 0, 20, 40, 60, 80, 100, 

120- and 140-min. Tracer fluxes were determined from FITC-dextran samples, which 

were measured with a fluorometer at 520 nm (Spectramax Gemini, Molecular Devices, 

Ismaning, Germany). Dextran permeability was calculated from P=J/c, where P is the 

permeability (cm/s), J is the flux (mol·h-1·cm-2), and c is the concentration (mol/l). 
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2.4.4 Measurement of transepithelial water transport 

Water flux measurements were performed using a modified Ussing chamber with two 

glass tubes instead of the gas lifts described before (Figure 2-1) (Rosenthal et al., 2017a; 

Rosenthal et al., 2019; Rosenthal et al., 2017b; Rosenthal et al., 2010). Throughout these 

experiments, transepithelial resistance (TER, Ω·cm2), short-circuit current (ISC, μA·cm-2), 

and transepithelial voltage (mV) were recorded routinely by a standard PC with ADC-DAC 

cards. Pulses of 1 second duration between 1 μA and 30 μA were applied at 25 second 

intervals to obtain the TER. The resistance of the bathing solution and blank filter support 

was measured prior to each experiment and subtracted. The stability of transepithelial 

resistance during the experiment was used as an indicator of cell viability. The 

transepithelial voltage was clamped to 0 mV to avoid effects on ion fluxes on water flux. It 

should be kept in mind that our method does not directly discriminate between the 

pathways for water transport, i.e., transcellular through the cell membranes and 

paracellular through the bTJ or the tTJ but uses a defined perturbation of tricellulin or 

angulin-1 to compare the results with that of simultaneously grown control clones of the 

respective cell line. 

 

Cell filters were mounted in Ussing chambers and perfused with HEPES-buffered solution 

with the following composition (in mM): 144.8 NaCl, 2.4 Na2HPO4, 0.6 NaH2PO4, 5.4 KCl, 

1.2 MgCl2, 1.2 CaCl2, 10.6 HEPES, 10 D(+)-glucose (see Table 2-5). The pH value of the 

perfusion solution was pH 7.4. A rotary pump ensured constant circulation of the 

perfusion solution (4.0 mL·min-1) and fast fluid exchange in both hemichambers (volume 

500 μL) to avoid the effects of unstirred layers on water permeability. Water flux was 

induced by a transepithelial osmotic gradient: (i) 100 mM mannitol, (ii), 37 mM 4 kDa-

dextran, (iii) 100 mM 4 kDa-dextran, (iv) 5.5 mM 40 kDa-dextran or (v) 2.5 mM albumin. 

The solution was added to the apical compartment of the Ussing chamber. The dextrans' 

molecular diameters were estimated using the equation: d(Å) = 0.215·(MW0.587). 

 

The osmolality of the perfusion solutions (mosmol/kg of water, abbreviated mOsm) was 

determined using a Vapor Pressure Osmometer (5100B, Wescor, Logan, UT) and a 

freezing point depression osmometer (Osmomat 3000, Gonotec, Berlin, Germany). The 

osmolality of the HEPES-buffered solutions is annotated in Table 2-10.  
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Table 2-10. Osmolality of the HEPES-buffered solutions using a freezing point depression 
osmometer. 

  n Concentration (mM) 
Osmolality (mOsm/kg of water)  

Mean ± SEM 

Tricellulin KD 

HEPES 10 -- 308.0 ± 4.4 

Mannitol 10 100 mM 410.3 ± 1.9 

4-kDa dextran 10 37 mM 396.2 ± 6.8 

4-kDa dextran 10 100 mM 877.8 ± 13.7 

40-kDa dextran 5 5.5 mM 390.2 ± 2.5 

Albumin 5 2.5 mM 340.0 ± 2.0 

Angulin-1 KO 

HEPES 17 -- 289.0 ± 13.7 

Mannitol 17 100 mM 391.4 ± 14.6 

4-kDa dextran 5 37 mM 396.0 ± 4.5 

 

The fluid level in both glass tubes was monitored by a visual system ColorView XS 

(Olympus Soft Imaging Solutions GmbH, Münster, Germany), at time 0 min and with 

intervals of 10 min over a period of 120 min. Transepithelial water flux, given as flux per 

square centimeter and hour, was calculated from the difference between the menisci at 

the registration times. Fluxes directed from the basolateral to the apical compartment 

were defined as positive flux.  

At specific and constant gradients, water fluxes are proportional to apparent water 

permeability, so that conclusions on water permeability can be drawn from measured 

water fluxes. Water permeability could be calculated from P=J/c, where P is the 

permeability (cm/s), J is the flux (mol·h-1·cm-2), and c is the concentration (mol/l). As water 

fluxes are the primary measure, these are given in the Results chapter.   
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Figure 2-1. Method for analyzing transepithelial water transport (Rosenthal et al., 2017b; 
Rosenthal et al., 2010). For water transport analysis, (a) a modified Ussing chamber with 
two separated glass tubes in a heated chamber is used instead of gas lifts. 
Electrophysiological parameters are monitored during the experiment. A rotary pump 
ensures the constant circulation of the perfusion solution in both chambers to avoid 
unstirred layer effects. Volume flow induced by a specific osmotic gradient is recorded 
over 2 hours with intervals of 10 min by a video-optic system recording the height of the 
menisci on both sides, and water flux is calculated according to the calibration. (b) After 
the cells are mounted, a transepithelial osmotic gradient was induced with different 
osmolytes (mannitol, 4-kDa dextran, 40-kDa dextran, and albumin) either from the apical 
or basolateral side. Total transepithelial water transport is measured before and after 
molecular modification of either the paracellular or the transcellular pathway for 
transepithelial water transport. As this method does not distinguish technically between 
trans- and paracellular flux, the contribution of the modified pathway to transepithelial 
water permeability was determined from the difference between control cells and modified 
cells. 

2.5 Statistics 

Graphing and statistics were performed using GraphPad Prism8. Data are expressed as 

mean values ± SEM, indicating n as the number of single measurements, and N is the 

number of independent experiments, which means independent seeding of cells. 

Statistical analysis was performed using Student's t-test between the tricellulin KD clone 

and the corresponding control (KD 23 versus control 2, KD 24 versus control 9 in MDCK 
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C7 cells). In the tricellulin KD in HT-29/B6 cells and angulin-1 KO in both cell lines, 

ANOVA one-way and the Tukey and Dunnett adjustment for multiple testing were applied. 

P values of less than 0.05 were considered significant (*,#P0.05, **,#P0.01, 

***,###P0.001). 

 





 

 
 

3. Results 

3.1 Tricellulin knockdown (KD): MDCK C7 cells 

3.1.1 Characterization of tricellulin KD in MDCK C7 cells 

In order to investigate the specific role of tricellulin on paracellular water transport in the 

tight epithelium, the canine kidney cell line MDCK C7 was transfected with shRNA 

targeting tricellulin (see Chapter 2.2.2.1). Firstly, puromycin-resistant cell clones were 

screened for tricellulin knockdown by Western blotting (see Chapter 2.3). Two KD clones 

and two control clones were investigated (KD 23 and its corresponding control 2, and KD 

24 and its corresponding control 9). The two KD clones showed a high but different 

reduction in tricellulin expression: clone KD 23 showed decreased tricellulin by 30%, while 

clone KD 24 exhibited a drop by 40% (Figure 3-1a, Appendix B. Table 7-1). 

 

On the other hand, the expression and the localization of the remaining tricellulin protein 

were analyzed after the transfection (see Chapter 2.2.5). The proper localization of 

tricellulin as dots at TCs was confirmed for the four clones by immunofluorescence 

confocal laser-scanning microscopy using occludin as a TJ marker (Figure 3-1b). 
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Figure 3-1. Expression and localization of tricellulin in MDCK C7 control and knockdown 
cells (a) Densitometric analysis of tricellulin protein expression levels in stable shTRIC 
transfectants (KD 23 and KD 24) in comparison to vector-transfected controls (Control 2 
and Control 9). shTRIC leads to decreased tricellulin expression (n=15, **P≤0.01, 
***P≤0.001). (b) Localization of tricellulin in the four clones used throughout this study. In 
controls and KD clones, tricellulin is localized at tTJ sites. Tricellulin: green; occludin: red; 
DAPI: blue.  

 

The topology parameters (see Chapter 2.2.6) of fluorescence stained tricellulin 

knockdown MDCK C7 cells using the program Fiji-ImageJ for estimating the contribution 

of tricellulin at tTJ to overall permeability are shown in Appendix C. Table 7-5 and Figure 

7-3. The most interesting result is that within the analyzed area, the TJ length per cell was 
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higher in the KD 23 in comparison with its control 2. In contrast, the KD 24 had a lower TJ 

length per cell than its control 9. On tTJ levels, the tTJ density was reduced in the KD 23 

and increased in the KD 24 compared to their respective controls. The higher frequency 

of tTJ occurrence in the KD 24 monolayers suggests that the tTJ has more impact in that 

clone than in the KD 23 clone. Concerning the number of vertices or neighboring cells, it 

was observed that for all clones, there is an average value between 4 and 5 vertices 

(Appendix C. Figure 7-3), which also corresponds to the calculated number of tTJ per cell 

(5 tTJ/cell).  

3.1.1.1 Effect on the transepithelial resistance (TER) 

The transepithelial resistance (TER), a rough indicator for the monolayer's ion 

permeability, was determined using chopstick electrodes (see Chapter 2.4.1). The data 

obtained show that the TER was reduced in tricellulin knockdown MDCK C7 cells (Figure 

3-2, Appendix B. Table 7-1). KD 24 exhibited a more substantial reduction of tricellulin 

expression and a stronger TER decrease compared to the corresponding control than KD 

23 (75% and 50%, respectively). These results suggest that tricellulin expression is 

essential for the barrier function against ions in the MDCK C7 cell line. 

 

 

Figure 3-2. Functional analysis of tricellulin knockdown in MDCK C7 cells. Effect of 
tricellulin knockdown on transepithelial resistance (TER). Tricellulin knockdown decreases 
TER in MDCK C7 cells. (n=24, ***P≤0.001). 
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3.1.1.2 Analysis of permeability for sodium and chloride 

In order to investigate the ion permeabilities for sodium (PNa+) and chloride (PCl-) in this 

epithelial cell line, dilution potential measurements were performed (see Chapter 2.4.2). 

The results showed that in tricellulin-deficient cells the permeability for Na+ and Cl- 

increased compared to their controls cells without any selectivity (Figure 3-3a, Appendix 

B. Table 7-1). Thus, tricellulin-deficiency has an influence on the paracellular permeability 

of these monovalent ions without charge preference. The ratio PNa+/PCl- allows a 

statement on the charge selectivity of an epithelium, which showed no difference between 

controls and KD clones (Figure 3-3b, Appendix B. Table 7-1).  
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Figure 3-3. Functional analysis of tricellulin knockdown in MDCK C7 cells. (a) Effect of 
tricellulin knockdown on ion permeability. Tricellulin knockdown increases Na+ and Cl- 
permeability to the same extent in MDCK C7 cells. (b) Effect of tricellulin knockdown on 
PNa+/PCl-. Tricellulin knockdown did not change the Na+ over Cl- permeability ratio in 
MDCK C7 cells. (n=7-16, ns: not significant, ***P≤0.001). 

3.1.1.3 Measurement of macromolecule permeability (4-kDa FITC-
dextran) 

To investigate whether the reduction of tricellulin in tight epithelium has an effect on the 

paracellular permeability of larger uncharged molecules, flux measurements were 

performed with 4-kDa FITC-dextran (FD4, 4000 Da) (see Chapter 2.4.3). As a result, FD4 
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permeability of KD 23 was not significantly different from its control, but that of clone KD 

24 exhibited a 5-fold increase (Figure 3-4, Appendix B. Table 7-1). Although clones KD 23 

and KD 24 differed only gradually in the reduction of tricellulin expression and TER 

decrease, the two chosen clones differed basically in macromolecule permeability. These 

results suggest that tricellulin expression is decisive for barrier function against 

macromolecules and demonstrates that under an osmotic gradient, macromolecules' 

permeability is affected by water movement in the opposite direction, significantly when 

tricellulin levels are reduced. 

 

 

Figure 3-4. Effect of tricellulin knockdown on permeability for 4-kDa FITC-dextran (FD4). 
Permeability is increased only in tricellulin KD 24 cells under osmotic conditions (see 
Chapter 2.4.2). (n=5-10; ns: not significant, *P≤0.05).  

3.1.2 Effects of tricellulin KD on endogenous proteins of MDCK 
C7 cells 

In order to investigate the possible influence of other tight junction proteins on the results 

of the functional analyses, controls and tricellulin knockdown clones were examined for 

expression of other TJ proteins, such as occludin, several claudins, the three angulins, 

and aquaporin (AQP) water channels, AQP-1, -3, -4 and -7 (Figure 3-5a) (see Chapter 

2.3). The densitometric analysis revealed some clonal variability in TJ protein expression 

between the knockdown clones and the controls. In detail, claudin-1 was increased in the 

tricellulin KD 23, and occludin, claudin-4, and -8 was decreased in the tricellulin KD 24. 
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Clonal variability in protein expression was also observed between both control clones 

and both KD clones. None of the three angulins were significantly altered. Most 

importantly, the tricellulin knockdown did not affect the expression of the cell membrane 

water channels expressed in MDCK C7 cells, AQP-1, AQP-3, AQP-4, and AQP-7 (Figure 

3-5b). 
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Figure 3-5. Claudin, occludin, angulin, and AQP expression in control and tricellulin 
knockdown MDCK C7 cells. (a) Representative Western blots (see Chapter 2.3). (b) 
Densitometric analysis of protein expression levels in tricellulin knockdown clones KD 23 
and KD 24 compared to the corresponding vector-transfected controls. β-actin was used 
as an internal control for normalization to protein content. (n=9-17, N=7; *P≤0.05, 
***P≤0.001). 

3.1.3 Effects of tricellulin KD on the localization of other tight 
junction proteins 

Analysis of the apicolateral localization of the TJ proteins that changed their expression 

(see Chapter 3.1.2) before and after the tricellulin knockdown was investigated by 

confocal laser-scanning microscopy (see Chapter 2.2.5). The immunofluorescent staining 

analysis showed a proper localization of claudin-1 inside the tight junction in both KD 

clones as shown by colocalization with the tight junction marker occludin (Figure 3-6a); 

nevertheless, it can be seen that it had clearer and stronger signals at the cytoplasm and 

nuclei. In contrast, claudin-4 localization was diffuse and excluded from the apical 

membrane in the KD clones and the control cells, although occasional apical junction 

localization was observed. ZO-1 localization was also perturbed, but the defects were less 

pronounced (Figure 3-6b). 
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Figure 3-6. Localization of claudin-1 and claudin-4 in MDCK C7 control and tricellulin KD 
clones. (a) Claudin-1 (claudin-1: green; occludin: red; DAPI: blue). (b) Claudin-4 (claudin-
4: red; ZO-1: green; DAPI: blue). 

3.1.4 Effect of tricellulin KD on transepithelial water transport in 
MDCK C7 cells 

To analyze the effect of tricellulin knockdown on water permeability of MDCK C7 cells, 

water flux was measured after induction with osmotic gradients produced by 100 mM 

mannitol, by 37 mM 4-kDa dextran, or by 100 mM 4-kDa dextran (Figure 3-7, Appendix B. 

Table 7-1). These concentrations produced measured osmolality gradients of 100 mOsm 

for 100 mM mannitol and 37 mM 4-kDa dextran, and 900 mOsm for 100 mM 4-kDa 

dextran (see Chapter 2.4.4). 
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Tricellulin KD 23, as well as KD 24, exhibited increased water fluxes compared with their 

respective vector control clones, but the change obtained by KD 24 was larger under all 

conditions (Figure 3-7, Appendix B. Table 7-1) (Ayala-Torres et al., 2019). In KD 24, the 

increase under a mannitol-induced osmotic gradient was 2.6-fold (Figure 3-7a), under a 

gradient induced by 100 mM 4-kDa dextran the increase was 3.8-fold (Figure 3-7b), and 

under a gradient induced by 37 mM 4-kDa dextran on the apical side it was 5.2-fold 

(Figure 3-7c), and on the basolateral side, it was 2.4-fold (Figure 3-7d), compared to 1.5-

fold, 2.1-fold, 1.4-fold and 3.4-fold in KD 23, respectively. 
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Figure 3-7. Water flux in control and tricellulin knockdown MDCK C7 cells stimulated by 
an osmotic gradient on the apical side (a, b, c) and on the basolateral side of the cell 
layer (d). Water flux induced by a gradient of (a) 100 mM mannitol, (b) 100 mM 4-kDa 
dextran, (c) 37 mM 4-kDa dextran/apical and (d) 37 mM 4-kDa dextran/basolateral. The 
transepithelial water flux was increased in both tricellulin knockdown clones, with a 
stronger increase in clone KD 24 with the higher reduction of tricellulin expression. (n=6-
10, *P≤0.05, **P≤0.01, ***P≤0.001). 

 

In the same parallel series of experiments, a 5.5 mM 40-kDa dextran gradient was 

applied, which produced a measured osmolality gradient of 100 mOsm (see Chapter 

2.4.4). In the presence of 100 mOsm 40-kDa dextran, water flux was lower than in the 
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presence of 100 mOsm mannitol. The 40-kDa dextran gradient did not significantly 

change water flux in tricellulin KD 24 compared to control, whereas water flux in KD 23 

was increased (Ayala-Torres et al., 2019) (Figure 3-8, Appendix B. Table 7-1). This 

finding indicates that the water flux through the tTJ was inhibited in presence of 40-kDa 

dextran in the clone with strongest reduction of tricellulin. 

 

 

Figure 3-8. Water flux in control and tricellulin knockdown MDCK C7 cells stimulated by 
an osmotic gradient of 5.5 mM 40-kDa dextran (100 mOsm) on the apical side of the cell 
layer. No effect could be observed in tricellulin KD 24 cells, whereas in KD 23 with the 
higher tricellulin expression, the increase was in the same order of magnitude as in the 
presence of 100 mM mannitol (100 mOsm). (n=6-10, **P≤0.01, ns: not significant). 

 

All numerical data can be seen in Appendix B. Table 7-1.  
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3.2 Tricellulin knockdown (KD): HT-29/B6 cells 

3.2.1 Characterization of tricellulin KD in HT-29/B6 cells 

Confluent monolayers of the human colon adenocarcinoma cell line HT-29/B6, a well-

established model of the intermediate-tight epithelium (Kreusel et al., 1991), were used to 

analyze the specific role of the human tricellulin protein on the paracellular water 

transport. The HT-29/B6 cells were transfected with shRNA targeting tricellulin (see 

Chapter 2.2.2.1). After transfection, puromycin-resistant cell clones were screened for 

tricellulin knockdown by Western blotting (see Chapter 2.3). In this section, two 

knockdown clones and their control were investigated (KD 11 and KD 17 and their 

corresponding control 12). The two KD clones showed a high but different reduction in 

tricellulin expression: clone KD 11 showed a depression of tricellulin by 35%, while clone 

KD 17 exhibited a drop by 44% (Figure 3-9a, Appendix B. Table 7-2). 

 

The proper localization of tricellulin as dots at TCs was confirmed for the three clones by 

immunofluorescence confocal laser-scanning microscopy (see Chapter 2.2.5). ZO-1 

served as a TJ marker (Figure 3-9b). 
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Figure 3-9. Expression and localization of tricellulin in HT-29/B6 cells. (a) Densitometric 
analysis of tricellulin protein expression levels in stable shTRIC transfectants in 
comparison to vector-transfected controls. shTRIC leads to decreased tricellulin 
expression (***P≤0.001) and (b) Immunofluorescent staining of HT-29/B6 shRNA 
targeting tricellulin. Knockdown in HT-29/B6 cells did not affect tricellulin localization, 
which remained within the tTJ. Tricellulin: green, ZO-1: red, DAPI (nucleus): blue. 

 

The topology parameters (see Chapter 2.2.6) of fluorescence stained tricellulin 

knockdown HT-29/B6 cells using the program Fiji-ImageJ for estimating the contribution 

of tricellulin at the tTJ to overall permeability are shown in Appendix C. Table 7-5 and 

Figure 7-3. The most interesting result is that within the analyzed area, the TJ length per 

cell was slightly lower in both KD clones; however, the tTJ density was doubled in both 

KD clones in comparison with their control 12. The higher frequency of occurrence of tTJ 

in both monolayer KD clones suggests that tricellulin reduction impacts tTJ. In relation to 

the number of vertices or neighboring cells, it was observed that for all clones, there is an 

average value between 5 and 6 vertices (Appendix C. Figure 7-3), which also 

corresponds to the calculated number of tTJ per cell (6 tTJ/cell). 
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3.2.1.1 Effect on the transepithelial resistance 

Since it is known that in HT-29/B6 cells, the tTJ contributes to paracellular ion 

permeability (Krug, 2017), the effect of tricellulin knockdown on TER was investigated 

(see Chapter 2.4.1). The TER was reduced in tricellulin knockdown HT-29/B6 cells 

(Figure 3-10, Appendix B. Table 7-2). KD 17 exhibited a stronger reduction of tricellulin 

expression than KD11; nevertheless, both KD clones have a strong decrease in TER 

compared to their control (70% reduction in TER).  

 

 

Figure 3-10. Functional analysis of tricellulin knockdown in HT-29/B6 cells. Effect of 
tricellulin knockdown on transepithelial resistance. Tricellulin KD decreases TER in HT-
29/B6 cells. (n=24; ***P≤0.001). 

3.2.1.2 Analysis of permeability for sodium and chloride 

In order to investigate the ion permeabilities for sodium (PNa+) and chloride (PCl-) in this 

epithelial cell line, dilution potential measurements were performed (see Chapter 2.4.2). 

The results show that in tricellulin-deficient cells the permeability for Na+ and Cl- increased 

compared to their control (Figure 3-11a, Appendix B. Table 7-2). Notably, the ratio 

PNa+/PCl- in the tricellulin KD cells did not change compared to their control, indicating 

no change in the KD clones' charge selectivity (Figure 3-11b, Appendix B. Table 7-2). 
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Figure 3-11. Functional analysis of tricellulin knockdown in HT-29/B6 cells. (a-b) Effect of 
tricellulin knockdown on permeability for Na+ and Cl-. (a) Na+ and Cl- permeability was 
increased in both KD clones without any change in selectivity, and (b) Ratio Na+ over Cl- 

permeability did not change in KD clones compared with the control. (n=11, ns: not 
significant; **P≤0.01, ***P≤0.001) 

3.2.1.3 Measurement of macromolecule permeability (4-kDa FITC-
dextran) 

Using the same strategy used for analysis of MDCK C7 cells, the permeability of the three 

clones to 4-kDa FITC-dextran (FD4) was assessed (see Chapter 2.4.3). As a result, FD4 

permeability of KD 11 and KD 17 was higher than their control (Figure 3-12, Appendix B. 
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Table 7-2). Although KD 11 and KD 17 clones differed only gradually in the reduction of 

tricellulin expression, the two clones differed strongly in macromolecule permeability, 2.0- 

and 3.5-times higher than FD4 permeability of the control, respectively. 

 

 

Figure 3-12. Functional analysis of tricellulin knockdown in HT-29/B6 cells. Permeability 
to 4-kDa FITC-dextran in control cells and tricellulin knockdown clones. Tricellulin 
knockdown increased the permeability to 4-kDa FITC-dextran under an osmotic condition. 
(n=7, ***P≤0.001). 

3.2.2 Effects of tricellulin KD on other proteins of HT-29/B6 cells 

Knockdown of one tight junction protein may cause variation of other proteins; therefore, 

the levels of occludin, several claudins, the three angulins, and aquaporin-1, -3, and -4 

were examined (Figure 3-13a) (see Chapter 2.3). The densitometric analysis revealed 

some clonal variability in claudin expression between the knockdown clones and their 

control. In detail, angulin-1, claudin-1, and -8 were increased in the tricellulin KD 11 

(Figure 3-13b). The tricellulin KD 17 clone showed an increase in angulin-1, claudin-3 and 

-8, and AQP-4 and a reduction in AQP-3 (Figure 3-13b). As stated above, angulin-1 was 

upregulated in both clones possibly as a mechanism of the cells to stabilize the tTJ after 

tricellulin reduction. Indeed, as most of the claudins present in HT-29/B6 cells seal the 

barrier in a concerted action, it should be noted that after reducing the tricellulin 

expression, the set of those claudins increased to keep it in balance. On the other hand, 

HT-29/B6 cell line expresses the water channel-forming claudin-2, which was upregulated 

in both KD clones; however, the differences in claudin-2 expression between the clones 
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had not influence on the selectivity for Na+ over Cl- (Figure 3-11), which indicates, that the 

overexpressed claudin-2 had no functional relevance. Notably, the tricellulin knockdown 

affected the expression of the membrane water channels expressed in HT-29/B6 cells, 

AQP3 and AQP4 (Figure 3-13b); AQP3 was downregulated, whereas AQP4 was 

upregulated. It can be assumed that a compensatory mechanism between these two 

proteins; thus, the change in AQP expression does not affect the transcellular and 

transepithelial water flux.  
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Figure 3-13. Angulin, occludin, claudin, and AQP expression in control and tricellulin 
knockdown HT-29/B6 cells. (a) Representative Western blots. (b) Densitometric analysis 
of protein expression levels in stable shTRIC transfectants in comparison to the vector-
transfected control. β-actin was used as an internal control for normalization to protein 
content. (n=4-14, N=4, *P≤0.05, **P≤0.01, ***P≤0.001). 

3.2.3 Effects of tricellulin KD on the localization of other tight 
junction proteins of HT-29/B6 cells 

To determine whether tricellulin knockdown altered the localization of the upregulated TJ 

proteins, angulin-1, claudin-2 and -3, and ZO-1 were analyzed (see Chapter 2.2.5). 

Immunolocalization in tricellular KD cells revealed that claudin-2 was located at the cell-

cell borders; however, this protein was also located intracellularly in all clones, with 

greater intensity in the control cells, whereas the ZO-1 localization was unaltered (Figure 

3-14a). For all of the above, although claudin-2 increased in expression, is not functionally 

relevant, neither for water permeability nor for ion permeability, which was confirmed by 

the unchanged PNa+/PCl-. In contrast, no alteration was observed for claudin-3 by 

colocalization with the tight junction marker ZO-1 (Figure 3-14b). Interestingly, the 

angulin-1 localized in both bTJ and tTJ did not present significant changes in the KD 

clones compared to the control cells (Figure 3-14c). 
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Figure 3-14. Immunofluorescent staining of (a) claudin-2, (b) claudin-3 and (c) angulin-1 
in HT-29/B6 control and tricellulin KD cells. Tricellulin knockdown increased the 
expression of claudin-2; however, its localization was intracellular and subjunctional. 
(Claudin-2, claudin-3 and angulin-1: green; ZO-1: red; DAPI (nucleus): blue). 

3.2.4 Effect of tricellulin KD on transepithelial water transport in 
HT-29/B6 cells  

To analyze the effect of tricellulin knockdown on water permeability of HT-29/B6 cells, 

water flux was measured after induction of osmotic gradients produced by 100 mM 

mannitol, by 37 mM 4-kDa dextran, or by 100 mM 4-kDa dextran (Figure 3-15, Appendix 

B. Table 7-2). These concentrations produced measured osmolality gradients of 100 

mOsm for 100 mM mannitol and 37 mM 4-kDa dextran, and 900 mOsm for 100 mM 4-

kDa dextran (see Chapter 2.4.4). Transepithelial water flux was 4-fold higher using an 

osmotic gradient of 900 mOsm.  

 

Tricellulin KD 11 and KD 17 clones did not show significant differences in water flux 

compared with their vector control. These results confirm the finding that tricellulin is 
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dispensable for water barrier formation of the tTJ in HT-29/B6 cells. On the other hand, it 

could be thought that there is a threshold in the expression of tricellulin that was not 

overcome, and therefore it was impossible to measure differences in water fluxes. 

 

  

  

Figure 3-15. Water flux in control and tricellulin knockdown HT-29/B6 cells stimulated by 
an osmotic gradient. (a) Water flux induced by a gradient of 100 mM mannitol on the 
apical side. (b) Water flux induced by a gradient of 100 mM 4-kDa dextran on the apical 
side. (c) Water flux induced by a gradient of 37 mM 4-kDa dextran on the apical side. (d) 
Water flux induced by a gradient of 37 mM 4-kDa dextran on the basolateral side of the 
cell layer. The transepithelial water transport did not change under any condition between 
the KD clones and their control. (n=8-10, ns: not significant). 
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Like that evaluated with 40-kDa dextran, a 2.5 mM albumin gradient was applied, which 

produced a measured osmolality gradient of 40 mOsm (see Chapter 2.4.4). It is important 

to clarify that this is the maximum concentration of albumin that could be prepared before 

this solution became too viscous and impossible to handle in our device. The 2.5 mM 

albumin gradient did not significantly change water flux in tricellulin KD 11 and KD 17 

(Figure 3-16, Appendix B. Table 7-2). This finding could indicate that the water flux was 

hindered by the flow of big molecules, independent of its chemical nature, like albumin 

(70 Å in diameter (Tojo and Kinugasa, 2012)), through the tTJ in the opposite direction, in 

the same way, that 40-kDa dextran affected the transepithelial water transport in MDCK 

C7 cells. 

 

 

Figure 3-16. Water flux in control and tricellulin knockdown HT-29/B6 cells stimulated by 
an osmotic gradient of 2.5 mM albumin on the apical side of the cell layer. No effect could 
be observed in tricellulin KD cells under this osmotic gradient. (n=6, ns: not significant). 

 

All numerical data can be seen in Appendix B. Table 7-2. 
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3.3 Angulin-1 knockout (KO): MDCK C7 cells 

3.3.1 Characterization of angulin-1 KO in MDCK C7 cells 

Besides tricellulin, the angulin family proteins also localize at the tricellular tight junction. 

In order to investigate the specific role of the angulin-1 on the paracellular water transport 

in a tight epithelium, the angulin-1 gene was inactivated in the canine kidney cell line, 

MDCK C7, by application of the CRISPR/Cas9 technology. For this purpose, three 

plasmids obtained from Santa Cruz (Heidelberg, Germany), which contained 3 sgRNA (20 

nucleotides each), targeting different exons from the different isoforms of angulin-1 gene 

(see Table 3-1) and three HDR-plasmids which introduce the puromycin resistance, were 

used for stable transfection (see Chapter 2.2.2.2).  

 

Table 3-1. Angulin-1 isoforms and exons that are targeted by the three sgRNA. 

Name Transcript Protein sgRNA 
(exon target) 

LSR- 
Transcript ID 

(ENST00000) 

Nucleotides 

(bp) 

Size  

(aa) 

MW 

(kDa) 
Biotype CCDS UniProt A B C 

212 602122.5 2480 629  -- Protein coding 59376 Q86X29 8 3 3 

214 621372.4 2274 649  -- Protein coding 12450 Q86X29 9 3 3 

204 361790.7 2210 649 71 Protein coding 12450 Q86X29 9 3 3 

202 354900.7 2105 630 70 Protein coding 12449 Q86X29 8 3 3 

203 360798.7 1963 581 64 Protein coding 12451 Q86X29 7 3 3 

213 605618.5 1885 601  -- Protein coding -- S4R3V8 9 3 3 

201 347609.8 1880 591 66 Protein coding -- Q86X29 8 3 3 

205 427250.5 1606 493 55 Protein coding -- Q86X29 6 --  --  

209 601623.5 530 139  -- Protein coding -- M0R1W9 -- 3 3 

208 599658.1 343 114  -- Protein coding -- M0QZL9 -- 2 2 

210 602003.1 297 51  -- Protein coding -- M0R0W1 -- -- -- 

207 597933.5 873 No protein  -- Processed transcript -- -- -- -- -- 

211 602044.2 658 No protein  -- Processed transcript -- -- -- -- -- 

206 597446.1 478 No protein  -- Retained intron -- -- -- -- -- 

Angulin-1 isoforms and their description were obtained from www.ensembl.org/index.html. 

The targeting exons were identified using Clustal Omega that uses seeded guide trees 

and HMM profile-profile techniques to generate alignments between two, three or more 

sequences (www.ebi.ac.uk/Tools/msa/clustalo/). 

 

Firstly, puromycin-resistant cell clones were screened for angulin-1 knockout by Western 

blotting (Figure 3-17a, Appendix B. Table 7-3). Two knockout clones and two control 

clones were investigated (KO 18 and KO 36 and their controls 14 and 18). The two 

knockout clones are mono-allelic knockouts, as shown by Western blot analyses (Figure 

3-17a). 

 

http://www.ensembl.org/index.html
http://www.ebi.ac.uk/Tools/msa/clustalo/
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To confirm the efficiency of angulin-1 knockout in MDCK C7 cells, the localization of the 

angulin-1 protein was analyzed after the transfection. By immunofluorescence confocal 

laser-scanning microscopy (see Chapter 2.2.5), the proper localization at the TCs in the 

two control clones and the complete disappearance from the tTJ in the two knockout 

clones was confirmed using occludin as a TJ marker (Figure 3-17b). Besides, angulin-1 

also localized at the bTJ in the control cells, especially in control 14. 
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Figure 3-17. Expression and localization analysis of angulin-1 in control and angulin-1 KO 
MDCK C7 cells (a) Densitometric analysis of angulin-1 protein expression levels in stable 
CRISPR/Cas9 transfectants (KO 18 and KO 36) in comparison to vector-transfected 
controls (Control 14 and Control 18). sgRNA-CRISPR/Cas9 leads to a complete reduction 
of angulin-1 expression (n=9, ***P≤0.001 with regard to control 14 and ###P≤0.001 with 
regard to control 18). (b) Localization of angulin-1 in the four clones used throughout this 
study. In the KO clones, angulin-1 is missed at tTJ sites. Angulin-1: green; occludin: red; 
DAPI: blue.  

 

The topology parameters (see Chapter 2.2.6) of fluorescence stained angulin-1 knockout 

MDCK C7 cells using the program Fiji-ImageJ for estimating the contribution of angulin-1 

at the tTJ to overall permeability are shown in Appendix C. Table 7-6 and Figure 7-4. The 
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most interesting result is that within the analyzed area, the TJ length per cell was similar 

in both KO clones in comparison with their controls. On tTJ levels, the tTJ density of the 

KO 18 was the same compared to its controls; however, the tTJ density of the KO 36 was 

1.5-times higher than its controls. The higher frequency of tTJ in the KO 36 clone 

monolayers suggests an impact of the removal of angulin-1 from tTJ. In relation to the 

number of vertices or neighboring cells, it was observed that for all clones, there is an 

average value between 3 and 5 vertices (Appendix C. Figure 7-4), which also 

corresponds to the calculated number of tTJ per cell (5 tTJ/cell). 

3.3.1.1 Effect on the transepithelial resistance and 
macromolecule permeability 

In addition, the barrier function of angulin-1 knockout clones was investigated by 

determining the transepithelial resistance (TER) (see Chapter 2.4.1). The overall TER 

values were lower for the knockout cells compared to the MDCK C7 control cells (Figure 

3-18a, Appendix B. Table 7-3). In addition to ion permeability, reflected by TER, 4-kDa 

FITC-labeled dextran's permeability was determined (see Chapter 2.4.3). It was found 

that although the angulin-1 KO had a high impact on TER, it was nevertheless unable to 

increase the amount of 4-kDa FITC-dextran transported across the cell layer under 

isosmotic conditions. In contrast, when an osmotic gradient was applied, the permeability 

of the KO 18 clone to FD4 increased in comparison to the control 14, probably because in 

this KO clone the tricellulin delocalization from the tTJ was larger than in the KO 36 clone 

(Figure 3-18b and 3-18c, Appendix B. Table 7-3). 
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Figure 3-18. Functional analysis of angulin-1 knockout in MDCK C7 cells. (a) Effect of 
angulin-1 knockout on transepithelial resistance (TER). Loss of angulin-1 decreases TER 
in MDCK C7 cells (N=6, n=60). (b-c) Permeability to 4-kDa FITC-dextran under (b) 
osmotic and (c) isosmotic conditions. The permeability to FD4 did not change in the 
angulin-1 KO 36 clone and increased in the KO 18 clone in relation to the control 14 
under osmotic conditions. (ns: not significant; *P≤0.05, ***P≤0.001 with regard to control 
14 and ###P≤0.001 with regard to control 18). 

3.3.2 Effects of angulin-1 KO on other proteins of MDCK C7 cells 

Claudins are the major constituents of TJ strands, and the expression pattern of claudins 

is thought to determine TJs' permeability. Because MDCK C7 cells express the three 
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angulins, tricellulin, occludin, several tightening claudins, aquaporin-1, -3, -4, and -7, the 

effects of angulin-1 knockout on the expression levels of these proteins were investigated 

(Figure 3-19a) (see Chapter 2.3). The densitometric analysis (Figure 3-19b) revealed 

some clonal variability in claudin expression between the knockout clones and the 

controls. In detail, occludin, claudin-1, -3, -4, -5, -7 and -8 and AQP-7 were reduced in the 

angulin-1 KO 36 clone. The angulin-1 KO 18 clone showed a reduction in occludin, 

claudin-1, -5, and -7 and a slight increase in AQP-1 compare with the controls. Most 

importantly, the expression of the other angulin proteins (angulin-2 and -3) and tricellulin 

was not altered. Besides, the angulin-1 knockout did not affect the expression of the other 

membrane water channels expressed in MDCK C7 cells, AQP-3, -4, and -7. Therefore, 

the differences in transepithelial water flux are unlikely to be caused by changes in 

transcellular water flux and can be assumed due to changes in paracellular water flux.  
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Figure 3-19. Angulin family proteins, tricellulin, occludin, claudins, and AQP expression in 
angulin-1 knockout MDCK C7 cells. (a) Representative Western blots. (b) Densitometric 
analysis of protein expression levels in angulin-1 knockout clones KO 18 and KO 36 in 
comparison to their vector-transfected controls. β-actin was used as an internal control for 
normalization to protein content. (n=9, N=3; *P≤0.05, **P≤0.01, ***P≤0.001 with regard to 
control 14 and #P≤0.05, ##P≤0.01, ###P≤0.001 with regard to control 18). 

3.3.3 Effects of angulin-1 KO on tricellulin protein localization 

Immunofluorescence studies combined with confocal microscopy (see Chapter 2.2.5) 

revealed a selective delocalization of tricellulin from the tTJs to the bTJ after angulin-1 

knockout, whereas occludin was concentrated at the corners of tTJ (Figure 3-20a). In 

addition, the stimulated emission depletion (STED) microscopy (super-resolution imaging 

technique) was used to analyze in detail the localization of tricellulin and angulin-1 before 

and after angulin-1 KO (Figure 3-20b). As can be seen, angulin-1 is located exclusively in 

the TCs in control 14 cells and disappears entirely in the KO 36 clone. On the other hand, 

tricellulin appears in the TCs, but its orientation is parallel to the applied plane, perhaps 

because it connects short strands of TJ to the central sealing elements. After angulin-1 

KO, tricellulin partially lost its localization at the TCs (Figure 3-20b). 
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Figure 3-20. Effects of angulin-1 knockout on the localization of tricellulin and occludin. 
(a) Immunofluorescence analysis of tricellulin and occludin in control cells and angulin-1 
knockout clones. The localization of these proteins was changed in the angulin-1 
knockout clones (Tricellulin: green; occludin: red; DAPI: blue). (b) STED microscopy of 
tTJ of angulin-1 and tricellulin in angulin-1 KO 36 clone in comparison with the control 18 
(resolution limit: 20 nm, scale bars: 200 nm) (Tricellulin and angulin-1: cyan; occludin: red; 
DAPI: blue). 

3.3.4 Effect of angulin-1 KO on the ultrastructure of MDCK C7 
cells 

To obtain insight into whether and to what extent angulin-1 influences the barrier 

properties of the tight junction in MDCK C7 cells, the ultrastructure of both bTJ and tTJ 

was analyzed freeze-fracture electron microscopy (Figure 3-21) (see Chapter 2.2.7).  

 

Comparison of the bTJs (Figure 3-21a) of controls and angulin-1 KO clones showed no 

alteration in the ultrastructure and revealed a regular meshwork. On the other hand, 

typical tTJs with the central sealing elements and short TJ strands connected to these 
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elements were observed in the control 14 (Figure 3-21b). In contrast, TCs in angulin-1 KO 

36 cells had two vertical TJ strands separated from one another by smooth fracture 

planes of the plasma membranes (Figure 3-21b); nonetheless, the amount of full tTJs was 

too low to perform a morphometric analysis. In general, the tTJs were formed as an 

elongated tubular structure that extends vertically, whose central pore is formed by the 

tricellular contact between the bicellular tight junction strands (Figure 3-21b). 
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Figure 3-21. Freeze-fracture electron microscopy of angulin-1 knockout MDCK C7 cells. 
Photos were taken at x51000; Bars: 200 nm. (a) The bTJ strands of the vector-transfected 
cells and angulin-1 KO clones revealed a regular meshwork, characterized by continuous-
type areas, as it is well visible in the magnified detail. bTJs of angulin-1 KO cells show no 
ultrastructural difference compared with the vector control clones. (b) The tTJs of vector-
transfected clone 14 are characterized by linear, continuous strands expanding vertically. 
There is a slight difference in the tTJ width of angulin-1 KO 36 clone and the vector-
transfected cells. The linear orientations of TJ strands form a fishbone-like structure. 
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Regarding bTJs (Figure 3-21a), no alteration was found in the horizontally oriented 

filaments arranged perpendicular to the paracellular diffusion pathway between the 

controls and the angulin-1 knockouts, whether analyzed as frequency distribution (Figure 

3-22a). Neither the numbers of strands nor the meshwork depth was changed after 

angulin-1 KO (Figure 3-22b and 3-22c). The network density, which is calculated from the 

ratio of the number of strands to the network depth, did not differ between controls and 

angulin-1 knockout clones (Figure 3-22d). The number of breaks (>20 nm) per µm 

horizontal length of single-strands in bTJ was not significantly different between controls 

and the angulin-1 KO clones (Figure 3-22e). No breaks were accumulated in a vertical 

series that could open a complete paracellular path. More importantly, the analysis of 

strand appearance as either of continuous- or particle- (pearl string) type revealed no 

changes correlated with the observations reported above. Continuous strands appeared 

in all of the examined microscopy fields in control clones as well as in angulin-1 KO 

clones; only 8% of control 18 clone showed particle-type strands (Figure 3-22f). In 

addition, the tight junctions of the vector controls and the angulin-1 KO clones were 

composed exclusively of linear strands (Figure 3-22g). Thus, it could be said that any 

change in water flow in angulin-1 KO clones, compared to control cells, would not be 

caused by changes in TJ ultrastructure. 
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Figure 3-22. Morphometric analysis of TJ ultrastructure of angulin-1 knockout MDCK C7 
cells. (a) Transfection with CRISPR/Cas9 and sgRNA targeting angulin-1 did not alter the 
occurrence of strand numbers. (b) In bTJs there was no difference in the number of 
horizontal strands between the vector control clones and the angulin-1 KO cells. (c) The 
vertical depth of the compact meshwork did not change after the removal of angulin-1. (d) 
The strand density did not change between the control and the angulin-1 KO clones. (e) 
The occurrence of breaks >20 nm/m length of single horizontal strands. Knockout of 
angulin-1 did not modify the occurrence of breaks. (f) The occurrence of continuous and 
particle strand type. Knockout of angulin-1 did not change the strand type compare to 
their controls. (g) Angulin-1 KO had no effect on the characteristically straight strand 
patterns. (N=2, n=18-29, ns: not significant). 
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3.3.5 Effect of angulin-1 KO on transepithelial water transport in 
MDCK C7 cells 

To analyze the role of angulin-1 with respect to paracellular water passage, water fluxes 

were measured after induction of osmotic gradients produced by 100 mM mannitol (100 

mOsm) in the vector controls 14 and 18 and in the angulin-1 knockout clones 18 and 36 

on the apical and basolateral layer of the cells (see Chapter 2.4.4). The angulin-1-

depleted clones showed no difference in water permeability in comparison to control 

clones with regular angulin-1 expression when mannitol was used as an osmotic gradient 

(Figure 3-23a and 3-23b, Appendix B. Table 7-3). Nevertheless, the angulin-1-depleted 

clones showed an increase in water permeability when 37 mM 4-kDa dextran (100 

mOsm/Apical side) was used (Figure 3-23c, Appendix B. Table 7-3). This indicates that 

the removal of angulin-1 from the tTJ had an effect on the passage of water in MDCK C7 

cells, which is dependent on the chemical nature of the osmotic gradient. 
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Figure 3-23. Water flux in angulin-1 knockout MDCK C7 cells. Water flux stimulated by an 
osmotic gradient of 100 mM mannitol (a) on the apical side (n=11-12) and (b) on the 
basolateral side (n=9-12) of the cell layer. The transepithelial water flux was unchanged in 
both angulin-1 knockout clones. (c) Water flux induced by a gradient of 37 mM 4-kDa 
dextran on the apical side (n=10-11). The transepithelial water transport increased in both 
angulin-1 knockout clones. (ns: not significant, *P≤0.05, **P≤0.01, ***P≤0.001 with regard 
to control 14 and #P≤0.05, ##P≤0.01, ###P≤0.001 with regard to control 18). 
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control 8). The angulin-1 KO 8 clone has a reduction of 25% in tricellulin expression 

compared with its control 8 (Figure 3-24b). The TER of the KO clone was reduced 90% 

after angulin-1 KO (Figure 3-24c). The densitometric analysis showed that the expression 

of occludin, claudin-4, -5, -7, and -8 was reduced except for claudin-3, which was 

upregulated (Figure 3-24d). Most importantly, no changes in AQPs were found (Figure 3-

24d). As for water transport, in the presence of 100 mOsm mannitol and 100 mOsm 4-

kDa dextran, the water flux in the angulin-1 KO 8 was higher than in the control 8 (Figure 

3-24a). This finding indicates that the water flux through the tTJ is inhibited in the 

presence of angulin-1 and tricellulin, and when tricellulin is downregulated or delocalized, 

in this case, due to removal of angulin-1 from the tTJ, the transepithelial water transport 

increased, similarly to what was found in the tricellulin KD clones. 
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Figure 3-24. Partial characterization of an angulin-1 knockout MDCK C7 clone with a 
reduction in the expression of tricellulin. (a) Water flux stimulated by an osmotic gradient 
of 100 mM mannitol or 37 mM 4-kDa dextran on the apical side (n=9-11). The 
transepithelial water flux increased in the angulin-1 KO 8 clone in comparison with its 
control. (b) Densitometric analysis of angulin-1 and tricellulin protein expression levels in 
stable CRISPR/Cas9 transfectant (KO 8) in comparison to vector-transfected control 
(Control 8) (N=2, n=6). Angulin-1 KO 8 cells have a 25% reduction in tricellulin expression 
compare with its control 8. (c) Effect of angulin-1 KO/tricellulin KD on transepithelial 
resistance (TER) (N=6, n=18). Loss of angulin-1 and reduction of tricellulin decreases 
TER. (d) Densitometric analysis of protein expression levels in angulin-1 KO/tricellulin KD 
clone KO 8 and its vector-transfected control 8 (N=2, n=6). β-actin was used as an 
internal control for normalization to protein content. The densitometric analysis showed a 
reduction in the tightening-claudin expression and upregulation of claudin-3. (*P≤0.05, 
**P≤0.01, ***P≤0.001).  

 

All numerical data can be seen in Appendix B. Table 7-3. 
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3.4 Angulin-1 knockout (KO): HT-29/B6 cells 

3.4.1 Characterization of angulin-1 KO in HT-29/B6 cells 

In order to investigate the specific role of the human angulin-1 on the paracellular water 

transport in the intermediate-tight epithelium, the human adenocarcinoma cell line, HT-

29/B6, was transfected with three sgRNA targeting the different isoforms of angulin-1 (see 

Table 3-1) together with CRISPR/Cas9 and HDR plasmids (see Chapter 2.2.2.2 and 

3.3.1). After transfection of HT-29/B6 cells, puromycin-resistant cell clones were screened 

for angulin-1 knockout by Western blotting (see Chapter 2.3). In this section, two knockout 

clones and two controls were investigated (KO 12 and KO 32 and their controls 15 and 

29). The two knockout clones are mono-allelic knockouts, as shown by Western blot 

(Figure 3-25a and 3-27a, Appendix B. Table 7-4). 

 

The proper localization of angulin-1 as dots at the TCs in the control cells and their 

depletion in the knockout cells were confirmed by immunofluorescence confocal laser-

scanning microscopy (see Chapter 2.2.5). ZO-1 served as a TJ marker (Figure 3-25b). In 

addition, it is possible to observe angulin-1 localized in bTJ and also intracellular. 
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Figure 3-25. Expression and localization of angulin-1 knockout in HT-29/B6 cells. (a) 
Densitometric analysis of angulin-1 protein expression levels in stable CRISPR/Cas9 
transfectants in comparison to vector-transfected controls (n=9, ***P≤0.001 with regard to 
control 15 and ###P≤0.001 with regard to control 29) and (b) Immunofluorescent staining 
of HT-29/B6 sgRNA/CRISPR/Cas9 targeting angulin-1. Knockout in HT-29/B6 cells 
removed angulin-1 compare with the controls where this protein remained within the tTJ. 
Angulin-1: green, ZO-1: red, DAPI (nucleus): blue. 

 

The topology parameters (see Chapter 2.2.6) of fluorescence stained angulin-1 knockout 

HT-29/B6 cells using the program Fiji-ImageJ for estimating the contribution of angulin-1 

at the tTJ to overall permeability are shown in Appendix C. Table 7-6 and Figure 7-4. The 

most interesting result is that within the analyzed area, the TJ length per cell was similar 
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in both KO clones in comparison with their controls. On tTJ levels, the tTJ density of both 

KO clones also was the same compared to their controls. In relation to the number of 

vertices or neighboring cells, it was observed that for all clones, there is an average value 

between 4 and 6 vertices (Appendix C. Figure 7-4), which also corresponds to the 

calculated number of tTJ per cell (5 tTJ/cell). 

3.4.1.1 Effect on the transepithelial resistance and 
macromolecule permeability 

To evaluate the effect of the complete removal of angulin-1 from the tTJ on barrier 

function, the TER was measured (see Chapter 2.4.1). Angulin-1 knockout reduced the 

TER between 2- and 4-times in the KO clones compared with their controls (Figure 3-26a, 

Appendix B. Table 7-4). Besides, to investigate whether angulin-1 was able to prevent 

tight junction against ions and against larger molecules, flux measurements were carried 

out with 4-kDa FITC-dextran (FD4, 4000 Da) (see Chapter 2.4.3). In general, the 

permeability for FD4 was about 7 times higher in the KO clones than in the controls. Also, 

it can be seen that under isosmotic conditions (Figure 3-26b, Appendix B. Table 7-4), the 

permeability was higher than under an osmotic gradient (Figure 3-26c, Appendix B. Table 

7-4); this is because water flux in the opposite direction possibly inhibits the movement of 

FD4 when an osmotic gradient is applied. 
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Figure 3-26. Functional analysis of angulin-1 knockout in HT-29/B6 cells. (a) Effect of 
angulin-1 knockout on transepithelial resistance. Angulin-1 KO decreases TER in HT-
29/B6 cells (***P≤0.001 with regard to control 15 and ###P≤0.001 with regard to control 29, 
n=43). (b) Effect of angulin-1 knockout on permeability for 4-kDa FITC-dextran (FD4) with 
osmotic gradient. Permeability is increased only in the KO 32 clone when 4-kDa dextran 
was added to the apical side (**P≤0.01 with regard to control 15 and ###P≤0.001 with 
regard to control 29, ns: not significant, n=6). (c) Effect of angulin-1 knockout on 
permeability for 4-kDa FITC-dextran (FD4) without osmotic gradient. Permeability is 
increased in both KO clones when the osmolality of both sides was equal (***P≤0.001 
with regard to control 15 and ###P≤0.001 with regard to control 29, n=9).  
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3.4.2 Effects of angulin-1 KO on other proteins of HT-29/B6 cells 

HT-29/B6 cells express the three angulins, tricellulin, occludin, several claudins, 

aquaporin-1, -3, -4 and -7, SGLT1 and LI-cadherin, and in further investigations, the effect 

of angulin-1 knockout on the expression level of these proteins was analyzed (Figure 3-

27a) (see Chapter 2.3). The densitometric analysis revealed some clonal variability in 

claudin expression between the knockout clones and the controls (Figure 3-27b). In detail, 

tricellulin, claudin-1, -3, -5, -7 and -8, and LI-cadherin were increased in both knockout 

clones. The water and cation-channel claudin-2 was upregulated in the angulin-1 KO 32 

clone and downregulated in the angulin-1 KO 12 clone. Most importantly, the angulin-1 

knockout did not affect the expression of the membrane water channels expressed in HT-

29/B6 cells, AQP-1, -3, -4, and -7, and the expression of other protein carries was 

unchanged, like SGLT1. Thus, the transcellular water flux is unchanged in these cells. It is 

worth highlighting that for the KO clones, additional proteins were analyzed than in the 

knockdown clones thinking that the phenotype is much stronger and could modify to a 

greater extent these proteins related to water transport present in HT-29/B6 cells (AQPs, 

SGLT1, and LI-cadherin). 
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Figure 3-27. Angulin, tricellulin, occludin, claudin, and AQP expression in angulin-1 
knockout HT-29/B6 cells. (a) Representative Western blots. (b) Densitometric analysis of 
protein expression levels in stable angulin-1 CRISPR/Cas9 transfectants in comparison to 
their vector-transfected controls. β-actin was used as an internal control for normalization 
to protein content. (n=9, N=6, *P≤0.05, **P≤0.01, ***P≤0.001 with regard to control 15 and 
#P≤0.05, ##P≤0.01, ###P≤0.001 with regard to control 29). 

3.4.3 Effects of angulin-1 KO on tight junction protein localization 

To investigate whether angulin-1 knockout leads to changed localization of the tTJ 

proteins tricellulin, immunofluorescence analysis was performed (see Chapter 2.2.5). 

Knockout of angulin-1 led to lowered localization of tricellulin at tricellular contacts and 

delocalization into bicellular contacts, whereas localization of ZO-1 (TJ marker) was 

unaffected (Figure 3-28a). 

 

In the case of claudin-8, one of the most upregulated claudins, its localization seemed to 

be similar in control and the knockout cells, with the main difference that in knockout 

clones, intracellular claudin-8 is observed (Figure 3-28b). 
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Figure 3-28. Localization of TJ proteins in angulin-1 knockout HT-29/B6 cells. 
Immunofluorescence analyses of HT-29/B6 control and angulin-1 KO cells. (a) Tricellulin. 
ZO-1 localization was not altered in angulin-1 KO cells. (b) Claudin-8. Occludin 
localization to apical junctions was reduced in angulin-1 KO cells. (Tricellulin, claudin-8: 
green; occludin, ZO-1: red; DAPI (nucleus): blue). 

3.4.4 Effect of angulin-1 KO on the ultrastructure of HT-29/B6 
cells 

To obtain insight into whether and to what extent angulin-1 influences the barrier 

properties of the tight junction in HT-29/B6 cells, the ultrastructure of both bTJ and tTJ 

was analyzed freeze-fracture electron microscopy (Figure 3-29) (see Chapter 2.2.7). 

Nevertheless, the abundance of tTJs was very low. In addition, they were not complete 
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and thus not suitable for any measurements. Fortunately, the ones for the knockout 

clones were not obviously differing from those of the control clones. 

 

 

Figure 3-29. Freeze-fracture electron microscopy. Photos were taken at x51000; Bars: 
200 nm. The bTJ strands of the vector-transfected cells revealed a regular meshwork, 
characterized by continuous-type areas, as it is well visible in the magnified detail. bTJs of 
angulin-1 knockout clones show no ultrastructural difference compared with the vector 
control-transfected cells. 
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Regarding bTJs (Figure 3-29), controls and angulin-1 knockouts showed no alteration in 

the horizontally oriented strands arranged perpendicular to the paracellular diffusion 

pathway, whether analyzed as frequency distribution (Figure 3-30). As already found for 

MDCK C7 cells, there is no difference in TJ ultrastructure in HT-29/B6 angulin-1 KO cells 

compared to their controls (Figure 3-30). Thus, it could be said that any change in water 

flow in angulin-1 KO clones, compared to control cells, would not be caused by changes 

in TJ ultrastructure. 
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Figure 3-30. Morphometric analysis of TJ ultrastructure of angulin-1 knockout HT-29/B6 
cells. (a) Transfection with CRISPR/Cas9 and sgRNA targeting angulin-1 did not alter the 
occurrence of strand numbers. (b) In bTJs there was no difference in the number of 
horizontal strands between the vector control clones and the angulin-1 KO cells. (c) The 
vertical depth of the compact meshwork did not change after the removal of angulin-1. (d) 
The strand density did not change between the control and the angulin-1 KO clones. (e) 
The occurrence of breaks >20 nm/m length of single horizontal strands. Knockout of 
angulin-1 did not modify the occurrence of breaks. (f) The occurrence of continuous and 
particle strand type. Knockout of angulin-1 did not change the strand type in comparison 
to the control clones. (g) Angulin-1 KO did not affect the characteristically straight strand 
patterns show in the control cells. (N=2, n=11-27, ns: not significant). 

3.4.5 Effect of angulin-1 KO on transepithelial water transport in 
HT-29/B6 cells  

In order to analyze the role of angulin-1 concerning paracellular water passage, water 

fluxes were measured after induction of an osmotic gradient produced by 100 mM 

mannitol (100 mOsm) apical and basolateral in the angulin-1 KO clones 12 and 32 and 

compared with their controls 15 and 29 (see Chapter 2.4.4). As a result, manipulation of 

angulin-1 expression seemed to exert no effect on transepithelial water transport (Figure 

3-31, Appendix B. Table 7-4); in other words, angulin-1 cannot function as a water barrier 

in the tTJ in HT-29/B6 cells (intermediate-tight epithelium). Water transport was not 

measured using 4-kDa dextran as an osmotic gradient since the SEM obtained using 

mannitol was low, and no trend of increased water flow was observed in the KO clones 

with respect to their controls. 
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Figure 3-31. Water flux in angulin-1 knockout HT-29/B6 cells stimulated by an osmotic 
gradient. (a) Water flux induced by a gradient of 100 mM mannitol on the apical side. (b) 
Water flux induced by a gradient of 100 mM mannitol on the basolateral side of the cell 
layer. The transepithelial water flux did not change after angulin-1 KO. (n=8, ns: not 
significant). 

 

All numerical data can be seen in Appendix B. Table 7-4. 
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4. Discussion 

In the present study, the focus was on elucidating the role of two tricellular tight junction 

proteins, tricellulin and angulin-1, on the paracellular water permeability. For this, the 

effect of tricellulin knockdown and angulin-1 knockout was analyzed in two different cell 

lines, MDCK C7, a tight epithelial cell line, and HT-29/B6, an intermediate-tight epithelial 

cell line. It was found that tricellulin and angulin-1 are involved in water permeability only 

in the tight epithelial cell line, while both proteins have no significant effect on water 

permeability in an intermediate-tight epithelium. These results suggest that the tricellular 

tight junction is essential for water permeability in the tight epithelium, and it is tricellulin-

dependent (Ayala-Torres et al., 2019). 

4.1 Tricellulin 

Tricellulin was discovered as a transmembrane tight junction protein that is preferentially 

located at contact sites where three adjacent cells meet (Ikenouchi et al., 2005). The 

mechanism, which leads to this tricellular arrangement and the role of this tight junction 

protein in water homeostasis is an important but understudied area. Here, a paracellular 

water permeation pathway made by the tTJ and regulated by its integral protein, known 

as tricellulin, was revealed.  

 

Within the scope of this work, the analysis of the intestinal cell line HT-29/B6 

(intermediate-tight epithelium) and the renal cell line MDCK C7 (tight epithelium) showed 

that this tight junction protein is higher expressed in HT-29/B6 than in MDCK C7 cells 

(Appendix A. Figure 7-1), which might have a large influence on the tTJ and its 

permeability properties. The above is also supported in bTJ and tTJ topological analysis 

(Appendix C. Table 7-5 and Figure 7-3), where it can be seen that the density of tTJ and 

the number of tTJ/cell is higher on HT-29/B6 than on MDCK C7 (control cells). 

 

In this thesis, tricellulin was downregulated in those epithelial cell culture models, and 

depending on the level of expression, two knockdown clones were selected that showed 

the most significant reduction in tricellulin expression in both cell lines. Comparing the 

expression of tricellulin between the clones and the control cell lines showed that after 
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tricellulin downregulation, the expression level was comparable between MDCK C7 and 

HT-29/B6 cells (see Chapter 3.1.1 and 3.2.1). 

4.1.1 Tricellulin knockdown alters the expression and localization 
of tight junction proteins in MDCK C7 and HT-29/B6 cells 

It has been described that the knockdown of tricellulin influences the organization of tTJ 

as well as the localization of occludin at bTJ (Ikenouchi et al., 2005). Immunoblots and 

densitometric analysis demonstrated an apparent reduction of tricellulin expression in 

both cell lines (Figure 3-5 and 3-13). Nevertheless, the generated tricellulin knockdown 

clones compared with the controls showed clonal variation in other TJ proteins, which 

reached significance for occludin, claudin-1, claudin-4, and claudin-8 in MDCK C7 cells, 

and claudin-1, claudin-2, claudin-3, claudin-8, angulin-1, AQP-3, and AQP-4 in HT-29/B6 

cells (Figure 3-5b and 3-13b). The clonal variation also concerns the two control clones in 

MDCK C7 cells; here, the differences are most prominent for claudin-1, claudin-5, and 

claudin-8. These claudins seem to have no effect on paracellular water transport, since 

the water transport of the two control clones did not show any difference (Ayala-Torres et 

al., 2019).  

 

In the MDCK C7 tricellulin knockdown clones (see Chapter 3.1.2), considering the 

functional aspects of the variations, it can be said that occludin, which is downregulated 

only in one of the tricellulin knockdown clones, is assumed to have no effect on TJ barrier 

function, either genuinely or through compensation of its downregulation by other tight 

junction proteins (Saitou et al., 2000; Schulzke et al., 2005; Raleigh et al., 2010). In 

addition to occludin, all claudins present in MDCK C7 cells are known to behave as 

barrier formers, acting in concert, and compensating for their respective up- and 

downregulation (Günzel and Yu, 2013). Ion and water channel-forming claudins can be 

disregarded as they are not genuinely present in MDCK C7 cells. A reduced expression of 

claudin-4 and claudin-8 and an increased expression of claudin-1 were found in one of 

the knockdown clones. However, claudin-4 is described as dispensable for TJs' barrier 

properties in wild-type MDCK II cells (Tokuda et al., 2017).  

Furthermore, claudin-1 and claudin-4 were shown to be dispensable for water barrier 

formation in human submerged keratinocyte cultures (Kirschner et al., 2013), and they are 

only related to the paracellular pore pathway (Otani et al., 2019). Therefore, we feel safe 

to conclude that the observed clonal variation of the claudins in sum is balanced and 
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provides a constant barrier function of the bTJ. Most importantly, the three angulins, as 

well as the aquaporins AQP-1, -3, and -4, did not change. Thus, the changes in ion, 

macromolecule, and water permeability found in the knockdown clones can be assumed 

to be exclusively due to the reduced tricellulin expression in the tTJ; nonetheless, 

changes in ion permeability could also be affected by the reduction in claudin-4 and -8. 

 

In the case of HT-29/B6 cells (see Chapter 3.2.2), it is important to underline that the 

change in claudin-2 expression had no functional relevance because a change in Na+ 

permeability would be expected after elevated expression of junctional located claudin-2, 

which is known to form specific paracellular channels for small cations (Amasheh et al., 

2002). Changes in claudin-2 expression in tricellulin KD clones were shown to be without 

functional relevance because of extrajunctional localization. Interestingly, after tricellulin 

knockdown, some tightening claudins were upregulated, contrary to MDCK C7 cells. 

Specifically, claudin-3 and -8 were upregulated. It has been reported that overexpression 

of claudin-3 in epithelial cells decreases the solute permeability increasing the TER 

significantly in comparison to the control cells (Coyne et al., 2003; Milatz et al., 2010). In 

addition, it has been suggested that claudin-8 forms the paracellular barrier to Na+ 

permeation when expressed in MDCK II cells (Yu et al., 2003), and also it is known that 

barrier improvement by claudin-8 is accompanied by a reduction of endogenous claudin-2 

protein at the tight junction (Yu et al., 2003), in this thesis, perhaps the increase in 

claudin-8 offset the increase in claudin-2, reducing it in TJ, making it non-functional. 

Lastly, angulin-1 was upregulated in both knockdown clones; this could be due to a 

compensatory mechanism in the tTJ in response to the absence of tricellulin and also due 

to the fact that after tricellulin KD the tTJ density increases in the KD clones compared 

with the control (Appendix C. Table 7-5 and Figure 7-3). 

4.1.2 Tricellulin knockdown increases the ion permeability in 
MDCK C7 and HT-29/B6 cells 

Once the change in the protein profile has been analyzed, it is important to analyze the 

barrier properties (see Chapter 3.1.1.1 and 3.2.1.1). The reduction in tricellulin expression 

resulted in a lowered transepithelial resistance (TER) in both cell lines, which is in 

accordance with previous experiments on cell cultures (Krug, 2017; Krug et al., 2013; 

Krug et al., 2009a; Krug et al., 2018). Since tightening claudins were upregulated in HT-

29/B6 knockdown clones, the observed decrease in TER could be attributed to the 
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absence of tricellulin from the tTJ. In contrast, downregulation of claudin-4 and -8 in 

MDCK C7 cells could intensify TER's effect after tricellulin knockdown. It is known that 

overexpression of claudin-4 has been reported to reduce the paracellular permeability 

specific to Na+, and claudin-8 has been suggested to form the paracellular barrier to Na+ 

permeation when expressed in MDCK II cells (Alexandre et al., 2005). Thus, the 

assumption that tricellulin expression is important for sealing function in HT-29/B6 and 

MDCK C7 cells could be confirmed (Ayala-Torres et al., 2019).  

 

To describe this barrier in more detail, dilution potential measurements were performed to 

investigate the influence of ions with different charges (see Chapter 3.1.1.2 and 3.2.1.2). 

The dilution potential measurements showed an increase of the permeability for Na+ and 

Cl- in the tricellulin knockdown clones. However, since the ratio of Na+ to Cl- permeability 

remained unchanged, tricellulin increase the ion permeability without a change in charge 

selectivity in both cell lines. In HT-29/B6 knockdown clones, the upregulation of claudin-2 

did not increase the PNa+/PCl-, therefore, it could be said that this increase has no 

functional relevance in the subsequent analyses, especially in the measurement of 

transepithelial water transport. 

4.1.3 Tricellulin knockdown increases the macromolecule 
passage in MDCK C7 and HT-29/B6 cells 

The present study confirmed that tricellulin plays an important role in regulating 

paracellular transport of macromolecules in different types of epithelia, and it is related to 

the content of tricellulin in the tTJ. The permeability to the paracellular marker 4-kDa 

dextran was increased by tricellulin knockdown in both cell lines as normally this protein is 

responsible for blocking the passage of macromolecules with diameters from 1.3 to 4.6 

nm (0.9 to 10 kDa) (Krug et al., 2009a; Krug, 2017).  

 

In the case of the tight epithelial cell line, it might be surprising that a moderate 

knockdown of tricellulin by 40% already leads to five times higher permeability for 

macromolecules (see Chapter 3.1.1.3). This is explained by the fact that normally the 

permeability for macromolecules is extremely low (in the order of 10-12 cm/s), so that even 

a slight opening of a pathway for macromolecules causes a significant effect (Krug et al., 

2017). Furthermore, the reduction by 30% (KD 23) had no significant effect on 

macromolecule permeability but ion permeability, indicating that there is already a 
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significant impairment of the tTJ barrier, which is only affecting small solutes, while 4-kDa 

dextran is still not able to pass. This leads to the assumption that the varying range of 

tricellulin expression may lead to different effects. The limit of macromolecule passage 

seems to range between 30% and 40% reduction of tricellulin, while for small solutes, the 

regulation is stricter (Ayala-Torres et al., 2019). 

 

In the intermediate-tight epithelial cell line, HT-29/B6, downregulation of tricellulin 

increases the permeability of the KD clones between two and three times in comparison 

to their control (see Chapter 3.2.1.3). It is important to consider that this cell line is much 

less tight (sometimes classified as leaky epithelium), and thus the overall permeability is 

higher than in MDCK C7 cells. Also, after tricellulin knockdown, further tightening tight 

junction proteins were upregulated, which may affect the bicellular passage of 

macromolecules if this exists. Thus, the major way for macromolecules would be the tTJ. 

 

Based on the rareness and the dimensions of tTJs compared with bTJs (Appendix C. 

Table 7-5 and Figure 7-3) and under the precaution that the dimensions of the central 

tube of the tTJ are only known roughly, we suggest that macromolecules cross the 

epithelial layers mainly along the central tube of the tTJ in both cell lines, with an 

important effect on the HT-29/B6 cells which had more tTJ/cell after the tricellulin KD. 

Therefore, the existence of narrow points inside the central tTJ tube postulated earlier 

(Staehelin, 1973), where it is speculated that tricellulin is inserted into the tTJ allowing the 

branching of TJ strands reducing the diameter of the central tube to a critical size for the 

passage of the macromolecule, is affected after tricellulin reduction, with greater effect on 

HT-29/B6, cells with higher TJ length and tTJ density (Appendix C. Table 7-5 and Figure 

7-3). 

4.1.4 Water transport as driven by different osmotic gradients 

It has long been known that water can be transported via the transcellular route. The 

group of aquaporins that form transcellular water channels is significantly involved in this 

process (overview in (Gomes et al., 2009)). It was controversially discussed whether 

water is also transported via the paracellular pathway and to what extent tight junction 

proteins are involved in this process.  

 



144 Contribution of tricellulin and angulin-1 to paracellular water permeability 

 

In other studies from this lab analyzing water permeability of claudin channels, mannitol 

was used for an osmotic gradient since this solute was impermeable and could not pass 

the claudin channels (Rosenthal et al., 2017a; Rosenthal et al., 2019; Rosenthal et al., 

2017b; Rosenthal et al., 2010). In the present study, for the first time, this is different and 

more complicated. In the tricellulin KD clones, the tTJ central tube is opened, shown by 

the increased macromolecule permeability, and through this pathway, mannitol can 

diffuse following its concentration gradient. This has two consequences: First, in the 

course of the experiment, mannitol may be diluted, and its gradient is reduced. However, 

this will be below significance because the amount of mannitol in the 9 mL bath solution is 

high compared to the amount diffusing through the tTJ. Second and more disturbing, 

mannitol would diffuse through the central tube in opposite direction to the presumed 

water flux. As long as a molecule like mannitol is small compared to the diameter of the 

central tube, this may not have a large effect. Anyhow, because this mechanism may alter 

water transport rates at least slightly, the water permeability coefficients were not 

calculated in this study, and the data were presented as fluxes only (Ayala-Torres et al., 

2019). 

 

In order to investigate the side effect of mannitol diffusion, the data obtained with 100 mM 

mannitol were compared with those obtained with larger molecules, 37 mM 4-kDa and 5.5 

mM 40-kDa dextran in MDCK C7 cells and 2.5 mM albumin instead of 5.5 mM 40-kDa 

dextran in HT-29/B6 cells (see Chapter 3.1.4 and 3.2.4). For this, dextran concentrations 

were chosen, which all produced an osmolality of 100 mOsm, as used for mannitol, 

except for 2.5 mM albumin which its osmolality was 40 mOsm. This resulted in lower 

nominal concentrations due to a known water-sequestering effect of some 

macromolecules (Rudan-Tasic and Klofutar, 2004). It turned out that gradients of 100 mM 

mannitol and 37 mM 4-kDa dextran produced comparable water fluxes and that an 

elevated 4-kDa dextran concentration (100 mM resulting in roughly 900 mOsm) led to 

higher water fluxes in both cell lines (see Appendix B. Table 7-1 and 7-2). Since these 

numbers satisfactorily fit together, this indicates the reliability of the methods used. Lastly, 

the amount of water flux induced by 4-kDa dextran was independent of the osmotic 

gradient direction, as seen with 37 mM of 4-kDa dextran, which was added either to the 

apical or the basolateral side of the cells. Water moved in the opposite direction, but the 

absolute values for water flux were nearly equal (Ayala-Torres et al., 2019). 
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The most valuable results should have been obtained with an osmotic gradient obtained 

by 5.5 mM 40-kDa dextran (measured osmolality 100 mOsm). Surprisingly, this was not 

the case in MDCK C7 cells: in the presence of 40-kDa dextran, water flux was reduced in 

the control clones as well as in the knockdown clones compared to water fluxes in the 

presence of mannitol with the same osmolality (Ayala-Torres et al., 2019). An induction of 

water flux by a gradient with 40-kDa dextran did not significantly change water fluxes in 

the KD 24 clone with the stronger tricellulin reduction, whereas KD 23 showed an 

increased water flux compared to the control clone (see Chapter 3.1.4). As an explanation 

for this effect, the sizes of the molecule should be related to that of the tTJ central tube. 

The hydrodynamic radius of the large carbohydrate 40-kDa dextran reportedly amounts 

6.6 nm (Wen et al., 2013), while the diameter of the tTJ central tube was assumed to be 

10 nm (Staehelin, 1973). We suggest that due to its molecular size, the 40-kDa dextran 

only barely fits through the central tube or even clogs its entrance so that water is 

hindered from passing. Thus, water flux was reduced in all clones compared to mannitol-

induced fluxes. The strongest reduction was observed in the KD 24 clone with the lowest 

tricellulin expression and possibly the largest diameter of the tTJ central tube (Ayala-

Torres et al., 2019). These assumptions are supported by the findings of Krug et al. that 

the tTJ central tube at low tricellulin levels allows for passage of molecules of 10 kDa but 

not of 20 kDa (Krug et al., 2009a). This reasoning finds its equivalent in experiments 

dealing with the bTJ, where a NaCl gradient was used to drive water flux through the 

claudin-15 channel. Under this condition, claudin-15-mediated water flux was inhibited by 

Na+ diffusion in the opposite direction (Rosenthal et al., 2019).  

 

Interestingly, when albumin, a large protein molecule (3.8 nm in diameter and 15 nm long 

molecule (Tojo and Kinugasa, 2012)), was used to generate an osmotic gradient in HT-

29/B6 cells, the water flux produced did not change in both tricellulin KD clones compared 

with their control. Therefore, this experiment confirmed that the osmotic gradient's 

chemical nature did not modify the water transport in HT-29/B6 cells. 

4.1.5 Tricellulin knockdown increases transepithelial water 
transport only in MDCK C7 cells 

For the full line of experiments in MDCK C7 cells, two tricellulin KD clones were selected, 

which differ in the grade of tricellulin reduction, namely by 30% (clone KD 23) and by 40% 

(clone KD 24) compared to the respective controls. While both KD clones caused a 
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decrease in TER, only KD 24 produced a slight increase in permeability to a 4-kDa 

macromolecule and, most importantly, increased water flux driven by different osmotic 

gradients as discussed above (see Chapter 3.1.4) (Ayala-Torres et al., 2019). 

 

The question arises whether this is an all-or-nothing effect. If yes, one would postulate a 

threshold of tricellulin depression somewhere between 30% and 40%. In order to have a 

closer look, an additional experiment was performed employing a clone with tricellulin 

reduced by 35% (clone KD 22). Being aware that this is based on three points only, 

resulting water flux appeared to correlate with the tricellulin expression, suggesting that 

the effect of tricellulin KD depression is gradual, starting at the level found for the controls 

(Figure 4-1) (Ayala-Torres et al., 2019). 

 

 

Figure 4-1. Water flux as a function of the level of tricellulin expression in MDCK C7 cells 
driven by an osmotic gradient of 37 mM 4-kDa dextran (100 mOsm). Tricellulin KD 22 
(n=7) is an additional KD clone that was tested only for this purpose (shRNA 22: 
TRCN0000072635, NM_144724.1-989s1c1, Sigma-Aldrich, Schnelldorf, Germany) and 
compared with control 9. (*P≤0.05, ***P≤0.001). 

 

In the same way, two tricellulin KD clones were selected in HT-29/B6 cells, which differ in 

the grade of tricellulin reduction, namely by 35% (clone KD 11) and by 44% (clone KD 17) 

compared to their control. While both KD clones caused a decrease in TER and an 

increase in permeability to a 4-kDa macromolecule, none of them increased the water flux 

driven by different osmotic gradients. Since claudin-2 is genuinely expressed in the HT-
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29/B6 cells, a large water transport component may have traveled through the bTJ, and a 

possible contribution from the tTJ may not have reached significant levels (see Chapter 

3.2.4). On the other hand, there may be a threshold in the expression of tricellulin, which 

must be overcome to find significant differences in water transport, which were not 

reached with the knockdowns generated in this research. In addition, there is a possibility 

that, in general, the paracellular water flux is lower than the transcellular water flux or that 

there is a claudin-2-independent paracellular pathway for water. Furthermore, the water 

movement may cause the accumulation of water between TJ strands because of 

differences in the water permeability between diffusion across TJ strands and diffusion 

through the paracellular space between strands (possible bleb formation between TJ 

strands under hyperosmolality) (Tokuda and Yu, 2019), and this water accumulation may 

serve as a trigger of cell responses, for example, by increasing the tightening of the 

intracellular space.  

 

As an overall view, tricellulin is able to regulate osmotically-induced transepithelial water 

flux in MDCK C7 cells (tight epithelial cell line; for an overview, see Chapter 3.1). This 

regulation occurs reciprocally, i.e., lowered tricellulin expression causes higher water 

fluxes (Ayala-Torres et al., 2019). In contrast, the contribution of tTJ central tubes to 

transepithelial water permeability in HT-29/B6 cells (intermediate-tight epithelial cell line; 

for an overview, see Chapter 3.2) is neglected, even if maximally conductive. Our findings 

go hand in hand with what Krug and colleagues found in ulcerative colitis, and HT-29/B6 

cells, where there was an increase in the passage of macromolecules caused, at least in 

part, by the downregulation of tricellulin (Krug et al., 2018). Besides, the role of claudin-2 

in IBD has been linked to leak-flux diarrhea as claudin-2 increases permeability for small 

cations as well as for water, and with our results, it can be said that tricellulin does not 

have a relevant role in water permeability at the tTJ, which can be masked by claudin-2. 
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4.2 Angulin-1/LSR 

Tricellulin and angulin family proteins, including angulin-1/LSR, angulin-2/ILDR1, and 

angulin-3/ILDR2, have been identified as molecular constituents of tTJs (Ikenouchi et al., 

2005; Masuda et al., 2011; Higashi et al., 2013). Tricellulin and angulins localize along 

with the central sealing elements of tTJs (Masuda et al., 2011; Ikenouchi et al., 2005). 

Because angulins recruit tricellulin to TCs, the angulin-tricellulin axis is proposed to play 

crucial roles in tTJ formation. Angulin-1 may play broader physiologic roles to establish 

the water homeostasis in different organs, such as the intestine, the skin, lungs, or the 

kidney, like angulin-2/ILDR1. Here, a paracellular water permeation pathway made by the 

tTJ and regulated by its integral protein, known as angulin-1/LSR, was disclosed.  

 

In a similar line of experiments conducted to study tricellulin and its role in paracellular 

water permeability, the intestinal cell line HT-29/B6 and the renal cell line MDCK C7 were 

investigated concerning angulin-1 expression. It was shown that this tight junction protein 

is expressed endogenously and in the same proportion in these two cell lines (Appendix 

A. Figure 7-2). Angulin-1 was removed in those epithelial cell culture models, and for each 

cell model, the two knockout clones that showed the maximum reduction in its expression 

were selected (see Chapter 3.3.1 and 3.4.1). The above is also supported in bTJ and tTJ 

topological analysis (Appendix C. Table 7-6 and Figure 7-4), where it can be seen that the 

density of tTJ is higher on HT-29/B6 than on MDCK C7 (control cells), nevertheless, the 

number of tTJ/cell is the same in both cell lines. 

4.2.1 Angulin-1 knockout alters the expression and localization of 
other proteins in MDCK C7 and HT-29/B6 cells 

As KD experiments only reduce protein expression, it is not surprising that the null protein 

phenotypes generated by genome editing yield more severe phenotypes. The expression 

of several tightening claudins in MDCK C7 cells was reduced in angulin-1 knockout cells, 

suggesting these claudins were partly removed from the TJ strands in the absence of 

angulin-1; in contrast, claudins and tricellulin expression were increased after angulin-1 

knockout in HT-29/B6 cells, suggesting these claudins were additionally incorporated into 

TJ strands in the absence of angulin-1. Most importantly, in both angulin-1 KO cell lines, 

tricellulin was partly removed from the tTJ and detectable in the bTJ as seen before in 

other cell lines (Masuda et al., 2011).  
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On one side, angulin-1 knockout in MDCK C7 cells induced a decrease in occludin 

expression, claudin-1, and -4 (see Chapter 3.3.2). This might affect the barrier function 

and formation as evidenced by Kirschner et al. through different knockdowns of claudin-1 

and -4, occludin, and ZO-1 causing increased paracellular permeability for ions and larger 

molecules (Kirschner et al., 2013). Furthermore, the absence of occludin and claudin-1 in 

both KO clones prevents the specific localization of tricellulin at tricellular contacts and 

promotes its localization at bTJ (Ikenouchi et al., 2008; Nakatsu et al., 2019). These 

observations suggested that the proteins functionally influence each other. 

 

On the other side, angulin-1 knockout in HT-29/B6 cells increased the expression of 

barrier-forming claudins (Nakatsu et al., 2019) and tricellulin (see Chapter 3.4.2). 

Therefore, it can be concluded that the observed clonal variation of the claudins and 

tricellulin in sum is balanced and provides a constant barrier function of the bTJ and tTJ. 

These results suggested that the effects of angulin-1 and tricellulin relocalization from 

tTJs to bTJs on epithelial barrier function are controversial (Nakatsu et al., 2019). 

Interestingly, claudin-2 was downregulated in the KO 12 clone and upregulated in the KO 

32 clone and appeared not to affect the water permeability. In relation to transcellular 

water transport, the major aquaporins of the human colon cell line, AQP-1, -3, and AQP-7, 

were found unchanged or downregulated as in the case of AQP-4; this suggests that an 

increase in transepithelial water permeability could be attributed to changes in the 

paracellular pathway generated by the removal of angulin-1 and unlikely due to AQP-4 

(Kirschner et al., 2013). Lastly, the expression of LI-cadherin was increased in both KO 

clones, and this could be important because if LI-cadherin is reduced, water transport 

from the luminal to the basolateral side could be impaired and even reversed in the case 

of hypertonic conditions without affecting the tight junctions and therefore not affecting the 

transport of other molecules (Weth et al., 2017). LI-cadherin might be necessary for water 

reabsorption of the gut at intraluminal hypertonic conditions by keeping the intercellular 

cleft narrow and thus preserving a high osmotic gradient driving the water transport (Weth 

et al., 2017). Thus, the increased LI-cadherin in the KO clones seems to have no effect on 

transepithelial water flux. 

 

A rather interesting result is that the expression of angulin-2 and -3 did not change after 

the knockout of angulin-1 as a form of compensation in both cell lines. In this sense, one 
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might think that just like angulin-1, which is located in bTJ and tTJ (see Chapter 3.3.1 and 

3.4.1), these other two angulin proteins could also be located in both TJs, and after the 

knockout, they simply changed their location from bTJ to tTJ to try to stabilize these 

junctions without changing their expression levels. However, this is only a hypothesis 

since antibodies for immunostaining do not work properly. In this same sense of ideas, 

this result contradicts what has been found in the organ of Corti: normally angulin-1 is not 

expressed in the organ of Corti; however, its expression is seen when angulin-2 is 

deficient, and tricellulin is recruited to the tTJ as a result. This clearly demonstrates that 

compensatory functions exist between the angulin family members. However, the organ 

of Corti is degenerated even when tricellulin was localized at the tTJ by angulin-1, 

indicating that there are also functional differences between the angulin family members 

(Higashi et al., 2015). Recently, Hempstock et al. also showed that angulin-1/LSR 

compensates for the loss of angulin-2/ILDR1 and maintains the epithelia's barrier and 

function in the large intestine as well as the kidney (Hempstock et al., 2020). 

4.2.2 Angulin-1 knockout did not alter the ultrastructure of the 
bicellular tight junction in MDCK C7 and HT-29/B6 cells 

The loss of tricellulin by RNAi led to an unstable ultrastructure of the tight junction, which 

ultimately caused the junctional complex to collapse completely (Ikenouchi et al., 2005). 

In both cell lines investigated in this study, the loss of angulin-1 did not modify or alter the 

bicellular tight junction. Compared to the vector control clones, the number of strands, the 

network depth, the frequency of strand breaks >20 nm, the continuous-type structures, 

and the linear strands remains unchanged after angulin-1 knockout in MDCK C7 and HT-

29/B6 cells (see Chapter 3.3.4 and 3.4.4). 

 

In the case of HT-29/B6 cells, a similar correlation between strand linearity and 

paracellular resistance was found in the human colon to be induced by a strong 

upregulation of claudin-2 in Crohn’s disease (Zeissig et al., 2007; Zeissig et al., 2004). It 

is established that, depending on the presence of claudin-2, strand discontinuities appear 

or disappear (Furuse et al., 1999). In our study, no discontinuities appear even if claudin-2 

is increased in the angulin-1 KO 36 clone, apparently due to tricellulin upregulation. 

Breaks per se, as rare as found here, may not play a significant role in permeability. In 

contrast, the angulin-1 knockout did not change the continuous-type strands in the entire 

meshwork and thus may indeed be related to the observed increase in permeabilities only 
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due to the tTJ. It is unclear yet, whether strand linearity is a direct determinant of 

permeability or if it represents an epiphenomenon of an altered composition of proteins 

within the TJ.  

 

Thus, an increase in ion permeability in both cell lines and an increase in macromolecule 

permeability in HT-29/B6 cells could be caused by the opening of the tTJ because the 

only difference between the controls and the angulin-1 KO clones was the width of the 

central pore. However, the morphometric parameters could not be analyzed because of 

the low abundance of the same structures in both cell lines. After considering all 

possibilities, it is concluded that the knockout of angulin-1 did not induce considerable 

changes in the ultrastructure of bicellular and tricellular tight junctions that could affect 

water transport. 

4.2.3 Angulin-1 knockout increases the ion permeability in MDCK 
C7 and HT-29/B6 cells 

After transfection of both cell lines with CRISPR/Cas9 and sgRNA targeting angulin-1 to 

eliminate its expression and localization in tTJ, the pore pathway was addressed (see 

Chapter 3.3.1.1 and 3.4.1.1). Similar to what was observed in tricellulin knockdown cells, 

the reduction in the expression of angulin-1 resulted in a lowered transepithelial 

resistance (TER). It is important to note that in MDCK C7 cells, the removal of angulin-1 

resulted in in reducing the expression of most claudins, while in HT-29/B6, the effect was 

the opposite. Therefore, it could be said that the reduction in TER on HT-29/B6 cells is 

due only to the reduction in angulin-1; however, in MDCK C7 cells, the effect could be 

intensified due to the downregulation of other tightening TJ proteins. It is known that 

overexpression of claudin-7 resulted in a decrease in the paracellular conductance to Cl- 

as well as a simultaneous increase in the paracellular conductance to Na+ in LLC-PK1 

cells (Alexandre et al., 2005). Likewise, it was described that claudin-7 and -8 must 

interact with each other to regulate the overall paracellular permeability to Na+ and Cl- 

under the normal physiological condition (Alexandre et al., 2005). To conclude, the 

decrease of angulin-1 within the tTJ also leads to a drop in paracellular resistance which 

reflects reciprocally the permeability for ions in both cell lines. 
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4.2.4 Angulin-1 knockout increases the macromolecule 
permeability only in HT-29/B6 cells  

As it is known, knockdown of angulin-1 in the mouse mammary gland Eph4 epithelial cells 

significantly increased the permeability of macromolecules between 300-Da and 40-kDa 

(Higashi et al., 2013). Considering the above, the leak pathway was assessed (see 

Chapter 3.3.1.1 and 3.4.1.1). The present data showed that in an intermediate-tight 

epithelial cell line, HT-29/B6, a removal of angulin-1 strongly regulates the permeability for 

4-kDa macromolecules. Nevertheless, it might be surprising that the same phenotype in 

MDCK C7 cells only slightly increased macromolecules' permeability in one of the KO 

clones (KO 18). Considering that HT-29/B6 is an intermediate-tight epithelial cell line and 

that its tTJ contributes at least 38% to the total paracellular conductance, it can be said 

that not only did it affect the paracellular passage of the small solutes, including inorganic 

ions, but also the macromolecules (Krug, 2017). However, the contribution of tTJ in 

MDCK C7 cells is not yet known, but it would be higher than in HT-29/B6 cells because 

this cell line is highly tight and, therefore, permeability to FD4 would be higher after 

angulin-1 knockout (Krug, 2017). This was not the case, perhaps because tricellulin also 

has an affinity for claudin-based TJ strands within the plasma membrane if it is not 

directed to tricellular contacts by the angulins (Krug et al., 2017), which could stabilize the 

tTJ after removal of angulin-1. In addition to the above, occludin was concentrated in the 

TJ corner after the angulin-1 KO, thus compensating for the partial tricellulin shift. 

Therefore, one could assume that due to the redistribution of tricellulin into the bTJ, a 

slight enhancement of bTJ barrier properties against ions could occur (Krug et al., 2017). 

Finally, according to the estimated topological parameters (Appendix C. Table 7-6 and 

Figure 7-4), both cell lines had the same number of tTJ/cell; however, the density of tTJ in 

HT-29/B6 was higher; therefore, a reduction in the expression of angulin-1 would be 

represented by a strong increase in permeability to macromolecules, in contrast to what 

was observed in MDCK C7 cells, where the permeability to macromolecules remained 

almost constant (angulin-1 KO 18 increase but only with respect to control 14, not a 

generalized behavior as in HT-29/B6 cells). 

 

Additionally, the permeability to FD4 was measured in two different conditions after 

angulin-1 KO, and as can be seen, in MDCK C7 cells, there are no differences between 

isosmotic and osmotic conditions (Figure 4-2a). Conversely, in HT-29/B6 cells, it is 

observed that the permeability to FD4 is higher under isosmotic conditions than under an 
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osmotic gradient. A possible explanation for this might be that the movement of water in 

the opposite direction under osmotic conditions inhibits the movement of 4-kDa FITC-

dextran, and therefore, a lower permeability was measured (Figure 4-2b). This movement 

through the tTJ is too small to be detected in the overall transepithelial water flux 

measured in HT-29/B6 cells. 

 

 

 

Figure 4-2. Comparison of angulin-1 knockout effect on permeability for 4-kDa FITC-
dextran (FD4) under isosmotic and osmotic gradient conditions in (a) MDCK C7 and (b) 
HT-29/B6 cells. The FD4 permeability was higher under an isosmotic condition than under 
an osmotic gradient in HT-29/B6 cells, which could indicate an interaction between the 
movement of water in the opposite direction the movement of dextran in the tTJ. In 
contrast, no changes were observed in angulin-1 KO MDCK C7 cells. (ns: not significant, 
**P≤0.01, ***P≤0.001). 
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4.2.5 Angulin-1 knockout increases transepithelial water 
transport only in MDCK C7 cells 

To complete the tTJ permeability picture, the transepithelial water transport was 

measured in the angulin-1 KO clones of MDCK C7 and HT-29/B6 cells. As described 

earlier, while the KO clones caused a decrease in TER in both cell lines, only in HT-29B6 

cells angulin-1 KO increased the permeability to a 4-kDa macromolecule. Interestingly, 

the angulin-1 KO did not increase the water flux driven by 100 mM mannitol in both cell 

lines (see Chapter 3.3.5 and 3.4.5), and the total amount of water was independent of the 

direction of the osmotic gradient. The decision to use 4-kDa dextran was taken due to the 

dispersion of the values found in MDCK C7 cells when mannitol was used as an osmotic 

gradient; however, the values obtained with HT-29/B6 cells were more reproducible, and 

therefore, their study with 4-kDa dextran was obviated. As a result, the water flux 

increased in the angulin-1 KO clones compare with their controls in MDCK C7 cells when 

37 mM 4-kDa dextran was used as an osmotic gradient.  

 

Remarkably, in the case of MDCK C7 cells, an increase in water transport was expected 

similar to that found after reducing the expression of tricellulin in tTJ (see Chapter 4.1); 

however, this was not the case when mannitol was used, possibly due to the small 

diameter of this molecule with respect to the 4-kDa dextran which would facilitate its 

movement through tTJ reducing its osmotic strength; nevertheless, the osmolality of each 

solution was measured after the 2-hour experiment, and the values did not differ from the 

values of the original solutions. It is important to keep in mind that the reduction in the 

expression of most barrier-forming claudins could influence water transport after angulin-1 

KO in MDCK C7 cells. As demonstrated by immunofluorescence confocal laser-scanning 

microscopy, tricellulin was redistributed from tTJ to bTJ, which could maintain and 

strengthen the epithelial barrier after the downregulation of several claudins. It should be 

noted that even a relatively small amount of residual angulin-1 can support the tTJ 

structure and function to a significant extent and that it masks some phenotypes, for 

instance, the paracellular water transport mediated by tricellulin. Finally, if we analyze in 

more detail the preliminary results obtained with the angulin-1 KO 8 (see chapter 3.3.5) 

which showed a reduction in tricellulin expression of 25% and increased transcellular 

water transport using mannitol and 4-kDa dextran (Figure 3-24a) compared to its control 
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8, it can be said that tricellulin is the main protein in tTJ that modulates water transport, in 

this case through an indirect regulation mediated by angulin-1. 

 

This phenomenon was also observed in HT-29/B6 cells; however, here, the regulation of 

the tight junction protein expression was the opposite to what we observe in MDCK C7 

cells; several claudins were upregulated; nevertheless, no change in water transport 

could be measured, so that tTJ in intermediate-tight epithelium does not contribute 

significantly to transepithelial water transport.  

 

In summary, the present study suggests a functional difference between angulin-2/ILDR1 

(Hempstock et al., 2020; Gong et al., 2017) and angulin-1/LSR on the paracellular water 

transport through the tTJs, always taking into account that all experiments were 

performed in different systems and under different conditions; however, this is an 

interesting issue for the understanding of tTJ variations. The effects of angulin-1 knockout 

on the epithelial barrier function of the mammalian epithelial cell sheet vary by cell type 

and according to the interdependence between different TJ species affecting cell 

expression, localization, and renewal (For an overview, see Chapters 3.3 and 3.4). The 

reason could be the differences in angulin-1 interaction partners in bTJs and tTJ. This 

hypothesis is supported by studies that bTJs and tTJs in each tissue comprise tissue-

specific combinations of proteins and that angulin-1 interacts with specific proteins (e.g., 

occludin) but not others (e.g., MarvelD3) (Higashi et al., 2013; Nakatsu et al., 2019). 

Therefore, combinations of proteins influenced by angulin-1 knockout in bTJs and tTJ 

vary by cell type and tissue, and the resulting epithelial barrier function of the mammalian 

epithelial cell sheet causes cell-specific changes. 

 

Together, our study provides a mechanism of how cells transport water and shows how 

such a mechanism may be exploited as a therapeutic approach to maintain water 

homeostasis, specifically in tight epithelium. We disclose a paracellular water permeation 

pathway made by the tricellular tight junction and regulated by its integral proteins, known 

as tricellulin and angulin-1. The importance of paracellular water permeability was 

demonstrated here, supporting the previous results found with angulin-2 and its potential 

role in causing urinary concentration defects in the kidney (Gong et al., 2017). These 

proteins may play broader physiologic and pathophysiologic roles to establish the water 

homeostasis in other organs, such as the skin, lungs, and the intestine. For instance, 
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though the intestinal barrier is impaired in both Crohn's disease (CD) and Ulcerative colitis 

(UC), it is known that tricellulin is downregulated in UC but not in CD. However, the 

predominant localization of tricellulin was shifted toward the surface epithelium in CD, 

which might indicate that changes in proteins that regulate the correct localization of 

tricellulin occur in CD, for example, angulin-1 or -2 (Krug et al., 2018). Thus, regulation of 

tricellulin depends also on other tTJ proteins as described in this thesis, where it is 

believed that the increase in water transport after angulin-1 KO was possibly due to a 

partial displacement of tricellulin from tTJ.  



 

 
 

5. Conclusion and outlook 

The major goal of this research was to clarify whether or not the expression of the 

tricellular tight junction (tTJ) proteins, tricellulin and angulin-1, is involved in controlling 

paracellular water transport in cell lines with different level of tightness (HT-29/B6 and 

MDCK C7 cells). This work supports the previous assumption that tTJs function 

differentially in distinct epithelial cell lines (Krug, 2017; Krug et al., 2009a; Krug et al., 

2009b; Gong et al., 2017; Hempstock et al., 2020; Sugawara et al., 2020). Differences in 

TJ protein expression of the two cell lines were revealed after tricellulin knockdown and 

angulin-1 knockout. Likewise, members of the claudin and TAMP family were shown to 

compensate for each other in expression. It appears that tricellulin or angulin-1 are not the 

sole determinants of TJ integrity under normal or pathological conditions and that tTJ 

central tubes may have different permeability depending on the cell line or tissue being 

analyzed. 

 

In HT-29/B6 cells, representing an intermediate-tight epithelium, tricellulin KD or angulin-1 

KO do not significantly alter transepithelial water transport possibly due to: (1) a high 

contribution of other water-conducting proteins as claudin-2 or SGLT1, (2) or a low 

contribution of tTJ to transepithelial water transport which is easily masked by paracellular 

(bTJs) and transcellular water transport. Nevertheless, the tricellulin KD and the angulin-1 

KO increase the ion and 4-kDa macromolecule permeability, which means that these 

proteins can seal off the tTJ and regulate the passage of ions and larger solutes but not 

water at this point (Figure 5-1 and 5-3). One could say that the existence of a physical 

pore does not guarantee water permeability, and the electrostatic and steric environment 

created by the pore-lining residues dictates the water, ion, and macromolecule 

permeability (Irudayanathan and Nangia, 2020). 
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Figure 5-1. Synopsis of tricellulin and angulin-1 effects on osmotically driven water 
transport in HT-29/B6 cells. Both do not significantly affect the transepithelial water flux in 
these cells. As a tentative explanation, the transcellular and bTJ pathways of these cells 
are reasonably permeable, which may cover small changes produced by these two 
proteins in the tTJ. (ns: not significant). 

 

In contrast, in MDCK C7 cells, which lack the water and cation-channel claudin-2, the 

transepithelial water transport increases after tricellulin knockdown and angulin-1 

knockout and it is controlled by tricellulin expression level and localization. Thus, the 

contribution of the tTJ to transepithelial water transport depends on the tightness of the 

epithelium. It could be said that in tight cell lines without claudin-2 and other channel-

forming claudins, tricellulin is able to regulate paracellular water permeability through tTJ 

(Figure 5-2 and 5-3). It should be noted that in the MDCK C7 cell line tricellulin KD and 

angulin-1 KO increased the ion permeability; nevertheless, the 4-kDa macromolecule 

permeability increased only slightly in a KO clone with respect to a single control under an 

osmotic gradient condition, so it could be said that it is not a uniform trend, evidencing 

once again that permeability at the tTJ depends on the different interactions between tTJ 

proteins. 
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Figure 5-2. Synopsis of tricellulin and angulin-1 on osmotically driven water flux in MDCK 
C7 cells. Each of them alters the transepithelial water flux (higher water fluxes in the 
tricellulin KD and angulin-1 KO clones compared to the control clones). As a tentative 
explanation, the transcellular and bTJ pathways of these cells are of minor permeability, 
so that changes produced by these two proteins in the tTJ become statistically significant. 
Tricellulin KD: *P≤0.05, ***P≤0.001 with regard to control 2 and 9; Angulin-1 KO: *P≤0.05, 
***P≤0.001 with regard to control 14 and #P≤0.05, ###P≤0.001 with regard to control 18. 

 

Likely, the paracellular transport regulation by the osmolality in each epithelial cell type 

has respective physiological significance dependent on their organs. Further analysis of 

the effects of osmolality on the paracellular transport in various cultured cells and animals 

is required to elucidate the mechanisms and physiological significance of this 

phenomenon in the transport of water and macromolecules (Tokuda et al., 2016; Tokuda 

and Yu, 2019). To better understand the implications of these results, future studies could 

address to experimentally clarify whether (1) the complete removal of tricellulin (KO cells) 

generates an even stronger increase in water transport (without affecting the integrity of 

the TJ) than what we found in the present thesis, (2) angulin-3 mediates a direct effect on 

water permeability independent of tricellulin like angulin-2 in the kidney (Gong et al., 

2017), (3) angulin-3 acts indirectly via tricellulin regulation like was demonstrated for 

angulin-1 in the present research, or (4) angulin-3 has no effect on water permeability like 

angulin-2 in the intestine (Hempstock et al., 2020).  
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Figure 5-3. Summarizing scheme of water, ion, and macromolecule passage via the 
tricellular tight junction on epithelial cell lines with different tightness. (a) Tricellulin 
effect. In a tight epithelial cell line (MDCK C7 cells), a partial reduction of tricellulin 
increased the transepithelial water transport, macromolecule permeability, and ion 
permeability. In contrast, in an intermediate-tight epithelial cell line (HT-29/B6 cells), the 
transepithelial water transport was unchanged; nevertheless, the macromolecule 
permeability and the ion permeability increased. (b) Angulin-1 effect. In a tight epithelial 
cell line (MDCK C7 cells), a complete reduction of angulin-1 increased the transepithelial 
water transport and slightly increased the macromolecule permeability; nevertheless, the 
ion permeability was highly increased. Tricellulin levels remained the same; however, its 
location changed from tTJ to bTJ, which possibly caused the increase in water 
permeability (this was partially corroborated by the anguin-1 KO clone with a 25% 
reduction in tricellulin expression, which showed an increase in water flux after an osmotic 
gradient with mannitol and 4-kDa dextran). Similar to what happened after tricellulin KD, 
in an intermediate-tight epithelial cell line (HT-29/B6 cells), the transepithelial water 
transport was unchanged; nevertheless, an increase in the macromolecule and ion 
permeability was observed. Tricellulin levels increased after the KO, and additionally, its 
location was also observed in bTJ. (It was adapted from (Nayak et al., 2013)). 
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7. Appendices 

7.1 Appendix A: Tricellulin and angulin-1 expression 
(control cells) 

 

 

 

Figure 7-1. Endogenous expression of tricellulin in the epithelial cell lines using in this 

study. (a) Western blot of tricellulin in MDCK C7 and HT-29/B6 control cell lines (15 g). 
(b) Densitometric analysis of tricellulin expression using β-actin for normalization. The 
endogenous expression of tricellulin is higher in HT-29/B6 cells than in MDCK C7 cells. 
(**P≤0.01). 
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Figure 7-2. Endogenous expression of angulin-1 in the epithelial cell lines using in this 

study. (a) Western blot of tricellulin in MDCK C7 and HT-29/B6 control cell lines (10 g). 
(b) Densitometric analysis of angulin-1 expression using β-actin for normalization. The 
endogenous expression of angulin-1 is similar in both cell lines. (ns: not significant). 
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7.2 Appendix B: Numerical data 

 

Table 7-1. Characteristics of MDCK C7 tricellulin knockdown clones and the 
corresponding controls.  

 Control 2 KD 23 Control 9 KD 24 

Tricellulin expression (%) 
100.0 ± 5.6 

(n=15) 

69.6 ± 5.0 *** 

(n=13)  

100.0 ± 5.2 

(n=15) 

60.1 ± 4.5 *** 

(n=15) 

TER (kΩ·cm2) 
7.4 ± 0.2 

(n=24) 

3.8 ± 0.2 *** 

(n=24) 

8.2 ± 0.2 

(n=24) 

1.8 ± 0.1 *** 

(n=24) 

PFD4 (×10-9 cm·s-1) 

Osmotic gradient 

5.01 ± 1.18 

(n=7) 

5.56 ± 1.98 

(n=8) 

3.64 ± 1.03 

(n=5) 

17.57 ± 3.82 * 

(n=10) 

PNa+ (×10-6 cm·s-1) 
0.10 ± 0.01 

(n=9) 

0.99 ± 0.13 *** 

(n=16) 

0.11 ± 0.02 

(n=7) 

1.08 ± 0.13 *** 

(n=12) 

PCl- (×10-6 cm·s-1) 
0.16 ± 0.01 

(n=9) 

1.10 ± 0.12 *** 

(n=16) 

0.14 ± 0.03 

(n=7) 

1.16 ± 0.14 *** 

(n=12) 

PNa+/PCl- 
0.81 ± 0.05 

(n=9) 

0.94 ± 0.04 

(n=16) 

0.85 ± 0.07 

(n=7) 

1.02 ± 0.03 

(n=12) 

Water flux 

Apical side 

(µl·h-1·cm-2) 

100 mM mannitol 

(100 mOsm) 

4.7 ± 0.5 

(n=10) 

7.1 ± 0.4 ** 

(n=10) 

4.3 ± 0.6 

(n=8) 

11.0 ± 1.0 *** 

(n=10) 

37 mM 4-kDa dextran 

(100 mOsm) 

2.6 ± 0.7 

(n=8) 

5.4 ± 0.8 * 

(n=8) 

1.8 ± 0.5 

(n=7) 

9.3 ± 1.0 *** 

(n=10) 

100 mM 4-kDa dextran 

(900 mOsm) 

9.4 ± 1.0 

(n=9) 

13.0 ± 0.8 * 

(n=9) 

8.4 ± 0.5 

(n=8) 

32.0 ± 1.4 *** 

(n=6) 

5.5 mM 40-kDa dextran 

(100 mOsm) 

2.7 ± 0.3 

(n=10) 

4.7 ± 0.6 ** 

(n=9) 

5.2 ± 1.2 

(n=5) 

6.3 ± 0.9 

(n=6) 

Water flux 

Basolateral 

side 

(µl·h-1·cm-2) 

37 mM 4-kDa dextran 

(100 mOsm) 

-1.6 ± 0.3 

(n=10) 

-5.5 ± 0.6 *** 

(n=11) 

-1.9 ± 0.4 

(n=8) 

-4.6 ± 0.7 ** 

(n=10) 

Two tricellulin knockdown clones and their corresponding controls were analyzed in this 

study (Control 2 and KD 23, Control 9 and KD 24). Data of tricellulin expression have 

been obtained by densitometric analysis of Western blots using β-actin for normalization. 

Paracellular permeability measurements for FD4 were carried out in the Ussing chamber. 

Data of PNa+/PCl- permeability and absolute permeabilities for Na+ and Cl- (PNa+, PCl-) 

were obtained from dilution potential measurements in the Ussing chamber. Water flux 

measurements were performed in a modified Ussing chamber with water flux induced by 

different osmotic gradients. Significances refer to respective controls. n number of 

experiments, *P≤0.05, **P≤0.01, ***P≤0.001. 
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Table 7-2. Characteristics of HT-29/B6 tricellulin knockdown clones and the 
corresponding control.  

 Control 12 KD 11 KD 17 

Tricellulin expression (%) 
100.0 ± 8.9 

(n=11) 

64.6 ± 4.7 *** 

(n=10)  

55.7 ± 6.3 *** 

(n=10) 

TER (kΩ·cm2) 
1.44 ± 0.07 

(n=12) 

0.51 ± 0.03 *** 

(n=12) 

0.54 ± 0.02 *** 

(n=12) 

PFD4 (x10-9 cm·s-1) 

Osmotic gradient 

21.34 ± 3.80 

(n=7) 

42.96 ± 2.56 *** 

(n=7) 

67.55 ± 6.54 *** 

(n=7) 

PNa+
 (x10-6 cm·s-1) 

0.61 ± 0.10 

(n=10) 

1.50 ± 0.11 *** 

(n=10) 

2.46 ± 0.30 *** 

(n=11) 

PCl- (x10-6 cm·s-1) 
0.80 ± 0.18 

(n=10) 

1.84 ± 0.17 ** 

(n=10) 

2.98 ± 0.33 ** 

(n=11) 

PNa+/PCl- 
0.91 ± 0.08 

(n=10) 

0.92 ± 0.06 

(n=10) 

0.90 ± 0.08 

(n=11) 

Water flux 

Apical side 

(µl·h-1·cm-2) 

100 mM mannitol 

(100 mOsm) 

14.9 ± 1.0 

(n=8) 

14.4 ± 1.7 

(n=8) 

15.3 ± 0.6 

(n=8) 

37 mM 4-kDa dextran 

(100 mOsm) 

19.6 ± 1.2 

(n=8) 

16.2 ± 1.0 

(n=8) 

19.1 ± 1.4 

(n=8) 

100 mM 4-kDa dextran 

(900 mOsm) 

58.6 ± 2.0 

(n=10) 

54.0 ± 2.4 

(n=9) 

56.9 ± 1.6 

(n=10) 

2.5 mM albumin 

(40 mOsm) 

8.66 ± 1.14 

(n=6) 

6.68 ± 0.51 

(n=6) 

7.24 ± 1.28 

(n=6) 

Water flux 

Basolateral side 

(µl·h-1·cm-2) 

37 mM 4-kDa dextran 

(100 mOsm) 

-16.4 ± 1.4 

(n=10) 

-10.5 ± 1.0 * 

(n=7) 

-16.7 ± 0.9 

(n=6) 

Two tricellulin knockdown clones and its corresponding control were analyzed in this 

study (Control 12, KD 11 and KD 17). Data of tricellulin expression have been obtained by 

densitometric analysis of Western blots using β-actin for normalization. Paracellular 

permeability measurements for FD4 were carried out in the Ussing chamber. Data of 

PNa+/PCl- permeability and absolute permeabilities for Na+ and Cl- (PNa+, PCl-) were 

obtained from dilution potential measurements in the Ussing chamber. Water flux 

measurements were performed in a modified Ussing chamber with water flux induced by 

different osmotic gradients. Significances refer to respective controls. n number of 

experiments, *P≤0.05, **P≤0.01, ***P≤0.001. 
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Table 7-3. Characteristics of MDCK C7 angulin-1 knockout clones and the corresponding 
controls.  

 Control 14 Control 18 KO 18 KO 36 

Angulin-1 expression (%) 
99.2 ± 4.8 

(n=9) 

100.8 ± 5.1 

(n=9)  

0.10 ± 0.02 ***,### 

(n=9) 

0.05 ± 0.01 ***,### 

(n=9) 

TER (kΩ·cm2) 
7.3 ± 0.2 

(n=60) 

7.4 ± 0.1 

(n=60) 

0.96 ± 0.02 ***,### 

(n=60) 

0.53 ± 0.01 ***,### 

(n=60) 

PFD4 (×10-9 cm·s-1) 

Osmotic gradient 

44.8 ± 8.3 

(n=8) 

70.4 ± 21.7 

(n=8) 

144.4 ± 33.6 * 

(n=8) 

76.6 ± 5.5 

(n=9) 

PFD4 (×10-9 cm·s-1) 

Isosmotic 

52.4 ± 17.2 

(n=10) 

58.4 ± 14.1 

(n=12) 

79.3 ± 22.7 

(n=10) 

56.5 ± 12.8 

(n=10) 

PD4 (×10-10 cm·s-1) 

Osmotic gradient 

2.41 ± 0.45 

(n=8) 

3.79 ± 1.17 

(n=8) 

7.76 ± 1.81 * 

(n=8) 

4.12 ± 0.30 

(n=9) 

PD4 (×10-10 cm·s-1) 

Isosmotic 

2.82 ± 0.93 

(n=10) 

3.14 ± 0.76 

(n=12) 

4.26 ± 1.22 

(n=10) 

3.12 ± 0.63 

(n=11) 

Water flux 

Apical side 

(µl·h-1·cm-2) 

100 mM 

mannitol 

(100 mOsm) 

2.20 ± 0.28 

(n=11) 

2.31 ± 0.22 

(n=11) 

2.92 ± 0.26 

(n=12) 

2.92 ± 0.38 

(n=12) 

37 mM 4-

kDa dextran 

(100 mOsm) 

1.76 ± 0.22 

(n=11) 

1.84 ± 0.17 

(n=11) 

3.03 ± 0.21 *,# 

(n=11) 

3.68 ± 0.48 ***,### 

(n=11) 

Water flux 

Basolateral side 

(µl·h-1·cm-2) 

100 mM 

mannitol 

(100 mOsm) 

-2.27 ± 0.37 

(n=12) 

-1.90 ± 0.20 

(n=9) 

-2.06 ± 0.37 

(n=12) 

-2.61 ± 0.35 

(n=12) 

Two angulin-1 knockout clones and their corresponding controls were analyzed in this 

study (Control 14, Control 18, KO 18 and KO 36). Data of angulin-1 expression have been 

obtained by densitometric analysis of Western blots using β-actin for normalization. 

Paracellular permeability measurements for FD4 were carried out in the Ussing chamber. 

Water flux measurements were performed in a modified Ussing chamber with water flux 

induced by different osmotic gradients. Significances refer to respective controls. n 

number of experiments, *P≤0.05, **P≤0.01, ***P≤0.001 with regard to control 14 and 
#P≤0.05, ##P≤0.01, ###P≤0.001 with regard to control 18. 
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Table 7-4. Characteristics of HT-29/B6 angulin-1 knockout clones and the corresponding 
controls.  

 Control 15 Control 29 KO 12 KO 32 

Angulin-1 expression (%) 
94.3 ± 3.8 

(n=9) 

105.7 ± 5.4 

(n=9)  

3.2 ± 0.6 ***, ### 

(n=9) 

0.2 ± 0.1 ***, ### 

(n=9) 

TER (kΩ·cm2) 
1.06 ± 0.02 

(n=43) 

1.75 ± 0.08 

(n=43) 

0.57 ± 0.03 ***, ### 

(n=43) 

0.28 ± 0.01 ***, ### 

(n=43) 

PFD4 (×10-9 cm·s-1) 

Osmotic gradient 

26.7± 4.4 

(n=6) 

15.7 ± 2.0 

(n=6) 

33.1 ± 3.6 

(n=6) 

54.0 ± 7.5 **, ### 

(n=6) 

PFD4 (×10-9 cm·s-1) 

Isosmotic 

41.2 ± 5.1  

(n=9) 

14.1 ± 1.8 

(n=9) 

82.7 ± 8.0 ***, ### 

(n=9) 

133.6 ± 7.0 ***, ### 

(n=9) 

PD4 (×10-10 cm·s-1) 

Osmotic gradient 

4.28 ± 1.12 

(n=6) 

2.46 ± 0.57 

(n=6) 

4.85 ± 0.95 

(n=6) 

8.25 ± 2.00 # 

(n=6) 

PD4 (×10-10 cm·s-1) 

Isosmotic 

4.08 ± 0.50 

(n=9) 

1.40 ± 0.18 

(n=9) 

8.19 ± 0.80 ***, ### 

(n=9) 

13.23 ± 0.69 ***, ### 

(n=9) 

Water flux 

Apical side 

(µl·h-1·cm-2) 

100 mM mannitol 

(100 mOsm) 

14.1 ± 0.6 

(n=8) 

13.8 ± 0.6 

(n=8) 

13.9 ± 0.5 

(n=8) 

13.1 ± 0.7 

(n=8) 

Water flux 

Basolateral side 

(µl·h-1·cm-2) 

100 mM mannitol 

(100 mOsm) 

-15.0 ± 0.7 

(n=8) 

-15.4 ± 0.5 

(n=8) 

-14.4 ± 0.7 

(n=8) 

-13.2 ± 0.9 

(n=8) 

Two angulin-1 knockout clones (KO 12 and KO 32 and their corresponding controls 

(Control 15, Control 29) were analyzed in this study). Data of angulin-1 expression have 

been obtained by densitometric analysis of Western blots using β-actin for normalization. 

Paracellular permeability measurements for FD4 were carried out in the Ussing chamber. 

Water flux measurements were performed in a modified Ussing chamber with water flux 

induced by different osmotic gradients. Significances refer to respective controls. n 

number of experiments, *P≤0.05, **P≤0.01, ***P≤0.001 with regard to control 15 and 
#P≤0.05, ##P≤0.01, ###P≤0.001 with regard to control 29. 
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Table 7-5. Morphometric comparison of MDCK C7 and HT-29/B6 cells as models for tight 
and intermediate-tight epithelia before and after tricellulin knockdown. 

 

Tricellulin knockdown 

MDCK C7 HT-29/B6 

Control 2 KD 23 Control 9 KD 24 Control 12 KD 11 KD 17 

n 8 8 10 9 7 7 7 

Analyze area (m2) 20289 20842 26564 22834 19818 16415 16795 

Analyze area (10-4 cm2) 2.0 2.1 2.7 2.3 2.0 1.6 1.7 

Counted cells 198 158 209 299 615 739 653 

Average cell surface (m2) 102 132 127 76 32 22 26 

Cell density (106 cells/cm2) 1.0 0.8 0.8 1.3 3.1 4.5 3.9 

Total TJ length (m) 8842 8024 10288 11560 14352 14459 13703 

Total TJ length (m/cm2) 44 38 39 51 72 88 82 

TJ length/cell (m) 89 102 98 77 47 39 42 

Counted tTJ 320 210 339 534 915 1617 1381 

tTJ density (106 tTJ/cm2) 1.6 1.0 1.3 2.3 4.6 9.9 8.2 

tTJ/cell (x3) 5 4 5 5 4 7 6 

tTJ/cell (x4) 6 5 6 7 6 9 8 

Morphometric parameters of MDCK C7 and HT-29/B6 cells were obtained from occludin 

and ZO-1 stained cells, respectively, similar to an earlier described approach (Krug, 

2017). Cell numbers were counted in each analyzed area, giving average cell surface 

area and the cell density. Total length of TJs within the analyzed areas was measured 

and normalized to m/cm2. As each bicellular TJ is shared by two cells, TJ length per cell 

was doubled. For calculation of the TJ length/cell, total length in m/cm2 was calculated 

from cell density. Tricellular contacts were counted and normalized to within the analyzed 

area. As each tricellular contact is shared by three cells and very seldom by four contacts, 

the tricellular contact number was tripled and quadrupled to obtain the average tricellular 

contact number per cell. 
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Figure 7-3. Cell geometry analysis. Neighboring cell analysis in tricellulin knockdown on 
(a) MDCK C7 and (b) HT-29/B6 cell lines in comparison with their vector controls. In 
MDCK C7 cells, most cells have between three and six vertices, which can be translated 
into the number of tTJ. In contrast, in HT-29/B6 cells, most of the cells have between four 
and six neighbors. In both cell lines, tricellulin KD did not modify the number of vertices 
(tTJs) in comparison with their controls. 
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Table 7-6. Morphometric comparison of MDCK C7 and HT-29/B6 cells as models for tight 
and intermediate-tight epithelia before and after angulin-1 knockout. 

 

Angulin-1 knockout 

MDCK C7 HT-29/B6 

Control 

14 

Control 

18 
KO 18 KO 36 

Control 

15 

Control 

29 
KO 12 KO 32 

n 3 3 4 5 4 5 5 5 

Analyze area (m2) 5410 5547 10820 13455 11139 12792 13360 13667 

Analyze area (10-4 cm2) 0.5 0.6 1.1 1.3 1.1 1.3 1.3 1.4 

Counted cells 63 66 131 202 243 426 419 384 

Average cell surface 

(m2) 
86 84 83 67 46 30 32 36 

Cell density 

(106 cells/cm2) 
1.2 1.2 1.2 1.5 2.2 3.3 3.1 2.8 

Total TJ length (m) 2497 2615 5134 7059 6765 9904 9918 9553 

Total TJ length (m/cm2) 46 47 47 52 61 77 74 70 

TJ length/cell (m) 79 79 78 70 56 46 47 50 

Counted tTJ 107 114 197 369 558 677 756 651 

tTJ density (106 tTJ/cm2) 2.0 2.1 1.8 2.7 5.0 5.3 5.7 4.8 

tTJ/cell (x3) 5 5 5 5 7 5 5 5 

tTJ/cell (x4) 7 7 6 7 9 6 7 7 

Morphometric parameters of MDCK C7 and HT-29/B6 cells were obtained from occludin 

and ZO-1 stained cells, respectively, similar to an earlier described approach (Krug, 

2017). Cell numbers were counted in each analyzed area, giving average cell surface 

area and the cell density. Total length of TJs within the analyzed areas was measured 

and normalized to m/cm2. As each bicellular TJ is shared by two cells, TJ length per cell 

was doubled. For calculation of the TJ length/cell, total length in m/cm2 was calculated 

from cell density. Tricellular contacts were counted and normalized to within the analyzed 

area. As each tricellular contact is shared by three cells and very seldom by four contacts, 

the tricellular contact number was tripled and quadrupled to obtain the average tricellular 

contact number per cell. 
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Figure 7-4. Cell geometry analysis. Neighboring cell analysis in angulin-1 knockout on (a) 
MDCK C7 and (b) HT-29/B6 cell lines in comparison with their vector controls. In MDCK 
C7 cells, most cells have between four and six vertices, which can be translated into the 
number of tTJ. In contrast, in HT-29/B6 cells, most of the cells have between three and 
six neighbors. In both cell lines, angulin-1 KO did not modify the number of vertices (tTJs) 
in comparison with their controls.  
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Table 7-7. Macros for segmentation of epithelial cells depending on the resolution of the 
fluorescence images obtained. 

 Macro 

Epithelial Cells - 
Bad resolution 

//-----macro start 
 
original = getTitle(); 
run("8-bit"); 
run("Pseudo flat field correction", "blurring=40"); 
close(original + "_background"); 
selectWindow(original); 
run("Median...", "radius=1"); 
run("Select None"); 
run("Duplicate...", "title=Background"); 
background = getTitle(); 
run("Median...", "radius=40"); 
imageCalculator("Subtract", original, background); 
selectWindow(original); 
run("Enhance Contrast...", "saturated=1.5 normalize"); 
run("Auto Threshold", "method=Li white"); 
run("EDM Binary Operations", "iterations=2 operation=close"); 
run("Analyze Particles...", "size=50-Infinity show=Masks in_situ"); 
run("Median...", "radius=1"); 
run("Invert"); 
run("EDM Binary Operations", "iterations=11 operation=close"); 
//run("Watershed"); 
run("Adjustable Watershed", "tolerance=18");  

//to be able to use this install the adjustable watershed from 
https://imagejdocu.tudor.lu/plugin/segmentation/adjustable_watershed/start 

run("Voronoi"); 
setOption("BlackBackground", true); 
setThreshold(1, 255); 
run("Convert to Mask"); 
resetThreshold(); 
run("Invert"); 

 
close(background); 
selectWindow(original); 
 

//now run the Neighbor Analysis from the BioVoxxel Toolbox to color code your cells 
//-----macro end 

Epithelial Cells - 
Regular resolu-
tion 

//-----macro start 
 
original = getTitle(); 
run("8-bit"); 
run("Pseudo flat field correction", "blurring=40"); 
close(original + "_background"); 
selectWindow(original); 
run("Median...", "radius=1"); 
run("Select None"); 
run("Duplicate...", "title=Background"); 
background = getTitle(); 
run("Median...", "radius=40"); 
imageCalculator("Subtract", original, background); 
selectWindow(original); 
run("Enhance Contrast...", "saturated=1.5 normalize"); 
run("Auto Threshold", "method=Li white"); 
run("EDM Binary Operations", "iterations=2 operation=close"); 
run("Analyze Particles...", "size=50-Infinity show=Masks in_situ"); 
run("Median...", "radius=3"); 
run("Invert"); 
run("EDM Binary Operations", "iterations=11 operation=close"); 
//run("Watershed"); 
run("Adjustable Watershed", "tolerance=12");  

//to be able to use this install the adjustable watershed from 
https://imagejdocu.tudor.lu/plugin/segmentation/adjustable_watershed/start 

run("Voronoi"); 
setOption("BlackBackground", true); 
setThreshold(1, 255); 
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run("Convert to Mask"); 
resetThreshold(); 
run("Invert"); 
 
close(background); 
selectWindow(original); 
 

//now run the Neighbor Analysis from the BioVoxxel Toolbox to color code your cells 
//-----macro end 

Epithelial Cells - 
Normal resolu-
tion 

//-----macro start 
 
original = getTitle(); 
run("8-bit"); 
run("Pseudo flat field correction", "blurring=40"); 
close(original + "_background"); 
selectWindow(original); 
run("Median...", "radius=1"); 
run("Select None"); 
run("Duplicate...", "title=Background"); 
background = getTitle(); 
run("Median...", "radius=40"); 
imageCalculator("Subtract", original, background); 
selectWindow(original); 
run("Enhance Contrast...", "saturated=1.5 normalize"); 
run("Auto Threshold", "method=Li white"); 
run("EDM Binary Operations", "iterations=2 operation=close"); 
run("Analyze Particles...", "size=50-Infinity show=Masks in_situ"); 
run("Median...", "radius=2"); 
run("Invert"); 
run("EDM Binary Operations", "iterations=8 operation=close"); 
//run("Watershed"); 
run("Adjustable Watershed", "tolerance=12");  

//to be able to use this install the adjustable watershed from 
https://imagejdocu.tudor.lu/plugin/segmentation/adjustable_watershed/start 

run("Voronoi"); 
setOption("BlackBackground", true); 
setThreshold(1, 255); 
run("Convert to Mask"); 
resetThreshold(); 
run("Invert"); 
 
close(background); 
selectWindow(original); 
 

//now run the Neighbor Analysis from the BioVoxxel Toolbox to color code your cells 
//-----macro end 

Epithelial Cells - 
Good resolution 

//-----macro start 
 
original = getTitle(); 
run("8-bit"); 
run("Pseudo flat field correction", "blurring=40"); 
close(original + "_background"); 
selectWindow(original); 
run("Median...", "radius=1"); 
run("Select None"); 
run("Duplicate...", "title=Background"); 
background = getTitle(); 
run("Median...", "radius=40"); 
imageCalculator("Subtract", original, background); 
selectWindow(original); 
run("Enhance Contrast...", "saturated=1.5 normalize"); 
run("Auto Threshold", "method=Li white"); 
run("EDM Binary Operations", "iterations=2 operation=close"); 
run("Analyze Particles...", "size=50-Infinity show=Masks in_situ"); 
run("Median...", "radius=5"); 
run("Invert"); 
run("EDM Binary Operations", "iterations=4 operation=close"); 
//run("Watershed"); 
run("Adjustable Watershed", "tolerance=4");  

//to be able to use this install the adjustable watershed from 
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https://imagejdocu.tudor.lu/plugin/segmentation/adjustable_watershed/start 
run("Voronoi"); 
setOption("BlackBackground", true); 
setThreshold(1, 255); 
run("Convert to Mask"); 
resetThreshold(); 
run("Invert"); 
 
close(background); 
selectWindow(original); 
 

//now run the Neighbor Analysis from the BioVoxxel Toolbox to color code your cells 
//-----macro end 

Copyright©, Jan Brocher/BioVoxxel. All rights reserved. All Macros/Plugins were written by 

Jan Brocher/BioVoxxel and modified according to the need of this thesis. 
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