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Abstract
In this paper, fluoride geochemistry and health risk of groundwater in Coimbatore district is studied. The order of dominance 
of ions were HCO3 > Cl > SO4 > CO3 and Na > Ca > Mg > K. Alkaline groundwater and the dominance of HCO3 and Na is 
favourable for the fluoride enrichment. Around 46% of the samples, N–NE regions, have F− higher than permissible limit of 
1.5 mg/L. Pink granites, charnockite and gneisses in lithology is the possible origin of F−. However, NO3 vs F plot shows 
positive trend in some samples, indicating anthropogenic inputs of F−. Correlation plots of F− was trending positive with 
pH, HCO3 and Na and but negative for Ca, indicating the control of these ions in F− mobility. This result is supported by 
undersaturation of fluorite and supersaturation of carbonates. Four significant principal components were derived, which have 
explained 87% of the total variation. PC1 has high factor loadings for EC, Ca, Mg Na, Cl, SO4, NO3 indicating both natural 
and anthropogenic influences. PC2, PC3 and PC4 have higher loading for pH and HCO3, K and HCO3 and F−, respectively, 
indicating geogenic factors in the F− enrichment. Human health risk assessment (HHRA) by ingestion and dermal pathways 
were calculated using Hazard Quotient HQ and Hazard Index (HI). 27% of males, 36% of females and 39% of the children 
have HI > 1, posing noncarcinogenic risks.

Keywords  Fluoride · Geochemistry · Multivariate analysis · Human health risk assessment (HHRA) · Revised permissible 
limits · Coimbatore

Introduction

Groundwater is one of the most widely used natural 
resources and it is serving a major portion of the world’s 
population for safe drinking water. Groundwater contamina-
tion is a global issue for human health and thus an impor-
tant concern in water supply schemes (Sajil Kumar 2017). 
The consumption of contaminated groundwater may cause 
serious health effects on human beings and other organ-
isms (Majolagbe et al. 2016). Groundwater contamination 
occurs due to both natural and manmade activities (Sajil 
Kumar et al. 2014; Gu et al. 2017). The biggest contami-
nant sources are industrial pollution, septic tanks, storage 

tanks for chemicals and oils etc., hazardous wastes, landfills, 
saline intrusion in coastal areas, atmospheric depositions, 
and rock–water interactions, among the types of contamina-
tion that occur due to natural enrichment, fluoride is one of 
the major factors. We focus on the enrichment of fluoride in 
groundwater and its adverse effects on human beings.

High concentration of fluoride in groundwater can cause 
serious health impacts such as dental skeletal fluorosis in 
human beings (Ahada and Suthar 2017; Li et al. 2019a, b). 
The major sources of fluoride in groundwater are marine aer-
osols, volcanic gases, and fluoride bearing minerals (fluorite, 
biotite, apatite etc.,). The most important mechanisms that 
control fluoride in groundwater are ion exchange, dissolution 
and precipitation of fluoride minerals, sorption processes 
and human activities (Su et al. 2019). Certain chemical 
conditions like alkaline pH, bicarbonate, presence of cal-
cium minerals also have a significant role in the presence of 
fluoride in the aqueous environment (Apambire et al. 1997). 
Thus Na–Ca ion exchange plays a vital role in fluoride chem-
istry (Sajil Kumar et al. 2014).
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India is one of the countries in the world that is expe-
riencing the most severe health problems with ground-
water contamination, especially with regard to fluoride. 
The most affected states are Rajasthan, Gujarat, Andhra 
Pradesh, Karnataka, Tamil Nadu, and Kerala (Indu et al. 
2007; Sajil Kumar et al. 2014). It is predicted that around 
120 million i.e., 9% of the total population India have an 
exposure risk due to fluoride (Podgorski et al. 2018). In 
a study in Telangana, Reddy et al. (2019) reported that 
the entire state can be classified into four categories very 
high (17.6%), high (15.8%), medium (32.7%) and low 
(33.9%) fluoride contamination. Apart from the geological 
and hydrogeological factors, the dry climate is also act-
ing as an important factor of fluoride enrichment (Gupta 
et al. 2005; Samal et al. 2020). This information is con-
firmed from Western Indian states Gujarat (Prajapati et al. 
2017), Rajasthan (Kesari et al. 2021) and south Indian 
states Tamil Nadu (Sajil Kumar 2017) and Andhra Pradesh 
(Adimalla et al. 2019).

According to the WHO (2011), the permissible level of 
fluoride in drinking water is 1.5 mg/L, which is an interna-
tional standard. However, the guideline values in India are 
proposed and practiced by the Bureau of Indian Standards 
(BIS 1992). According to BIS standards, the acceptable 
limit of fluoride is 1 mg/L, and in case of no alternative 
sources it can be permitted till 1.5 mg/L. The geochemistry 
and weather conditions of India often favour the enrichment 
of fluoride in groundwater. The health impacts of fluoride 
are directly proportional to the daily intake of fluoride into 
the digestive system. But in different climatic regions the 
amount of water intake varies considerably, and the ingestion 
of the fluoride is also varying. Thus, the proposed guideline 
values do not always highlight the exact conditions. In this 
study we considered the Bureau of Indian Standards for the 
analysis.

Groundwater fluoride enrichment is a well discussed 
topic in Indian as well as global context (Saxena and Ahmed 
2001). Several studies have focused on groundwater quality 
(Ramesh and Elango 2011; Ahmad and Qadir 2011; Aleksis 
2011), occurrence and mobility of fluoride in groundwater 
(Wu et al. 2015), spatial variation mapping using geo-statis-
tics (Choudary et al. 2019; Thapa et al. 2017; Fallahzadeh 
et al. 2018), multivariate statistical analysis (Salifu et al. 
2012; Rashid et al. 2020), and many more. Kumar et al. 
(2018) studied the dynamics of fluoride contamination in 
Indo-Gangetic plain using geochemical and isotopic meth-
ods. They have reported F levels up to 5.8 mg/L, predomi-
nantly controlled by ion exchange and prolonged residence 
time. Raj and Shaji (2017) identified that the dissolution of 
fluoride from the minerals is favoured by Na-HCO3 water 
type with less Ca and alkaline pH and subsequently elevated 
the F levels up to 2.88 mg/L. Aravinthasamy et al. (2020) 
studied the fluoride contamination in Shanmunganadhi basin 

and identified a considerable variation in pre- and post-mon-
soon seasons.

In this study, we use the geochemical and multivariate 
statistical techniques to study the source and mobilization 
of fluoride in groundwater and evaluate the possible health 
risks of the same on human beings in the Coimbatore district 
in Tamil Nadu.

Materials and methods

Description of the study area

Coimbatore is mostly bounded by the mountain range West-
ern Ghats in the West and the South, with a general trending 
slope eastward. A location map of the study area and sam-
pling wells are shown in Fig. 1. This area has a subtropical 
climate with a wide range from 14° to 40 °C (CGWB 2008; 
Sajil Kumar and James 2016). This is a monsoon fed area, 
in which northeast monsoon is dominant over the south-
west monsoon and average annual rainfall in Coimbatore is 
647 mm. Metamorphic rocks are prominent in Coimbatore, 
and the most common rock types are charnockite, granites, 
hornblende–biotite gneiss, sillimanite gneiss with basic and 
ultra-basic intrusive, crystalline limestone, syenite, pegma-
tite and quartz veins (Fig. 2). Among these, hornblende–bio-
tite gneiss are most widely seen all over the district. Sedi-
mentary deposits such as colluviums, alluvium and kankar 
are observed near the aforementioned rivers. Fluvial pro-
cesses are controlled by geomorphology, structural as well 
as denudational processes. Several soil types are mostly red 
calcareous soil, black soil, red non-calcareous soil, alluvial 
and colluvial soil, brown soil and forest soil. Groundwater 
is commonly found in fractures and fault regions in the hard 
rocks and in porous media in the alluviums associated with 
river systems. However, weathered zones (up to 30 m in 
depth) are the important aquifers in this region. Two major 
groundwater flow patterns were identified, one as towards 
eastern part along with flow paths of the Noyyal River and 
the other towards SW direction. Detailed information about 
the study area is reported in earlier studies (CGWB 2008; 
Sajil Kumar and James 2016).

Groundwater samples and analytical techniques

Groundwater samples (n = 33) were collected from the Coim-
batore District for hydrochemical analysis. Selected wells were 
pumped out approximately 10 min, so that the physical param-
eters such as EC and pH were stabilized. The water level of 
these wells varied considerably between 8.75 and 38.8 mbgl, 
with an average 18.09 mbgl. Previously cleaned polythene 
containers of 1 L capacity were used to store the collected 
samples. Sample bottles were immediately transferred to the 
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laboratory as soon as the in situ parameters were measured. 
In the field, EC and pH were measured with portable digital 
meters. Carbonate and bicarbonate were determined by acid 
titration using H2SO4. Chloride concentration was determined 
using argentometric titration with AgNO3. Sulphate levels in 
the groundwater were measured using the UV–visible spec-
trophotometer. Sodium and potassium were analysed using a 
flame photometer. Among the cations, Ca and Mg were meas-
ured using the EDTA titration method, and Na and K with a 
flame photometer (APHA 1995). Concentrations of fluoride 
(F−) in the groundwater were measured using a HANNA pH/
ISE bench meter, USA (HI 4222). The iron balance error (IBE) 
has been calculated to check the quality of the analytical data, 
and which is found to be less than ± 5%.

Hydrogeochemical methods and mineral speciation 
modelling

Hydrogeochemistry was analysed and the interpretations 
were done piper trilinear plot and bivariate chemical cross 
plots.

Aqueous speciation modelling was done by the 
PHREEQC (Appelo and Postma 1999) interphase in the 
software package Aquachem 4. Saturation indices are a 
useful tool in the identification of possible geochemical 
reactions in the groundwater environment. The calculation 
(see Eq. 1) is as follows,

Fig. 1   Study area map of Coim-
batore district showing sample 
location
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Here, where IAP is the ion activity product of the dissoci-
ated chemical species in the solution, Ksp is the equilibrium 
solubility product for the chemical involved at the sample 
temperature. A positive SI of a mineral indicates that the 
groundwater is saturated with that mineral and a negative SI 
shows under saturation of the corresponding mineral.

Multivariate statistical and geostatistical 
techniques

In this study, principle component analysis is used as a 
data reduction technology in which the multidimensional 
data of groundwater chemistry has been reduced to a less 
dimensional database, without losing any vital informa-
tion concerning the hydrochemistry. In the first step, the 
interconnection between the parameters has been estimated 
using a correlation matrix. Principle component analysis has 
been performed using the data analysis package XLSTAT 
for Windows. The number of influencing principle compo-
nents was determined based on the Eigen values, and the 

(1)SI = log

(

IAP

Ksp

)

.

extraction of the factors was based on the variances and 
covariances of the parameters. Finally, by the process of 
rotation, the loading of each variable on one of the extracted 
factors is maximized and the loadings of all the other factors 
are minimized (Sajil Kumar 2019).

Spatial variation maps of fluoride and other related 
parameters have been done by the Kriging method available 
in the ArcGIS software.

Human health risk (HHR) assessment

Adverse effects on human health due to exposure to a certain 
chemical over a period either by inhalation, ingestion, or 
dermal pathways need serious attention (USEPA 2014). We 
studied the health impact of an elevated level of fluoride in 
drinking water on populations of different age groups such 
as infants, children and adults. Exposure risk of fluoride by 
ingestion and dermal pathways using the following Eqs. (2) 
and (3):

In these equations, CDDIN and CDDDE represent the 
chronic daily dose by ingestion and dermal effects, respec-
tively (μg/kg day). Cfw is the concentration of fluoride in 
groundwater in mg/L. IR represents the ingestion rate of 
water in L/day (adults = 2.5 L/day; children = 0.78 L/day), SA 
denotes the exposed skin area in cm2 (adults = 16,600 cm2; 
children = 12,000 cm2); KP represents the dermal perme-
ability coefficient for water (0.001, it has no unit); and EF is 
the water exposure frequency (365 days). ED is the yearly 
exposure duration in years (males = 64, females = 67, and 
children = 12); ET is the water exposure time in hours/day 
(0.4 h/day for adults and children); BW is the body weight 
in kg (65, 55, and 15 for men, women, and children respec-
tively); AT is the average residence time measured in days/
year, and CF is the unit-less conversion factor (0.001 for 
adults and children).

The Hazard Quotient (HQ) of fluoride exposure due to 
ingestion and dermal pathways was calculated using Eqs. (4) 
and (5), below:

HQIN denotes the ingestion-based Hazard Quotient and 
HQDE is the dermal based Hazard Quotient. RfD is the refer-
ence dose of fluoride i.e., 0.04 mg/kg/day (Li et al. 2016). 
HQ < 1 has negligible non-carcinogenic effects, while on 

(2)CDDIN = (Cwater × IR × EF × ED)∕(BW × AT)

(3)
CDDDE = (Cwater × SA × KP × EF × ED × ET × CF)∕(BW × AT).

(4)HQIN = CDDIN∕RfD

(5)HQDE = CDDDE∕RfD.

Fig. 2   Geology map of the study area
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the other hand HQ > 1 shows significant non-carcinogenic 
health hazards.

Hazard index (HI) is the total risk of exposure via diges-
tion and dermal pathways

As we discussed for the Hazard Quotient (HQ), a com-
bined exposure dose value less than 1.0 has no significant 
health impacts over a lifetime of exposure.

Results and discussions

General hydrogeochemistry

Physical and chemical characteristics of the groundwater in 
the Coimbatore District are shown in Table 1. The pH values 
in the region varied between 7.4 and 8.7, with an average 
value of 8.25. It is clear from these values that the ground-
water is mainly alkaline nature (WHO 2011). The range 
of conductivity vales (180–6240 µS/cm) suggests that the 
water chemistry is highly varied within the study area. The 
TDS values clearly indicate the water quality status, which 
is widely varied between 100 and 3544 mg/L, with an aver-
age concentration of 841 mg/L. The order of dominance of 
major anions were HCO3 > Cl > SO4 > CO3 and the same for 
cations were Na > Ca > Mg > K. Among the anions, bicar-
bonate dominated the list with a range between 69.3 and 
604, and an average of 276.45. Though the maximum con-
centration of Cl was 1631, the average value is 218 mg/L. 
The average concentration of SO4 was 70.15 mg/L. The car-
bonate concentration was negligible in the study area with 
an average of 7 mg/L. The most dominant cation was Na, 
which ranged between 7 and 690 mg/L, with an average of 
113 mg/L. Figure 3 shows a Box Whisker plot that explains 
the statistical properties of all the major ions.

A Piper trilinear plot (Piper 1953) is used to understand 
different water types in the study area (Fig. 4). This shows 
that the groundwater is mostly dominated by Na and Mg in 
the cation chemistry and HCO3 and Cl in the anions. The 
majority of the samples showed the Na–Mg–HCO3–Cl type 
of groundwater, which is favourable to fluoride. However, 
a mixing of Ca and SO4 is also seen in some samples. The 
groundwater type of each sample is shown in Table 1.

Fluoride concentrations in groundwater

In the Coimbatore District the values of fluoride concentra-
tion ranged between 0.47 and 2.03 mg/L. The international 
standard value for fluoride in the drinking water is 1.5 mg/L 
(WHO 2011). The Indian standard value of the maximum 
permissible limit of fluoride in the drinking is 1.5 mg/L 

(6)HI = HQingestion + HQdermal.

(BIS 1992) and this is followed in this study. As per the ISI 
(1983) norms the desirable limit of fluoride in groundwater 
to maintain the dental and skeletal health is 0.6–1.2 mg/L. 
Lower than 0.6 mg/L may cause dental caries and higher 
than 1.5 mg/L may cause dental fluorosis and, in certain 
cases, skeletal fluorosis. Among the 33 samples analysed, 
27% of the samples had a lower fluoride concentration than 
0.6 mg/L; 27% of the samples had a concentration between 
0.6 and 1.2 mg/L; and the remaining 46% of the samples 
exceeded the maximum permissible limit 1.5 mg/L. Similar 
results of elevated concentrations of fluoride in groundwa-
ter has been reported from Raebareli district-Uttar Pradesh 
(Sahu et al. 2017) Karbi Anglong district, Assam (Hanse 
et al. 2019), Guntur district, Andhra Pradesh (Rao et al. 
2020) and Ambadongar South Gujarat (Shirke et al. 2020).

Spatial variation, geochemical evolution 
and speciation modelling of fluoride

A spatial variation map of fluoride has been created for the 
Coimbatore District (Fig. 5). It shows that the groundwa-
ter is relatively good in central, southern and southwestern 
region in the study area. The higher concentrations were 
observed in the north and north-eastern part of the area and 
in some patches in the south-eastern and central regions. An 
earlier study in the district by Sajil Kumar and James (2016) 
identified the groundwater flow paths and the F-concentra-
tion can be seen to increase exactly along the flow paths. 
The most important sources of fluoride in groundwater are 
the weathering and dissolution of fluoride rich minerals. 
The most common fluoride bearing minerals are amphi-
bole, biotite, fluorite and apatite, which exist in hard rocks 
such as granitic and gneissic rocks (Edmunds and Smedley 
2005; Sajil Kumar et al. 2015). Geological formations in 
the study area show that it is mostly comprising of pink 
granites, charnockite and unclassified gneisses. These rock 
types are abundant sources of the above-mentioned fluoride 
bearing minerals. Under favourable circumstances, i.e. avail-
ability fluoride minerals, pH, temperature, anion exchange 
capacity of aquifer materials, type of geological materials, 
residence time, porosity, structure, depth, groundwater age 
and concentration of carbonates and bicarbonates in water 
(Apambire et al. 1997), the fluoride ions will be released into 
the groundwater from the aquifers, consequently increasing 
the F− in groundwater.

The bivariate plots were created to study the relation 
between F− and pH, EC, Na, Ca, HCO3, and NO3. Selection 
of these parameters was based on inference from earlier stud-
ies and their significance in fluoride mobilization. Figure 6 
shows the relation between F and pH and it indicates that in 
many samples, fluoride concentration varies positively with 
increasing pH. In the study area, all the groundwater samples 
were alkaline in nature and, under this condition, fluoride 
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ions will desorb from the mineral phase and subsequently 
increase the leaching process (Wodeyar and Sreenivsan 
1996; Saxena and Ahamed 2001). In addition to this, the 
relation between F and HCO3 was plotted (see Fig. 7) and 
shows a relation similar to pH. The possible chemical reac-
tion in an alkaline environment is shown in Eq. (1):

When there is excess HCO3, there is a tendency to react 
with Ca to form CaCO3. The main reason for this is the 
greater affinity of HCO3 over calcium to attain stability. 
In this way more F ions will be released to the solution. 
Moreover, in the presence of an excess concentration of 

(7)CaCO3(s) + H+ + 2F− → CaF2(s) + HCO−
3
.

bicarbonate, the number of adsorption sites will decrease 
and subsequently fluoride will be released into the solu-
tion. Thus, those samples that showed a positive rela-
tion between F and HCO3, suggest the above-mentioned 
mechanism.

Fig. 3   Box–Whisker plot show-
ing the statistical distribution of 
major ions in the study area

Fig. 4   Piper diagram showing the water types in the study area

Fig. 5   Spatial variation of fluoride in groundwater in Coimbatore dis-
trict
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The relation between Ca2+ and F− has been plotted in 
Fig. 8, which shows that most of the samples having a 
higher concentration of fluoride have very low calcium 
concentrations. As the concentration of calcium increased 
in groundwater, the solubility of fluoride decreased as it 
combines with Ca2+ and precipitate as calcium fluoride 
(CaF2). This can be expressed in the following equation,

Figure 9 shows the relation between Na+ and F, revealing 
that there is a positive relationship between these two ions. 
The sources of sodium in groundwater can be the weather-
ing of silicate minerals or anthropogenic influences (Sajil 
Kumar 2013; Li et al. 2019a). There is a dynamic cation 
exchange between Ca and Na in the groundwater (Li et al. 
2018). In general, the Na from the solution will be replaced 
by the Ca from the aquifers. As the Ca concentration has a 
controlling nature on the F dynamics, the influence of Na is 
always an important factor for the mobilization of fluoride 
(Currell et al. 2011). The relation between EC and F has 
also been plotted to understand the trend of fluoride in the 
total ionic concentration of the study area. There are many 
samples in this study which show a positive relation with F 
(see Fig. 10).

There are reports on the anthropogenic inputs of fluoride 
in groundwater (Kumar et al. 2007; Brindha et al. 2011; 
Kim et al. 2010; Sajil Kumar 2012). There are sources like 
brick industries, and fertilizers that can bring considerably 
higher concentrations of fluoride to the groundwater. To 

Ca2+ + 2F− → CaF2.
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understand this, the cross plot between NO3 and F is plotted 
in Fig. 11. According to this plot, there are samples varying 
positively with increasing nitrate concentration. Presence 
of brick industries and extensive usage of fertilizers can be 
responsible for this. However, this anthropogenic origin of 
fluoride may be considerably less while compared to the 
natural sources.

Geochemical modelling was done to understand the 
chemical equilibrium within the groundwater environment. 
Saturation Indices (SI) for anhydrite, aragonite, calcite, dolo-
mite, fluorite, gypsum and halite were calculated, and the 
results were plotted in Fig. 12. Calcite and fluorite are the 
important minerals in the context of fluoride mobilization 
(Adimalla 2020). All the samples were undersaturated with 
respect to fluorite, halite, gypsum and anhydrite. Under-
saturated fluorite is a clear indication that the groundwater 
can dissolve more of this mineral and thus the possibility 
of increasing the concentration in the solution is greater. 
Similarly, the sulphate minerals anhydrite and gypsum were 
also undersaturated. Halite Saturation indices also showed 

undersaturation with Na and Cl. An increase in Na concen-
tration in the groundwater may help in the cation exchange 
process with Ca, and subsequently increase the concentra-
tion of fluoride. On the other hand, calcium minerals such 
as anhydrite, calcite and aragonite were mostly positively 
saturated (SI > 1) and further dissolution is not possible and 
will be precipitating as CaF2.

Principle component analysis (PCA)

A PCA of the Coimbatore District was done on the 33 
groundwater samples and 14 parameters. In the initial 
step, the correlation matrix of each ion was generated (see 
Fig. 13). Several principle components (PC) were obtained 
and based on the Eigen value (> 1), four significant PC is 
extracted (see Table 2). The Eigen values for PCA 1, 2, 3 
and 4 were 7.6, 2.0, 1.45, and 1.10, respectively. The highest 
Eigen values always represent the highest variance within 
the data (Chabukdhara et al. 2017). The four extracted prin-
ciple components explained 87.2% of the total variance in 
the dataset. The highest variance represents the most signifi-
cant process or mix of processes that control the hydrogeo-
chemistry of the study area (Yidna et al. 2010; Salifu et al. 
2012; Gupta et al. 2018). The core application of PCA in this 
study would be to identify the geochemical processes and 
the origin of ions in the groundwater.

PC1 has high factor loadings for EC (0.98), TDS (0.98), 
TH (0.98), Ca (0.89), Mg (0.97), Na (0.88), Cl (0.98), SO4 
(0.81), NO3 (0.57), and moderate loading for F (0.31). It is 
obvious that the EC values directly relate the TDS and TH. 
Other than the fact that higher factor loadings for Ca and 
SO4 may be attributed to the dissolution of gypsum and 
anhydrite, and it may also be noted that both these miner-
als are undersaturated in all samples. High loadings for Na, 
Cl and NO3 show the influence of anthropogenic activities. 
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Fig. 11   Bivariate plot between NO3 and fluoride

Fig. 12   Results of geochemical 
modelling of 33 groundwater 
samples in the study area
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In earlier studies, Sajil Kumar and James (2016) reported 
that the district has contamination sources like industrial 
effluents from textile and paper industries, intensive irriga-
tion activities with treated wastewater, and uncontrolled 
application of fertilizers. These are the primary reasons 
for the higher factor loading in PC1. However, the other 
sources of Na, Ca and Mg may be due to the weathering of 
silicate minerals. Weathering and rock–water interaction 
activities are further proved by the presence of moderate 
loading for F in PC1. Overall, PC1 is mostly controlled 
by natural and anthropogenic influences. This component 

has explained 53.3% of the variance of the total dataset. 
Additionally, very high loading for TDS in PC1 and neg-
ligible loading in the other three groups indicates that the 
processes evident in this group contribute more to the total 
ionic concentration of the groundwater in the study area.

PC2 is characterized by high factor loading for pH and 
CO3. Interestingly Ca, Mg and HCO3 have either very low 
or negative loadings in this group. Similar results were 
reported by Rao et al. (2007), who interpreted that this 
kind of grouping is a process of alkalinity. Though the 
study area has mostly crystalline rocks, the weathering 
process can give rise to clay minerals. The reactions which 
occur during interactions with clay minerals can influence 
the pH level significantly. During the recharge process, a 
higher amount of CO2 will be absorbed by water and later 
converted to HCO3 than during the weathering process 
(Jacks 1973). Weathering can increase the pH level when 
a larger amount of HCO3 is converted to CO3 (Berner and 
Berner 1987; Rao et al. 2007).

PC3 is dominated by potassium (0.82) and bicarbonate 
(0.82). Potassium is a common constituent of groundwater in 
semi-arid regions and is present mostly in crystalline rocks. 
A higher percentage is found in K feldspars (16%) and, fol-
lowing that, in K-Micas (5.2%) (Ahrens 1965). The other 
possible source of K is the weathering of secondary miner-
als (i.e. clays) and the most common of them are illite and 
transitional clay minerals. Co-occurrence of K and HCO3 
suggest that they are sourced from the weathering of the 
above-mentioned minerals.

PC4 has the most significant loading for f luoride 
(0.80). This suggests that the fluoride ion concentration 
is sourced from geogenic factors, mostly from F− bearing 
minerals in the crystalline rocks. This is supported by the 
positive loading for Na and HCO3 in this group. However, 
the fact that the loadings of the ions are not strong may 

Fig. 13   Correlation matrix of 
the physicochemical parameters 
in the groundwater

Table 2   Principal component analysis of groundwater samples in 
Coimbatore district

Parameters Principal component

1 2 3 4

pH − 0.027 0.872 0.01 0.09
EC 0.984 0.007 0.125 0.086
TDS 0.988 0.059 0.086 0.008
TH 0.983 0.024 0.038 0.016
Ca 0.892 − 0.051 0.096 − 0.161
Mg 0.973 0.068 0.001 0.124
Na 0.877 − 0.042 0.089 0.228
K 0.018 0.218 0.826 − 0.411
Cl 0.921 − 0.049 0.07 0.188
SO4 0.812 − 0.209 0.088 0.23
CO3 − 0.056 0.931 − 0.033 0.051
HCO3 0.266 − 0.24 0.821 0.221
NO3 0.598 0.378 − 0.278 − 0.427
F 0.31 0.27 − 0.11 0.802
% of variance explained 53.3 14.33 10.72 8.9
Cumulative % variance 

Explained
53.30 67.6 78.4 87.2
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be due to the presence of other dominant processes in 
the origin of these ions, which has been explained in the 
earlier sections.

Human health risk assessment (HRRA)

The groundwater quality assessment in the earlier section 
shows that the concentration of fluoride in 46% of the sam-
ples exceeded the Indian drinking water quality standard of 
1.5 mg/L. As there are higher concentration fluoride in the 

groundwaters, the non-carcinogenic impacts are likely to be 
dangerous in countries like India, Bangladesh, China and many 
more. In the HRRA, we have calculated the non-carcinogenic 
risk through drinking and dermal pathways. For the drinking 
pathways, chronic daily intake (CDI) has been calculated as 
per the standard procedure mentioned in the Sect. 3.4. Simi-
larly, the dermal pathway was evaluated using the dermally 
adsorbed Dose calculations. From these values the Hazard 
Quotient (HQ) and Hazard Index (HI) were derived. The 
detailed result for each sample is provided in Table 3.

Table 3   Human health risk assessment of fluoride in groundwater by Hazard Quotient and Hazard Index

Bold values indicate the range and average of the human health risk analysis

SI HQ (oral) H (dermal) Hazard Index (HI)

Male Female Child Male Female Child HI-male HI-female HI-children

1 0.794872 0.939586 1.074667 0.002111 0.002495 0.006613 0.796983 0.942081 1.08128
2 1.025641 1.212369 1.386667 0.002724 0.003219 0.008533 1.028365 1.215588 1.3952
3 0.891026 1.053246 1.204667 0.002367 0.002797 0.007413 0.893392 1.056042 1.21208
4 1.064103 1.257833 1.438667 0.002826 0.00334 0.008853 1.066929 1.261173 1.44752
5 0.448718 0.530411 0.606667 0.001192 0.001408 0.003733 0.44991 0.53182 0.6104
6 0.314103 0.371288 0.424667 0.000834 0.000986 0.002613 0.314937 0.372274 0.42728
7 0.634615 0.750153 0.858 0.001686 0.001992 0.00528 0.636301 0.752145 0.86328
8 0.011298 0.356133 0.407333 0.0008 0.000946 0.002507 0.012098 0.357079 0.40984
9 0.358974 0.424329 0.485333 0.000953 0.001127 0.002987 0.359928 0.425456 0.48832
10 0.596154 0.70469 0.806 0.001583 0.001871 0.00496 0.597737 0.706561 0.81096
11 0.429487 0.50768 0.580667 0.001141 0.001348 0.003573 0.430628 0.509028 0.58424
12 0.775641 0.916854 1.048667 0.00206 0.002435 0.006453 0.777701 0.919289 1.05512
13 0.455128 0.537989 0.615333 0.001209 0.001429 0.003787 0.456337 0.539417 0.61912
14 0.012981 0.409175 0.468 0.000919 0.001087 0.00288 0.0139 0.410261 0.47088
15 1.301282 1.538193 1.759333 0.003456 0.004085 0.010827 1.304738 1.542278 1.77016
16 0.647436 0.765308 0.875333 0.00172 0.002032 0.005387 0.649155 0.76734 0.88072
17 0.621795 0.734999 0.840667 0.001651 0.001952 0.005173 0.623446 0.736951 0.84584
18 0.333333 0.39402 0.450667 0.000885 0.001046 0.002773 0.334219 0.395066 0.45344
19 1.025641 1.212369 1.386667 0.002724 0.003219 0.008533 1.028365 1.215588 1.3952
20 0.013942 0.439484 0.502667 0.000987 0.001167 0.003093 0.01493 0.440651 0.50576
21 0.878205 1.038091 1.187333 0.002333 0.002757 0.007307 0.880538 1.040848 1.19464
22 1.205128 1.424534 1.629333 0.003201 0.003783 0.010027 1.208329 1.428316 1.63936
23 0.448718 0.530411 0.606667 0.001192 0.001408 0.003733 0.44991 0.53182 0.6104
24 0.307692 0.363711 0.416 0.000817 0.000966 0.00256 0.30851 0.364677 0.41856
25 0.512821 0.606185 0.693333 0.001362 0.00161 0.004267 0.514183 0.607794 0.6976
26 0.047837 1.507884 1.724667 0.003388 0.004004 0.010613 0.051225 1.511888 1.73528
27 1.025641 1.212369 1.386667 0.002724 0.003219 0.008533 1.028365 1.215588 1.3952
28 1.153846 1.363915 1.56 0.003065 0.003622 0.0096 1.156911 1.367537 1.5696
29 0.358974 0.424329 0.485333 0.000953 0.001127 0.002987 0.359928 0.425456 0.48832
30 0.314103 0.371288 0.424667 0.000834 0.000986 0.002613 0.314937 0.372274 0.42728
31 1.025641 1.212369 1.386667 0.002724 0.003219 0.008533 1.028365 1.215588 1.3952
32 0.033654 1.060823 1.213333 0.002384 0.002817 0.007467 0.036037 1.06364 1.2208
33 0.99359 1.174483 1.343333 0.002639 0.003119 0.008267 0.996229 1.177601 1.3516
Min. 0.011298 0.356133 0.407333 0.0008 0.000946 0.002507 0.012098 0.357079 0.40984
Max. 1.301282 1.538193 1.759333 0.003456 0.004085 0.010827 1.304738 1.542278 1.77016
Avg. 0.610703 0.835452 0.955562 0.001877 0.002219 0.00588 0.61258 0.837671 0.961442
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The health risk of drinking high fluoride groundwater is 
assessed for the three different age groups and shows that 
men are less affected than females and children, with a gen-
eral order of impact of male > female > children. The HQ 
for men varied between 0.01 and 1.3 with an average of 
0.6; for women, it varied between 0.35 and 1.53 with an 
average 0.83; and for children, it varied between 0.40 and 
1.76 with average of 0.95. In this study, the Hazard Quo-
tient from ingestion is prominent (HQ > 1) in 27% of the 
samples in males, 36% in females and 39% in children’s 
(see Table 4). The variation in the HQ values in adults and 
children were observed by many researchers from Tunisia 
(Guissouma et al. 2017), India (Adimalla et al. 2018), Iran 
(Radfard et al. 2018), China (Li et al. 2018). On the other 
hand, the HQ values based on dermal contact are well within 
the threshold value of 1 and there is no potential threat for 
human beings (please refer to Table 3 for details). Hazard 
Index (HI) values show the same trend as HQ fluoride as no 
potential impact via dermal activities has been found. In this 
study, we understand that the health impact is lowest for men 

and highest for children. The spatial variation map of HI for 
males, females and children is shown in Fig. 14.

Conclusions

Fluoride enrichment in groundwater and the possible 
human health risks (HHRA) were assessed using clas-
sic geochemical methods, multivariate and geostatistical 
methods. Groundwater was alkaline in all samples, Na and 
HCO3 were the dominant anion and TDS values varied from 
100 to 3544 mg/L, suggesting a significant impact from the 
anthropogenic activities. The fluoride concentration varied 
from 0.47 to 2.03 mg/L, with 46% of the samples exceeding 
1.2 mg/L. spatial map of fluoride is much higher in the N 
and NE regions compared to the central regions. Geology of 
the study area shows the influence of F-minerals like fluo-
rite, mica and amphibole etc. on F levels. However, the con-
centration of Na, HCO3 and Ca in the groundwater greatly 
influenced the F-enrichment and its mobility in aquifer 
matrix. Anthropogenic influences on F-concentration stud-
ied with F vs NO3 plot, showed a positive relation in some 
samples referring to brick and fertilizer industries in the 
area. Geochemical modelling shows that the groundwater is 
under-saturated with fluorite and over-saturated with calcite, 
aragonite and dolomite. It is agreeing with the results of geo-
chemical analysis. PCA showed four significant components, 
together explaining 87% of the total variance in the data. 
PC1 had 53.3% of the variance, with higher loading for EC, 
Ca, Mg, Na, Cl, SO4, and NO3, representing mixed natural 

Table 4   Details of the HQ and HI values exceeding standard value

HQ-oral > 1 HQ-dermal > 1 HI > 1

Men 9 (27%) 0 9 (27%)
Women 12 (36%) 0 12 (36%)
Children 13 (39%) 0 13 (39%)

Fig. 14   Spatial variation maps of Hazard Index (HI) for males, females and children
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and anthropogenic processes. Factor loading of PC2 (pH and 
carbonates), PC3 (K and HCO3) and PC4 (F−), respectively. 
Thus, PC4 exclusively identified as the geogenic influence 
on enrichment of F. Exposure risk were calculated with Haz-
ard Quotient (HQ) and Hazard Index (HI). The dermal path-
way does not pose any non-carcinogenic risk, but the HQ 
of ingestion poses threats (HQ > 1), in 27% of males, 36% 
of females and 39% of children. Since the HQ for dermal 
pathways is negligible, the HQ for ingestion is equal to the 
HI. The influence of fluoride is severe in children, thus need 
special care with respect to fluoride contamination.
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