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Abstract: Marine mammals are sentinels for the marine ecosystem and threatened by numerous
factors including infectious diseases. One of the most frequently isolated bacteria are beta-hemolytic
streptococci. However, knowledge on ecology and epidemiology of streptococcal species in marine
mammals is very limited. This review summarizes published reports on streptococcal species,
which have been detected in marine mammals. Furthermore, we discuss streptococcal transmission
between and adaptation to their marine mammalian hosts. We conclude that streptococci colonize
and/or infect marine mammals very frequently, but in many cases, streptococci isolated from marine
mammals have not been further identified. How these bacteria disseminate and adapt to their specific
niches can only be speculated due to the lack of respective research. Considering the relevance of
pathogenic streptococci for marine mammals as part of the marine ecosystem, it seems that they have
been neglected and should receive scientific interest in the future.

Keywords: streptococci; infectious diseases; marine mammals

1. Introduction

The marine ecosystem is challenged by numerous factors such as anthropogenic
pollution including wastewater [1,2], plastic [3], chemical [4,5], and noise pollution [6],
fisheries and prey depletion [7,8], offshore-construction [4], shipping [9,10], harmful algal
blooms [11,12], climate change, and acidification [13–17]. Marine mammals are considered
sentinels for the marine ecosystem [18–20] and, thus, the assessment of their health status
should be of global interest and importance. Cumulative effects caused by different
anthropogenic activities (e.g., pollution of the environment with PCBs, PBDEs, microplastic)
can have suppressive effects on the immune system of marine mammals and this might
result in a higher susceptibility for infectious diseases [21–24]. There are a number of
studies indicating a higher prevalence of or risk for infectious disease in correlation with
those (anthropogenic induced) threatens. For instance, in a recent study, microplastic
was found in each of 50 tested animals belonging to 10 different marine mammal species.
Furthermore, animals that died due to infectious diseases showed a slightly higher amount
of microplastic in the intestines [3]. Sanderson and Alexander [17] found that climate
related factors such as sea surface temperature have a significant effect on the occurrence of
infectious disease-induced mass mortality events. In another study, the risk for infectious
disease mortality increased by 2% for each 1 mg/kg increase of polychlorinated biphenyls
(PCBs) in the blubber of harbor porpoises [25].

Infectious diseases are one of the most frequent causes of death in marine mam-
mals [26–33] and beta-hemolytic streptococci are frequently isolated and associated with
disease [26,30,31,34–37]. The genus Streptococcus belongs to the family Streptococcaceae, the
order Lactobacillales, the class Bacilli, and the phylum Firmicutes. Streptococci are non-motile,
Gram-positive, catalase-negative, non-spore forming, and chemo-organotrophic with a
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fermentative metabolism [38,39]. They appear as ovoid cocci in pairs or chains and can be
classified by their ability to cause different forms of hemolysis and their serologically active
antigens according to the Lancefield classification scheme. Most of the currently described
79 streptococcal species are summarized in groups based on their 16S rRNA sequence, their
pathogenic potential and specific characteristics. The pyogenic group includes human and
animal pathogens, while the anginosus, mitis and salivarius groups also include commensals
of the oral cavity and pharynx of humans, which, however, can also cause disease, such as
endocarditis. Members of the mutans group colonize tooth surfaces and the bovis group
contains members of the colon microflora [38–41].

Pathogenic streptococci can express a large arsenal of virulence(-associated) factors,
such as exotoxins and enzymes, antiphagocytic hyaluronic acid containing capsule, host
matrix protein binding surface proteins complement evasion factors, and, last but not least,
antiphagocytic M- and M-like proteins [42–44].

However, the etiology and pathogenicity of streptococci to marine mammals are
largely unknown. There is some debate as to whether streptococci are primary or oppor-
tunistic pathogens [34,45–49]. This discussion is further hampered by the lack of species
identification in many reports. On the other hand, new species are regularly found in
marine mammals such as S. halichoeri [50], S. marimammalium [51], and S. phocae [34].

Besides, some streptococcal species are known as zoonotic agents [52]. For instance,
human meningitis was acquired as zoonoses from S. equi subsp. zooepidemicus after contact
with domestic animals [53]. S. suis, a commensal and opportunistic pathogen of pigs, is
also known to cause infections in humans [54,55]. S. canis and S. iniae are also zoonotic
pathogens [56–58]. Thus, the ubiquitous distribution and zoonotic potential of streptococcal
species represents a global health risk for animals and humans.

This review attempts to summarize what is currently known about streptococcal
species detected in marine mammals and discusses important issues that deserve more
attention in future research.

2. Streptococcal Findings in Marine Mammals

To the best of our knowledge, 10 streptococcal species were isolated and identified
more than once from 23 species of Pinnipedia and Cetaceae worldwide (Figure 1, Supple-
mentary Table S1).

2.1. Streptococcus agalactiae

S. agalactiae, also known as a bovine and human pathogen [59–61], was isolated from
a wound and navel infection of grey seals (Halichoerus grypus) in North Rona in 1985 and
1986 [62] and from lesions of fight wounds, pneumonia, lymphadenitis as well as from
lung and spleen samples of Antarctic fur seals (Arctocephalus gazella) from 1984–1987 on
Bird Island, South Georgia [63]. Later, it was isolated from lesions and visceral organs
(liver and lung) of a captive common bottlenose dolphin (Tursiops truncatus) that suffered
from fatal necrotizing fasciitis and myositis [64]. One year later, the isolation of S. agalactiae
from epaxial muscles of a wild stranded bottlenose dolphin was reported [65]. This strain
caused 90% mortalities in tilapia in experimental infections and showed high similarity
with strains associated with mullet kill in the concurrent Kuwait Bay. A mullet was
found in the stomach of the dead dolphin, which might have served as a possible way
of transmission. A study of human S. agalactiae strains from fish, seals, a dolphin, and a
frog indicated zoonotic and anthroponotic hazard by causing severe disease in fish and
compromising food security [66]. Between 2012 and 2014, S. agalactiae was isolated from a
stranded grey seal on the British coast with ocular pathology [67]. In the Waikiki Aquarium,
Honolulu, Haiwaii, S. agalactiae was isolated from two male healthy Hawaiian monk seals
(M. schauinslandi) as part of their aerobic bacterial flora in the nasal cavity [68].
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Figure 1. Occurrence of streptococcal species described in different marine mammals. Streptococcal species that have been
isolated and identified at least twice in pinnipeds (A) and cetaceans (B). (C) shows a world map indicating location of
streptococcal species detected in marine mammals.

S. agalactiae is also known as serious fish pathogen [69–71]. In Brazil, high virulent
strains were isolated from diseased Nile tilapia and transmission occurred by direct contact
or through water [70]. Infection experiments confirmed the disease and revealed low LD50
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for Nile tilapia. However, isolates from cattle did not cause any clinical signs in Nile tilapia
and channel catfish indicating host specification and adaptation [72]. Human and bovine
strains of S. agalactiae were able to cause disease in Nile tilapia, although there was no
genetic relatedness of strains from fish, bovine, and human origin [73]. This suggests
that the ability to cross host-specific barrier is not necessarily reflected by genetic linkage.
Virulence gene profiling of S. agalctiae isolated from diseased tilapia in Thailand revealed a
positive correlation of virulence genes content and pathogenicity [74]. Virulence genes for
adhesion, invasion, and immune evasion were identified. Another study demonstrated
that there were fish-specific genes or loci that were associated with disease in fish, while
strains missing these regions were not able to cause morbidity in tilapia [75]. In addition,
these fish-specific genes were mainly clustered in regions with signatures of mobile genetic
elements and one fish-specific gene was found in the region, where the virulence genes rib
or bca are in the human strain indicating genetic adaptation to the fish host.

2.2. Streptococcus bovis

S. bovis has been isolated from the gastrointestinal tract and feces of cattle, sheep,
goats [76], and dogs [77]. It has also been identified as human pathogen associated with
endocarditis [78], meningitis [79], septic arthritis [80], bacteremia, and gastrointestinal
disease [81]. Virulence factors associated with S. bovis infection were, for instance, ex-
tracellular proteins [82] and antigens [83]. S. bovis was detected in fur seals with pneu-
monia that was characterized by extensive polymorphonuclear infiltrations and necrosis
or very widespread abscess formation and, frequently, by additionally fibrinous exuda-
tive pleurisy [63]. Together with S. phocae and S. canis it was also isolated from dead
herpesvirus-positive harbor seal pups at the Smith Island, Washington [32]. A monk seal
pup (Monachus monachus) found on the island Deserta Grande, Portugal died due to sep-
ticemia and S. bovis was isolated and considered as a potential causative agent [84]. In 2006,
S. bovis isolation (together with S. equisimilis/mitis) from free-ranging bottlenose dolphins
that were captured, sampled, and released in coastal Gulf of Mexico and Atlantic ocean
waters was reported [85].

2.3. Streptococcus canis

S. canis was first isolated from cows with mastitis and from dogs with different
pathological findings [86], but can also cause infections in humans [56,57,87]. It has also
been isolated from minks [88], feral cats [89] and cats [90]. Its virulence and pathogenicity
were confirmed by the presence of virulence genes such as for fibronectin-binding protein,
M proteins, protective antigen, and streptolysin [91–94]. The M protein of S. canis has also a
high-affinity immunoglobulin G binding activity, which is not species-specific and facilitate
S. canis to interact with different hosts [95].

A beta-hemolytic Streptococcus sp., biochemically similar to S. canis, was cultured from
pyogranulomatus lesion of the laryngeal cartilages and epiglottis of an adult harbor seal
(Phoca vitulina) [27]. S. canis was also isolated from peritoneal effusion of a captive California
sea lion (Zalophus californianus) of the US Navy’s marine mammal program [96] and from a
California sea lion with bilateral corneal ulceration of the London Zoo, UK [97]. During an
increased mortality among South American fur seal (Arctocephalus australis) pups on Guafo
Island, Chile, South America, S. canis together with S. marimammalium were isolated and
associated with moderate to marked, multifocal, mucopurulent bronchopneumonia [98].
In August 1994, S. canis (and also S. phocae, S. equi subsp. zooepidemicus) was isolated
from spleen, liver, and kidney of Cape fur seals (Arctocephalus pusillus pusillus) at Cape
Cross, Namibia that suffered from respiratory infections and abortions associated with
starvation [99]. Seven cases of stranded harbor porpoises (Phocoena phocoena) in England
and Wales between 1990 and 1996 had a S. canis septicemia, which was isolated from
lungs with pulmonary abscesses and enlarged pulmonary associated lymph nodes [100].
S. canis (together with S. phocae) was cultured from blood and lung samples of a dead,
stranded Northern fur seal (Callorhinus ursinus) with necrotizing and fibrinous pneumonia
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infiltrated by band neutrophils with intraluminal abscess of bronchi at the coast of Niigata,
Japan [46]. In 2005, the isolation of S. canis from two dead harbor seal pups on Smith Island,
Washington was reported [32,101]. One died from omphalophlebitis and the other from
omphalitis with subsequent peritonitis. S. canis was also isolated from the oral cavity of a
male, healthy Hawaiian monk seal of the Waikiki Aquarium, Honolulu, Hawaii [68].

2.4. Streptococcus dysgalactiae

S. dysgalactiae subsp. equisimilis, previously known as S. equisimilis [102] and found
in humans [103] and different animals such as dogs, cows, pigs, and horses [104], was
isolated from Antarctic fur seal pups with septicemia and rhinitis in South Georgia, UK
between 1979–1982 [105] and 1986 from a grey seal cow on North Rona, Scotland [62]. In
the years 1988 and 1989, an increased number of harbor porpoise carcasses was observed
in North and Baltic Seas [36]. Thirty-five isolates of beta-hemolytic streptococci were
classified in Lancefield group L and identified as S. dysgalactiae subsp. dysgalactiae. In 1997,
S. dysgalactiae and S. dysgalactiae subsp. equisimilis isolates were found in a dead, wild monk
seal pup in association with a septicemia on the island Deserta Grande, Portugal [84]. Three
isolates identified as S. dysgalactiae subsp. dysgalactiae were obtained from phocid seals
(harbor and grey seals) stranded in the North and Baltic Seas between 1995 and 2000 [106].
Between 2005–2011, pathologic and microbiological findings of a southern right whale
(Eubalaena australis) calf from Brazil indicated that beta-hemolytic S. dysgalactiae septicemia
was responsible for the death of the animal [107].

2.5. Streptococcus equi

S. equi causes infections in horses [108] and was associated with canine infectious
respiratory disease [109]. A systemic infection with S. equi in a horse handler has also
been reported [110]. Further studies confirmed the zoonotic potential of S. equi [53,111]. In
November 1978, a female North Atlantic pilot whale (Globicephala melaena) suffering from
bronchopneumonia with lesions stranded on Metis Beach, Canada and S. equi (no further
identification) was isolated from lung parenchyma, pharynx, and pericardial fluid [35].
A study from 1980 reported the isolation of S. equi subsp. zooepidemicus (previously S.
zooepidemicus) from grey seals associated with mild, purulent pneumonia [49]. In 1994, it
was isolated from the conjunctiva and trachea of two adult female Cape fur seals that had
septicemic S. phocae in Namibia [99]. A total of 32 beta-hemolytic streptococcal isolates,
collected during the phocine distemper outbreak in 2002 from 28 different harbor seals
of the German North Sea, were identified as S. equi subsp. zooepidemicus [112]. Later, the
same scientists isolated the same or at least very close related strains of S. equi subsp.
zooepidemicus from grey seals and other harbor seals [113]. A retrospective study on
42 dead bottlenose dolphins from the US Navy Marine Mammal Program during 1980–
2010 demonstrated an association of the isolation of S. equi subsp. zooepidemicus with
pneumonia [114]. 16S rRNA sequences for S. equi (and S. phocae) were found in blow
samples collected from four wild healthy Indo-Pacific bottlenose dolphins (T. aduncus) in
Shark Bay (SB), Western Australia, in 2012 [115].

2.6. Streptococcus halichoeri

S. halichoeri, characterized as non-hemolytic and classified in Lancefield group B, was
first isolated from dead grey seals in Iverness and Cornwall, UK [50] and few years later,
in 2012, also from the kidney of a stranded, female Stellar sea lion (Eumetopias jubatus) in
South Korea [116]. Also, in 2012, a severe case of a human infection with S. halichoeri was
reported [117]. The patient had no contact to seals, but to fish, which could have been
a possible transmission route. However, this was not tested. Another human infection
was reported in 2018, where a man suffered from skin cellulitis due to S. halichoeri [118].
Shewmaker et al. [119] compared human and seal strains and concluded two subspecies
S. halichoeri subsp. halichoeri for the seal isolates and S. halichoeri subsp. hominis for strains
associated with human infections. The core genome of 20 S. halichoeri isolates from different
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hosts including dogs and minks contained 19 different streptococcal virulence factors, of
which most were associated with adherence followed by proteases and toxins emphasizing
its pathogenic potential [120,121].

2.7. Streptococcus iniae

S. iniae was described as new species in 1976, when it was first isolated from a captive
Amazon freshwater dolphin (Inia geoffrensis) suffering from a dermatologic syndrome called
“golf ball disease” in the Steinhart Aquarium, San Francisco, USA [122]. Further isolates
were obtained from captive freshwater dolphins housed at the Niagara Falls Aquarium in
New York, USA two years later [123], and in 1983 from a captive Amazon River dolphin
at the Pittsburgh Zoo, USA that also developed the “golf ball disease” [124]. In 2015, a
common dolphin died due to bacterial septicemia at Beijing aquarium, China, where S. iniae
was isolated from hilar lymph nodes and pancreas of the dolphin [125].

S. iniae is also a serious fish pathogen [58,126]. Virulence mechanisms include a cap-
sule with antiphagocytic function [127], the cytotoxin ß-hemolysin streptolysin S [128], an
extracellular nuclease and s secreted nucleotidase that play an important role in immune
evasion [129], a polysaccharide deacetylase involved in adherence, invasion, lysozyme
resistance and survival in fish blood [130], and M-like protein [131]. Comparative genomics
revealed genetic differences between strains from different hosts including I. geoffrensis and
identified two plasticity zones that reflect adaptation to specific host environments [132].
Furthermore, the dolphin isolates differed from the fish and human isolates in lacking
a capsule, forming denser and thicker biofilms, increased ability to withstand oxidative
stress and were genetically highly divergent to the other isolates [133]. In addition, there
were conserved mutation rates and mismatch/oxidized-guanine repair systems within
phylogenetic clades, but significant differences between major phylogenetic lineages. Mu-
tators might facilitate adaptation to novel hosts including immune escape. This indicates
that S. iniae has the genetic repertoire to adapt very well to many different hosts.

2.8. Streptococcus marimammalium

S. marimammalium was first isolated from the lung of a dead harbor seal and a dead
grey seal in Iverness, Scotland [51]. In 2007/2008, it was also isolated (together with S.
agalactiae and S. canis) from nasal and oral swabs of two healthy Hawaiian monk seals from
the Waikiki Aquarium, Honolulu, Hawaii [68]. In 2016, it was also isolated from South
American Fur Seal Pups with moderate to marked, multifocal, mucopurulent bronchopneu-
monia on Guafo Island, Chile, South America [98]. To our knowledge, nothing is known
about virulence factors and pathogenicity of S. marimammalium.

2.9. Streptococcus mitis

S. mitis is mainly known as member of the human oral cavity [134,135] and as op-
portunistic pathogen causing endocarditis and bloodstream infections in neutropenic and
immunocompromised patients [136–138]. It is closely related to the human pathogen
S. pneumoniae and its genome contain virulence genes involved in colonization and ad-
herence, which might also be important for commensals to interact with host cells [139].
However, genes for hyaluronidase and capsular genes were absent.

S. mitis was isolated in 1985 from a blowhole swab of a captive, healthy white whale
(Delphinapterus leucas) 139 days after captivity at the Mystic Marinelife Aquarium Con-
necticut, USA [140]. In 1985, it was isolated from lesions of a grey seal with peritonitis in
North Rona, Scotland [62] and between 2012–2014 from clinically normal eyes of two grey
seals stranded on the British coast [67]. These findings suggest that S. mitis might also be a
commensal in some marine mammals. The commensalism and pathogenesis of S. mitis is
reviewed by Mitchel, 2011 [141].
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2.10. Streptococcus phocae

S. phocae was first isolated and identified from lung, liver, spleen, and kidney samples
of harbor seals suffering from pneumonia with areas of consolidation, purulent exudate
in the bronchi, interlobular edema, and emphysema during a phocine distemper virus
outbreak in northwestern Europe [34]. Later, S. phocae was also isolated from diseased
Atlantic salmon [142,143], stranded southern sea otters [144], and as gut commensal of
Indian white shrimp [145]. Two subspecies are described, S. phocae subsp. salmonis for
isolates from Atlantic salmon and S. phocae subsp. phocae for isolates from seals [146].

In August 1994, beta-hemolytic streptococci with high similarity to S. phocae were iso-
lated from spleen, liver, and kidney of Cape fur seals at Cape Cross, Namibia that suffered
from respiratory infections and abortions [99]. A total of 69 S. phocae isolates were obtained
from harbor and grey seals from the North and the Baltic Sea investigated between 1995
and 2000 [106]. A study on phocid seals (harbor and grey seals) that were older than 19
months from the North Sea of Schleswig-Holstein, Germany reported two S. phocae isolates
from intestines of phocid seals with intestinal displacements [147]. During diagnostic eval-
uation by the Animal Health Center, Abbotsford, British Columbia, Canada S. phocae was
isolated from harbor seals with an increase of prevalence since 2000, ringed seal (P. hispida)
pups from arctic Canada and two stranded harbor porpoises from Washington State [48].
In spring and summer 2000, more than 10,000 Caspian seals (Pusa caspica) were found
dead with canine distemper virus infection as primary diagnosis [47]. The investigated
animals suffered from broncho-interstitial pneumonia, lymphocytic necrosis and deple-
tion in lymphoid organs, and the presence of typical intracytoplasmic inclusion bodies in
multiple epithelia. S. phocae was isolated from three of eight animals. Between 2001 and
2003, vaginal and preputial swabs of California Sea Lions were collected for investigations
of genital bacterial infections and urogenital carcinoma [37]. S. phocae was isolated from
three specimen of cancer and three specimens of non-cancer animals stranded along the
central and northern California coast. In November 2007, a short-beaked common dolphin
(Delphinus delphis) stranded at La Graciosa, Canary Islands [45]. Diagnostic evaluation
revealed bacterial septicemia, fibrino-necrotizing to pyogranulomatous dermatitis and pan-
niculitis, embolic pneumonia, neutrophilic and lymphoplasmacytic meningo-choroiditis,
random neutrophilic hepatitis, lymphoplasmacytic myocarditis and epicarditis, necrotiz-
ing adrenalitis, suppurative endometritis, and multicentric reactive lymphadenopathy
cutaneous purulent nodules in the tail fluke, vegetative mitral valve endocarditis, and
presumed postpartum pyometra. S. phocae could be cultured from lung, brain, and adrenal
gland tissue. Morbillivirus was detected in the epithelium of the choroid plexus of the
fourth ventricle. In November 2009, a female spotted seal (Phoca largha) stranded at Kotze-
bue Sound, Alaska and was diagnosed with pyometra [148]. S. phocae was isolated from
the purulent discharge in uterine contents. Three Navy bottlenose dolphins (T. truncatus)
developed in the time between 2009 and 2010 a strangles-like syndrome associated with
S. phocae, which was isolated after the animals showed clinical signs such as inflammatory
hemogram, neutrophilic leukocytosis, and unilateral cervical lymphadenopathy [149]. Be-
tween 2004 to 2010 S. phocae could be isolated from five harbor seal pups of the Smith Island
in Washington, USA that were also tested positive for phocine herpes virus [32]. S. phocae
was also isolated from five cases of bacterial septicemia of white whales stranded in St.
Lawrence Estuary between 1983 to 2012 [33]. Necropsy of a total of 241 harbor porpoises
stranded at the eastern Pacific and western Atlantic coasts of Canada between 1988 to 2011
revealed bacterial septicemia with S. phocae isolation [150]. In winter 2012, an adult female
Stellar sea lion stranded in South Korea and S. phocae was cultured from the liver [116]. The
cause of death was unknown. During 85 postmortem investigations of marine mammals of
the northeastern Pacific and arctic Canada stranded between 2007–2012 resulted in S. phocae
isolates from harbor seals (n = 61), ringed seals (n = 5), harbor porpoises (n = 5), California
sea lion (n = 7), Stellar sea lion (n = 3), Guadalupe fur seal (Arctocephalus twonsendii, n = 1)
and elephant seal (Mirounga angustirostris, n = 1) [151]. Sequencing of 16S rRNA V4 hyper
variable regions of blow samples collected from four wild healthy Indo-Pacific bottlenose
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dolphins (T. aduncus) in Shark Bay (SB), Western Australia, in 2012 identified S. phocae (and
S. equi) [115]. In February 2014, S. phocae was isolated from a carcass of a subadult male
northern seal at the coast of Niigata, Japan that suffered from necrotizing and fibrinous
pneumonia with diffuse abscesses of all lung lobes and massive necrosis of kidney and
liver [46]. Between 2010 to 2017 the health of captive and stranded Alaskan ice seals were
investigated and S. phocae isolates were obtained from blood, abscess, and lymph node
samples from ringed seals [152]. Harbor seals stranded at the coast of San Juan County,
Washington, USA between 2002 to 2018 were examined and from one adult female animal
a fatal septicemia caused by S. phocae was reported [153].

While the presence of an antiphagocytic capsule and virulence of S. phocae subsp.
salmonis to Atlantic salmon has been demonstrated in infectivity experiments [142,154,155],
whole genome analyses of S. phocae subsp. phocae identified typical streptococcal virulence
factors such as fibronectin-binding proteins, the toxin streptolysin S and genes encoding
for a capsule [156]. Invasion of fish and mammalian cell lines by S. phocae subsp. phocae
has also been shown and confirmed its pathogenic potential [154].

However, S. phocae subsp. phocae also seems to be a commensal of the oral cavity of
grey seals as revealed by microbiome analyses and 16S rRNA sequencing. A transmission
of S. phocae to harbor porpoises via bites is also indicated [157] and S. phocae might be an
opportunistic pathogen, at least for seals.

2.11. Streptococcus viridans Group

In very few studies, streptococci isolated from marine mammals were identified as
members of the S. viridans group (viridans streptococci), which includes streptococci that are
usually alpha-hemolytic and inhabit the oral cavity, intestinal, and vaginal tract [158–160].
This group is very heterogeneous and includes species such as S. anginosus, S. mitis, S. san-
guinis, S. mutans, and S. salivarius, which can also cause endocarditis [161], bacteremia [162],
and respiratory infections [163].

Viridans streptococci were isolated from superficial abscesses, wounds, ocular and
urethral discharges, and umbilici of live and from lung and liver samples of dead elephant
seals, California sea lions and harbor seals stranded between January 1994 and December
1995 along the California Coast [164]. Viridans streptococci were isolated in mixed cultures
with Arcanobacterium phocae from California sea lions, harbor seals, Northern elephant seals,
sea otter and common dolphin stranded along the central California coast between 1994
and 2000 [165]. In Beluga whales that stranded at Cook Inlet (Alaska, USA) between 1998
and 2013 an isolate was identified as member of the S. viridans group [166]. Also, viridans
streptococci were isolated from gastric fluid samples of free-ranging bottlenose dolphins
from the southeastern United States during a catch and release health assessment between
2003 to 2005 [167].

2.12. One-Time Only Detections of Streptococcal Species from Marine Mammals

In studies described above, streptococcal species have been isolated and identified at
least twice or more. In the following, reports on one-time only descriptions of streptococcal
species are summarized.

S. uberis was found in dead free-ranging male Antarctic fur seals with pneumonia
and extensive polymorphonuclear infiltrations and necrosis or very widespread abscess
formation and frequently there was an associated fibrinous exudative pleurisy [63]. S. oralis
was isolated and identified by API strips from three swabs taken from healthy eyes of
free-ranging grey seals stranded on the British coast between November 2012 and February
2014 [67]. In a metagenome dataset of blood, muscle, and fecal samples of a living stranded
sperm whale (Physeter catodon) S. anginosus, S. pneumoniae, and S. suis were detected in
blood and fecal samples, but not in the muscles [168]. The animal died 79 h after rescue.
S. intermedius was detected in blow samples of free-ranging and presumably healthy grey
whales from Magdalena Bay and the Gulf of California by polymerase chain reaction [169].
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3. Streptococcal Infections in Marine Mammals: Virulence and Mechanims
of Pathogenicity

Streptococci are a phylogenetically diverse group and, hence, their virulence and
infection mechanisms differ intensely. A general idea of streptococcal infection in (marine)
mammals is displayed in Figure 2. One important requirement for a successful infection is
the resistance of pathogenic streptococci to host phagocytosis. The major antiphagocytic
factors are the polysaccharide capsule, which is also the basis for serotyping [127,170–173]
and the streptococcal M protein of pyogenic streptococci [43,174]. The most critical phase
in infection is the adhesion of streptococci to host cells. This is enabled by pili and/or
adhesins such as fibronectin- and collagen-binding proteins and sortases [175,176]. It has
also been demonstrated that streptococcal species are able to invade host cells [154,177,178]
and produce toxins such as streptolysin S and streptolysin O [179,180]. There are numerous
other virulence factors, for instance, streptokinases, secretory proteins that interacts with
host plasminogen [181], or peptidoglycan deacetylases that protects the bacteria from host
lysozymes [130,182]. To investigate the molecular mechanisms of streptococcal infection
in marine mammals, primary cell cultures of marine mammals are required that can be
infected and evaluated.

Many streptococci occur as opportunistic pathogens or as secondary infection [45,183–187].
This might also be the case for marine mammals. S. agalactiae, S. canis and S. marimammalium
were found in the nasal cavity of two captured, healthy Hawaiian monk seals (M. schauinslandi)
without any clinical signs [68]. A short-beaked common dolphin (Delphinus delphis) was
coinfected by Streptococcus phocae and cetacean morbillivirus indicating S. phocae as secondary
infection [45]. 16S rRNA sequencing of blow samples collected from four wild and healthy
Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western Australia identified S.
phocae, S. equi and Streptococcus Group D as members of the blow microbiome without clinical
signs [115].

Weakened or immunocompromised animals are more susceptible for infectious dis-
ease, even caused by opportunistic pathogens. The marine environment is threatened by
climate change [16,17], ocean acidification [13–15], and pollutants (5,6,22,24), which can
influence the immune system of marine mammals negatively [21–24]. This can result in an
increase of infectious disease, which might also be true for streptococcal species [23].

The development of an infectious disease depends on the successful infection of a
pathogen and on its virulence. This also includes the ability to evade host immune defense.
Streptococci have evolved many mechanisms of immune invasion. For instance, the pore-
forming toxin streptolysin O induces caspase-dependent macrophage apoptosis [188] and
the gene sets for streptolysin S, which is responsible for the beta-hemolysis, was also found
in S. phocae subsp. phocae [156]. The human pathogenic S. pyogenes can recruit and colonize
collagen type IV via surface-bound fibronectin, and the collagen fibers protect the bacterial
cells from opsonizing antibodies [189]. Proteins that interact with collagen were also found
in other streptococcal species including S. phocae [190]. Group A streptococci (e.g., S. pyo-
genes) can bind red blood cells by S protein for immune evasion [191]. In S. phocae subsp.
phocae, an immunoglobulin G degrading enzyme, called ideP, was identified, which cleaves
IgG of seals and thus, contributes to immune evasion [192]. Hence, streptococci that infect
marine mammals requires specific adaptation to their immune system, as only immune
evasion guarantee virulence and infection. The immune system of marine mammals is
similar to other (terrestrial) mammals regarding general mechanisms [193]. In grey seals,
the main type of immunoglobulin was IgG with two subclasses [194]. Furthermore, the
authors discussed whether the susceptibility for bacterial infections including streptococcal
infections in grey seal pups is related to the observed low values of IgG in pup serum in
comparison to the relatively high values in the colostrum. Immunoglobulin classes homol-
ogous to human IgG, IgM, and IgA were identified also in dolphins and sea lions [195]
indicating that streptococci face similar conditions and molecules when jumping from
terrestrial to marine mammals.
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Figure 2. Schematic representation of the infection of marine mammals with (opportunistic) streptococci.

One difference in streptococcal infection between marine and terrestrial mammals
could be the fact that plasminogen from marine mammals could be activated by human
plasma including urokinase, but not by streptokinase vaccine [196,197]. Moreover, it is
known that the genes for streptokinase of group A streptococci showed a high hetero-
geneity even in strains with the same serotype indicating immunological and chemical
differences [198]. We did not find any information on streptokinases in streptococci of
marine mammals and, hence, it can only be speculated if they just lost the gene or if there a
genetic variations reflecting host adaptability.

4. Adaptation of Streptococci to Marine Mammals

Many streptococcal species found in marine mammals are also present in terrestrial
mammals, although there are some physiological differences. That raises the question, to
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what extend and how these streptococci adapt to their specific marine host environments.
Since this has not been studied yet in any detail here, we can only speculate and discuss it.

The body temperature of marine mammals is comparable to that of terrestrial mam-
mals [199–203], thus, it does not require special adaptations. However, gas physiology and
rapid change in hydrostatic pressure during diving might be a challenge for the bacteria.
The hydrostatic pressure of seawater increases about 0.1 atmosphere per meter of depth. It
has been shown that hydrostatic pressure can influence the growth and viability of marine
and terrestrial bacteria negatively [204,205]. At least the closely related Lactococcus lactis
(previously S. lactis) was able to survive 500 atmosphere representing around 5000 m depth,
while many other bacteria including species of Bacillus, Clostridium, and Staphylococcus died
at pressure of 400 or less atmospheres [205]. In conclusion, streptococcal species and other
bacteria might not have a problem with the hydrostatic pressure that increases during
diving of marine mammals. However, bacteria of marine mammals, depending on which
body part they inhabit (e.g., skin, intestines, respiratory tract) and if they were acquired
from the marine environment, have to challenge the salinity of seawater. Seawater has
an average salinity of 3.5%, but salt tolerance of streptococcal species is usually tested at
6.5% NaCl and 40% bile salts, respectively, [34,142,206,207]. The salt tolerance of S. iniae
was tested at 2.0%, 4.0%, and 6.5% NaCl and growth was observed for the first two condi-
tions [122]. In addition, few S. thermophilus strains and S. uberis grow at 4.0% NaCl, but not
at 6.5% [208,209]. The fish pathogen S. parauberis is known to persist in seawater, probably
by switching to dormancy as a survival strategy [210]. Therefore, it is also possible for
other streptococcal species to persist and maybe even grow in seawater.

Streptococci infecting marine mammals often use the respiratory tract as port of entry
for colonization infection. Thus, it is likely that they have adapted to this special host niche.
Notably, the respiratory tract differs between terrestrial and marine mammals, e.g., in
anatomy, immune response, gas physiology (O2/CO2 exchange), humidity, and chemical
composition of the mucus. For instance, it has been shown that lung surfactant of pinnipeds
has higher amounts of anti-adhesive components compared to terrestrial mammals, which
probably supports alveolar opening after collapse during diving [211].

To our knowledge, there are no specific studies on genetic adaptation of streptococcal
species to their marine mammalian host. However, whole genome analyses of human and
fish/frog S. agalactiae strains revealed genetic adaptation to fish host by gene reduction
and different gene expression such as of virulence associated genes [212]. A comparative
genomic study of S. dysgalactiae species suggest that changes in gene content, selection of
orthologous protein-coding loci and operon promoters involving mobile elements enables
streptococci to adapt to changing environments and new hosts [213]. S. phocae subsp.
phocae showed host specificity by the immunoglobulin G degrading enzyme ideP that
solely cleaves IgG of grey and harbor seals, but not from harbor porpoises or non-marine
mammals indicating functional adaptation [192]. S. halichoeri is assumed to have marine
origin, although it has also been isolated from dog, bluefox, finnraccoon, and mink, as it has
a great number of adhesins and salt tolerance proteins [120]. Lateral gene transfer between
different streptococcal species is discussed as potential way of host adaptation [214]. For
instance, lateral gene transfer was observed between S. canis and human S. urinalis and
bovine S. agalctiae and S, dysgalactiae subsp. dysgalactiae mediated by variety of mobile
genetic elements. This might also be true for marine mammals, where streptococci adapted
to the marine mammalian host such as S. phocae might exchange genetic elements with
acquired streptococcal species from fish or other sources. Further studies are required
to understand the adaptation and interaction of streptococcal species and their marine
mammal host as there is a huge scientific gap.

5. Epidemiology and Possible Transmission Routes of Streptococci Species in
Marine Mammals

It is not known how marine mammals acquire or get infected with streptococci.
Studies on the ecology and the environment could provide some insights about possible
transmission routes and the epidemiology of streptococcal infections in marine mammals.
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In Figure 3, we give an overview about possible transmission routes and sources for
streptococcal species. With many social species among marine mammals, transmission of
pathogens are density- or frequency-dependent according to their social behavior [215,216].

Figure 3. Possible ways how streptococci are introduced into marine environments and how they may be transmitted to
and between marine mammals. Most indicated transmission routes are hypothetical based on general microbiological
observations. In the other cases, there are studies showing that the transmission route is very likely or even confirmed.
Hence, this figure displays scientific gaps that has still to be filled and where data are insufficient.

The diet, e.g., fish could serve as reservoir for (pathogenic) streptococcal species and
consequently as source of infection for marine mammals, which is also indicated by the
study of Evans et al. [65], where the same S. agalactiae strain was found in both a dead
dolphin and its diet, a mullet which was found in its stomach. S. iniae and S. agalactiae were
also isolated from wild fish indicating fish as potential source for streptococci [217,218].
In addition, S. halichoeri is supposed to be transmitted to mink and Finnish dogs via fed
fish [120]. S. phocae is also a well-known pathogen of Atlantic salmon [143]. However, the
fish isolates differ from isolates of marine mammals, which was also the reason to suggest
two subspecies of S. phocae [146]. The genetic differences could be a result of adaptation
from fish to the mammalian host.

Pathogenic streptococci and other bacteria could be introduced into seawater by
shipping traffic including ballast water [219,220], human activities including recreational
activity [221–225] and waste (water) [66,226–229] and from the terrestrial environment via
rivers and storm water [230,231], wind transport [232,233] or animals, e.g., semi-aquatic
mammals, such as pinnipeds, from which streptococci are frequently isolated. For instance,
human pathogenic S. agalactiae strains were identified in grey seals indicating that sea
mammals were exposed to human pathogens via human effluents that contaminate coastal
surface waters [66]. S. phocae has been found in the oral cavity of grey seals and in bite
wounds of harbor porpoises probably caused by grey seals suggesting an interspecies trans-
mission [157]. Seabirds can also shed pathogenic organisms into seawater [228,234,235] and
streptococci were also detected in the gastrointestinal tract of seabirds [236]. If these trans-
mission routes are real, streptococcal contamination and infections might increase with
increasing human activities including growing cities in coastal regions and higher rates
of shipping traffic, e.g., an increase of pollution and a higher likelihood of ship strikes or
fisheries interactions. In addition, with higher temperatures due to climate change the
persistence of pathogens in seawater is probably enhanced and, thus, there is a higher risk
of infection [17,215]. The mortality of tilapias due to S. agalactiae infection was increased in
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higher water temperature [237]. This could also be the case for marine mammals, but there
are no studies yet. In addition, habitat loss can enhance transmission by leading to higher
population densities with higher contact rates.

To our knowledge streptococci are no or not abundant members of the natural marine
microbiome [238]. This raises the question, where they come from. Nevertheless, strepto-
cocci that are introduced by the routes mentioned above might cause dermal disease or
enter marine mammals through open wounds and other traumata. Díaz-Delgado et al. [45]
proposed that the S. phocae infection in a short-beaked common dolphin occurred through
cutaneous penetration after a skin traumata, as the dolphin showed cutaneous disease
with firm, raised, and occasionally ulcerated purulent subcutaneous nodules along the
ventral, dorsal, and cranial edge of the caudal fluke, bilaterally, and more prominently at
its insertion with the peduncle.

However, studies on the distribution and presence of streptococci in healthy animals
including the screening of the environment are necessary to investigate possible transmis-
sion routes or confirm these streptococcal species as commensals or members of the normal
microbiome.

6. Conclusions and Outlook

Taken together, this is an overview about streptococcal species that were identified
in marine mammals. Streptococcal species play an important role in the health of marine
mammals all over the world. However, while beta-hemolytic streptococci are frequently
isolated from marine mammals, only relatively few isolates were further identified (to the
species level). There are further marine mammals from which (beta-hemolytic) strepto-
cocci have been isolated, but not identified to the species level, such as the blue whale
(Balaenoptera musculus) [239], the gray whale (Eschrichtius robustus) [239], the sperm whale
(Physeter macrocephalus) [240], the killer whale (Orcinus orca) [241], and the pacific walrus
(Odobenus rosmarus divergens) [242]. This scientific gap makes it difficult to evaluate the
diversity, distribution, and epidemiology of streptococcal species among marine mammals
and needs to be filled. In addition, while there are lineages of streptococcal species that are
quite host-specific, there are others that seem to have a more groad host spectrum and are
easily transmissible between different hosts. For instance, in addition to marine mammals,
S. canis can be found in dogs and cows [86], S. halichoeri in humans [119], and S. phocae
in Atlantic salmon [143] and shrimps [145]. For some of these species, subspecies were
defined based on their host-related differences such as S. phocae subsp. phocae and S. phocae
subsp. salmonis [146] or S. halichoeri subsp. halichoeri and S. halichoeri subsp. hominis [119].
Furthermore, some of the streptococcal species found in marine mammals are major fish
pathogens such as S. agalactiae [243], S. iniae [244], and S. phocae [143] and even zoonotic
infections are possible, but the lack of data does not allow clear risk assessments. S. iniae
caused infections in humans that handled live or freshly killed fish [58,245]. S. canis infec-
tions in humans are summarized by Galpérine et al. [56] and an endocarditis due to S. canis
has been reported by Ansallem et al. [246]. S. equi subsp. zooepidemicus is also known to
cause zoonotic disease in humans [53,247]. Hence, people working with marine mammals
should also be aware of the zoonotic potential of streptococcal species.

It is also not fully understood how the different streptococcal species are involved
in diseases of marine mammals, although they are frequently isolated from sick or dead
animals. With increasing chemical pollution and other anthropogenic activities in the
marine ecosystem, the health of marine mammals is threatened and thus, they are more
susceptible to infectious diseases. Hence, more research is needed on the epidemiology
and pathogenic potential of streptococcal species in marine mammals.

In conclusion, streptococcal species are isolated from many different marine mammal
species world-wide. Further investigations on the role of the different streptococci species
on the health status of marine mammals is urgently needed as streptococci are found with
high prevalence in diseased marine mammals. This also underlines the need of additional
information on the zoonotic potential of streptococci species found in marine mammals.
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