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1. Introduction 

Millions of people worldwide require regenerative therapies every year. The repair and 

replacement of damaged cells and tissues with stem cells are significant and urgent in 

basic research and medicine.[1-3] Stem cells could replicate itself into more of the same 

type of stem cells or differentiate to various of other cells types, which could be 

secluded from many kinds of tissues, for example umbilical cord blood, embryos, or 

organs from adult.[4]  

         In 1981, Evans et al.  separated embryonic stem cells (ESCs) from mouse, which 

is a milestone in the stem cell research. From then on, an increasing number of attention 

have been attached to investigation of stem cells in tissue therapy.[5] ESCs were 

obtained from the inner layer of embryoid body during the early period stage, which 

provides the differentiation possibility towards three germ layers, including mesoderm, 

ectoderm and endoderm. Although ESCs attracted much attention due to the 

pluripotency, they faced the ethical problems of destroying the embryos, which is 

especially difficult in investigating human ESCs.[6] Yamanaka et al. started an entirely 

novel avenue in stem cell research in 2006 by converting fibroblast cells to ESC 

mimicking cells, namely, induced pluripotent stem cells (iPSC). In many aspects, iPSCs 

are very alike to ESCs, such as potential differentiation lineage, embryo formation, 

doubling time, chromatin methylation patterns, typical proteins and genes expression.[7] 

Adult stem cells are usually have confined differentiation potential, most of them are 

related as predecessors of multilineage cells, which could be discovered in adipose 

tissue, bone marrow or umbilical cord blood. The most popular and widely investigated 

stem cells were mesenchymal stem cells (MSCs) with the differentiation potential 

towards osteoblasts, adipocytes, chondrocytes and myocytes. Meanwhile, MSCs were 

comparatively simple to isolate, harvest, and expand with the stemness and 

multipotency well obtained during self-renewal in vitro.[5, 8] 
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1.1. Stem Cell Scaffolds  

Most cells in human body proliferate or differentiate themselves in extra-cellular matrix 

(ECM) in three dimensions.[9] The special microenvironment for stem cells termed the 

“niche,” which is mainly located in 3D environment although varies in physical and 

chemical properties based on the tissue type.[10]  ECM provides physical and chemical 

stimuli, which not only provides mechanical scaffolds or anchoring points, but also 

exert significant influence on regulation of stem cells metabolic functions, morphology, 

adherence, migration, differentiation and development.[11, 12] Surround by an 

exceptionally complex, dynamic and vibrant network environment, stem cells scaffolds 

sustained the body tissue and cells structural integrity through conveying the stress from 

movement and gravity.[1] Through the interaction with cell surface receptors and 

intracellular signaling molecules, stem cell scaffolds could determine the cell 

phenotype through regulation of gene expression.[1, 13] Figure 1 illustrates the potential 

and process for stem cells engineering on scaffolds. Stem cells derived from embryos, 

adult tissues or somatic cells reprogramming could be classified to harvest a single type 

of target cell population before cultured on the scaffold or seeded straightly on a 

scaffold for differentiation. The scaffolds seeded with cells could be cultured to obtain 

a intended organ or tissue before implantation in vivo.[5] 

        It is known that different tissue and organs have various morphology and 

physiological properties and ECM as the consequence of cells’ integrated, continuous 

and reciprocal interaction in tissue differs accordingly.[14] Although conventional 2D 

surfaces where stem cells were cultured with multiple nutrients, cytokines and growth 

factors in media offered the major knowledge in modern cell and tissue research,  

however, the lack of ECM mimicking 3D environment where most nutrients were 

provided in bound state, may leads to the development of physiologically compromised 

or mislaid stem cells.[4, 5, 15, 16] The engineering properties desired stem cell 3D scaffolds 

include (a) porous structure available for cell adhesion, proliferation, migration, 

differentiation;[17] (b) Interconnect networks for oxygen, nutrients and waste to transfer 

and deliver through the whole cell or tissue mass;[18] (c) physically and chemically 
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bioactive surface to promote cell–material interactions;[19, 20] (d) mechanical proper 

function for cell differentiation and biosynthesis.[19, 21, 22]  Easy to handle in dynamic 

and various environment is necessary for the various applications in which extreme 

fragile or brittle materials may not fit. Meanwhile, the proper mechanical properties or  

special cell-interactive chemical cues in the materials are favorable.[23] 

 

Figure 1. Scheme outlining the potential for stem cells engineering. Stem cells could 

be passaged and expanded in culture. Afterwards, they can then be either seeded directly 

on a scaffold and grown in culture to develop a desired tissue prior to implanting in the 

body, or differentiated in culture and sorted to obtain a purified population of a target 

cell type before seeding on the scaffold. Reprinted from Ref.[5] with kind permission 

from the Elsevier. 

 

1.1.1. Hydrogel 

Hydrogels are extremely hydrophilic macromolecular networks, which are mainly 

prepared from soluble polymers by chemical or physical crosslinking.[24-26] Since 

hydrogels are hydrophlic, adequately flexible, tissue-like with a high water content and 

sensitive to the physiological environments, hydrogels are widely investigated as 

excellent candidates for stem cells research.[27] Moreover, many hydrogels exhibit swell 

and de-swell property in water at reversible way, which is sensitive to specific 

environmental stimuli, such as temperature, ionic strength and pH.[28, 29] Thus, 

hydrogels change along physiological variable are increasingly attractive in several 
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biomedical applications.[29] 

Various kinds hydrogels could physiologically improve stem cells culture. Those 

hydrogels could be prepared from synthetic or natural materials or a combination of 

both. As shown in Figure 2a, Deming et al. developed injectable diblock copolypeptide 

hydrogels containing hydrophilic component of modified l-methionine to promote 

neural stem cells transplantation viability and efficiency at the central nervous system 

(CNS) in vivo.[30] After the injection of the cell-matrix complex into the mouse CNS 

host tissues in vivo, the ionic hydrogels could achieve self-assembly to distinct, well-

formed hydrogel networks which is very compatible with the original CNS tissue. The 

amazing biocompatibility and full degradation in vivo suggested that injectable 

hydrogels are appropriate conveyance for further investigation of neural 

stem/progenitor cell transplantation in CNS disease or injury models. Mooney et al. 

prepared injectable, pore formation hydrogels that in companied with void-forming and 

change elasticity (Figure 2b).[23]  Cells were firstly encapsulated to the originally 

formed hydrogels, then the subsequent degradation of solid phase porogens in situ via 

hydrolysis could create voids within the hydrogels and offer space for stem cells to 

grow and proliferate when placed in physiologic conditions. The following cell 

proliferation and migration rate and corresponding the porogens degradation velocity 

would decrease the hydrogel elasticity and refrain the cells from the confinement of 

solid porogens. Since the injectable hydrogels could protect the viability and phenotype 

of the MSCs during the transplantation process, it is believed to be a suitable vehicle to 

convey the stem cells in vivo transplantation in the circumstances of human models. Yu 

et al. established an approach to prepared PA hydrogels which have linear stiffness 

gradients spanned both at illness conditions and biologically appropriate ranges.[31] The 

first layer of hydrogel were made by the acrylamide and cross-linker in a glass mold 

with a slop cover on surface, then the second layer of acrylamide was prepared in the 

mold with the cover of  the first slop PA gel to obtain a two layer of ramp-shaped and 

inversely oriented hydrogel with adjusted stiffness gradient at interface between the 

cells and matrix. Cryo-SEM images confirm that a pore size grades from biggest to 
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smallest according to the hydrogels from the soft side to stiff side, which allows the 

exhibition of a constant increase of stiffness gradient on a single sample without the 

confusing factor of different samples and cells variety. The gradient hydrogels could be 

used to investigate the stiffness-dependent stem cells morphology, migration, and 

differentiation, which is important for further investigation of stem cell therapy. 

 

 

Figure 2. a) Synthesis and application of methionine based amphiphilic deblock 

copolypeptide hydrogels. Reprinted from Ref.[30] with kind permission from the 

Elsevier. b) Schematic strategy to create void-forming hydrogels. Void-forming 

hydrogels (bottom) could offer more space for cells to grow compared with standard 

hydrogels (top). Reprinted from Ref.[23] with kind permission from the Nature 

Publication.  

 

1.1.2. Fibrous Scaffolds 

Fibrous scaffolds are meshes made of the weaved or overlapped fibers from numerous 
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polymers with desired mechanical and chemical properties. These meshes possess big 

surface area to volume rate due to the extraordinary porosity and pore interconnectivity, 

thereby enabling more effective gases, nutrients and wastes exchange for resident stem 

cells.[32-34] Meanwhile, the high surface area and porosity enable superior space for cell 

adhesion, which is significant for cells to proliferate and function. Thus, the ease of 

fabrication and resulting superb physical and chemical properties makes  fibrous 

scaffolds a promising substrate for stem cell culture.[33] Fibrous scaffolds can be 

fabricated using a variety of techniques for example electrospinning, phase separation, 

template synthesis, drawing, self-assembly and combinations of these.[35] Each method 

forms fibers with different diameters from macro (> 100 μm) to micro (10-100 μm) to 

nanometer (5-1000 nm) size. Due to their processability and physical properties, fibrous 

scaffolds are exciting candidates for stem cells research in numerous tissue repair 

including bone, cartilage, nerve, and blood vessels.[35-37] 

          Chen et al. combined polymer chemistry, electrospinning and soft lithography in 

fabrication of a synthetic fibrous scaffold with user specified structure and changeable 

mechanics to explore the mechanism of sensing interaction between the cells and 

stiffness in desired ECM mimicking architecture (Figure 3a)[33]. Fiber networks were 

tuned with diameter, density and anisotropy by electrospinning using basal material 

methacrylated dextran11 (DexMA) and RGD. The increase of flat hydrogel surfaces 

stiffness at certain level could promote the MSCs adhesion and proliferation. Higher 

fiber stiffness allows more easy and active cellular forces to increase the ligand density 

on cells surface and improve the focal adhesion formation, which could activate related 

signaling and promote the cells to mobilize and migrate to nearby fibers.  As shown in 

Figure 3b, Luo et al.  fabricated polycaprolactone (PCL) electrospun fibrous scaffolds 

in mesh-like, aligned and random patterns[34]. The fibrous structure not only played a 

significant role in promotion of MSCs paracrine function, but also stimulated the cells 

differentiation with different orientation characteristics. The fibrous topography offered 

special microenvironment for the modulation of paracrine function in MSCs. 

Meanwhile, the expression of pro-angiogenic and anti-inflammatory cytokines were 
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increased on fibrous scaffolds both in vitro. Moreover, the medium obtained from 

fibrous scaffolds cultured MSCs environment could improve the trauma healing, 

accelerate macrophage gathering and polarization to the recovering phenotype in the 

rat skin trauma model in vivo. 

 

 

Figure 3. a) Hierarchical overview of fabricating cell-adhesive suspended networks of 

DexMA fibres. Scale bars, 10 μm. Reprinted from Ref.[33] with kind permission from 

the Nature .b) The experimental design to investigate the influence of the fiber 

morphology and fiber orientation on the paracrine secretion and function of Ad-MSCs. 

Reprinted from Ref. [34] with kind permission from the Elsevier. 

 

1.1.3. Porous Foaming Scaffold 

Porous foaming scaffolds have controlled micro-and nano-metric pore sizes, and 

topographies on the pore surface of foam could promote the adsorption of proteins, to 

guide specific cell/scaffold interaction, and to stimulate stem cell migration, 

differentiation, phenotypic expression and the deposition of stem cells.[38, 39] Meanwhile, 

multi-scaled pore structures could promote localization of cells and support the 

transport of fluid and oxygen necessary for cell survival and new tissue synthesis in 

three dimensions.[40-42] Considering the surface-to-volume ratio, pore size distribution, 
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and pore geometry and interconnection, different approaches were investigated  for the 

synthesis of porous scaffolds including porogen leaching, phase separation, gas 

foaming and solid free form fabrication.[43] However, each method has intrinsic 

limitations, for example, leaching techniques and gas foamed scaffolds have intact pore 

walls with few interconnected holes because of the neighboring particles contact with 

each other in the scaffold network.[44] Those closed pores either in the inner or outer 

interfaces are detrimental for the communication of cytokines, growth factors, nutrients 

and cells.[45] Moreover, it is hard to prepare scaffolds with multi-scaled pore distribution 

under spatial control by utilizing a single method.[46] Thus, the combination of various 

processing techniques are the most efficient approach to prepare porous foaming 

scaffolds with nano or  micro meter pore size features.[47]  

       Figure 4a exhibits the preparation process of an exceptionally interconnected 

porous foaming scaffolds with different scale pore structure through the integration of 

porogen leaching and gas foaming techniques.[48] Firstly, the biomaterials are mixed 

with porogens, usually gelatin particles or sodium chloride (Step 1), and the foaming 

of the polymer/particles system are followed (Step 2). Then, the selective removal of 

the porogen agent from the foamed matrix permits the final completion of multi-scaled 

pore structure. For example, Jones et al.  synthesized great Ca-Mg silicate porous 

foaming scaffolds by preceramic polymers combined with phase separation and gas 

forming methods (Figure 4b).[49] Wollastonite-diopside and akermanite ceramic porous 

foam scaffolds were prepared by the liquid silicone pyrolysis after blended with 

reactive fillers. Through taking control of water evaporation process at 350 °C, the 

general porous structure could be achieved. Then the samples were heated to 1100 °C 

to obtain a homogeneously distributed interconnected pore structure (160–180 μm) 

ceramic scaffolds with high compressive strength (1–2 MPa) and significant porosity 

over 80%. Cytotoxicity analysis proved the great biocompatibility of Akermanite and 

wollastonite-diops scaffolds. Moreover, the Mg-containing foams could obviously 

improve the typical osteogenic markers expression such as osteocalcin, osteopontin and 

collagen type I compared with Mg-free scaffolds, which suggest the promotion of 
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osteogenic differentiation potential and offers new platform for the design and process 

of large scaled clinical scaffolds for bone therapy. 

 

Figure 4. a) Scheme of the combined approach based on gas foaming and porogen 

leaching suitable for the design and fabrication of multi-scaled porous scaffolds for TE. 

Reprinted from Ref.[48] with kind permission from the SAGE. b) Scheme of the 

preparation process of ceramic foams; the SEM and confocal image of the cells grown 

on the foams. Reprinted from Ref.[49] with kind permission from the Elsevier. 

 

1.2. Interaction between Scaffolds and Stem Cells 

Stem cell behaviors, for example, the adhesion, proliferation, pluripotency maintenance 

and differentiation, are guided both by stem cells self-property and external 

microenvironment.[50-55] Different element in the stem cell niches and external 

microenvironment plays pivotal role in their fates. Firstly, the cell-soluble factor 

interaction, different soluble factors including bioactive molecules, nutrients, cytokines 

and growth factors could go through the stem cells membrane and change the cell 

metabolism or even gene information. Secondly, the cell-cell interaction, the connected 
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cells or meet cell could communicate with each other via homophilic, heterophilic and 

linker pathway to achieve cell-cell recognition and binding by the cadherin, selectin, 

Ig-superfamily, integrin and hyaladherin on the cell membrane. Thirdly, the cell-

biomaterial interaction, stem cells could sense and react according to the biomaterial’s 

stiffness, conductivity, hydrophilic-hydrophobic property, surface charge and so on.       

          The physical cues and chemical cues of the scaffolds could trigger the cell-

soluble factor interaction, cell-cell interaction and cell-biomaterials interaction by the 

change of scaffolds material and preparing methods, which could vary the porosity, 

stiffness, rigidity, conductivity, hydrophilic-hydrophobic property, surface charge of the 

scaffolds and further alter the stem cell microenvironment and niches. The chemical 

and physical cues could influence and be influenced by the cell-biomaterials interaction 

and cell-cell interaction through the adhesion of cells and the secretion of various kinds 

of proteins such as paracrine signaling hormones in the stem cells niches. Thus, the 

physical cues and chemical cues could apply influence on stem cell lineage 

specification towards neural cells, cardiomyogenic, adipogeinic, chondrogenic and 

osteogenic lineages.[56-61] 

 

Figure 5. Schematic representation of the microenvironment and niches of stem cells 

and their regulation by the following factors: soluble factors, such as growth factors or 

cytokines, nutrients, and bioactive molecules; cell–cell interactions; cell–biomaterial 

interactions. Physical, and chemical properties of biomaterials also regulate stem cell 
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fate. Reprinted from Ref.[62] with kind permission from the ACS Publications. 

 

1.2.1. Physical Cues 

Since a variety of microenvironment property contribute to the stem cell behavior 

regulation, physical cues, for example, scaffolds geometry/topography at the nanoscale, 

mechanical properties, matrix stiffness or applied forces, electrical property and applied 

field (EF) stimulation play an important role and are commonly investigated in stem 

cell fate regulation.[63-65] Physical cues could activate or stimulate the cell membrane 

protein, such as receptors and identification proteins, which be transduced to 

biophysical signals and in turn adjust the signaling cascades to regulate stem cells fate. 

For example, the modification of actin cytoskeleton leads to the up-grade expression of 

transcription factors and the remodeling of chromatin enzymes, which could trigger 

genetic expression and affect the stem cell differentiation fate. This is a common stem 

cell signal transduction accompanied by change of scaffold mechanical property.[21, 55] 

          The mechanical property of scaffolds for stem cells support inform the 

fundamental insights into the stem cells’ mechanobiology for regenerative therapies. 

Scaffolds with defined mechanical properties such as stiffness and viscoelasticity, could 

be used to prime stem cells in vitro before transplantation to promote proliferation, as 

well as to particulate stem cell fate in vivo following transplantation (Figure 6a).[66] For 

example, previous research suggests that synthetic hydrogel with certain elasticity 

(around 60 kpa) could enhance MSCs osteogenesis either in vitro or in vivo; The 

programing of porosity in a viscoelastic alginate system could also facilitate the bone 

host integration;[23, 67] The change of matrix stiffness could trigger the hematopoietic 

multilineage reconstitution and affect the systemic delivery;[68] Assembled from 

annealed microgels, the bulk gel scaffold offered proper mechanical support and 

interconnected multi-scale pores to expedite cell adhesion and migration, which could 

promote cutaneous-tissue formation and further regeneration in vivo.[69] The 

synthesized mechanically dynamic hydrogel networks could direct intestinal stem cell 

proliferation and subsequently lead to potential intestinal, thus providing a suitable 
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replacement of animal developed material scaffolds in the culture of stem cell 

developed organoids.[70] Soft hydrogel at muscle elasticity mimicking scale could 

obviously promote the muscle stem cell proliferation, and contribute to the extensive 

muscle regeneration in vivo, which suggest the recapitulating the tissue rigidity provide 

possibility for the stem cell based muscle wasting therapy.[59, 71] 

           Electric stimulation (EF) could evoke stem cell response and lead to a series of 

cascade cellular reaction. After electric stimulation, the major signal pathways include 

the intracellular calcium ion concentration, cell surface receptors reassembling or 

clustering, heat shock proteins and reactive oxygen species participation, ATP 

production, cytoskeletal remodeling and so on could be activated, which plays a pivotal 

role in direction of stem cell specification and stem cells-based tissue therapy and 

medicine. The cardiac muscle tissue contraction has unique electrical signal pathways 

such as gap junction channels, thus the designing of cardiac-mimetic electrical 

microenvironment during ex vivo culture could lead to the progressive generation of 

functional cardiac tissue. The autonomous beating rate of cardiomyocytes could adapt 

themselves to the stimulated frequency, and the rate-adaptive behavior could last for 

long and transferred the surrounding cardiomyocytes. Thus, cardiomyocyte maturation 

and autonomous beating could be tuned by electrical conditioning treatment, which is 

useful to treat cell-based arrhythmia for heart therapy. Basu et al. proved the pulsed 

electrical stimulation could improve the mesenchymal stem cells towards cardio-

progenitor phenotype genesis in spite of the MSCs’ trans-differentiation difficulty to 

cardiomyogenic progenitors. (Figure 6b).[64] The reason in their article might be the 

paracrine of MSC lead to the cardiomyocytes mimicking structure after the electrical 

stimulation along with chemical inducers. Lim et al. elucidated that the exogenous EF 

stimulation is significant in promoting hESCs derived embryoid bodies (EBs) 

cardiogenesis.[72] A brief electrical stimulation for 2 weeks could markedly escalate the  

beating EBs fraction in company with noticeably increase of cardiac gene expression 

including troponin T, sarcomeric α-actinin, and myosin heavy chain (Figure 6c).[72] 

From a tissue engineering perspective, Gordana Vunjak-Novakovic exhibited that stem 
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cell developed cardiomyocytes cultured in 3D environment with electrical stimulation 

could  improve the connexin expression, modify automaticity, support mature, 

electromechanically coupled cells regeneration and enhance cardiomyocyte maturation 

(Figure 6d).[73]  

 

Figure 6. a) Mechanical cues of stiffness and viscoelasticity can also be used regulate 

stem cells self-organization, differentiation process, which could then be subsequently 

transplanted for organ repair or replacement. Reprinted from Ref.[66] with kind 
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permission from the Nature Publications. b) Electrical field stimulation assisted gold 

nanoparticles (GNP) actuation and then induced cardiac differentiation of stem cells. 

Reprinted from Ref. [64] with kind permission from the Elsevier. c) Increased ROS 

production in embryoid bodies after EF application. Reprinted from Ref. [72] with kind 

permission from the Elsevier. d) hESC derived cardiomyocytes adapting their natural 

beating frequency to the EF stimulation frequency. Frequency dependent change in 

calcium cycling upon ES is shown in the bottom panel. Reprinted from Ref. [73] with 

kind permission from the Nature Publications. 

 

1.2.2. Chemical Cues  

The chemical cues from the cell culture microenvironment, such as cell-adhesive 

ligands and exogenous growth factors, hormones, hydrophobicity, charge and surface 

chemistry could affect and regulate the stem cell pluripotency and differentiation 

fates.[74] Among them, growth factors are the most common and significant one, which 

is quite popular in the tissue therapy field, for example cartilage and bone regeneration, 

cardiac repair and neuronal differentiation.[75] General growth factors contain fibroblast 

growth factors (FGF), transforming growth factor (TGF), epidermal growth factor 

(EGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF) and platelet-

derived growth factor (PDGF).[75-77] Bone morphogenetic proteins (BMPs), as a family 

member of TFG, plays a significant role in stem cells differentiation and specification,  

especially in promoting MSCs towards osteoblasts and chondrocytes.[78] The paracrine 

of IGF secreted from MSCs could activate SDF-1alpha/CXCR4 signaling pathway in 

improving cardiogenesis.[79] The integration of PDGF and laminin were proved to 

enhance U-MSCs neural differentiation potential.[80] HGF could activate Wnt signaling 

pathway and then promote stem cells differentiation.[81] Meanwhile, VEGF were 

investigate to improve stem cells differentiation potential towards vascular endothelial 

cells.[79, 82]  

          Chemicals directed differentiation has obtained much attention due to the precise 

control, easy delivery, consistent reproducibility and efficient scalability.[83-86] The 
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chemical cues method is safe and effective without the necessity of genetic 

manipulation, such as mandatory gene ectopic expression, virus-mediated gene 

integration or gene delivery, which is very efficient and convenient in both experimental 

research and clinical therapy.[83] Small molecules with multiple properties for example 

enzyme inhibition, signaling control or epigenetic modulation were combined and 

utilized to modulate and direct stem cells differentiation.[83] There are plenty of 

successful trials been reported in inducing stem cells differentiation with chemicals 

towards cardiomyocytes,[87, 88] neurons,[89, 90] and pluripotent stem cells.[91] Goldman et 

al. successfully established protocols in stimulating both hESCs and hiPSCs cells lines 

to human oligodendrocyte progenitor cells (OPCs) on large scale.[90] Kim et al. 

developed highly enriched populations of skeletal muscle-like cells from mouse 

fibroblasts applying a chemical cocktail method with various modulators including 

cAMP agonists, TGF-β, glycogen synthase kinase and histone deacetylation inhibitor 

(Figure 7a).[92] The combination of chemicals also promote various cell types towards 

myogenesis differentiation potential, which not only proved the chemical inducted cells 

differentiation, but also highlighted the significance of signaling pathways in 

conducting mesodermal lineages cells towards muscles.[87, 89, 91]  

         Hydrophobicity and surface chemistry of cell environment could affect cellular 

internalization of the cell membranes. Lorenz et al. reported that hydrophobic 

nanoparticles and carboxylated nanoparticles were taken up on a larger scale by 

MSC.[93] As shown in Figure 7b, hydrophilic nanoparticles poly(methyl methacrylate) 

(PMMA) were taken up less by MSCs compared that with  hydrophobic poly(lauryl 

methacrylate) (PLMA), which may due to the hydrophobic interactions between the 

nanoparticles and serum proteins in the media and cell lipid membranes. Surface 

chemistry were proved to exert effects on cellular behavior as well. The carboxylated 

poly(t‐butyl methacrylate) (PtBMA) nanoparticles could be taken up by the MSCs on 

a large scale, which provides a clue and platform for the investigation of delivery of 

cytokines and growth factors into the cell membranes in the growth microenvironment 

or scaffolds (Figure 7c).[93] 
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Figure 7. a) Schematic representation of various stages through which CiSMLC pass 

through during chemical induction from fibroblasts. Overall schema of chemical 

treatment protocol is also depicted. Reprinted from Ref. [92] with kind permission from 

the Elsevier. b) Effects of hydrophobicity and surface chemistry of nanoparticles on 

cellular internalization. c) Surface chemistry was also shown to influence cellular 

uptake. Reprinted from Ref.[93] with kind permission from the WILEY-VCH.  

 

 

1.3. Carbon Nanomaterials   

Carbon nanomaterials (CNMs), for example carbon nanotubes (CNTs), graphene sheets 

and carbon nanodots have special optical properties, high conductivity, outstanding 

mechanical properties and nano-topography, which play an important role as candidates 
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of promising scaffolds in stem cells therapy, an interdisciplinary application concentrate 

on in vitro development of biological replacements that could restore organ and tissue 

(Figure 8). Since synthetic scaffolds for stem cells regeneration are supposed to be ECM 

mimicking concerning of physical structure and chemical composition,[94] CNMs not 

only reinforce the mechanical property of organic/inorganic artificial scaffolds, but also 

be applied to design stem cell scaffolds as physical cues in regulation of stem cells 

behavior. Moreover, the high conductivity of CNMs provide and electrically conductive 

environment for the stem cells and offer a potential to apply electrical stimulation to 

the stem cells. Thus, multiple CNMs were applied and developed in the 

functionalization of artificial scaffolds to improve biocompatibility and to regulate stem 

cells adhesion, proliferation, migration and differentiation.[95, 96] The interaction 

between CNMs modified scaffolds and stem cells gained increasing attention in stem 

cell and tissue therapy and own huge potential in organ repair and replacement.[97-99] 

 

Figure 8. Common CNMs for stem cell therapy, such as CNTs, graphene sheets and 

carbon dots. Carbon‐based nanomaterials affect compatibility, adhesion and 

differentiation of cells. 

 

1.3.1. Carbon Nanotubes 

CNTs have cylinder-like form from graphene sheet rolling with a single wall or multiple 
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walls, namely single‐walled nanotubes (SWNTs) and multi‐walled nanotubes 

(MWNTs), whose length varieties from 100 nm to 1 cm and  diameters are around 1‐2 

nm and 10‐100 nm, respectively.[100, 101] CNTs have special optical properties, high 

conductivity, outstanding mechanical properties and nano-topography, offering novel 

insights and clues for designing artificial scaffolds to combine the physical and 

chemical cues in regulation of stem cells behavior.[102] Moreover, the hydrophobic 

property of sp2 graphitic structures and corresponding huge surface area offer a 

desirable plain to absorb small molecules including growth factors, cytokines and 

hormones, which play an pivotal role in regulation of stem cells specification.[65]   

           Since CNTs have plenty of unique properties that are suitable for designing 

artificial scaffolds for stem cells therapy. Yu et al. employed CNTs to decorated type I 

collagen hydrogels and the obtained scaffolds could improve the cardiac cell 

functions.[103] Khademhosseini et al. developed conductive fiber network hydrogel 

using hyaluronic acid and nucleic acids functionalized CNT to investigate cardiac tissue 

engineering.[104]  He fabricated multilayered CNT nanocomposites utilizing layer by 

layer (LbL) assembly on the substrate of quartz with positively charged 

poly(dimethyldiallylammonium chloride) and negatively charged MWCNTs (Figure 

9a).[105] The CNT-multilayered nanocomposites could regulate neural stem cells (NSCs) 

adherence, migration, proliferation and lineage specification. The interactions between 

CNT multilayers and NSCs could trigger downstream signaling events and activate 

focal adhesion kinase during the process of synapse formation and neural genesis. CNT 

nanomaterials offered new insights to modulate stem cell behavior for the future 

application in neural fields. Khademhosseini et al. incorporated CNT into gelatin 

methacrylate (GelMA) to form photo-cross-linkable hydrogels and then seeded with 

engineered functional cardiac patches (Figure 9b).[100] The CNTs decorated thin film 

hydrogels with fibrous networks structures and interconnected pores looks analogous 

to purkinje fiber on heart muscle tissue. The CNTs endowed conductive nanofibrous 

network structures played a pivotal role in the improvement of cardiac cell adherence, 

interaction and organization. The engagement of CNTs into biocompatible scaffolds 
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could improve organization, electroactivity, and mechanical integrity, which is 

significant in multifunctional cardiac, neural or other muscle scaffolds for in vitro 

studies or future tissue therapy. 

  

Figure 9. a) Schematic diagram of the NSC differentiation on CNT-multilayered 

substrates. Neural stem cells were cultured on the CNT-multilayered substrates in the 

differentiation medium. Reprinted from Ref.[105] with kind permission from the Elsevier.  

b) Preparation procedure of fractal-like CNT networks embedded in GelMA hydrogel. 

Structural images of GelMA-coated CNTs and porous surfaces of CNT-GelMA thin 

film. Schematic diagram showing the purkinje fiber networks on the surface of the heart 

muscle fibers. Reprinted from Ref.[100] with kind permission from the ACS Publications. 

 

1.3.2. Graphene  

Graphene made up with sp2‐bonded carbon atoms in a single layer sheet form, and the 

common preparation methods include chemical vapor deposition or 

mechanical/chemical exfoliation of graphite. The graphene group includes chemical 
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derivatives of graphene, graphene oxide (GO) and reduced graphene oxide (rGO). GO 

is a highly oxidized product through cruel oxidation of graphite by Hummers method. 

GO is a highly oxidized product of graphene prepared by harsh oxidation of graphite 

and rGO is obtained after chemical/thermal reduction of GO. The graphene family 

dimensional size variety from 10 nm to 20 μm, which have been extensively reported 

in constructing ECM-mimicking scaffolds serving as physical cues in regulating stem 

cell properties owing to their controllable nano-topography, high stiffness, and 

conductivity.[106, 107] Benefiting from its excellent binding properties to biomolecules, 

graphene played a pivotal role in concentrating soluble chemical cues (bioactive 

molecules, nutrients, cytokines and growth factors), which is significant for stem cell 

growth and differentiation.[106] The sp2 graphitic structures and corresponding large 

surface area provide an excellent platform for grafting of bioactive molecules as well, 

which is effective for stem cell fate specification with multiple chemical stimuli.[108]  

            Deng et al.  developed a kind of graphene/Laponite (GL) hybrid materials in a 

powder (GL-powder) form and a scaffold (GL-scaffold) form and to investigate MSCs 

towards osteogenic differentiation (Figure 10a).[109] The GL-scaffold could improve 

MSCs’ homogenous adherence, growth and further proliferation. Moreover, by 

crushing the GL-scaffold, the obtained GL-powders could improve MSCs towards 

osteogenic differentiation by increasing the alkaline phosphatase (ALP) activity, 

promoting calcium mineral deposits and upregulating the osteogenic marker protein for 

example osteocalcin, osteopontin, Sox9 and Runx2. The lateral MSCs and GL-powder 

implantation experiment in vivo proved that graphene/Laponite could promote the bone 

formation, which is quite promising in bone tissue engineering therapy. Chen et al.  

prepared a graphene based conductive and biocompatible scaffolds to comprehensively 

enhance the differentiation and maturation human iPSC developed cardiomyocytes on 

large scale (Figure 10b).[110] Results suggested that graphene sheets could remarkably 

promote cardiomyocytes differentiation by promoting the electrophysiological or Ca2+ 

handling property, enhancing the conduction velocity and contractile protein 

organization degree. Through providing electrically active substrates, the graphene-
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based scaffolds could facilitate the electrical communication and accelerate 

differentiation and maturation of hiPSCs towards functional cardiomyocyte, which is a 

convenient and easy method for homogeneous cardiomyocytes regeneration with 

surpassing electrophysiological functions and more powerful contractile properties 

without exogenous molecular treatments or applying external stimulation, providing 

promising future for cardiac tissue engineering. 

 

  

Figure 10. a) novel hybrid materials consisting of gelatin-derived graphene and silicate 

nanosheets of Laponite are biocompatible and promote osteogenic differentiation of 

MSCs. Reprinted from Ref.[109] with kind permission from the ACS Publications. b) 

Schematic diagram of the graphene sheet and hiPSCs on graphene sheet. Graphene 

substrate improved cardiomyocyte phenotype. Graphene substrate increased action 

potential conduction and Ca2+ handling properties. Reprinted from Ref.[110] with kind 

permission from the ACS Publications. 

 

1.3.3. Carbon Dots  

Carbon dots (CDs) combines a series of unique properties, such as low cost, large 

surface area, surface modification flexibility, high stiffness, and biostability, which 

could be utilized to affect stem cell growth and differentiation.[111-113] Moreover, surface 

modification of carbon dots could change and control the physicochemical properties. 
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Shao et developed CDs and proves to improve osteogenic differentiation of MSCs with 

increased osteoblast gene markers expression, which suggests that CDs could exert 

positive effects on bone formation and regeneration.[114] The metal‐organic frameworks 

derived carbon dots have large surface area, high porosity, particular nanostructures, 

which could facilitate the adsorption of large amount of small molecules and proteins, 

thus promoting the interactions between the material and cell membrane.[115, 116]  

        Karasik et al.  developed a nitrogen-doped carbon dots (NCDs) conjugated with 

hydroxyapatite (HA) nanoparticles to investigate their effects on osteogenic 

differentiation potential, which were tested on a zebrafish jawbone model (Figure 

11a).[117]  Results suggested that NCD–HA nanoparticles were highly dispersible, stable, 

and uniformly sized, which were further proved to induce osteoblast proliferation and 

differentiation. Meanwhile, the bone regenerated very well after NCD–HA 

nanoparticles implanted in the zebrafish jawbone model, which proved the modified 

carbon dots nanoparticles were promising candidates for the designing of scaffolds in 

bone tissue regeneration. Zhang et al. prepared a stable and functional nanovector by 

conjugating CDs with sulfosuccinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐1‐

carboxylate (SMCC), a protein crosslinker. The CDs based nanovector is positively 

charged, well dispersed and exhibited intense fluorescence, which is encouraging to 

bind and deliver small interfering RNA (Figure 11b).[118] Results suggested that 

synthesized CD‐SMCC could interfere and transfer the silenced tumor necrosis factor 

α (TNFα), which played a pivotal role in enhancing MSCs chondrogenesis and cartilage 

in vivo tissue engineering.  
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Figure 11. a) Nitrogen-doped carbon dots (NCDs) conjugated with hydroxyapatite (HA) 

nanoparticles could induce osteoblast differentiation and proliferation in vivo and 

promote bone regeneration ability in a ZF jawbone regeneration model. Reprinted from 

Ref.[117] with kind permission from the ACS Publications. b) Schematic illustration of 

the formation of carbon dot (CD)‐succinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐

1‐carboxylate‐silenced TNFα complexes and the CD‐based nanocarrier for gene 

delivery and real‐time monitoring of cellular trafficking in vitro and in vivo for 
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enhancing cartilage repair. Reprinted from Ref.[118] with kind permission from the  

WILEY-VCH. 

 

1.4. The Design of Bioactive Nanostructured Fibrous Stem Cell Scaffolds 

The physical and chemical property of scaffolds is critical for stem cell functions 

including spreading, migration, proliferation and differentiation. Once cells seeded, the 

derived cells were immersed in countless molecules and paracrine signals to intensify 

reactions that regulate the cell fate.[119] The general achievement of stem cells 

development highly depends on the biocompatible scaffolds characteristics, for 

example mechanical integrity, cell-recognizable surface chemistries, material 

degradation,  the optimal fluid transport and bioactive molecules delivery, which would 

further determine cell adhesion, nutrient/waste exchange, protein synthesis, 

intracellular matrix construction and cell differentiation eventually. Thus, the design 

and modification of stem cells scaffolds is meaningful and critical for cells 

transplantation in vivo and the tissue repair/regeneration processes. Among a variety of 

scaffolds modification methods, the scaffolds surface modification and nanoscale 

element design could adjust to critical parameters for stem cells culture. 

          The cell adhesion on scaffolds is indirect via a surface layer of coated proteins, 

and surface hydrophilicity/hydrophobicity is determinant for the coated proteins 

amount. Thus, the scaffold surface treatments could regulate cells adherence efficiently 

and conveniently compared to bulk modification.[120] Plasma treatment in methane, 

oxygen, nitrogen, air or other gases could endow the scaffold surface with charged 

groups. Chemical etching, for example HNO3 on poly(ether urethane) or NaOH on 

PLGA, γ- or UV-irradiation and peroxide or ozone oxidation could bring in reactive 

groups as well.[121-123] Since brutal treatment could lead to polymer degradation and the 

longtime effects on surface may not be permanent, surface grafting of charged or 

hydrophilic polymers could be a suitable choice.[124] Methods focusing on the physical 

interaction between the serum protein and polymer surfaces are non-specified, more 

selected effects could be exerted on cells by covalent grafting and conjugating specific 
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proteins on scaffolds.[125, 126] Additionally, the LBL method is particularly appropriate 

for irregularly shaped structures and proteins coating where conventional technique 

does not fit.[105] Therefore, surface treatments are mainly focusing on proteins 

adsorption or conjugation so that they can largely retain their normal functionality and 

improve stem cells adhesion and proliferation.  

          Cells are resident in a complicated microenvironment full of physicochemical 

and topographical cues scales from nanometers to micrometers. The design of 

nanoscale elements on scaffolds offers the specific binding sites for cytokines and 

growth factors, which is significant for further cell membrane communication and 

adhesion.[127] When cells were seeded on a scaffold, they stretch or withdraw filopodia  

full of integrin receptors, actively feel the surrounding microenvironment for 

movement. In order to prove that the variety of nanoscale surface properties could affect  

stem cells phenotype or activity response directly, numerous researches have been done 

in incorporating nanometer range features into ECM mimicking stem cell scaffolds.[128-

130] Carbon nanomaterials could be used as nanoscale patterning  for fabrication of ECM 

mimicking stem cell scaffolds, which offers multiple anchoring sites for receptors 

interaction between multimeric proteins and cells.  
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2. Scientific Goals 

The stem cell culture ECM is complex and dynamic, which provides physical and 

chemical stimuli to modulate the stem cell adherence, migration, growth, proliferation 

and differentiation apart from offering mechanical scaffolding and anchorage spots in 

tissue engineering.[63, 131] The general achievement of stem cells development highly 

depends on biocompatible scaffolds characteristics, which could determine cell 

adhesion, nutrient/waste exchange, protein synthesis, intracellular matrix construction 

and cell differentiation eventually. The physical and chemical property of scaffolds 

offer the seeded cells with countless molecules and paracrine signals to intensify 

reactions that regulate the cell fate.[132, 133] [134]  Physical cues mainly include stiffness, 

nanostructured morphologies, and surfaces charges and chemical cues contain growth 

factors, hormones and small chemicals.[135, 136] Thus, the design and modification of 

stem cells scaffolds combined with chemical and physical cues  is meaningful and 

critical for cells transplantation in vivo and the tissue repair/regeneration processes.[137] 

The scientific goals of this thesis are mainly to integrate the physical and chemical cues 

through the incorporation of nanostructured  carbon materials into the scaffolds, which 

is quite promising and interesting in the investigation of interaction between stem cell 

behavior and ECM environment. 

Due to the nanotopography, high stiffness and other physical property, carbon 

nanomaterials serve as great nanoscale candidate for scaffolds modification in stem 

cells culture.[138] However, carbon nanotubes (CNT) could not well dispersed in water, 

one of  the scientific goals is to prepare a good dispersion of CNT with polymers or 

dispersants. In our first project, the CNTs are functionalized by biocompatible and 

multivalent hyperbranched polyglycerol sulfate (hPGS) noncovalently.[126] After air 

plasma treatment of electrospun fibrous polycaprolactone (PCL) scaffolds, CNT-HPGS 

nano-disperstant were coated on the surface of PCL fibers to combine the chemical and 

physical cues. Thus, the promoted protein adhesion property of CNT-HPGS contribute 

to the stem cells growth microenvironment and provide a novel method to construct 

functional scaffolds for stem therapy research. 
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Since the non-covalently modified carbon nano-dispersion were not stable in the 

first project, the hyperbranched polyglycerol sulfate was covalently grafted onto the 

graphene oxide (GO) nanosheet in our second project. GO 2D platform are full of 

carboxyl, hydroxyl and epoxide groups, which could promote protein adhesion through 

covalent, electrostatic, and hydrogen binding.[106, 139] The sp2 graphitic structures and 

large surface area are quite suitable for grafting bioactive molecules. The physical 

property of graphene oxide and chemical property of HPGS were combined to mediate 

the IPS cells growth and differentiation.[1, 37, 140, 141] Then the 2D nanosheets 

functionalized nanofibrous scaffolds were applied to mediate the proliferation, lineage 

specification, and differentiation of IPS cells. Results suggest that coated scaffolds 

could promote IPS neural differentiation and maturity. The scientific goal of this study 

is to address the stability of the dispersion and promote the stem cell lineage 

specification maturity, which integrate the chemical and physical cues to facilitate the 

targeted differentiation of IPS cells. Meanwhile, it presents a novel pathway in 

designing carbon nanomaterials composites for in vitro regenerative therapies. 

         In the third project, the physical cues of carbon nanomaterials were motivated by 

the MOF-derived nanocarbons.[142] The porous carbon nanostructure could the promote 

the adhesion of proteins and growth factors, moreover, the caging property of the carbon 

nanostructure achieve the gradual release of chemical cues, which provide a novel 

pathway for activation of signal pathways and guiding the stem cell differentiation 

process.[116] The scientific goal of  this study is to design multifunctional stem cell 

scaffolds that simultaneously enhance osteogenic and anti-infective capabilities.  
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Abstract 

Because developed neural cells are no longer regenerative and proliferative, achieving 

neural regenerations by using induced pluripotent stem cells (IPS cells) for nerve 

diseases have recently attracted much attention. Since the IPS cells’ growth and 

differentiation can be manipulated by different physical and chemicals cues, scaffolds 

combining the beneficial nanostructures and extracellular matrix may become an ideal 

interface to promote IPS cells’ neural differentiation. In this work, a biocompatible and 

multivalent polyanion, hyperbranched polyglycerol sulfate, was used to modify the 

graphene oxide to obtain bio-adhesive 2D nanosheets. Then the 2D nanosheets-

functionalized nanofibrous scaffolds were applied to mediate the proliferation, lineage 

specification, and differentiation of IPS cells. Our results suggest that the modified 

scaffolds could improve the adhesion and proliferation of IPS cells combined with high 

efficiency in maintaining their stemness. During the neural differentiation process, the 

scaffolds could promote neural differentiation and their maturity, meanwhile 

decreasing the lineage specification towards astrocyte. Overall, this study provides new 

multivalent/bio-adhesive nanofibrous scaffolds that integrating the chemical and 

physical cues to facilitate the targeted neural differentiation of IPS cells. It shows a 

novel pathway for the fabrication of carbon nanomaterials composites in regenerative 

therapies as well. 

 

Introduction 

In order to uncover disease mechanisms and develop therapeutic strategies for brain 

damages and related neurological diseases, developing efficient neural models is 

significant and urgent.[2, 145-147] As developed neural cells are no longer regenerative 
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and proliferative cells, it is necessary to develop an induced cell line for the regeneration 

of neural models. Induced pluripotent stem cells (IPS cells) are frequently used while 

obviating the necessity to obtain the tissue from the human brain or take the ethical 

issues destroying embryos.[148-150] Moreover, the IPS cells are so sensitive that the cell 

behavior and cell differentiation fate could easily be affected by the dynamic 

microenvironment of the extracellular matrix (ECM).[151, 152] Therefore, stem cell 

niches and microenvironment mimicking bio-scaffolds would facilitate the large scale 

of stem cells’ production and specially differentiated cell types preparation.[153-156] 

ECM-mimicking bio-scaffolds apply the effect on cell behavior mainly through 

physical cues (i.e., stiffness, nanostructured morphologies, charged surfaces, and 

magnetic field),[157-161] and chemical cues (i.e., small chemicals, growth factors, and 

hormones).[153, 162, 163] Indeed, both physical and chemical cues can efficiently influence 

IPS cell’s functionalities, including regulation of cell adhesion, proliferation, and 

differentiation. For instance, the change of physical cues could affect cell-cell 

interactions and trigger the membrane protein activations. In the meantime, the 

chemical cues could lead to different integrin activations of cell membranes. The 

integration of chemical and physical cues utilizing nanostructured scaffolds is 

fascinating.[164-167] However, there is only limited knowledge about the regulation of 

the IPS cells’ interfacial interactions and the effect on their neural differentiation. 

Carbon nanomaterials have been extensively reported in constructing ECM-

mimicking scaffolds serving as physical cues in regulating stem cell properties owing 

to their controllable nano-topography, high stiffness, and conductivity.[107, 168-171] 

Among diverse carbon nanomaterials, graphene oxide (GO) 2D nanosheets are 

nanomaterials enriched with carboxyl, hydroxyl and epoxide groups on the basal 

platforms, which is significant in improving interactions between GO and proteins via 

covalent, electrostatic, and hydrogen bonding.[152, 168] Benefiting from its excellent 

binding properties to biomolecules, GO played a pivotal role in concentrating soluble 

chemical cues (growth factors or cytokines, nutrients, and bioactive molecules), which 

is significant for stem cell growth and differentiation.[141] The sp2 graphitic structures 

and corresponding large surface area provide an excellent platform for adsorbing 

bioactive molecules as well, which is sufficient for stem cell fate specification with 

multiple chemical stimuli.[172, 173] However, current GO-based neural scaffolds are 

limited to 2D flat interfaces or nanofibrous composites, and these constructed scaffolds 
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have shown promising promotion of neural differentiation. Nevertheless, the 

maintaining of stemness, promotion of cellular adhesion, and inhibition of 

differentiated astrocyte are quite challenging for these currently designed GO-based 

neural scaffolds. The heparin-mimicking polyanion, hyperbranched polyglycerol 

sulfates (HPGS), exhibits multivalent, biocompatible, and bio-adhesive polyether 

backbones. HPGS can serve as a chemical cue for biomedical scaffolds, exhibits 

outstanding cell-adhesive activities and attachment property towards proteins in the 

regulation of cell growth and proliferation.[174, 175] Thus, it is believed that the HPGS 

functionalized GO-derived scaffolds may provide ideal physical and chemical cues to 

mediate IPS-cells’ stemness and achieve highly efficient neural differentiation.[37, 153, 

172]  

In this work, we used the multivalent, biocompatible, and bio-adhesive HPGS to 

modify 2D GO nanosheets to fabricate nanostructured fibrous neural scaffolds with 

combined physical and chemical cues to mediate the IPS cells’ proliferation and lineage 

specification. First, the GO-HPGS nanosheets were prepared by covalently grafting of 

HPGS on GO. Then 2D nanosheets were coated onto the plasma-treated electrospun 

polycaprolactone (PCL) nanofibrous scaffolds, namely, PCL-GO-HPGS. Our results 

suggest that the GO-HPGS modified scaffolds could improve the adhesion and 

proliferation of IPS cells combined with high efficiency in maintaining their stemness. 

During the neural differentiation process, the scaffolds could promote neural 

differentiation and their maturity and meanwhile decrease the lineage specification 

towards astrocyte. Overall, this study provides a new multivalent/bioadhesive 

nanofibrous scaffolds for neural regeneration, which integrate the chemical and 

physical cues to facilitate the targeted differentiation of IPS cells. Furthermore, our 

design on 2D nanosheet functionalized nanofibrous stem cell-based scaffolds may also 

provide a new pathway for the fabrication of carbon nanomaterials composites in 

regenerative therapies as well. 

 

Results and Discussion 

Synthesis and characterization of the GO-HPGS nanomaterials 

The HPGS, a extracellular-matrix-/heparin-mimetic structure, shows intense 

multivalent interactions with different proteins and biomolecules, which is crucial in a 

series of the process, including the adhesion of proteins, recognition of membranes, and 
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signaling processes in cells.[176-179] To improve the carbon-to-substrate and carbon-to-

carbon interactions, HPGS was directly grafted onto GO nanosheets. Thus, it is believed 

that the HPGS-modified GO could be used as bio-adhesive and biocompatible 

nanosheets for the construction of ECM-mimicking scaffolds. As shown in Figure 1a, 

the azides-functionalized hyperbranched polyglycerol (HPG-N3, ~11% N3 substitute to 

OH groups) was grafted onto GO through covalent conjugations between sp2 carbon 

bonds on GO and the azide group on HPG-N3 via nitrene cycloaddition reaction at 120 

oC. The hydrophobic interactions and hydrogen bonding between the HPG-N3 and 

planar GO could significantly improve the amount of grafting HPG on GO. The azide-

based nitrene cycloaddition reaction offers an extremely fast and stable method for 

scalable HPG anchoring.  

Then, GO-HPG was sulfated to alter antifouling HPG into multivalent, 

biocompatible, and bioadhesive HPGS, specifically, GO-HPGS nanosheets. As shown 

in Figure 1a, the GO-HPGS nanosheets were sulfated from the GO-HPG through the 

SO3-pyridine complex. The TEM images, as shown in Figure 1b, suggest the 2D sheet-

structure of GO-HPGS, indicating that the high surface/volume ratio property and 2D 

structure of GO were well maintained. Figure 1c shows the element distribution of the 

GO-HPGS with high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM). C, O, S, and Na elements were uniformly distributed on 

the 2D nanosheet according to the HAADF-STEM image and elemental mapping, 

which suggests that HPGS are homogeneously grafted onto GO. Figure 1d exhibits the 

atomic force microscope (AFM) picture for pristine GO-HPGS on freshly cleaved mica. 

The height distribution in Figure 1e suggests the difference between the two arrows was 

about 4.11 nm. Figure 1f suggests the calculated thickness distribution of GO-HPGS 

from 25 nanosheets, and each thickness ranges from 3.9 nm to 4.3 nm. Meanwhile, the 

calculated thickness distribution of GO (Figure S1, 0.9 nm to 1.2 nm) and GO-HPG 

(Figure S2, 2.3 nm to 2.5 nm) from 25 nanosheets, which verifies the uniform grafting 

of HPGS on GO nanosheet.  

      The Fourier-transform infrared spectroscopy (FTIR) (Figure S3) peaks at 3401.8 (-

OH), 3070.1, 2877.2 (-CH-, -CH2-), 2106.1 (-N3), 1716.3, 1611.2, 1194.6 (C-O), 

1022.0, 929.5 (-SO3-) cm-1 verified the chemical structure of GO-HPGS. GO-HPGS 

was further characterized by X-ray photoelectron spectroscopy (XPS, Figure 1g-1i). 

Figure 1g shows the existence of sulfur element (sulfate groups) and nitrogen element 
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(conjugated azide) on GO-HPGS nanosheets, which verified the successful grafting of 

HPG-N3 on the planar GO. The high-resolution spectra of C1s (Figure 1h) for GO-

HPGS indicated the existence of C=C, C-C C-N, C-O, and C=O peaks. The high-

resolution N1s spectra (Figure 1i) show three major nitrogen peaks including 401.7 eV 

(=N+= in residual N3 groups), 400.8 eV (-N= and =N- in residual N3 groups), and 399.7 

eV (cycloaddition-formed N-graphene conjugation).  

 

Figure 1. (a) Scheme of the preparation process of 2D nanosheets by utilizing the GO 

and HPG-azide through nitrene cycloaddition reaction. (b) Typical TEM image of the 

prepared GO-HPGS nanosheets at different magnifications. (c) HAADF-STEM image, 

EDS curves, and corresponding elemental mapping of the GO-HPGS nanosheets, 

which revealed the distribution of C, O, Na, and S. (d) Representative AFM images of 

GO-HPGS. (e) The calculated thickness distribution of GO-HPGS from 25 nanosheets. 

Each thickness ranged from 3.9 nm to 4.3 nm, which indicated the obtained GO-HPGS 

nanosheets were purely single-layer products. (f) The cross-section analyses of GO-

HPGS and the height difference between the two arrows were about 4.11 nm. (g) XPS 

survey scanning spectra for the GO and GO-HPGS, which is corresponding to sulfur 

and nitrogen. The high-resolution XPS for (h) C1s spectra and (i) N1s spectra for GO-

HPGS. 
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As an amphiphilic carbon nanomaterial, GO is quite promising for functional 

nerve repair.[168] GO has a high adsorption ability on growth factors and diverse 

nutrition proteins through the provision of beneficial chemical cues, which could 

improve the attachment and spread of IPS cells.[141] Moreover, due to the hierarchical 

structures of fibrous neural scaffolds on the microscale and nanoscale, the fibrous 

scaffolds provide physical cues for neural tissues to adhere and grow. In this work, with 

the coating of GO-HPGS nanosheets, the nanostructured fibrous scaffold was 

constructed to offer an appropriate microenvironment for IPS cells’ survival and 

differentiation. The polycaprolactone (PCL) was chosen as the electrospun matrix to 

build the original fibrous scaffold due to its well-established biocompatible and 

degradable property, which is pivotal for biomedical applications. Figure 2a exhibits 

that a syringe with a metal needle was filled with PCL solution, after being applied with 

a 16 kV high voltage; the solution was split into fibers and fall onto a rotating drum 

collector. Then, the fibrous scaffolds were treated with 1 min of O2 plasma to generate 

radicals on the fiber’s surface. Then 1 mg/mL HPGS, GO, and GO-HPGS aqueous 

solutions were dipped into the plasma-treated fiber mats to prepare the PCL-HPGS, 

PCL-GO, and PCL-GO-HPGS scaffolds, respectively.  

Figure 2b shows the morphologies of the scaffolds under scanning electron 

microscopy (SEM). The electrospun PCL fiber mats (~50 μm in thickness) composed 

of crossing fibers with a diameter of around 1 μm. According to the amplified SEM 

image, the GO and GO-HPGS nanosheets-coated samples had corrugations on the 

fiber’s surface compared with the smooth surface on original PCL fiber. This suggested 

that the GO and GO-HPGS 2D thin-films were tightly wrapped around the fiber’s 

surface, and a 3D nanofibrous structure could be well-maintained. The energy 

dispersive spectrometer data (EDS) and element mapping on PCL-GO-HPGS (Figure 

2c and Figure S4) indicated the existence of sulfur due to the coating of GO-HPGS. 

The FTIR data in Figure 2d gives the characteristic peaks for different samples, 

respectively. There are -OH and -SO3- peaks on PCL-HPGS, -OH peaks on PCL-GO, 

and -OH, -N3, and -SO3- peaks on PCL-GO-HPGS, which verified the successful 

coating of the above samples. The water contact angle (Figure 2e) on pure PCL is 

around 129o. After coating with different samples, the surface was transferred to 

hydrophilic.  As shown in Figure 2f and Table 1, XPS has been further characterized to 

verify the successful coating of 2D nanosheets onto PCL nanofibers. According to the 
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XPS survey scanning spectra in Figure 2f, there exists abundant sulfur element on the 

PCL-HPGS fibers, and nitrogen and sulfur elements on PCL-GO-HPGS fibers, thus 

suggesting that HPGS and GO-HPGS nanosheets were coated onto PCL fiber, 

respectively. As shown in Figure 2g and 2i, the contents of element N1s on samples 

(after immersion in a cell culture medium) increased compared to that in Figure 2f and 

2h. Accordingly, it is indicated that these scaffolds could absorb molecules of amino 

acids based peptides or proteins from the cell culture media, which is critical for 

regulation and specification of IPS cells’ growth and differentiation. After being coated 

with GO-HPGS nanosheets, the scaffolds exhibited much better absorption ability 

towards the amino acids based peptides/proteins and other small molecules, which 

could be further employed to manipulate the IPS cells’ fates. 
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Figure 2. (a) Schematic images for the electrospinning process of PCL fibers and 

coating process of GO-HPGS nanosheets. (b) SEM pictures of PCL, PCL-HPGS, PCL-

GO, and PCL-GO-HPGS samples. The nanosheets are marked with blue arrows. (c) 

The SEM element mapping and EDS curves of the S element on PCL-GO-HPGS. (d) 

FTIR spectra for bare and nanosheet-coated PCL fibrous scaffolds. (e) The average 

static water contact angle of bare, nanosheet-coated PCL fibrous scaffolds. XPS spectra 

for (f) fibrous scaffolds and (g) medium-immersed fibrous scaffolds. (h) The atom 
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percentages of C, N, O, and others on fibrous scaffolds and (i) medium-immersed 

fibrous scaffolds. 

 

Table 1. The surface atomic percentage of the 2D nanosheet-coated PCL fibers 

with/without immersion of media. The data is according to XPS results. 

 

Sample C1s (%) O1s (%) N1s (%) S2p (%) Others 

PCL 73.58 26.42 - - - 

PCL-HPGS 74.11 25.64 - 0.24 - 

PCL-GO 71.82 28.18 - - - 

PCL-GO-HPGS 73.46 25.85 0.48 0.21 - 

PCL-medium 64.50 22.99 8.78 0.34 3.39 

PCL-HPGS-medium 65.37 21.84 9.32 0.40 3.07 

PCL-GO-medium 63.30 22.41 9.98 0.31 4.00 

PCL-GO-HPGS-medium 62.17 23.17 10.43 0.41 3.82 

 

    In order to evaluate whether the GO-HPGS nanosheets coated scaffolds are suitable 

for the biological application, the IPS cells were chosen to observe cell viability, 

adhesion, and proliferation, when grown on different nanofibrous scaffolds. Figure 3a 

shows the schematic image of cell adhesion properties on PCL and GO-HPGS 

nanosheet-coated scaffolds. After 1, 3, and 5 days of culture, the CCK-8 assay kit was 

utilized to evaluate the IPS cell proliferation rate on nanofibrous scaffolds (Figure 3b). 

After 5 days’ culture, cells that proliferated on the GO-HPGS nanosheet-coated 

scaffolds were around 2-fold as much as that on PCL. The cells on PCL-GO and PCL-

HPGS proliferated better than that on PCL as well, which indicated that the coating of 

GO and HPGS could both promote the proliferation of IPS cells. The LIVE/DEAD cell 

staining (Figure 3b) on PCL-GO-HPGS on day 3 shows homogeneous and 

interconnected cells, which was much better than the PCL-GO, PCL-HPGS, and bare 

PCL, indicating that GO and HPGS had synergistic improvement effect for the growth 

and proliferation of IPS cells. The lack of bioactive chemical ligands and relatively 

smooth fiber surface led to poor performance in cell adherence and growth on bare PCL. 

ECM preserve IPS cells in the niche or assists in starting signal transduction, while the 

surface coating of GO-HPGS concentrates soluble growth factors or cytokines, which 

regulates stem cell fate via immobilizing signaling molecules and creating cytokine 

gradients.[154]  
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     To investigate the interactions of GO-HPGS-coated fibers with IPS cells, the cell 

nuclear was stained with DAPI (blue), and the F-actin was stained with phalloidin (red), 

then the fluorescent images were observed with confocal microscopy. Figure 3d shows 

that cells grown on PCL-GO-HPGS had much more cell pseudopodium on the surface, 

which suggests more binding sites for IPS cells to adhere. 2D fractal dimensions (Df) 

are a dimensionless value in quantifying the complexity of spatial arrangement and 

complexity for the cell cytoskeleton. MATLAB was utilized to analyze the 

corresponding Df (Figure 3e) according to F-actin staining. The higher cytoskeleton 

complexity on GO-HPGS nanosheet-coated surface indicated that the cells have much 

more adhesion spots due to the corrugations on GO-coated nanotopography structure 

and the multivalent HPGS’s protein binding affinity. The quantitative Df values of 

whole-cell spheroids on PCL-GO-HPGS were gradually bigger than that on PCL-GO, 

PGL-HPGS, and bare PCL (Figure 3h). Furthermore, correlative analysis of the cell 

area showed that the cell-spreading area on GO-HPGS nanosheets coated surface was 

larger than those on bare PCL, which suggests more anchoring opportunities for cells 

to facilitate cell motility and adhesion. In general, after the characterization of IPS cells’ 

viability, proliferation, adhesion, and spreading, results indicated that the GO-HPGS-

coated fibrous scaffolds achieved significant progress in providing an excellent 

environment for fragile IPS cells to survive. 

     During cell adhesion and spreading process, the rearrangement of the actin 

cytoskeleton would regulate cellular signaling pathways change.[180] Increased cell 

spreading is frequently accompanied by yes associate protein (YAP) relocation and 

following YAP-responsive gene transcription activation.[180] Its localization in nuclei 

results in IPS cells could promote cell proliferation.[181, 182] Meanwhile, activated YAP 

nuclear translocation could mediate stemness maintenance in IPS cells.[183, 184] Thus, 

we further investigated the YAP signal on PCL and PCL-GO-HPGS using 

immunofluorescence staining (Figure 3f, Figure S5). It is evident that YAP was located 

in the cytoplasm on PCL, however, more YAP signals exist in nucleus on PCL-GO-

HPGS. The YAP nuclear/cytoplasm ratio in Figure 3i also suggests that more YAP is 

activated into nucleus on PCL-GO-HPGS, which proves that PCL-GO-HPGS could 

promote IPS cells proliferation and promote the stem cell stemness.  
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Figure 3. (a) Schematic diagram of cell adhesion on different surfaces. (b) CCK-8 test 

of IPS cell proliferation after 1, 3, and 5 days of culture on scaffolds. (c) Live-dead 

staining kit (green: live, red: dead) of IPS cells after 3 days of culture. (d) Single IPS 

cells' adherence to scaffolds after staining of DAPI (nuclei) and phalloidin (F-actin). (e) 

2D fractal dimension (Df) distribution of the F-actin according to the F-actin staining 

in (d). (f) Immunofluorescence staining of the YAP signal in IPS cells after 3 days 

(YAP, green; DAPI, blue). (g) Quantitative analysis of the cell spreading area on 

different samples (n = 50). (h) Statistical quantification of cumulative Df value in every 

single cell (n = 10). (i) Statistical quantification of the YAP nuclear/cytoplasmic 

fluorescence intensity ratio; (n = 20). **** p < 0.0001, *** p < 0.001, ** p < 0.01, and 

* p < 0.05. 

 

Nanog, Sox2, OCT4, and SSEA1 are transcription factors that are pivotal to 

preserve the stemness of undifferentiated IPS cells, which are involved in the regulation 

of self-renewal development and the determination of cell fate.[183, 185] To better indicate 

the primitiveness and stemness of the reprogrammed cells, we observed the colonies 
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that stained positive for four primitive stem cell markers, Nanog, Sox2, OCT4, and 

SSEA1, on day 3 after being cultured in growth medium (Figure 4a). The colony, which 

was grown on PCL-GO-HPGS, was larger than that on bare PCL, which indicated that 

GO-HPGS could promote IPSC proliferation. The relative fluorescence intensity in 

Figure 4b and 4c suggests that PCL-GO-HPGS scaffolds could preserve the stemness 

very well and even slightly better than pure PCL. The stemness-marker fluorescence 

intensity of the colonies was consistent with the result of YAP nuclear translocation. 

The reason could be attributed to the PCL-GO-HPGS scaffold’s good adsorption of 

protein (including the differentiation inhibitor) from the growth medium. Figure 4d and 

4f represent the intensity distribution profiles of Nanog and Sox2 from the center to the 

edge of the cell colonies grown on PCL and PCL-GO-HPGS, Figure 4e and 4g represent 

OCT4 and SSEA1 on PCL and PCL-GO-HPGS, respectively. The colony radium for 

PCL is around 80 µm, and PCL is around 120 µm. Meanwhile, the fluorescence 

intensity at the edge of the colony was stronger than that in the center, which means 

that the outer cells could absorb more inhibitor from the medium and preserve the 

stemness better in the growth medium. The colony edge signal on GO-HPGS 

nanosheet-coated scaffolds was more extensive than that on bare PCL, indicating that 

GO-HPGS may have accumulated differentiation inhibitors from cell culture media to 

promote the stemness of IPS cells. 
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Figure 4. (a) Representative immunofluorescence staining of stemness markers: Nanog 

(green), Oct4 (green), Sox2 (red), and SSEA1 (red) for IPS cells on PCL-GO-HPGS 

and PCL. Quantitative analysis for grey intensity of immunofluorescence-stained 

images to get the average expressions of  (b) Nanog and Sox2 (c) Oct4 and SSEA1. 

Respective intensity distribution profiles of (d) Nanog and Sox2, (e) Oct4 and SSEA1 

from the center to the edge of the cell colonies grown on PCL, respectively. The 

respective intensity distribution profiles of (f) Nanog and Sox2, (g) Oct4 and SSEA1 

from the center to the edge of cell colonies grown on PCL-GO-HPGS, respectively. (n 

= 30), *** p < 0.001, ** p < 0.01, and * p < 0.05. 
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As shown in Figure 5a, the embryonic body was prepared and seeded on 

nanofibrous scaffolds and then developed towards neurites. As a kind of intermediate 

filament protein, Nestin, is frequently expressed in nerve cells, which is quite often used 

in dividing cells during the early stages of development in the radial growth of the 

axon.[186, 187] As the same family of intermediate filament protein in the central nerve 

system, glial fibrillary acidic protein (GFAP) expressed mostly in astrocytes and 

ependymal cells.[188] To study the differentiation process of IPS cells on different 

scaffolds, the GFAP and Nestin were stained and observed after 5 days of culture in the 

neural differentiation medium (Figure 5b). There were only seeded embryonic bodies 

on all scaffolds and no obvious neurites and axons could be observed. The relative 

fluorescence intensity analysis of Nestin in Figure 5c suggests no significant difference 

between bare PCL and GO-HPGS-coated scaffolds as for the average expression of 

Nestin. However, when we compared the GFAP expression in Figure 5d, the evolution 

process towards astrocyte was mainly confined to PCL and PCL-GO. The displayed 

increased astrocytes could diminish glutamate transporter current and may be 

detrimental to the development of neurons and axons.[188] Figure 5e-5h represent the 

intensity distribution profiles of GFAP and Nestin from the center to the edge of the 

embryonic body grown on PCL, PCL-HPGS, PCL-GO, and PCL-GO-HPGS, 

respectively, The embryonic body radium ranges from 40-110 µm. Meanwhile, the 

fluorescence intensity for the red Nestin at the edge of the colony was more potent than 

that in the center, which means that the outward cells could absorb more differentiation 

factors and hormones from the medium. However, the distribution and levels of GFAP 

signal on PCL-HPGS and PCL-GO-HPGS were quite low, which suggests that the 

successful coating of HPGS could inhibit the expression of GFAP and then prevent the 

differentiation potential to astrocyte. 
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Figure 5. (a) Schematic timeline of the preparation of embryoid bodies (EBs) and the 

neural differentiation of IPS cells. (b) Immunofluorescence staining of primary neuron 

marker GFAP and Nestin (blue, DAPI; green GFAP; red Nestin) at 5 days. The average 

expressions of Nestin (c) and GFAP (d) were quantitatively analyzed from the 

immunofluorescence-stained images’ grey intensity, respectively. Respective intensity 

distribution profiles of GFAP and Nestin from the center to the edge of the EB grown 

on PCL (e), PCL-HPGS (f), PCL-GO (g), and PCL-GO-HPGS (h), respectively. (n 

= 10). *** p < 0.001, ** p < 0.01, and * p < 0.05. 
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To further evaluate the neural differentiation activities after the embryonic bodies 

were seeded on GO-HPGS-nanosheet-coated samples. III β-tubulin (Tuj1), as an early 

neural marker, was investigated. As an exclusively expressed in neurons microtubule 

component, Tuj1 stands for regenerated axons and neurofilaments.[189, 190] Figure 6a 

exhibits immunofluorescence photo of earlier neuron marker protein Tuj1, 

corresponding 2D fractal dimension (Df), and fluorescence intensity maps after 7 days 

of culture according to the process in Figure 6a and Figure S6. The immunostaining 

picture shows higher neurons differentiation rate and more prolonged axon on PCL-

GO-HPGS than that on other samples. These neurites, which were spread out very well 

on PCL, PCL-HPGS, PCL-GO, and PCL-GO-HPGS fibrous structures, were easy to 

recognize. The statistical analysis of neurites distribution in Figure 6b suggests the 

PCL-GO-HPGS surface could promote the elongation of neurites. After MATLAB 

analysis, according to the Tuj1 staining, 2D fractal dimension (Df) and fluorescence 

intensity map were obtained, which proved that the neurites adhere and elongate quite 

well on the GO-HPGS nanosheet-coated scaffolds. They also had more dense and 

longer neurites compared with bare PCL scaffolds. The neurite intersections indicated 

the apical node and spines of the neurites.  

     To investigate the number and distribution of spines, the neurite intersections’ 

changes from the EB center to the edge were investigated using image J (Figure 6c). 

The number of intersections on PCL-GO-HPGS was around 5 times compared with 

bare PCL. Meanwhile, the intersection number increased from radium 100-400 μm and 

then decreased to the edge. The number of neurites intersections per area in Figure 6d 

also suggests that PCL-GO-HPGS had the largest number of apical nodes and spines 

along with the change from the EB center to the edge. The Df values in Figure 6e 

suggest the quantification of neurites’ spatial arrangement. The neurites on GO-HPGS 

nanosheet-coated scaffolds have a higher spatial arrangement complexity, for example, 

branches’ types and branches’ amounts. As shown in Figure 6f, the relative expression 

level of Tuj1 on PCL is only half of that on PCL-GO-HPGS. The average neurite 

number per EB on PCL-GO-HPGS (232 ± 52) was much more massive than that on 

bare PCL (12 ± 10) (Figure 6g). Besides, the neurite length changed from PCL (101 ± 

34 μm) to PCL-GO-HPGS (345 ± 109 μm), which verified that the GO-HPGS 

nanosheets’ coating could significantly improve neurite elongation in vitro. 
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Figure 6. (a) Earlier neuron marker protein Tuj1 (blue, DAPI; red, Tuj1)’s confocal 

image, 2D fractal dimension (Df) and fluorescence intensity map after 7 days of culture. 

(b) Top 20 long axons on each sample, the radius and θ (°) define the length and the 

angle of the axons, respectively. (c) The number of neurites’ intersections along with 

the change from the EB center to the edge. Neurite intersections indicated the apical 

node and spines of the neurites. (d) The number of neurite intersections per area along 

with the change from the EB center to the edge. (e) The analysis of the quantitative 

cumulative Df value within a single cell on different samples (n = 20). (f) Quantitative 

analysis, according to the grey intensity, results in the average expression of βIII tubulin 

(Tuj1). (g) The average neurites number per EB on different samples (n = 20). (h) The 

neurite length distribution of different samples (n = 20). *** p < 0.001, ** p < 0.01, and 

* p < 0.05. 

 

As we established a timeline differentiation process for IPS cells from EBs to 

neural cells, IPS cells were cultured in a suspension of medium to form EBs enriched 

with neural progenitors. The subsequent adherent culture of EBs on scaffolds resulted 

in the generation of Tuj1-positive immature neurons at day 5-7, and these cells were 
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then differentiated into mature neurons with increased positivity for NeuN and 

microtubule-associated protein 2 (MAP2) after 1 week.[191] NeuN is a protein mainly 

expressed in neural nuclei, and MAP2 is a pivotal microtubule protein during the 

neuritogenesis-microtubule assembly process.[192] Figure 7a exhibits a few 

axonal/microtubule sprouting after 14 days of differentiation on bare PCL. However, 

well-grown neural microtubules and microfilaments could be observed spreading on 

GO-HPGS nanosheet-coated scaffolds, which suggests that GO-HPGS nanosheets 

could promote mature neurites’ formation. The relative fluorescence intensity in Figure 

7c indicates the increased average NeuN and MAP2 expression on PCL-GO-HPGS 

scaffolds. The fluorescence co-localization analysis in Figure 7b suggests the 

distribution of MAP2 (red) and NeuN (green) signals in fluorescence microscopy 

images, which can be used to determine whether two probes co-distributed with one 

another.[193] It is evident that the distribution of red signal and green signal on PCL-

GO-HPGS was most discrete, which is in line with the Manders’ co-localization 

coefficients (MCC) in Figure 7d and Pearson’s correlation coefficient (PCC) in Figure 

7e. The smaller the value of the coefficient means the less co-localization is related. 

Since NeuN protein was mainly expressed in the nuclear, the less co-localization of 

MAP2 with NeuN on PCL-GO-HPGS suggests more expression of MAP2 in axonal 

microtube, which proved more mature neurites on PCL-GO-HPGS than on bare PCL. 
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Figure 7. (a) Confocal image of mature neuron marker protein NeuN and MAP2 at day 

14 on different samples (blue, DAPI; green, NeuN; red, MAP2). (b) The co-localization 

map of NeuN and MAP2 protein according to Figure 7a. (c) The quantitative intensity 

of NeuN and MAP2 according to the immunofluorescence-stained images. (d) MCC of 

MAP2 and NeuN, MCC is the percentage of co-localized protein in the total amount 

expressed protein. (e) Pearson’s correlation coefficient (PCC) of MAP2 and NeuN 

protein, the smaller the value, the less co-localization related. *** p < 0.001, ** p < 

0.01, and * p < 0.05. 

 

Conclusion 
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In summary, we have prepared a biocompatible and multivalent polyanion to modify 

the GO to obtain bioadhesive 2D nanosheets and the 2D nanosheet-coated nanofibrous 

scaffolds, which exhibited combined physical and chemical cues to promote IPS cells 

towards neural differentiation. The prepared ECM-mimicking PCL-GO-HPGS 

scaffolds exhibited high efficiency in promoting the IPS cells’ adhesion and 

proliferation. Meanwhile, the PCL-GO-HPGS scaffolds could keep the seed IPS cells 

in a good stemness state in the growth medium. Furthermore, we have also validated 

that the introduced HPGS on the scaffold surface could decrease the differentiation 

chance towards astrocyte and GO coating could promote the neural differentiation 

efficiency and maturity. Benefiting from both advantages of HPGS and GO, the 

scaffolds could promote neural differentiation and decrease the lineage specification 

towards astrocyte. Overall, this study provides a new way to design 

multivalent/bioadhesive nanofibrous scaffolds for neural regeneration, which would 

integrate the chemical and physical cues to facilitate the targeted differentiation of IPS 

cells. Our design on 2D nanosheet functionalized nanofibrous stem cell-based scaffolds 

may also provide a new pathway for the fabrication of carbon nanomaterials composites 

in regenerative therapies as well. 

 

Experimental Section 

Materials, preparation, and characterization of methods, stem cell culture and staining 

experiments, and statistical analysis are all shown in the Supporting Information. 
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Multivalent Polyanionic 2D Nanosheets Functionalized 

Nanofibrous Stem Cell-based Neural Scaffolds 

Yi Xia, Hua Yang, Shuang Li, Suqiong Zhou, Liyun Wang, Chong Cheng,* and Rainer 

Haag*  

1.1 Materials 

       All chemicals were purchased from Sigma (Steinheim, Germany) unless stated, 

including dimethylformamide (DMF, CAS: 68-12-2), pyridine (CAS: 110-86-1), 

trimethylamine (Et3N, CAS: 121-44-8), methanesulfonyl chloride (MsCl, CAS: 124-

63-0), NaN3 (CAS: 26628-22-8), SO3 pyridine complex (CAS: 26412-87-3), NaNO3 

(CAS: 7631-99-4), KMnO4 (CAS: 7722-64-7), ascorbic acid (CAS: 50-81-7), and 

graphite flakes (CAS: 7782-42-5). The mica wafers are commercially available. 

Dialysis was performed in benzoylated cellulose tubes from Sigma-Aldrich (D7884, 

width: 32 mm, molecular weight cut-off (MWCO) 2000 g∙mol-1). The deionized water 

used was purified using a Millipore water purification system with a minimum 

resistivity of 18.0 MΩ∙cm. Dialysis was performed in benzoylated cellulose tubes from 

Sigma-Aldrich (category number: D7884, width: 32 mm, molecular weight cut-off 

(MWCO) 2000 g∙mol-1).  

 

1.2 Characterization Methods 

       Fourier-transform infrared spectroscopy (FTIR): FTIR spectra were recorded using 

a JASCO spectrometer. Ultrasonic bath (Model: SONOREX, RK255 HZ, made in 

Germany) was used to disperse materials in solvents. 

Water contact angle (WCA): Static contact angle measurements were performed 

by using a contact angle goniometer (Data Physics Instruments, Germany) with the 

sessile drop method. A liquid drop of 2 μL Milli-Q water was placed on the substrate 
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and allowed to equilibrate for 15 s at room temperature. At least eight measurements 

were averaged on every five parallel samples to get a reliable value. 

Atomic force microscopy (AFM): The AFM results were recorded by a Multimode 

Nanoscope V scanning probe microscopy (SPM) system (Bruker, USA) in the air under 

ambient conditions. The commercially available AFM cantilever tips with a force 

constant of ~ 48 N/m and resonance vibration frequency of ~ 330 kHz were used, and 

the scanning rate was set at 0.8 Hz. The AFM samples for nano-dispersion were 

prepared by dropping aqueous dispersion (~0.01 mg/mL, sonicated for 5 minutes with 

an ultrasonic bath cleaner) on a freshly cleaved mica surface and dried under vacuum 

at 60 oC. The AFM mode and Peak Force QNM was used in order to control better the 

force with which the tip interacted with the surface. PPP-NCLR-20 probes with force 

constant 21-98 N/m (silicon, resistivity: 0.01-0.02 Ω∙cm Bruker) were used for the 

ambient measurement. 

Scanning electron microscope (SEM): The morphology of the nano-dispersion 

coated substrates was observed by ultrahigh-resolution FE-SEM (Hitachi SU8200). The 

samples were dried in an oven and then attached to the sample supports using carbon 

tape. All the samples were coated with gold with about 1 nm. 

       Transmission electron microscopy (TEM): Droplets (~5 μL, ~ 0.02 mg/mL) of the 

sample solution were placed on ultrathin carbon film on copper grids (Ted Pella, Inc. 

USA), and the supernatant liquid was removed by blotting with a piece of filter paper. 

The grids were allowed to air dry at least 40 min and were subsequently transferred into 

a TEM machine, Tecnai G2 F20 S-TWIN transmission electron microscope (FEI Ltd., 

USA), and operated at 200 kV. The high-angle annular dark-field scanning 

transmission electron microscopy (HAADF-STEM) has been performed by the same 

machine. 

X-ray photoelectron spectroscopy (XPS): XPS was measured on K-Alpha™ + X-

ray Photoelectron Spectrometer System (Thermo Scientific) with Hemispheric 180 ° 

dual-focus analyzer with 128-channel detector. X-ray monochromator is micro-focused 

for Al-Kα radiation. For the measurement, the powder samples were pressed and loaded 
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on carbon taps, then pasted onto the sample holder for measurement. The data was 

collected with an X-ray spot size of 400 μm, 20 scans for the survey, and 50 scans for 

the regions. Survey spectra were run in the binding energy range of 0-1000 eV, and 

high-resolution spectra of C1s, N1s, O1s, and S2p were collected. The XPS spectra of 

nano-compounds and scaffolds were conducted by a similar method. 

 

1.3 Preparation and Characterization of GO-HPGS Nanosheets 

Synthesis of graphene oxide (GO) 

       GO was prepared from natural graphite flakes by a modified Hummers’ method.[139] 

2.5 g graphite and 1.875 g NaNO3 were placed in a flask. Then, 75 mL H2SO4 was 

added with stirring in an ice-water bath, and 10 g KMnO4 were slowly added over about 

1 h. The mixture was stirred in the ice water bath for 2 h, which was followed by a 

vigorously stirring for 12 h at 60 oC. Then, the mixture was slowly diluted with DI 

water (700 mL), and the excess KMnO4 was decomposed by H2O2 (30 wt.%, 15 mL). 

The insoluble precipitations were removed by centrifugation. The resultant GO solution 

was filtered and washed with HCl (10 wt.%, 1 L) and DI water for several times to 

remove the metal ions. The pristine brown GO solution was dialyzed with deionized 

water for 1 week before removing any residual salts and acids. 

 

Synthesis of HPG covalently functionalized graphene oxide (GO-HPG) 

       First, the hyperbranched polyglycerol (HPG) (molecular weight of Mn = 7200 

g.mol-1, PDI < 1.2, and a degree of branching of ∼50%) was polymerized by a one-step 

ring-opening anionic polymerization (ROAP), as mentioned in our earlier reports.[143, 

144] The synthesized HPG was dissolved in dry DMF (50 mL) and 10 mL pyridine. Then 

Et3N (0.7 mL, 4.965 mmol, 1.5 eq.) was added and cooled to 0 °C. And then, the MsCl 

(0.659 mL, 8.512 mmol, 1.5 eq.) in dry pyridine (20 mL) was added dropwise through 

a syringe at 0 °C. After stirring the solution for 1 h at 0 °C, it was allowed to reach room 

temperature (r.t.) and was stirred for 16 h to obtain HPG-Ms. The obtained HPG-Ms 

was dissolved in 80 mL dry DMF upon ultrasonication in a one-necked flask with a 
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reflux condenser and magnetic stirrer. After the addition of NaN3 (sodium azide, 5 eq.), 

the resulting suspension was heated at 70 °C for 3 days to get azide-functionalized 

hyperbranched polyglycerol (HPG-N3) as reported in our earlier paper.[108] 

       To avoid the strong electrostatic repulsion between highly negatively charged 

HPGS and graphene oxide (GO), we used the electrically neutral HPG-N3 to 

functionalize GO. The HPG-N3, ~11% azide-grafting ratio, was first anchored onto the 

GO surface via covalent conjugation and multi-noncovalent interactions. The covalent 

conjugation was generated between the azide group on HPG and residual sp2 bonds on 

GO through [2+1] nitrene cycloaddition reaction at 120 oC.  

 

Synthesis of the sulfated GO-HPG (GO-HPGS) 

      To achieve the extracellular-matrix/heparin mimetic structures, the GO-HPG was 

consecutively post-sulfated to convert bioinert HPG into cell adhesive-sulfated HPGS, 

namely, GO-HPGS. The above-yielded GO-HPG (600 mg) was re-dispersed in dry 

DMF at a concentration of 1 mg/mL. Then this solution was heated to 60 oC with 

vigorous stirring. Then 6.45 g SO3·pyridine complex in 200 mL DMF was added into 

GO-HPG slowly for 2 h. The reaction was maintained in 60 oC for 48 h. After the 

reaction, the extra amount of SO3·pyridine complex was removed by centrifugation 5 

times, and the product was alternatively washed by acid and basic solution for 2 

cycles.[108] 

 

Synthesis of the hyperbranched polyglycerol sulfates (HPGS) 

      The above-obtained HPG was dissolved in anhydrous DMF (50.0 mL) and heated 

to 60 °C. A freshly prepared solution of SO3 pyridine complex (9.88 g) in anhydrous 

DMF (65.0 mL) was added over a period of 2 h. The mixture was stirred for 2 h at 

60 °C, then for 2 d at room temperature, and was subsequently quenched with water 

(50 mL). The pH was immediately adjusted to 8 by the addition of 1(N) NaOH. The 

solvents were evaporated, and the residue was alternatively subjected to dialysis in 

water for 1 week. Evaporation of the solvent gave the title compound in 88% yield. 
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Degree of sulfation ≈ 80% from CHNS analysis. The obtained HPGS were 

characterized by NMR and FTIR.[108] 

 

1.4 Fabrication of GO-HPGS nanosheet-coated polycaprolactone (PCL) fibers 

Fabrication of electrospun PCL fibers 

       PCL (80 kDa, Sigma) was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) 

to prepare a 10% (1 g in 10 mL, w/v) polymer solution. The polymer solution was 

placed into a syringe with a metal needle and then electrospun onto an aluminum foil-

wrapped drum collector, which was positioned horizontally, at a flow rate of 2 mL/h. 

18 kV voltage was applied with a high voltage power supply, and a 12 cm working 

distance was utilized. The PCL fibers were dried under vacuum overnight and then 

peeled off from the aluminum foil for further usage. 

Generating GO-HPGS nanosheets coated with PCL fibers (PCL-GO-HPGS) 

       PCL fibers were treated with O2 plasma for 1 min to transfer the hydrophobic 

polymer surface to hydrophilic and generate free radicals for covalent bonding with 

GO-HPGS nanosheets. The O2 plasma-treated PCL fibers were dipped into GO-HPGS 

nanosheets at a concentration of 1 mg/mL. The coated substrates were then vacuumed 

dried overnight. The HPGS- and GO-coated membranes were fabricated by the same 

method. The obtained fibers were then characterized by SEM, EDS Mapping, XPS, and 

WCA. 

 

1.5 Stem cell culture and bioactivity characterizations 

Cell culture 

       Mouse-induced pluripotent stem cells (IPS) were purchased from Lonza, USA. The 

necessary approval before carrying out IPS-related experiments was obtained from the 

Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin. The culture 

plates were coated with laminin (R&D Systems, USA) solution at the concentration of 

5 μg/cm2 in PBS. The cells were cultured IPS Feeder-free Culture Medium-ESGRO 

Complete PLUS Clonal Grade Medium (MERCK), containing selective GSK3β 
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inhibitor supplement (MERCK). The cells were maintained at 37 °C in a saturated 

humidity atmosphere containing 95% air and 5% CO2. The cells were passaged and 

collected with Accutase (Thermo Fisher) after reaching 70-80% confluency.  

Cytocompatibility 

        The harvested cells were seeded on PCL, PCL-HPGS, PCL-GO, and PCL-GO-

HPGS samples at the density of 1×104 cells/cm2. The viability of cells was assessed 

after 3 days of culture using a Calcein AM/Ethidium homodimer-1 dye (LIVE/DEAD 

Cell Viability Assay, Life Technologies) under the protocol instruction from the 

manufacturer. After 30 minutes of sample incubation with the reagents at 37 °C, they 

were washed with DPBS. The fluorescence microscope (Zeiss Z1 Microscope) was 

used to obtain the images. Live and dead cells appeared as green and red, respectively.  

The proliferation of IPS was evaluated by the cell counting kit-8 (CCK-8, Thermo 

Fisher) on day 1, day 3, and day 5, respectively. 10 µL of the CCK-8 solution was added 

to each well of 96-well plates, and cells were incubated at 37 °C for 4 h. The absorbance 

intensity of each sample was determined at a wavelength of 450 nm using a microplate 

reader (infinite M200PRO, TECAN, Switzerland). All experiments were repeated three 

times, and six parallel replicates were read for each sample. 

Cell morphology 

       The cellular spreading morphology and skeleton were stained with phalloidin-

647/DAPI; the cells were washed with DPBS before fixing the sample with 4% 

paraformaldehyde for 20 min. 0.1% Triton X-100 in DPBS was used for 30 min to 

permeabilize the cell membrane. The samples were then incubated with Alexa Fluor 

647 phalloidin at 1:400 and DAPI at 1:200 dilutions in DPBS each for 45 min 

sequentially. Following three additional washings with PBS, the samples were observed 

under an inverted confocal microscope (Leica SP8, Germany). 

 

1.6 Stem cell differentiation and characterizations 

IPS cells’ neural differentiation 

       The collected IPS cells were cultured on non-treated cell culture dishes in neuron 



82 
 

differentiation medium (Thermo Fisher) at 2 × 105 cells/mL. We incubated the cells in 

a 37 °C, 5% CO2 incubator to allow them to form embryoid bodies (EBs). On the next 

day, we fed EBs with fresh differentiation medium by transferring EBs into a 15-ml 

conical tube and spinning the tube at 200 x g for 1 minute. We re-suspended the EBs in 

a fresh IPS cells’ differentiation medium and re-plated them in a new non-treated cell 

culture dish. The next day, we divided the EBs into 4 new dishes with fresh 

differentiation medium supplemented with 0.5 μM retinoic acid (Sigma-Aldrich) and 

200 ng/mL Sonic Hedgehog C25II Recombinant Mouse Protein (Thermo Fisher). After 

7 days, we stained the cells with previous neuron marker β III tubulin (TUJ1). After 12 

days of differentiation, cells expressed mature neuron marker microtubule-associated 

protein 2 (MAP2) and NeuN. 

 

Immunofluorescence staining 

       The samples were then fixed in 4% paraformaldehyde and permeabilized with 0.1% 

Triton X-100 in PBS. The non-specific binding epitopes were blocked with 5% (w/v) 

BSA (bovine serum albumin). The primary antibodies Anti-YAP (1:400, mouse; 

Thermo Fisher), Anti-Nanog (1:200, rabbit; Abcam), Anti-Oct4 (1:200, rabbit; Abcam), 

Anti-Sox2 (1:400, mouse; Thermo Fisher), Anti-SSEA1 (1:400, mouse; Thermo 

Fisher), Anti-GFAP (1:400, rabbit; Cell Signalling), Anti-Nestin (1:400, mouse; 

Novus), Anti-β III tubulin (TUJ1) (1:400, mouse; Thermo Fisher), Anti-microtubule-

associated protein 2 (MAP2) (1:400, mouse; Thermo Fisher) and Anti-NeuN (1:400, 

rabbit; Thermo Fisher) were dissolved in 5% (w/v) BSA. The samples were incubated 

with the primary antibodies at 4 °C overnight. Following 3 to 4 times intensive washing 

(0.5 wt% Tween-20 in PBS), the secondary antibody labeling was performed with goat 

anti-mouse IgG conjugated to Alexa Fluor Plus 647 (Thermo Fisher) and goat anti-

rabbit IgG conjugated to Alexa Fluor Plus 488(Abcam). After repeated washing in PBS 

and nuclear counterstaining with DAPI, the neural markers were then visualized under 

a confocal microscope (Leica SP8, Germany). All images were taken under the same 

exposure conditions for analyzing the relative fluorescence intensity.  
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Image analysis 

       Cell spreading area, the shape factor, and volume were quantified based on F-actin 

staining and nucleus form z-direction confocal imaging. The focal adhesion analysis 

was performed based on vinculin staining. The fluorescent intensity and contrast were 

drawn along the representation morphology of each cell under the 8-bit greyscale 

images. The area and integrated densities were measured by the calibrate function. At 

least 200 cells were evaluated for each independent sample. For measurements of YAP 

nucleus localization in scaffolds, the images were thresholded on each color channel to 

determine the nucleus and cytoskeleton area outside of the nucleus. The YAP nucleus 

localization ratio was calculated according to Equation 1.  

Nuclear YAP (nuclear/cytoplasmic) =

𝑁𝑢𝑐𝑙𝑒𝑎𝑟 𝑌𝐴𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝐶𝑒𝑙𝑙 𝑌𝐴𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦−𝑁𝑢𝑐𝑙𝑒𝑎𝑟 𝑌𝐴𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑒𝑙𝑙−𝐴𝑟𝑒𝑎 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠

 (1) 

       All the above-mentioned images were presented as maximum intensity and 

analyzed by Fiji software (based on ImageJ), and we determined the 2D fractal 

dimension organization with a custom-developed MATLAB program (MATLAB, 

Natick, MA) divided images into a series of regions of 100 pixels² spaced at 20 pixels, 

individually averaged to filter out noise throughout the cell study. 

 

Corresponding 2D fractal dimensions (Df) 

        Df was analyzed by MATLAB of the F-actin staining images. Interrogation 

windows are used to digitally subdivide cytoskeletal images. To characterize the 

cytoskeleton spatial arrangement and density, box-counting was utilized to infer a 

fractal dimension (Df). Df is a dimensionless value to quantify the complex 

arrangement of the cell cytoskeleton. Automated partitioning and analysis of whole-

cell images using MATLAB for subcellular quantification of the cytoskeleton structure 

process are as follows: custom algorithm automatically partitions cytoskeletal images 

into the relevant biological regions, from which a mask is generated and data extracted 

can be specific to these regions. (a) Initially, images of the cytoskeleton were imported 
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for processing, which included a series of segmentation procedures to outline the shape 

of the cell. (b) Each cytoskeleton image was then scanned using non-overlapping 

interrogation windows, within each, fractal analysis is performed through a box-

counting method, quantifying the actin arrangement as defined by an edge detection 

filter. The regional mask was then used to differentiate perinuclear, cytosolic, and 

peripheral actin quantity and actin arrangement information from the raw cytoskeleton 

image and a resultant 2D array of fractal dimension values, respectively. (c) A user-

defined set distance is then used to redefine these boundaries, and pixels between the 

new and original boundaries form the masks required. This is repeated for each paired 

cytoskeleton image for the entire live imaging dataset. MATLAB commands used for 

the entire process are noted under the title of each step, and custom codes are further 

denoted with a “.m.”  

 

Statistical Analysis 

       All data were expressed as the means ± standard deviations (s.d) with independent 

experiments. The statistical analysis was performed using one-way analysis of variance 

(ANOVA) with the Tukey honestly significant difference post hoc test using origin 9.0 

software. The data was indicated with (*) for p < 0.05, (**) for p <0.01, and (***) for 

p < 0.001. 
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Figure S1. (a) AFM images for pristine GO on freshly cleaved mica. (b) The average 

height difference between the two arrows was about 1.17 nm. (c) The calculated 

thickness distribution of GO from 25 nanosheets. Each thickness ranged from 0.9 nm 

to 1.2 nm, which indicated all of the obtained GO nanosheets were purely single-layer 

products. (d) An SEM image of the fabricated GO on a Si/SiO2 wafer (the black spots 

depict GO). (e) TEM image of GO nanosheets with highly flexible structures. (f) The 
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FTIR spectrum of GO powder, ν max/cm-1: 3421.1 (-OH), 1733.6 (-COOH), 1631.4, 

1382.7, 1110.8 (C-O). (g) The high-resolution C1s spectrum of GO powder. Binding 

energies at 284.6, 286.6, and 288.2 eV were assigned to the carbon skeleton (C−C/C=C), 

hydroxyl group (C−OH), and epoxide group (−C−O−C−), and carboxyl group 

(−O−C=O), respectively. 

 

 

 

Figure S2. (a) The FTIR spectrum of GO-HPG powder, ν max/cm-1: 3359.3 (-OH), 

2873.4 (-CH-, -CH2-), 2100.1 (-N3), 1573.6, 1247.7, 1108.8 (C-O). (b) AFM image for 

pristine GO-HPG on freshly cleaved mica. (c) The average height difference between 

the two arrows was about 2.42 nm. (c) The calculated thickness distribution of GO-

HPG-N3 from 25 nanosheets. All the thicknesses ranged from 2.32 nm to 2.52 nm, 

which indicated all of the obtained GO-HPG nanosheets were purely single-layer 

products, i.e., a monolayer coating of HPG on GO nanosheets.  
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Figure S3. (a) The FTIR spectrum of GO-HPGS powder, ν max/cm-1: 3401.8 (-OH), 

3070.1, 2877.2 (-CH-, -CH2-), 2106.1 (-N3), 1716.3, 1611.2, 1194.6 (C-O), 1022.0, 

929.5 (-SO3-). 
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Figure S4. The SEM and element mapping of C, O, S, Na on the surface of PCL, PCL-

HPGS, PCL-GO, and PCL-GO-HPGS. 

 

 

 

Figure S5. Immunofluorescence staining of the YAP signal in IPS cells after 7 days of 

culture (DAPI, blue; YAP, green) on PCL and PCL-GO-HPGS membrane. 

 



89 
 

 

 

Figure S6. Immunofluorescence of earlier neuron marker protein Tuj1 (blue is DAPI, 

red is earlier neuron marker Tuj1) after 7 days of differentiation on PCL-GO-HPGS 

membrane. (1), (2), and (3) are the amplified neurites’ images. 
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Currently, mesenchymal stem cells (MSCs)-based therapies for bone regen-
eration and treatments have gained significant attention in clinical research. 
Though many chemical and physical cues which influence the osteogenic 
differentiation of MSCs have been explored, scaffolds combining the benefits 
of Zn2+ ions and unique nanostructures may become an ideal interface to 
enhance osteogenic and anti-infective capabilities simultaneously. In this work, 
motivated by the enormous advantages of Zn-based metal–organic framework-
derived nanocarbons, C-ZnO nanocarbons-modified fibrous scaffolds for stem 
cell-based osteogenic differentiation are constructed. The modified scaffolds 
show enhanced expression of alkaline phosphatase, bone sialoprotein, vin-
culin, and a larger cell spreading area. Meanwhile, the caging of ZnO nanopar-
ticles can allow the slow release of Zn2+ ions, which not only activate various 
signaling pathways to guide osteogenic differentiation but also prevent the 
potential bacterial infection of implantable scaffolds. Overall, this study may 
provide new insight for designing stem cell-based nanostructured fibrous scaf-
folds with simultaneously enhanced osteogenic and anti-infective capabilities.

1. Introduction

Because various degenerative bone dis-
eases and inflammatory joint disturb 
many people all over the world, there is 
currently an urgent need for the supply 
of osteogenic and anti-infective scaffolds 
that provide bone regenerative therapies 
in the clinic.[1–8] Mesenchymal stem cells 
(MSCs) are frequently investigated to dif-
ferentiate to different kinds of cell lineage, 
including osteoblasts, they are considered 
as a good candidate for bone therapy.[1,4,9–13] 
Meanwhile, MSCs’ differentiation can be 
driven by the chemical and physical cues at 
material/cellular interfaces, thus providing 
a controllable protocol to manipulate the 
differentiation of MSCs without using 
complex bio-factors or cellular reprogram-
ming processes.[14–17] Indeed, chemical 
cues (metal ions, small molecules, and 
synthetic extracellular matrix) and phys-

ical cues (stiffness, micro-/nanotopography, and physical adhe-
sion property) can efficiently influence MSCs’ functionalities, 
including regulation of cell adhesion, proliferation, and differen-
tiation.[18–29] For instance, forces originated from the cell–mate-
rial interface could change the cell membrane and subsequently 
affect the cell cytoskeleton, owing to the physical and mechan-
ical interactions between the cells membrane the intracellular 
mechanoresponsive elements.[20,30–33] Continuous immersion 
in Yes-associated protein (YAP) activation culture environments 
could decrease the human mesenchymal stem cells (hMSCs) 
multiple differentiation potency and promote osteogenesis.[19,23]

Due to a variety of unique properties, carbon nanomate-
rials have been widely investigated as physical cues in tissue 
scaffolds to regulate stem cell behavior.[22,34–40] For MSCs, it 
is suggested that carbon nanomaterials can provide binding 
sites with high stiffness to cell membrane receptors, and large 
adsorption and accumulation of nutrients,[37,38] which may 
promote the fast formation of focal adhesion (FA). Then it 
triggers the rearrangement of F-actin and nuclear transloca-
tion of the YAP signal, finally improving the nuclear envelope 
protein Lamin A/C expression and activating the Runt-related 
transcription factor 2 (RUNX-2) pre-osteogenic marker expres-
sion, which eventually enhances the osteogenic differentia-
tion.[23,41–46] Among diverse kinds of carbon nanomaterials, the 
Zn-based metal–organic frameworks (MOFs)-derived nanocar-
bons (C-ZnO) have attracted much interest in the biomedical 
field.[47] On the one hand, the large surface area and particular 
nanostructures of C-ZnO can facilitate the interactions between 

© 2020 The Authors. Published by Wiley-VCH GmbH. This is an open 
access article under the terms of the Creative Commons Attribution  
License, which permits use, distribution and reproduction in any  
medium, provided the original work is properly cited.
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the material and cell membrane.[48–52] On the other hand, the 
Zn2+ ions do not only show strong inhibition on the growth of 
bacteria but also stimulate mineralization and osteoblast pro-
liferation by improving anabolic influence on bone metabo-
lism, thus promoting osteogenic differentiation of MSCs.[51,53] 
Therefore, it is suggested that the C-ZnO-based nanocarbons 
that combine benefits of Zn2+ ions and unique nanostructures 
may become ideal candidates to construct favorable stem cells 
scaffolds with simultaneously enhanced osteogenic and anti-
infective capabilities.

In this work, motivated by their advantages of Zn-based 
MOF-derived nanocarbons,[47,52,54,55] we have constructed C-ZnO 
nanocarbons-modified fibrous scaffolds for stem cell-based oste-
ogenic differentiation. Although ZIF-8 is size-morphology tun-
able and could contain multiple metal ions, they are not quite 
stable, especially in the acidic environment. Thus, the ZIF-8 
nanostructure was carbonized and oxidized to obtain C-ZnO 
nanocarbons. The fibrous scaffolds were fabricated via electro-
spinning of a carrier polymer with C-ZnO nanoadditives. The 
expression of alkaline phosphatase (ALP) and bone sialoprotein 
(IBSP), and the calcium deposition test indicate that the engi-
neered scaffolds show better osteogenic properties. The results 
of enhanced cell spreading area, vinculin expression, and F-actin 
rearrangement suggest the cell membrane and cytoskeleton 
sensed the physical cues of the nanostructured scaffolds. The 
following nuclear translocation of YAP, improved expression of 
Lamin A/C and RUNX-2 signaling emphasized the role of the 
C-ZnO in the regulation of cell–matrix interactions during pro-
moting osteogenic differentiation. These detailed investigations 
confirm that the carbon nanostructures facilitate the adsorption 
and concentration of nutrients, which offer preferable environ-
ments for the growth and differentiation of MSCs. Meanwhile, 
the caging of ZnO nanoparticles can allow the slow release of 
Zn2+ ions, which not only activates various signaling pathways 
to guide osteogenic differentiation but also prevents the poten-
tial bacterial infection of implantable scaffolds. Overall, this 
study may provide new insight for designing stem cells-based 
nanostructured fibrous scaffolds with simultaneously enhanced 
osteogenic and anti-infective capabilities.

2. Results and Discussion

2.1. Preparation and Characterization of the C-ZnO 
Nanoparticles

ZIF-8 nanoparticles were prepared using 2-methylimidazole and 
Zn(NO3)2⋅6H2O. Then, the ZIF-8 nanoparticles were then carbon-
ized for 2 h at 800 °C with the protection of argon and oxidized for 
2 h at 300 °C in air to obtain the C-ZnO nanoparticles (Figure 1a). 
Scanning electron microscopy (SEM) image in Figure 1b and the 
energy-dispersive X-ray spectroscopy (EDS) in Figure  1c suggest 
that C-ZnO nanoparticles are well prepared. Meanwhile, the size 
and morphology are relatively uniform and homogenous. Trans-
mission electron microscope (TEM) image in Figure 1d exhibits 
that the sizes are around 50 nm. Moreover, the amplified high-
resolution TEM in Figure  1e suggests that abundant ultra-small 
ZnO nanoparticles (yellow circles) homogenously distribute on 
the carbon matrix. Figure  1f presents the high-angle annular 

dark-field scanning TEM (HAADF-STEM) picture of C-ZnO and 
relative elemental mapping data, which proved the homogenous 
distribution of C, N, O, and Zn elements on nanocarbon. No big 
ZnO particles can be noticed from the images.

Further characterization of nanocarbons composition and 
chemical structure was performed by X-ray photoelectron spec-
troscopy (XPS) and the X-ray diffraction (XRD). The XRD in 
Figure  1g suggests that the ZIF-8 was successfully prepared. 
After carbonization and oxidation processes, no obvious peak 
for ZnO could be noticed, thus indicating that the ZnO doping 
provides amorphous structures. Moreover, the XPS survey scan 
in Figure  1h proved the existence of C, N, O, and Zn peaks. 
The high-resolution XPS C 1s spectra were fitted to four peaks 
(Figure  1i), which were corresponding to 288.0 eV (OCN, 
OCO), 286.5 (CN, CO), 285.1 (CN, CO), and 284.0 
(CC, CC). The high-resolution XPS O 1s spectra in Figure 1j 
were fit to 532.9 (OC), 531.6 (OC), and 530.5 eV (OZn). As 
with previous report, Figure 1k shows two characteristic peaks 
at 1044.7 and 1021.7 eV in the Zn 2p spectra.[54] Figure  1l sug-
gests the measured atom ratio of C, N, O, and Zn are 62.04, 
18.35, 12.55, and 7.04 at%, respectively. According to the data 
above, it is believed that C-ZnO nanocarbons were successfully 
synthesized.

Previous literature has already proven that 
poly(ε-caprolactone) (PCL) electrospun fibers were outstanding 
matrix for osteogenic tissue engineering.[5,7,56] C-ZnO nanopar-
ticles were incorporated into the fibrous scaffolds to investigate 
their interactions with hMSCs. As shown in Figure  2a, the 
obtained PCL/C-ZnO solutions were well dispersed and sucked 
into a syringe, then the fibers were collected on an aluminum 
foil when a certain voltage applied between the needle and sub-
strate. As shown in Table S1 in the Supporting Information, the 
membrane scaffolds were prepared in hexafluoroisopropanol 
at the concentration of 10%, w/v PCL and 0%, 1%, 2%, and 
5%, w/v C-ZnO nanoparticles.

To investigate the difference between bare ZnO nanopar-
ticles and the C-ZnO, the ZnO-blended PCL (PCL-ZnO) with 
a similar amount of ZnO as that of PCL-ZnO-2 was fabri-
cated. The morphology of the fibrous membrane is shown in 
Figure  2b and Figure S4 in the Supporting Information. The 
SEM data suggest that the fibrous scaffolds were composed of 
randomly overlaid fibers. The digital pictures of the prepared 
membrane suggest that after being mixed with C-ZnO nano-
particles, the color of the scaffold turns black. Meanwhile, with 
the increased concentration of the C-ZnO, the membrane 
scaffolds grow darker. As is shown on amplified SEM images, 
obvious C-ZnO nanoparticles could be observed on the fiber, 
which suggests that the C-ZnO nanoparticles were successfully 
blended into the fibers. The morphology of the scaffolds proved  
that the C-ZnO nanoparticles were uniformly distributed 
throughout fibers, and part of nanocarbons was observable 
on the fiber surface. As shown in Figure 2c, the diameter distri-
bution of the prepared fibers suggests that after the concentration 
of nanocarbons reaches 2%, w/v, the fiber sizes decreased. The 
energy dispersive spectrometer data (EDS) and element map-
ping in Figure 2d,e suggest the abundant existence of Zn after  
the incorporation of C-ZnO nanoparticles. The water contact 
angle (WCA) in Figure S6 in the Supporting Information sug-
gests that the pristine PCL fiber membrane is around 131.2°. 
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Figure 1.  a) The ZIF-8 and C-ZnO preparation process scheme. b) Typical SEM image of the prepared C-ZnO nanoparticles. c) EDS curves of the C-ZnO 
particle. d) TEM image of the C-ZnO. e) High-resolution TEM image of the C-ZnO. f) HAADF-STEM image and elemental mapping of the C-ZnO. 
g) XRD spectra of ZIF-8, C-Zn, and C-ZnO nanoparticles. h) XPS survey scanning spectra for C-ZnO. The high-resolution XPS i) C 1s spectra, j) O 1s 
spectra, and k) Zn 2p spectra for C-ZnO. l) The atom percentages of C, N, O, and Zn in C-ZnO nanoparticles.
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After the incorporation of C-ZnO nanoparticles, the WCA did 
not show any significant change between different samples.

To further prove the successful incorporation of C-ZnO and 
ZnO nanoparticles into PCL fibers, XPS was performed and 
exhibited in Figure 2f,h. According to the XPS survey scanning 
spectra, the nitrogen and zinc elements peaks indicate that 
the nanocarbons are successfully blended into the PCL-C-ZnO 

fibers. Meanwhile, the zinc element on PCL-ZnO indicates 
that ZnO nanoparticles have been successfully coated into 
PCL fiber. After immersion in the cell culture medium, those 
contents of N 1s (Figure 2g,i) increased significantly compared 
to the original membrane nitrogen contents (Figure  2f,h). It 
is proposed that membranes could absorb diverse nitrogen-
containing nutrients such as proteins, peptides, or amino acids 

Figure 2.  a) Schematic image for the preparation of PCL-C-ZnO nanofibrous scaffolds. b) SEM images for the electrospun bare PCL and PCL-C-ZnO 
scaffolds. c) The diameter distribution of the electrospun fibers (n = 100 fibers were quantified). d,e) The SEM element mapping and EDS curves of 
the PCL-C-ZnO and PCL-ZnO, respectively. XPS survey scanning spectra for f) fibrous scaffolds and g) cell culture medium immersed scaffolds. h) The 
atom percentages of C, N, O, and Zn on scaffolds and i) cell culture medium immersed scaffolds.
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from the media. As shown in Table 1, Compared to the pure 
PCL membrane, there is no apparent change in the content 
of N 1s on PCL-ZnO, which means the incorporation of ZnO 
nanoparticles could not improve the adhesion property. How-
ever, the higher content of N 1s on PCL-C-ZnO suggests that 
nanocarbons could contribute to a higher absorption amount 
of these nutrient molecules, which could exert beneficial effects 
on the MSCs growth and differentiation.

The MSCs proliferation activity and viability on the scaf-
folds were evaluated by cell counting kit-8 (CCK-8) analysis 
and lived/dead assay kit. The lived/dead cell in Figure  3a 
exhibits that the hMSCs are viable on all samples from the 
vertical pictures under the confocal microscopy after 3 days 
of culture. The statistical analysis of the cell numbers on 
the membrane in Figure  3b indicates that the live cell num-
bers on scaffolds did not change much after incorporation 
of C-ZnO nanoparticles until the concentration of 2%, w/v. 
However, the cell number on sample PCL-C-ZnO-5 decreased 
around 40% compared with pure PCL, which suggests that 
the increase of Zn2+ concentration exerted a negative effect on 
cell proliferation due to the potential oxidative stress caused 
by the ZnO.[5] Meanwhile, all samples exhibited similar cell 
viability except PCL-C-ZnO-5 (Figure  3c). Additionally, the 
proliferation of hMSCs on scaffolds evaluated by a CCK-8 
assay kit (Figure 3d) was similar to the results of the live/dead 
assay. On the first day, cells adhere well on all scaffolds; after  
5 days of culture, the proliferation of cells on the PCL-C-ZnO-5 
is less than PCL. Meanwhile, PCL-ZnO cell proliferation rate 
was less than PCL-C-ZnO-2 although the total amount of ZnO 
was the same, which indicated that the C-ZnO nanoparticles 
could reduce the release rate of Zn2+ ions, which may benefit 
the cell growth process. In summary, after incorporation of 
C-ZnO nanocarbons at the concentration of 2%, the hMSCs 
seeded on scaffolds could survive and proliferate much better 
than the other samples.

The osteogenic induction function of the scaffolds was fur-
ther investigated in osteogenic induction media. The ALP 
expression at previous status was related to bone type matrix 
deposition, and the subsequent upregulation of other advanced 
osteoblastic markers was related to bone mineralization. Since 
the ALP activity is the strongest after 2 weeks of culture, 
ALP live staining after 14 days of culture was performed and 
observed with confocal microscopy, whereby the green fluores-
cence signal indicated the ALP activity. As shown in Figure 3e, 
ALP activity is the strongest on the surface of PCL-C-ZnO-2 

compared with other samples. From the relative fluorescence 
intensity data in Figure 3g, it is evident that the incorporation 
of C-ZnO could improve the ALP expression in cells. Mean-
while, the lower ALP activity on PCL-C-ZnO-5 may mainly due 
to the fewer cellular metabolism activity compared with sample 
PCL-C-ZnO-2, which is following the results of cell prolifera-
tion. As the ALP activity on PCL-ZnO is less intense compared 
to PCL-C-ZnO-2, it indicates that the nanocarbon can promote 
the osteogenic induction as well.

We further used the ALP activity assay kit to quantify the 
osteogenic marker ALP expression on 7 and 14 days. As is 
shown in Figure  3h, the ALP activity increased after 2 weeks 
of culture compared to 1 week, which is in accordance with 
the literature.[12,19] Meanwhile, the ALP activity on the sample 
PCL-C-ZnO-2 is also the strongest both at 7 days and 14 days. 
IBSP is an essential constituent in the bone since it is found to 
take part in around 8% of noncollagenous proteins in the bone 
extracellular matrix. The IBSP staining after 21 days is shown 
in Figure 3f; blue is DAPI (4′,6-diamidino-2-phenylindole) and 
the green is the IBSP marker. The relative fluorescence inten-
sity in Figure  3g suggests that the PCL-C-ZnO-2 exhibits the 
best performance compared with other samples. Calcium depo-
sition amount of the MSCs is a significant landmark for the  
osteogenesis mineralization process, and we tested the cal-
cium deposition on different samples after culturing for 14 and  
21 days. Figure 3i suggests that the calcium deposition amount 
results are similar to the ALP and IBSP results. After incorpora-
tion of 2% C-ZnO nanocarbons into the fibrous structure, the 
ALP activity, IBSP expression, and calcium deposition were 
increased significantly compared with PCL and PCL-C-ZnO-5.

According to the biocompatibility test and osteogenic dif-
ferentiation results, we found that the scaffolds with 2%, w/v 
C-ZnO nanocarbons presented the best performance compared 
with other samples. Therefore, PCL-C-ZnO-2 was chosen to 
perform the following osteogenic differentiation analysis. As 
is known that an extracellular matrix environment stimulates 
a series of cell signals reactions, which could modulate FA for-
mation and cytoskeleton rearrangements. FAs and cytoskeleton 
protein on the cell–scaffolds interface play a pivotal role in cell 
motility, spreading, and differentiation via the FA kinase-sign-
aling pathway. Confocal image of immunofluorescence staining 
with FAs protein (vinculin) and cytoskeleton protein (F-actin) 
is shown in Figure 4a. Blue is nuclear, red is F-actin, and the 
green represents the vinculin. It is shown that the cell spheroids 
exhibited highly spread morphologies on PCL-C-ZnO com-
pared with pure PCL and PCL-ZnO. The cytoskeleton protein 
(F-actin) presents a linear microfilament structure, which sup-
ports the whole cell structure. The amplified F-actin (red) and 
vinculin (green) confocal images in Figure 4b suggest that the 
vinculin protein grows along the cytoskeleton microfilament, 
which is crucial during the cell spreading. As shown in the 
schematic illustration in Figure  4c, due to larger surface area 
and the corresponding more binding sites, the carbon nanoma-
terial structure on fibrous surfaces could improve cell adhesion. 
The vinculin intensity value along the white line is shown in 
Figure 4d, and the high-value peaks suggest the expression of 
vinculin protein, the cell vinculin expression signal on PCL-C-
ZnO-2 is much more frequent and stronger than that on PCL 
and PCL-ZnO, which indicates that the incorporation of carbon 

Table 1.  Atomic compositions of the nanocarbon-incorporated PCL scaf-
folds before and after immersed in the cell culture medium, and the data 
are obtained from the XPS.

Sample C 1s  
[%]

O 1s  
[%]

N 1s  
[%]

S 2p  
[%]

Zn 2p  
[%]

N/C ratio  
[%]

PCL 76.42 23.58 0 0 0 0

PCL-C-ZnO-2 72.92 23.91 2.56 0 0.6 3.51

PCL-ZnO 75.25 24.39 0 0 0.37 0

PCL-medium 68.37 25.17 6.46 0 0 9.45

PCL-C-ZnO-2-medium 65.68 23.43 10.14 0.31 1.34 15.44

PCL-ZnO-medium 68.19 24.69 6.35 0.28 0.48 9.32
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Figure 3.  a) Confocal image of live/dead cells (green: live, red: dead) of hMSCs after seeding on different samples for 3 days. b) Quantitative analysis 
of cell numbers on the scaffolds from the confocal image after 3 days. Statistical quantification of the cell numbers on the surface, n is the number of 
confocal pictures analyzed (mean ± SD, n = 10). c) Cell viability quantitative analysis according to the live/dead cell numbers (mean ± SD, n = 10). d) The 
absorbance of live cells after 1, 3, and 5 days culture using the CCK-8 assay kit (mean ± SD, n = 6). e) ALP live-staining of hMSCs after being incubated 
on the scaffolds for 14 days. f) Fluorescence staining image of mature osteogenic marker IBSP after 21 days of culture on scaffolds (blue is DAPI and 
green is IBSP). g) The average expressions of ALP and IBSP were quantified according to the fluorescence-stained image intensity (mean ± SD, n = 10). 
h) Quantitative analysis of ALP activity of hMSCs with osteogenic induction medium for 7 days and 14 days, respectively; the ALP activity was normalized 
against the µmol/assay time/mg protein (mean ± SD, n = 6); i) quantitative analysis of calcium deposition assay with osteogenic induction medium 
after 14 days and 21 days of culture, respectively (mean ± SD, n = 6), **p < 0.01. NS, not significant.
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nanomaterials can offer more binding sites for FAs to pro-
mote cell adhesion and motility. According to the SEM images 
of MSCs on scaffolds (Figure S8, Supporting Information), 
there is more pseudopodium on the surface of PCL-C-ZnO-2 
compared with bare PCL scaffold, which proves that C-ZnO 
nanocarbons-modified fibrous scaffolds could improve the cells 
adhesion.

Moreover, correlative cell area analysis (Figure  4e) showed 
that the hMSCs grown on a carbon nanomaterials-incorporated 
surface were more significant than those on pure PCL. FAs’ 
size markedly increased on PCL-C-ZnO-2 suggesting that the 
cell size and shape are related to cell–scaffolds interaction and 
cell–cell interaction. So fractal dimension analysis was utilized  

to quantify cytoskeletal spatial arrangement and density 
changes on different surfaces.[12,57,58] Figure 4f suggests that the 
cytoskeleton arrangement was described by a fractal dimension 
(Df). Through investigation and quantification analysis of the 
cytoskeleton distribution, the Df values on PCL-C-ZnO-2 were 
significantly higher than those on PCL (Figure  4g). Moreover, 
no obvious differences were observed between PCL and PCL-
ZnO. Results suggested that the cell spheroids on carbon 
nanomaterials-modified PCL fibers could quickly facilitate the 
mature FA formation and promote the cytoskeleton rearrange-
ment, which improves the cell adhesion to the scaffolds and 
cell motility, thus could further lead to increase of the osteo-
genic differentiation.[43]

Figure 4.  a) Confocal image of hMSCs growth on samples in growth medium; cells were stained with nuclei (blue), vinculin (green), and F-actin (red). 
b) Amplified confocal cell images in (a). c) Schematic illustration of scaffolds with nanoscale architectures on the fiber surface have larger surface area 
and thus providing more binding sites for protein to adsorb. d) The vinculin intensity distribution profiles along the white line based on the immuno-
staining image in (a) on sample PCL, PCL-C-ZnO-2, and PCL-ZnO, respectively. e) Quantitative analysis of the cell spreading area on different samples 
(n =  50). f) Matlab analysis of the 2D fractal dimension (Df) based on F-actin staining. g) Statistic quantification of the cell area according to the F-actin 
staining and cumulative Df value of a cell (n =  10). **p < 0.01.
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Many studies have shown that the cytoskeletal tension could 
trigger the translocation of subcellular transcriptional coacti-
vator YAP, the successive activation of genetic signaling pathway 
could lead to the osteogenic specification. In this article, the role 
of YAP location was investigated using immunofluorescence 
staining of YAP in hMSC spheroids; Figure  5a suggests that 
the YAP signal on the PCL-C-ZnO-2 was more concentrated in 
nuclear. The statistical analysis of the nuclear/cytoplasmic ratio 
in Figure  5d suggests that the YAP protein on PCL-C-ZnO-2 
was twofold more concentrated than that on PCL and PCL-
ZnO, which suggested that carbon nanomaterials played an 
important role in the translocation of nuclear YAP. However, no 
obvious differences were observed between PCL and PCL-ZnO. 
Moreover, Lamin A/C, a protein found in the inner nuclear 
envelope, played a pivotal role in the interaction between 
nuclear events and cytoplasmic signaling. Previous results 
suggest that the cytoskeleton rearrangement and FA changes 
could alter the signal of nuclear envelope protein Lamin A/C. 

This protein was stained and observed in Figure 5b, whereby it 
is found that the nuclear of the cells grown on different sam-
ples was mostly round and no obvious nuclear morphology 
changes could be observed. However, the relative fluorescence 
intensity in Figure  5e suggests that the increased expression 
of Lamin A/C on PCL-C-ZnO-2, which proves the incorpora-
tion of nanocarbons could trigger the nuclear envelope protein 
change. In addition, the pre-osteogenic biomarker RUNX2 was 
stained and observed with confocal microscopy. The fluorescent 
images in Figure  5c exhibited that the pre-osteogenic marker 
RUNX2 can be co-activated with YAP and Lamin A/C on PCL-
C-ZnO-2. Meanwhile, the quantitative immunostaining analysis 
in Figure 5f suggests that the relative fluorescence intensity for 
RUNX2 on PCL-C-ZnO-2 was much stronger than that on PCL. 
Moreover, Figure  5g indicates that almost 100% of hMSCs are 
RUNX2 signal positive after 7 days of culture on PCL-C-ZnO; 
however, the RUNX2 positive cells on PCL are only around 
60%. In the collection, results suggest that YAP subcellular 

Figure 5.  a) Immunofluorescence staining of the YAP signal in hMSCs for 7 days (DAPI, blue; YAP, green). b) Immunofluorescence staining of the 
Lamin A/C in hMSCs for 7 days (DAPI, blue; RUNX2, green). c) Immunofluorescence staining of the RUNX2 in hMSCs for 7 days in osteogenic culture 
medium (DAPI, blue; RUNX2, green). d) Quantitative analysis of the YAP nuclear/cytoplasmic fluorescence intensity ratio (n = 20). e) Relative fluores-
cence intensity analysis of Lamin A/C (mean ± SD, n = 50); f) relative fluorescence intensity analysis of RUNX2 (mean ± SD, n = 50); g) quantitative 
analysis of the RUNX2-positive cells percentage on different scaffolds (mean ± SD, n = 50); **p < 0.01, significant difference.
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localization and activity and nuclear envelope protein Lamin 
A/C could be influenced by carbon nanomaterials and used 
further to promote the expression of intranuclear RUNX2 tran-
scription, which leads to the pre-osteogenic differentiation.

Bacterial infections accompany with scaffolds contamination 
are a crucial complexity primarily due to the improper delivery 
methods of biofactor and bacterial infections related to surgery. 
Supplementary implant scaffolds that could combine bacterial 
inhibition and osteogenic induction are of both clinical and sci-
entific importance. In order to further investigate the antibac-
terial property of the C-ZnO nanocarbons modified with PCL 
scaffolds, gram-negative E. coli (ATCC 6538) and Gram-positive 
S. aureus (ATCC 25922) were chosen to perform the bacterial 
inhibition tests of the engineered membrane. The live/dead 
staining results of S. aureus after 12 h of incubation in Figure 6a 
suggest that many live bacteria grow on PCL. However, few bac-
teria were found on PCL-C-ZnO-2. Figure  6b shows the live/
dead staining image of E. coli cultured on PCL-C-ZnO-2 after 
6 h of incubation, it is obvious that the incorporation of C-ZnO 
nanoparticles endows the membrane with bacterial inhibition 
properties. However, bare PCL failed to show any antibacterial 
property, as the live bacteria grow quickly on the surface. Mean-
while, the statistical analysis of live dead cell numbers on the 
scaffolds in Figure  6g suggests that live S. aureus and E. coli 
numbers on PCL are around fourfolds and fivefolds larger than 
that on PCL-C-ZnO-2, respectively.

To further investigate the antibacterial property in medium, 
we tested the bacterial growth concentration along with time. 
As is shown in Figure  6c,d, when co-cultured with PCL-C-
ZnO-2, the concentration increased along with bacterial growth 
in the medium, which was much slower than that with PCL 
and pure medium. After co-culture for 24 h, the amount of S. 
aureus and E. coli in PCL co-cultured medium was around two-
folds and 1.5-folds more significant than that in PCL-C-ZnO-2 
co-cultured medium, respectively. The bacterial concentration 
in the sample co-cultured medium suggests that PCL-C-ZnO-2 
has not only bacterial inhibition properties on its surface but 
also exhibits antibacterial property in the surrounding envi-
ronment. To verify the release capabilities of Zn2+ ions, the 
long-term and short-term release of Zn2+ ions of PCL-C-ZnO-2 
were characterized (Figure 6e,f). During the first 6 h, Zn2+ ions 
release was very fast and the subsequent release rates were 
slowing down moderately. The release of Zn2+ ions plays a piv-
otal role in both bacterial killing and osteogenic differentiation.

3. Conclusion

In summary, we have constructed a novel nanocarbon-
structured fibrous scaffold for stem cell-based osteogenic 
differentiation, which combines both physical characteris-
tics (nanotopography) and chemical characteristics (gradual 

Figure 6.  Live/dead staining images (red: dead, green: live) for a) S. aureus and b) E. coli after incubated with PCL and PCL-C-ZnO-2, respectively.  
c,d) Real-time OD600 values with S. aureus and E. coli, respectively (mean ± SD, n = 5). e,f) Zn2+ ions short-term and long-term release of the PCL-C-ZnO-2. 
g) Quantitative analysis of live/dead bacteria numbers on the membrane. The numbers were estimated from fluorescent photographs (mean ± SD, 
n = 5). ∗p < 0.05, ∗∗p < 0.01.
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release of the Zn2+ ions) in promoting osteogenic differentia-
tion. The C-ZnO-modified scaffolds show enhanced expres-
sion of ALP, IBSP, vinculin, and a larger cell spreading area. 
The following nuclear translocation of YAP, improved expres-
sion of Lamin A/C and RUNX-2 signaling indicate the impor-
tant role of the C-ZnO nanocarbons in promoting osteogenic 
differentiation. Meanwhile, the caging of ZnO nanoparticles 
can allow the slow release of Zn2+ ions, which not only acti-
vate various signaling pathways to guide osteogenic differen-
tiation but also prevent the potential bacterial infection during 
implantable applications. Overall, this study may provide new 
insight for designing stem cells-based nanostructured fibrous 
scaffolds with simultaneously enhanced osteogenic and anti-
infective capabilities.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.

Acknowledgements
This work was financially sponsored by the National Key R&D 
Program of China (2019YFA0110600, 2019YFA0110601) and Deutsche 
Forschungsgemeinschaft (DFG) through grants from the Collaborative 
Research Center (SFB) 765. Y.X. and X.F acknowledge the support from 
China Scholarship Council (CSC). C.C. acknowledges the support of the 
State Key Laboratory of Polymer Materials Engineering (No. sklpme2019-
2-03), the Science and Technology Project of Sichuan Province (nos. 
2020YFH0087 and 2020YJ0055), Fundamental Research Funds for 
the Central Universities, Thousand Youth Talents Plan, Alexander von 
Humboldt Fellowship, Special Funds for Prevention and Control of 
COVID-19 of SKLFPM, Donghua University (YJ202005) and Sichuan 
University (2020scunCoV-YJ-20005), and DRS POINT Fellowship. 
L.L. thanks the support of Key Laboratory of Emergency and Trauma, 
Ministry of Education (No. KLET-201907). Dr. Pamela Winchester is 
sincerely acknowledged for language polishing the manuscript. The 
authors acknowledge the assistance of the Core Facility BioSupraMol in 
Freie Universität Berlin and the bacterial lab at Sichuan University. The 
authors also acknowledge their laboratory members for their generous 
help. Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
anti-infective surfaces, carbon nanomaterials, metal–organic frameworks, 
nanostructured fibrous scaffolds, osteogenic surfaces, stem cells

Received: May 13, 2020
Revised: July 4, 2020

Published online: August 19, 2020

[1]	 C. M. Madl, S. C. Heilshorn, H. M. Blau, Nature 2018, 557, 335.
[2]	 A. Trounson, C. McDonald, Cell Stem Cell 2015, 17, 11.

[3]	 S. Pina, J. M. Oliveira, R. L. Reis, Adv. Mater. 2015, 27, 1143.
[4]	 C. M. Curtin, G. M. Cunniffe, F. G. Lyons, K. Bessho, G. R. Dickson, 

G. P. Duffy, F. J. O’Brien, Adv. Mater. 2012, 24, 749.
[5]	 A.  Nasajpour, S.  Ansari, C.  Rinoldi, A. S.  Rad, T.  Aghaloo, 

S. R. Shin, Y. K. Mishra, R. Adelung, W. Swieszkowski, N. Annabi, 
A. Khademhosseini, A. Moshaverinia, A. Tamayol, Adv. Funct. Mater. 
2018, 28, 1703437.

[6]	 K. Huo, X. Zhang, H. Wang, L. Zhao, X. Liu, P. K. Chu, Biomaterials 
2013, 34, 3467.

[7]	 H. Yoshimoto, Y. M. Shin, H. Terai, J. P. Vacanti, Biomaterials 2003, 
24, 2077.

[8]	 N. S. Yadavalli, D. Asheghali, A. Tokarev, W. Zhang, J. Xie, S. Minko, 
Small 2020, 16, 1907422.

[9]	 X. Wang, B. Ding, B. Li, Mater. Today 2013, 16, 229.
[10]	 T. C.  von  Erlach, S.  Bertazzo, M. A.  Wozniak, C.-M.  Horejs, 

S. A.  Maynard, S.  Attwood, B. K.  Robinson, H.  Autefage, 
C.  Kallepitis, A.  del  Río Hernández, C. S.  Chen, S.  Goldoni, 
M. M. Stevens, Nat. Mater. 2018, 17, 237.

[11]	 M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, 
J. D.  Mosca, M. A.  Moorman, D. W.  Simonetti, S.  Craig, 
D. R. Marshak, Science 1999, 284, 143.

[12]	 J. Zhang, H. Yang, B. E. Abali, M. Li, Y. Xia, R. Haag, Small 2019, 15, 
1901920.

[13]	 Y. Hou, W. Xie, L. Yu, L. C. Camacho, C. Nie, M. Zhang, R. Haag, 
Q. Wei, Small 2020, 16, 1905422.

[14]	 L. Li, J. Eyckmans, C. S. Chen, Nat. Mater. 2017, 16, 1164.
[15]	 J. E. Frith, G. D. Kusuma, J. Carthew, F. Li, N. Cloonan, G. A. Gomez, 

J. J. Cooper-White, Nat. Commun. 2018, 9, 257.
[16]	 X.  Zhang, J.  Nie, X.  Yang, Z.  Liu, W.  Guo, J.  Qiu, S.  Wang, X.  Yu, 

Y. Guan, H. Liu, L. Li, Appl. Mater. Today 2018, 10, 164.
[17]	 E. S. Place, J. H. George, C. K. Williams, M. M. Stevens, Chem. Soc. 

Rev. 2009, 38, 1139.
[18]	 A.  Higuchi, Q.-D.  Ling, Y.  Chang, S.-T.  Hsu, A.  Umezawa, Chem. 

Rev. 2013, 113, 3297.
[19]	 J.  Zhang, C.  Cheng, J. L.  Cuellar-Camacho, M.  Li, Y.  Xia, W.  Li, 

R. Haag, Adv. Funct. Mater. 2018, 28, 1804773.
[20]	 C. Yang, M. W. Tibbitt, L. Basta, K. S. Anseth, Nat. Mater. 2014, 13, 

645.
[21]	 J. Lee, A. A. Abdeen, D. Zhang, K. A. Kilian, Biomaterials 2013, 34, 

8140.
[22]	 K. Alberti, R. E. Davey, K. Onishi, S. George, K. Salchert, F. P. Seib, 

M. Bornhäuser, T. Pompe, A. Nagy, C. Werner, P. W. Zandstra, Nat. 
Methods 2008, 5, 645.

[23]	 S. W.  Crowder, V.  Leonardo, T.  Whittaker, P.  Papathanasiou, 
M. M. Stevens, Cell Stem Cell 2016, 18, 39.

[24]	 M. J.  Dalby, M. J. P.  Biggs, N.  Gadegaard, G.  Kalna, 
C. D. W.  Wilkinson, A. S. G.  Curtis, J. Cell. Biochem. 2007, 100, 
326.

[25]	 Y.  Hou, L.  Yu, W.  Xie, L. C.  Camacho, M.  Zhang, Z.  Chu, Q.  Wei, 
R. Haag, Nano Lett. 2020, 20, 748.

[26]	 R.  Kumar, A.  Bonicelli, S.  Sekula-Neuner, A. C. B.  Cato, M.  Hirtz, 
H. Fuchs, Small 2016, 12, 5330.

[27]	 M. J. Landry, F.-G. Rollet, T. E. Kennedy, C. J. Barrett, Langmuir 2018, 
34, 8709.

[28]	 M. J.  Landry, K.  Gu, S. N.  Harris, L.  Al-Alwan, L.  Gutsin,  
D. De Biasio, B. Jiang, D. S. Nakamura, T. C. Corkery, T. E. Kennedy, 
C. J. Barrett, Macromol. Biosci. 2019, 19, 1900036.

[29]	 J. Xue, T. Wu, J. Li, C. Zhu, Y. Xia, Angew. Chem., Int. Ed. 2019, 58, 
3948.

[30]	 R. J. Wade, E. J. Bassin, W. M. Gramlich, J. A. Burdick, Adv. Mater. 
2015, 27, 1356.

[31]	 C. S. Hansel, S. W. Crowder, S. Cooper, S. Gopal, M. João Pardelha 
da Cruz, L.  de  Oliveira Martins, D.  Keller, S.  Rothery, M.  Becce, 
A. E. G.  Cass, C.  Bakal, C.  Chiappini, M. M.  Stevens, ACS Nano 
2019, 13, 2913.

Small 2020, 16, 2003010



www.advancedsciencenews.com www.small-journal.com

2003010  (11 of 11) © 2020 The Authors. Published by Wiley-VCH GmbH

[32]	 Y.  Hou, W.  Xie, K.  Achazi, J. L.  Cuellar-Camacho, M. F.  Melzig, 
W. Chen, R. Haag, Acta Biomater. 2018, 77, 28.

[33]	 J. Deng, C. Zhao, J. P. Spatz, Q. Wei, ACS Nano 2017, 11, 8282.
[34]	 A. J. Andersen, J. T. Robinson, H. Dai, A. C. Hunter, T. L. Andresen, 

S. M. Moghimi, ACS Nano 2013, 7, 1108.
[35]	 T. Zhang, N. Li, K. Li, R. Gao, W. Gu, C. Wu, R. Su, L. Liu, Q. Zhang, 

J. Liu, Carbon 2016, 105, 233.
[36]	 X.  Zhou, M.  Nowicki, H.  Cui, W.  Zhu, X.  Fang, S.  Miao, S.-J.  Lee, 

M. Keidar, L. G. Zhang, Carbon 2017, 116, 615.
[37]	 Y.  Xia, S.  Li, C.  Nie, J.  Zhang, S.  Zhou, H.  Yang, M.  Li, W.  Li, 

C. Cheng, R. Haag, Appl. Mater. Today 2019, 16, 518.
[38]	 S.  Marchesan, K.  Kostarelos, A.  Bianco, M.  Prato, Mater. Today 

2015, 18, 12.
[39]	 C.  Cheng, J.  Zhang, S.  Li, Y.  Xia, C.  Nie, Z.  Shi,  

J. L.  Cuellar-Camacho, N.  Ma, R.  Haag, Adv. Mater. 2018, 30,  
1705452.

[40]	 C. Cheng, S. Li, A. Thomas, N. A. Kotov, R. Haag, Chem. Rev. 2017, 
117, 1826.

[41]	 M. M. Stevens, J. H. George, Science 2005, 310, 1135.
[42]	 J. Swift, I. L.  Ivanovska, A. Buxboim, T. Harada, P. C. D. P. Dingal, 

J.  Pinter, J. D.  Pajerowski, K. R.  Spinler, J.-W.  Shin, M.  Tewari, 
F. Rehfeldt, D. W. Speicher, D. E. Discher, Science 2013, 341, 1240104.

[43]	 R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, C. S. Chen, 
Dev. Cell 2004, 6, 483.

[44]	 L.  Hanson, W.  Zhao, H.-Y.  Lou, Z. C.  Lin, S. W.  Lee, P.  Chowdary, 
Y. Cui, B. Cui, Nat. Nanotechnol. 2015, 10, 554.

[45]	 T. O. Ihalainen, L. Aires, F. A. Herzog, R. Schwartlander, J. Moeller, 
V. Vogel, Nat. Mater. 2015, 14, 1252.

[46]	 D.-H. Kim, D. Wirtz, Biomaterials 2015, 48, 161.
[47]	 J. Yang, Y. W. Yang, Small 2020, 16, 1906846.
[48]	 S. Keskin, S. Kızılel, Ind. Eng. Chem. Res. 2011, 50, 1799.
[49]	 C. He, D. Liu, W. Lin, Chem. Rev. 2015, 115, 11079.
[50]	 J.  Zhuang, C.-H.  Kuo, L.-Y.  Chou, D.-Y.  Liu, E.  Weerapana, 

C.-K. Tsung, ACS Nano 2014, 8, 2812.
[51]	 M.  Yu, D.  You, J.  Zhuang, S.  Lin, L.  Dong, S.  Weng, B.  Zhang, 

K.  Cheng, W.  Weng, H.  Wang, ACS Appl. Mater. Interfaces 2017, 9, 
19698.

[52]	 P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, 
G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232.

[53]	 B. H.  Neufeld, M. J.  Neufeld, A.  Lutzke, S. M.  Schweickart, 
M. M. Reynolds, Adv. Funct. Mater. 2017, 27, 1702255.

[54]	 X. Fan, F. Yang, J. Huang, Y. Yang, C. Nie, W. Zhao, L. Ma, C. Cheng, 
C. Zhao, R. Haag, Nano Lett. 2019, 19, 5885.

[55]	 Y.  Yang, Y.  Deng, J.  Huang, X.  Fan, C.  Cheng, C.  Nie, L.  Ma, 
W. Zhao, C. Zhao, Adv. Funct. Mater. 2019, 29, 1900143.

[56]	 J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 2019, 119, 5298.
[57]	 W.  Qian, L.  Gong, X.  Cui, Z.  Zhang, A.  Bajpai, C.  Liu, 

A. B. Castillo, J. C. M. Teo, W. Chen, ACS Appl. Mater. Interfaces 
2017, 9, 41794.

[58]	 G.  Alhussein, A.  Shanti, I. A. H.  Farhat, S. B. H.  Timraz, 
N. S. A.  Alwahab, Y. E.  Pearson, M. N.  Martin, N.  Christoforou, 
J. C. M. Teo, Cytoskeleton 2016, 73, 221.

Small 2020, 16, 2003010



102 
 

Supporting Information 

 

ZnO/Nanocarbons-Modified Fibrous Scaffolds for Stem Cell-

based Osteogenic Differentiation 

Yi Xia, Xin Fan, Hua Yang, Ling Li, Chao He, Chong Cheng,* and Rainer Haag*  

 1.1 Materials 

All chemicals were purchased from Sigma (Steinheim, Germany) unless stated, 

including dimethylformamide (DMF, CAS: 68-12-2), Zn(NO3)2·6H2O (CAS: 10196-18-

6), and 2-methylimidazole (CAS: 693-98-1). The deionized water used was purified 

using a Millipore water purification system with minimum resistivity of 18.0 MΩ∙cm. 

Dialysis was performed in benzoylated cellulose tubes from Sigma-Aldrich (D7884, 

width: 32 mm, molecular weight cut-off (MWCO) 2000 g∙mol-1). Dulbecco's 

phosphate-buffered saline (DPBS, no calcium, no magnesium) and all other chemicals 

for stem cell culture and viability tests were purchased from Thermofisher. 

 

1.2 Characterization methods 

Scanning electron microscope (SEM): The morphology of the C-ZnO nano-compounds 

and embedded substrates was observed by ultrahigh-resolution FE-SEM (Hitachi 

SU8200). The samples were dried in an oven and then attached to the sample supports 

using carbon tape. C-ZnO nano compounds were observed directly without gold 

coating due to the excellent conductivity. For the non-conductive substrates, the gold 

coating was deposited with about 1-2 nm. 

Transmission electron microscopy (TEM): Droplets (~5 μL, ~ 0.02 mg/mL) of the 

sample solution were placed on ultrathin carbon film on copper grids (Ted Pella, Inc. 
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USA) and the supernatant liquid was removed by blotting with a piece of filter paper. 

The grids were allowed to air dry at least 40 min and were subsequently transferred into 

a TEM machine, Tecnai G2 F20 S-TWIN transmission electron microscope (FEI Ltd., 

USA), and operated at 200 kV. The high-angle annular dark-field scanning 

transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray 

spectroscopy (EDS), the amplified high resolution TEM has been performed by the 

same machine. 

X-ray photoelectron spectroscopy (XPS): XPS was measured on K-Alpha™ + X-

ray photoelectron spectrometer system (Thermo Scientific) with hemispheric 180° 

dual-focus analyzer with 128-channel detector. X-ray monochromator is micro-focused 

Al-Kα radiation. For the measurement, the powder samples were pressed and loaded 

on carbon taps, then pasted onto the sample holder for measurement. The data was 

collected with X-ray spot size of 400 μm, 20 scans for the survey, and 50 scans for 

regions. Survey spectra were run in the binding energy range of 0-1000 eV, and high-

resolution spectra of C1s, N1s, O1s, and Zn2p were collected. The XPS spectra of C-

ZnO nano compounds and embedded substrates were conducted by a similar method. 

Water contact angle (WCA): Static contact angle measurements were performed 

by using a contact angle goniometer (Data Physics Instruments, Germany) with the 

sessile drop method. A liquid drop of 2 μL Milli-Q water was placed on the substrate 

and allowed to equilibrate for 15 s at room temperature. At least eight measurements 

were averaged on every five parallel samples to get a reliable value. 

 

1.3 Preparation of zeolitic imidazolate framework (ZIF-8) and C-ZnO 

First, Zn(NO3)2·6H2O (3.39 g) and 2-methylimidazole (3.152 g) were dissolved in 300 

mL methanol, respectively. Then two solutions were mixed and maintained at room 

temperature for 24 h. The final products were washed with methanol and ethanol for 3 

times and then dried in vacuum to obtain Zeolitic imidazolate framework (ZIF-8). The 

ZIF-8 nanoparticles were subjected to a thermal activation at a temperature of 800 oC 
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under Ar flow for 2 h with a heating speed of 5 oC per min in a tube furnace to obtain 

the C-Zn nanocarbons. Finally, the C-Zn nanocarbons were oxidized to C-ZnO 

nanocarbons at a temperature of 300 oC under airflow for 2 h with a heating speed of 1 

oC per min in a tube furnace. 

 

1.4 Fabrication of C-ZnO nanocarbons embedded polycaprolactone (PCL) fibers 

PCL (80 kDa, Sigma) was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to 

prepare a 10% (1 g in 10 mL, w/v) polymer solution. C-ZnO nanocarbons were added 

to the PCL polymer solution at the different concentrations shown in Table 1. The 

polymer solution was placed into a syringe with a metal needle and then electrospun 

onto an aluminum foil-wrapped drum collector, which was positioned horizontally, at 

a flow rate of 2 mL/h. 18 kV voltage was applied with a high voltage power supply and 

a 12 cm working distance was utilized. The PCL-C-ZnO fibers were dried under 

vacuum overnight and then peeled off from the aluminum foil for further usage. The 

embedded substrates were then vacuum dried overnight. The obtained fibers were then 

characterized by SEM, EDS Mapping, XPS, and WCA. 

 

1.5 Stem cell culture and bioactivity characterizations 

Cell culture. Human mesenchymal stem cells (hMSC) were purchased from Lonza, 

USA. The necessary approval before carrying out MSC-related experiments was 

obtained from the Department of Biology, Chemistry, and Pharmacy, Freie Universität 

Berlin. The cell thawing and proliferation were carried out in DMEM medium with 10% 

FBS, then cells were maintained at 37 °C in a saturated humidity atmosphere containing 

95% air and 5% CO2. The cells were passaged and collected with Accutase (Thermo 

Fisher) after reaching 70-80% confluency.  

 

Cytocompatibility. The harvested cells were seeded on 48-well plates on fiber surface 
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at the density of 5×103 cells/cm2. The viability of cells was assessed after 3 days of 

culture using a Calcein AM/ethidium homodimer-1 dye (LIVE/DEAD Cell Viability 

Assay, Life Technologies) under the protocol instruction from the manufacturer. After 

30 minutes of sample incubation with the reagents at 37 °C, they were washed with 

DPBS. The confocal microscope (Leica SP8, Germany) was used to obtain the images. 

Live and dead cells appeared as green and red, respectively.  

The proliferation of hMSC was evaluated by the cell counting kit-8 (CCK-8, 

Thermo Fisher) on day 1, day 3, and day 5, respectively. The harvested cells were 

seeded on 96-well plates on the fiber surface at the density of 5×103 cells/cm2. 10 µL 

of the CCK-8 solution was added to each well of 96-well plates with 100 µL medium, 

and cells were incubated at 37 °C for 4 h. The absorbance intensity of each sample was 

determined at a wavelength of 450 nm using a microplate reader (infinite M200PRO, 

TECAN, Switzerland). All experiments were repeated three times and six parallel 

replicates were read for each sample. 

 

Cell morphology. The cellular spreading morphology and skeleton were stained with 

phalloidin-647/DAPI after 3 days of culture at the seeding density of 3×103 cells/cm2; 

the cells were washed with DPBS before fixing the sample with 4% paraformaldehyde 

for 20 min. 0.1% Triton X-100 in DPBS was used for 30 min to permeabilize the cell 

membrane. The samples were then incubated with Alexa Fluor 647 phalloidin at 1:400 

and DAPI at 1:200 dilutions in DPBS each for 45 min sequentially. Following three 

additional washings with PBS, the samples were observed under an inverted confocal 

microscope (Leica SP8, Germany). 

 

Osteogenic differentiation analysis 

For all the osteogenic differentiation experiments, cells were cultured and seeded at the 

density of 3×103 cells/cm2. Alkaline phosphatase (ALP) and calcium deposition were 
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employed as the biomarkers to test osteogenic activity. After 14 days of culture in 

osteogenic medium (Osteogenesis differentiation kit, Thermo Fisher), the ALP markers 

of hMSC were stained according the protocol from Thermo Fisher (Alkaline 

Phosphatase Live Stain (500X)); the samples were observed under the confocal (Leica 

SP8, Germany). To assess the ALP activity, the samples were washed with PBS twice 

to remove the medium and lysed in lysis buffer containing 1% Triton-100 followed by 

centrifugation at 10,000 rpm for 20 min at 4 °C. Following the instructions, the 

supernatant was collected to measure the ALP activity with Alkaline Phosphatase 

Assay Kit (Abcam) and the total protein content was quantified with BCA Protein 

Assay Kit (Thermo Fisher). The ALP activity was normalized against the μmol/assay 

time/mg protein. 

 To evaluate the calcium deposition in osteogenic differentiation, Alizarin Red 

S (ARS, Thermo Fisher) staining was performed. Similarly, the samples were washed 

with PBS after cultured in osteogenic medium for 14 days and fixed with 1% 

paraformaldehyde for 2 min, followed by quick rinsing with PBS and then incubated 

with 0.1% Alizarin Red S for 30 min to stain the calcium deposits. The samples were 

further washed twice with PBS. For a quantitative calcium deposition assay, the stained 

cells were dried and eluted with 5% formic acid solution for 20 min, followed by 

transferring into a new 96-well plate and measuring the absorbance at 405 nm. All the 

mentioned steps were conducted at room temperature. 

 

Immunofluorescence staining. The samples were then fixed in 4% paraformaldehyde 

and permeabilized with 0.1% Triton X-100 in PBS. The non-specific binding epitopes 

were blocked with 5% (w/v) BSA (bovine serum albumin). The primary antibodies 

anti-YAP IgG (1:400, rabbit; cell signaling); anti-RUNX2 IgG (1:400, mouse; cell 

signaling); anti-Vinculin IgG (1:400, rabbit; Thermo Fisher); anti-Lamin A/C (1:400, 

mouse; cell signaling); anti-IBSP IgG (1:400, rabbit; Thermo Fisher) were dissolved in 

5% (w/v) BSA. The samples were incubated with the primary antibodies at 4 °C 
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overnight. Following 3 to 4 times intensive washing (0.5 wt% Tween-20 in PBS), the 

secondary antibody labeling was performed with goat anti-mouse IgG conjugated to 

Alexa Fluor Plus 647 (Thermo Fisher) and goat anti-rabbit IgG conjugated to Alexa 

Fluor Plus 488 (Abcam). After repeated washing in PBS and nuclear counterstaining 

with DAPI, the osteogenic markers were then visualized under a confocal microscope 

(Leica SP8, Germany). All images were taken under the same exposure conditions for 

analyzing the relative fluorescence intensity.  

For the F-actin staining, the samples were then fixed in 4% paraformaldehyde and 

permeabilized with 0.1% Triton X-100 in PBS. After repeated washing in PBS and 

stained with DAPI and Phalloidin (1:400, Thermo Fisher), the markers were then 

visualized under a confocal microscope (Leica SP8, Germany). All images were taken 

under the same exposure conditions for analyzing the relative fluorescence intensity.  

 

In vitro bacterial disinfection properties of scaffolds. In this study, Escherichia coli 

(E. coli, ATCC 6538) was chosen as gram-negative model bacteria and Staphylococcus 

aureus (S. aureus, ATCC 25922) was used as a model of gram-positive bacteria. The 

Mueller-Hinton Agar (MHA) and Mueller-Hinton Broth (MHB) were used as culture 

media. 

Live/dead bacteria on the membrane: 1×1 cm membrane was firstly dispersed in 2 

mL of 105 colony-forming unit (CFU)/mL of the bacterial suspension. After co-

culturing at 37 oC for 6 h and 12 h, the E. coli and S. aureus were stained by using 

LIVE/DEAD® BacLight Bacterial Viability Kits (Thermo Fisher), respectively. Then, 

the images were acquired via confocal laser scanning microscopy (CLSM, Leica, 

Switzerland). For the quantitative analysis, the density of bacteria was estimated by at 

least 3 fluorescence images.  

To evaluate the bacterial inhibition capabilities when co-cultured with the 

membrane, the real-time optical density at 600 nm (OD600) of the bacterial/PCL-C-

ZnO dispersion was also monitored to study the growth trends of bacteria. 1×1 cm 
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membrane was firstly dispersed in 1 mL of 105 colony-forming unit (CFU)/mL of the 

bacterial suspension. After co-culturing at 37 oC for 3 h, the OD600 for the suspensions 

were then monitored by UV-vis spectroscopy every 3 h to make sure whether our 

samples could achieve bacterial inhibition. 

Zn2+ ions released properties of PCL-C-ZnO: To study the Zn2+ ions release 

amount from the PCL-C-ZnO, the membrane was soaked in phosphate-buffered saline 

(PBS, pH 7.4) at 25 oC. The released amounts of Zn2+ ions at different time scales were 

then monitored by ICP-OES method. 

 

Image analysis. Cell spreading area, the shape factor, and volume were quantified 

based on F-actin staining and nucleus form z-direction confocal imaging. The focal 

adhesion analysis was performed based on vinculin staining. The fluorescent intensity 

and contrast were drawn along the representation morphology of each cell under the 8-

bit greyscale images. The area and integrated densities were measured by the calibrate 

function. At least 200 cells were evaluated for each independent sample. For 

measurements of YAP nucleus localization in scaffolds, the images were thresholded 

on each color channel to determine the nucleus and cytoskeleton area outside of the 

nucleus. The YAP nucleus localization ratio was calculated according to Equation 1.  

Nuclear YAP (nuclear/cytoplasmic) =

𝑁𝑢𝑐𝑙𝑒𝑎𝑟 𝑌𝐴𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝐶𝑒𝑙𝑙 𝑌𝐴𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦−𝑁𝑢𝑐𝑙𝑒𝑎𝑟 𝑌𝐴𝑃 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑒𝑙𝑙−𝐴𝑟𝑒𝑎 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠

 (1) 

 

All the above-mentioned images were presented as maximum intensity and 

analyzed by Fiji software (based on ImageJ), and we determined the 2D fractal 

dimensional organization with a custom-developed MATLAB program (MATLAB, 

Natick, MA), which divided images into a series of regions of 100 pixels² spaced at 20 

pixels and individually averaged to filter out noise throughout the cell study. 
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Corresponding 2D fractal dimensions (Df). Df was analyzed by MATLAB of the F-

actin staining images. Interrogation windows are used to digitally subdivide 

cytoskeletal images. To characterize the cytoskeleton spatial arrangement and density, 

box counting is utilized to infer a fractal dimension (Df). Df is a dimensionless value 

to quantify the complex arrangement of cell cytoskeleton. Automated partitioning and 

analysis of whole-cell images using MATLAB for subcellular quantification of 

cytoskeleton structure process are as follows: custom algorithm automatically partitions 

cytoskeletal images into the relevant biological regions, from which a mask is generated 

and data extracted can be specific to these regions. (a) Initially, images of the 

cytoskeleton are imported for processing, which includes a series of segmentation 

procedures to outline the shape of the cell. (b) Each cytoskeleton image is then scanned 

using non-overlapping interrogation windows, within each, fractal analysis is 

performed through a box-counting method, quantifying the actin arrangement as 

defined by an edge detection filter. The regional mask is then used to differentiate 

perinuclear, cytosolic, and peripheral actin quantity and actin arrangement information 

from the raw cytoskeleton image and resultant 2D array of fractal dimension values, 

respectively. (c) A user-defined set distance is then used to redefine these boundaries, 

and pixels between the new and original boundaries form the masks required. This is 

repeated for each paired cytoskeleton image for the entire live imaging dataset. 

MATLAB commands used for the entire process are noted under the title of each step, 

and custom codes are further denoted with a “.m.” 

 

Statistical analysis 

All data were expressed as the means ± standard deviations (s.d) with independent 

experiments. The statistical analysis was performed using one-way analysis of variance 

(ANOVA) with the Tukey honestly significant difference post hoc test using origin 9.0 

software. The dates are indicated with (*) for p < 0.05, (**) for p <0.01, and (***) for 

p < 0.001. NS stands for not significant. 
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Figure S1. (a) HAADF-STEM image of the C-ZnO and corresponding elemental 

mapping for revealing the distribution of C, N, O, and Zn. (b) EDS curves of the C-

ZnO particle. (c) The corresponding elemental mapping of C-ZnO for revealing the 

distribution of C, N, O, and Zn.   
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Figure S2. (a) XPS survey scanning spectra for C-ZnO. The high-resolution XPS (b) 

C1s spectra, (c) N1s spectra, (d) O1s spectra, and (e) Zn 2p spectra for C-ZnO. (f) The 

atom percentage of C, N, O, and Zn in C-ZnO nanoparticles.  

 

 

 

Figure S3. (a), (d), and (g) are SEM images of PCL, PCL-C-ZnO-2, and PCL-ZnO 

membranes. (b), (e), and (h) are EDS curves of PCL, PCL-C-ZnO-2, and PCL-ZnO 
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membranes. (c), (f), and (i) are the SEM element mapping of carbon (C), oxygen (O), 

and zinc (Zn) of PCL, PCL-C-ZnO-2, and PCL-ZnO membranes. 

 

 

 

Figure S4. The photographic image for the electrospun bare PCL, PCL-C-ZnO, and 

ZnO scaffolds. 

 

 

Figure S5. Amplified SEM image for the electrospun fibrous scaffold PCL and PCL-

C-ZnO-2, the nanoparticles on the fiber are C-ZnO. 
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Figure S6. The water contact angles of PCL membrane, and the C-ZnO or ZnO 

incorporated membranes. 
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Figure S7. Confocal image of hMSCs growth on samples in growth medium; cells were 

stained with nuclei (blue), Vinculin (green), and F-actin (red).  
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Figure S8. SEM images for the MSCs on PCL and PCL-C-ZnO scaffolds. The red 

errors are the pseudopodium. 
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Figure S9. Live/dead staining images (red: dead, green: live) for (a) S. aureus and (b) 

E.coli after incubated PCL-ZnO for 12 h and 6 h, respectively. (c) and (d) are the short-

term and long-term release of Zn2+ ions of the PCL-ZnO. (e) and (f) are Real-time OD600 

values for the control and samples with S. aureus and E. coli, respectively, (mean ± SD, 

n = 5). P-values correspond the data after 24 h, ∗P < 0.05. (g) Corresponding numbers 

of live/dead bacteria on the membrane. The numbers were estimated from fluorescent 

photographs (mean ± SD, n = 5). ∗P < 0.05, ∗∗P < 0.01.  
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Figure S10. SEM image for the electrospun fibrous scaffold PCL and PCL-C-ZnO-2 

after immersed in the medium for 14 days. There is no obvious degradation of the 

scaffolds.  

 

 

 

 

Table S1. The added weight percentages of PCL and C-ZnO in the fibrous scaffolds, 

the calculated Zn2+ average weight ratio via the adding percentages, and the tested Zn2+ 

weight ratio from the XPS data of the scaffolds’ surface. 

Samples PCL PCL-C-ZnO-1 PCL-C-ZnO-2 PCL-C-ZnO-5 PCL-ZnO 

PCL : C-ZnO (wt %)  10:1 10:2 10:5 16.5:1 

Calculated Zn2+ (wt %)  0 2.5 4.6 9.2 4.6 

XPS Tested Zn2+ (wt %) 0 - 2.9 - 1.8 
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4. Summary and Outlook 

This thesis mainly focused on the regulation of stem cells behavior by chemical and 

physical signals of carbon nanomaterial modified fibrous scaffolds. The cell adhesion 

on scaffolds is indirect via a surface layer of adsorbed proteins, thus the scaffold surface 

treatments could regulate the protein adsorption amount, cells adherence efficiency. The 

general property of scaffolds could further affect nutrient/waste exchange, protein 

synthesis, intracellular matrix construction and cell differentiation eventually, which is 

very important in stem cells-based tissue engineering, especially in organ and tissue 

damage. In this work, iPSCs and MSCs were used to investigate the effect on 

differentiation potential towards neuron and osteogenesis respectively via the chemical 

and physical cues of carbon nanomaterials-based scaffolds.  

The first project prepared a multivalent polyanion-dispersed CNTs modified 

fibrous scaffolds to integrate the chemical and physical in stem cell regulation research. 

The CNTs are dispersed and functionalized by biocompatible and multivalent 

hyperbranched polyglycerol sulfate (hPGS) noncovalently. After air plasma treatment 

of electrospun fibrous polycaprolactone (PCL) scaffolds, the HPGS modified CNT, 

namely CNT-HPGS were coated on the PCL fiber surface to combine the chemical and 

physical cues. Results suggests that CNT-HPGS modified fibrous scaffold is suitable 

for stem cells adherence and growth, because the combination of CNT and multivalent 

HPGS on scaffolds surface could offer anchoring points for proteins, growth factors 

and cytokines, which is very important for stem cells behavior. Meanwhile, the 

modified scaffolds promote the neural differentiation efficiency due to the special 

physical property of carbon nanotubes. Moreover, the aligned fibrous scaffolds could 

orient the elongation direction of grown neurites. Thus, the promoted protein adhesion 

property of CNT-HPGS contribute to the stem cells growth microenvironment and 

provide a novel method to construct functional scaffolds for stem therapy research. 

Since brutal plasma treatment could lead to polymer degradation and the longtime 

effects on surface may not be permanent, surface grafting of biocompatible and 

multivalent HPGS could be a suitable choice. In the second project, the HPGS was 
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covalently conjugated onto the graphene oxide (GO) nanosheet by using nitrene 

through a 2+1 cycloaddition reaction. The physical property of graphene oxide and 

chemical property of HPGS were combined to mediate the stem cells growth and 

differentiation. Then the GO-HPGS nanosheets functionalized nanofibrous scaffolds 

were applied to mediate the proliferation, lineage specification, and differentiation of 

iPSC. Results suggest that coated scaffolds could promote differentiation and maturity 

of iPSC towards neural differentiation. This study addressed the stability of the 

dispersion and promote the stem cell lineage specification maturity, which integrate the 

chemical and physical cues to facilitate the targeted differentiation of iPSC.  

 In the third project, we constructed a novel nanocarbon-structured fibrous scaffold 

for stem cell research, and the physical cues of carbon nanomaterials were MOF-

derived nanocarbons. The porous carbon nanostructure could the promote the adhesion 

of proteins and growth factors, moreover, the caging property of the carbon 

nanostructure achieve the gradual release of chemical cues Zn2+ ions, which provide 

novel pathway for activation of signal pathways and guiding MSCs towards osteogenic 

differentiation process. This study designed stem cell scaffolds could help achieve 

multifunctional property, for example, simultaneously enhanced osteogenic and anti-

infective capabilities. 

In conclusion, this work combined the physical cues of carbon nanomaterials and 

other chemical cues to investigate the stem cell behavior, including the IPS cells 

towards neural differentiation and MSCs towards osteogenic differentiation process. 

The fabrication of scaffolds presented a novel avenue for the future development of 

carbon nanomaterials in tissue regeneration, bionic, biomedical, and bioelectronics. 
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5. Kurzzusammenfassung 

Diese Arbeit befasst sich mit der Regulierung des Verhaltens von Stammzellen über die 

physikalischen und chemischen Signale von mit Kohlenstoff-Nanomaterialien 

modifizierten faserigen Gerüsten. Die Wachstumsumgebung von Stammzellen ist 

dynamisch und kompliziert. Weiterhin wird das Verhalten der Stammzellen, z.B. 

Adhäsion, Ausbreitung, Proliferation und Differenzierung durch die physikalischen und 

chemischen Eigenschaften des Gerüsts bestimmt, was bei der Stammzelltherapie und 

beim Tissue-Engineering, insbesondere bei Organ- und Gewebeschäden, sehr wichtig 

ist. In dieser Arbeit wurden induzierte pluripotente Stammzellen (IPS) und 

mesenchymale Stammzellen (MSC) verwendet, um die physikalischen und chemischen 

Eigenschaften der auf Kohlenstoff-Nanomaterialien basierenden Gerüste zu bewerten. 

        Das erste Projekt basiert auf multivalenten Polyanion-dispergierten 

Kohlenstoffnanoröhren (CNT) auf einem faserigen Gerüst, um die chemischen und 

physikalischen Signale in der Stammzellregulations zu kombinieren. Die CNTs werden 

durch hyperverzweigtes Polyglycerinsulfat (hPGS) durch Ultraschall nicht-kovalent 

funktionalisiert. Nach der Sauerstoffplasmabehandlung von elektrogesponnenen 

faserigen Polycaprolacton-(PCL)-Gerüsten wurden CNT-HPGS-Nanodispersion auf 

die Oberfläche der PCL-Fasern aufgetragen, um die chemischen und physikalischen 

Signale zu untersuchen. Die Ergebnisse deuten darauf hin, dass CNT-HPGS-

modifizierte faserige Gerüste als eine geeignete Plattform für die Adhäsion und 

Proliferation von Stammzellen dienen könnten. Dabei fördern die modifizierten 

nanostrukturierten faserigen Gerüste aufgrund der besonderen physikalischen 

Eigenschaft der Kohlenstoff-Nanoröhren die neuronale Differenzierungseffizienz. 

Darüber hinaus könnten die ausgerichteten faserigen Gerüste die Dehnungsrichtung 

von gewachsenen Neuriten orientieren. Auf diese Weise trägt die geförderte 

Proteinadhäsionseigenschaft von CNT-HPGS zur Mikroumgebung des 

Stammzellenwachstums bei und bietet eine neuartige Methode zur Konstruktion 

funktioneller Gerüste für die Stamm zell therapieforschung. 

           Im zweiten Projekt werde erfolgreich ein kovalent modifiziertes Graphen-oxid 



121 
 

(GO)-Polysulfat Verwendung von Nitren-HPGS durch eine 2+1 Cycloadditions-

Reaktion hergestellt. Die physikalische Eigenschaft von GO und die chemische 

Eigenschaft von HPGS wurden kombiniert, um das Wachstum und die Differenzierung 

der Stammzellen zu vermitteln. Dann wurden die 2D-Nanoschichten mit 

funktionalisierten Nanofasergerüsten versehen, um die Proliferation, Abstammungs-

spezifikation und Differenzierung der Stammzellen zu vermitteln. Die Ergebnisse 

deuten darauf hin, dass beschichtete Gerüste die Differenzierung und Reife fördern 

könnten. Diese Studie befasste sich mit der Stabilität der Dispersion und der Förderung 

der Reife der Stammzell-Linienspezifikation, die die chemischen und physikalischen 

Signale integrieren, um die gezielte Differenzierung von IPS-Zellen zu erleichtern.  

         Im dritten Projekt konstruierten wir ein neuartiges faserförmiges Gerüst mit 

Nanokohlenstoffstruktur für die Stammzellforschung. Die Kohlenstoffnanomaterialien 

waren von MOF abgeleitete Nanokohlenstoffe. Die poröse Kohlenstoff-Nanostruktur 

die Adhäsion von Proteinen und Wachstumsfaktoren fördern. Darüber hinaus zeigte die 

Adhesionseigenschaft der Kohlenstoff-Nanostruktur die allmähliche Freisetzung 

chemischer Signale, die einen neuen Weg zur Aktivierung von Signalwegen und zur 

Steuerung des Differenzierungsprozesses von Stammzellen bieten. Die in dieser Studie 

entworfenen Stammzellgerüste könnten dazu beitragen, multifunktionale 

Eigenschaften zu erreichen, z.B. gleichzeitig verbesserte osteogene und anti-infektiöse 

Fähigkeiten. 

        Zusammenfassend lässt sich sagen, dass diese Arbeit die physikalischen Signale 

von Kohlenstoff-Nanomaterialien und andere chemische Signale kombinierte, um das 

Verhalten von Stammzellen zu untersuchen, einschließlich der IPS-Zellen in Richtung 

neuronale Differenzierung von IPS-zellen und der osteogener Differenzierung von 

MSZ. Die Herstellung von multifunktionalen Gerüststrukturen stellte einen neuen Weg 

für die zukünftige Entwicklung von Kohlenstoff-Nanomaterialien in der 

Geweberegeneration, Bionik, Biomedizin und Bioelektronik dar. 
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7. Abbreviations 

mESCs                      mouse embryonic stem cells  

iPSCs                          induced pluripotent stem cells  

MSCs                        mesenchymal stem cells 

HSCs                         hematopoietic stem cells  

ECM                          extracellular matrix 

CNS                           central nervous system  

EBs                            embryoid bodies  

EF                              electric stimulation  

CNMs                        carbon nanomaterials  

CNTs                         carbon nanotubes  

SWNTs                      single‐walled nanotubes  

MWNTs                     multi‐walled nanotubes  

LbL                            layer by layer  

PDDA                        poly(dimethyldiallylammonium chloride) 

IPS                             induced pluripotent stem cells  

HPGS                         hyperbranched polyglycerol sulfate  

PCL                            polycaprolactone 

GO                             graphene oxide 

rGO                            reduced graphene oxide  

ALP                            alkaline phosphatase  
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