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1. Introduction

The anelastic Navier–Stokes system for stratified flows,{
ρ(∂tu + u · ∇u) + ρ∇p = Δu in Ω,

div(ρu) = 0 in Ω,
(1)

is derived as the limiting system of the compressible Navier–Stokes system after filtering out the acoustic
waves for strong stratified flows. Here the velocity field u and the pressure p are the unknowns while the
background density ρ is given as a time-independent, non-negative function. The rigorous derivation of
(1) can be found in [23]. Comparing to the incompressible Navier–Stokes system (see, e.g., [5,28]), the
main difference is the incompressible condition divu = 0 is replaced by the anelastic relation div(ρu) = 0
with the background density profile ρ, which represents the strong stratification owing to the balance of
the gravity and the pressure (see, e.g., [11]). Such an approximation preserves slight compressibility while
filtering out the acoustic waves, which significantly simplifies the original compressible Navier–Stokes
system, and enables more efficient computation applications to relevant model flows in physical reality.
In particular, the anelastic approximation is used to describe the semi-compressible ocean dynamics
(see, e.g., [7,8]), as well as the tornado-hurricane dynamics (see, e.g., [24,26]). We refer the readers to
[1,2,10,15–17,22,25] for related topics and comparisons of various models of the atmospheric and oceanic
dynamics.

We remark that the background density profile ρ in the anelastic relation div(ρu) = 0 is given by the
resting state ∇P (ρ) = ρg�ez, where P (ρ) denotes the pressure potential and g is the gravity acceleration.
For the sake of simplifying the presentation, we have choosed the gravity to point upwards, which can
be done after performing a vertical reflection of the coordinates. In the case when the flow connects to
vacuum continuously, the resting state yields a degenerate density profile. For an isentropic flow with
P (ρ) = ργ , γ > 1, this implies ργ−1 � z, referred to as the physical vacuum in the study of compressible
flows (see, e.g., [14,19]). The main characteristics of the physical vacuum is the Hölder continuity of
the background density profile, whose derivatives are singular at z = 0. While there are some recent
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developments in the global stability of background solutions to compressible Euler or Navier–Stokes
equations for one-dimensional or radial-symmetric flows (see, e.g., [12,13,20,21]), the corresponding multi-
dimensional problem is mostly open. On the other hand, after formally filtering out the acoustic waves by
sending the Mach number and the Froude number to zero at the same rate in the compressible Navier–
Stokes equations with physical vacuum, the resulting equations appear to be the aforementioned anelastic
system with ρ = zα, α = 1/(γ − 1) > 0.

In this work, we aim at studying the well-posedness issue of strong solutions to (1) in Ω := 2Tn−1 ×
(0, 1) = {�x = (x, z)} ⊂ R

n−1 × R = R
n, where n ∈ {2, 3} denotes the spatial-dimension. Specifically, we

will study system (1) with two kinds of density profiles:

non-degenerate case: inf
Ω

ρ > 0, and ρ is smooth in 2Tn; (2)

physical vacuum case: ρ = ρpv := zα(2 − z)α for some α > 3/2,

i.e., 1 < γ < 5/3. (3)

(See Remark 1, below.) After denoting the velocity field u by its horizontal component v and its vertical
component w, i.e., u = (v, w)�, where v is a scaler if n = 2 and a two-dimensional vector if n = 3, system
(1) is complemented with the following stress-free and non-permeable boundary conditions, respectively,

∂zv
∣∣
z=0,1

, w
∣∣
z=0,1

= 0, (4)

and initial data

u
∣∣
t=0

= uin = (vin, win)� =
(
η
∣∣
Ω
, ζ

∣∣
Ω

)� ∈ H2(Ω), (5)

where

η, ζ are even, odd in the z-variable, respectively,

and (η, ζ) ∈ H2(2Tn;Rn−1) × H2(2Tn;R).

Compatibility conditions for uin are given by,

∂zvin

∣∣
z=0,1

, win

∣∣
z=0,1

= 0, div(ρuin) = 0,

ρut

∣∣
t=0

= ρuin,1 := Δuin − ρuin · ∇uin − ρ∇pin ∈ L2(Ω),
(6)

where pin is the solution to the following elliptic problem
div(ρ∇pin) = divΔuin − div(ρuin · ∇uin),

∂zpin

∣∣
z=0,1

= 0,

∫
Ω

pin d�x = 0.
(7)

Hereafter, for any subscript s, we will alway use the letter vs to denote the horizontal velocity, ws to
denote the vertical velocity, and us to denote the velocity field, i.e., us = (vs, ws)�.

Remark 1. The meaning of (2) is that the non-degenerate profile ρ can be extended as a non-degenerate
and smooth function in 2Tn.

For highly condense cold matter, γ = 5/3, or α = 3/2, and the most physically interesting region is
γ ∈ (1, 5/3]. See [9,18]. Unfortunately, due to the techniques we used, the endpoint case is not included
in this paper.

On the other hand, one can replace ρpv in (3) with any density profile which satisfies the aforementioned
physical vacuum near z = 0 (i.e., ρ � zα near z = 0), and is smooth and non-degenerate at z = 1. The
requirement of smoothness and the non-degeneracy of the density profile at z = 1 is owing to technical
reasons.

Remark 2. An alternative candidate for the initial data can be taken as:

u
∣∣
t=0

= uin = (vin, win)� ∈ H2(Ω),

and Supp(vin), Supp(win) ⊂ 2Tn−1 × (δ, 1 − δ) for some δ ∈ (0, 1/4).
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In comparison to the Navier–Stokes system (see, e.g., [5]), the density profile interacts with the velocity
field. To explain this statement, let us forget about the boundary and consider (1) in 2Tn for a moment.
Also we assume the density profile ρ is non-degenerate and smooth. Let u be any smooth vector field,
and suppose that it can be decomposed, in analogy with the Helmholtz decomposition, as

u = uρ,σ + ∇φ,

where div(ρuρ,σ) = 0, and φ is a smooth function. One can see that uρ,σ and ∇φ are orthogonal in
L2(ρ d�x), i.e., the square-integrable space with respect to the measure ρ d�x, where d�x is the Lebesgue
measure. Then one can easily see that, the Hs–regularity of uρ,σ, s ≥ 1, depends not only on the regularity
of u, but also on that of ρ. Such an interaction of ρ in the Hs-regularity estimates causes the main difficulty
in the study of strong solutions. As one will see later, one will need to consider the interaction of the
pressure term ρ∇p with the nonlinearity term ρu ·∇u as well as the viscosity term Δu. We take advantage
of the regular density profile in (2), and consider an associated problem in 2Tn, whose solutions satisfies
(1) in Ω. Then we employ an elementary approach in the Galerkin’s approximation which takes into
account the aforementioned interactions. After studying the regularity, we restrict our solutions back to
the original domain Ω and obtain a unique strong solution to (1) with (4) in the non-degenerate case,
i.e., (2).

To deal with the physical vacuum profile in (3), we approximate the problem with a sequence of non-
degenerate profiles in the class of (2). The existence theorem in the non-degenerate case yields a sequence
of approximating solutions. Then we derive the necessary uniform weighted estimates. To handle the
physical vacuum density profile, the desired strong solutions to (1) in the physical vacuum case, i.e.,
(3), are constructed as the limit of the approximating sequence. However, the solutions that we obtain
lack regularity on the boundary {z = 0}, due to the weighted estimates. In particular, the solutions are
not regular enough to have trace of ∇u on {z = 0}, which causes troubles when one try to show the
uniqueness of solutions. We employ the arguments originated in [27] for the Navier–Stokes system to
establish the uniqueness of strong solutions.

Next, we sum up the main theorems. The first theorem concerns the local well-posedness of strong
solutions to (1):

Theorem 1. Let ρ satisfy either (2) or (3). Consider initial data uin ∈ H2 satisfying (5) and (6). There
exists a unique strong solution (u, p) to (1) with (4) in [0, T ], for some T ∈ (0,∞). In the case of (2),
the strong solution satisfies the regularity:

u ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)),

∂tu ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

∇p ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

In the case of (3), the strong solution satisfies the regularity:

u,∇hu ∈ L∞(0, T ;H1(Ω)), u ∈ L2(0, T ;H1(Ω)),

ρpv∂zzu ∈ L∞(0, T ;L2(Ω)), ρ1/2
pv ut ∈ L∞(0, T ;L2(Ω)),

ut ∈ L2(0, T ;H1(Ω)), ρ2
pv∇p ∈ L∞(0, T ;L2(Ω)).

See Sect. 2 for the notations ∂zz,∇h etc..

We refer the detailed description of local well-posedness to Theorems 3 and 4, below. At the same
time, we also have the following theorem concerning global well-posedness of strong solutions:

Theorem 2. Under either one of the following conditions, the existing time of the local strong solutions
constructed in Theorem 1 becomes infinite:

1. n = 2;
2. n = 3, provided initial velocity uin satisfies, for ρ satisfying either (2) or (3),

‖ρ1/2uin‖2
L2 + ‖∇uin‖2

L2 + ‖ρ1/2uin,1‖2
L2 ≤ μ2,
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with some μ ∈ (0, 1), small enough.

Notice that, by taking ρ ≡ 1, Theorems 1 and 2 apply to the homogeneous Navier–Stokes equa-
tions (see, e.g., [28]). The compatibility conditions in (6) are similar to those in the study of the non-
homogeneous incompressible Navier–Stokes equations (see, e.g., [6]).

The rest of this work is organized as follows. In Sect. 2, we summarize the notations, definitions and
inequalities which will be used in this paper. In Sect. 3, we construct the local strong solutions to (1) with
the non-degenerate density profile. In Sect. 4, we consider (1) with the physical vacuum profile, when
the uniform estimates and approximation arguments are presented. These two sections finish the proof
of Theorem 1. In the last two sections, i.e., Sects. 5 and 6 , we employ some global a priori estimates,
which lead to the proof of Theorem 2.

2. Preliminaries

Throughout this paper, we use the following definition of strong solutions:

Definition 1. (Strong solutions) (u, p) is called a strong solution to (1) if system (1) holds almost every-
where in Ω.

We use the notation ∂x to denote the spatial derivative in the horizontal direction, i.e. derivative with
respect to x ∈ 2T, when n = 2, and x1, x2 for x = (x1, x2)� ∈ 2T2, when n = 3; the notation ∂z to denote
the spatial derivative in the vertical direction; the notation ∂t to denote the temporal derivative; us for
s ∈ {t, x, z} is short for ∂su; also us1s2 and ∂s1s2u for s1, s2 ∈ {t, x, z} are short for ∂s1∂s2u. divh,∇h,Δh

are used to denote the divergence, the gradient, the Laplace, respectively, in horizontal direction, i.e.

divh = ∂x, when n = 2, and divh = ∇h·, when n = 3,

∇h = ∂x, when n = 2, and ∇h =
(

∂x1

∂x2

)
, when n = 3,

Δh = ∂xx, when n = 2, and Δh = divh∇h, when n = 3.

In addition, we abuse the notation:∫
· d�x =

∫
Ω

· d�x, or
∫

· d�x =
∫

2Tn

· d�x, depending on the context.

Lp,Hk are used to denote Lp(Ω),Hk(Ω) or Lp(2Tn),Hk(2Tn), depending on the context.
Also, we summarize the symmetric-periodic extensions in the following:

Definition 2. (Symmetric-periodic extensions) For any smooth function f defined in Ω := 2Tn−1 × (0, 1),
one can extend it to an even function in Ω± := 2Tn−1 × (−1, 1), using the even-symmetric extension E+

s ,
defined by

E+
s f(x, z) :=

{
f(x, |z|), x ∈ 2Tn−1, z ∈ (−1, 1)\{0},

lim
z→0+

f(x, z), x ∈ 2Tn−1, z = 0.
(8)

In addition, if lim
z→0+

f(x, z) = 0, one can also extend f to a odd function in Ω±, using the odd-symmetric

extension E−
s , defined by

E−
s f(x, z) :=

⎧⎨
⎩

z

|z|f(x, |z|), x ∈ 2Tn−1, z ∈ (−1, 1)\{0},

0, x ∈ 2Tn−1, z = 0.
(9)
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Also, for any smooth function g defined in Ω±, one can extend it to a function in 2Tn using the
periodic extension Ep, defined by

Epg(x, z) :=

⎧⎨
⎩

g(x, z − 2k), (x, z) ∈ 2Tn\{z ∈ 1 + 2Z},
1
2

(
lim

z→1−
g(x, z) + lim

z→−1+
g(x, z)

)
x ∈ 2Tn−1, z ∈ 1 + 2Z,

k is the integer such thatz − 2k ∈ (−1, 1).

(10)

Then the even-symmetric-periodic extension operator is defined by

E+
spf := EpE

+
s f, f is a function defined in Ω. (11)

The odd-symmetric-periodic extension operator is defined by

E−
spf := EpE

−
s f, f is a function defined in Ω and f(0) = 0. (12)

To study (1) in the case of physical vacuum, i.e., (3), we will need to apply the following Hardy-type
inequalities:

Lemma 1. (Hardy-type inequalities) Let k �= −1 be a real number. Suppose that a function f ∈ C1([0, 1])
satisfies

∫ 1

0
(z+ε)k+2(|f |2(z)+|f ′|2(z)) dz < ∞. Then for some positive constant Ck ∈ (0,∞), independent

of ε ∈ (0, 1), one has
1. for k > −1, ∫ 1

0

(z + ε)k|f(z)|2 dz ≤ Ck

∫ 1

0

(z + ε)k+2(|f(z)|2 + |f ′(z)|2) dz; (13)

2. for k < −1, ∫ 1

0

(z + ε)k|f(z) − f(0)|2 dz ≤ Ck

∫ 1

0

(z + ε)k+2|f ′(z)|2 dz. (14)

In particular, after taking ε = 0 in (13) and (14), one will arrive at the standard Hardy’s inequalities.

Proof. Inequality (13): k > −1. The mean value theorem guarantees that there is a z∗ ∈ [1/2, 1] such
that 2|f(z∗)|2 ≤ ∫ 1

1/2
|f(ξ)|2 dξ ≤ 2k+2

∫ 1

1/2
(ξ +ε)k+2|f(ξ)|2 dξ. Then applying the Fundamental Theorem

of Calculus and the Fubini’s theorem yields, since k + 1 > 0,∫ 1

0

(z + ε)k|f(z)|2 dz �
∫ 1

0

(z + ε)k

(∣∣∣∣
∫ z

z∗
f(ξ)f ′(ξ) dξ

∣∣∣∣ + |f(z∗)|2
)

dz

�
∫ 1

0

(z + ε)k

∫ 1

z

|f(ξ)||f ′(ξ)| dξ dz +
∫ 1

0

(z + ε)k dz

×
∫ 1

1/2

(ξ + ε)k+2|f(ξ)|2 dξ =
∫ 1

0

∫ ξ

0

(z + ε)k|f(ξ)||f ′(ξ)| dz dξ

+
1

k + 1
((1 + ε)k+1 − εk+1)

∫ 1

1/2

(ξ + ε)k+2|f(ξ)|2 dξ

�
∫ 1

0

(ξ + ε)k+1|f(ξ)||f ′(ξ)| dξ +
∫ 1

0

(ξ + ε)k+2|f(ξ)|2 dξ

� δ

∫ 1

0

(ξ + ε)k|f(ξ)|2 dξ + Cδ

∫ 1

0

(ξ + ε)k+2|f ′(ξ)|2 dξ

+
∫ 1

0

(ξ + ε)k+2|f(ξ)|2 dξ,

where δ > 0 is an arbitrary constant and Cδ = 1/δ. Then after choosing δ small enough, this finishes the
proof of (13).
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Inequality (14): k < −1. Without loss of generality, we assume f(0) = 0. Then, again, the Fundamental
Theorem of Calculus implies that |f(z)|2 =

∫ z

0
2f(ξ)f ′(ξ) dξ. Thus, since k + 1 < 0,∫ 1

0

(z + ε)k|f(z)|2 dz �
∫ 1

0

(z + ε)k

∫ z

0

|f(ξ)||f ′(ξ)| dξ dz

=
∫ 1

0

∫ 1

ξ

(z + ε)k|f(ξ)||f ′(ξ)| dz dξ

�
∫ 1

0

(ξ + ε)k+1|f(ξ)||f ′(ξ)| dξ �
(∫ 1

0

(ξ + ε)k|f(ξ)|2 dξ

)1/2

×
(∫ 1

0

(ξ + ε)k+2|f ′(ξ)|2 dξ

)1/2

.

Thus (14) follows. �

3. The Non-degenerate Case

Recall that our goal is to construct the local strong solutions to the anelastic Navier–Stokes equations,
(1), i.e., {

ρ(∂tu + u · ∇u) + ρ∇p = Δu in Ω,

div(ρu) = 0 in Ω,
(15)

with (4) in the case of non-degenerate background density profiles, i.e., (2). In fact, we will only need
infΩ ρ > 0 and

E+
spρ ∈ C3(2Tn). (16)

Recall that, Ω = 2Tn−1 × (0, 1), n = 2, 3.
Our strategy of constructing solutions is: first, we introduce a problem in 2Tn, which is associated with

(15); then we construct the solutions with enough regularity to the associated problem; by restricting
such solutions to the associated problem back in Ω, we obtain the required solutions to (15).

The following theorem is the main part of this section:

Theorem 3. Let ρ be a strict positive scalar function in Ω that satisfies (16). Consider initial data uin ∈
H2 satisfying (5) and (6). Then there exists a unique strong solution (u, p) to (15), with (4), in [0, T ∗],
for some T ∗ ∈ (0,∞). Moreover, the strong solution satisfies the following regularity:

u ∈ L∞(0, T ∗;H2(Ω)) ∩ L2(0, T ∗;H3(Ω)),

∂tu ∈ L∞(0, T ∗;L2(Ω)) ∩ L2(0, T ∗;H1(Ω)),

∇p ∈ L∞(0, T ∗;L2(Ω)) ∩ L2(0, T ∗;H1(Ω)).

Furthermore, the following estimates hold:

sup
0≤t≤T ∗

(‖u(t)‖2
H2 + ‖ut(t)‖2

L2 + ‖∇p(t)‖2
L2

)

+
∫ T ∗

0

(‖u(t)‖2
H3 + ‖ut(t)‖2

H1 + ‖∇p(t)‖2
H1

)
dt ≤ Cin,ρ,

(17)

where Cin,ρ ∈ (0,∞) depends only on the initial data uin and

inf
�x∈Ω

ρ(�x), ‖ρ‖C3(Ω) ∈ (0,∞).
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Also, one can choose p to satisfy

∂zp
∣∣
z=0,1

= 0, and
∫

Ω

p d�x = 0. (18)

In addition, let u1, u2 be strong solutions with initial data u1,in, u2,in, respectively. Then the following
estimate holds,

sup
0≤t≤T ∗

‖u1(t) − u2(t)‖2
L2 +

∫ T ∗

0

‖∇(u1(t) − u2(t))‖2
L2 dt

≤ Cin,1,2,T ∗‖uin,1 − uin,2‖2
L2 ,

(19)

where T ∗ ∈ (0,∞) is the co-existence time of the solutions, and Cin,1,2,T ∗ ∈ (0,∞) depends on the initial
data and T ∗.

Remark 3. We observe that conditions (6) and (16) are essential factors in Theorem 3. See Remarks 4
and 5, below.

In fact, we will only show the proof of Theorem 3 when n = 2. The case when n = 3 is similar and we
omit it for the sake of clarity of our presentation. The proof is done in the following steps: introducing
the associated problem via the symmetric-periodic extension; introducing the Galerkin approximating
problem; establishing existence of strong solutions; improving the regularity; establishing uniqueness and
continuous dependency on the initial data.

Step 0: the associated problem. We observe that system (15) is invariant with respect to the following
symmetry:

ρ, v, w, p are even, even, odd, even, respectively, (SYM)
with respect to the z-variable.

Recalling Ω = 2T × (0, 1), that is to say, by extending any solution (ρ, v, w, p) to system (15) to

ρ± := E+
s ρ, v± := E+

s v, w± := E−
s w, p± := E+

s p,

(ρ±, v±, w±, p±) satisfies the same equations as in system (15) in domain Ω± := 2T × (−1, 1).
Then the new system for the extended functions (ρ±, v±, w±, p±) is invariant with respect to transla-

tion z � z ± 2. Thus, we further extend (ρ±, v±, w±, p±) periodically in the z-variable by applying Ep to
(ρ±, v±, w±, p±). Combining these two extensions together, we obtain,

ρ∗ := E+
spρ, v∗ := E+

spv, w∗ := E−
spw, p∗ := E+

spp,

and (ρ∗, v∗, w∗, p∗) satisfies the same equations as in system (15) in domain 2T2.
Therefore, we end up with the same set of equations as in system (15) in periodic domain 2T2, and

for simplicity, the same notations ρ, v, w, p are used to denote ρ∗, v∗, w∗, p∗. Such a convention will be
adopted in the following. Then we have got the following system,{

ρ(∂tu + u · ∇u) + ρ∇p = Δu in 2T2,

div(ρu) = 0 in 2T2,
(15′)

with symmetry (SYM). We adopt initial data (E+
spvin,E−

spwin)� for (15′), which we will denote by the
same notation as the original initial data, i.e., (vin, win)�. Notice, the boundary conditions in (4) are
automatically implied by symmetry (SYM). In the next step, a Galerkin approximating procedure will
be used to construct solutions to (15′).
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Step 1: The Galerkin approximating problem. Given any non-negative integer m, we consider the finite
dimensional space, denoted by Xm and defined as follows:

Xm :=

{
(vm, wm, pm)|vm =

∑
k∈Zm

av
keπik1x cos(πk2z),

wm =
∑

k∈Zm

aw
k eπik1x sin(πk2z), pn =

∑
k∈Zm\{(0,0)}

bkeπik1x cos(πk2z),

with av
k, aw

k , bk being complex-valued scalar functions of tonly and
satisfying the reality condition, i.e.,

av
(k1,k2)

= av
(−k1,k2)

, aw
(k1,k2)

= aw
(−k1,k2)

, b(k1,k2) = b(−k1,k2)

}
,

where Zm := {k = (k1, k2) ∈ Z × Z,−m ≤ k1 ≤ m, 0 ≤ k2 ≤ m}}.

(20)

Notice that, the dimension of Xm over R is 3(2m+1)(m+1)−1. Also, we define the lower-mth-frequency
projection operator Pm, m ≥ 0, as follows.

Given f =
∑

k∈Z×Z

ckeπik1x+πik2z, with ck being complex-valued

scalar functions of t, Pmf :=
∑

k∈Z
±
m

ckeπik1x+πik2z, where

Z
±
m := {k = (k1, k2) ∈ Z × Z,−m ≤ k1 ≤ m,−m ≤ k2 ≤ m}.

(21)

Then Pm projects (v, w, p) with symmetry (SYM) into Xm via Pm(v, w, p) = (Pmv,Pmw,Pmp), where
we have taken

∫
Ω

p d�x = 0.
Consider any non-negative integer m and (vm, wm, pm) ∈ Xm with av

k, aw
k , bk given as in (20). To solve

the problem (15′), we consider the following system of ODE:⎧⎪⎨
⎪⎩
Pm

[
ρ(∂tvm + vm∂xvm + wm∂zvm) + ρ∂xpm

]
= Δvm,

Pm

[
ρ(∂twm + vm∂xwm + wm∂zwm) + ρ∂zpm

]
= Δwm,

∂xPm(ρvm) + ∂zPm(ρwm) = 0.
(22)

To find a solution {(av
k(t), aw

k (t), bk(t))t∈(0,T ∗)}, with k ∈ Zm, for some T ∗ ∈ (0,∞) to (22), we will
need to reformulate (22) into a system of dimension 3(2m + 1)(m + 1) − 1. In fact, we claim that {bk}
can be represented as functions of {(av

k(t), aw
k (t))} by inverting a linear algebraic system of dimension

(2m + 1)(m + 1) − 1, and one can derive a first-order ODE system for {(av
k(t), aw

k (t))} of dimension
2(2m + 1)(m + 1).

Taking ∂x and ∂z to (22)1 and (22)2, respectively, and summing the results together yield, using (22)3,

∂xPm(ρ∂xpm) + ∂zPm(ρ∂zpm) = ∂xΔvm + ∂zΔwm

− ∂xPm

[
ρ(vm∂xvm + wm∂zvm)

] − ∂zPm

[
ρ(vm∂xwm + wm∂zwm)

]
,

which is, due to the even symmetry and the strict positivity of ρ, a non-singular linear system with the
unknowns {bk} of dimension (2m + 1)(m + 1) − 1. Thus after solving for {bk}, (22) can be written as the
following 3(2m + 1)(m + 1) − 1 dimensional system,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Pm

[
ρ(∂tvm + vm∂xvm + wm∂zvm) + ρ∂xpm

]
= Δvm,

Pm

[
ρ(∂twm + vm∂xwm + wm∂zwm) + ρ∂zpm

]
= Δwm,

∂xPm(ρ∂xpm) + ∂zPm(ρ∂zpm) = ∂xΔvm + ∂zΔwm

−∂xPm

[
ρ(vm∂xvm + wm∂zvm)

] − ∂zPm

[
ρ(vm∂xwm + wm∂zwm)

]
.

(23)

In particular, (23)1 and (23)2 form the 2(2m+1)(m+1) dimensional ODE system of {(av
k(t), aw

k (t))}. We
remark that, (22)3 is preserved by the solutions to (23) with compatible initial data, since (23) implies
that ∂t

[
∂xPm(ρvm) + ∂zPm(ρwm)

]
= 0. Also, it is easy to verify, after solving for {bk}k∈Zm\{(0,0)} with
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given {av
k, aw

k }k∈Zm
via (23)3 and substituting the solutions to (23)1 and (23)2, we will have an ODE

system of the form

∂t(av
k, aw

k ) = Fk((av
l , a

w
l )l∈Zm

), k ∈ Zm,

with {Fk}k∈Zm
being locally Lipschitz continuous, in fact quadratic functions, with respect to the argu-

ments. Here we need again that ρ is strictly positive. Then the existence theorem of ODE systems yields
that given initial data

(vm, wm)�
∣∣∣
t=0

:= Pm[(vin, win)�] − ∇Qm,

where Qm =
∑

k∈Zm/{(0,0)} qkeπik1x cos(πk2z), with q(k1,k2) = q(−k1,k2), is determined by solving, as
above, the non-singular linear algebraic system

divPm(ρ∇Qm) = div(Pm[ρPm[(vin, win)�]]),

there exists a solution (vm(t), wm(t), pm(t))|t∈(0,T ∗
m) ∈ Xm to system (23), or equivalently system (22),

for some positive constant T ∗
m ∈ (0,∞).

We remark that, as m → ∞, Qm → 0 in H3. In fact, owing to the fact div(Pm[ρPm[(vin, win)�]]) =
div(Pm[ρPm[(vin, win)�]] − Pm[ρ(vin, win)�]), the elliptic estimate yields, as m → ∞,

‖Qm‖H3 ≤ ‖Pm(ρPm[(vin, win)�]) − Pm[ρ(vin, win)�]‖H2 → 0. (24)

Hence (vm, wm)
∣∣
t=0

is an approximation of (vin, win).

Remark 4. We remind the reader that the smoothness of ρ in 2T2 (i.e., (16)) is essential in showing (24).

Step 2: Existence of strong solutions. In order to pass the limit m → ∞ in (22) to obtain a solution to
(15′), we need to establish that the existence time T ∗

m, obtained above, is independent of m. This is done
via some uniform-in-m estimates. Let T ∗∗

m ≥ T ∗
m be the maximal existing time of the solutions (vm, wm).

All the estimates below in this step are done in the time interval [0, T ∗∗
m ).

After taking the L2-inner product of (22)1 and (22)2 with vm and wm, respectively, summing up the
resulting equations and applying integration by parts yield,

1
2

d

dt

∫
2T2

ρ(|vm|2 + |wm|2) d�x +
∫

2T2
(|∇vm|2 + |∇wm|2) d�x

= −
∫

ρ
(
vm∂xvmvm + vm∂xwmwm + wm∂zvmvm + wm∂zwmwm

)
d�x

� ‖∇vm,∇wm‖L2‖vm, wm‖2
H1 .

(25)

where we have used (22)3. Next, we take the L2-inner product of (22)1 and (22)2 with ∂tvm and ∂twm,
respectively. Similarly, after summing up the resulting equations and applying integration by parts, one
will have, since ρ has uniform upper bound and strictly positive lower bound,

1
2

d

dt

∫
2T2

(|∇vm|2 + |∇wm|2) d�x +
∫

2T2
ρ(|∂tvm|2 + |∂twm|2) d�x

= −
∫ [

ρ(vm∂xvm + wm∂zvm)∂tvm + ρ(vm∂xwm + wm∂zwm)∂twm

]
d�x

� ‖∂tvm, ∂twm‖L2‖vm, wm‖L4‖∇vm,∇wm‖L4

� ‖ρ∂tvm, ρ∂twm‖L2‖vm, wm‖1/2
L2 ‖vm, wm‖1/2

H1 ‖∇vm,∇wm‖1/2
L2

× ‖∇vm,∇wm‖1/2
H1

where we have applied the two-dimensional Sobolev embedding inequality. Thus, we have, after applying
Young’s inequality and (25),

d

dt
‖vm, wm‖2

H1 + ‖∂tvm, ∂twm‖2
L2 + ‖∇vm,∇wm‖2

L2

� ‖vm, wm‖3
H1(‖∇vm,∇wm‖H1 + 1).

(26)
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In order to estimate ∇2vm,∇2wm, we rewrite (22)1 and (22)2 in the following pressure-viscosity form:

− Δvm + Pm(ρ∂xpm) = −Pm

[
ρ(∂tvm + vm∂xvm + wm∂zvm)

]
,

− Δwm + Pm(ρ∂zpm) = −Pm

[
ρ(∂twm + vm∂xwm + wm∂zwm)

]
,

(27)

which yield

‖ − Δvm + Pm(ρ∂xpm)‖L2 + ‖ − Δwm + Pm(ρ∂zpm)‖L2

� ‖∂tvm, ∂twm‖L2 + ‖vm, wm‖L4‖∇vm,∇wm‖L4

� ‖∂tvm, ∂twm‖L2 + ‖vm, wm‖H1‖∇vm,∇wm‖1/2
L2

× ‖∇vm,∇wm‖1/2
H1 � ‖∂tvm, ∂twm‖L2 + ‖vm, wm‖3/2

H1

×
(
‖∇vm,∇wm‖1/2

L2 + ‖∇2vm,∇2wm‖1/2
L2

)
.

(28)

Meanwhile, direct calculations show that

‖ − Δvm + Pm(ρ∂xpm)‖2
L2 + ‖ − Δwm + Pm(ρ∂zpm)‖2

L2

= ‖∇2vm,∇2wm‖2
L2 + ‖Pm(ρ∇pm)‖2

L2

− 2
∫

2T2
(ρΔvm∂xpm + ρΔwm∂zpm) d�x.

(29)

Since

ρΔvm = Δ(ρvm) − 2∇ρ · ∇vm − Δρvm,

ρΔwm = Δ(ρwm) − 2∇ρ · ∇wm − Δρwm,

we have, after applying integration by parts,∫
2T2

(ρΔvm∂xpm + ρΔwm∂zpm) d�x

= −
∫

2T2
[∂xPm(ρvm) + ∂zPm(ρwm)]Δpm d�x︸ ︷︷ ︸

=0

−
∫

2T2

(
2∇ρ · ∇vm∂xpm

+ Δρvm∂xpm + 2∇ρ · ∇wm∂zpm + Δρwm∂zpm

)
d�x

� ‖∇vm,∇wm, vm, wm‖L2‖∇pm‖L2 ,

where we need ρ ∈ C2(2T2). Therefore, (28) and (29) imply,

‖∇2vm,∇2wm‖L2 + ‖Pm(ρ∇pm)‖L2 � ‖∂tvm, ∂twm‖L2

+ ‖vm, wm‖3/2
H1

(
‖∇vm,∇wm‖1/2

L2 + ‖∇2vm,∇2wm‖1/2
L2

)
+ ‖vm, wm‖1/2

H1 ‖∇pm‖1/2
L2 .

(30)

On the other hand, taking the L2-inner product of (23)3 with −pm yields∫
ρ|∇pm|2 d�x =

∫
(Δvm∂xpm + Δwm∂zpm) d�x

−
∫

[ρ(vm∂xvm + wm∂zvm)∂xpm + ρ(vm∂xwm + wm∂zwm)∂zpm] d�x
� ‖∇pm‖L2

(‖∇2vm,∇2wm‖L2 + ‖vm, wm‖L4‖∇vm,∇wm‖L4

)
� ‖∇pm‖L2

(
‖∇2vm,∇2wm‖L2 + ‖vm, wm‖3/2

H1 ‖∇vm,∇wm‖1/2
H1

)
.
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Therefore, after applying the two-dimensional Sobolev embedding inequality, together with the fact that
ρ is strictly positive, we arrive at

‖∇pm‖L2 � ‖∇2vm,∇2wm‖L2 + ‖vm, wm‖3
H1 + 1. (31)

Then, (30) and (31) imply

‖∇2vm,∇2wm‖L2 + ‖∇pm‖L2 � ‖∂tvm, ∂twm‖L2 + ‖vm, wm‖3
H1 + 1. (32)

Consequently, (26) and (32) yield

d

dt
‖vm, wm‖2

H1 + ‖∇vm,∇wm‖2
H1 + ‖∇pm‖2

L2 + ‖∂tvm, ∂twm‖2
L2

� 1 + ‖vm, wm‖6
H1 .

(33)

Thus, (33) implies that, there exists T ∗ ∈ (0, T ∗∗
m ), independent of m, such that

sup
0≤t≤T ∗

‖vm(t), wm(t)‖2
H1 +

∫ T ∗

0

(‖vm(t), wm(t)‖2
H2

+ ‖∂tvm(t), ∂twm(t)‖2
L2 + ‖pm(t)‖2

H1

)
dt ≤ Cin,

(34)

where Cin ∈ (0,∞) depends only on the initial data and inf �x∈2T ρ(�x), ‖ρ‖C2(2T2), and T ∗ is independent of
m. Then, after passing m → ∞ with a suitable subsequence according to the weak compactness theorem
of Sobolev spaces and Aubin’s compactness theorem (see, e.g., [28]), we have obtianed

(v, w) ∈ L∞(0, T ∗;H1) ∩ L2(0, T ∗;H2),

(∂tv, ∂tw) ∈ L2(0, T ∗;L2), p ∈ L2(0, T ∗;H1)
(35)

such that

(vm, wm) → (v, w), in L∞(0, T ∗;H1)

(vm, wm) ⇀ (v, w), weakly in L2(0, T ∗;H2),

(∂tvm, ∂twm) ⇀ (∂tv, ∂tw), weakly in L2(0, T ∗;L2),

pm ⇀ p, weakly in L2(0, T ∗;H1).

Thus it is easy to verify that (u = (v, w), p) is a strong solution to (15′) with (35), which satisfies,
according to (34),

sup
0≤t≤T ∗

‖u(t)‖2
H1 +

∫ T ∗

0

(‖u(t)‖2
H2 + ‖∂tu(t)‖2

L2 + ‖∇p(t)‖2
L2

)
dt ≤ Cin. (36)

Step 3: Improving the regularity. In this step, we establish the regularity of solution (u, p) to (15′) via
some a priori estimates. In the following, we use Cin,ρ ∈ (0,∞) to denote a generic constant depending
only on the initial data and on

inf
�x∈2T2

ρ(�x), sup
�x∈2T2

ρ(�x), ‖ρ‖C3(2T2) ∈ (0,∞).

Here we focus with our estimates over [0, T ∗]. We emphasize that all the estimates in this step are formal
and can be proved rigorously via the Galerkin method.

First, we obtain the time-derivative estimate. After applying a time derivative to (15′)1, the resulting
equation is

ρ(∂tut + u · ∇ut + ut · ∇u) + ρ∇pt = Δut. (37)

Then after taking the L2-inner product of (37) with ut, one has

1
2

d

dt

∫
ρ|ut|2 d�x +

∫
|∇ut|2 d�x = −

∫
ρ(ut · ∇)u · ut d�x. (38)
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The right-hand side of (38) can be estimated as follows:

−
∫

ρ(ut · ∇)u · ut d�x =
∫

ρ(ut · ∇)ut · u d�x
� ‖ut‖L4‖u‖L4‖∇ut‖L2 � ‖u‖H1‖ut‖1/2

L2 ‖ut‖1/2
H1 ‖∇ut‖L2 .

(39)

Together with Young’s inequality, (38) and (39) imply
d

dt
‖ρ1/2ut‖2

L2 + ‖∇ut‖2
L2 � (‖u‖2

H1 + ‖u‖4
H1)‖ut‖2

L2 .

Thus applying Grönwall’s inequality to the above yields, together with (36),

sup
0≤t≤T ∗

(‖u(t)‖2
H1 + ‖ut(t)‖2

L2

)
+

∫ T ∗

0

(‖u(t)‖2
H2 + ‖ut(t)‖2

H1

+ ‖∇p(t)‖2
L2

)
dt ≤ Cin,ρ,

(40)

where T ∗ is given in step 2. Then, following similar arguments as in (32), one can obtain,

sup
0≤t≤T ∗

(‖∇2u(t)‖L2 + ‖∇p(t)‖L2

) ≤ Cin,ρ. (41)

Next, we will sketch the H3 estimate of u. First, applying ∂x to (15′)1 yields,

∂x(ρ(∂tu + u · ∇u)) + ρ∇∂xp + ∂xρ∇p = Δ∂xu. (42)

After taking the L2-inner product of (42) with uxxx and applying integration by parts, we obtain

‖∇∂xxu‖L2 ≤ Cin,ρ

(
1 + ‖∇∂xp‖L2 + ‖∂tu‖H1 + ‖∇3u‖1/2

L2

)
, (43)

where we have applied (40), (41), Hölder’s and the Sobolev embedding inequalities. Then, after noticing
Δ∂xu = ∂xxxu + ∂xzzu and using (42), (43) implies

‖∇2∂xu‖L2 ≤ Cin,ρ

(
1 + ‖∇∂xp‖L2 + ‖∂tu‖H1 + ‖∇3u‖1/2

L2

)
. (44)

Moreover, since

∂zzzu = Δ∂zu − ∂xxzu = ∂z(ρ(∂tu + u · ∇u)) + ρ∇∂zp + ∂zρ∇p − ∂xxzu,

one can also derive

‖∇3u‖L2 ≤ Cin,ρ

(
1 + ‖∇2p‖L2 + ‖∂tu‖H1 + ‖∇3u‖1/2

L2

)
. (45)

What is left is to obtain the estimate of ‖∇2p‖L2 , or equivalently, the estimate of ‖Δp‖L2 . We rewrite
(15′)1, after multiplying it with ρ and applying div to the resulting, as,

div(ρ2∇p) = div
(
ρΔu − ρ2(∂tu + u · ∇u)

)
= −2∇2 log ρ : ∇(ρu) + div

(
2|∇ log ρ|2ρu − Δρu

)
− div

(
ρ2(∂tu + u · ∇u)

)
,

(46)

where we have used (15′)2 and the identity

ρΔu = Δ(ρu) − 2∇ρ · ∇u − Δρu

= Δ(ρu) − 2∇ log ρ · ∇(ρu) + 2|∇ log ρ|2ρu − Δρu.

Thus we have
ρ2Δp = −∇ρ2 · ∇p − 2∇2 log ρ : ∇(ρu) + div

(
2|∇ log ρ|2ρu − Δρu

)
− div

(
ρ2(∂tu + u · ∇u)

)
,

which yields, together with (40) and (41),

‖∇2p‖L2 ≤ ‖Δp‖L2 ≤ Cin,ρ

(
1 + ‖∂tu‖H1 + ‖∇3u‖1/2

L2

)
. (47)
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Then (40), (45) and (47) yield ∫ T ∗

0

(‖∇3u(t)‖2
L2 + ‖∇2p‖2

L2

)
dt ≤ Cin,ρ. (48)

Now we can restrict the solution in Ω. It is easy to verify (u|Ω, p|Ω) is the strong solution to (15)
with the boundary condition (4), and it satisfies (17) owing to (40), (41), and (48). In particular, the
regularity of p allows us to take the trace of ∇p on the boundary, and it follows from the construction
that p satisfies (18).

Step 4: uniqueness and continuous dependency on the initial data. Let (u1, p1), (u2, p2) be two strong
solutions to (15) with initial data uin,1, uin,2, respectively, and (u1, p1), (u2, p2) satisfy the estimates in
(17) for T ∗

1 , T ∗
2 ∈ (0,∞), respectively. That is

sup
0≤t≤T ∗

1

(‖u1(t)‖2
H2 + ‖u1,t(t)‖2

L2 + ‖∇p1(t)‖2
L2

)

+
∫ T ∗

1

0

(‖u1(t)‖2
H3 + ‖u1,t(t)‖2

H1 + ‖∇p1(t)‖2
H1

)
dt ≤ Cin,1,

sup
0≤t≤T ∗

2

(‖u2(t)‖2
H2 + ‖u2,t(t)‖2

L2 + ‖∇p2(t)‖2
L2

)

+
∫ T ∗

2

0

(‖u2(t)‖2
H3 + ‖u2,t(t)‖2

H1 + ‖∇p2(t)‖2
H1

)
dt ≤ Cin,2,

where Cin,1, Cin,2 depend only on the initial data and

inf
�x∈Ω

ρ(�x), ‖ρ‖C3(Ω) ∈ (0,∞).

In the following, we denote T ∗ := min{T ∗
1 , T ∗

2 } and Cin,1,2 := max{Cin,1, Cin,2}. Also, let u12 := u1 −
u2, p12 := p1 − p2. Then (u12, p12) satisfies{

ρ(∂tu12 + u1 · ∇u12 + u12 · ∇u2) + ρ∇p12 = Δu12 in Ω,

div(ρu12) = 0 in Ω.
(49)

Then taking the L2-inner product of (49)1 with u12 yields
1
2

d

dt
‖ρ1/2u12‖2

L2 + ‖∇u12‖2
L2 = −

∫
(ρu12 · ∇)u2 · u12 d�x

≤ C‖∇u2‖L2‖u12‖2
L4 ≤ C‖∇u2‖L2‖ρ1/2u12‖L2‖u12‖H1

≤ 1
2
‖∇u12‖2

L2 + C
(
1 + ‖∇u2‖2

L2

) ‖ρ1/2u12‖2
L2 .

Then applying Grönwall’s inequality yields (19).
In particular, for uin,1 = uin,2, we have u1 ≡ u2 and T ∗

1 = T ∗
2 .

This finishes the proof of Theorem 3 in the case when n = 2. The case when n = 3 follows by similar
arguments, employing the three-dimensional Sobolev embedding inequalities.

Remark 5. It is worth stressing that thanks to the uniqueness of solutions in Step 4, all strong solutions to
(15) with (4) with the same initial data as described in Theorem 3 should be equal to the one constructed
by our extension-restriction techniques through Step 0 to Step 3.

4. The Physical Vacuum Profile

This section will discuss the anelastic equations (1) with (4) in the case of physical vacuum density profile,
i.e., (2). We remind the reader that

ρpv(z) :=
[
z(2 − z)

]α
, z ∈ (0, 1). (50)
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Thus in this section, we will study the following system,{
ρpv(∂tu + u · ∇u) + ρpv∇p = Δu in Ω,

div(ρpvu) = 0 in Ω,
(51)

and we will show the following theorem:

Theorem 4. Consider α > 3/2, and initial data uin as in (5), satisfying the compatibility condition (6),
with ρ replaced by ρpv. There exists a positive constant T ∈ (0,∞) and a unique strong solution (u, p)
to the anelastic equations (51) with the boundary condition (4) in [0, T ], which satisfies the following
regularity:

u,∇hu ∈ L∞(0, T ;H1(Ω)), u ∈ L2(0, T ;H1(Ω)),

ρpv∂zzu ∈ L∞(0, T ;L2(Ω)), ρ1/2
pv ut ∈ L∞(0, T ;L2(Ω)),

ut ∈ L2(0, T ;H1(Ω)), ρ2
pv∇p ∈ L∞(0, T ;L2(Ω)).

In addition, we have the estimates

sup
0≤t≤T

(‖u(t)‖2
H1 + ‖∇∇hu(t)‖2

L2 + ‖ρpv∂zzu(t)‖2
L2 + ‖ρ1/2

pv ut(t)‖L2

+ ‖ρ2
pv∇p(t)‖L2

)
+

∫ T

0

(‖∇u(t)‖2
L2 + ‖ut(t)‖2

H1

)
dt ≤ Cin,

(52)

where Cin depends only on the initial data. Suppose that there are two solutions u1, u2 with initial data
uin,1, uin,2 in time interval [0, T ]. Then

sup
0≤t≤T

‖ρ1/2
pv (u1(t) − u2(t))‖2

L2 +
∫ T

0

‖∇(u1(s) − u2(s))‖2
L2 ds

≤ Cin,T ‖ρ1/2
pv (uin,1 − uin,2)‖2

L2 ,

for some constant Cin,T ∈ (0,∞) depending on initial data and T .

Apparently, ρpy is well-defined for z ∈ (0, 2) and it is smooth at z = 1, and E+
spρpv is smooth except

z ∈ 2Z. We refer to Remark 1 about ρpv.
Our strategy is to apply Theorem 3 to obtain a sequence of approximating solutions. To do this, we

first have to construct an approximating sequence of ρpv. We start with a lemma.

Lemma 2. For any fixed ε ∈ (0, 1), there exists a function qε : [0, 1] �→ R
+, which satisfies the following

properties:
1. limε→0+ qε(z) = z(2 − z), ∀ z ∈ (0, 1), and the convergence is uniform;
2. E+

spqε ∈ C3(2Tn);
3. qε is non-decreasing for z ∈ [0, 1];

4.
z + ε

4
≤ qε ≤ 2(z + ε) for z ∈ [0, 1];

5. |q′
ε| + |qεq

′′
ε | + |q2

εq′′′
ε | ≤ C, for all z ∈ [0, 1], for some constant C ∈ (0,∞), which is independent of

ε.

Proof. Let qε be a C∞([0, 1]) nondecreasing function satisfying,

qε(z) =

⎧⎨
⎩

z(2 − z) z ∈
[ε

2
, 1

]
,

ε

2
z ∈

[
0,

ε

4

]
.

Then
ε

4
≤ qε

(ε

2

)
− qε

(ε

4

)
≤ ε, and

q′
ε(z) =

⎧⎨
⎩

2(1 − z) z ∈
(ε

2
, 1

)
,

0 z ∈
(
0,

ε

4

)
,

q′′
ε (z) =

⎧⎨
⎩

−2 z ∈
(ε

2
, 1

)
,

0 z ∈
(
0,

ε

4

)
,
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and lim
z→1−

q
(k)
ε (z) = 0, k ∈ {1, 3, 4, . . .}. Then one can choose the values of qε(z) for z ∈

(ε

4
,
ε

2

)
such that

qε satisfies Properties 1–5. �

Remark 6. Property 4 in Lemma 2 implies that Hardy’s inequalities in Lemma 1 can be applied with
z + ε replaced by qε.

We take ρε := qα
ε . Then {ρε}ε∈(0,1) is an approximating sequence of ρpv. In addition, for any fixed

ε ∈ (0, 1), ρε satisfies (16) and infΩ ρε ≥
(ε

4

)α

> 0. We also choose initial data {uε,in}ε∈(0,1) such that

uε,in → uin in H2, div(ρεuε,in) = 0, and the compatibility conditions in (6) hold with ρ, uin replaced by
ρε, uε,in.

Then applying Theorem 3, we obtain a sequence of solutions to (15) with ρ = ρε, which is denoted as
{(uε, pε)}ε∈(0,1). That is, for some T ∗

ε ∈ (0,∞),{
ρε(∂tuε + uε · ∇uε) + ρε∇pε = Δuε in Ω,

div(ρεuε) = 0 in Ω,
(53)

where ρε = qα
ε ,

uε ∈ L∞ (
0, T ∗

ε ;H2(Ω)
) ∩ L2

(
0, T ∗

ε ;H3(Ω)
)
,

∂tuε ∈ L∞ (
0, T ∗

ε ;L2(Ω)
) ∩ L2

(
0, T ∗

ε ;H1(Ω)
)
,

∇pε ∈ L∞ (
0, T ∗

ε ;H1(Ω)
) ∩ L2

(
0, T ∗

ε ;H2(Ω)
)
.

The boundary condition (4) is satisfied with u replaced by uε, and pε is chosen such that

∂zpε

∣∣
z=0,1

= 0, and
∫

Ω

pε d�x = 0. (54)

After passing the limit ε → 0+, we will obtain a solution to (51). We establish the required uniform
estimates in the following two lemmas.

Lemma 3. For any fixed ε ∈ (0, 1), assume that α > 1 and (uε, pε) is the solution to (53) as mentioned
above. There exists a constant T ∈ (0,∞) independent of ε, such that the following estimates hold:

sup
0≤t≤T

(
‖qα/2

ε uε(t)‖2
L2 + ‖∇uε(t)‖2

L2 + ‖qα/2
ε uε,t(t)‖2

L2

)

+
∫ T

0

(
‖∇uε(t)‖2

L2 + ‖qα/2
ε uε,t(t)‖2

L2 + ‖∇uε,t(t)‖2
L2

)
dt ≤ Cin, (55)

where Cin is a constant depending only on initial data.

Proof. Taking the L2-inner product of (53)1 with uε implies, after substituting (53)2 and (4),

1
2

d

dt

∫
qα
ε |uε|2 d�x +

∫
|∇uε|2 d�x = 0. (56)

In the meantime, the L2-inner product of (53)1 with uε,t implies, similarly,

1
2

d

dt

∫
|∇uε|2 d�x +

∫
qα
ε |uε,t|2 d�x = −

∫
qα
ε uε · ∇uε · uε,t d�x. (57)

The right-hand side of (57) can be estimated as follows,

−
∫

qα
ε uε · ∇uε · uε,t d�x �

{
‖∇uε‖L2‖q

α/2
ε uε‖L4‖q

α/2
ε uε,t‖L4 when n = 2

‖∇uε‖L2‖q
α/2
ε uε‖L6‖q

α/2
ε uε,t‖L3 when n = 3

� ‖∇uε‖L2‖(z + ε)α/2uε‖H1‖(z + ε)α/2uε,t‖1/2
L2 ‖(z + ε)α/2uε,t‖1/2

H1 ,

(58)
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where we have used Property 4 in Lemma 2. Notice, after applying the Sobolev embedding inequality
and the Hardy-type inequality in Lemma 1, one can derive

‖(z + ε)α/2uε,t‖H1 � ‖(z + ε)α/2uε,t‖L2 + ‖(z + ε)α/2∇uε,t‖L2

+ ‖(z + ε)α/2−1uε,t‖L2 � ‖(z + ε)α/2uε,t‖L2 + ‖(z + ε)α/2∇uε,t‖L2

� ‖qα/2
ε uε,t‖L2 + ‖∇uε,t‖L2 , and similarly

‖(z + ε)α/2uε‖H1 � ‖qα/2
ε uε‖L2 + ‖∇uε‖L2 ,

(59)

provided α/2 − 1 > −1/2, or equivalently, α > 1, where we have used Property 4 in Lemma 2.
On the other hand, after applying a time derivative to (53)1, the resulting equation is

qα
ε (∂tuε,t + uε · ∇uε,t + uε,t · ∇uε) + qα

ε ∇pε,t = Δuε,t. (60)

Then after taking the L2-inner product of (60) with ut, the result is

1
2

d

dt

∫
qα
ε |uε,t|2 d�x +

∫
|∇uε,t|2 d�x = −

∫
qα
ε (uε,t · ∇)uε · uε,t d�x. (61)

Similarly, the right-hand side of (60) can be estimated as follows,

−
∫

qα
ε (uε,t · ∇)uε · uε,t d�x =

∫
qα
ε (uε,t · ∇)uε,t · uε d�x

�
{

‖q
α/2
ε uε,t‖L4‖q

α/2
ε uε‖L4‖∇uε,t‖L2 when n = 2

‖q
α/2
ε uε,t‖L3‖q

α/2
ε uε‖L6‖∇uε,t‖L2 when n = 3

� ‖(z + ε)α/2uε‖H1‖(z + ε)α/2uε,t‖1/2
L2 ‖(z + ε)α/2uε,t‖1/2

H1 ‖∇uε,t‖L2 .

(62)

Therefore, combining (56), (57), (58), (59), (61) and (62) gives us

d

dt

(‖qα/2
ε uε‖2

L2 + ‖∇uε‖2
L2 + ‖qα/2

ε uε,t‖L2

)
+ ‖∇uε‖2

L2

+ ‖qα/2
ε uε,t‖2

L2 + ‖∇uε,t‖2
L2 � ‖qα/2

ε uε,t‖2
L2

(‖qα/2
ε uε‖4

L2 + ‖∇uε‖4
L2

)
,

where we have used Property 4 in Lemma 2 and applied Young’s inequality. In particular, the above
yields (55) for a short time. �

Next, to obtain the estimates of the spatial derivatives of uε requires a little work. In fact, we shall
proceed with the following steps: 1. obtain estimate for the horizontal derivative; 2. obtain estimate for
the pressure; 3. obtain estimate for the L2-norm of ∂zzuε. In conclusion, we will obtain the following:

Lemma 4. In addition to the assumptions in Lemma 3, assume that α > 3/2. Then

‖∇∇huε‖L2 + ‖qα
ε ∂zzuε‖L2 + ‖q2α

ε ∇pε‖L2

� ‖qα/2
ε uε,t‖L2 + ‖uε‖H1 + ‖uε‖3

H1 .
(63)

In particular, (63) together with (55) yields,

sup
0≤t≤T

(‖uε(t)‖2
H1 + ‖∇∇huε(t)‖2

L2 + ‖qα
ε ∂zzuε(t)‖2

L2

+ ‖qα/2
ε uε,t(t)‖L2 + ‖q2α

ε ∇pε(t)‖L2

)
+

∫ T

0

(‖∇uε(t)‖2
L2 + ‖uε,t(t)‖2

H1

)
dt ≤ Cin,

(64)

where T is the same as in (55), and Cin is some constant depending only on initial data and is independent
of ε.
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Proof. As mentioned above, we establish the proof in three steps.
Step 1: Obtain estimate for the horizontal derivative. Taking the L2-inner product of (53)1 with Δhuε

implies

‖∇∇huε‖2
L2 =

∫
qα
ε ∂tuε · Δhuε d�x +

∫
qα
ε (uε · ∇)uε · Δhuε d�x. (65)

Then, applying Hölder’s and the Sobolev embedding inequalities to the right-hand side of (65) yields
that, together with Property 4 in Lemma 2,∫

qα
ε ∂tuε · Δhuε d�x � ‖qα/2

ε ∂tuε‖L2‖qα/2
ε ∇∇huε‖L2

� ‖qα/2
ε ∂tuε‖L2‖∇∇huε‖L2 ,∫

qα
ε (uε · ∇)uε · Δhuε d�x �

{
‖∇∇huε‖L2‖uε‖L4‖qα

ε ∇uε‖L4 when n = 2
‖∇∇huε‖L2‖uε‖L6‖qα

ε ∇uε‖L3 when n = 3

� ‖∇∇huε‖L2‖uε‖H1‖(z + ε)α∇uε‖1/2
L2 ‖(z + ε)α∇uε‖1/2

H1 .

Therefore (65) implies

‖∇∇huε‖L2 � ‖qα/2
ε uε,t‖L2 + ‖uε‖H1‖(z + ε)α∇uε‖1/2

L2 ‖(z + ε)α∇uε‖1/2
H1 . (66)

Step 2: Obtain estimate for the pressure. Notice

qα
ε Δuε = Δ(qα

ε uε) − 2∇qα
ε · ∇uε − (Δqα

ε )uε

= Δ(qα
ε uε) − 2(qα

ε )′∂zuε − (qα
ε )′′uε.

(67)

Therefore, after multiplying (53)1 with q3α
ε and applying div to the resulting equation, we end up with

div(q4α
ε ∇pε) = −div

[
q4α
ε (∂tuε + uε · ∇uε) − q2α

ε Δ(qα
ε uε)

+ 2q2α
ε (qα

ε )′∂zuε + q2α
ε (qα

ε )′′uε

]
= −div

[
q4α
ε (∂tuε + uε · ∇uε)

]
+ 2αq2α−1

ε q′
ε

(
Δ(qα

ε wε) − qα
ε ∂zdivuε

)
︸ ︷︷ ︸

=qα
ε (Δhwε−∂zdivhvε)+2(qα

ε )′∂zwε+(qα
ε )′′wε

− 2(q2α
ε (qα

ε )′)′∂zwε − (
qα
ε (qα

ε )′′)′
qα
ε wε.

(68)

Recall that pε satisfies (54), and the integration by parts in the following is allowed.
Thus, after taking the L2-inner product of (68) with −pε and applying integration by parts in the

resultant using the boundary conditions (4) and (54), we arrive at

‖q2α
ε ∇pε‖2

L2 = −
∫

q4α
ε (∂tuε + uε · ∇uε) · ∇pε d�x︸ ︷︷ ︸

(I)

+(II), (69)

where

(II) =
∫ [

2αq3α−1
ε q′

ε(∂zdivhvε − Δhwε)

+ 2((q2α
ε (qα

ε )′)′ − 2αq2α−1
ε q′

ε(q
α
ε )′)∂zwε

+ ((qα
ε (qα

ε )′′)′ − 2αqα−1
ε q′

ε(q
α
ε )′′)qα

ε wε

]
× pε d�x
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Now we need to evaluate the right-hand side of (69). Indeed, applying the Hölder and the Sobolev
embedding inequalities in (I) yields

|(I)| � ‖q2α
ε ∇pε‖L2‖q2α

ε uε,t‖L2

+

{
‖q2α

ε ∇pε‖L2‖qα
ε ∇uε‖L4‖qα

ε uε‖L4 when n = 2
‖q2α

ε ∇pε‖L2‖qα
ε ∇uε‖L3‖qα

ε uε‖L6 when n = 3

� ‖q2α
ε ∇pε‖L2‖q2α

ε uε,t‖L2

+ ‖q2α
ε ∇pε‖L2‖(z + ε)α∇uε‖1/2

H1 ‖(z + ε)α∇uε‖1/2
L2 ‖(z + ε)αuε‖H1 .

To estimate (II), notice that from (53)2 and (4), we have[
qα
ε wε

]
(·, z) = −

∫ z

0

[
qα
ε divhvε

]
(·, z′) dz′. (70)

Then after substituting (70) in (II) and applying integration by parts, it follows,

(II) =
∫

∇hpε ·
[
2αq3α−1

ε q′
ε(∇hwε − ∂zvε)

+ 2
(
(q2α

ε (qα
ε )′)′ − 2αq2α−1

ε q′
ε(q

α
ε )′) (

q−α
ε

∫ z

0

(
qα
ε vε

)
(·, z′) dz′

)
z

+
(
(qα

ε (qα
ε )′′)′ − 2αqα−1

ε q′
ε(q

α
ε )′′) ∫ z

0

(
qα
ε vε

)
(·, z′) dz′

]
d�x.

Then applying Properties 4 and 5 in Lemma 2 and the Hölder inequality yields,

(II) � ‖q2α
ε ∇pε‖L2

(‖(z + ε)α−1∇uε‖L2 + ‖(z + ε)α−2vε‖L2

+ ‖(z + ε)−3

∫ z

0

(
qα
ε vε

)
(·, z′) dz′‖L2

)
� ‖q2α

ε ∇pε‖L2‖uε‖H1 ,
(71)

where in the last inequality, we have applied Hardy-type inequality in the vertical direction (see Lemma 1),
with α − 2 > −1/2, i.e., α > 3/2.

Therefore, (69) implies, for α > 3/2,

‖q2α
ε ∇pε‖L2 � ‖qα/2

ε uε,t‖L2 + ‖uε‖H1

+ ‖(z + ε)α∇uε‖1/2
H1 ‖(z + ε)α∇uε‖1/2

L2 ‖uε‖H1 .
(72)

Step 3: Obtain estimate for ∂zzu. We rewrite (1)1 as,

∂zzuε = −Δhuε + qα
ε (∂tuε + uε · ∇uε) + qα

ε ∇pε. (73)

Then directly, we have

‖qα
ε ∂zzuε‖L2 � ‖Δhuε‖L2 + ‖qα/2

ε uε,t‖L2 + ‖q2α
ε ∇pε‖L2

+ ‖(z + ε)2αuε · ∇uε‖L2 ,
(74)

where the last term on the right-hand side can be estimated as

‖(z + ε)2αuε · ∇uε‖L2 �
{

‖uε‖L4‖(z + ε)α∇uε‖L4 when n = 2
‖uε‖L6‖(z + ε)α∇uε‖L3 when n = 3

� ‖uε‖H1‖(z + ε)α∇uε‖1/2
L2 ‖(z + ε)α∇uε‖1/2

H1 .

Notice,

‖(z + ε)α∇uε‖H1 � ‖(z + ε)α∇uε‖L2 + ‖(z + ε)α−1∇uε‖L2

+ ‖(z + ε)α∇2uε‖L2 .
(75)

Consequently, (66), (72) and (74) yield (63).
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Now we collect (55) and (63) to finish the proof. Indeed, after applying the Hardy-type inequality in
Lemma 1, we have the following inequalities

‖uε‖H1 � ‖(z + ε)uε‖L2 + ‖∇uε‖L2 � ‖(z + ε)2uε‖L2 + ‖∇uε‖L2

� · · · � ‖(z + ε)α/2uε‖L2 + ‖∇uε‖L2 ,

‖uε,t‖H1 � ‖(z + ε)α/2uε,t‖L2 + ‖∇uε,t‖L2 .

(76)

Therefore, together with Property 4 in Lemma 2, (55), (63) and (76) imply the estimates in (64). �

With (64), we claim that, as ε → 0+, (uε, pε) converges to a strong solution to (51). Indeed, consider
�ψ = (ψh, ψv)� ∈ C∞

0 (Ω;Rn−1 ×R), where ψh is a scalar function, when n = 2, a two-dimensional vector
field, when n = 3. Here C∞

0 (Ω;Rn−1 × R) is the space of functions which are periodic in the horizontal
variables and are of compact support in the vertical variable. Then we have,∫ T

0

∫
Ω

[
qα
ε ∂tuε · �ψ + (qα

ε uε · ∇)uε · �ψ + qα
ε ∇pε · �ψ]

d�x dt

−
∫ T

0

∫
Ω

Δuε · �ψ d�x dt = 0.

(77)

(64) implies that there exist u, p with

u,∇hu ∈ L∞(0, T ;H1(Ω)), u ∈ L2(0, T ;H1(Ω)),

ρpv∂zzu ∈ L∞(0, T ;L2(Ω)), ρ1/2
pv ut ∈ L∞(0, T ;L2(Ω)),

ut ∈ L2(0, T ;H1(Ω)), ρ2
pv∇p ∈ L∞(0, T ;L2(Ω)),

(78)

satisfying the estimate in (52), div(ρpvu) = 0, and

uε,∇huε
∗
⇀ u,∇u weak − ∗in L∞(0, T ;H1(Ω)),

qα
ε ∂zzuε, q

α/2
ε uε,t

∗
⇀ ρpv∂zzu, ρ1/2

pv ut weak-∗ in L∞(0, T ;L2(Ω)),

uε,∇huε, q
α
ε ∂zuε → u,∇hu, ρpv∂zu in C([0, T ];L2(Ω)),

uε,t, uε ⇀ ut, u weakly in L2(0, T ;H1(Ω)),

q2α
ε ∇pε

∗
⇀ ρ2

pv∇p weak − ∗in L∞(0, T ;L2(Ω)),

(79)

where we have used Property 1 in Lemma 2. Thus we have limt→0+ u = uin, and after passing the limit
with ε → 0+, in (77), we have∫ T

0

∫
Ω

[
ρpv∂tu · �ψ + (ρpvu · ∇)u · �ψ + ρpv∇p · �ψ]

d�x dt

−
∫ T

0

∫
Ω

Δu · �ψ d�x dt = 0,

(80)

which verifies that (u, p)|t∈(0,T ) is a solution to (51) in Ω. We recall that �ψ is chosen such that its support
is away from {z = 0, 1}. Moreover, it is easy to verify

− Δu + ρpv∇p = −ρpv∂tu − ρpvu · ∇u ∈ L∞(0, T ;L2(Ω)). (81)

On the other hand, the trace theorem implies that ρpv∂zv
∣∣
z=0

, ∂zv
∣∣
z=1

, w
∣∣
z=0,1

∈ L2(0, T ;L2(2Tn−1)),
thanks to the regularity in (78). Thus

ρpv∂zv
∣∣
z=0

= 0, ∂zv
∣∣
z=1

= 0, w
∣∣
z=0,1

= 0 in L2(0, T ;L2(2Tn−1)).
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To verify the boundary condition ∂zv
∣∣
z=0

= 0 in (4), consider ψh,ε(x, z, t) :=
(
1 − cεqε(z)

)
ψ1(x, t) with

ψ1 ∈ C∞(2Tn−1 × [0, T ];Rn−1) for some constant cε satisfying∫ 1

0

(
1 − cεqε(z)

)
qα
ε (z) dz = 0, i.e., cε :=

∫ 1

0
qα
ε (ξ) dξ∫ 1

0
qα+1
ε (ξ) ξ

.

Consider �ψε := (ψh,ε, ψv,ε) with ψh,ε given as above and

ψv,ε(x, z, t) := −q−α
ε (z)

∫ z

0

qα
ε (ξ)divhψh,ε(x, ξ, t) dξ.

Then �ψε satisfies div
(
qα
ε

�ψε

)
= 0, ψv,ε

∣∣
z=0,1

= 0, and as ε → 0+, �ψε → �ψ0 = (ψh,0, ψv,0) uniformly, where

ψh,0(x, z, t) =

(
1 −

∫ 1

0
ξα(2 − ξ)α dξ∫ 1

0
ξα+1(2 − ξ)α+1 dξ

z(2 − z)

)
ψ1(x, t) and

ψv,0(x, z, t) =

( ∫ 1

0
ξα(2 − ξ)α dξ∫ 1

0
ξα+1(2 − ξ)α+1 dξ

∫ z

0
ξα+1(2 − ξ)α+1 dξ

zα(2 − z)α

−
∫ z

0
ξα(2 − ξ)α dξ

zα(2 − z)α

)
divhψ1(x, t).

Now we choose �ψ = �ψε in (77). After applying integration by parts, we arrive at∫ T

0

∫
Ω

[
qα
ε ∂tuε · �ψε + (qα

ε uε · ∇)uε · �ψε

]
d�x dt

= −
∫ T

0

∫
Ω

∇uε : ∇ �ψε d�x dt +
∫ T

0

∫
2Tn−1

(∂zvε · ψh,ε)|z=1 dx dt

−
∫ T

0

∫
2Tn−1

(∂zvε · ψh,ε)|z=0 dx dt,

which, together with (64) and the trace theorem, implies that

(1 − cεqε(0))
∫ T

0

∫
2Tn−1

(∂zvε · ψ1(x, t))|z=0 dx dt

=
∫ T

0

∫
2Tn−1

(∂zvε · ψh,ε)|z=0 dx dt ≤ Cin‖ �ψε‖L2(0,T ;H1(Ω))

≤ Cin‖ψ1‖L2(0,T ;H2(2Tn−1)).

(82)

Notice that, Property 4 in Lemma 2 implies 1 − cεqε(0) > 1/2 for ε small enough. Thus, (82) yields that
{∂zvε

∣∣
z=0

} is uniformly bounded in L2(0, T ; (H2(2Tn−1))∗) and thus as ε → 0+,

0 = ∂zvε

∣∣
z=0

⇀ ∂zv
∣∣
z=0

weakly in L2(0, T ; (H2(2Tn−1))∗).

In particular, ∂zv
∣∣
z=0

= 0 in L2(0, T ;L2(2Tn−1)) and so we have verified the boundary conditions in (4).
In addition, consider ψh ∈ L2(0, T ;H1(Ω)) and ψv ∈ L2(0, T ;H1

0 (Ω)). Then, (Δv,Δw)�

∈ (L2(0, T ;H1(Ω)))∗ × (L2(0, T ;H1
0 (Ω)))∗ is a functional which acts on (ψh, ψv)� by the duality

〈(Δv,Δw)�, (ψh, ψv)�〉 = −
∫ T

0

∫
Ω

∇v : ∇ψh d�x dt −
∫ T

0

∫
Ω

∇w · ∇ψv d�x dt.

Moreover, from (81), one can infer that ρpv∇p is a functional acting on (ψh, ψv)�. In particular, if
div(ρpv

�ψ) = 0, we have

〈ρpv∇p, (ψh, ψv)�〉 = −
∫ T

0

∫
Ω

pdiv(ρpv
�ψ) d�x dt = 0.
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Consequently, the regularity of u, as in (78), allows us to consider the action of (51)1 on u. That is, the
following equation holds in D′(0, T ),

1
2

d

dt

∫
ρpvu

2 d�x +
∫

|∇u|2 d�x = 0.

Thus we have the energy identity, for any t ∈ [0, T ],

‖ρ1/2
pv u(t)‖2

L2 + 2
∫ t

0

‖∇u(s)‖2
L2 ds = ‖ρ1/2

pv uin‖2
L2 . (83)

With such properties, we are able to show the uniqueness of solutions. Consider u1, u2 being solutions
to (51) as above with initial data uin,1, uin,2. Also, denote T ∈ (0,∞) as the existence time for both
solutions. Then consider the actions of (51)1 for u1 with u2 and (51)1 for u2 with u1. Summing up the
results leads to, for any t ∈ [0, T ],∫

Ω

ρpvu1(t) · u2(t) d�x +
∫ t

0

∫
Ω

2∇u1(s) : ∇u2(s) d�x ds =
∫

Ω

ρpvuin,1 · uin,2 d�x

−
∫ t

0

∫
Ω

ρpv((u1(s) · ∇)u1(s) · u2(s) + (u2(s) · ∇)u2(s) · u1(s)) d�x ds. (84)

Notice, after applying (51)2 and integration by parts, we have∫
Ω

ρpv((u1 · ∇)u1 · u2 + (u2 · ∇)u2 · u1) d�x

=
∫

Ω

ρpv((u1 − u2) · ∇)(u1 − u2) · u2 d�x

≤
{

‖zα(u1 − u2)‖L4‖∇(u1 − u2)‖L2‖u2‖L4 when n = 2,

‖zα(u1 − u2)‖L3‖∇(u1 − u2)‖L2‖u2‖L6 when n = 3,

≤ C‖zα(u1 − u2)‖1/2
L2 ‖zα(u1 − u2)‖1/2

H1 ‖∇(u1 − u2)‖L2‖u2‖H1

≤ C‖ρpv(u1 − u2)‖1/2
L2 (‖ρpv(u1 − u2)‖L2 + ‖ρpv∇(u1 − u2)‖L2)1/2

× ‖∇(u1 − u2)‖L2‖u2‖H1 ,

where the last inequality follows by applying Hardy’s inequality in Lemma 1 and the fact that ρpv � zα

for z ∈ (0, 1/2).
Therefore, (84), together with the energy identity (83) for u1, u2, implies

‖ρ1/2
pv (u1(t) − u2(t))‖2

L2 + 2
∫ t

0

‖∇(u1(s) − u2(s))‖2
L2 ds

≤ ‖ρ1/2
pv (uin,1 − uin,2)‖2

L2 +
∫ t

0

‖∇(u1(s) − u2(s))‖2
L2 ds

+ C

∫ t

0

(
1 + ‖u2(s)‖4

H1

) ‖ρ1/2
pv (u1(s) − u2(s))‖2

L2 ds.

Then applying Grönwall’s inequality yields,

sup
0≤t≤T

‖ρ1/2
pv (u1(t) − u2(t))‖2

L2 +
∫ T

0

‖∇(u1(s) − u2(s))‖2
L2 ds

≤ Cin,T ‖ρ1/2
pv (uin,1 − uin,2)‖2

L2 ,

(85)

for some constant Cin,T depending on T and the initial data uin,1, uin,2. In particular, this implies the
uniqueness of solutions.

We remark that the above uniqueness argument is similar to the one used by J. Serrin for weak-strong
uniqueness of three-dimensional Navier–Stokes equations in [27].
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5. Global-in-Time A Priori Estimates When n = 2

In this and the following sections, we present some global-in-time a priori estimates of solutions to (51).
These arguments can be rigorously justified following the arguments in Sects. 3 and 4 . The estimates of
solutions to (15) are similar, and will be omitted.

Notice that, the regularity of u in (78) allows us to take the following actions. Taking the L2-inner
product of (51)1 with u implies, as in (56),

1
2

d

dt

∫
ρpv|u|2 d�x +

∫
|∇u|2 d�x = 0. (86)

As in (57), we also have,
1
2

d

dt

∫
|∇u|2 d�x +

∫
ρpv|ut|2 d�x = −

∫
ρpvu · ∇u · ut d�x. (87)

The right-hand side of (87) can be estimated as follows, due to the fact that ρpv � zα,

−
∫

ρpvu · ∇u · ut d�x ≤ 1
2

∫
ρpv|ut|2 d�x + C‖zαu‖2

L∞

∫
|∇u|2 d�x

≤ 1
2

∫
ρpv|ut|2 d�x + C

∫
|∇u|2 d�x · (‖zαu‖2

H1 + 1
)
log

(
e + ‖zαu‖2

H2

)
,

where we have applied Young’s inequality and the two-dimensional Brezis-Gallouate-Wainger inequality
(see, e.g., [3,4]).

Meanwhile, the same arguments as (60) through (61) imply the similar estimate to (61), i.e.,
1
2

d

dt

∫
ρpv|ut|2 d�x +

∫
|∇ut|2 d�x = −

∫
ρpv(ut · ∇)u · ut d�x, (88)

where

−
∫

ρpv(ut · ∇)u · ut d�x =
∫

ρpv(ut · ∇)ut · u d�x ≤ 1
2

∫
|∇ut|2 d�x

+ C‖zαu‖2
L∞

∫
ρpv|ut|2 d�x ≤ 1

2

∫
|∇ut|2 d�x

+ C

∫
ρpv|ut|2 d�x · (‖zαu‖2

H1 + 1
)
log

(
e + ‖zαu‖2

H2

)
.

In addition, due to the fact that zα � ρpv for z ∈ (0, 1/2), applying Hardy’s inequality in Lemma 1 yields,
with α > 3/2,

‖zαu‖H1 � ‖zα/2u‖L2 + ‖∇u‖L2 � ‖ρ1/2
pv u‖L2 + ‖∇u‖L2 ,

‖zαu‖H2 � ‖zα∇2u‖L2 + ‖zα−1∇u‖L2 + ‖zα−2u‖L2

� ‖∇∇hu‖L2 + ‖∇u‖L2 + ‖zα/2u‖L2 + ‖zα∂zzu‖L2

� ‖∇∇hu‖L2 + ‖∇u‖L2 + ‖ρ1/2
pv u‖L2 + ‖ρpv∂zzu‖L2 .

(89)

On the other hand, similar to (63),

‖∇∇hu‖L2 + ‖ρpv∂zzu‖L2 + ‖ρ2
pv∇p‖L2

� ‖ρ1/2
pv ut‖L2 + ‖u‖H1 + ‖u‖3

H1 .
(90)

Then together with (87), (88) , we arrive at
d

dt
E(t) � E(t)

(
1 + ‖ρ1/2

pv u(t)‖2
L2 + ‖∇u(t)‖2

L2

)
log

(
‖ρ1/2

pv u(t)‖6
L2 + E3(t)

)
, (91)

where

E(t) := e +
∫

|∇v(t)|2 d�x +
∫

ρpv|ut(t)|2 d�x.



JMFM Well-Posedness of Strong Solutions Page 23 of 25 39

Also, (86) implies, for any T ∈ (0,∞),

sup
0≤t≤T

‖ρ1/2
pv u(t)‖2

L2 +
∫ T

0

‖∇u(t)‖2
L2 dt ≤ Cin, (92)

for some positive constant Cin independent of T . Therefore, (91) implies that

d

dt
log E(t) �

(
1 + ‖ρ1/2

pv u(t)‖2
L2 + ‖∇u(t)‖2

L2

)
log E(t).

Thus applying Grönwall’s inequality yields, together with (92),

sup
0≤t≤T

log log E(t) ≤ C

∫ T

0

(
1 + ‖ρ1/2

pv u(s)‖2
L2 + ‖∇u(s)‖2

L2

)
ds

+ log log E(0) ≤ Cin(T + 1) + log log E(0).
(93)

for some constant Cin depending only on the initial data. (92) and (93) imply the global well-posedness.

6. Small Data Global-in-Time A Priori Estimates When n = 3

Similarly, the estimates in (86), (87) and (88) hold. That is,

1
2

d

dt

∫
ρpv|u|2 d�x +

∫
|∇u|2 d�x = 0, (86)

1
2

d

dt

∫
|∇u|2 d�x +

∫
ρpv|ut|2 d�x = −

∫
ρpvu · ∇u · ut d�x, (87)

1
2

d

dt

∫
ρpv|ut|2 d�x +

∫
|∇ut|2 d�x = −

∫
ρpv(ut · ∇)u · ut d�x. (88)

We estimate the nonlinearities on the right-hand side of (87) and (88) as follows,

−
∫

ρpvu · ∇u · ut d�x ≤ 1
2

∫
ρpv|ut|2 d�x + C‖zαu‖2

H2

∫
|∇u|2 d�x,

−
∫

ρpv(ut · ∇)u · ut d�x =
∫

ρpv(ut · ∇)ut · u d�x ≤ 1
2

∫
|∇ut|2 d�x

+ C‖zαu‖2
H2

∫
ρpv|ut|2 d�x.

Then, after denoting

E(t) :=
∫

ρpv|u|2 d�x +
∫

|∇u|2 d�x +
∫

ρpv|ut|2 d�x,

(86), (87), (88), (89) and (90) imply

d

dt
E(t) + (1 − E6)

∫
(|∇u|2 + ρpv|ut|2 + |∇ut|2) d�x ≤ 0,

which implies, for E(0) small enough,

sup
0≤t<∞

E(t) ≤ E(0).

Thus we have shown the global well-posedness with small initial data.
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