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Preface

Since DARPA Urban Challenge 2007 (DUC), the development of autonomous vehi-
cles has attracted increasing attention from both academic institutes and the automotive
industry. It is believed that autonomous vehicles sophisticated and reliable enough would
redefine mobility. The motion planner and sensor simulation presented in this thesis are
intended to contribute to this prospect.

The task of a motion planner for autonomous on-road vehicles is to generate a tra-
jectory of motions for the vehicle to follow. The proposed motion planner employs a
state lattice to construct a large variety of candidate trajectories and selects the best
constraint-abiding one based on a set of cost criteria. The parallel computer architecture
of CUDA is exploited to construct and evaluate the trajectories efficiently. The spatial
planning horizon of the proposed planner can contain multiple segments with different
widths. This feature helps the planner to adapt to various road layouts easily and to
generate more consistent plans.

During the construction of the state lattice, acceleration profiles are associated with
the path segments to generate trajectory segments. Acceleration cubic polynomials and
constant accelerations are applied in the proposed planner. The adopted association
scheme makes it possible to span one acceleration profile over several trajectory segments,
which, together with the applied smooth acceleration profiles, helps to enhance the
feasibility of the trajectories. In the construction of cost maps of obstacles for the
evaluation of the trajectories, the obstacles need to be dilated to compensate for the
vehicle shape. A novel approach is proposed to analyse the sufficiency of the dilation
strategy implemented in this work from the perspective of excluding all the trajectories
that are practically not traversable.

The scanning sensors are also simulated to increase the realistic level of the sim-
ulation experiments. Programmable shaders in the rendering pipeline of OpenGL are
manipulated to record sensor-related data. Such implementation takes advantage of
the parallel computer architecture of the GPU and thus enhances the computational
efficiency of the generation process of the simulated sensor data. A novel macro-micro
approach is proposed which can increase the accuracy of the simulated sensor data. Fi-
nally, the proposed planner is evaluated in a variety of simulated traffic scenarios. Given
proper guidances from a behaviour planning layer, the proposed planner can generate

reasonable plans in most scenarios.



Vorwort

Seit der DARPA Urban Challenge 2007 (DUC) bekommt die Entwicklung autonomer
Fahrzeuge erhohte Aufmerksamkeit aus der Forschung und aus der Automobilindustrie.
Es wird vermutet, dass ausgereifte und zuverléassige autonome Fahrzeuge unsere Mo-
bilitdt neu definieren wiirden. Der in dieser Arbeit vorgestellte Bewegungsplaner und
die Sensorsimulation beabsichtigten zu dieser Entwicklung beizutragen.

Die Aufgabe eines fiir autonomes Fahren geeigneten Bewegungsplaners ist es, eine
Trajektorie von Bewegungen zu generieren, sodass das Auto auf diese Trajektorie folgen
kann. Der vorgeschlagene Bewegungsplaner wendet ein Zustandsgitter an, um viele un-
terschiedliche Kandidaten-Trajektorien zu konstruieren, und wéhlt die den Beschrankun-
gen entsprechende beste auf der Grundlage einer Reihe von Kostenkriterien aus. Die
parallele Rechnerarchitektur von CUDA wird fiir die Erzeugung und die Auswertung der
Trajektorien effizient eingesetzt. Der rdumliche Planungshorizont dieses Planers kann
aus mehreren Segmenten mit unterschiedlichen Breiten bestehen. Diese Eigenschaft hilft
dem Planer, sich auf verschiedenen Fahrbahntypen anzupassen und konsistentere Plane
ZU generieren.

Waihrend der Berechnung der Zustandsmatrix werden die Rander der Fahrbahn
den Beschleunigungsprofilen zugeordnet, um die Kanten der Trajektorien zu erzeugen.
Kubisch-polynomielle und konstante Beschleunigung werden in dem vorgeschlagenen
Planer angewendet. Das angewendete Assoziationsschema macht es moglich, ein Beschle-
unigungsprofil iiber mehrere Kanten einer Trajektorie auszudehnen. Das hilft, zusam-
men mit den angewendeten glatten Beschleunigungsprofilen, die Ausfithrbarkeit der Tra-
jektorien zu verbessern. Bei der Erstellung von Kostenkarten von Hindernissen fiir die
Auswertung der Trajektorien miissen die Hindernisse erweitert werden, um den Umriss
des Fahrzeugs zu kompensieren. Als neuer Ansatz wird vorgeschlagen, die Angemessen-
heit der in dieser Arbeit implementierten Ausweitungsstrategie aus der Perspektive des
Ausschlusses aller praktisch nicht befahrbahren Trajektorien zu analysieren.

Die LiDAR und Radarsensoren werden ebenfalls simuliert, um den Realismus der
Simulationsexperimente zu erhohen. Programmierbare Shader in der Rendering- Pipeline
von OpenGL werden veriandert, um Sensordaten aufzuzeichnen. Diese Umsetzung nutzt
die Vorteile der parallelen Rechnerarchitektur der GPU und verbessert so die Rech-
eneffizienz bei der Generierung der simulierten Sensordaten. Ein neuer Makro-Mikro-
Ansatz wird vorgeschlagen, um die Genauigkeit der simulierten Sensordaten zu erhéhen.
SchlieBlich wird der vorgeschlagene Planer in einer Vielzahl von simulierten Verkehrssit-
uationen ausgewertet. Mit gegebener Orientierung von einer Verhaltensplanungsschicht

kann der vorgeschlagene Planer in den meisten Szenarien verniinftige Pléne generieren.
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Chapter 1

Introduction

Since DARPA Urban Challenge 2007 (DUC), the development of autonomous vehicles
has attracted increasing attention from both academic institutes and the automotive
industry. It is believed that autonomous vehicles sophisticated and reliable enough
would redefine mobility. The motion planner and sensor simulation presented in this
thesis are intended to contribute to this prospect.

In on-road traffic scenarios, a motion planner capable of generating flexible and
feasible trajectories within short planning cycle is necessary for autonomous vehicles
to perform sophisticated and reliable driving behaviours. Motion planning described
in this thesis conducts its search for the best constraint-abiding trajectory in road-
adapted state lattice. Such method belongs to the domain of search-based planning,
which requires constructing a graph and searching for the optimal trajectory along the
constructed graph. As the trajectory generated in this way is piecewise, discontinuity in
jerk, acceleration and velocity at the switching points challenges trajectory smoothness.
Trajectory smoothness is essential for passenger comfort, energy efficiency and ease of
tracking. The acceleration profiles (i.e., acceleration cubic polynomials and constant
accelerations) applied in the proposed planner and the corresponding method of asso-
ciating the acceleration profiles with the path segments can guarantee a high level of
trajectory smoothness.

Experiments are crucial for the development of high quality motion planners and thus
of effective autonomous driving systems. The experiments involving motion planning
reported in this thesis are carried out in a simulation environment. The simulation
of scanning sensors (laser scanners and radars) is introduced into the experiments. In
this way, the flexibility and reliability of the planner can be tested and verified under
more realistic perception limitations. Another part of this thesis presents algorithms for

simulated sensor data generation based on shader programming.
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1.1 Motivation

Motion planning can find itself in many applications, such as robot navigation, automa-
tion of equipment operation in production and manufacture industry, robotically assisted
surgical systems, animation design of digital characters, the study of protein pathways,
evaluation of safety and accessibility in computer-aided architectural design, etc. In this
thesis, the scope of motion planning is set in the context of autonomous on-road vehicle
driving.

Simulation for testing autonomous on-road vehicles encompasses vehicle physics sim-
ulation, traffic environment modelling and sensor simulation. Simulation in general and
sensor simulation in particular is very important in testing and evaluating the perfor-
mance of autonomous driving systems.

In this section, motion planning and simulation together with their implementa-
tion context, i.e., autonomous vehicles, are motivated as problem domains of significant

meaning.
1.1.1 Societal Impact of Autonomous Vehicles

Mobility is an essential element in the modern society. Autonomous vehicles are all
about mobility optimization. Ideally, such vehicles should be able to manoeuvre in both
structured and unstructured environments. Their driving operations are completely
autonomous, i.e., they are calculated and conducted without any intervention from a
human driver. Their travel plans and behaviours are optimal and satisfy necessary
constraints. The criteria of optimality may include but are not limited to, minimum
risk, time and energy efficiency, and comfort. The constraints are imposed by the re-
quirements of collision avoidance, traffic rules and limitations of the vehicle’s physics,
etc.

Figure 1.1 shows an example of an autonomous car, MIG(Made In Germany). The
sensors simulated in this work including laser scanners and radars are highlighted on
it. The algorithms of motion planning and simulation presented in this thesis are im-
plemented in the software system of MIG. More details about MIG can be found in
[1].

Commuting is an important aspect of modern societal life that demands a lot of
our precious time. In Flanders, Belgium, e.g., 80% of commuting trips occur by cars
[2]. Besides the waste of time, the anxiety, stress and tiredness that people might suffer
during the commuting trips would impact their state of health to some extent [3]. Such
kind of mobility goes completely against efficiency and well being of human beings which
are crucial for modern society. By autonomous driving without the need of a human
driver, autonomous vehicles would allow commuters to just lean back and enjoy doing

everything that is possible in a car.
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Camera Rotating Lidar GPS/IMU

Figure 1.1: The sensor system on an autonomous car.

Traffic congestion is a big problem that challenges the modern society. It is reported
that commuters of the USA spend 38 hours a year stuck in traffic with the situations in
bigger cities even worse [4]. The congestion “invoice” of extra time and fuel in 498 urban
areas amounted to $121 billion in 2011 [4]. It is suggested in [5] that the fact that the
desire of human driver for smooth and comfortable driving goes beyond the avoidance
of accidents is in part responsible for the occurrence of congested traffic. Autonomous
vehicles can help to avoid traffic jam by replacing the human driver with smarter robot
capable of generating more flexible, safe and efficient trajectories.

Road safety is a major societal issue. According to statistics provided by mobility and
transport administration of European Commission, in 2011, more than 30,000 people
died on the roads of the European Union. Even in non-fatal accidents, besides the
expenses of loss caused by the traffic accidents, the trauma induced therein can be a
long lasting suffer for both the related individuals and the society as a whole. According
to [6], human error is thought to be the main factor for 75% of all ground vehicle
crashes. Active safety systems that can be found in modern cars such as brake assistant,
intelligent speed adaptation, forward collision avoidance and lane departure warning can
help to avoid accidents to some extent. However, as mentioned in [6], the active safety
system and the human driver are in fact competing against each other, which implicates
that the active safety system might fail when the driver is “too crazy”. To be more
explicit, situations might occur where any reactions of the car cannot avoid the collision.
The vehicle states in such scenarios are defined as Inevitable Collision States (ICS) in
[7]. Therefore, a complete “cautious” autonomous driving without any intervention
from error-prone human drivers is necessary. In this way, many critical situations can
be avoided “actively” and thus the safety of on-road traffic can be largely improved. It
is noteworthy that sufficient traffic information is a must for safe autonomous driving.

In that sense, the recently promoted concepts of Vehicle to Vehicle (V2V) and Vehicle



Chapter 1. Introduction 4

to Infrastructure (V2I) communications would be of great help in complementing the
limited perception of current autonomous vehicles.

Autonomous vehicles also contribute to a mobility of environmental care and energy
efficiency. The report on energy consumption and carbon dioxide (CO32) emissions of
road transport from Federal statistical office of Germany [8] points out that in 2008 the
COg emissions of road transport in Germany was 17.4% of the entire CO2 emissions(
LULUF (Land Use, Land-Use change and Forestry) excluded). COs accounts as one
of the main contributors of the notorious green house effect. It also mentions that the
road transport has a share of 24.3% of the final energy consumption as a whole in
2007, which concerns the sustainability of energy. Autonomous vehicles that are able to
generate efficient travel plans with less pollution are of great meaning to the harmony
between the human society and the nature.

Perhaps the ultimate goal of human society in terms of freedom is to conquer physical
limitations of human beings caused by ageing and diseases. While the medical solution
can still not be available in the near future, the autonomous vehicle can offer a temporary
remedy with regard to mobility independence. For example, there are 1% of people
worldwide who suffer from epilepsy [9], a disease of neurological disorders that would
make people unconscious and erupt into seizures temporarily without any forewarning.
If people are driving a car when a seizure occurs, it would be a severe threat to the driver
himself and related traffic participants. Therefore in most countries people with such
disease are not allowed to drive. Provided there is a monitoring system on the car to
predict and detect seizures of the driver, the autonomous driving system can take over
the control of the car under such circumstance and thus make independent mobility a
reality for those people.

With those advantages said, there is still a long way to go before autonomous vehicles
with sufficient sophistication and reliability become commonly available. The available
prototypes of autonomous vehicles like those introduced in [10] [11] [12] [13] [14] [15]

still need a lot of tests and improvements.
1.1.2 Evaluation Criteria of On-Road Motion Planners

All the advantages illustrated in Section 1.1.1 would be impossible without the help
of motion planning. The establishment of an optimal trajectory can be formulated as
an optimal control problem. The process is to determine a trajectory of controls or
states for a dynamic system (the car physics system) over a period of time (the planning
horizon) to minimize a performance index. The performance index keeps in consistence
with those optimality criteria for autonomous vehicles listed in Section 1.1.1. However it
is too complicated to obtain an analytical solution for such optimal control problem due
to the physical and collision-related constraints [16]. Therefore the sampling approach is

a common choice for trajectory planning for autonomous on-road driving. The main idea
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is to query as many diverse trajectories as possible and select the best constraint-abiding
one.
The criteria for evaluating the performance of a motion planning algorithm consist

mainly of completeness, feasibility, optimality and runtime [17].

COMPLETENESS

By definition, a motion planning algorithm is said to be complete if it can demonstrate
the following property: if there is a feasible trajectory, the planner can return one in
finite time; otherwise, it should report failure within a deadline [18]. Sampling based
motion planning is rarely complete. It is not hard to imagine that the possibility al-
ways exists that the solution is hidden in the interstices. To that end, concepts like
resolution completeness and probabilistic completeness come into being. A planner is
resolution complete if it is “complete” in dealing with the discretized problem defined by
itself rather than the original problem [19]. Deterministic grid or lattice based planners
generally have the property of resolution completeness. Motion planners using incremen-
tal sampling like Rapidly-exploration Random Tree (RRT) may guarantee probabilistic
completeness. That is, the planner is complete with probability of unity in the limit as
the sampling density increases continuously [20]. Anyway, the extent to which the plan-
ner approaches completeness can be improved by sampling more densely and constructing
more diversifying trajectories.

Completeness is crucial in situations where an emergency evasive manoeuvre is in-
evitable. An effective autonomous driving system should ensure that the car can find a
way to avoid the collision as long as it is not in ICS. Sampling based motion planning
cannot make such promise due to its incompleteness. Consequently, a fast emergency
handling module is necessary for tackling critical situations. Moreover, it is helpful to
have a behaviour layer that can make far-sighted decisions to avoid critical situations as
early as possible. The concept of ICS-AVOID proposed in [21] highlights the usefulness

of such behaviour layer.

FEASIBILITY

A trajectory is feasible if it can be tracked by the vehicle given the physics constraints.
In most motion planners for car-like robots, feasibility is implicitly taken care of by
the representation of the trajectory. The feasibility can be improved by increasing the

smoothness of the trajectory.

OPTIMALITY

Given incomplete perception and highly dynamic driving environment, the motion plan-

ner for on-road driving can only search for an optimal trajectory within a limited planning
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horizon. Consequently the resultant solution in this way is in fact horizon-optimal rather
than global optimal (if sub-optimality introduced by the discrete nature of sampling based
planner is ignored).

Even such horizon-optimality can not be easily obtained. The first question that
should be answered is what aspects should account for optimality. Another challenge
lies in that different traffic scenarios might have their own emphasis on optimal driving
behaviours. In [22] various cost criteria are designed and their weights are adjusted
beforehand. In runtime different weights of those criteria are assigned to the motion
planner by a behaviour layer according to scenario-dependant requirements. Further
tests and verifications can be expected.

Given the concrete definition of optimality, sampling density and trajectory diversity

still determine its extent.

COMPUTATIONAL COMPLEXITY

The common bottleneck for achieving a large extent of optimality and completeness is
limited computational resources. Consequently most motion planners have to achieve
short runtime at the expense of sacrificing optimality and completeness.

Besides, large runtime of the motion planner would threaten the consistency of suc-
cessive plans which is crucial for stable travelling.

So far there are in general two concrete approaches regarding sampling based motion
planning. One is to deliberate multiple terminal states and construct trajectories from
the ego-vehicle to each of those target states [16]. The other is to conduct graph search
algorithms in a state lattice [22] [23]. Compared to the former, the latter can generate
more sophisticated manoeuvres with multiple lateral motions and multiple phases of
acceleration and deceleration. In this sense, the trajectory diversity of the latter is
better than the former. Unfortunately, the latter renders essentially a combinatorial
problem that is typically computationally expensive. In [22], a parallel algorithm is
designed and implemented on the Graphics Processing Unit(GPU) to accelerate the
planning process. In terms of feasibility, the trajectories constructed by the latter have
insufficient smoothness.

In sum, motion planning is important for effective and safe autonomous driving
and there is still large room for further improvement. In addition, given limited com-
putational resources, an emergency handling module and a behaviour layer are so far

inevitable complements to the motion planner.
1.1.3 Application of Simulation in Autonomous Vehicle Developments

Simulation, a mathematical modelling of the physical process in real world, plays a
crucial role in almost every field of research. It is also very important for autonomous

on-road vehicle development. For one thing, the traffic scenarios necessary to test the
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system are not easily reproducible in real life. For another, the field tests can be very
dangerous, costly and time-consuming.
Simulation for the testing of autonomous vehicles should consist of following compo-

nents:
e car physics simulation,
e sensor simulation,

e traffic scenarios modelling ( static and dynamic objects, traffic related infrastruc-

tures, etc.).

A concrete example concerning debugging and testing the performance of motion planner
can give a hint of the usefulness of simulation in this context. Initially the motion planner
is implemented in a simulation environment with empty roads. Should the planner
pass that simple scenario, static and dynamic traffic participants would be added to the
previously empty roads. As no sensor simulation is available so far, the exact information
of these traffic participants are provided for the planner to make decisions. After that,
that information is replaced by simulated sensor data. Furthermore, hardware-in-loop
testing can be implemented, where the car simulator is replaced by the real car while
the traffic scenarios and sensor data are still simulated. In this way, the experiments
conducted in a simulation environment with gradually growing realistic level save us a
lot of time and effort.

In addition, simulation is also useful in terms of benchmarking and demonstration
of the autonomous vehicle systems, which are important for standardization, teaching
and advertising.

In terms of simulation, the main focus lies on sensor simulation in this thesis. The

overall simulation framework for autonomous vehicle testing is also described generally.

1.2 Thesis Contributions

The motion planner proposed in this thesis is aimed at being capable of handling complex
and dynamically changing driving environments in a real time fashion. Road-adapted
state lattice is employed to formulate the motion planning problem into a graph search
problem. Compared with similar work presented in [22] [24][25][26], the major contri-
bution herein is the improvement of trajectory smoothness while ensuring a high level
of trajectory diversity.

Besides, another contribution of this thesis is the realization and implementation

of scanning sensor(i.e., LIDAR and radar) simulation for autonomous car testing. The
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simulated scanning data generation is accelerated by graphics hardware via shader pro-

gramming.

TRAJECTORY SMOOTHNESS

In [27], it is proposed that movement smoothness can be quantified as a function of jerk.
By definition, jerk is the derivative of acceleration with respect to time, i.e., the third
time derivative of position [28]. Smoothness (and thus jerk minimization) for trajectory
planning is emphasized in several fields, especially in those of robotics and machinery
processing. The objects handled by the robots can be very delicate and fragile. As a
result, the jerk level of the trajectory that is followed in transferring the objects should
be as small as possible. In terms of machinery processing, jerk is accountable for machine
resonant vibration and premature wear-out of the machinery tools, etc.

Regarding motion planning for autonomous driving, trajectory smoothness can be

beneficial in terms of the following aspects:
e It can help to provide comfortable travelling experience for the passengers.

e It can contribute to energy efficiency and environmental care. Eco-driving ma-
noeuvres like slow acceleration and smooth driving are gaining interest worldwide
[29]. In [30], simulations of vehicle travelling in an arterial corridor with traffic
signals are carried out. The initial results show that in such scenarios, trajectories
following smooth driving strategies can help to reduce fuel consumption and CO»

emissions by around 12% in average.

e It can facilitate trajectory tracking and enable ease of control. This gain results
mainly from the fact that smooth trajectories take into account implicitly unmod-
eled system dynamics such as unmodeled actuator behaviours [31]. This aspect is
especially important for the motion planning strategy adopted in this thesis. In
this approach, the planning result is a trajectory of controls rather than one of
states. Accordingly, only a low-level controller is needed while a high level tracking
controller is left absent. Such low-level controller carries out the controls assigned
by the planner directly without simultaneously compensating trajectory tracking
errors. As a result, all the task of tracking error correction is shouldered by the
motion planner itself, which is definitely much slower than a lightweight tracking
controller. Consequently, a trajectory composing of smooth motions requiring a

minimum amount of control effort is highly demanded.

In conclusion, trajectory smoothness is of great significance for a practical, efficient
and effective motion planner. For sampling based motion planning, trajectory diversity
is crucial in achieving a high level of optimality. In similar work listed at the beginning of

this section, the trajectory diversity and smoothness are not achieved at the same time.
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This thesis proposes a trajectory representation method that can satisfy requirements

from both aspects.

SCANNING SENSOR SIMULATION FOR AUTONOMOUS VEHICLE TESTING

One part of the thesis is focused on sensor simulation for autonomous vehicle testing.
As is illustrated in Section 1.1.3, sensor simulation can introduce more realistic percep-
tion limitations in the simulation environment. Consequently, the sophistication and
reliability of the motion planner can be checked and assessed more accurately. Sensor
simulation can also be used to debug and validate algorithms of obstacle detection and
tracking. The sensor simulation presented in this work is employed initially to assist
in performance testing of a previously developed path planner and the motion planner
designed in this work. After that it is also utilized in some other applications like ini-
tial design and assessment of sensor layouts for perception systems mounted on mining
trucks ( cf. [32]).

There are specific requirements on sensor simulation for autonomous on-road vehicles
when compared with those on traditional robot simulation platforms. As autonomous
vehicles are always moving at high speed and the surrounding environment is always
highly dynamic, the sensor feedback should be calculated and generated in a very fre-
quent fashion. In this work therefore, sensor data generation algorithms are developed
based on shader programming which takes advantage of the parallel computation archi-
tecture of graphics hardware. The resultant sensor simulation can update sensor data
fast enough for motion planner testing.

The sensor types simulated in this work include laser scanners (Velodyne and IBEO
LUX) and radars which are commonly employed in autonomous vehicle systems. For
sake of convenience, these sensors are termed as scanning sensors in this thesis in the
sense that they all send electromagnetic radiations to, and receive feedback from, the
surroundings within their field of view. The video camera is also simulated to serve for
the traffic lights detector module. As the camera simulation so far is relatively simple
in that it doesn’t require too many special treatments with shader, it does not belong

to the main focus of this thesis.

1.3 Thesis Structure

Chapter 2 surveys the work related to motion planning in the field of autonomous on-
road vehicles. The main focus lies on motion planning based on state lattice and its
related key sub-problems. Besides, the literature about LiDAR and radar simulations is
also examined. Chapter 3 presents detailed illustrations of motion planning algorithms
applied in planning procedures such as planning horizon specification, spatiotemporal
sampling, cost map construction and state lattice construction and search. In Chapter 4,

a novel trajectory representation approach is described. The trajectories generated by
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this approach can achieve a high level of smoothness. The application of the proposed
acceleration profiles and the quality of the generated trajectories are reported. In Chap-
ter 5, the planning strategy presented in the previous two chapters is put into practice to
render an effective motion planner. The implementation of the algorithms on the CPU
and GPU is presented. The cost functions applied in the motion planner are listed.
The resultant motion planner is then integrated into the planning architecture of MIG.
The issues with controller design, latency compensation as well as planning consistency
between consecutive planning cycles are considered. So far, the description of motion
planning is finished. Following is Chapter 6, where the methodology and implementa-
tion details for shader-based scanning sensor simulation are presented. Then Chapter 7
reports the performance of the proposed motion planner in several simulated on-road

driving scenarios. Lastly, Chapter 8 concludes this thesis.



Chapter 2

Related Work

There is a large body of research regarding motion planning for autonomous vehicles.
This survey focuses on motion planning based on state lattice and other types of spa-
tiotemporal sampling. Besides, the approaches to key subproblems of state lattice-based
motion planning are also reported. Those problems include spatiotemporal sampling,
trajectory representation, trajectory evaluation and graph search. After that, the litera-
ture concerning scanning sensor simulations is presented. Above all, three terminologies,
i.e., path planning, trajectory planning and motion planning, are clarified, which is useful

in understanding the descriptions in this chapter.

2.1 Terminology

Path planning, trajectory planning and motion planning are sometimes used interchange-
ably in the context of robotics. These terms are distinguished from each other in this

thesis as follows:

e Trajectory planning refers to generating a trajectory which is a representation of

spatial positions or any other related states in terms of time.

e Path planning is the design of pure geometrical aspect of trajectory without con-

sidering its relationship with time.

e Motion planning is the calculation of a trajectory of controls.

The planning takes place repeatedly as the vehicle moves on. One such calculation
procedure is carried out within one planning cycle which goes through several phases.
A planning horizon ( represented by a period of time or segments of roads ) is specified
as sampling space at each planning cycle.

The advantage of trajectory planning over path planning is that the former can
take into account the time-related constraints and optimal criteria in a more explicit

and accurate way so that it can offer better movement strategy with regard to those

11
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constraints and optimal criteria. This advantage becomes significant in time-critical
scenarios such as merging.

The difference between trajectory planning and motion planning lies in that an ad-
ditional tracking controller is needed for the former to generate the same results as the
latter. In other words, the controls resulted from motion planning can be generated
by analysing the trajectory provided by the trajectory planning. From another point
of view, the domain of motion planning is the control space while that of trajectory
planning is the state space.

Due to the close relationship between motion planning and trajectory planning with
respect to time, in this thesis these two terms are sometimes used interchangeably. In
such circumstances, both terms are employed to represent the general idea, i.e., planning
in spatiotemporal space. At the same time, motion planning and trajectory planning are
strictly distinguished from path planning. Special notes would be given if it is necessary
to differentiate motion planning and trajectory planning in the strict sense that follows

the categorical definitions.

2.2 On-Road Motion Planning

Many algorithms and techniques concerning autonomous on-road vehicles can be traced
back to those developed for robotics research in the early days. Motion planning is
no exception. [33][34][35] provide detailed illustrations and discussions about the al-
gorithms and implementations of motion planning in the field of robotics. However,
motion planning for on-road driving has its special challenges which distinguish it from
its counterparts for ordinary ground robots. For example, on-road vehicles have to run
in structured environments and must conform to certain traffic rules. Another instance
is that the driving environment is highly dynamic and vehicle dynamics become com-
plicated at high speed. As a result, motion planning for autonomous on-road vehicles
would definitely evolve into its own way. This section reports its development until
recently from DUC. Following that, the state-of-the-art techniques in dealing with its

subproblems are provided.
2.2.1 On-Road Motion Planning in DUC

In DUC, six autonomous vehicles managed to finish the competition course. On-road
motion planning then was mainly to roll out trajectories from the ego-vehicle towards
several sampled target states. These trajectories were evaluated according to some crite-
ria and the best one was selected. Such planning algorithms were devised aggressively to
win the competition and only worked well in the low-density, low-speed (up to 30 mph)
contest scenarios. Nonetheless, they serve as basis for more sophisticated schemes devel-
oped afterwards that are necessary for on-road driving in complex traffic scenarios. In

the following, the general framework of the planning system of the autonomous vehicle
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Boss is illustrated. Boss is from Carnegie Melon University and won the Challenge. Its
planning system is very representative among autonomous vehicles and is often referred
to in the literature reported in this section.

The planning framework of Boss contains mainly three separate modules (for more

details, please refer to [14]):

e Mission module responsible for global route and blockage detection. It assigns a
lane for the vehicle to follow so that the next checkpoint can be achieved in an

efficient manner.

e Behaviour module in charge of rule-based reasoning, such as precedence judge-
ment at intersections and lane change determination. Besides, it also performs
error recovery strategies if necessary. Concretely, it assigns a lookahead distance
(planning horizon) and maximum speed to the motion planner based on different

scenarios.

e Motion planning module accountable for generating motion commands. Its opera-
tion is guided by the information sent from the behaviour module. It functions like
this: A posture ( position and heading) is specified at the lookahead distance along
the center of the assigned lane. By offsetting laterally that posture with heading
retained, a column of postures are obtained. These postures then serve as short
term goals for the motion planning. A curvature command spline parametrized in
arc-length is employed to define the geometrical shape of a trajectory. A vehicle
model is employed to check the feasibility of the trajectory. After that, several
velocity profiles are applied on each path to generate a set of candidate trajecto-
ries for evaluation. These profiles include constant, linear, ramp and linear, and
trapezoidal velocity types. Lastly, the motion planner feeds curvature and velocity
commands to a low-level controller. For more details, see [36]. Alternatives are

path planners presented in e.g.[10] and [13].

2.2.2 Further Improvements of On-Road Motion Planning after DUC

Based on Boss, [22] and [37] illustrate a motion planning strategy using a spatiotem-
poral state lattice. Several columns of postures are sampled this time rather than only
one as described in [14]. Curvature is also added as an element of the posture. Two
postures from different columns satisfying specific connectivity pattern would be con-
nected to render a path edge. A curvature polynomial is still adopted in formulating the
path edge, albeit updated from quadratic polynomials previously to cubic polynomials.
This adaptation is to ensure curvature continuity at the postures which might serve as
switching points of an integral trajectory. Then a certain number of velocity profiles

are applied on the spiral path edges to render trajectory edges. Besides constant and
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linear velocity profiles applied previously in [14], an acceleration profile controlled by
a Proportional-Derivative (PD) law for vehicle following behaviour is also taken into
account. Several trajectory edges ending at the same posture would get pruned so that
only a fraction of them can have offspring. The pruning is for controlling the size of
the resultant lattice so that search process can be fulfilled within a deadline. To fur-
ther increase computational efficiency, parallel algorithms implemented on GPUs are
designed for the planning. Various cost terms are designed and adjusted to adapt the
behaviour of the robot to different traffic scenarios. The experiments in a simulation
environment demonstrate effective performance of the planner in handling time critical
situations where manoeuvres with multi-lateral shifts are required. Experiments on real
vehicle Boss is also conducted albeit with limited driving speed and traffic scenarios of
modest complexity.

A variant of the motion planner illustrated above is proposed in [24] which realizes the
reduction of the computation complexity by sampling less densely but post-optimizing
the resultant trajectory. The main differences and improvements of this planner com-
pared with the one presented in [22] are as follows: The curvature cubic spiral used
in [22] for the trajectory segment from ego-vehicle to the state lattice is replaced by a
curvature quartic spiral. That alleviates protrusive jumps in terms of the rate of change
of the curvature at the junction of two successive plans and thus the consistency of
the plans is improved. Unlike the resolution-equivalent state lattice constructed on the
fly as described in [22], the graph employed in [24] embodies the consideration of the
temporal space by introducing a predetermined discrete speed space. The trajectory
edge is thereby generated by applying a cubic velocity polynomial on the path edge.
The coefficients of the velocity polynomial can be determined given the fixed velocities
and an assumption of zero accelerations at the two end points of the edge. In this way,
the acceleration continuity at the switch points of the trajectory is ensured, resulting in
trajectories of better smoothness compared with that of [22]. However, the number of
speed cells is really limited, implying less diverse trajectory profiles. Finally, the resul-
tant trajectory is further optimized via relaxing the constraints in terms of lateral offset,
curvature, heading, velocity and acceleration imposed by the fixity of graph vertices. It
is reported that the performance of the resultant trajectory is improved by 10% and the
computation time is said to be reduced by more than 50% in three experiment scenarios
concerning lane change, static obstacles and dynamic obstacles.

[25] and [26] point out that the approach of spatiotemporal sampling and search-
ing mentioned above wastes a lot of computation time by constructing and evaluating
trajectories that would be eventually discarded. They suggest that focused and time-
consuming sampling and searching should be conducted in areas where optimal manoeu-

vres exist with high likelihood. In [26] [25] therefore, a two-step planning approach is
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proposed. The goal of the first step is to obtain a reference trajectory including a non-
parametric seeding path and a regulated velocity profile that can be applied along that
path. In the concrete implementation, the spatial space of interest is firstly searched and
located without considering the temporal space. That implies a heuristic by which the
static cost alone determines the focused spatial area. As a result, sometimes such mo-
tion planning method might fail to yield a satisfactory solution, e.g, when time-related
cost, rather than static cost, should determine the focused spatial sampling space. In
the second step, focused sampling is conducted in the spatiotemporal region specified
by the regulated velocity profile and offsetting slightly the seeding path. The trajectory
construction at this stage is similar to that of [24]. This motion planning method is
reported to be practical and efficient.

The sampling patterns adopted in the motion planners presented above are based
uniformly on the assumption that the geometrical shape of the trajectory is composed
of curvature polynomial spirals. Allowing such assumption reduces the computational
cost while lessens the diversity of the trajectories. An alternative sampling approach
without confining the path type to a specific functional is applied in the motion planner
presented in [23]. Along with that method, one sampled vertex represents a combination
of a vehicle state and time. The vehicle state consists of a position and the first and
second derivatives of the position versus time, i.e., speed and acceleration, in both lateral
and longitudinal directions with regard to the center line of the road. Arbitrary vertices
satisfying a specific connectivity pattern are connected via two separate polynomials
parametrized in time. One polynomial encodes the lateral movement while the other
the longitudinal motion. Position quintic polynomials are employed to ensure trajectory
smoothness and continuity with regard to position, velocity and acceleration at the
switching vertices. In this fashion, a state lattice is constructed. Exhaustive search
is then implemented to obtain the trajectory with minimum cost. It is no doubt that
such method must challenge the limited computational resources. Consequently in the
simulation experiment the density of the sampling is very limited and the graph is
constructed offline a priori. Parallel algorithms can help to mitigate the problem of
high computation complexity, though.

Inheriting the spirit of the sampling approach illustrated in [23], [38] and [16] propose
a motion planner based on a terminal manifold. The terminal manifold can be regarded
as being composed of the sampled vertices resulted via the sampling method of [23]. It is
called terminal manifold because all the trajectories start from the ego-vehicle and end
at the sampled vertices. As no graph is constructed and thus no expensive graph-based
search is necessary, the issue of expensive computation bothering [23] is avoided. In
terms of trajectory representation, the approach presented in [23] is adopted for high
speed driving while the lateral movement is designed to be dependant on the longitudinal

motion for low speed manoeuvres. Such treatment is argued to be reasonable. On one
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hand, longitudinal and lateral movements of vehicles relative to the center line of the road
are highly decoupled at high speed due to the introduction of potential side slip, which
favours a decoupled design of the longitudinal and lateral aspects of trajectories. On the
other hand, no side slip is a valid assumption at low speed and thus the nonholonomic
constraint plays a key role, which would invalidate most of the trajectories due to invalid
curvatures if the decoupled design is followed. It is shown in simulation environment
that several challenging traffic scenarios in both urban and highway traffic are handled

properly by the resultant motion planner.
2.2.3 Approaches to Subproblems of Lattice-based Motion Planning

This section focuses on four subproblems which are essential for state lattice-based on-
road motion planning, that is, spatiotemporal sampling, trajectory representation, tra-
jectory evaluation and graph search. Motion planning is an important topic in the field
of robotics. Several subproblems of on-road motion planning for autonomous vehicles
can be solved by adapting the solutions for the similar problems established in motion
planning for mobile robots, especially car-like robots. The illustration of this section

takes care of this aspect.
2.2.3.1 Spatiotemporal Sampling

As it is hard to obtain an accurate analytical solution for the on-road motion planning
problem, approximation is necessary for calculating a solution within a time deadline
[17]. Spatiotemporal sampling is nothing but an approximation of the continuous spa-
tiotemporal space. In earlier days of the autonomous vehicle development, sampling for
on-road motion planning was limited to generating several targets (states or configura-
tions) for the planning in one planning horizon. As is mentioned previously in Section
2.2.1, trajectories (or paths) constrained to a specific functional are then constructed to
connect the ego-vehicle and the targets. One way to diversify the trajectory expression
rather than restricting it to a specific functional is to sample intermediate states as well
as the terminal targets. The trajectory primitives connecting two states then serve as
one part of the integral trajectory. In this fashion, more expressive trajectory types
can be obtained such as those with multi-phases of accelerations and multi-shifts. In
fact, the trajectory primitives can also be regarded as one part of the sampling. Such
spatiotemporal sampling results in a graph with vertices being the sampled states and
the edges being the trajectory primitives. Such graph can also be called a state lattice
in the sense that each vertex encodes the state information of the vehicle and a specific
connectivity pattern is applied in the edge construction.

Deterministic and random samplings are the two basic categories of sampling meth-
ods. Both of them have been applied in on-road motion planning.

The motion planners described in Section 2.2.2 uniformly adopt deterministic sam-

pling. The basic guideline in sampling for on-road planning in terms of spatial space
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Figure 2.1: An RRT generated by the RRT-based motion planner implemented
in MIT’s Talos, from [42].

is that the sampling should be adapted to the road shape. That is crucial for plan-
ning efficiency and generation of human-like behaviours. Normally the center line of
the road is set as the basis of the sampling and the vertices are generated by offsetting
laterally the postures sampled along the center line. The resultant spatial vertices can
be augmented by additional temporal elements such as time [23][22], speed [24][25] [26]
and acceleration [22] [23]. The representative value of the vertex can be predetermined
[23][24][25][26] or be calculated on the fly [22]. For detailed accounting, please refer to
Section 2.2.2.

RRT is among the most important random sampling algorithms with respect to
motion planning for car-like robots. RRT is a tree of dynamically feasible trajectories
constructed on the fly by the guidance of a simple stochastic strategy [39]. It can
quickly explore the free sampling space. Figure 2.1 demonstrates an RRT constructed
for on-road motion planning. At the beginning of each iteration, a random state is
firstly sampled in the free space. Then a node on the tree is selected to be the start
state according to some heuristic. Such heuristic is generally called Nearest Neighbour
(NN) metric. After that, a trajectory is propagated by simulating forward the dynamic
system from the start state towards the sampled state. Finally, the resultant end state
and the trajectory would be added to RRT as a new node and a new edge respectively
if the trajectory survives collision checking [39]. This procedure repeats until certain
sampling metric is satisfied or specific time limit is met. This data structure can be
easily adapted to motion planning problems with different dimension combinations and
various dynamic models because only a forward dynamic model is needed [23]. [40][41]
demonstrate the navigation potential of RRT by employing it in motion planning for

autonomous vehicles.
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The main advantage of RRT over deterministic sampling is that the former does
not suffer from dimension curse, since the number of nodes on the tree does not grow
exponentially with respect to the dimension (as they are randomly sampled on the fly).
With careful design, it can adapt to various search space easily and motion planners
based on it can run efficiently.

Another merit of RRT is that it has certain completeness guarantees[41], i.e., proba-
bilistic completeness. The planner can continue exploring the free space until a solution
is located. However, to what extent that virtue can play a role in handling critical situ-
ations such as collision avoidance is largely determined by the runtime it needs to find
that solution. That is hardly determined due to its stochastic nature.

One drawback of RRT in general is the fact that its efficiency and the optimality of
the generated trajectory are very sensitive to the choice of NN-metric and it yields good
result only if the NN-metric approximates the real travel cost properly [43]. Normally
applied NN-metric is Euclidean metric [44]. In [41], Dubins path length is employed as
the NN-metric. Anyway, it is hard to devise a heuristic that is a good approximation
of the real travel cost if e.g., energy efficiency, comfort, vehicle physics constraints are

taken into account.
2.2.3.2 Trajectory Representation

Trajectory representation can be formulated as an optimal control problem with bound-
ary conditions being given start and end states. However, it is hard to get a general
analytical solution for that optimal control problem due to potential varying constraints.
As a result, some parametric functional is usually presumed, which converts the optimal
control problem to a parameter finding or constrained optimization problem if there are
more than one feasible candidates [45].

In the context of motion planning for car-like robots, there are basically two ap-
proaches concerning parametric trajectory representation. One confines the geometrical
shape of the trajectory (i.e., path) to specific parametric functional. The trajectory
would then be generated by applying some velocity profiles on the path. The other has
no assumption about the path type of the trajectory; instead, the trajectory of the vehi-
cle is regarded as a combination of two elementary trajectories in terms of longitudinal
and lateral references respectively.

There is a detailed survey with respect to the methods of path representation in
[46][47] [45]. In general, there are several methods such as straight lines [48], circular arcs
[49] , clothoids [47], Bezier curves [46], cubic spirals(curvature quadratic) [47], Akima
splines [50], curvature cubic polynomials [45] [22] , curvature quartic polynomials [24],
etc. These path primitives have different orders of curvature continuity at the switching
points of consecutive path segments. In the motion planners designed in [22] [26] [24]

a path edge is generated based on the approach of path representation proposed in
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Figure 2.2: Cubic spiral. The curvature of this curve is expressed in a cubic
polynomial in the form of k(s) = pg + p1s + p2s® + p3s®. In this example, the
coefficients are pg = 0, p1 = 0.228, po = —0.045, p3 = 0.0019.

[45]. Figure 2.2 shows a cubic spiral which is a curve resulting from a curvature input
expressed in a cubic polynomial.

As for the choice of velocity profiles, Section 2.2.2 gives some details on that along
with the illustration of the motion planners. In Chapter 4 more detailed illustrations as
well as comparisons on that topic are provided.

Regarding the longitudinal-lateral approach, [51] and [16] formulate the trajectory
representation problem as two independent optimal control problems, each for one refer-
ence. The performance index of the optimal control problem is smoothness, embodied by
minimum jerk concretely. Without consideration of constraints, they prove that the po-
sition quintic polynomial parametrized in time is the solution. In [16], a motion planner
based on such trajectory representation is implemented for on-road autonomous driving.
The center line of the road is chosen to be the lateral reference while the perpendicular
direction with regard to the center line is set as the lateral reference. Those separately
generated longitudinal and lateral trajectories are combined and analysed afterwards to
calculate vehicle motions such as curvatures and accelerations. That information is used

for physics constraints checking and for tracking control.
2.2.3.3 Trajectory Evaluation

Trajectories are always further sampled and each sample is evaluated according to some
cost function. If there are many trajectories to be evaluated, it is necessary to construct

a cost map as a lookup table for efficient queries of cost values. A cost map is a sampled
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Figure 2.3: Convolution of a vehicle frame with a cost map. The green box
represents the vehicle frame. The blue point refers to the representative point
on the vehicle frame. The black curve is the trajectory recording the locus of
the representative point. The cost map is defined over the red grid.

version of the cost function. Defined in concrete terms, it is a collection of cells with
each having a representative state for which the cost function is evaluated [17]. In this
way, the evaluation of a trajectory is reduced to a summation operation of its occupied
cells in the cost map. A set of such cells is called a swath of the trajectory [17].

Trajectory evaluation including collision checking and motion and state cost estima-
tion, as is generally acknowledged in the field of robotics, is very time-consuming [17]
[52] [53] [54]. It accounts for a large part of the computation time for motion planning.
That is true especially in cases of exhaustive search-based planner where a large amount
of trajectories need to be evaluated [55]. To mitigate that challenge, cost map is widely
used in robotics for trajectory evaluation. Although the construction of cost map is rel-
atively expensive, that effort gets paid off easily in applications where tens of thousands
of evaluations are needed [55].

The following focuses on the issues involving collision-related cost maps. An original
cost map is defined to be a cost map constructed based on the original obstacles, i.e.,
obstacles without any form of dilation around them.

A trajectory describes the motion locus of a representative point on the vehicle. If
the shape of the vehicle cannot be ignorable compared to the representative point, it
must be taken into account when it comes to collision checking. Consequently, given
an original cost map, the evaluation is conducted by convolving the vehicle frame with
the cost map along the trajectory in question. Figure 2.3 gives a demonstration of
the convolution. As such convolution is still expensive, it is much better to dilate the
original cost map in such a way that the compensation for the vehicle frame is implicitly
accounted for in the resultant cost map. In this way, it is safe enough to just evaluate

the swath of the trajectory, which is much more efficient.
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For orientally invariant disk shape or the kind of shapes that can be approximated
by disk shapes with tolerable discrepancy, the dilated cost map can be constructed by
expanding the occupied cells in the original cost map by the radius of the disk shape.
For car-like robot, however, its rectangular shape with an aspect ratio of approximately
5 to 2 [55] requires that its orientation has to be accounted for. That particular issue
with car-like robot makes the collision checking not so easy as that of the disk shape
robot.

In [56] a 2D grid-based cost map is designed for efficient collision checking and
cost evaluation. Such cost maps are generously applied in the state lattice planner for
autonomous driving presented in [54]. They expand the original cost map by radius of an
inscribing circle within the vehicle frame and radius of a minimum circle bounding the
vehicle, which results in two different cost maps respectively, i.e., optimistic cost map
and pessimistic cost map. Assuming a point robot, if any cell on the optimistic map
along the trajectory is non-free, then the trajectory is guaranteed to be untraversable;
if all the cells on the pessimistic cost map along the trajectories are free, then it is
concluded that the trajectory is traversable. In this way, only the trajectories that fail
both tests (i.e., the cells on the optimistic cost map covered by the trajectory are all
free while some of the cells on the pessimistic cost map occupied by the trajectory are
non-free) have to be convolved with the cost map using the full-scale vehicle shape for
further detailed checking. The computation is further reduced by calculating the cells
covered by the full-scale vehicle executing specific trajectory offline a priori so that the
online evaluation is reduced to a summation operation over such set of cells.

In [55], the rectangular vehicle frame is represented by several overlapped disk shaped
primitives. Each disk shape is further decomposed into several axis-aligned rectangles
with axis conforming to the x and y coordinates of the original discrete cost map.
That operation is feasible thanks to the nature of the disk shape in terms of invariant
orientation. In this way, the dilation of the cost map can be broken down into several
simple and efficient dilation procedures.

In [22] it assumes that in scenarios of highway driving, the heading deviation of
autonomous vehicles from parallel to the center line of the road is within six degrees.
That assumption in turn specifies the size of dilation with respect to road-adapted

coordinates.
2.2.3.4 Graph Search

If a graph, or rather, a state lattice, is constructed for motion planning as described in
[22] [37][24][25] [26][23], efficient graph search algorithms should be implemented to find
the best constraint-abiding trajectory.

There are many graph search algorithms available in the literature, such as A",

D"[57], focused D* [58], anytime dynamic A* [59], etc. However, proper heuristics for
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estimating future trajectory cost are necessary for those algorithms mentioned above to
be efficient and to yield optimal solutions [60]. Similar to the situation regarding RRT
as mentioned in Section 2.2.3.1, it is difficult to find a heuristic which well encodes the
many cost criteria against the trajectories for autonomous on-road driving. Besides,
those algorithms require that the target state of the path or trajectory is given. That is
normally not the case for on-road motion planning where all the sampled vertices may
be regarded as a potential target. Consequently the fixed-target graph search algorithms
have to be implemented for each of the sampled targets, which makes them inefficient in
a global sense. As a result, exhaustive algorithms [23] or dynamic programming-based
search algorithms [22][24][25] are always the choices for search-based on-road motion

planning.

2.3 Scanning Sensor Simulation

The simulation of scanning sensors, namely LiDAR and Radar, mainly contains three
aspects, i.e., definition of sensor specification, environment modelling and calculation of
interactions between the scanning rays (or waves) and the environment. The first factor
varies across sensors and it is not a focus of this thesis. Accordingly, the following report
emphasizes the last two aspects. Besides, computation approaches are also recorded if
the corresponding information is available.

It is noteworthy that simulation of the transmissions of scanning rays or waves with
a high realistic level can be realized by employing the ray tracing technique [61]. How-
ever, modelling based on ray tracing is too computation intensive [62]. That is because
it requires essentially taking into account all the reactions between the light (ray or
wave in the context of scanning sensors) and the objects encountered by it during the
transmission [63]. There are efforts to improve the computational efficiency of ray trac-
ing, such as implementing parallel ray tracing algorithms on graphics hardware [64] and
even designing specific hardware named Ray Processing Unit in competition with exist-
ing GPUs [65]. Nonetheless, such techniques are still not ready for common and easy
access. As a result, so far most scanning sensor simulations for real time applications

employ simplified versions of the complicated physical process to different degrees.
2.3.1 Airbone Scanning Sensor Simulation

[66] presents airborne imaging radar simulation applied in flight simulators for man-in-
the-loop training of pilots and radar operators in Air-to-Ground (A/G) mode of oper-
ation. Environment models consist of terrain and weather. The terrain is described
by 2D grid topography with each cell containing information of radar reflectivity and
surface attributes. The weather is represented by a 3D grid of rainfall rates. The sen-

sor’s physical model includes detailed simulations of antenna, transmitter and receiver
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which belong to the main components of a radar device. The radio waves are mod-
elled by sampling discrete range traces at closely spaced azimuth angles and generating
range samples for each range trace based on all the data points between neighbouring
range traces. In that way the gaming area is determined. Then the signal strength
is calculated based on radar physical equations in terms of various media and targets
encountered by the radio wave during its transmission. After being further processed
by the antenna and receiver modules, the resultant signals are used to generate a radar
view. The simulation is mainly conducted on a graphics workstation provided by Silicon
Graphics Inc.(SGI).

In [61] millimetre wave (MMW) imaging radar simulation is constructed for study of
the effect of MMW Radar on assisting pilot in approaching, landing and taxiing under
bad weather conditions. 3D database of airports and their neighbourhood augmented
with simulation related microwave properties is employed as the environment model. The
main idea is to make use of depth and color images in the radar simulation. Those images
are generated naturally along with visual rendering via rendering pipeline standards of
Open Graphics Library (OpenGL) . Additional transformations are carried out in CPU.
The final information produced thereof is that of the target locations and the intensity
of the reflected signals. The simulation runs on an SGI graphics workstation.

[67] manipulates techniques of vertex and fragment shader programming to realize
the simulation functions of the previous work presented in [61]. Shader programming is
supported by GPUs compatible with the programmable OpenGL rendering pipeline. It
is no longer necessary for the CPU to read the image out from the GPU as no additional
transformations are necessary to perform in the CPU. As all the calculations can be
conducted on the GPU, computational efficiency is increased.

Using computation approaches similar to [67], [68] presents a LiDAR simulation for

testing and evaluating pilot assisting multi-sensor vision systems.
2.3.2 Scanning Sensor Simulation in the Field of Robotics

In general, sensor simulation is common in simulators for robotics applications. One
example worth to mention is the Player project[69]. It is an open source project consist-
ing of three components, i.e., Player, Stage and Gazebo. Player provides an abstracted
interface between the control system of the robot and the many kinds of hardware, be
it sensor or actuator. Stage and gazebo can simulate a population of mobile robots,
sensors and scenario related objects. The difference between Stage and Gazebo lies in
that Stage simulates multi-agent in a 2D bitmapped environment whereas Gazebo in a
3D environment. The sensor types provided by Stage and Gazebo include range-finders
(sonar, SICK and Hokuyo laser scanners, IR), vision (color blob detection), 3D depth-
map camera, odometry (with drift error model) [70]. One of the most popular robotics

framework, Robot Operating System (ROS), also enables interfacing with the Gazebo
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simulator. Two different approaches are implemented in Gazebo to simulate ray sensors.
One uses the collision engine contained in third-party software Open Dynamics Engine
which is an open source physics engine. The other employs the rendering interfaces
provided by Open source Graphics Rendering Engine (OGRE) which is a 3D graphics
engine [69].

As far as sensor simulations in the area of autonomous vehicles are concerned, there
are already some commercial products available. Two examples are PreScan [71] from
TassInternational Company and Traffic Simulation (TRS) from Nisys Company [72].
Both of them provide simulations of sensors and traffic scenarios combined. Sensor
types available in PreScan are radar, LiDAR, camera and GPS while those of TRS
include video, radar and CAN.

GPU supported methods such as those using depth images and OpenGL shaders
are argued to be computationally efficient for simulations of time-of-flight sensors for
intelligent vehicle systems in [62]. A simple demonstration is presented without further
algorithm and implementation details.

In [73] a shader-based LiDAR simulation is practised in a simulation framework for
autonomous vehicles. That is however too naive to be be applied in simulations for

autonomous vehicle testing.
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On-Road Motion Planning
Algorithm

The core idea of the proposed planner is to generate numerous diversifying trajectories
within one planning horizon and select the best constraint-abiding one. This scheme
is realized by searching in a lane-adapted state lattice. The state lattice is constructed
via deterministic sampling in the spatiotemporal space. In order to make the resul-
tant problem computationally tractable, a parallel algorithm is devised to carry out the
expensive graph construction and search. This chapter illustrates main algorithms con-
cerning this planning strategy. Besides, assumptions, design guidelines and analyses are

also provided where necessary.

3.1 Planning Horizons and Durations of Planning Cycles

At the start of each planning cycle, a planning horizon should be specified where the
sampling can be performed. In the context of motion planning in the spatiotemporal
space, the planning horizon is twofold: the temporal horizon embodied by a period of
time and the spatial horizon consisting of road segments within a travel distance. Let the
temporal horizon, the spatial horizon and the duration of one planning cycle be denoted
as Hr, Hg and Cr respectively. Hp, Hg and Cr are among the most important design
parameters of a motion planner. Hg contains several aspects itself, such as its extending
distance dg, the number of the road segments n4., within its domain, the width of each
road segment wseq, etc. The strategy for specifying the road segments is discussed in
the next section and is assumed given here. Consequently, among the aspects of Hg,
only dg remains to be influenced; the others are decided by the method of specifying the
road segments and the practically unchangeable road layout. As a result, the following
focuses on how to specify Hp, dgr and Crp.

In general, the values of design parameters should be decided based on the evalu-

ation criteria and constraints of the design. Recall that the performance indexes of a
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motion planner include completeness, feasibility, optimality and computational complex-
ity (cf. Subsection 1.1.2). The criterion optimality can be further divided into horizon
optimality, scenario optimality and resolution optimality (cf. Subsection 1.1.2). Among
those six criteria, horizon optimality and computational complexity are directly related
to the choices of Hp, Hg and Cp. Assuming that an intra-horizon planning strategy
is given and that the vehicle’s perception of the surrounding traffic is ideally sufficient,
it is straightforward that an extensive planning horizon would improve the condition of
horizon optimality. Due to limited computational resources, however, motion planning
in an extensive planning horizon would inevitably require a long C'r, which is impracti-
cal due to safety concerns. The real-life traffic can be highly dynamic, and the vehicle’s
actual sensing ability is still limited. As a result, it is necessary for the motion planner
to update its plans at a high frequency so that it can react quickly to newly perceived
information. Considering all the factors mentioned above, the guidelines for choosing

Hp, dg and Cp are outlined as follows:

e From the perspective of horizon optimality, Cr should be as large as possible.
Conversely, the safety requirement imposes a limit on the upper bound of Cp.
As a result, Cp is determined based on the safety requirement. This constraint is
obtainable from a comprehensive assessment of the vehicle’s sensing and predicting

ability and the complexity of the traffic environment.

e The lower bound of Hp should be no less than Cp as the vehicle must have a plan
to follow while the motion planner is working on a new plan. In other words, it is
required that the time domain of the trajectory generated from the last planning
cycle should at least cover the duration of the current planning cycle. Given an
average vehicle speed within the planning horizon, the lower bound of dy can be

calculated according to the lower bound of Hp

e As the computational complexity can be expressed in terms of all the aspects of
Hg, dg can be derived as an expression in terms of the computational complexity
and the remaining aspects. Note that the maximum computational complexity in
terms of time should not exceed Cp. Consequently, the upper bound of dy can
be determined by a comprehensive effect of C7 and the road layout aspects of
Hg. Again, given an average vehicle speed within the planning horizon, the upper
bound of dg can be used to set the upper bound of Hy. In this way, the value of

C'r and the ranges of Hy and dy can be determined.

The concrete application of those principles listed above in determining Cr, Hr and
dg requires lots of experiments and repetitive adjustments, which is beyond the scope
of this work. Accordingly, it is assumed in this thesis that reasonable values of Cp, Hp

and dp are given.
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3.2 Specifying the Spatial Horizon

It should be first pointed out that in this section, the term spatial horizon refers par-
ticularly to the road segments of interest within a given travel distance dz. In other
words, dgr, which is also an aspect of the spatial horizon in the general sense, is assumed
given and no longer needs to be specified.

The issues concerning the spatial horizon are often omitted in the literature related
to on-road motion planning. That is because it is usually assumed that the mission or
behaviour layer is accountable for assigning a road to the motion planner. Besides, the
roads in the test environments are often chosen in such a way that they have only simple
structures. As the motion planner designed in this work is intended to operate smoothly
and consistently in road networks with various layouts, a general approach to specify

the spatial horizon that can adapt to different road layouts is necessary.
3.2.1 Assumptions

Several assumptions about the autonomous vehicle system as well as the real road net-
work have to be made as they are necessary for the presented strategy to be implemented
effectively.

The method is devised based on the road network model (named as an RNDF graph)
applied in the autonomous driving system of MIG. Accordingly, the first assumption is
that the RNDF graph for the real road network is given. Besides, the assumptions
for building the RNDF graph are inevitably inherited by the proposed spatial-horizon
specification approach. Two important assumptions among them are: 1) a uniform lane
width along one separate lane segment, 2) parallel left and right lane boundaries of
equal distance from the center of the lane. The following provides some information and
terminologies regarding the road network model, which are necessary for understanding

this section. For more details, please refer to [74] [75].

ROUTE NETWORK DEFINITION FILE (RNDF)

The RNDF is issued for DUC. It classifies the driving environments into two types,
i.e., road segments and zones (e.g., parking lots). A road segment may contain several
neighbouring lanes. A lane is characterized by the nominal lane width and the ordered
set of waypoints along its center line. A waypoint contains the information of its location
and can be associated to the connections between lanes, traffic lights, stop signs, etc.

Waypoints that the vehicle is required to reach are denoted as checkpoints.

RNDF GRAPH

In the software system of MIG, the RNDF graph is built based on the given RNDF to
communicate with the planning modules. The edges of the RNDF graph may represent
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Figure 3.1: An example RNDF graph. The yellow curves are the spline edges.
The red points are the nodes. The white bands represent the actual road seg-
ments.

the center lines of
e actual lanes,
e virtual lanes added to facilitate the behaviour of lane change,

e and virtual lanes added as mirrored lanes of real lanes to facilitate manoeuvres

like swerving and overtaking via neighbouring lanes with oncoming traffic.

The nodes of the RNDF graph can be either actual waypoints connecting adjacent
lane segments or virtual waypoints added for defining the virtual lanes. The center line
of a lane segment is modelled as a spline with supporting points being the waypoints
lying on it. A lane may contain several edges, and each edge records the information of
its neighbouring lanes. Whether arbitrary two lanes are neighbours is determined by a

statistical estimation. Figure 3.1 demonstrates an example RNDF graph.
3.2.2 Definition and Construction Principles

It is intuitive to incorporate all the road segments within a given travel distance in front
of the vehicle into the spatial horizon. Given a portion of the road network as shown in
Figure 3.2(a), the spatial horizon specified in this way is demonstrated in Figure 3.2(b).
However, such spatial horizon is so large that it may entail prohibitively expensive

planning. To that end, Principle 3.1 for defining the spatial horizon is introduced.

Principle 3.1. The long-term plan should not be affected by the cost of short-term goals,

unless the cost of the latter becomes infinite.

Principle 3.1 is in fact followed by the mission or behaviour module of most au-
tonomous vehicle systems when they assign lanes to motion planners. Concretely, it
favours road segments that would lead to a shorter path to the next mission goal.
It does so even if the travel costs of the trajectories within the planning horizon on

those segments are larger than on others. Only when the favourite road segments are
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untraversable due to, e.g., blockage, the other roads would be considered. From the per-
spective of the performance of motion planners, Principle 3.1 implies trading optimality
for computational efficiency.

Figure 3.2(c) displays the spatial horizon modified according to Principle 3.1 based
on the one shown in Figure 3.2(b).

To facilitate sampling and graph construction on the resultant spatial horizon, the

next principle is brought about:

Principle 3.2. Two separate segments of the spatial horizon, when projected onto the
lateral reference (any of the center lines of the roads containing the segments in question),

should not overlap. Every segment should have a uniform width itself.

Figure 3.2(d) demonstrates the updated spatial horizon after Principle 3.2 is applied.
It is argued in [16] that successive plans should keep temporal consistency (TC). TC

is defined in the context of motion planning in this thesis as follows:

Definition 3.1. Temporal consistency: The remaining segment of the best trajectory
generated from one planning cycle can still be contained in at least one candidate trajec-
tory in subsequent planning cycles, under the assumption that there are no computation
and tracking errors. However, whether the trajectory responsible for the consistency
can survive the checking of constraints and be selected as the best one in the following
planning cycles will still be subject to the mew information introduced into the world

model.

Correspondingly, another principle is proposed to stress TC from the perspective of

defining the spatial horizon:

Principle 3.3. If the point (x,y) is contained in the spatial horizon at one time, it
will still be enclosed in subsequent spatial horizons until it no longer lies in front of the

vehicle.

It is noteworthy that motion planners with the property of TC do not necessarily
follow Principle 3.3. For example, they can just define the spatial horizon to be an
area where the remaining trajectory lies. Nonetheless, Principle 3.3 ensures a sufficient
spatial horizon for motion planners with the requirement of TC.

Taking into account the aforementioned principles for the definition of the spatial

horizon results in the following principles for its construction:

Principle 3.4. All the road segments in front of the vehicle within a given travel distance
should first be gathered. Then unnecessary segments are removed from the originally
complete collection. Whether a segment is necessary or not is determined based on

Principle 3.1.
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Principle 3.5. The neighbouring road segments should be integrated into one horizon
segment. If the width within the resultant segment is not uniform, this segment should

be further divided to into smaller segments to guarantee Principle 3.2.

It should be pointed out that the proposed principles for specifying the spatial horizon
trade computational efficiency for planning consistency and flexibility to some extent.
For example, in practice, the chance that the vehicle might use the short neighbouring
road segment shown in Figure 3.2(c) is rather slim. Additional treatments are still
necessary, e.g., to delete that neighbouring segment when it gets undesirably short.

This issue is left for future work.

3.2.3 Data Structures and Algorithm for Spatial Horizon Construction

DATA STRUCTURE

e The LATTICE-SEC encodes the information of one segment that is constructed in
accord with Principle 3.5. Its main elements include the segment’s width, longitu-
dinal distance, lateral reference representation, the layout of spatial nodes, and its
relationship with the horizon segment next to it. If the LATTICE-SEC consists
of several neighbouring lanes, the nearest one to the vehicle is selected to provide

the lateral reference for the entire segment.

e The LATTICE-SEC-ARRAY is an array of LATTICE-SEC's and satisfies Princi-
ple 3.4. It has the complete information of the sampled spatial horizon and can
be directly applied for graph construction. The LATTICE-SEC's are organized in
ascending order, based on their longitudinal distance to the start of the spatial

horizon.

o The LATTICE-SEC-TREFE and the LATTICE-SEC-ARRAY are different in that

the former is in the form of a tree structure rather than an array.

e The LATTICE-SEC-RAW is the forerunner of one or several LATTICE-SECSs.

Its width might not be uniform.

e The LATTICE-SEC-RAW-TREE is a tree structure with several LATTICE-SEC-
RAW S as its nodes.

CONSTRUCTION ALGORITHM

e The ROUGH-CONSTRUCTION follows Principle 3.4 albeit without the pruning
procedure. At the same time, the first part of Principle 3.5 is taken into account.

Concretely, the breadth-first search is conducted on the RNDF graph first in order
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(a) A portion of the road network where the spatial horizon is specified.

(b) Spatial horizon containing all road segments in front of the vehicle within
a given travel distance.

(c) Spatial horizon defined on road segments that lead to a shorter path to
the next mission goal.

(d) Spatial horizon with segments of uniform characteristics.

Figure 3.2: Specification of the spatial horizon under the guidance of principles
for the definition of the spatial horizon. Road segments with different colors
are supposed to have different spline representations from the perspective of the
planner.

to locate the neighbouring lanes of the current lane (including the current lane
itself). Then the depth-first search is performed to trace forward each of the
lanes discovered in the breadth-first search until it reaches a given travel distance.
During the search, a LATTICE-SEC-RAW would be constructed any time to
record the information of an edge that is represented by a spline different from
the one representing its precedence along the same lane. Moreover, the existing
LATTICE-SEC-RAW s would get updated to incorporate the information of newly

located neighbouring or following lane segments. The overall process yields the
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LATTICE-SEC-RAW-TREE as its final result.

e The FOCUSED-CONSTRUCTION-AND-SAMPLING applies the second part of
Principle 3.5 on each LATTICE-SEC-RAW of the LATTICE-SEC-RAW-TREE
generated from the last procedure. This procedure also defines the layout of the

spatial nodes but does not calculate their concrete representative values. Its result
isa LATTICE-SEC-TREE.

e The PRUNING removes the undesired sections of the LATTICE-SEC-TREE ac-
cording to Principle 3.4, and its result is a LATTICE-SEC-ARRAY.

Figure 3.3 displays a typical example of the construction process. One might have the
impression that it would be more convenient if the PRUNING process could take place
before the procedure of FOCUSED-CONSTRUCTION-AND-SAMPLING. The consid-
eration that leads to the current algorithm is twofold. On one hand, the FOCUSED-
CONSTRUCTION-AND-SAMPLING is negligibly lightweight so that the processing
of some ought-to-be-pruned segments does not impair computational efficiency at all.
On the other hand, the layout of the spatial nodes resulting from the FOCUSED-
CONSTRUCTION-AND-SAMPLING procedure can facilitate blockage checking which
is necessary for observing Principle 3.4. In this way, if the lane segments supported
by the long term goal turn out to be untraversable, the other segments are ready to be
verified and utilized if necessary. As a result, the PRUNING serves as the last procedure

of the spatial horizon construction in the proposed planner.

3.3 Spatial Sampling

Given the planning horizon, the next step is to perform sampling. In the proposed
motion planner, the spatial space and the temporal one are sampled separately. The
result of the spatial sampling is the spatial graph {n,é} ( 7 and é represent the spatial
node and the path edge respectively). It is noteworthy that the accents above the
notations are adopted to distinguish the spatial graph from the spatiotemporal graph
(also called state lattice, denoted as {n,e} ) which is the final output of the complete
sampling. Spatial sampling is focused in this section, while temporal sampling is the

main topic of the following section.
3.3.1 A Lane-Adapted Coordinate System

A straightforward approach to sample the spatial space is to construct a uniform grid in
X — Y space. That approach is feasible for sampling straight lanes. When it comes to
other road shapes (e.g., a curve), however, the uniform grid would become troublesome.
As can be seen from Figure 3.4, it is hard to implement one single uniform grid to cover
the entire road surface without having to waste efforts in unnecessary areas. For more

efficient sampling, a lane-adapted coordinate system (termed as SL coordinate system)
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(a) An edge along the current lane is found. (b) A LATTICE-SEC-RAW (blue) is con-
structed to record the located edge.

(c¢) Another edge is found on the neighour- (d) Neighbouring lanes are encouraged to

ing lane. be combined with each other, so the infor-
mation of the newly located edge is again
recorded in LATTICE-SEC-RAW (blue).
LATTICE-SEC-RAW (blue) gets updated
accordingly.

(e) Another edge is located. (f) As the newly discovered edge is repre-
sented in a different spline compared with
its parent edge, a new LATTICE-SEC-
RAW (green) is created to log it.

(g) Another edge is discovered. (h) As the newly located edge is in the
same spline as its parent edge, it is recorded
in the same LATTICE-SEC-RAW as its
parent edge. In this way, LATTICE-SEC-
RAW (blue) is updated.

Figure 3.3: An example of the construction process of the spatial horizon.
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(i) Another edge is uncovered. (j) As the newly discovered edge and its
parent edge are represented in different
splines, a new LATTICE-SEC-RAW (cyan)

is created to record the former.

(k) Another edge is discovered. (1) As the newly discovered edge and its par-
ent edge are represented in the same spline,
LATTICE-SEC-RAW (cyan) is updated to
record the former.

(m) Another edge is discovered on the (n) As the newly discovered edge and its

neighbouring lane. parent edge are represented in the same
spline, LATTICE-SEC-RAW (blue) is up-
dated to record the former. So far, the
road segments in front of the vehcle within
a given distance are all recorded.

(o) A LATTICE-SEC-TREE results from (p) After the operation of pruning, the Lat-
the procedure of focused construction and ticeSecVec is obtained.
sampling

Figure 3.3: An example of the construction process of the spatial horizon.
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(a) One grid sampled on the road segment within a given travel distance.

(b) Two grids sampled on the road segment within a given travel distance.

Figure 3.4: Uniform sampling on a curved lane in X —Y space.

Figure 3.5: The SL coordinate system laid over the road segment in X — Y
space.

is introduced in [22] [23]. As is shown in Figure 3.5, the axis S coincides with the center
of the lane, and L can be any line that is perpendicular to S within the planning horizon.
In this way, the s coordinate of a point (s,[) in SL frame refers to the arc length along
the center line from the start of the horizon to the projected point of (s,l) on S. s is
also called station. The [ component of (s,[) denotes the lateral offset of the point from

the center line.
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3.3.2 Spatial Node

The spatial nodes serve as the endpoints of the path primitives. Given the SL space as

the domain and a right-handed coordinate system, the spatial node is represented as:

’7(87 l) = (l'n('s’ l)v yn(57 l)v en(sv l)v /‘{n(sa l))T (3'1)
where
Tn(s,1) = xn(s,0) +1lcos(On(s,0) + F)
Yn(s,0) = yn(s,0) +Isin(0,(s,0) + 5) (3.2)
O.(s,1) = 06,(s,0)
kn(s,0) = (kn(s,0)7t —1)7L.

Note that (s, 0) represents the coordinates of the points on the center of the lane. Given
the expression of the center in terms of (x,y, 6, ), the four elements of the spatial node
can be easily calculated according to Equation 3.2.

The representation of the spatial node indicates that the heading 8 of the vehicle at
the sampled position is constrained to be parallel to the center line. This assumption
is valid from the perspective that it mimics the common behaviour of human drivers in
highway driving scenarios. Moreover, it results in a lattice of a small size and thus makes
the planning more computationally tractable. To further decrease the computational
complexity, the curvature x of the path at the sampled position is also assumed to be
unique and is determined based on the center line. The curvature is the rate of change of
heading 6 with respect to change in arc length of the path and is equal to the reciprocal
of the turning radius of the vehicle. Sampling the SL space using a regular grid results in
a set of spatial nodes denoted as {7, ; } with each n;_j, representing a point (s;,l;) in the
SL frame. Given the longitudinal and lateral intervals, i.e., ag and ay, (cf. Figure 3.5),

s; and [; are defined using the affine functions:

S = agl
! ° (3.3)
i = ay—0.
The warped grid in Figure 3.5 gives an instance of such a mapping.

In addition, the current posture (the collection of z,y, 6 and k) of the vehicle should

also be defined as a spatial node which is denoted as fiego.
3.3.3 Path Model

As a basis for the path model design, the dynamic model of the vehicle is given as:
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z(t) = V(t)cosO(t)

y(t) V(t)sind(t)

it = Vi ",
V(t) a(t)

K(t ui(t)

).

The vehicle states include position (x,y), heading 0, curvature k, speed V and ac-

= u2

celeration «. Desired accelerations us and curvatures uq are the control inputs to the
vehicle system.

As the path model and the speed trajectory are generated separately, it is necessary
to ignore the speed-related states of the vehicle model temporarily and apply a change
of variable from time ¢ to distance s. Let the initial distance be set to zero. Integrating

the re-parametrised equations renders:

x(s) = [ cosf(s)ds

y(s) = fos sinf(s)ds (3.5)
0(s) = [, K(s)ds

k(s) = wu(s).

As can be seen from Equation 3.5, x, y and 6 depend directly or indirectly on .
Consequently, the problem of path model design is equivalent to that of curvature selec-
tion. The latter has already been discussed a lot in the literature (cf. Section 2.2.3.2). In
this work, the curvature cubic polynomial versus arc length is adopted to ensure steering
continuity. The application of higher-degree polynomials for achieving the continuity in
higher-order derivatives of the curvature is left for future work. It is noteworthy that a
curve with its curvature being a polynomial of its arc length is called a polynomial spi-
ral in [76]. Therefore, the path traced out by the curvature cubic polynomial is a cubic
polynomial spiral. Let the coefficient vector of the curvature polynomial be denoted as

p. The polynomial spiral path is represented as:

Fe(s) = (e, 5), Ye(D, 8), 0c(P, 5), ke(B, 5)) " s € [0, 57 (3.6)
where

ze(p,s) = [3" cosO(s)ds =g+ [3" cos(pos +p1§ + p2§ + a3%)d8

5 = [*Tsinf(s)ds = yo + f(fT sin(pos —|—p1% +p2§ —i—pg%)ds (3.7)
2 3 4 .
=pos+piy + P2y + 37

(
Kke(Py8) = po+ P15+ pas® + p3s®.



Chapter 3. Motion Planning Algorithm 38

Augmenting p with another unknown sp brings about an adjoined parameter vector:
7= (p,sr). (3.8)

Given a path primitive with its endpoints being a pair of spatial nodes (ng,n1), its

boundary states are summarised in a vector-valued function:

)
p, sT) — 01 + 0o (3.9)

Thus, the boundary constraints are given as:
6 = é((;) = ggoal' (310)

Consequently, the path representation problem can be interpreted as finding a vector
value ch7 that zeros G. As the amount of boundary condition equations is equivalent
to that of the unknowns, the problem is solvable and its solution is unique. Due to
the non-linear nature of the problem, it can only be solved numerically. Therefore, a
gradient-descent search is applied in this work to find an approximate solution curve.
Given an initial guess of ¢, i.e., ¢init, the main procedure of the gradient-descent search

is:

7 —  G(Gnit)

I J3(Gnit)

AG < Ggoal — G (3.11)
AT «~ JrAG

Ginit < Ginit + A7

where fé(cfimt) refers to the Jacobian matrix of G at the point of G- In this way,
Ginst 18 iteratively updated by a better estimation of (5 Such procedure is repeated until
Ag becomes sufficiently small for the path construction purpose, or, when a maximum
number of iterations is reached, implying a divergence of the algorithm due to an initial
guess far from (5

In practical implementations, however, several issues concerning convergence, effi-
ciency and accuracy of the algorithm arise. There is a detailed coverage of those issues
and the techniques designed to deal with them in [45] [77][22]. All those techniques

are adopted in this work. In the following, their general ideas are presented. For more
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details, please refer to [45][77][22].

INITIAL GUESS TABLE

An initial guess g+ that is near to the exact solution (f is essential for a fast convergence
of the gradient descent search. To that end, the initial guess table is precomputed in
which each entry stores the curve solution for one specific boundary condition. The initial
guesses of the records themselves are generated using the relaxation method (cf. [45]).
The gradient-descent algorithm is then applied to refine the rough guess so that it may
converge with cf In runtime, the initial guess for a path spiral with arbitrary boundary
constraints can be obtained by using a simple nearest-neighbour lookup into the guess

table.

NUMERICAL APPROXIMATION OF FRESNEL INTEGRALS

The expressions of the position coordinates, i.e., z(s) and y(s), take the form of gener-
alized Fresnel integrals (cf. Equation 3.7 ) for which there are no closed-form represen-
tations. Consequently, it is hard to evaluate them and to compute their gradients with
respect to the parameter vector. As a result, Simpson’s rule and the trapezoidal rule are
adopted to generate numerical approximations of the original transcendental integrals

(cf. [45][22]). Simpson’s rule is given as:

a+b
2

b b—a
/ f(@)dz ~ “=2[f(a) + 4f(

- )+ 1) (3.12)

The composite Simpson’s rule is the following approximation:

b h n/2-1 n/2
| f@dox S0 +2 3 flaa) 44 o)+ San)] (313)
@ j=1 j=1

where z; = a + jh for j = 0,1,...,n — 1,n with h = (b — a)/n. By this formula, it
is supposed that the interval [a,b] is broken up into n/2 subintervals, with n an even
number. The composite Simpson’s rule is applied for each subinterval. This expression
is used to provide an approximate target position of the path for the gradient descent
search, while its symbolic differentiation is adopted for computing the Jacobian matrix.

The trapezoidal rule is given as:

b —a
[ t@do~ 250 @) + S0 (314)

The trapezoidal rule can be implemented in two kinds of composite formulations.
One integrates over grid points resulting from uniform sampling in the domain [a, b],
while the other non-uniform. Given n + 1 points in the interval [a,b] with the equal

spacing h = (b — a)/n, the former is expressed as:



Chapter 3. Motion Planning Algorithm 40

b n—1
[ e G(f0) +2 3 fa) + fan) (3.15)

Jj=1

where x; = a + jh for j =0,1,...,n — 1,n. As for the latter, it follows that

n+1

b
[ $@dem 53 (@i = o) + £(2) (316)

Jj=0
where a = g < x1... < p_1 < T, = b. Note that for successive points, one can have

the sampling formula

/mj+1 fla)dz ~ /zj fa)dz + %(a:jﬂ — ) (wj41) + f(z5)]. (3.17)

which applies in all the composite formulations based on the trapezoidal rule and
Simpson’s rule. Following [45][77][22], the proposed planner applies the sampling formula
based on Equation 3.15 for path sampling. Unlike in [45][77][22] where the path samples
can also be used for the evaluation of the trajectory cost, the trajectory construction
strategy employed in the proposed planner makes it inconvenient to reuse the path
sampling result. Consequently, Equation 3.15 is adopted for trajectory sampling in
this work. More explanations can be found in Chapter 4. Simpson’s rule is based
on quadratic interpolation, while the trapezoidal method follows linear interpolation.
Accordingly, the former has faster convergence than the latter for most functions which
are twice continuously differentiable as in the case of the polynomial path employed in the
proposed planner. As a result, the composite Simpson’s rule with a smaller n can have
the same level of accuracy as the composite trapezoidal integration with a larger one.
This advantage of Simpson’s rule accounts for its application in the path optimization.
In the case of path and trajectory sampling, the subinterval of the composite formulation
is so small that Simpson’s rule and the trapezoidal method are almost equal in yielding
satisfactory results for each subinterval. As the trapezoidal rule only requires calculating
two points for one subinterval, rather than three points as in the case of Simpson’s rule,
it is more efficient for sampling purpose. Since the integrands cos(s) and sin#(s)
(cf. Equation 3.7) are smooth and not oscillatory for most road paths, the numerical
integrations like Simpson’s rule and the trapezoidal rule have sufficient accuracy in most

cases for their application in solving and evaluating path spirals.

REFORMULATION OF CURVATURE CUBIC POLYNOMIALS

The formulation of the curvature polynomial given in Equation 3.7 may introduce round-
off errors due to potentially large discrepancies between the coefficients, especially in the

case of p; and p3 [22]. That issue becomes problematic when it comes to the calculation of
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Figure 3.6: An example of the spatial graph. For path edges within the state
lattice: {(m,n)} = {(1,—1),(1,0),(1,1)}. fego is connected to one layer of
nodes.

the inverse of the Jacobian matrix during the gradient descent search (cf. Equation 3.11).

To that end, a reformulation of the curvature polynomial is given as:

ey (@, 8) = po(@) + p1(@)s + pa(a@)s® + p3(a@)s”. (3.18)
where
a = (ap,a1,a2,a3)"
ayg = 'V”'C(ﬁ) O)
ar = ke(p,F) (3.19)
as = Rc(ﬁ; ZSTT)
as = Hc(ﬁ, ST)‘

Such reformulation is implemented in [77] and followed by [22] to force the coefficients

to be of comparable scale.
3.3.4 Connectivity Pattern

Given the spatial nodes and the path model, it is time to introduce the connectivity
pattern that specifies whether a path edge should be constructed to connect two arbitrary
spatial nodes. To that end, a set of integer pairs {(m,n)} is defined where m =1, ..., M,
andn=—(N-1)/2,—(N —-1)/2+1,...,(N — 1)/2. In this way, a source node 7;; can
be theoretically connected to M x N target nodes given as 7(;1,)(j+n), Where (m,n) €
{(m,n)}. It is noteworthy that whether a path edge can be constructed in practice is
still subject to the existence of the related target node.

Besides, another connectivity pattern is necessary for defining what spatial nodes
the starting node of the vehicle 7.4, should be connected to.

So far, the spatial sampling is finished. Figure 3.6 demonstrates an example of the

spatial graph.
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3.4 Temporal Sampling

This section introduces the temporal space to augment the spatial graph constructed in
last section such that a spatiotemporal state lattice can be obtained. Here the temporal
space may optionally include the dimensions of time, speed, acceleration and jerk. Recall
that a change of variable from time ¢ to distance s is applied for the path representation
and separates the temporal space and the spatial one (cf. Section 3.3.3). Correspond-
ingly, the essential task of temporal sampling is to find one or several expressions of s
in terms of ¢ for each path edge in the spatial graph.

In order to guarantee a certain level of trajectory smoothness, the acceleration cubic
polynomial is employed in this work. In addition, the jerk continuity at the joints of
successive trajectory primitives is ensured (assuming that the jerk of starting state of

the vehicle is given). As a result, the speed trajectory can be given as:

f?t(s) = (St(c_i’ 8)7 Ut(c_i> 8)7 at(a) s)?jerkt(a:a S))T7 te [07 tT] (320)
where
s(@t) = [ludt =vot +aok +arl +axty +azly
— t t2 tB t4
v (@, t) = Joadt =vo+ aot + a15 + as’s + az’y (3.21)
ay(a,t) = ag+ ait + ast® + ast? '
jerky(@,t) = a1+ 2ast + 3aszt?.

In the equations above, @ = (ag, a1, az2,a3), and v,j and tr denote speed, jerk and
the trajectory duration respectively.

Given the speed trajectory model, it is time to design the sampling pattern of the
temporal space to enable trajectory construction. Let a simplified formulation of the
problem be considered first where the spatial space is reduced to one dimension s. Here
s refers to the arc length of the path curve. Without loss of generality, the path is
discretized into a sequence of evenly-spaced points, as is shown in Figure 3.7. A line
segment joining two points can be imagined as a path edge in the original spatial space.

To augment the s dimension with the temporal space, one intuitive idea is to sample
the time dimension using a regular pattern (cf. Figure 3.7) and to effect inverse trajec-
tory generation based on the states of given endpoints. In this setting, the endpoint

constraints are:

si(d,tr) = sr
ay(a,0) = ap (3.22)
jerk:(a,0) = jerko.
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t(s)

s(m)

Figure 3.7: A simplified formulation of the spatiotemporal sampling. s denotes
the arc length of the path curve. ¢ indicates time. Red points are the represen-
tative points of the grid cells. Green line segments demonstrate the trajectory
edges outgoing from the node at the left-bottom corner.

It is noteworthy that sr, ag, jerkg and vy are given by the distance interval and
the source endpoint. To solve for the four coefficients of the acceleration polynomial,
i.e., @, four independent equations are required. However, there are only three of them
in Equation 3.22. Consequently, one more endpoint constraint needs to be established.
Accordingly, one more dimension, either speed or acceleration or jerk, should be intro-
duced into the temporal space. Should this dimension also be sampled using a regular
pattern, a 2D grid of the temporal space is obtained.

In practice, however, this 2D uniform grid is problematic. On one hand, it is highly
likely that the trajectory primitive generated in this way is dynamically infeasible. As a
result, it is necessary for the uniform sampling to be dense enough to guarantee a certain
level of completeness. On the other hand, specific speeds and accelerations are preferable
in some traffic scenarios. For example, velocity keeping might require that the vehicle
speed approaches the speed limit of the current road. Another instance occurs in vehicle
following, where the acceleration of the ego-vehicle has to be adjusted according to its
distance and speed relative to the followed vehicle. From this perspective, dense sampling
is also necessary so that a grid point would coincide with, or be near to, the demanded
state. However, dense sampling would inevitably entail prohibitive computational cost.
To mitigate that issue, a forward generation approach is adopted in this work. It works
like this:

e A set of acceleration profiles are selected according to the vehicle physics and
scenario-dependant requirements. It may contain profiles concerning e.g., maxi-
mum and minimum accelerations and the speed limit of the current road. In this
way, a certain level of trajectory diversity can be guaranteed with a computation-

ally tractable graph.
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e All the acceleration profiles are associated with each of the path edges, which
results in trajectory edges with different target states incoming at the same spatial

node.

e To further decrease the computational cost, those resultant trajectory edges are
subject to pruning at the spatial node via a uniform grid in terms of speed and
time. That is, only one trajectory edge is allowed to be further expanded if there
are several of them incoming at the same time-speed grid cell. It should be pointed
out that such measure might deteriorate the trajectory diversity to some extent.
To alleviate this situation, trajectory edges with different acceleration profiles are
defined not to compete against each other. This strategy is equivalent to regarding
the acceleration profile as one dimension and incorporating it into the temporal

space for sampling.

As a result of the temporal sampling approach presented above, a node in the resul-
tant state lattice is denoted as n(is, i, in, iy, 4t). In this denotation, (is,7;) is the index
of the underlying spatial node n; 4, io is the index of the acceleration profile applied on
the trajectory primitive ending at this node, and i, and %; can be used to access the cor-
responding time-speed grid cell. One point worth mentioning is that the representative
point of this grid cell is generated on the fly during the graph construction. In other
words, the speed and time (v,t) representing the time-speed grid cell remain unknown
(but confined within the time and speed intervals dominated by this cell) until an op-
eration of pruning takes place at this cell, where the speed and time of the target state
of the trajectory edge that survives the pruning are assigned to (v,t). That property
distinguishes v and t from the spatial node and the acceleration profile whose values can
be directly obtained base on their indexes, i.e., is,1;,7,. Furthermore, an edge in the
state lattice that joins two such nodes is also called a trajectory edge (in comparison to
the path edge) and is denoted as en; ;.-

As for the concrete representation of the acceleration profiles and their implementa-

tions in the proposed planner, more details can be found in Chapter 4.

3.5 Graph Search

As is mentioned previously, the proposed motion planner selects the best constraint-
abiding trajectory(7,p:) among numerous candidates (7.). The evaluation criteria take
into account the traversal cost (G;) of the trajectory and the desirability (H.) of its
ending node (n;) from the perspective of the next mission goal. Consequently, the

selection can be mathematically formulated as:

Topt = argmin(G-(7) + Hr(n;)). (3.23)

TETe
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It is noteworthy that the constraints are implicitly covered in Equation 3.23. The
reason is twofold. On one hand, it is defined via traversal cost functions that G, (7) = oo
if 7 violates the collision and physics-related constraints. On the other hand, a trajectory
with a cost of co is regarded as untraversable or infeasible and thus must be abandoned.

Note that a trajectory may consist of several trajectory edges. A trajectory consisting

of N trajectory edges is thus represented as:
™~ = {enysnp L E=0,1,...,N =1 (3.24)

As is discussed in the previous section, a group of trajectory edges {e;,} might all
converge at one to-be-constructed node n(is, iy, iq, iy, 7). Such phenomenon occurs due
to the application of the connectivity pattern and the nature of the forward temporal
sampling approach adopted in the proposed planner. Since the representative value of
one node is defined to be unique, an operation of pruning is necessary for the selection
of the trajectory edge whose target endpoint should represent the node. The trajectory

edge ey that survives the pruning satisfies:

eopt = argmin  (Gg(en,—n,,,) + He(nig1)) (3.25)
enk""k{»l e{ein}
where
k
GE(e'ka—mk+1) = Z Cg(eni—>m+1)' (3'26)
i=0

In Equation 3.25, Hg(nk+1) evaluates the desirability of the intermediate node ng.1
for the purpose of reaching the next mission goal. Only the criteria with regard to the
time and speed of ng4q are taken into account in Hg(ng41) as other factors such as
the station and latitude are the same among all the candidate nodes for one time-speed
grid cell. In comparison, H; needs to calculate all the criteria that can be used to
differentiate the target nodes which might have different stations and latitudes. There
are more details about H; in Subsection 5.1.3. In Equation 3.26, c4(en;—sn,,,) calculates
the traversal cost of the edge e, +n,,,. Note that here nj; is the endpoint of the to-
be-evaluated trajectory edge which might not end up representing the to-be-constructed
node.

The final selection and the intermediate pruning operations are associated by:

GT(TN) = GE'(enN—1%nN)

3.27
H-(nps1) = Hg(ng1)+ COST-SPECIFIC-FOR-TARGET-NODE. (3.27)
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As can be seen from the evaluation strategy illustrated above, the search in the graph
(in the sense of the evaluation and selection of the trajectory edges) is in effect carried
out in the course of the graph construction process (in terms of the node construction
based on the result of the evaluation). A decision should be made whenever a node
is met. Besides, several nodes might be in the way of the forward construction of one
trajectory. As a result, the search for the optimal trajectory can be formulated as a
dynamic programming problem. Such problems can be solved efficiently by observing
the principles of optimality proposed in [78]. Concretely, the principles of optimality

can be paraphrased in this context as follows:

Principle 3.6. All the potential incoming edges at one node should be evaluated before

its outgoing edge can be generated.

In this way, it can be ensured that the evaluated edges are those that are believed
to lead to the optimal trajectory based on the selection result at their source nodes
(although they might not be able to survive the pruning at their target nodes). In other
words, it avoids constructing and evaluating edges whose doomed fate can be foreseen
as early as the time when their starting nodes fail in the pruning. Correspondingly, the
graph search can be conducted in a more efficient fashion.

Based on the assumption that the vehicle does not move reversely, a practical prin-

ciple for the graph construction is given as:

Principle 3.7. The trajectory edges starting from a single station should be constructed

after all the trajectory edges ending at it are constructed and evaluated.

It is noteworthy that complying with Principle 3.7 is a sufficient albeit not necessary
condition for a strategy of graph construction to observe Principle 3.6. The proposed
motion planner conducts the graph construction and search in the guidance of Principle
3.7. Figure 3.8 shows an example of the set of candidate trajectories constructed by the
proposed motion planner.

Note that the trajectory edges that start from the same station can be constructed
and evaluated without following any particular order. Accordingly, parallel algorithms
can be implemented to accelerate this process. More details can be found in Chapter 4

and Chapter 5.

3.6 Trajectory Evaluation

For the evaluation of its traversal cost, the trajectory edge e is discretized into a set
of samples {%;}}¥, where ¥ = (z,y,0, k,v,a,t)T. A set of cost functions {Cj}jj‘io are
devised and each function is evaluated over {#;}Y ;. Accordingly, the traversal cost c,(e)

can be calculated as:
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Figure 3.8: An example of the set of candidate trajectories demonstrated in
spatiotemporal space. The blue trajectories are those that manage to arrive at
the end of the spatial horizon. The green trajectories come to a stop halfway
along arbitrary edges; the ending nodes of these trajectories are called EXTRA-
SAMPLE in this thesis (cf. Subsection 4.2.2). The red trajectories terminate at
arbitrary spatiotemporal nodes that are not at the end of the planning horizon.
The green and red trajectories are forced to be extended to the nominal upper
time boundary of the state lattice (cf. Subsection 5.1.3). The yellow vertical line
segments standing at the spatial samples represent the time axes. The magenta
points indicate the time coordinates (seconds) in accordance with the numbers
shown along the blue vertical line segment.
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N

M
cgle) = Z Cj(7). (3.28)

§=0 i=0
A list of all cost criteria applied in this work can be found in Chapter 5. In this

section, only the cost functions implemented as cost maps are addressed.
3.6.1 Cost Maps

Recall that a cost map is a sampled version of the cost function. As is discussed in Sub-
section 2.2.2, cost maps are usually employed for efficient evaluation of the trajectories.
This is especially true for applications of search-based motion planning as proposed in
this thesis, where tens of thousands of trajectories are evaluated. Three cost functions

are implemented as cost maps in this work:

e Static obstacles: cgi’jiic = C;’fjttic(x, y). This cost function is employed to keep the
vehicle away from the static obstacles. Similar to [22], both fatal and high-cost
areas are defined for each static obstacle. The fatal area is untraversable for the
vehicle. It contains the area occupied by the obstacle and a dilation around the
vehicle as a compensation for the vehicle heading direction (which will be further
discussed later). The high-cost area defines a safe clearance between the obstacle
and the vehicle to compensate for potential sensing errors. The vehicle is allowed
to enter the high-cost area, albeit subject to severe punishments. Other areas
in the spatial horizon are free space with a cost of zero. Figure 3.9(f) gives an

instance of the cost map of static obstacles.

e Dynamic obstacles: cgg‘jfami . = C‘l’ly’fami o(x,y,t). This function penalizes the ve-
hicle for getting too close to the dynamic obstacles. It is evaluated based on a
prediction of the future state of the dynamic obstacles. Given a specific time, the

function is defined in a similar way to C°%. albeit with some variations. Similar

static
to [22], the amount of the dilation around dynamic obstacles depends on their dis-
tance to the ego-vehicle, their velocity and how far away they are in terms of time.
This is unlike that of static obstacles which is only affected by their distance to
the ego-vehicle. Such variation is applied to take into account the potential errors
introduced by the sensing system as well as the obstacle detection and tracking
modules. Besides, in addition to the fatal and high-cost areas as with static obsta-
cles, the following area is also specified right behind the dilated dynamic obstacle
to facilitate the vehicle following behaviour. The cost map of dynamic obstacles
consists of several frames indexed in time. With the dynamic obstacles frozen at its

timestamp, each frame is rendered like a cost map of static obstacles. Figure 3.10

displays an example of the cost map of dynamic obstacles.
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e Lane centering: cl4m¢ = Clane (z y). By punishing the deviation of the trajectory
with respect to the center of the lane, the cost function of lane centering helps to
keep the vehicle stay at the lane center. Besides, it also defines a safe clearance
between the road curbs and the vehicle. Lastly, it penalizes the trajectories on the
lanes with oncoming traffic so that the vehicle will remain on lanes of its desired
travel direction as long as it is possible to do so. Figure 3.11 demonstrates the
costs of a layer of points obtained via 2D linear interpolation on the lane centering

cost map.

As the trajectory is represented in (x,y) coordinates, all the cost maps are defined
in X — Y space for the convenience of evaluation. However, the cost functions need to

be evaluated in the SL frame. This necessity is straightforward for C'¢"¢ In terms of

static®

Co%st. and ngffami o+ it can be seen from the fact that the obstacles are dilated in the SL
frame (cf. Subsection 3.6.2). Figure 3.9 demonstrates an example of the construction
of the cost map for static obstacles via dilation in the SL frame. As a result, the grid
points (z,y) of the cost map need to be mapped to their counterparts (s, ) for which the
cost function is evaluated. As there are several cost maps, a lookup table ( the XY SL
map ) is constructed to accelerate the mapping. At the start of each planning cycle,
the (s,1) coordinates of a set of grid points (x,y) sampled on the planning horizon are
computed once and stored in the XY SL map. Consequently, the mapping from (z,y) to
(s,1) is carried out by implementing a 2D interpolation from the four nearest neighbours
of the (z,y) in the XY SL map.

The construction and implementation of these cost maps in this work are similar to

those presented in [22]. The main differences include:

e As the planning horizon specified in this work may contain several segments, the
cost map for the planning horizon has several submaps, and there is at least one
submap for one segment. The same applies to XY SMap. In comparison, there are
no submaps for the cost map constructed in [22] as the planning horizon defined

there is simply one road segment with a uniform width.

e Should only one grid be constructed for a horizon segment, it would be too large
in the case of e.g., a curved road as can be seen from Figure 3.4. To that end,
several grids may be constructed for one segment in this work for the purposes
of adapting to the road shape. This measure discounts the computational cost
from the perspective of cost map construction. However, it may lead to a more
expensive lookup during trajectory evaluation as each point for evaluation should
first find out which submap covers it. Therefore, the amount of the submaps
should be adjusted according to the practical performance in terms of accuracy

and computational efficiency.
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(a) A static obstacle on the road. The solid box (b) The bounding box is mapped onto the XY

is the bounding box of the obstacle generated grid over which the cost map for static obstacles

by the perception system. is defined. In the proposed planner, only the
contour of the obstacle is mapped to the SL
grid for dilation.
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(¢) The bounding box is mapped from the XY (d) The bounding box on the SL grid with the
grid to the SL grid. In order to achieve a more dilation of lethal area (the white and pink area).
accurate dilation, the discretization of the SL The lethal area dilation is carried out along
grid is defined to be smaller than the XY grid. both S and L directions.

The blue area is the mapping result.
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(e) The bounding box on the SL grid with the (f) The dilated bounding box on the SL gird is
dilation of lethal area and high-cost area (the mapped back to the XY grid. This is the final
green and red area). The high-cost area dilation result of the cost map for static obstacles.

is carried out along both S and L directions.

Figure 3.9: Construction of the cost map for static obstacles.

As each submap is treated in a similar way to the cost map illustrated in [22], no

more accounting is repeated here. For more details, please refer to [22].
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(a) Side view of the cost map. (b) Top view of the cost map.

Figure 3.10: An example of the cost map of dynamic obstacles. The cost map
contains several submaps. Only the fatal (red), high cost and following (green)
areas are displayed.

onf)
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Figure 3.11: Costs of a layer of points as a result of 2D linear interpolation
on the lane centering cost map. The cost map is defined over the green grid
sampled on a two-lane road segment. The upper lane is the one with opposing
traffic. The red lines represent the center lines of the two lanes.

3.6.2 Obstacle Dilation

As is discussed in Subsection 2.2.2, in order to achieve a safe, flexible and efficient
planning, it is necessary to dilate the obstacles according to the dimension and heading
of the ego-vehicle. In [22], the amount of dilation is unique and is determined based on
the assumption that a maximum of six-degree deviation of the heading of the ego-vehicle
from parallel to the center line (denoted as 04.,) can occur during highway driving. In
this way, the dilation can be readily accomplished in the SL coordinate system. It is
also argued in [22] that in cases where the deviation is larger than the assumed six-

degree, the omission of some points that are in collision can be remedied by the correct
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judgement for other points along the path. However, no detailed analysis is provided to
justify the argument in [22].

Based on this dilation strategy, an analysis is provided in the following as to whether
an assumed maximum deviation (denoted as 09,,) is sufficient for the collision checking
given a specific spatial-sampling pattern.

The goal of the analysis is to verify whether the dilated obstacle that is responsible
for the missed collision at one point of the path can be detected to collide with another
point along the same path or the paths in its neighbourhood. The path spirals may
have various shapes on the driving route under a specific spatial sampling pattern.
Theoretically, all those path spirals that violate the assumption about the maximum
heading deviation should be subject to such verification.

As there is no closed-form solution for the calculation of the parameters of the curva-
ture polynomial ( i.e., the path model), it is difficult to develop a general mathematical
model of the analysis. Consequently, the sufficiency is analysed in a numerical way.
Given a spatial sampling pattern and a uniform road segment as the planning hori-
zon, the analysis against one path primitive in question is illustrated as follows and

demonstrated in Figure 3.12.

a

e a) A path primitive P, is given along which the maximum g, is larger than 6, .

Other paths that are in the neighbourhood of P, are given as Pyper-

e b) An arbitrary point on P, where g, is larger than 69, is located and denoted

as Pfocus-

e c) Both the actual and dilated forms of the ego-vehicle frame are rendered at pfocys
(denoted as Cyet and Clgyiate respectively). The part of Cye that is outside of Cyjjare
is the blind area (denoted as Aping) for the collision checking at proeys. The rest
of the analysis is all about verifying whether Ap;nq can be covered by the collision

checking at other points along P, or Pyiper-

e d) Should the ego-vehicle be in collision within Ap;png, it would mean that there
are obstacles overlapping Apjing. Given a point obstacle somewhere within Ayipng,
its dilated shape obstgjjqte can be rendered. Should obstgjae collide with P, or

Piher, it can be concluded that the point obstacle can be removed from Apjipg-

e ¢) Procedure d) is repeated until Ap;ng is empty, or one point is discovered that

cannot be removed from Ay;,q4. The former indicates that procys does not challenge

a

., from the perspective of the collision checking over the entire planning horizon.

The latter communicates a message that 65 is not sufficient for an accurate
collision checking of P,. Note that it is impossible to check all the points in Apjing

as the number of them is infinite. As a result, this numerical analysis can only cover



Chapter 3. Motion Planning Algorithm 53

a limited number of points. It should be pointed out that the configuration (i.e.,
heading and position) of the vehicle and the shape of the path spiral in question

can be exploited further to reduce the size of Apjing-

By applying the analysis procedures mentioned above on all the points of interest
along P, the sufficiency of 85 for the collision checking of P, can be evaluated. It is
noteworthy that the whole analysis can be automated. This automation is left for future
work.

In this way, the minimum 6 that can ensure a sufficient collision checking (from
the perspective of the numerical analysis) for a given spatial-sampling pattern can be
derived. If the minimum heading deviations required by different path types have large
discrepancies among each other, multiple cost maps can be constructed with each re-
sponding to one particular requirement. In comparison with the collision checking with
one cost map, the application of multi cost maps can enhance the flexibility and safety

of the planning, albeit at the expense of computational efficiency.

3.7 Summary

In this chapter, the overall planning strategy was presented. The main ideas are sum-

marised as follows:

e Planning horizon: guidelines for specifying the planning horizon and the duration
of the planning cycle were outlined. A novel approach to specify the spatial horizon
including several road segments was proposed. This method can adapt to various

road layouts and thus improves the planning consistency and smoothness.

e Spatiotemporal sampling: deterministic sampling is adopted in the proposed plan-
ner. The spatial space and the temporal one are sampled separately. In terms of
spatial sampling, a uniform grid is constructed on a lane-adapted coordinate sys-
tem. The heading and curvature of the trajectory at each grid point are defined by
referring to the center line of the lane at its station. A cubic polynomial spiral is
employed to join arbitrary two grid points of which the connectivity is permitted
by a given connectivity pattern. As for sampling in the temporal space, a regular
grid of speed and time augmented by a space of several acceleration profiles is
used. The representative value for each cell of the resultant grid is determined on
the fly by applying acceleration profiles on the path primitives and selecting the
best endpoint among those that fall into the same speed-grid cell. Such strategy

is similar in spirit to the resolution equivalent grid proposed in [79] [80].

e Graph search: principles of optimality in dealing with dynamic programming prob-

lems serve as the basic guidelines in graph construction and search. The parallel
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(a) A path primitive P,. The blue point refers to the point pfocus against which the analysis
is conducted.

Y

(b) The actual vehicle frame with heading tangent to the path P, at pfocus. This frame is
denoted as Cy.; in the analysis.

Y

(¢) The actual vehicle frame (blue box) with heading parallel to the center line of the road
(here, the x axis).

Y

(d) The vehicle frame (green filled box) dilated according to 6%, . This frame is denoted as
Clyitate in the analysis. The red area of C,.; that still exposes outside Cyjjqate is the blind

area.

Figure 3.12: Sufficiency analysis of the dilation based on the assumed heading

deviation 05 from parallel to the center line. 07, = 6°.
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(e) The point obstacle dilated according to 69,, given as a pink box. The black point at
the top-right corner of C,.; refers to the point obstacle. It is denoted as obstg;jate in the
analysis. In this example, obstg;iqte is in collision with the path P,, which means that the
point obstacle can be detected at other points of the path. As a result, the point obstacle

can be removed from the blind area.

(f) The group of obstyiiate generated by moving procys along P,. The red curve P, and
the orange ones pyiner are successive path primitives. The green curve is generated by
connecting the bottom-right corners of the group of obstgjjate- It can be concluded in this
analysis that the point obstacles that have those green points above the curves cannot be
detected by any points on the demonstrated path curves

Figure 3.12: Sufficiency analysis of the dilation based on the assumed heading

deviation 63, from parallel to the center line. 65, = 6°.

algorithm is implemented to accelerate the search, which is further discussed in

the next two chapters.

e Trajectory evaluation: Three cost maps are constructed for efficient trajectory
evaluation. They are cost maps for lane centering, static obstacles and dynamic
obstacles. The obstacles are dilated in the lane-adapted coordinate system based
on the assumption of a maximum deviation of the heading of the vehicle from
parallel to the center line. The sufficiency of the collision checking scheme from

the perspective of missing no potential collision is analysed in a numerical way.

According to the evaluation criteria for motion planners (cf. Section 1.1.2), this
search-based planning method is employed here based mainly on the following consider-

ations:
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e Search-based motion planners can achieve greater extent of optimality and com-

pleteness compared to those using only terminal states.

e Although the computational complexity of the former is larger than that of the
latter, the issue can be mitigated by employing parallel algorithms to accelerate

the costly graph search.

e The proposed planning strategy assumes that the heading and curvature of the
trajectory at one state sample are unique. Besides, the path primitive is confined
to a specific functional. In this way, the search space gets smaller and thus the

computational cost gets further reduced.

Besides, the application of acceleration cubic polynomials for the speed trajectory
generation improves the performance of the motion planner in terms of the feasibility

criterion. The next chapter addresses this issue.



Chapter 4

Acceleration Profiles for Smooth

Trajectories

As is discussed in previous chapters, acceleration profiles are associated with the path
edges to generate trajectory edges. This chapter introduces the acceleration profiles
applied in the proposed planner. The main consideration in designing the acceleration
profiles is that they should guarantee a certain level of smoothness of the trajectories.
This requirement poses three challenges to the construction of the trajectories. Firstly,
the acceleration profiles applied on the path edges should be smooth themselves. Sec-
ondly, successive trajectory edges should have a smooth transition, i.e., there are no
jumps in terms of acceleration and speed at the joint of two successive edges. Lastly, the
trajectories generated based on consecutive planning horizons should keep consistent to
some extent. The first two problems are covered in this chapter; the last one is discussed
in the next chapter. Section 4.1 recalls the derivation of the formulae for trajectories
with the minimum jerk level (i.e., smooth trajectories), setting a foundation for the rest
of this chapter. Section 4.2 presents the characteristics of the proposed acceleration pro-
files, such as the formulae of their representations, their boundary conditions and the
evaluation of their feasibilities. After that, Section 4.3 illustrates how the acceleration
profiles are associated with the path edges. The related principles and algorithms are
also described. Finally, Section 4.4 evaluates the performance of the proposed acceler-
ation profiles and the application strategy. The evaluation is conducted by comparing
the trajectories generated by the proposed planner and those calculated based on the

theory of smooth trajectories presented in Section 4.1.

4.1 Smooth Trajectories

It is suggested in [81] that the smoothness of a trajectory can be quantified in terms of

jerk. Concretely, given a one-dimensional trajectory expressed in the form of z(t) whose

o7
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domain is [to,?f], its smoothness can be measured by the jerk cost:

/Wfafﬁ (4.1)

0

where ax(t)
x(t
t) =

= jerk. (4.2)

It is pointed out in [81] that the trajectory that most smoothly traverses from x ()
to x(ty) is the one that has the minimum jerk cost. Accordingly, the problem of solving
for a smooth trajectory can be formulated as finding x(¢) that satisfies given boundary

conditions and at the same time, minimizes the cost functional:

J(x(t)) = % /t " ()2, (4.3)

The technique of calculus of variations is adopted in [81] to locate the critical point

for the minimum of J(x(¢)). Its main idea is to find z(t) that satisfies:

dJ(z(t) +en(t))

—0 (4.4)
(e=0)

where 7(t) is a function of t, and ¢ is a real number. Adding the variation en(t) to
x(t) causes a small perturbation to the functional J(z(t)) at z(t) .

By associating Equation 4.3 and Equation 4.4 one can have:

I +en) = 5 Jy (@ + i)t
e e
<<(t>)€+sn<(t>)> = [ (E ) d (4.5)
dJ (@ (t)+en(t) = [y
- — = fto @ 1 dt.

There is a theorem in calculus called integration by parts which is used to transform
the integral of a product of functions to the integral of their derivative and antideriva-
tive. Given two functions u(z) and v(s) and their differentials du = u(zx),dv = v(z),

integration by parts states that :

/u(m)v(m)dm = u(x)v(x) — /u(a:)v(a:)dx (4.6)

The last integral in Equation 4.5 can be reformulated by repeatedly applying the

technique of integration by parts:

Jiwid = wild — [ aWidt
ceet .t .
= :En\té - ($(4)77|t£ - tl;f w(5)ndt) (4.7)

oot .t t
= @il — 2@l + 2Ot — [ 2 Opat.

0 to
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n(t) is assumed to have the following properties:

(to
to
to

(
(
(ty
(
(

3

3

3

(4.8)

3

3

ty
ty

o O O o o o

)
)
)
)
)
)

3

By associating Equation 4.4, Equation 4.7 and Equation 4.8, one can have:

ty
/ 2O pdt = 0. (4.9)
t

0

As Equation 4.9 must hold true for any n(t), it follows:
2 = 0. (4.10)

It can be seen from Equation 4.10 that the function x(t) whose sixth derivative is
equal to zero can render a minimum-jerk trajectory, i.e., the most smooth trajectory.
Correspondingly, the general representation of the minimum-jerk trajectory is given
as a position quintic polynomial which can also be regarded as the integration of the

antiderivative of an acceleration cubic polynomial:

x(t) = po + pit + pat® + p3t® + pat + pst® (4.11)

where the parameters pg, p1, p2, ps, p4, ps can be determined by forcing z(t) to satisfy
the boundary conditions of the trajectory. If there are insufficient boundary constraints
for calculating all the parameters, the trajectory will degenerate from the quintic poly-

nomial to polynomials with a lower degree.

4.2 General Types of Acceleration Profiles Applied in the
Planner

In the proposed planner, the acceleration profiles are associated with the paths to gener-
ate trajectories. This operation results in trajectories of s(t). From this perspective, the
trajectories can be regarded as one-dimensional trajectories with the dimension refer-
ring to the arclength of the path. Accordingly, the conclusion of the theoretical analysis
illustrated in Section 4.1 can be applied to the construction of smooth trajectories in
this context.

Due to the sampling nature of the state lattice, a complete trajectory generated

within one planning horizon is composed of multiple pieces. Each piece is constructed
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by applying one of the acceleration profiles on a path segment. This section presents
the acceleration profiles devised and applied in the proposed planner. As to how they
are applied on path edges and connected with each other during graph construction, it
is covered in the next section.

In general, two types of polynomials are adopted for the acceleration profiles applied
in the proposed planner, i.e., acceleration cubic polynomial and acceleration constant

(which can also be regarded as position quadratic polynomial). The former is formulated

as:
s(t) = 50+ vt + 5pot? + Ep1td + 5pat? + pst®
v(t) = 5(t) = vo + pot + 3p1t? + pat® + Ipst? (4.12)
a(t) = 5(t) = po + p1t + pat® + p3t? ‘
jerk(t) = '5(t) = p1 + 2pat + 3pst?
where py = «(0) = v, and p; = jerk(0) = jerko.
The latter is given as:
s(t) = 50+ v(to)t + 3pot?
v(t = 5(t) = vg + pot
0 0) =+ py s
a(t) §(t) =po
jerk(t) = 5(t)=0
where pg = a(0) = .
The boundary conditions shared by these acceleration profiles are:
jerky = jerk(to) =p1 =0
jerkr = jerk(ty) =0
w = alto) (4.14)
Vo = v(to)
S0 = S(t[)) =0

where to and ¢y refer to the starting and ending time of the acceleration polynomial
respectively. and tg = 0. It should be pointed out that for the profiles adopted by
trajectories from the vehicle to the state lattice, jerky is equal to the jerk of the vehicle at
the start of the planning horizon which might turn out not to be zero. In the cases where
jerkg # 0, the resultant profiles can be regarded as a segment of the ones illustrated
above.

As po and p; are always given by ag and jerkg , only po,p3 and ¢ remain unknown
for the acceleration cubic polynomial of Equation 4.12, requiring two more boundary

condition equations ( as jerk; = jerk(ty) = 0 already serves as one.) With respect
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to the acceleration constant of Equation 4.13, solving for the unknown ¢y needs one
additional boundary constraint.

In the following, the application purposes of the acceleration profiles and the ad-
ditional boundary conditions necessary for solving for their unknown parameters are
presented. Besides, the approach to verify the feasibility of the acceleration profiles

with regard to the speed and acceleration limits of the vehicle is also discussed.
4.2.1 Profiles for Acceleration Transition

The acceleration transition profiles are used to generate a smooth change from one
acceleration to another. They precede the appearance of a constant acceleration, as is
shown in Figure 4.1. They are expressed in the form of acceleration cubic polynomials.
The two boundary conditions in addition to those listed in Equation 4.14 required in
order to solve the unknown parameters are:

ar = alty) (4.15)

ZL/f == ktrans|a1 _OZO"

where k¢rqns is a predefined constant which can be identified by examining the actual
duration that is necessary for a vehicle system (i.e., vehicle dynamics plus controller) to
change from one acceleration to another. With the help of these boundary conditions,
the closed-form solutions for ps and ps can be readily obtained.

The physical capability of the vehicle defines the upper and lower boundaries of
possible accelerations and speeds. The limits are denoted as qungz, Qmin, Umaz and
Umin Tespectively. Accordingly, checking the feasibility of the acceleration profiles means
verifying whether there are accelerations exceeding aq, or falling below s, along the
profiles. The same applies to the feasibility examination of the speed profiles resulting
from the acceleration profiles. If the profiles turn out to be infeasible in terms of either
acceleration limit or speed limit or both, they should be discarded immediately without
further evaluation. As the vehicle is not allowed to perform reverse manoeuvres in the
proposed planner, v,,;, is set to zero.

The jerk and acceleration polynomials are the derivatives of the acceleration and
speed polynomials respectively. This specific relationship can be exploited to assist the
feasibility validation. For example, the acceleration polynomial gets its local extrema
at the zeros of the jerk polynomial, and the time coordinate where the jerk polynomial
gets its extremum is the inflection point of the acceleration polynomial. Figure 4.2
demonstrates this phenomenon. The same relationship exists between the acceleration
and speed polynomials.

The typical acceleration cubic polynomials and their corresponding speed and jerk
profiles are demonstrated in Figure 4.1. The fact that the endpoints of the jerk profile

has a value of zero determines that the boundaries of the acceleration profile are both
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Figure 4.1: Acceleration Profile Examples. The middle, lower and upper graphs
show the acceleration profiles and the corresponding jerk and speed changes
respectively. On the middle graph, the first bold curve transits the constant
acceleration of 0 m/s* to another constant acceleration of 4 m/s?>. On the
same graph, the second bold curve transfers the vehicle system to a state where
v=30m/s and o = 0 m/s>.

local extrema. Since the cubic polynomial can have a maximum of two local extrema,
the acceleration profile can only fall between the two local extrema, as is shown in
Figure 4.2. As a result, the acceleration increases or decreases monotonically within the
profile, which means that the acceleration profile is guaranteed to be valid as long as
both of its boundaries are within the acceleration limits.

Now it is time to examine the speed profiles. There are generally three cases for
consideration. The profiles shown in Figure 4.3(a), Figure 4.3(b), Figure 4.3(c) and
Figure 4.3(d) belong to the first case. The feature of this case is that there are no zeros
along the acceleration profile except for their endpoints. It can be concluded therefore
that there are no local extrema along the speed profiles with their endpoints discounted.
Consequently, the speed can only decrease or increase monotonically within the profiles,
which indicates that the feasibility of the speed profiles can be guaranteed if both of its
endpoints fall within the speed limits.

The second case, as is shown in Figure 4.3(e), is more complicated than the first.
As there is one zero along the acceleration profile, a local extremum cannot be avoided
along the speed profile, which renders the check relying on the boundary conditions
alone insufficient. As the acceleration goes from positive to negative, the local extremum

along the speed profile is a local maximum. In the proposed planner, the trajectory with
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Figure 4.2: Relationship of the jerk and acceleration polynomials. The green
points on the jerk curve are the zeros of the jerk polynomial. They correspond
to the green points on the acceleration curve where the acceleration polynomial
gets its local extrema. The jerk quadratic polynomial gets its extremum at the
red point on its curve which is the inflection point of the acceleration cubic
polynomial.

speeds exceeding v,,q, is not regarded as infeasible but subject to certain punishments.
The reason is twofold. For one thing, v, is usually set to be the speed limit of the
current road which is well below the actual potential of the vehicle. Even when v, is
set according to the physical limit of the vehicle, it is always a conservative estimation
compared to the maximum capability of the vehicle. For another thing, the discrepancy
between v, and the possible speeds exceeding vj,q, turns out to be very small in
practice if the boundaries of the speed profile are within the limits. As a result, in terms
of feasibility validation, the speed profile with a local maximum is only subject to the
boundary checking. The trajectory with speeds beyond the speed limits is punished
during the evaluation of the dynamic cost.

Figure 4.3(f) gives an example of the third case where the local extremum is a local
minimum. As speeds less than zero render a trajectory infeasible, it is necessary to
check whether this local minimum is negative. As the time coordinates of the local
extrema of the speed profile are the zeros of the acceleration profile, to calculate the
exact value of the local minimum in question on the speed profile would mean solving for
the corresponding root of the acceleration profile equation which is a cubic polynomial
equation. Although there are closed-form solutions of the roots of cubic polynomial

equations (cf. [82]), it is unnecessarily complicated to implement it in the planner. As
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Figure 4.3: The typical acceleration cubic polynomials and their corresponding

speed and jerk profiles.
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a result, approximate methods are applied to estimate the minimum speed v, which

are illustrated as follows:

e Given the acceleration profiles as is shown in Figure 4.4(a), Figure 4.4(b) and Fig-
ure 4.4(c), let to, t1, tmn refer to the time coordinates where vy, v1, Um:n take place
respectively, and let (ti, fiection, Qin flection) denote the inflection point of the accel-
eration polynomial. Note that tg,¢; are already given by the definition of the accel-

eration profile. The time coordinate of the axis of symmetry of the jerk polynomial

_?ﬁ%' Correspondingly, Qin flection = O‘(tinflection)‘

Let t. refer to the time coordinate of the intersection of two specific lines which are

1S tinflectiana Le., tinflection =

L; that passes through (¢p,ap) and (1, ;) and L that coincides with the time
axis. Note that any point that lies on the time axis has an acceleration coordinate
of zero. Let k. represent the slope of L1, and one can have k. = (o —ag)/(t1 —to).
Let kg be the slope of the tangent line of the acceleration profile at tg. It follows
that kg = jerk(tog). It should be kept in mind that ¢; always renders a local ex-
tremum (a local maximum in the context of the problem) of the acceleration cubic
polynomial as the jerk of the ending state of the profile is always zero. Recall that
the jerk of the starting state might not be zero, which might be the case for the
trajectory from the vehicle to the state lattice. As a result, fy might lie to the
right of the time coordinate of the other local extremum ( a local minimum in this
context). Figure 4.4(a) gives an example of this case. The area of the yellow patch

is denoted as dV,.. It is valid to say that vy, = vo — [6V;].

e In cases where kg > k. as is demonstrated in Figure 4.4(a), let 6t equal to
a‘lafooto(tl —tg) (i-e., 0t = t.—tg). The area of the triangle with the blue frame can be
calculated as 0V, = %\aolét. Correspondingly, the approximate minimum speed is
computed as Vyin, = vo —0V,. Whether v,,;, is negative or not is thus determined
by the sign of vpip,. It is straightforward that vmin, < Vmin. Therefore it is safe to
conclude that vy, is positive if vy, turns out to be positive. However, if vpnip,, is
negative, v, may not be negative. In this sense, the approximate method, while

guarantees to discard the infeasible profiles, might also exclude some valid ones.

o If kg < k., and at the same time oy, fiection < 0, as is shown in Figure 4.4(b), one
can have that 6t1 = |tc — tinfiection| and dta = [to — tinficction|- Correspondingly,
the area composed of the triangle and rectangle with blue frames is given as dV, =
%&fﬂam flection| + O0t2|ag|. The rest of the analysis concerning dV, is the same as

that of the case illustrated above.

o If kg < ke, and at the same time y, fiection = 0, as is shown in Figure 4.4(c), one

can have 0t = |tg — tin ficction|- Correspondingly, the area of the rectangle with blue
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frame is given as 6V, = dt|ap|. The rest of the analysis is the same as that of the

first case.

4.2.2  Profiles for Acceleration Keeping

Constant acceleration is another profile employed in the proposed planner. Two con-
stant accelerations of different values can be joined via an acceleration transition profile
illustrated previously (cf. Figure 4.1). As the jerk stays at zero within the duration of
the constant acceleration, it is better to make the jerk at the endpoints of the transition
profiles to be zero for the purpose of jerk continuity. Hence the definition in Equa-
tion 4.14. Jerk continuity is not addressed in the theory of minimum-jerk trajectory
(cf. Section 4.1), as the trajectory discussed therein consists of only one piece, indi-
cating straightforwardly that its jerk is continuous. It is believed in this thesis that
it is necessary to keep jerk continuity along the overall trajectory composed of multi-
ple pieces. In this way, infinite snaps (the fourth time derivative of position, i.e., the
time derivative of jerk) can be avoided, which can further improve the quality of the
trajectory.

The additional boundary condition with respect to constant acceleration profiles that

is necessary for solving for ¢ is given as:
s1 = s(ty) (4.16)

where s7 is always given as the arc length of a whole path edge or a segment of it.
Since s(t) is a quadratic polynomial (as the acceleration is constant), Equation 4.16
is easy to solve. In the proposed planner, constant accelerations are always applied
on a complete path edge or on the remaining segment of a path edge on which some
acceleration polynomial has already been applied and finished. Accordingly, constant
acceleration profiles are supposed to end at the target node of the path edge. In the
cases where negative accelerations are applied, it might happen that the vehicle stops
before it reaches the target node. That would mean that no real-number solution is
available for Equation 4.16. Sometimes it is necessary for the vehicle to stop halfway
between the endpoints of a path edge, e.g., in the case of an emergency stop. In this
work therefore, the position and time, s1, and ¢y, respectively, where the vehicle stops

in such situation is calculated according to

ty = to-i—l%z'

$1. = So+ |ac|t?

c

(4.17)

where «. is the constant acceleration. Special nodes called EXTRA-SAMPLES are

created in the proposed planner to record the vehicle states resulting from such scenarios.
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Figure 4.4: Application of approximate methods for estimating the minimum
speed in question. The coordinates of some red points are given; those of the
other red points can be easily calculated. The time coordinate of the green
point is unknown. The red line is L.
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The feasibility of the constant acceleration profile is definite, as the constants are
selected among the possible accelerations that are within the limits of the capability of
the vehicle. With respect to the feasibility of the corresponding speed profile, only a

boundary check is necessary because the speed varies linearly with time.
4.2.3 Profiles for Achieving a Target Speed

The vehicle is expected to reach specific speeds in some scenarios such as velocity keep-
ing, stopping, turning and vehicle following. Accordingly, the acceleration profiles for
achieving a target speed are indispensable elements of a practical portfolio of accelera-
tion profiles for an on-road motion planner. Such acceleration profiles are in the form of
acceleration cubic polynomials, the same as those employed for acceleration transitions,
albeit with different boundary conditions.

To design proper boundary conditions for this kind of acceleration profiles, the char-
acteristics of the related traffic scenarios are further investigated. For scenarios such as
stopping and making sharp turns, there usually exist specific locations where the vehicle
should manoeuvre at the required speed. Ideally, such locations should be incorporated
into the set of spatial nodes as long as the planning horizon covers them. The current
implementation of the proposed planner does not take into account this issue, which
should be improved in future work. Nonetheless, this kind of speeds demanded by these
scenarios are categorized as location-bounded target speeds in this work. With regard
to the scenarios such as velocity keeping, it is necessary for the vehicle to reach a rec-
ommended speed (say, a hair below the speed limit of the current road) and maintain
that speed for a subsequent period. As a result, it would be more favourable if the
acceleration at the end of the transition could be zero. Furthermore, it is not necessary
for the vehicle to reach the target speed any specific location in this context. Such target
speeds are classified as acceleration-bounded target speeds in this thesis.

In addition to the boundary constraints provided in Equation 4.14, more boundary
conditions are necessary to solve for the acceleration profiles to achieve location-bounded

target speeds. They are given as:

s1 = s(ty)

4.18
vr = v(ty) e

where s; and vy are always given. Correspondingly, the additional boundary conditions
for solving acceleration profiles aiming at achieving acceleration-bounded target speeds
are:
ar = a(t
1 (tr) (4.19)
v = w(ty)

where a; and v; are always given.
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These boundary conditions in combination with that of jerk(ty) = 0 can be applied
to solve for the three unknowns, i.e., p2,p3 and ty. The fact that p; = jerkg = 0 spares
us from having to solve a cubic polynomial equation in the process of calculating the
unknowns. As a result, the closed-form solutions of the unknowns can be obtained with
ease.

The feasibility of the resultant acceleration cubic polynomials can be verified in the
same way as that of the acceleration transition polynomials.

So far, all the types of acceleration profiles applied in the proposed planner are
illustrated. It is noteworthy that the vehicle following behaviour has not yet been
covered by the presented portfolio of acceleration profiles. Nonetheless, two candidate
profiles are recommended here for future work. One is to use the profile composed of
acceleration transitions and constant accelerations. The amount of the acceleration can
be determined by a reactive control law based on the current and expected velocity and
distance of the ego-vehicle relative to the vehicle to follow (cf. [14]). The other candidate
profile is based on an estimation of the optimal time when the ego-vehicle should arrive
at the next station, taking into account the distance of the vehicle to follow relative to
the ego-vehicle at that time. With the time and distance (i.e., the arc length of the path
edge) as additional boundary conditions, the acceleration polynomial can be solved. For
the current implementation of the proposed planner, the vehicle following behaviour is
only assisted by the follow area defined behind the vehicle to follow. The ego-vehicle

would get penalized if it were to enter the follow area (cf. Section 3.6).

4.3 Application of Acceleration Profiles

During the graph construction process, the acceleration profiles presented in the previous
section are applied on the path edges to generate trajectory edges. The problem of
associating the acceleration profiles with the path edges within the state lattice can be

formulated as: given a source node Ny and a path edge E apply each of the

No—)Nl )

available acceleration profiles on ENO should a resultant trajectory edge En,—n,

—N7p?
turn out to be feasible and traversable, 1its ending state would become one candidate
competing for representing the resultant state lattice node N; (please refer to Chapter 3
for the meaning of the notations).

The general principles guiding the construction of the trajectories are listed as fol-

lows:

Principle 4.1. It might turn out that an acceleration profile cannot end at the target
node of the current edge where it is applied. In such case, if the current edge survives
the pruning, the unfinished acceleration profile will be continued in the subsequent path
edges. The new acceleration profiles that will be associated with the subsequent path edges

start at the point where the unfinished profile ends.
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Principle 4.2. One path edge can be used to construct several different trajectory edges,
each associated with a unique acceleration profile. If a path edge starting from the lattice
node Ny ends up being fully covered by the remaining part of an unfinished acceleration
profile that is passed down from previous edges, the new acceleration profiles prepared to
be applied on this path edge have no chance at all to play a role. As a result, all the
trajectory edges that start from the lattice node Ny and are intended to be constructed by
different acceleration profiles would turn out to be the same. Consequently, only one of
them is mecessary. As the acceleration profile index is used to decode some information
of the acceleration profile pertaining to it for the reconstruction of the best trajectory,
the trajectory edge that is intended to have the same acceleration profile index as the

unfinished one is chosen to be applied.

Principle 4.3. Should an acceleration profile be completed before reaching Ny ( which
can only happen in the case of acceleration profiles for achieving an acceleration-bounded
target speed and those for acceleration transition), a constant acceleration with the same
value as the ending acceleration of the acceleration profile would be applied on the rest

of the path edge.

In sum, one acceleration profile might extend over several trajectory edges, and one
trajectory edge might contain several acceleration profiles.

The algorithms related to the construction of the trajectories within the state lattice
are illustrated in Algorithm 1 and Algorithm 2. It is worth mentioning that the speed
and time pertaining to the target node of the constructed trajectory edge should always
be calculated. The reason is twofold. For one thing, the target node has to compete for
representing one time-speed grid cell ¢;,;,. Consequently, it needs to know which grid
cell it falls into. Should the target node wins against other candidates, its information
would be stored in the memory segmentation allocated based on its index including i
and 4,, which also requires the time and speed of the target node. For another thing,
the desirability of the target node is evaluated based on a heuristic function expressed
in terms of the time and speed represented by the node in question (cf. Section 3.5),
which is necessary for the pruning operation to decide which candidate node wins over
all others.

Both considerations illustrated above require the target node to provide its speed
and time. This requirement would mean finding the roots of a quintic polynomial from
the perspective of the edges where an applied acceleration cubic polynomial does not
end within it, which is hard to realize. To that end, rough estimations of the speed and
time which are a by-product of the dynamic cost evaluation are assigned to the target
node if it is hard to obtain the exact values. If the sampling step for the dynamic cost
evaluation is small enough, the discrepancy between the estimation and the actual value

is tolerable. Nonetheless, a more detailed error analysis is necessary which is one task
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for future work. Even the error is intolerably large, the only consequences thereby will
be that the target node is confronted with unfair judgement by the pruning operation
or that it might be stored in a memory segment that is not consistent with its actual
index. Note that the rough estimation does not provide any kind of reference for any
other operations such as the construction of the subsequent acceleration profiles and the
reconstruction of the selected trajectory. The arc length of the edges and the acceleration
polynomials are the only references for those operations, which guarantees that the final
representation of the trajectory is accurate without any approximation. In addition, as
the size of the time-speed grid is limited, the candidate node that falls outside the grid
would be assumed to fall within the grid cell that lies nearest to it. Concretely, if the

original time-speed index of one node is (i}, )

) which is calculated by dividing its time
and speed by the corresponding sampling units, a modified time-speed index (i, i,) that

maps the node to the time-speed grid is given as:

ir = min(i}, i)

. o (4.20)
iy = min(il, i)
where ¢;*** and 7'"** represent the maximum time and speed indices of the grid respec-

tively. The pruning and storage operations would be conducted based on the modified
index.

In addition, a constant acceleration must be preceded by an acceleration transition
profile if the ending acceleration of the preceding profile is not equal to this constant
acceleration. The resultant profile composed of the transition and constant acceleration
profiles are regarded as one acceleration profile and share a common acceleration profile
index.

The algorithms are implemented on the CUDA-enabled graphics hardware so that
the construction of the trajectory edges starting from the nodes at the same station can
be carried out in parallel. After the graph construction is finished, the best constraint-
abiding trajectory would be regenerated by tracing back from the best target node to
the starting state of the vehicle. This process is implemented sequentially on the CPU.
More implementation details can be found in Chapter 5.

In comparison to the construction of the trajectory edges within the state lattice, the
generation of the trajectory edges from the vehicle to the state lattice needs some special
treatments in order to guarantee a certain level of consistency between the trajectories
generated from consecutive planning horizons. It is assumed in the proposed planner
that the vehicle executes the control commands correctly. In the current implementation
therefore, the jerk of the vehicle at the start of each planning cycle (denoted as jerkip)
is extracted from the preceding trajectories. As jerk;,; might not be the starting or

ending jerk of a complete jerk profile, it might not be equal to zero. This disobeys
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the boundary condition which defines that jerkg = 0 for all acceleration profiles, which
causes some inconveniences in the application of acceleration profiles. The fact that
jerky # 0 means that p; # 0. A non-zero p; might make it necessary to solve for
the roots of a cubic polynomial equation in the cases where acceleration cubic profiles
for achieving a target speed are applied. To avoid the complicated computation, only
transition-constant acceleration profiles are allowed to be applied on the trajectory edges
from the vehicle to the state lattice when jerk;,;; # 0. Besides, it is more encouraged
to continue the acceleration profile from which jerk;,;; is extracted in order to maintain

a certain level of planning consistency between consecutive planning cycles.

4.4 FEvaluation

With the acceleration profiles, their association with the path edges and the evaluation
of their feasibility and traversability presented, this section evaluates the performance
of this trajectory representation strategy. In the following, the concrete parameters of
the acceleration profiles applied in the proposed planner are first provided. After that,

the performance evaluation is reported.
4.4.1 Concrete Acceleration Profiles Applied in the Planner

The concrete acceleration profiles employed in the proposed planner are listed in Ta-
ble 4.1. It should be pointed out that a larger number of acceleration profiles are possible,
with the only constraint being the requirement on the computational efficiency. Fur-
thermore, the different target-speed acceleration profiles may not necessarily be present
at the same time, as it is common that the target speed for a specific traffic scenario
be unique. For example, if the vehicle is allowed to reach the speed limit of the road,
it would be unnecessary for it to keep an eye on the trajectories with a target speed
for turning. Nonetheless, for the sake of safety, the acceleration profile with the target
speed of zero is always included in the acceleration profile portfolio for all kinds of traffic

scenarios.
4.4.2 Performance Evaluation

As the presented acceleration profiles and their application strategy are intended to gen-
erate trajectories with a high level of smoothness, this evaluation focuses on trajectory
smoothness. The benchmarks adopted here are the jerk levels of the position quintic
polynomials which have the same position, speed and acceleration boundary conditions
as the trajectories generated by the proposed motion planner. Such position quintic
polynomials are specified as uniform polynomials in this section in the sense that they
are not composed of several trajectory segments as opposed to the multi-piece trajecto-
ries, i.e., the trajectories generated by the proposed search-based planner. Three typical
vehicle motions are selected for the evaluation. Among them are accelerating from stop,

decelerating from high speed and a combination of decelerating and accelerating. The
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Algorithm 1 TRAJECTORY-EDGE-CONSTRUCTION

Input: ng: (v}, ], costiaverse) // Information of source node ngy including

traversal cost from vehicle to ng.

ltltltltltltltlt
Pt : (tas as’tas’pas’pas’pas’ps(w’ T(leinazn)

// Initial time and speed, duration, cubic polynomial coefficients and un-
finished distance of acceleration profile Pi,s: ending at, or passing, or
ending in front of ng without any other cubic polynomial between them.

Input:

Input: ¥ // Index of acceleration profile Pyys;.
Input: L% 6tas, Kiast // Sampling information of edge ending
at ng for dynamic cost evaluation.
Input: peyr : (ag, a1, az,as, o, Yo, 00, Sp), CoStstatic // Model and static cost of path edge.
Input: {i,} /] Acceleration profile indices.
Output: {ni}: {(v], 7, costiraverse)} // Candidates for target node.
Output: {Pcur} {(tcur ,Ucur %u" p8u7”7 p(iur’pgur’ pgur’ ig:nazn)}
/] Acceleration profiles for trajectories in update.
Output: {(i"", 0tcur, Keur)} /] Sample information of edges in update
for dynamic cost evaluation.
1. for all i, € {iy} do
2: FLAG-EXTRA-SAMPLE«+ FALSE  // Flag indicating whether acceleration

profile stops halfway along path edge.
3: FLAG-CONSTANT <« FALSE  // Flag indicating whether there is constant

acceleration profile along path edge.

4: if slast . >s, then
5: if i, # 40 then
6: continue // Follow Principle 4.2.
7 end if
8: end if
9: if sf}éﬁfmm > s, then l l l l l l l
10: (tcur7 U(c)ur’ tcu?“7 p(c)ur’ piur’ pgur’ pcur) (toast ast t ast’ P ast’ P ast7 P ast7 P ast)

/] Apply the remaining part of the unﬁmshed acceleration profile.
11: else
192: cur ~ CUBIC- POLY( last7 last,plast7plast tlast)
13: 1f slast >0 then // Last profile is unfinished but will end on peyy -
14: Initial arc length of profile Pp,: s§*" sfféf%am
15: Initial speed of profile Pey,: v5"" <—

QUARTIC POLY( last last plast plast plast plast)
) ) 9
16: Initial acceleration of proﬁle Peyr: o'
CUBIC- POLY( last last7plast,plast tlast)
// Calculate ending speed and acceleration of profile Piag;.

17 tgur — tlbwt + téast
18: else
19: 554" <=0
20, (6", 0B 6)  (uf, af, 2)
21: end if
22: pe" < ot

23: P 0
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Algorithm 1 TRAJECTORY-EDGE-CONSTRUCTION (continued)

24: if i, refers to transition-constant acceleration profile OR
acceleration-bounded target-speed profile then

25: af" — a(ia)

26: if i, refers to transition-constant acceleration profile AND af*" = af*"
then

27: P50

28: pg" 0

29: 15"« 0

30: 8%” 0

31: Arc length of constant acceleration s§5"5¢ «+— sp— 85"

32: Initial speed of constant acceleration v «— v§u"

33: Initial time of constant acceleration 5! «— 5"

34: FLAG-CONSTANT+ TRUE

35: else

36: if i, refers to transition-constant acceleration profile then

37: tA" = Kirans|a§" — af""| // cf. Section 4.2.

38: (p§T, p§iT, sB, vfuT) +TRANSITION-PROFILE-

GENERATION (agtr, (547 vger , ager peer  peer)
// Generate transition profile (cf. Section 4.2).

39: else /] Acceleration-bounded target-speed profile.
40: Vi — v(iy)
Al: (P, T, 5547 )«  ACCEL-BOUNDED-PROFILE-

GENERATION(a§"", v{*", v§"", a"", p§"", p{*")
// Generate acceleration-bounded target-speed profile (cf. Section 4.2).
42: end if
43: if s@" <s,—si"" then // Acceleration profile ends before reaching
target node.

44: s%’”“ — s, —8sH" — 85"

45: EE0MSt — foUT 4 ¢uT

46: v§oTSt ¢ pur

4T: FLAG-CONSTANT « TRUE // Follow Principle 4.3.
48: end if

49: end if

50: else // ia refers to location-bounded target-speed profile.
51: v — v(iy)

52: SO =5, — 851"

53: (pser, p§r  t47  a*") + LOCATION-BOUNDED-PROFILE-

GENERATION(s%", v§"", vg"", a6, p6*", pi*")
// Generate acceleration-bounded target-speed profile (cf. Section 4.2).
54: end if
55: end if
56: if ACCELERATION-SPEED-FEASIBLE(P,,,) returns FALSE then
/] Verify acceleration-speed feasibility of Py, (cf. Section 4.2).

57: Continue

58: end if

59: if FLAG-CONSTANT = TRUE then // Apply constant acceleration.
60: (v, 11, 85575 (real), t59"")  +  CONSTANT-ACCELERATION-

APPLICATION (v§omst, a§ur, sggnst tgonst)
/] Apply constant acceleration ( cf. Section 4.2).
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Algorithm 1 TRAJECTORY-EDGE-CONSTRUCTION (continued)

61: if s59"(real) < s33"5" then /] Profile stops before reaching tar-
get node.
62: FLAG-EXTRA-SAMPLE < TRUE /] cf. Section 4.2.
63: s§nst = s§9nst (real)
64: end if
65: end if
66: Ns+ 0 // Record #samples for dynamic cost evaluation.
67: costiraverse < ()
68: 01+ 6y
69: r1 < X9
70: Y1 < Yo
71: s1+0
. 1 .
72: if slast >0 then // Evaluate unfinished segment of Pyyst.
73 Slgst (—QUINTIC—POLY(UZOGSt, péast’ pllast’ pl2ast7 péast7 tlgst)
74: Arc length of evaluated segment spqs — 535t — slast

// Positive for evaluated segment preceding current path edge,
negative for evaluated segment on current path edge.

75: Time sampling step for dynamic cost evaluation dt < §tjq4
76: Dynamic cost evaluation ends at arc length seyq < min(slst . s)

e (COStdynamim ifura Keur, 01, 71, Y1, 51) <~
DYNAMIC'COST(Plast7 P iffaSta 5t7 Sevals Spasts Flast, 917 Z1,Y1, 51)
/] Dynamic cost evaluation (cf. Algorithm 2).

78: if costiynamic = oo then

79: continue // Discard untraversable trajectory.

80: end if

81: costiraverse ¢ cogtiraverse 4 coSt gynamic

82: N, « N, + Z'%:ur _ iéast

83: if slast > s, then /] Estimate speed and time at target node for
unfinished profile (cf. Section 4.3).

84: Estimated duration of evaluated segment of last profile tp < i7“" 0t

85: th < thast v tp

86: v QUAII{TIC-POLY (vlast tp, plest, plast plast plast)

8T Sig:nain A srcéifmm — Sp

88: else if sl@! = =s, then

89: th «— thost 4 last

90: v+ QUARTIC-POLY (vpst, ¢last, plast plast plast plast)

91: Seer ain < 0

92: end if

93: end if
94: if (slast . < s,) AND (t% > 0) then // Evaluate new polynomial profile.

remain
95: Spast < =S5

96: N — S%”/PATH—SAMPLING—STEP—FI
o 5t +— teur /Ngur
08: jour 1
99: Seval < min(sg"" + 55", sp)
100: Ng  Ng —id""
101: (costaynamics 15" Keurs 01, 1, Y1, 51)
DYNAMIC-COST(Peyr, p, i§*", 01, Seval, Spast, Keur, 01, T1, Y1, 51)
102: if costyynamic = 0o then
103: continue

104: end if
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Algorithm 1 TRAJECTORY-EDGE-CONSTRUCTION (continued)

105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:

119:
120:
121:
122:
123:
124:
125:
126:

127:
128:
129:
130:
131:
132:
133:
134:

135:

136:

137:
138:
139:
140:
141:
142:

143:

costﬁraverse — Costli’/‘ave'r’se + COStdynamic
Ny < Ng + "
if sg"" + s3" > s, then
Estimated duration of evaluated segment of current profile tp < "ot
£ 18+ tp
v}« QUARTIC-POLY (v§"", tp, pg"", p*", ps*", p5™")
SCUT % SS’UT’ _"_ S%LT _ Sp

remain

3 cur cur —
else if s§'" + s3" = s, then

7 5"+t
v} = uf"
S?eb;nnain <0
end if
end if
if FLAG-CONSTANT= TRUE then
// Evaluate segment with constant acceleration.
Spast = — (5577 + 53)
N« s3mst JPATH-SAMPLING-STEP+1
ot + th"St/NfW
i1
Seval Sgur + S%u" + ScDonst
Ng < Ng —id""
Pconst — (t[c)onst’ U(c)onst’ thonst, agur, 07 O, 0, 0)
(COStdynamiCa ifur7 Reur 617 x1,Y1, 51) —
DYNAMIC-COST(Preonst, p, 5", 0t, Sevals Spasts Keurs 01, 1, Y1, S1)
if costaynamic = oo then
continue
end if
Costtlraverse — Costtlraverse + COStdynamic
Ng  Ng +d*"
Siz:nain <0
end if

costlraverse « costiraverses /N // Normalize dynamic cost by steps/s, so

that dynamic cost does not depend on Nj.
COSEITVETSE ¢+ cogthlraVerse  cogttraverse 4 cost gyq1ic+OTHER-TRAVERSE-COST

// See Subsection 5.1.4 for OTHER-TRAVERSE-COST.
Desirability of target node
costigrget <—COST-SPEED-TIME-AS-TARGET (vf, t7)
// See Subsection 5.1.3 for desirability evaluation.

cost = costtl’"“”e"se + costiarget
Time-speed grid cell index i, i, - GRID-INDEX(t},v}") // See Equation 4.20.
Target node index il < (is, i1, o, it, %)
if SUCCEED-IN-PRUNING (i}, cost) then

Oteyr = Ot

SAVE(il n1, Poyr, i€, 0tewr, Keur)

// Save trajectory information at memory allocation designated by il .

end if

144: end for
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Algorithm 2 DYNAMIC-COST(P, p,1?, 6t, Sevai, Spast> K0, 00, 0, Y0, S0)

i < 1)
t i}t

9: x1 < xo + (cos(61) + cos(0p))(s1 — s0)/2

coSt gynamic < 0

/] See Algorithm 1 for the meaning of notations.
Input: DYNAMIC-COST-MAP, P, p,i?, 6t, Seval, Spasts K0, 00, T0, Yo, S0
OUtPUt: COStdynamica Ztla K1, 911 T1,Y1, 81

s1 < QUINTIC-POLY (P.vg, P.po, P.p1, P.p2, P.p3,t) — Spast
while s1 < 5. dO
V1 (—QUARTIC—POLY(PU(), t, P.po, P.pl, P.pg, P.pg)
aq %CUBIC—POLY(PPQ, P.p1, P.p2, P.ps, t)
(k1,01) < CURVATURE-HEADING (p.ag, p.a1, p.az, p.as, p.6y, $1)

// Calculate curvature and heading at point s1 along p.

// Estimate the position using trape-
zoidal integration.

10: Y1 < Yo + (sin(61) + sin(0y))(s1 — s0)/2

11: coStopstacie < DYNAMIC-COST-MAP (21, y1, Pto + 1)

12: COStstates %DYNAMIC—FEASIBILITY—COST(’1)1, a1, K1, Ko, 5t)

/] See Subsection 5.1.4 for DYNAMIC-FEASIBILITY-COST.

13: COStdynamic < COStobstacle T COStstates + COStdynamic

14: Oy + 61
15: Ko < K1
16: To < I1
17 Yo < Y1
18: Sp < S1
19:  if it +1
20t iiot

21: s1 <= QUINTIC-POLY (P.vy, P.po, P.p1, P.p2, P.p3,t) — Spast

22: end while

Type Value Description
aiﬁg,i .= —2m/s Maximum comfortable braking
. a’gﬂ;,fe = —4m/s? | Maximum braking allowed with penalty
Acceleration sofT 5 - :
Qgqs =1m/s Maximum comfortable acceleration
constant hard 7 - : :
Qgae® =2m/s Maximum acceleration allowed with
penalty
a=0m/s? Velocity keeping
Acceleration ktrans = 0.5,1,2 From given acceleration ag to any of the
transition constant accelerations aq that are listed
above
L jon- =
Target ocation vy =0m/s Stop .
soeod bounded vy =1m/s Low speed for hard turning
P Acceleration- v = 0.99 vimit, Smooth transition to the state of velocity
bounded a; = 0m/s? keeping at a hair below the speed limit

Table 4.1: Acceleration profiles applied in the proposed planner.
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first motion is a common behaviour of the vehicle. The second one can be necessary
if, for example, the vehicle is to stop in front of a traffic light. The last one is useful
when the vehicle makes a relatively hard turning manoeuvre. For the first and the third
motions, only the trajectories generated in one planning cycle are evaluated. With re-
gard to the second motion, the actual trajectory of the vehicle from the moment when
the stopping signal is assigned to the time when the vehicle gets full stop is recorded
and evaluated. This special treatment for the second motion is necessary because the
short planning horizon (100 m) is not sufficient for the vehicle at a speed of 30 m/s to
stop within it (as the hardest deceleration is set to be —4 m/s? ). The configuration of
the parameters and the evaluation result are provided in Table 4.2. The performance
of the proposed trajectory representation strategy from the perspective of the reported

evaluation can be summarised as follows:

e The jerk levels of the multi-piece trajectories tend to be higher than that of the uni-
form polynomials. As can be seen from the graphs of jerk, the uniform polynomials
distribute the jerk across its duration; by contrast, the multi-piece trajectories fin-
ish the necessary acceleration or deceleration within one small segment of its overall
duration, which causes relatively large jerk, resulting in comparatively large jerk
level. The reason why it is hard for the multi-piece trajectories to behave in the
same way as the uniform trajectories is twofold. For one thing, the number of the
acceleration profiles available to the planner is rather limited. To be more concrete,
the available acceleration profiles are not enough for the multi-piece trajectories
to approximate the behaviour of the uniform polynomials to a satisfactory extent.
For another thing, the jerk level has not been incorporated into the criteria for
the trajectory evaluation. In other words, there might exist candidate trajectories
with smaller jerk level than the selected one. Nonetheless, without enriching the
portfolio of the acceleration profiles, introducing the criterion of jerk level alone

cannot make much difference.

e While the performance demonstrated by the multi-piece trajectories in the first
and third scenarios are still satisfying, the jerk level of the multi-piece trajectory
generated for the vehicle to come to a stop from running at a relatively high speed
is much worse than that of its benchmark. Two causes contribute to this incon-
sistency in performance. Firstly, for the stopping behaviour, specific evaluation
criteria are designed to take care of the target speed and the target location where
the vehicle is supposed to have the target speed. Currently, the criteria define
that any candidate for the target node that falls on the area in front of the target
location must have a speed of zero. Besides, they are fined with extra costs in
proportion to their distances relative to the target location. It is also stipulated

that the target nodes that have not yet passed the target location must be able
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to reach the target location at the target speed according to a rough estimation.
These additional cost functions together with other existing cost functions still re-
quire further tuning in order to obtain better performance. Furthermore, it would
be much better if the lattice could incorporate the target location as one node,
as is discussed previously. Secondly, the stopping trajectory does not come from
a single planning cycle; instead, it is the trajectory of the vehicle decelerating to
a stop. As a result, the stopping trajectory is composed of several pieces, with
each piece being generated by different planning cycles. Although the consistency
of successive plans is taken into account in the trajectory evaluation criteria, its

effect might not be sufficient in this scenario.

e Although the uniform polynomials have a better performance than the multi-piece
trajectories in terms of jerk level, it cannot be easily applied. It seems to be easy
to implement them in the evaluation because the target states are always assumed
to be given, i.e., the target states are directly obtained from the multi-piece tra-
jectories with which they are compared. In real-life traffic scenarios, near-optimal
target states are hard to estimate. Moreover, it is noteworthy that the quantities
of jerk at the endpoints of the uniform polynomials are arbitrary, depending on the
position quintic polynomials which are determined by the trajectory boundaries
in terms of distance, speed and acceleration. Consequently, unlike in the case of
the multi-piece trajectories, the jerk continuity of consecutive plans in the context

of uniform polynomials is hard to realize.

In general, the performance of the proposed trajectory generation strategy in terms
of smoothness is promising, although there is still room for further improvement which
is left for future work. With a high level of smoothness , the trajectories generated by
the proposed planner can be more feasible than those produced by similar planners like
the one illustrated in [22]. Some search-based motion planners like those presented in
[24] [25] [26] can also obtain smooth trajectories by applying a post-optimization on
a rough trajectory generated based on a lattice with fixed speed discretizations. The
trajectories generated by them are less diversified than those applied in [22] and this
work. Besides, rather than cubic polynomials applied in this work, their acceleration
profiles are quadratic polynomials, which cannot guarantee jerk continuity at the joints of
successive trajectory edges. The post-optimization can improve this situation, though.
As mentioned in [24], the convergence of the post optimization relies largely on the
quality of the initial guess, i.e, the rough trajectory generated based on the lattice. In
this sense, the trajectories generated by the proposed planner can serve as high-quality
initial guesses should a post-optimization be adopted. Implementing a lightweight post-
optimization to further improve the smoothness of the trajectories should be considered

in future work. Another search-based motion planner proposed in [23] distinguishes itself
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. Qo Vo o U1 ds ot . .
Description| kirans 9 s 2\ (m/s Jerk Jerk Visualization
(m/s%) (m/s)) (m/s)] (m/s) (m)| (® Level level
(multi-| (uni-
piece) | form)
Accelerate | - | 0 0 1 | 14.14| 100 | 14.39| 2.4 | 0.273 | Figure 4.5(a)
from stop
Accelerate | 0 0 1 | 14.14| 100| 15.13] 0.6 | 0.175506 Figure 4.5(b)
from stop
Decelerate
and 2 0.18 | 11.37 1 8.7 | 94 | 16.28| 2.17 1.06 Figure 4.5(c)
accelerate
Stop from ]
high speed 1 0 30 —4 0 284 | 16.9 | 4.77 1.59 Figure 4.5(d)

Table 4.2: Evaluation result of the smoothness of the trajectories generated
based on the proposed trajectory representation strategy. The jerk level is
calculated according to Equation 4.3. See Subsection 4.2.1 for the meaning of

ktrans .

from the motion planners discussed above as its path edges are not confined to a specific
curvature polynomial(cf. Subsection 2.2.2). However, no details about the quality of
the resultant trajectories and the corresponding computational efficiency are provided,

which makes it impossible to compare it with the proposed planner.

4.5 Summary

This chapter presented three kinds of acceleration profiles adopted in this work. They
serve for the vehicle’s smooth transition between different accelerations, its acceleration
keeping and its reaching a specific state, respectively. These acceleration profiles are
designed based on the theory of trajectories of minimum jerk. They are associated with
the path edges to generate trajectory edges during the construction of the trajectories.
The association approach applied in the proposed planner is helpful in improving the
smoothness of the resultant trajectory from the perspective of a standalone planning
horizon. Its main idea is to allow one acceleration profile to expand over several path
edges, which distinguishes it from the approaches applied in similar works, where one
acceleration profile can at most cover one edge.

In sum, the proposed trajectory representation strategy is distinguished in the smooth
acceleration profiles and a method of associating multiple consecutive edges and one ac-
celeration profile. This strategy can improve the feasibility of the trajectories generated

by the planner.
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Figure 4.5: Uniform polynomials and multi-piece trajectories of speed, accel-
eration and jerk during three typical vehicle motions. The red curves are the
results of the uniform polynomial. The blue curves demonstrate the behaviour

of the planner.



Chapter 4. Acceleration Profiles for Smooth Trajectories 82

Speed(m/s)

t(s)
0 1 2 3 4 5 6 7 8 9 10 I 12 13 14 15 16 17

14 t(s)

T T A
140 2 3 4 5 6 9 10 11 12 13 14 15 16 17

6 2 Jerk(m/s’)

21 t(s)

53 37 5 6 7 5 9 10 1 2 1B 1 5 1% 1

(¢c) Trajectories of speed, acceleration and jerk during a decelerating-
accelerating motion (kirans = 2).

21 t(s)

73 45 6 7 8% 9 Yo 1 12 B 1F ol 1T

(d) Trajectories of speed, acceleration and jerk during a decelerating motion
(ktrans = 1)

Figure 4.5: Uniform polynomials and multi-piece trajectories of speed, accel-
eration and jerk during three typical vehicle motions. The red curves are the
results of the uniform polynomials. The blue curves demonstrate the behaviour
of the planner.



Chapter 5

Motion Planner Implementation

and System Integration

This chapter describes the implementation of the proposed motion planner. Section 5.1
shows how the motion planning strategy and algorithms presented in the previous two
chapters can be put into practice to generate an effective and practical motion planner.
Besides, it lists the cost functions devised and implemented in the proposed planner.
Section 5.2 begins with an introduction to the planning system of MIG and the interfaces
between different planning modules. Then, the integration of the proposed planner
into the planning system of MIG is demonstrated. Finally, the measures adopted to
compensate for the planning latency and to promote the planning consistency between

successive planning horizons are illustrated.

5.1 Motion Planner Implementation

The work flow of the proposed planner is demonstrated in Figure 5.1. The modules
framed with dashed lines are carried out on the GPU, while the others are implemented
on the CPU. Table 5.1 displays an example of the configuration of the lattice. Table 5.2
reports the time required to perform each phase of the planning cycle based on the
lattice introduced in Table 5.1.

As can be seen from Table 5.1, the number of the outgoing paths of a single spatial
node is relatively small in the example lattice. As a result, it takes only a small amount
of time to construct the paths on the CPU, as is shown in Table 5.2. This is what
happens in the current implementation of the proposed planner. If more paths were to
be generated, it would be necessary to construct the paths on the GPU. Besides, it will
also be beneficial to build the cost maps on the GPU.

In the rest of this section, the implementation of each phase of the planning cycle
shown in Figure 5.1 is described in detail. The illustration starts with the construction

of the spatial graph and cost maps that takes place on the CPU. Then, the path cost
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Figure 5.1: Work flow of the proposed planner. The modules framed with
dashed lines are carried out on the GPU, and the others on the CPU.

evaluation and the state lattice construction that are implemented on the GPU are pre-
sented. After that, the selection strategy of the best target node and the reconstruction
and sampling of the best trajectory are described. Finally, the cost functions applied in

the motion planner are listed.
5.1.1 Planner Implementation on the CPU

In the following, the phases of the planning cycle that are implemented on the CPU are
described.

5.1.1.1 Planner Initialization

The initialization stage specifies the distance horizon, the horizon sampling units, the
connectivity pattern, the types of acceleration profiles, the size and resolution of the

time-speed grid, etc. These specifications are set once and subject to no alterations in
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Parameter Value Parameter Value
Station increments 10 Station interval 10m
Lattitude increments 20 Lateral offset 0.5m
Outgoing paths of a 18 Sampling unit of the XYSL Map  0.5m x 0.5m
single spatial node
Acceleration profiles 8 Spatial sampling unit of the cost 0.5 m x 0.5m
maps
Time discretizations 2 Path sampling step 0.5m
Speed discretizations 4 Frames of the dynamic cost map 20
Table 5.1: Parameters of the example state lattice
Stage Time Device
Spatial horizon specification and 0.8 ms CPU
sampling
Update of XY SL map 7ms cPrPU
Construction of lane centering cost 0.3 ms CPU
map
Update of static obstacle cost map 0.3 ms CPU
Construction of dynamic obstacle cost 18 ms CPU
map
Generation of paths from vehicle to 0.05 ms CPU
lattice
Update of paths within lattice 7ms CPU
Data transfer from the CPU to the 1.5ms CPU to GPU
GPU
Path cost evaluation 0.018 ms GPU
State lattice construction 189 ms GPU ( the number of evaluated
trajectory edges ~ 108869)
Data transfer from GPU to CPU 1ms GPU to CPU
Selection of the best target node and | 0.0007 ms CPU
generation of control commands

Table 5.2: Average time taken for each phase of the planning cycle.

the overall planning process. Although some parameters, such as the weights for the

cost criteria and the sizes of the submaps of the cost maps, should be adjusted on the

fly to adapt to different traffic scenarios and road conditions, they remain constant in

the present implementation of the motion planner. Further improvements should be

considered in future work. Besides, the precomputed initial guess table is also loaded

into the memory at this stage. As is mentioned in Section 3.3.3, the initial guess for

calculating the parameters of a path polynomial in runtime is obtained by querying the

initial guess table. The size and scale of the grid defining the initial guess table is shown

in Table 5.3.
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Parameter Range Sampling step
dr =z — 29 [1,51] (m) 3m
0y =y1 — Yo [—10,10] () Lm
00 =0, — b [—90°,90°] 5°
ko, k1 [—0.2,0.2] (rad/m) | 0.04 (rad/m)

Table 5.3: Sampling scheme of the initial guess table.

5.1.1.2 Spatial Horizon Specification and Sampling

This procedure can be further divided into several sub-processes, as is illustrated in
Figure 5.2. It would be ideal if the current vehicle state provided by the navigation
system could be directly used for the construction of the spatial horizon. However, a
planning cycle of 100 ~ 200 ms causes a delay in the execution of the generated plan.
Consequently, the vehicle start state for the planning should be a future state, i.e., ideally
the state of the vehicle at the moment when the plan generated by the current planning
cycle begins to be executed by the vehicle. In the proposed planner, such future state
is predicted using a forward simulation of the vehicle dynamics based on the control
commands that will be executed by the vehicle in the simulation duration. Besides,
in order to guarantee a certain level of planning consistency, it is better to extend the
spatial horizon based on the previous one, if it exists. This issue and those related
to the compensation for the planning latency are discussed in detail in Section 5.2.3
and Section 5.2.2. Once the starting station of the planning horizon is determined, the
spatial horizon gets constructed and the spatial nodes are sampled according to the
algorithms and guidelines presented in Section 3.2 and Section 3.3. The output of this
stage is a LATTICE-SEC-ARRAY (cf. Section 3.2) which records all the information

of the spatial nodes for later use.
5.1.1.3 Construction of the XY SL Map

As is argued in Section 3.6, a discrete representation of the function that maps the
(z,y) coordinates to their corresponding (s,l) coordinates is necessary for facilitating
the construction of the cost maps. Following [22], this thesis regards this discrete rep-
resentation as an XY SL map. As the spatial horizon defined in the proposed motion
planner might contain several road segments, at least one submap of the XY SL map is
defined for each segment. The (s,!) coordinates corresponding to the point P(z,y) that
represents a cell of the XY SL map are calculated by implementing a recursive search
on the segment of the center line bounded by the XY SL map. The search is intended
to find the point p. on the center line that is closest to the point P(z,y) in question (
denoted as py ). With p. located, the distance between p. and pg serves as the lateral
offset, i.e., the absolute value of the I coordinate of py. The relative position of the two

points and its relationship with the direction of the tangent line of the lane center at p,
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Figure 5.2: Update of the spatial horizon and spatial nodes.

are exploited to determine the sign of the [ coordinate. The s coordinate is equal to the
arc length of the segment of the center line between the starting station of the planning
horizon and the station of p. which can be readily extracted from the representation of
the center line.

Given the XY SL map, the (s,1) coordinates of an arbitrary point P(z,y) in the

spatial horizon are obtained by following the procedures listed below:

e Locate the submap whose domain (in the sense of the continuous space) contains
P(z,y).

e Get the four grid cells whose representative points lie nearest to P(x,y).

e The (s,1) coordinates are calculated by a bilinear interpolation on the four neigh-

bouring grid cells.

Figure 5.3 demonstrates the accuracy of such mapping.
5.1.1.4 Update of the Lane Centering Cost Map

The domain of the lane centering cost map is the same as that of the XY SL map. The
cost of the representative point (z,y) of each cell of the cost map is evaluated using the

following functions:

cost(z,y) = cost(XYSL(z,y)) = cost(s,l)
if I € 0leyr
> ' b (5.1)
COSt(S’ l) = Con—coming + kLC|l - lClon—cummg| it e 5lonfcoming

krc|(l—1a)] otherwise



Chapter 5. Motion Planner Implementation and System Integration 88

fgn:!!—!!wygjnfgwr!qugg@f?ﬁnffnfgynag!lg§M;u“lv\—vuwau~H1uw—u\ugum’v\nu
POV DOREURVREOEVRIVRVRONIVRIVEVREVIVRIVRVDIDDODE )OUG“‘.“
20000000000000000000060000800000000000 T
REO0VDTOBIDIBODTODHDTOOVDTOBUDLVROOTOBODTOD
0000000000000 00N6000NCORONEO0OAHNONIABONGODE

o e = e A == = = = B

_ ODOVVEOVOUPEOOIOEODE

R 00600000000
= JA20060000€000060060000000000

#OOBT0060CO000EOBG0IEC000G0 R0
==

ID000VDHO ! bAoAl dpd
VPSP e jﬂggﬁoo XTI IO Lod g

P8¢
DLLA L en At Y O E O

Figure 5.3: Mapping results (s,[) (pink points) of points (z,y) (green points)
based on the XY SL map defined on the grids shown in cyan. The size of each
grid cell is 0.5 m x 0.5 m.

where krc is a constant slope, making the cost increase linearly as the deviation
between the trajectory and the center line grows, con—coming is the penalty for the vehi-
cle’s running on the lanes with oncoming traffic, . is the [ coordinate of the center line,
Oleyry and 0lon—coming refer to the latitude ranges of the road curbs and the roads with
oncoming traffic respectively.

Following the XY SL map, the lane centering cost map may contain M submaps,
where M > 1. Each submap is represented as a set {C(i,7),7 = 0,1,..,N, — 1,5 =
0,1,...,N, — 1} and stored in a subarray {C’k, Crp = C(i,7),k = j+ Nyi}. The subarrays
storing the submaps are put together to compose the complete array for the cost map.
The starting index of the mth subarray is equal to the summed size of the (m — 1)
subarrays before it. As the meta information of the submaps, such as the reference
frames and sizes of the submaps, are necessary for the lookup of costs, they are also
recorded in separate arrays, each having a size of M. Figure 5.4 demonstrates an example
cost map that is stored in this way. Such storage scheme will facilitate the uses of the

cost maps on the GPU.
5.1.1.5 Construction of the Obstacle Cost Maps

In the perception system, the bounding boxes of the detected obstacles are organized
in a spatial kd-tree(Skd-tree)(cf. [83]), where each bounding box serves as a leaf node
of the tree. This tree structure is adopted for the purpose of making collision checking
efficient. A point is regarded as being trapped in collision if it is contained in one of the
leaf nodes of the Skd-tree. Each cell of the spatial grids over which the cost map are

defined is subject to such a collision checking. That is, if a cell hits one of the leaf nodes
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Figure 5.4: Storage strategy of the lane centering cost map.

of the Skd-tree, it will be assigned a value of co which means that it is untraversable.
In this way, the original cost map of static obstacles and each frame of the original
cost map of dynamic obstacles are constructed. Here the original cost maps refer to
the cost maps without dilation. The dilation follows the rules and procedures described
in Section 3.6.2. Finally, the dilated cost maps are stored in a way similar to the lane

centering cost map.
5.1.1.6 Storage of the Path Edges

The information pertaining to a path edge consists of several components, such as the
five parameters defining the cubic spiral that represents the path edge, as well as the
target node of the path edge. In this sense, the information of all the path edges can
be organized in the form of an array of structures, as demonstrated in Figure 5.5. For
reasons discussed in the next subsection, an array of structures should be transformed
into a structure of arrays, as shown in Figure 5.5. A path edge is indexed (is,1;,1c),
where (is,1;) is the index of the source node of the path edge, and i. is the index of the
path edge in the group of path edges outgoing from the same source node in accord with
the connectivity pattern. The elements of the arrays where the information of the path
edge (is,1;,14.) is stored are indexed by isN;N. + i.N; + i;, where N; is the number of
lateral increments in the lattice, and N, the number of path edges outgoing from a single

spatial node. The reason behind this indexing scheme can be found in Subsection 5.1.2.
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As all the path edges from the vehicle to the lattice have the same source node (i.e.,
the vehicle start pose) and have a different connectivity pattern from those within the

lattice, the two kinds of path edges are stored separately.

Array of structures

Index  Path polynomial

0 PO(a07 a1, A9, as, ST)
1 Pl(a07 ap, ag, as, ST)
2 PZ(aO’ a, ag, asg, ST)

Structure of arrays
Index array-a, array-a, array-ao array-as array-sr

O Po.ao PO‘al Po.a2 Po.ag Po'ST
1 Plao Pl-a] Pl.aQ Pl.a3 PlST
2 PZaO P2~a‘] PZ.aQ P2~a3 P2 'ST

Figure 5.5: Storage of path edges.

5.1.2 Planner Implementation on the GPU

The most expensive procedure in the proposed motion planner is the construction of the
state lattice during which tens of thousands of trajectories are generated and evaluated.
As is discussed in Section 3.5, the construction can also be regarded as a search process
from the perspective that trajectories with less desirability are abandoned during the
construction before they reach the end of the planning horizon. The parallel computing
potential of GPUs is explored in the proposed planner to handle the intensive com-
putation. In the following, the GPU-based implementation of the graph construction
algorithm is described. Before that, the evaluation of the path edges in terms of static
cost which is also implemented on the GPU is illustrated. To begin with, an introduction
to the basic concepts of the GPU computing architecture is provided, which is helpful
in understanding the presented GPU-based application.

5.1.2.1 Parallel Computing Architecture of GPUs

Compute Unified Device Architecture (CUDA) is a parallel programming model and
software environment for parallel computing supported by most of recent Nvidia GPUs.
The basic conceptual elements of CUDA and their counterparts on the GPU hardware

(as shown in Figure 5.6(a)) are the following:
e A thread which is executed by a thread processor.

e A thread block containing many threads which is executed in a multiprocessor.
The threads are further divided into groups of 32 parallel threads called warps.

The multiprocessor works by creating and managing these warps.
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Figure 5.6: Basic concepts of GPU computing model, from [84]

e A grid of thread blocks that is executed on a device with several multiprocessors.

The kernel is the function that is executed by an array of threads simultaneously, as
is shown in Figure 5.6(b). Each thread has a unique ID which can be used by the
kernel to get thread-specific memory addresses. Figure 5.7 illustrates how the kernel
accesses the local and global memory on the GPU device and how data are transferred
between GPUs and CPUs. In essence, the parallel computing on GPUs is realized by
launching batches of threads that execute the same kernel, while the processed data
and conditional instructions designated by the thread ID might be different among the
threads.

Some optimization strategies are suggested in [84] which are helpful in achieving
maximum performance of the parallel computing architecture. They are concerned with
mainly three aspects, i.e., maximization of execution parallelism, optimization of mem-
ory usage and maximization of instruction throughput. The second point is taken into
account in the presented implementation, while the first and the third ones are not
touched in this thesis and should be addressed in future work.

The first step to maximize memory throughput is to avoid as much as possible
data transfers with low bandwidth and high latency. Referring again to Figure 5.7, the
memory transfer between GPUs and CPUs has the lowest bandwidth and the highest
latency. Memory accesses of global memory are also inefficient, but better than GPU-
CPU memory transfers. Compared to them, shared memory and caches have much
higher bandwidth and much lower latency.

The second step is to organize memory accesses as optimally as possible, no matter
what kind of memory access is used. Most memory accesses in the presented application

are in the form of global memory requests. Consequently, optimal patterns for global
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Figure 5.7: GPU-based Memory handling, from [84]

memory accesses should be applied in the implementation as much as possible. Global
memory is accessed via 32-, 64-, or 128-byte memory transactions. These memory trans-
actions can only be executed for aligned memory segments of 32-, 64-, or 128-byte whose
first address is a multiple of their size. Global memory accesses of the threads within
the warp are coalesced into one or more of these memory transactions. The fewer trans-
actions are necessary, the fewer unnecessary memory units are accessed. As a result,
maximizing coalescing is crucial in maximizing the global memory throughput. The rules
for coalescing vary with the compute capability of the GPU. For GPUs with compute ca-
pability 1.0 and 1.1, consecutive threads of a half-warp must access consecutive memory
units and the memory accesses of a half-warp can only be coalesced when they request
a single aligned memory segment. These constraints are much more relaxed for GPUs
with compute capability 1.2 and 1.3, where memory requests from non-neighbouring
threads can be coalesced as long as their targets can form a single aligned memory seg-
ment. For GPUs with compute capability 2.x and higher, the memory transactions are

cached, so in addition to coalescing, it is also necessary to exploit data locality in order
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to maximize the memory throughput.

For the current GPU-based implementation of the proposed planner, a certain amount
of data need to be transferred from the CPU to the GPU, such as the information of
the path edges and the cost maps. Besides, after the construction of the state lattice is
finished, it is necessary to transfer the information of the constructed lattice nodes back
to the CPU to be further processed there. As far as the current application is concerned,
the cost of the transfer is limited and tolerable (cf. Table 5.2).

The GPU used in this work has compute capability 2.0. Although the constraints
on coalescing for such GPUs are not very strict, it is still beneficial to follow the sugges-
tion that consecutive threads access consecutive memory units where it is possible and

convenient to do so.
5.1.2.2 Path Sampling

Before the state lattice is constructed, the static costs of the path edges should be
evaluated. The reason why the paths are not evaluated during the construction of the
state lattice is twofold. First, unlike the trajectory edges that have to be constructed
during the search process, the path edges are fixed as long as the spatial nodes and the
connectivity pattern are given. As a result, it is possible to evaluate the path edges
before the construction of the graph. Second, should the evaluation take place during
the graph construction process, one path edge might be evaluated many times, as several
trajectory edges may be generated based on the same path edge. Accordingly, evaluating
the paths during the graph construction process will hamper the computational efficiency
of the planner.

The path edges are sampled at even intervals in terms of arc length by using the
trapezoidal integration (cf. Section 3.3.3). Each sample (z,y, 6, ) is evaluated for the
static cost. Each path is sampled and evaluated in a separate thread executed on the
GPU, as is displayed in Figure 5.8.

In [22], the samples of the paths are also employed for the dynamic cost evaluation
of the trajectories. It is viable to do so in the planner proposed in [22], because only
constant accelerations are applied in [22] which makes it easy to calculate the time and
speed of one sample given the time and speed of the preceding sample. However, from the
perspective of the proposed planner where acceleration cubic polynomials are employed,
evaluating the dynamic cost based on the existing path samples means solving for the
roots of position quintic polynomial equations, which is hard to implement. As a result,
the path is sampled again for the dynamic cost evaluation. Both samplings follow the
trapezoidal integration formula. The difference lies in that the samples for the dynamic
cost evaluation are spaced at even intervals in terms of time rather than arc length as
in the sampling of paths for the static cost evaluation. Section 4.3 gives more details on

the dynamic cost evaluation of the trajectories.
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5.1.2.3 State Lattice Construction

As is mentioned earlier, the path edges are multiplied into several trajectory edges by
associating acceleration profiles with them. Trajectory edges that arrive at the same
lattice node N (is, 1, iq, iy, 9¢) are subject to a pruning operation. The speed and time of
the end state of the trajectory edge that survives the pruning operation are selected to
represent the lattice node. The traversal cost of the trajectory segment from the vehicle
to this newly represented node is recorded in a cost map. Each cell of this map is indexed
by (is, 1, ia, iy, it) and corresponds to the lattice node in the state lattice indexed in the
same way. Besides the traversal cost, the time and the speed, the information recorded

in the cell also contains:

e The index of the parent node of the current node, i.e., the source node of the

trajectory edge e. that ends at the current node.

e The coefficients, starting time, starting speed and duration of the last acceleration
cubic polynomial along the current trajectory edge. Note that the last polynomial
is stressed here because a trajectory edge might contain one or two acceleration
cubic polynomials. Referring to Chapter 4, if there happen to be two polynomials,
the first one is the remaining segment of the acceleration profile applied on the
preceding trajectory edges. In this case, the information of the first polynomial
must already be recorded at the preceding node. As a result, it is no longer neces-
sary to record it again, unless it is still unfinished within the current edge e.. The
information of the polynomial is necessary for the construction of the subsequent
trajectory edges. Besides, it is also indispensable for the reconstruction of the best
constraint-abiding trajectory after the state lattice construction is finished and the

best target node is selected.

e The time index of the first sample on the remaining segment of the last profile on
e. for which the dynamic cost will be evaluated on the subsequent edges. This is
only useful when the profile is unfinished within the current trajectory edge. In
this case, the dynamic cost evaluation of the subsequent trajectory edges will start

at this sample.

e The sampling interval in terms of time of the last profile on e, for dynamic cost
evaluation. It is calculated as

PROFILE-DURATION

PROFILE-ARC-LENGTH +1 '
PATH-SAMPLING-STEP

(5.2)

When the profile is unfinished on e, its remaining part will be evaluated with the

same sampling interval on the next edge.
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e The curvature of the last sample on e.. This curvature, in combination with the
curvature of the first sample on the following edge, is used to calculate the rate of

change of curvature which is one subject for the dynamic cost evaluation.

e The arc length of the unfinished segment of the current acceleration profile. This

is necessary for the construction of the subsequent trajectory edge.

e The desirability of the target node n; of e, in terms of speed and time. The sum
of this cost term and the traversal cost will be used for the pruning operation to
select the best candidate for representing the state lattice node that n; coincides
with. Should n; survive the pruning, both the aggregate cost and the desirability
cost will be stored at the corresponding cell of the cost map at the end of the
current thread. At the beginning of the thread where the subsequent trajectories
starting from n; are constructed, the desirability cost will be subtracted from
the aggregate cost, which results in the traversal cost of the trajectory from the
vehicle start state to the current node. This traversal cost will be used for the cost

evaluations of the subsequent edges.

The cost map is stored in several arrays. Each array records one piece of the infor-
mation listed above. The array element corresponding to the grid cell (is, i, iq, iy, i) Of

the cost map is indexed by:
AN = 1sNaNyNNy + TaNyNin] + tyneny + 140y + 1

where ng, ny,ng, ny refer to the number of acceleration profiles, the number of speed
discretizations, the number of time discretizations and the number of latitude discretiza-
tions in the SL frame. Recall that the state lattice may contain several sections. Ac-

cordingly, the overall size of the state lattice is given as:

Nsec—1

Sumid.t(nsec) = Z Ns (isec)nanvntnl(isec)
isec:()
where nge. is the number of sections, ns(isec) and n;(ise.) refer to the number of the
station discretizations and the number of latitude discretizations in the SL frame of the

ith section. In this way, the indices of the lattice nodes of one section begin with:

0 if i5ec =0

SUMYidy (isec) otherwise

Z.da:stm‘t (isec) = {

These starting indices of the sections are also stored in an array to facilitate the

calculation of the index of the lattice nodes in the cost map.
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Figure 5.8 demonstrates how the threads for constructing the trajectory edges inter-
act with the storage of the cost map and path edges. The construction of the trajectories
is conducted in order of station. Each state lattice node initiates a thread executing the
kernel which implements the algorithm demonstrated in Algorithm 1. In general, at
most N.N, trajectory edges can be constructed in one thread which result in N.N,
candidate nodes. Note that N, refers to the number of the path edges outgoing from
one lattice node according to the definition of the connectivity pattern. It might be
intuitive to make the kernel write the information of the candidate node n. to the cor-
responding memory of the to-be-represented node ng if the cost of n. turns out to be
smaller than the cost of the current representative state of ns. Recall that there might
be several threads executing the instructions of the kernel concurrently. Consequently, it
might happen that some of the threads need to modify the same memory segment as the
trajectories generated by them end at the same to-be-represented node. To avoid race
conditions, the built-in atomic function atomicMin() is employed to assign the smallest
cost to the memory segment. atomicMin() ensures that the memory address can only
be accessed by a second thread after the first thread completes its operation on this
memory address. If several candidate nodes turn out to have the same cost which hap-
pens to be the smallest cost, it is defined that the one generated by the thread with the
smallest thread index will win, as is shown by the second atomicMin() in Figure 5.8.
This strategy is just used for the purpose of convenience; there is no reason behind it
(since the decision of the pruning selection is based solely on the cost, the candidate
nodes with the same cost are supposed to be treated equally).

The implementation of the pruning process illustrated above works if all the threads
that are initiated by the lattice nodes of a single station have strict step-wise syn-
chronization. Otherwise, the construction of the state lattice will become crazy. For
example, the thread that generates a candidate trajectory whose ending node does not
have the minimum cost might be able to pass the tests of the two atomicMin() and
writes the information of its ending node to corresponding memory, whereas the thread
that has the minimum-cost candidate node might be kept back. As a result, it is neces-
sary to check how the threads are synchronized in the computing architecture of CUDA.
It turns out that only the threads that belong to the same block ( cf. Figure 5.6 for
the concepts of block and thread) are strictly synchronized on current CUDA-enabled
GPUs. That is, the threads that belong to different blocks may not execute the same
instruction at the same time. Consequently, the implementation of the selection of the
best candidate node presented above should be modified. The common method used to
realize a global synchronization is to invoke a kernel from the host, as it is regulated that
only after all the threads executing the current kernel are finished can the new kernel
be launched. Accordingly, it is common practice to split a kernel at the points where

a global synchronization is required and launch the resultant sub-kernels sequentially.
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The current execution of the kernel for constructing the trajectory edges and selecting
the best candidate node adopts that “pipeline” method, as is shown in Figure 5.9.

As can be seen in Figure 5.8 and Figure 5.9, the storage schemes of the path edges and
the lattice nodes can facilitate contiguous memory accesses among consecutive threads,
which is helpful in maximizing the memory throughput of CUDA-based applications.

The algorithm for the application of the acceleration profiles presented in Section 4.3
is implemented in the threads for the construction of the trajectory edges demonstrated
in Figure 5.8. Recall that extra nodes will be generated to record the stopping states
of the vehicle that occur somewhere between connected lattice nodes should there be
any. Such extra nodes are called EXTRA-SAMPLESs (cf. Section 4.2). The indices i,
and i; of the cell of the cost map where the information of an EXTRA-SAMPLE is
stored are zero and the maximum time index, respectively. Its indices i4,4; and i, are
set in accord with the intended target node of the trajectory along which the EXTRA-
SAMPLE in question occurs. In addition, the representative time value of the cell is set
to oo, communicating a message to the subsequent threads initiated by this particular

cell that no further expansion should be carried out after it.
5.1.3 Best Target Selection and Trajectory Reconstruction

After the construction of the state lattice is finished, the cost map that records the
information of the lattice nodes are copied back to the CPU. On the CPU, the selection
of the best target node and the reconstruction of the best constraint-abiding trajectory
take place. The best target is selected among the nodes that belong to one of the five

categories:

e Lattice nodes with maximum time index,
e Lattice nodes with maximum station index.
o EXTRA-SAMPLES.

e Nodes with their representative speeds being zero. This kind of nodes will be
further evaluated based on the assumption that the stopping state continues until

the maximum time is reached.

e The vehicle start node. This node is only taken into account if its speed is zero.

In sum, the selected nodes should be able to reach the boundary of the planning
horizon, in terms of either time or travel distance. This strategy is applied as it is believed
that the nodes (with those belonging to the five categories listed above being excluded)
that fall inside the planning horizon are either intermediate nodes along trajectories
whose ending nodes reach the boundary of the planning horizon or nodes leading to

no traversable trajectories. It is hard to devise criteria to evaluate the former against
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the nodes at the boundary that they will eventually lead to, while it is not necessary
to check the latter as they are invalid. As a result, only the nodes satisfying the five
categories have accesses to the selection.

The selection criteria take into account the following aspects:
e Traversal cost recorded in the node.

e Whether the representative time of the node is smaller than the planning cycle. If

yes, the node should be punished severely.

e The cost of the target node in terms of its representative time and its station. For
the purpose of promoting time efficiency, the larger the representative time is, the
larger the additional cost is imposed on the target node. In order to encourage
the trajectories to cover the whole planning horizon, the nodes with the maximum

station index are given a bonus.

e The cost in terms of the difference between the speed at the target node and the
target speed required by specific scenarios. The nodes whose representative speeds

cannot guarantee a smooth transition to the target speed will get penalized.

After the best node comes out, the trajectory from the vehicle to the best node is
reconstructed. As the lattice nodes record the nodes preceding them, all the nodes along
the trajectory in question can be readily obtained. With these nodes at hand, the related
path edges and acceleration profiles can be extracted with ease. Finally, the trajectory
can be restored by associating the acceleration profiles with the path edges in a way
similar to the way the trajectory is constructed from scratch. The control commands

are also sampled during the process of the reconstruction of the best trajectory.
5.1.4 Cost Functions

In [22], a quite thorough discussion about the design principles and concrete applications
of cost functions is presented for a motion planner with performance expectation and
practical problems similar to the proposed planner in this thesis. To avoid redundancy,
the cost functions applied in this work are listed in Table 5.4 and Table 5.5 only to provide
a general overview. The reader is referred to [22] for more detailed explanation. It should
be pointed out that the design of the cost functions and tuning of their parameters
require repetitive adjustments according to the feedback of the planner’s performance
in various experiments. Automating this progressive and painstaking learning process

using techniques such as machine learning is one subject of future work.

5.2 System Integration

The proposed planner is integrated into the existing planning system of MIG for evalua-

tion. Asis shown in Figure 5.10, the core planner of the existing system is a path planner.
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Based on the world model and the vehicle state provided by the perception system, the
path planner generates a path spline and a series of traffic control devices (e.g.traffic
light, stop sign) that the vehicle will encounter along the path spline (cf. [85]). The path
spline generated by the path planner, together with the current position and driving
direction of the vehicle, is used by a pure pursuit path tracker (cf. [86][87]) to calculate
the steering commands for the vehicle to follow. The traffic control devices play an
important role in the determination of the desired speed of the vehicle. The difference
between the desired and current speeds of the vehicle is fed into a proportional-integral-
derivative (PID) controller to generate the desired control signal for either the throttle
or the brake actuator of the vehicle. This control signal, after being output from the
tracker, is still subject to the verification by the safety layer, i.e, the module of reactive
braking. Finally, the “risk-proof” actuation commands are sent to the actuators via the
car gate module.

The planning architecture based on the proposed planner is shown on the right of
Figure 5.10. It should be pointed out that the embedding of the scenario reasoning
module is out of the scope of this work. Specific measures will be taken to “mimic”
the scenario reasoning module for the evaluation of the proposed planner. Besides, a
controller that can calculate the actuation commands based on the nominal trajectory
issued by the motion planner is also necessary but absent from the current planning
system. As designing a controller capable of handling complicated vehicle dynamics at
high speed is also beyond the scope of this thesis, only a controller that is necessary
for the evaluation of the planner in the simulation environment is constructed in this
work. This controller is designed based on the nonholonomic vehicle model applied in
the simulator. The limitations of such a controller will be further discussed in Chapter 8.

In the rest of this section, the work flow of the planning system based on the proposed
planner is first described in detail. After that, issues related to planning consistency are

discussed.
5.2.1 Planning Architecture based on the Proposed Planner

As mentioned earlier, by the time the trajectory is generated from the current vehicle
state, the vehicle has moved on. A forward simulation of the vehicle system dynamics is
therefore necessary for compensating for the planning latency. Given the estimated fu-
ture state of the vehicle and the related road model, the spatial horizon can be specified.
It is necessary to take some specific measures here in order to guarantee a certain level of
planning consistency. These issues will be further discussed in the next two subsections.

Although the scenario reasoning module has not yet been embedded in the current
implementation of the planner, it is shown here that it can be seamlessly integrated
into the planning strategy. As can be seen from the construction process of the spatial

horizon (cf. Section 3.2), a sequence of edges encoding the road information can be
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obtained as a by-product of the spatial horizon construction. After the distance horizon
confining the spatial horizon is reached, the search for the edges can go on without
further construction and update of the LATTICE-SEC-RAWSs. Given the edges that
extend beyond the planning horizon, some long-term (from the perspective of the limited
planning horizon) information can be gathered. Such information is used by the scenario
reasoning module to set target speeds and schedule the weights of the cost functions.
Following those instructions, the motion planner can make more far-sighted decisions.
Figure 5.11 shows an example scenario related to this issue, where the information of
the traffic light can be used to calculate a target speed for the planning within the
planning horizon. Under the guidance of the target speed, the planner can generate a
more smooth trajectory of deceleration.

Given the sampled spatial horizon, the scenario-specific target speed and weights of
the cost functions, the world model and the start state of the vehicle, it is ready for
the planner to compute the best constraint-abiding trajectory. The resultant trajectory
is sampled into a sequence of vector samples {(k(t),v(t),a(t))}. These vector samples
are then sent to the controller where the actuation commands are calculated. Both the
planner and the controller maintain a queue of trajectories sampled in this way. The
planner uses the trajectory queue to perform latency compensation, as is described later
in Section 5.2.2. The controller extracts the desired states (A (tcur), 0(teur), G(teur)) from
the most recent trajectory that is valid over the current time t.,.. Based on the desired
states and the current states (k, v, ) of the vehicle, the controller calculates the steering

and throttle/brake actuation commands (¢, a.) according to:

¢ = —arcsin(Lk) (5.3)
ac = ki(0—v)+kplaairs) + ko

where L refers to the distance between the vehicle’s front and rear axles, k;, k, are
the parameters of the PI controller, ks; is the gain of the feedforward controller, and
agi s is the discrepancy between the desired acceleration & and the predicted acceleration
outcome. The prediction is based on the acceleration model identified in [88] and applied
currently in the simulator. It can be seen from Equation 5.3 that the acceleration
controller is a PI plus feedforward controller. The calculation of the steering actuation
command ¢. follows a nonholonomic vehicle model, i.e, the bicycle model shown in
Figure 5.12, which is also applied in the simulator for the simulation of the lateral
movement of the vehicle. It is noteworthy that the trajectory generated by the proposed
planner describes the expected locus of the middle of the front axle of the vehicle. That

is the reason why arcsin, rather than arctan, is used in the calculation of ¢..
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5.2.2 Latency Compensation

Let 7., denote the trajectory generated in the current planning cycle based on the
current state Pgoq+ of the vehicle. Let t.,q refer to the end of the planning cycle. By
the time the planning cycle is finished and 7., is ready for the controller to execute, the
vehicle has moved on to a new state P.,q by following the existing trajectories {7pc}
produced from previous planning cycles. As a result, such situation as demonstrated
in Figure 5.13(a) might happen, where P,,; has a large discrepancy from the state
P..p on 7oy at the time of t.,4. Such inconsistency between trajectories generated
from consecutive planning cycles poses a threat to tracking accuracy. Although the
application of the cost functions for keeping trajectory consistency can help to mitigate
this problem to some extent, it is still not sufficient. To deal with this issue, a forward
simulation of the vehicle dynamics is implemented to estimate P,.,q at the beginning
of the planning cycle so that 7., can start from the estimated P.,q rather than Pgqy:.
The question following this measure is how far into the future the forward simulation
should be conducted. As can be inferred from Figure 5.13, the principle in determining
the simulation duration is that the simulation duration should not be shorter than the
duration of the planning cycle. Nonetheless, due to the potential discrepancy between
the resultant state of the forward simulation and the actual tracking result of the vehicle,
it is still better to set the simulation duration as short as possible. In the current
implementation, the simulation duration is predefined at the initialization stage of the
planner and cannot be modified on the fly during the experiment. Potential heuristics
need to be discovered to predict the duration of the planning cycle in runtime.

Based on the assumption that the vehicle control system executes the control com-
mands correctly, the forward simulation uses the fourth order Runge-Kutta method
(cf. [89]) to integrate the effects of the control commands on the vehicle state system
that is illustrated in Equation 3.4. The forward simulation extracts the control com-
mands from the reserved trajectory queue in the same way as the controller. To keep
consistency between the forward simulation and the execution of the controller, a times-
tamp teye is attached to each newly generated trajectory 7., which denotes the time
when 7., is executed by the controller for the first time. The timestamp teze is given

as:

tege = maiﬂ{tstart (Tcur)> tend(cyde)} = max{tstart(cyde) + 6tlatencyv tend(cyde)} (54)

where tgqrt(cycle) is the starting time of the planning cycle, tsiart(Teur) is the pre-
dicted ending time of the planning cycle with which the new trajectory 7., starts,
Otiatency is the assumed amount of latency, and te,q(cycle) is the actual ending time
of the planning cycle. The time t.ye, rather than the more straightforward tsyq¢(7), is

taken by the forward simulation as the time when the trajectory comes into effect. It
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is assumed in the current implementation of the proposed planner that the trajectory
will be executed by the controller once it is generated and becomes the most recent
trajectory that is valid over the time of the execution. In this way, the behaviour of the
controller in terms of the extraction of control commands from the reserved trajectory
queue keeps in accord with that of the forward simulation.

It should be pointed out that the proposed strategy of latency compensation does
not take into account the actuation latency, i.e., the delay between the output of the
actuation commands from the controller and the reaction of the vehicle to those com-
mands. It is mentioned in [22] that such latency is not ignorable. This issue should be

addressed in future work.
5.2.3 Spatial Lattice Consistency

The spatial horizon is specified according to the predicted vehicle state resulting from
the forward simulation. In order to promote trajectory consistency between consecu-
tive planning cycles, it should be first guaranteed that the remaining segment of the
trajectory generated from the last planning cycle can still be constructed in the current
planning cycle as suggested by the definition of temporal consistency (cf. Definition 3.1).
To that end, the spatial lattices of consecutive spatial horizons should keep consistent as
much as possible. That is, suppose there is a lattice that is constructed once for the com-
plete travel and thus fixed to the static road network, the spatial lattice for an arbitrary
planning horizon can be regarded as one part of the complete lattice. In other words,
the spatial lattice does not slide along the road network with the vehicle. Recall that
the state lattice is defined by four elements, i.e., latitude sampling interval(a;), station
sampling interval (as), spatial horizon and lateral reference (i.e., the set {(s,0)}). As q
and as are constant during the whole travel, they do not affect lattice consistency. Con-
sequently, there are two elements left, i.e., spatial horizon and lateral reference. Recall
that a Spatial lattice is a discrete representations of the spatial horizon. By definition,
the first station sample s?atti .o Oof the corresponding spatial lattice is the starting station
S?wrizon of the spatial horizon. Since consecutive spatial horizons are consistent by def-
inition ( cf. Section 3.2), only its starting station s%omzon has a role in deciding lattice
consistency. In the proposed planner, the strategy adopted for specifying 32 orizon 15 @S

follows:

e Map the predicted vehicle position (z,y) to the state lattice generated in the
last planning cycle, if it exists. This mapping can be readily achieved by using the

XY SL map generated in the last planning cycle, i.e., (Sstart, lstart) = XY SL(z,y).

e As the coordinate s+ may not coincide with one station sample of the last lattice,
it should be further rectified. Let § denote the rectified coordinate. It is calculated

as:
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P — Sstart
S dart |

sias

(5.5)

»>
I

where the notation | | is used to get the greatest integer that is not larger than

the quantity inside it. Finally, § is assigned to 32 orizon:

In this way, the spatial lattices of consecutive spatial horizons are consistent in terms
of the discretized station. The remaining element of the spatial lattice, i.e., the lateral
reference, determines the consistency of lattices in terms of the discretized latitude.
Recall that one section of the lattice (i.e., LATTICE-SEC) may contain several parallel
lane segments. In such case, the proposed planner defines the center of the lane which
covers the starting position of the vehicle to be the lateral reference of the lattice. That
is, this lane center is sampled and the [ coordinates of its samples are zero. Recall that
a LATTICE-SEC also records the center lines of all the lanes that appear within it.
Consequently, the center line cly of the current lattice is determined according to the

following steps:

o Get the LATTICE-SEC of the last lattice whose domain of station covers 32 orizon:
Let this LATTICE-SEC be secy.

e Find out the lane segment laneg in secy whose domain of latitude covers lgpqr¢-
The center of laneq is chosen to be cly to facilitate the lane centering behaviour of

the vehicle.

The starting point pg on laney for the search of edges is defined by cly and S?Loriz on
Given pg, the spatial horizon can be readily constructed and sampled by following the
algorithms presented in Section 3.2. The spatial lattices defined in this way are consistent
in most cases. The case where lattice inconsistency might appear is when a lane change
manoeuvre takes place. As is demonstrated in Figure 5.14, the lateral reference of the
second lattice is not the same as the one adopted in the first lattice. As the proposed
planner samples the spatial horizon uniformly along the lateral direction, it might happen
that the center lines of the non-reference lanes are not sampled. The situation of the
lane on the top of Figure 5.14 from the perspective of the first lattice is just like that.
Once the center of such a lane is chosen to be clg of the new lattice, which happens when
the vehicle drives onto this lane, a lattice inconsistency occurs. As can be seen from
Figure 5.14, the consequence of such lattice inconsistency is a trajectory inconsistency
which will cause tracking errors. One approach to deal with it can be adopting non-
uniform sampling along the lateral direction to make sure that all the center lines within

the spatial horizon are sampled.
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5.3 Summary

This chapter described how the proposed motion planning algorithms presented in pre-
vious chapters are employed to embody a concrete motion planner. The inexpensive
modules of the planner are implemented on the CPU, while the costly procedures, i.e.,
the evaluation of the paths and the construction of the state lattice, are conducted on
the CUDA-enabled GPU. The details of the implementation were presented, including
the update of the spatial lattice, the storage of the path edges, the construction of the
XY SL map to facilitate the generation of cost maps, the storage of the cost maps, the
execution of the trajectory generation kernel, the interactions between the threads and
the memory segments where the relevant data are stored, the selection of the best tar-
get node and the reconstruction and sampling of the best constraint-abiding trajectory.
After the presentation of the implementation of the core planner, the cost functions
implemented in the proposed planner were listed.

The integration of the concrete planner into the existing planning system of MIG was
also displayed. This task is non-trivial as the existing planning architecture is built based
on a path planner. Consequently, some of the existing modules need to be rearranged
and some new models are required to be constructed, such as the controller that is
necessary for executing the motion plans. Besides, it was demonstrated that a latency
compensation is necessary for achieving trajectory consistency. Lattice consistency was
also promoted for the same purpose.

So far, the algorithms and implementations of the proposed planner were presented.
As the planner is evaluated in a simulation environment, the simulation of the scanning
sensors is necessary for a more realistic experiment environment. In the next chapter,
the details about the sensor simulation are presented. The evaluation of the proposed

planner is reported in Chapter 7 after the sensor simulation is illustrated.
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Figure 5.8: Static cost evaluation of path edges and the construction of the
trajectories outgoing from a single station on the GPU.
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General Cost function Description
purpose
—bonus if last path
Trajectory zgil;w = is followed Bonus is bestowed to the can-
consistency 0 otherwise didate trajectory whose first
between two spatial nodes can be
successive found in the last plan.
planning —bonus if last pofile
cycles clotow — is continued As the initial acceleration of
0 otherwise the wvehicle in the current
planning cycle is extracted
from the last plan (cf. Sec-
tion 5.2.2), it might fall be-
tween the endpoints of an ac-
celeration profile. In this case,
the trajectory can get a bonus
if its first acceleration profile
is intended to finish that pro-
file.
Trajectory | cpariation — N1 (1;—1;_1) where [; is the | The variations in the latitudes
stability latitude of the ith node along the trajec- | of the spatial nodes along the
within one | tory trajectory result in penalty.
Eiiril;olﬁg cuariation. = — 0 bonus ftﬁ;rwi(s)z ! | The variations in accelc.aration
where «; is the index of the ith accelera- profiles along the trajectory
. . lose bonus.
tion profile along the trajectory.
Safety cobstacle (g, q)) . o = cf. Section 3.6
o0 if (x,y) is in collision
area
HIGH-COST if (x,y) is of high
proximity to obstacles
0 otherwise
cggﬁgﬁfc(x,y,t) = | cf. Section 3.6
00 if (x,y, t) is in collision
space
HIGH-COST if (x,y, t) is of high
proximity to obstacles
cost’;fsggcge if (x,y, t) is in follow
area
0 otherwise
Lane Clane—centering (T, Y) = | Punish deviation from the
keeping 00 if (z,y) is in center of the current lane.
collision space cf. Section 3.6
Copp + Caev|dl| if (z,y) is on lanes
with oncoming traffic
Clev |0l otherwise

Table 5.4: Cost functions applied in the proposed planner (part 1).
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General Cost function Description
purpose
Cayon (Xon) = | A penalty is given if the
Trajectory Coon | on — af;{ AT gy, longitudinal acceleration
feasibility > OZZS;J: t—max of the trajectory exceeds
Calon ‘alon _ ai;{tfmm| if Qyop ' the hm%ts defined by
< als;{tfmzn .the maximum a.nd min-
0 otherwise imum accelerations al-
lowed without penalty
(cf. Section 4.4).
Cagy (Cat) = | Within the limit of the
{ Coyorlouat|  if oqge is within affg‘“ lateral acceleration capa-
00 otherwise ble of the vehicle dynam-
ics, the cost grows linearly
with the amount of the
lateral acceleration. Once
the limit is exceeded, oo is
assigned.
Cp = { Cilrl lfg . \?Vlthm Flimit Similar to the cost for the
> otherwise lateral acceleration.
Ck = { Crllil = rsimanl| i exc'eeds Fimit The trajectory that ex-
0 otherwise ceeds the curvature limit
of the vehicle gets pun-
ished.
Observing | Cspeed—timit (V) = | The maximum speed is

speed limit

if v > 0.99vm4t
otherwise

cost
0

set a hair below the speed
limit of the travelling
lane.

Table 5.5: Cost functions applied in the proposed planner (part 2).
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Figure 5.11: A driving scenario where the traffic light information extracted
from the edges that extend beyond the planning horizon can assist the short-
sighted planner in making far-sighted plans.
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Figure 5.12: Bicycle model applied in the simulator for the calculation of the
lateral movement of the vehicle.
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the first lane, and the red points the center of the second lane. The black curve
is the plan generated based on the blue points, which is inconsistent with the
orange curve that represents the trajectory constructed based on the red points.



Chapter 6
Scanning Sensor Simulation

A simulation with a high realistic level can make the test of autonomous vehicles time-
efficient, cost-effective and safe. As perception insufficiency and inaccuracy challenge
the flexibility and robustness of the motion planner, the simulation of scanning sensors
is indispensable for an effective simulation environment for testing the motion planners.
This chapter presents a GPU-based approach to simulate scanning sensors. Above all,
Section 6.1 gives a general introduction of the behaviour and performance of real-life
scanning sensors, based on which the sensors are modelled in the simulation. Follow-
ing an introduction of the software employed for the sensor simulation in this work,
Section 6.2 illustrates the GPU-based implementation of the sensor simulation. Be-
sides, potential errors introduced by the application of graphics rendering pipeline are
explained and a macro-micro method is proposed to mitigate the problem. Finally, Sec-
tion 6.3 reports the performance of the scanning sensor simulation strategy in terms of
accuracy and time efficiency. The old version of the scanning sensor simulation can be
found in [90]. The simulation method illustrated in this chapter is an adapted version

based on the old one.

6.1 Scanning Sensor Modelling

This section begins with a general introduction to the physical properties of the real-life
scanning sensors. Based on that introduction, the problems concerning the simulation
of the scanning sensors are discussed. After the specific properties and outputs of the
scanning sensors employed by the autonomous vehicle system are illustrated, the sim-
ulation models of the sensors, together with the assumptions about those models, are
provided. The working process and configuration parameters of the simulated sensors

are presented.
6.1.1 Introduction to Real-life Radar and LiDAR

Radar (Radio Detection And Ranging) is a device that emits radio waves to the sur-

roundings and receives the reflected echoes. Radio waves are characterized mainly by

111
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their frequency, speed and intensity. These properties together determine the energy of
the radio signal. Several physical phenomena can happen during the propagation of the
radio waves, such as reflection, refraction and attenuation. Reflection includes backscat-
tering of homogeneous surfaces and specular returns from plane surfaces, e.g., water and
man-made objects. Refraction takes place when the radio waves pass through the inter-
face of two media with different refraction indices. The intensity of the radio wave may
be attenuated by the media and other objects encountered during its transmission. The
frequency of radio waves will change when relative radial movements (approaching and
receding) exist between the radar sensor and the reflective object. Such phenomenon is
referred to as Doppler effect. The location of the reflective object can be determined
either through an analysis of the energy of the returned signals or based on their time
of flight. For the kind of radars that relies on the energy analysis, the velocity of the
radar sensor relative to the reflective object can be obtained based on the analysis of
Doppler effect. For more details about the physical properties of real-life radars, please
refer to [91].

LiDAR (light detection and ranging) works in a similar way to radar from the per-
spective of the way they send and receive signals. The signals transmitted by LiDAR
are lasers (Light Amplification by Stimulated Emission of Radiation). In general, the
distance of the LiDAR sensor relative to the reflective target is determined by the time
of flight of the lasers. There are also cases where energy analysis is adopted to calcu-
late the location of the target. Lasers demonstrate similar physical phenomena to radio
waves as both kinds of signals belong to the family of electromagnetic signals. There is

a detailed description of the working principles of LiDAR sensors in [92].
6.1.2 Radar Modelling

It can be concluded from the introduction presented above that the most important thing
in simulating scanning sensors is modelling the propagation of the radio waves or lasers,
including their interactions with the surrounding environment. Given all the necessary
physical equations concerning the behaviours of the signals, sensor simulation that takes
into account the complete set of physical phenomena is still challenging. For one thing,
it is not easy to provide a detailed description of the surrounding environment in terms
of all the physical properties related to the performance of the sensors. For another
thing, tracing the complete trajectory of the signal and calculating all its interactions
with the surrounding environment require an intolerable amount of computational re-
sources, which makes it hard to satisfy the high demand from real-time applications on
computational efficiency. Nonetheless, efforts can still be made to explore the potential
of full-featured simulation. This is left for future work.

The simulation of the scanning sensors presented in this work is intended to provide
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real-time sensor data for obstacle detection and tracking modules. It is more input-
output oriented than physics oriented. Given a specific traffic scenario as the input, the
simulated sensor is designed to give the same output as an ideal sensor will do. By #deal,
it is addressed that the sensor can provide exact information of the reflective targets
from its point of view. In this sense, no noise model is embedded in the simulation,
which requires further improvements in future work. The radar system mounted on
MIG has a post-processing module itself. That is, the radar system is responsible for
analysing raw radar signals, and the final output from the radar system contains only
the velocities and distances of the targets relative to the radar sensor. As a result, it
is not necessary to simulate the radar signals. Accordingly, the radar model applied in

this thesis works as follows:

e Locate the object targets that fall within the field of view (FOV) of the radar

Sensor.

e Calculate the relative distance and velocity between each of the targets and the

radar sensor based on their absolute velocities and distances.

e Generate other relevant data about the scenario that would be recorded by a real-

life radar sensor given the traffic scenario.

e Wrap the information obtained in the previous two steps in a package. The format
of the package is in accord with the actual message sent out from the real-life radar

Sensor.

e Send the package to the obstacle detection and tracking modules for further pro-

cessing. Repeat the whole process.
Important configuration parameters of the radar model include:
e Maximum detection ranges for targets like passengers, cars and trucks.
e Maximum horizontal field of view (HFOV).

6.1.3 LiDAR Modelling

The problems of simulating the scanning sensors discussed above are also encountered in
the simulation of LIDAR sensors. At the moment, the model of the LiDAR sensor also
mimics the ideal LIDAR. That is, the simulated LiDAR sensor can only provide static
and ideal sensing results without considering the related dynamic physical process and
potential noises.

There are two kinds of LiDAR sensors equipped on MIG. As can be seen from
Figure 1.1, one type is the HDL-64E Velodyne sensor mounted on the top of the vehicle
with an HFOV of 360°; the other type is the IBEO LUX LiDAR sensor, from which
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six are installed around the vehicle. The layout of the transmitters and receivers of the
Velodyne sensor is demonstrated in Figure 6.2. Figure 6.1 shows the four-layer laser
model of the IBEO sensor. The lasers of the Velodyne sensor rotate around its vertical
axis, while those of the IBEO sensor oscillate about its vertical axis. The HFOVs of
the sensors are rendered by the rotation or oscillation. It might be straightforward to
simulate the rotation or oscillation of the LiDAR sensors stepwise following the rate of
change of the orientations of the lasers and gather the sensor data at each step. However,
that is hard to achieve as the rate of change of the orientations of the lasers is very high.
For example, in the case of the Velodyne sensor with a rotation rate of 5 HZ and an
angular resolution of 0.09°, the rate of change of the orientations of the lasers amounts to
20,000/ s, which is impossible to achieve in the simulation on general-purpose computers.
As aresult, such dynamic rotation behaviour is not considered in the simulation; instead,
the HFOV rendered by the rotating lasers are assumed to exist all the time. In other
words, it is assumed that the LiDAR sensor fires the laser beams at even horizontal
angular intervals within its HFOV simultaneously. The value of the angular interval is
specified based on a trade-off between the requirements of computational efficiency and
simulation accuracy.

The working process of the LIDAR simulation is similar to that of the radar simula-
tion. The only difference lies in that the output of the former consists of the distances
and basic classifications (e.g., ground, dirt and rain) of the targets and the intensities
of the returned laser signals. The distance and classification can be easily generated
given the information of the sensor and the surrounding environment. The intensity of
the echoed signal is affected by many factors such as the incidence angle of the laser
with respect to the target surface, the color and material of target, rain and snow in
the propagation medium, etc. The calculation of the intensity can be regarded as one
part of a full-featured physical simulation which is difficult to implement for the rea-
sons illustrated previously. Furthermore, the intensity property of the returned laser
is still not used in the currently implemented obstacle detection and tracking modules.
Consequently, the intensity is not calculated in the current simulation.

Important configuration parameters of the LiDAR sensor models are as follows:
e The maximum detection range.
e The HFOV and VFOV.

e The vertical and horizontal angular resolutions.
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Figure 6.1: Four scanning layers of the IBEO Lux LiDAR (3.2°VFOV by
110°HFOV), from [93]
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Figure 6.2: Design overview of HDL-64E Velodyne, from [94]

6.2 Implementation of the Scanning Sensor Simulation on
the GPU

In general, the lasers and waves of scanning sensors work in a similar way to the visible
light waves from the perspective of image rendering. The main difference lies in that
the latter carries color information rather than information like distance and velocity as
in the case of the former. Accordingly, image rendering hardware can be exploited to
facilitate easy implementation of the simulation and relatively fast generation of sensor
data. The GPU (graphics processing unit) is a device designed particularly for accel-
erating graphics rendering and is available on almost all modern computers. Moreover,
most GPUs support software mechanisms that allow a certain level of customization of
the rendering pipeline. This work uses one of such mechanisms, i.e., OpenGL shader,
to realize the simulation of scanning sensors. This section presents the implementation
to the simulation on the GPU. Before the presentation, a general introduction of the

related software is provided.
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6.2.1 OpenGL and OpenSceneGraph

OpenGL, developed by SGI (Silicon Graphics Inc.), is an API (Application Programming
Interface) providing low level instructions and data standards for graphics rendering and
is supported by almost all modern graphics hardware [95]. Figure 6.3 shows the geometry
rendering pipeline based on the OpenGL rendering standards. By default, the per-vertex
operation transforms the geometric data, such as vertex positions and normal vectors,
from object space to eye space. In the coordinate system of eye space, the virtual camera
is located at the origin and facing to —z axis as is demonstrated in Figure 6.4. If lighting
is enabled, the lighting calculation per vertex is performed, and the colors of the vertices
get updated. At the stage of primitive assembly, the geometry primitives are assembled
and further tessellated into simple primitives (point, line, triangle). The clipping opera-
tion transforms the primitives from eye space to clipping space and clips the primitives
which cross the clipping planes defined by the viewing frustum. The transformation can
be either a perspective projection or an orthographic (parallel) projection. The basic
idea of the perspective projection is shown on the right of Figure 6.4. Primitives that are
hidden by other objects from the perspective of the camera or fall outside of the viewing
frustum are discarded. The primitives that survive the stage of clipping and culling are
then rasterized. The result of the rasterization is a sequence of fragments. A fragment is
a set of states including its position in screen space and arbitrary data pertaining to the
vertices that were output from previous stages. The data of the fragment are calculated
by interpolating between the data values of the vertices for the fragment in question.
The fragment data are further processed in the fragment processing stage. The data
such as color, depth and stencil values will be written into frame buffers should they
survive several tests such as the stencil and depth tests.

As is demonstrated in Figure 6.3, some processing modules (framed in dashed boxes)
along the pipeline are customizable via shaders. Shaders are compilation units designed
to define the operations of the processors at the programmable stages of the rendering
pipeline. The scanning sensor simulation proposed in this thesis uses vertex and fragment
shaders written in the OpenGL Shading Language (GLSL) (cf. [96] for more details).

OpenSceneGraph (OSG) is a high level 3D graphics programming toolkit based on
OpenGL [97] [98]. It hides the low level execution details of OpenGL from the program-
mer and thus allows a relatively easy scene rendering programming. OSG provides a
hierarchical data structure called scene graph allowing programmers to describe what to
draw; its rendering engine then traverses that scene graph and signals the graphics hard-
ware to execute the underlying rendering commands [95]. Figure 6.5 gives an example
of such scene graph. OSG has a camera class which provides a convenient interface for
the program to manipulate the rendering procedures. An object of the camera class is

regarded as a node from the perspective of the scene graph. Through camera nodes, the
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Figure 6.3: OpenGL geometry rendering pipeline ( cf. [96] for more details).
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Figure 6.4: Eye space and perspective projection.

program can output geometric data to the graphics hardware and read out the rendered
images from frame buffers on the hardware. The program can define the programmable
stages along the rendering pipeline by loading shaders via camera nodes. All the param-
eters used to define the viewing frustum (cf. Figure 6.4 ) and other parameters related

to the rendering pipeline can be set via the camera node.
6.2.2 Shader-based Scanning Sensor Simulation

The proposed simulation strategy uses camera nodes provided by OSG to configure the
rendering pipeline implemented on the GPU. Figure 6.6 demonstrates the work flow of
the sensor simulation. The simulator is responsible for the simulation of the dynamics
of the autonomous vehicle. As the scanning sensors are fixed on the vehicle body, their
positions and orientations change all the time according to the position and orientation of

the vehicle. The positions and orientations of the camera nodes keep in accord with the
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Figure 6.5: Scene graph with objects in the traffic environment and sensor
models.

sensors and thus get updated each time when the vehicle pose changes in the simulator.
The dummy-controller is in charge of updating the positions and orientations of all the
objects in the traffic scenarios. The camera node configures the rendering pipeline using
the sensor information provided by the simulator and sends the updated data of the
traffic participants to the GPU. In the rendering process, vertex and fragment shaders
designed to capture the sensor-specific information replace the default modules that
are used to record the color information. The behaviours of the simulation-oriented
vertex and fragment shaders for the simulations of LiDAR and radar sensors are shown
in Figure 6.7 and Figure 6.8 respectively. The position correction based on the micro
method mentioned in Figure 6.7 will be discussed later. It is noteworthy that each object
in the traffic environment has a unique identity (ID). The ID of the object is assigned to
the object node in the scene graph. In this way, all the vertices of the object node get the
same ID pertaining to this object. Such information as the object ID can be obtained
by the shaders through the vertices. From the perspective of the CPU, each object ID

corresponds to a set of information pertaining to the object in question, including:

e Maximum detection distance for radar.
e Basic classifications (e.g., ground) for LiDAR.

e Object velocity for radar.

Once the images encoding the sensor-specific information are rendered to the frame
buffer, the program running on the CPU can read them out. The object ID recorded in
each valid fragment can then be used to query the properties of the objects that are stored
on the CPU. After that, the sensor data generation modules compile the simulated sensor
data in packages consistent with the actual sensor messages. Finally, these packages are

sent to the obstacle detection and tracking modules for further processing.
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Figure 6.6: Work flow of the sensor simulation.
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Figure 6.7: Vertex and fragment shaders for LIDAR simulation.

6.2.3 Mitigating Errors Caused by Inconsistency between Lasers and
Virtual Light Rays

The lasers of real-life LiDAR sensors rotate or oscillate around an axis, as is demon-
strated in Figure 6.9. As a result, the lasers that are not perpendicular to the rotation
axis trace out conical surfaces, as is demonstrated in Figure 6.10(a). In comparison,
the light rays used to simulate the lasers in the viewing frustum, i.e., those virtual rays
that pass through the centres of the pixels on the near plane, render a plane surface

(cf. Figure 6.10(b)). As the HFOV becomes larger, the mismatch gets more obvious
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Figure 6.8: Vertex and fragment shaders for radar simulation.

and cannot be ignored. Figure 6.11 gives an idea of such discrepancy. Recall that the
lasers covering the overall HFOV are simulated at the same time. Consequently, the
simulation of the lasers using one default camera node would cause intolerable errors.
To that end, a macro-micro approach intended to deal with this problem is proposed as

follows:

e Macro-scale approximation: approximate the laser beams with the light rays pass-
ing through the pixels that are nearest to the intersections of the laser beams and
the near plane. The camera node used to simulate one LiDAR sensor has a much
finer resolution than the sensor does itself. For example, the IBEO sensor expected
to have 4 x 220 laser beams is simulated with one camera node which can render
an image of 200 x 400 pixels. The FOVs of the IBEO sensor and the viewing
frustum defined by the camera node are the same. Then the real-life laser beams
are intersected with the near plane of the camera node, and the coordinates of the
intersections are calculated. For each intersection, the pixel that is nearest to it
on the near plane is located and recorded. The final result of the macro-scale ap-
proximation is a texture LASER—TFEXTURE containing 200 x 400 texels. Each
texel is related to a unique pixel of the image that will be rendered by the camera
node. If a pixel turns out to be nearest to the intersection of a laser beam and the
near plane, its corresponding texel will record the coordinates of the intersection.

Figure 6.12 displays this approximation scheme.

e Micro-scale correction: further rectify the target positions captured by the light
rays chosen in the macro-scale approximation stage so that they can more closely
approximate the information returned by the actual lasers. In the OpenGL ren-
dering pipeline, the camera node is supposed to render the image onto the window
screen. The window-relative coordinates of the image pixels (i.e. the fragments)

can be obtained in the fragment shader via the built-in variable gl_FragCoord
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of the OpenGL shading language. The window-relative coordinates of the inter-
sections of the actual lasers and the near plane can also be computed by scal-
ing their coordinates on the near plane by the scale factor between the near
plane and the window screen. As mentioned above, the coordinates of the in-
tersections on the near plane are already precomputed and stored in a texture
LASER—-TEXTURE. This texture is attached to the camera node as a uniform
variable which can be accessed by the fragment shader. The partial derivatives of
the data (in this simulation context, i.e., the rasterization result of the points on
the reflective targets for the fragment) contained in a fragment with respect to the
window-relative coordinates of the said fragment can be obtained by the built-in
functions dF'dz() and dFdy(). Consequently, the data pertaining to the actual

lasers can be approximately computed as:

POSactual = POSpigel + AFdx(pos)(Tactuar — gl-FragCoord.x)
+dFdy(pos)(Yactual — gl-FragCoord.y)

where posgeuar refers to the approximate position of the point on the reflector
targeted by the actual laser beam that passes through the intersection, and 4ctyuar
and Ygetuar compose the window-relative coordinates of the intersection. The posi-
tions rectified in this way are much closer to the target positions captured by the
real-life lasers than the default light rays are. Figure 6.13 shows the effect of this

correction strategy.

There is still another problem regarding the simulation of the Velodyne sensor. Al-
though the lasers of the Velodyne sensor are turning around the same axis, they are sent
out from locations on the sensor with irregular horizontal and vertical offsets between
them. For example, two laser transmitters can have a horizontal offset of 17 cm. Such
laser layout cannot be efficiently modelled by camera nodes as the lasers simulated using
the same camera node are supposed to have the same origin. In the current application,
it is assumed that all the lasers sent out from the Velodyne sensor have the same origin.
In this way, the lasers can be simulated with as few camera nodes as possible. The
configuration file of the Velodyne sensor which stores the values of the original offsets
is also modified according to that assumption. In this way, the Velodyne sensor data

processing module can interpret the simulated sensor data correctly.

6.3 Performance Evaluation

This section evaluates the performance of the proposed scanning sensor simulation strat-

egy. The GPU and CPU installed on the computer used for the evaluation are an Nvidia
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Figure 6.9: Four laser beams turning around an axis.

(a) Conical surface traced out by the actual (b) Plane surface traced out by the light
lasers. rays passing through the centres of the pix-
els of the rendered image.

Figure 6.10: Surfaces rendered by the actual lasers and the light rays within the
viewing frustum.

GeForce Quadro 2000 containing 192 parallel processing cores and an Intel Xeon E31245.
The 3D models that compose the traffic environment consist of 16 houses, 1 road, 7 trees,
25 randomly on road running cars, 1 pedestrian and 6 traffic lights. The average size of
a 3D model file is 2M B. The simulated sensors include 6 IBEO LiDAR sensors, each
being simulated with 1 camera node, 1 Velodyne sensor simulated with 3 camera nodes
and 1 radar sensor simulated with 1 camera node.

The accuracy of the simulated sensor data in comparison with the real sensor data
has not yet been conducted, which is left for future work. At the moment, the accuracy
of the simulated sensor data is only checked by visual display of the simulated sensor
data and the objects identified by the obstacle detection module based on those data.
The scanning results of the simulated IBEO, Velodyne and radar sensors are displayed
in Figure 6.14, Figure 6.15 and Figure 6.16, respectively.

The computation time consumed by the rendering of the simulated IBEO sensors is
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(a) Scanning pattern of the actual lasers.

(b) Scanning pattern of the light rays passing through the centres of the pixels
of the to-be-rendered image.

Figure 6.11: Scanning patterns of the actual lasers and the light rays within the
viewing frustum. VFOV = 20°.

also examined. The frame rates of the GPU for rendering simulated sensors with different
configurations are reported in Table 6.1. As can be concluded from Table 6.1, the frame
rate declines when the number of objects in the scene increases. Furthermore, the frame
rate also drops drastically when the number of pixels used to simulate the sensor gets
larger. Note that more accurate sensor data should be generated by a simulation with
more pixels. In the case of the simulation of the IBEO LiDAR sensor, the size of pixels
is set to be 200 x 400, which can generate sufficiently accurate sensor data (from the
perspective of approximating the lasers with the virtual light rays). The corresponding
computational cost is tolerable as can be seen from Table 6.1. Nonetheless, it is still

necessary to further decrease the rendering time in future work.

6.4 Summary

This chapter presented the simulation models of the scanning sensors and the GPU-based

implementation of the simulation. The performance evaluation in terms of accuracy and
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(a) The zoomed out view.

(b) The zoomed in view.

Figure 6.12: Using the pixels of the default to-be-rendered image to approximate
the intersections of the actual laser beams and the near plane. The green points
represent the pixels, while the red points display the intersections. The black
points are those of the pixels that are nearest to the intersections and thus are
chosen to be the approximations of the intersections. Note that the vertical
interval between two neighbouring green points is so small that they are not
distinguishable on the picture.

Number of scene Frame rate rendered by | Frame rate rendered by
objects 6 IBEO sensors (The 6 IBEO sensors (The
size of pixels for each size of pixels for each
sensor is 200 x 400) sensor is 200 x 2000)
0 34 30
1 33 24
2 31 18
3 25 13
4 20 11

Table 6.1: Computational costs for simulating IBEO sensors with different con-
figurations. The rendering frame rate of the simulation environment without

any simulated sensor is 34.

computational cost was reported. It should be pointed out that the proposed simulation

of scanning sensors and the related simulation framework are designed based on the work

presented in [73]. The simulation approach employed in this thesis is similar in spirit

to what is demonstrated in [67] and [68]. The proposed radar sensor simulation can



rn of the sensors and improve the accuracy of the simulated sensor data. Future work

ing the physical phenomena considered in the simulation, adding proper noise models
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Figure 6.14: Simulation result for IBEO sensors. The detection range of the
sensor is set to be 200 m.

.
>

Figure 6.15: Simulation result for the Velodyne sensor. The white points form-
ing concentric circles are the simulated sensor data interpreted by the obstacle
detection module. The green boxes are the detection results of the obstacle de-
tection and tracking modules. The pink lines demonstrate the rotating lasers.
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Figure 6.16: Simulation result for the radar sensor. The green balls are the
detected reflectors. The HFOV of the simulated radar sensor is larger than its
real-life counterpart for demonstration purpose.






Chapter 7

Motion Planner Evaluation

In this chapter, the proposed motion planner is first examined according to the evalua-
tion criteria illustrated in Chapter 1. After that, the capability of the proposed motion
planner in handling time-critical traffic scenarios is reported. Then, the performance
of the planner in driving the vehicle around road networks is displayed. Lastly, a com-
parison of the proposed planner and the planners presented in other works is given. It
is noteworthy that all the presented experiments are carried out in a simulation en-
vironment, where the vehicle dynamics, the sensors and the traffic scenarios are all
simulated. The software modules involved in the experiments, such as those for detect-
ing and tracking obstacles, are directly adopted from the autonomous driving system
of MIG. Figure 7.1 shows the software framework of the experimental platform. The
hardware adopted here is the same as the one that is employed for the evaluation of the
simulated scanning sensors (cf. Section 6.3). The configuration of the planner applied
in the experiments follows Table 5.1 in general. The alterations of specific parameters
required by the purposes of the experiments will be highlighted where necessary. As is
mentioned earlier, there is no scenario reasoning module in the current implementation
of the proposed planner. Correspondingly, the configuration parameters of the planner
are adjusted manually on the fly when necessary. Besides, some scenario-related targets,

such as target speed and location, are also set manually in runtime.

7.1 Criteria based Evaluation

In this section, the proposed planner is validated against the common criteria for eval-
uating motion planners, i.e., completeness, feasibility, optimality and runtime (cf. Sub-

section 1.1.2). In the evaluation, the following aspects are addressed for each criterion:

e The capability that the criterion expects the planner to have.

e The main factors that determine the performance of the motion planner in terms

of the said capability.
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Figure 7.1: Software modules involved in the simulation environment where the
experiments are conducted.

e Descriptions of the experiments conducted for the purpose of the evaluation and
reports about the performance of the proposed planner demonstrated in those

experiments.

e The properties that enable the proposed planner to achieve the satisfying perfor-
mance, or the potential adaptations that can be made to improve the unsatisfying

behaviour.

Some experiments address the potential impact of insufficient perception on the
behaviour of the motion planner. The usefulness of the simulated scanning sensors can

thus be demonstrated in the evaluation of the motion planner.
7.1.1 Optimality

The criterion of optimality can be further divided into horizon optimality, scenario-
dependant optimality and resolution optimality. The quality of the proposed planner

with respect to these three aspects of optimality is illustrated in the following.
7.1.1.1 Horizon Optimality

With limited planning horizon, the proposed motion planner can only achieve horizon
optimality rather than global optimality. That is, the construction of the trajectories
and the selection of the optimal one are based solely on the information available within
the current planning horizon. Worse still, even such limited information cannot be fully
utilized by the planner due to the insufficient perception of the vehicle. The criterion
of horizon optimality is thus intended to assess the extent to which the best constraint-
abiding trajectory satisfies a long-term goal. Such long-term goals can be, for example,

a specific expectation of the speed of the vehicle, which is calculated based on the
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investigations into the future. They can also embody the requirement of taking into
account the complete information available within the planning horizon.

Figure 7.2 demonstrates a scenario where an extensive horizon can help the planner
to recognize timely the necessity of deceleration for making a lane change within a short
distance. Without any long-term information, the vehicle keeps running at high speed,
which is an optimal behaviour from the perspective of the short planning horizon. By
the time it realizes that it is necessary to make a lane change in order to drive onto
the road that leads to the next checkpoint, there has been not enough room for the
required manoeuvre. That is, the trajectories constructed in accordance with the limited
connectivity pattern and the high speed are beyond the limited physical capability of
the vehicle. The main constraint on the feasibility of the trajectory here is the maximum
rate of change of curvature. As a result, the planner is left with no feasible plan, as is
shown in Figure 7.2(a).

In contrast, a more extensive planning horizon adopted in the experiment shown in
Figure 7.2(b) warns the planner of the necessity of a future lane change in time and thus
makes it possible for the planner to plan a feasible trajectory with a timely deceleration.
However, an extensive planning horizon will definitely deteriorate the computational
efficiency of the planning. In this sense, a lightweight scenario reasoning module that
can assign a long-term goal to the planner is a better choice than an extensive planning
horizon. The issues revolving around scenario reasoning will be discussed in the next
subsection along with the evaluation of scenario-dependent optimality.

Now it is time to talk about the other kind of long-term goal, i.e., the requirement
of considering the complete information within the planning horizon in the generation
and selection of plans. Figure 7.3 and Figure 7.4 present different overtaking behaviours
generated by the proposed planner in handling the same traffic scenario. In Figure 7.3,
the static costs of the paths in terms of obstacles are evaluated based on the actual shape
of the vehicle obstacle, and the ego-vehicle circumnavigates the static vehicle obstacle
smoothly. In contrast, the overtaking manoeuvre generated based on the information
provided by the simulated sensors shown in Figure 7.4 is not satisfying. When the ego-
vehicle looks at the vehicle obstacle from behind, the perceived shape of the obstacle is
much smaller compared to its actual shape. Consequently, the ego-vehicle takes a plan
that is of high risk and even practically untraversable as demonstrated in Figure 7.4(a).
When the vehicle discovered the “larger shape” of the obstacle, as is shown in Fig-
ure 7.4(b), it abandons the old plan (cyan) and generates a new trajectory (red) that
is much safer. Finally, in Figure 7.4(c), the “looks” of the vehicle obstacle changes so
drastically that all the trajectory edges from the ego-vehicle to the lattice turn out to
be untraversable. Consequently, the planner fails to generate a plan. Such problems
caused by insufficient perception can be mitigated by applying larger dilation around

the obstacle and imposing heavier punishments when the ego-vehicle and the obstacle
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(a) The planner fails to generate a feasible lane change manoeuvre at high speed. It has a
short planning horizon of 100 m. A spatial node in the lattice is connected to up to 2 x 9
other spatial nodes.

(b) The planner succeeds in generating a feasible lane change manoeuvre with the help of
an extensive planning horizon of 150 m. A spatial node in the lattice is connected to up to
2 x 9 other spatial nodes.

(c) The planner succeeds in generating a feasible lane change manoeuvre at high speed
thanks to a richer connectivity pattern. Its planning horizon is 100 m. A spatial node in
the lattice is connected to up to 3 x 9 nodes.

Figure 7.2: The lane change behaviours generated by the proposed planner with
different planning distances and connectivity patterns. The red plan is younger
than the cyan one. The several layers of points are the spatial samples of the
planning horizon where the red plan is generated.

get too close. Nonetheless, a sufficient perception is desired in order to generate safer,
more flexible and more consistent trajectories. It is noteworthy that only IBEO LiDAR
sensors are employed on the autonomous vehicle in the simulation experiments. These
sensors are installed at relatively low positions around the vehicle (cf. Figure 1.1) and
have a very small VFOV, which makes it easy to obstruct their sights by a part of the
whole obstacle. Should the Velodyne LiDAR sensor be mounted on the top of the vehicle
( cf. Figure 1.1), the perception of the vehicle would be much better.

There are also cases where scanning sensors cannot play a role in capturing the
information of the obstacles. An example of such scenario is when a pedestrian appears
suddenly from behind the static vehicles parked at the roadsides. In this case, a collision
might be unavoidable. The perception system of the autonomous vehicle should be
improved so that the information of the hidden traffic participants can also be taken

into account in planning trajectories.
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Figure 7.3: The overtaking manoeuvre generated based on sufficient information
of the vehicle obstacle. The cyan box is the bounding box of the vehicle obstacle
used for the construction of the cost maps. The several layers of points are the
spatial samples of the planning horizon where the red plan is generated. The
red plan is one planning cycle younger than the cyan plan.

7.1.1.2 Scenario-dependant Optimality

The criterion of scenario-dependant optimality evaluates the planner’s ability to adapt
to the requirements of different traffic scenarios. Such adaptations can be an adjustment
of the parameters of the cost functions, an alteration in the layout of the state lattice,
etc. Accordingly, a scenario reasoning module is necessary which can determine the type
of adaptation in order to satisfy the scenario-based requirements. Although the scenario
reasoning module is absent in the current implementation of the proposed planner, it can
be easily embedded in the planning architecture (cf. Section 5.2). The evaluation here
focuses on the flexibility of the planner in response to given scenario-based instructions
which are manually issued in the experiments.

Figure 7.5(a) shows the experiment where a target speed and a target location are
assigned to the planner. To follow the instruction, the vehicle has to reach the target
speed at the target location. As the current planner is not able to incorporate arbitrary
locations into its set of lattice nodes, it can only direct the vehicle to reach a speed that
is close to the target speed at the location that is near to the required target location. By
activating the cost functions related to achieving a target speed, the planner generates
a plan as demonstrated in Figure 7.6. As is mentioned in previous discussions about
the criterion of horizon optimality, scenario-based adaptations can have the same effect

as the application of an extensive horizon from the perspective of increasing the global
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Figure 7.4: The unsuccessful overtaking manoeuvre generated based on insuffi-
cient knowledge about the vehicle obstacle which is provided by the simulated
scanning sensors. The cyan box is the bounding box of the vehicle obstacle used
for the construction of the cost maps.The cyan plan is older than the red one.
Note that the vehicle obstacle gives different shapes when the ego-vehicle looks
at it from different points of view. The planner fails to generate a traversable
trajectory in the last picture as the “looks” of the vehicle obstacle changes so
much that the predicted position of the ego-vehicle for the current planning hori-
zon is untraversable itself. The several layers of points are the spatial samples
of the planning horizon where the red plan is generated.

optimality of the optimal plan. In the example of the lane change manoeuvre at high
speed demonstrated in Figure 7.2, a timely deceleration designated by the scenario
reasoning module can make it possible for the planner to generate a feasible lane change
manoeuvre later, as is shown in Figure 7.5(b).

It is noteworthy that it is the restriction of the maximum rate of change of curvature
Fmaz that makes all generated trajectories with high speed infeasible in the scenario
shown in Figure 7.2(a). There is a relationship between the cubic spiral that represents
the path edge and the rate of change of curvature along the trajectory edge, which is
given as:

. dr(s) dr(s)ds  dr(s)

K =

dt ds dt  ds

v (7.1)

where k(s) refers to the expression of the curvature in terms of arc length (cf. Equa-

tion 3.7). Given a specific connectivity pattern and a straight road, the maximum d'zlis)

can be easily derived. With the knowledge of the mapping between the connectivity pat-

tern and the maximum d';—(;) corresponding to it, the planner can choose a connectivity

pattern that can generate a trajectory with its maximum dleiis) below % In this way,
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(a) A target speed that is expected to be reached by the vehicle at a specific target location is
issued by the “manual” scenario reasoning module. The target speed is 10m/s. The red point
denotes the target location. The current speed of the vehicle is about 29 m/s.

(b) The lane change manoeuvre at low speed.

Figure 7.5: Deceleration to reach the target speed designated by a manual
scenario reasoning module. The several layers of points are the spatial samples
of the planning horizon where the red plan is generated. The red plan is one
planning cycle younger than the cyan plan.
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Figure 7.6: The plan in terms of speed, acceleration and jerk during the deceler-
ation. The green plan is younger than the blue one. The short red curves record
the five-second tracking result of the vehicle. The end of the planning horizon
based on which the blue plan is generated has not reached the target location.
The end of the planning horizon based on which the green plan is generated
has passed the target location. The applied cost function for reaching a target
speed only restricts the lattice nodes that have not passed the target location.

the planner is able to generate feasible trajectories as long as the required connectivity
pattern can be realized in the lattice. Figure 7.2(c) shows the plan made possible by the
connectivity pattern that can introduce the trajectory edges that satisfy the restriction
imposed on the rate of change of the curvature.

Another experiment where an adjustment of the weights of the cost functions is nec-
essary is demonstrated in Figure 7.7(a). The neighbouring lane of the current travelling
lane of the vehicle has oncoming traffic. As the criterion of time efficiency has a higher
priority than the requirement of avoiding driving onto oncoming lanes, the ego-vehicle
implements a risky manoeuvre that is intended to overtake the slow-moving vehicle ob-
stacle via the oncoming lane. Such manoeuvre results in an even riskier behaviour later
when it is necessary for the vehicle to return back to the original lane, as is shown in

Figure 7.7(b) and Figure 7.7(c). The scenario reasoning module can predict the necessity
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(a) A trajectory that makes the ego-vehicle take over the slow-moving vehicle
in front of it via an oncoming lane.

(¢) The critical situation resulting from the risky lane change.

Figure 7.7: Risky trajectories generated by the planner without any far-sighted
instruction from the scenario reasoning module. The yellow and magenta
patches belong to the first frame of the cost map of dynamic obstacles. The
yellow area is the high cost area, while the magenta patch refers to the fatal
area. The actual shape of the vehicle obstacle, rather than the simulated sensor
data, is used in this experiment. The several layers of points are the spatial
samples of the planning horizon where the red plan is generated. The red plan
is one planning cycle younger than the cyan plan.

of the second lane change based on the given road model; it can thus increase the cost
for the vehicle to drive onto the oncoming lane. In this way, the aggressive trajectory

shown in Figure 7.7(a) can be avoided.
7.1.1.3 Resolution Optimality

The criterion of resolution optimality addresses the fact that the best constraint-abiding
trajectory generated by the lattice-based planner is only local optimal. That is, the
selected trajectory is only optimal from the perspective of the set of candidate trajecto-
ries that are constructed based on the given sampling pattern. The plan generated by
the planner might not be the best one if all the possible trajectories in the continuous
space are taken into account. The experiment shown in Figure 7.2(c) demonstrates the
importance of dense sampling. It is also discussed in Section 4.4 that a rich portfolio of
acceleration profiles will be beneficial in the generation of trajectories with a higher level
of smoothness. One of the bottlenecks for increasing the density of the spatiotemporal
sampling is the potentially intolerable computation time required by the construction of

the dense state lattice.
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7.1.2 Completeness

Like many other lattice based planners, the proposed planner has resolution complete-
ness. That is, whenever there exists a solution in the continuous space, the planner will
be able to find one provided that its resolution is fine enough; if there is no solution
at all in the continuous space or when the solution in the continuous space cannot be
generated by the planner due to its large resolution, the planner will report that no
solution is found.

The experiment demonstrated in Figure 7.2 gives an example of the behaviour of
the planner with resolution completeness. When the connectivity pattern results in a
relatively small number of path edges outgoing from a spatial node, the planner reports
that there is no feasible trajectory. When the number of outgoing path edges increases,
the planner can return a feasible trajectory.

Figure 7.8 shows another experiment related to resolution completeness. In Fig-
ure 7.8(a), the planner is not able to find a valid path given a relatively large station
interval. When the station interval gets smaller, as is shown in Figure 7.8(b), the planner
can return a traversable trajectory. Such phenomenon occurs due to the requirements of
the path edge (i.e.,curvature cubic polynomials) on its boundary conditions and length.

A planner with the property of completeness can demonstrate such performance: as
long as there is a solution in the continuous space, the planner can return one; otherwise,
the planner will terminate and report that no solution is available. There are in general
two methods that can improve the condition of completeness of the proposed planner.
One is to sample the continuous space as dense as possible; the other is to calculate
explicitly a solution as long as there is one and to regard that solution as one candidate
trajectory. The former will definitely lead to low computational efficiency, while the
latter can be very complicated and may also be expensive. Nonetheless, it is worth
the effort to approach completeness as much as possible for the sake of safety. Further

improvements with regard to completeness are necessary.
7.1.3 Feasibility

The feasibility of the trajectory depends on the smoothness of the speed trajectory and
the degree of continuity of the underlying path. The proposed planner can guarantee a
higher level of feasibility by applying smooth acceleration profiles on the path edges in
a consistent way. As for the feasibility of the path, it is pointed out in [24] and [22] that
curvature polynomials with a higher order are required for the paths from the vehicle
to the lattice in order to increase the consistency of trajectories generated in successive
planning horizons. The curvature cubic polynomial applied currently can only ensure the
continuity of the curvature at the joint of successive path edges, whereas the continuity

of the first- and higher-order derivatives of the curvature with respect to the arclength
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(a) No traversable and feasible trajectory can be found for the ve-
hicle to drive onto the roundabout. The station interval is 10 m.

(b) Traversable and feasible trajectories can be constructed within
the roundabout. The station interval is 5 m.

Figure 7.8: The performance of the proposed planner in dealing with the round-
about. The several layers of points are the spatial samples of the planning hori-
zon where the red plan is generated. The red plan is one planning cycle younger
than the cyan plan.

at the switching points cannot be guaranteed. This issue should be addressed in future
work.

Another aspect of trajectory feasibility with regard to an on-road motion planner
is the consistency of the plans generated from successive planning horizons. It can be
observed from the experiments presented in this chapter that the plans are not always

consistent. The main causes of the inconsistency are as follows:
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e As the vehicle moves on, the planner receives updated information about the world
model provided by the perception system. Subject to the parameters of related cost
criteria, a small variation in the information might cause a considerable difference

in the plans.

e The high level guidance sent from a behaviour module can also contribute to the

inconsistent decisions of the planner.

e A precondition of consistency is that the best trajectory generated from the second
planning cycle, or a part of it, can be found in the best trajectory produced from
the first planning cycle. In this sense, even without the aforementioned external
influences, the limited sampling and connectivity pattern of the planner can still
lead to the inconsistency. The inconsistency issue with respect to the sampling
of the spatial horizon has already been discussed in Chapter 5. With regard
to the connectivity pattern, it is applied in the planner that the vehicle start
pose can be connected to the spatial samples of a certain number of stations,
and that each spatial sample is only allowed to connect to a fraction of spatial
samples of one or two stations. As a result, the optimal trajectory generated in
the following planning horizon might not be present in the previous horizon, which

incurs inconsistency. Figure 7.9 illustrates this issue.

e It is also observed in the experiments that it can happen that the costs of some
trajectories may turn out to be equal given no discretization artifact. In this case,
slight variations in the cost maps or the sampling of the trajectories for evaluation

will result in different judgements about those trajectory candidates.

The consistency of successive trajectories can be improved by increasing the sample
number of the last plan for the next plan to follow and by raising the bonus for planning
consistency. In this way, the planner will tend to choose the trajectory that is consistent
with the last one as long as such a trajectory exists. This embodies a trade-off between
feasibility and optimality of the plans. In the current implementation of the proposed
planner, only the first two samples of the constructed trajectories are subject to such

evaluation.
7.1.4 Runtime

In the CUDA-based implementation of the construction of the state lattice (cf. Sec-
tion 5.1.2), each state lattice node initiates a thread executing the construction and
evaluation of the trajectories that are originated from the said node. The construction
of the state lattice is carried out in order of station. Consequently, the number of state
lattice nodes of a station determines the amount of threads that are running in parallel

for the construction of the trajectories outgoing from this station; the computational
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Scenario 2

Figure 7.9: The inconsistency caused by the limited connectivity pattern. In
the first scenario, the vehicle can only be connected to P, via P; due to the fact
that the vehicle can only be connected to the first two stations in front of it. As
the vehicle moves on, in the second scenario, it can be connected to P» directly.
If the second connection turns out to be better than the first one, inconsistency
between successive planning horizons occurs.

cost for the execution of each thread depends on the number of trajectory edges outgo-
ing from each lattice node. Let ng, n,, n¢, na, ns denote the number of discrete latitudes,
speeds, times, accelerations and stations respectively. Let n, refer to the number of
outgoing path edges of a lattice node. The maximum number of threads initiated by
each station is given as njn,n¢ne, and the maximum amount of trajectory edges that are
constructed within one thread is calculated as n,n,. In practice, it might happen that
some lattice nodes are not represented. That is, no trajectory edge ends at those lattice
nodes. As a result, the threads initiated by those lattice nodes will stop being executed
very soon. It is left for the GPU to schedule the busy or vacant threads executed in the
multiprocessors. The way in which the GPU schedules the threads, together with the
number and layout of the multiprocessors, determines to a large extent the parallelism
of the algorithm for the construction of the state lattice. Let Np refer to the number of
threads that are practically executed in parallel. The computational complexity of the
CUDA-based implementation of the state lattice construction is given as:

nmvntnpnans

) (7.2)

Given the configuration of the state lattice shown in Table 5.1, the time taken by each

o(

phase of the planning cycle is displayed in Table 5.2. In future work, the CUDA-based
implementation can be further optimized to make full use of the parallel computing

architecture of the GPU.
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7.2 Planner Performance in Time Critical Scenarios

This section reports the performance of the proposed planner in handling time-critical
scenarios. Two scenarios are chosen for the experiments. One requires the vehicle to
perform emergency evasive manoeuvres where making a panic stop cannot avoid the
collision. In the other scenario, the vehicle needs to merge into traffic, which requires

careful timing and speed control.

EMERGENCY EVASIVE MANOEUVRE

In the traffic scenario shown in Figure 7.10(a) and Figure 7.10(b), the vehicle is accel-
erating at the hardest possible acceleration, i.e., 2m/s?, as the configuration of the cost
functions gives the highest priority to the criterion of time efficiency. At the moment
when the speed of the vehicle reaches 15 m/s, a pedestrian appears suddenly in the
center of the road in front of the vehicle. The distance between the vehicle and the
pedestrian is 25 m. In real life, such scenario can happen because some other obstacles
blocked part of the view of the vehicle so that it could not see the pedestrian when he
was still close to the roadside. According to the equation s = v2/(2a), a distance of 28m
is required for the vehicle to come to a stop from running at 15 m/s when the hardest
possible deceleration is —4 m/s2. As the actual distance is 25 m, it is not enough for
the vehicle to implement a panic stop in order to avoid a collision with the pedestrian.
Actually, the distance between the pedestrian and the vehicle from the perspective of the
planner is even smaller than 25 m as the planner needs to simulate forward the vehicle
dynamics system for a specific duration to compensate for the planning latency. This
phenomenon can be observed by comparing the distances of the pedestrian (the cyan
box) relative to the vehicle (in Figure 7.10(b)) and to the green point (in Figure 7.10(c)).
Consequently, the planner generates an evasive manoeuvre composed of a double lane
change as demonstrated in Figure 7.10(c), Figure 7.10(d) and Figure 7.10(e). The first
lane change is for evading the obstacle, while the second one is for returning back to
the original travelling lane. Figure 7.11 displays the trajectories of curvature, speed,
acceleration and jerk of the double lane change. In this way, the vehicle avoids potential
collisions with the pedestrian. It should be pointed out that, in this experiment, the

pedestrian is assumed to stand still in the road after his appearance.

MERGING INTO MOVING TRAFFIC

Merging is among the most frequently executed complex driving manoeuvres. In the
experiments shown in Figure 7.12, three vehicles are running in a queue along the lane
that is next to the acceleration lane. Their speeds are 30m /s, and successive vehicles keep
a three-second interval. The ego-vehicle runs at 10 m/s when it is about to accelerate

on the acceleration lane in order to merge into the traffic on the lane to its right. If no
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lane is designated to the planner onto which the ego-vehicle should travel, the trajectory
that is displayed in Figure 7.13 is generated by the planner. Since the criterion of time
efficiency is given top priority, the ego-vehicle prefers not to stay in the traffic into which
it merges; it drives onto the next neighbouring lane so that it can run at a speed higher
than that of the other vehicles. When the lane on which the other vehicles are running
is assigned to the planner through giving a huge bonus to the candidate trajectories
ending at the said lane, the vehicle ends up performing what is shown in Figure 7.14.
Figure 7.15 displays the trajectories of curvature, speed, acceleration and jerk of the
merging manoeuvre demonstrated in Figure 7.14(a). It can be concluded from these

experiments:

e The proposed planner can generate reasonable merging behaviours under proper
guidance. However, the plans generated in successive planning horizons might
not be consistent as can be seen in Figure 7.14(b). There are potentially several
reasons for that (cf. Subsection 7.1.3). The cause of the planning inconsistency
demonstrated in Figure 7.14(b) is that the new plan (red) cannot be constructed

in the previous planning horizon due to the limited connectivity pattern.
e A scenario reasoning module is necessary to regulate the behaviour of the planner.

e In real-life traffic, the vehicle behind the ego-vehicle will adjust its speed due to the
merging manoeuvre of the ego-vehicle. Future work regarding simulation should

take into account potential interactions between the traffic participants.

7.3 Planner Performance in Road Network Experiments

The planner is tested in three road networks as demonstrated in Figure 7.16, Figure 7.17

and Figure 7.18. The main purposes of these experiments are as follows:

e To check the general applicability of the proposed strategy for specifying the spatial

horizon.
e To examine the consistency and feasibility of the generated trajectories.

e To test the capability of the planner in navigating the vehicle among moving traffic

in road networks.

It is noteworthy that the experiments are only carried out in a simulation environ-
ment, where the road networks are modelled based on the real ones. Only with sufficient
traffic perception and prediction, a sophisticated scenario reasoning module and a ca-
pable controller can the experiments be performed in real road networks. Chapter 8
will discuss more about that. The configuration parameters and scenario-related targets

that can be adjusted or set in runtime include:
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e Station interval. A 10m interval is applied for most driving roads; smaller intervals

(e.g., 5m) are necessary for road segments with sharp curves.

e The weight of the cost item for promoting time efficiency. Sometimes, the vehicle
can be “trapped” into running at a rather small speed due to the tendency of the
planner to avoid punishments incurred by a high rate of change of curvature or a
large lateral acceleration. Further, if the bonus for following the last plan is set
too high, the vehicle would keep that low speed for a long time until some other
factors challenge the conservative movement. In such circumstance, it is necessary
to increase the cost for wasting time so that the vehicle can move faster. Besides,
it can happen that the cost for approaching other travelling vehicles is so high
that the ego-vehicle keeps following the vehicle running slowly ahead of it. In this
case, a higher penalty imposed on slow driving can encourage the ego-vehicle to

overtake the slow vehicle and go on driving at a higher speed.

e Target speed and distance. As is mentioned previously, the planning horizon is
short in order to achieve computational efficiency. Consequently, it is necessary to
inform the vehicle of the necessity to slow down so that it can, for example, turn

around a sharp curve successfully.

Equipped with the scenario-related guidances listed above, the planner can drive
the vehicle smoothly and safely around the road network most of the time. Still, there
are cases where the planner generates inconsistent plans or fails to generate a feasible
and traversable trajectory. The main reasons for the inconsistency have already been
illustrated in Subsection 7.1.3. The causes that lead to the failures discovered so far are

listed below:

e Untimely or improper manual scenario-dependant guidance. For example, the
vehicle cannot make a sharp turn at a high speed due to the limitations of its
physical capabilities, such as the restricted deceleration, rate of change of curvature
and lateral acceleration. Accordingly, if a target speed is not issued timely or
properly to tell the vehicle to slow down, there will be no physical constraint-

abiding trajectory for the planner to construct and choose.

e “Infinite cost” effect. Sometimes the planner may generate a trajectory that lies
very close to the infinite area of certain cost items in order to minimize the resultant
summed cost. In this case, a slight change in the perceived world model or the
discretized cost maps or a small tracking error may cause the vehicle start state
or the originally valid trajectory to be trapped into an ”infinite cost’ area in the
subsequent planning horizon, which can render all trajectories from the vehicle

infeasible or untraversable.
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e Challenging road structures. Due to the physical constraints of the vehicle and the
intrinsically limited sampling and connectivity pattern of the planner, the planner

may fail to find a valid trajectory through a sharp road curve with a limited width.

With the existing problems related to spatial horizon specification and sampling
ignored (cf. Section 5.2), the proposed strategy for specifying the spatial horizon works
consistently in the three road networks.

The jerk levels of the trajectories traced out by the vehicle equipped with the pro-
posed motion planner in the road network experiments are displayed in Table 7.1 and
Table 7.2. The distance jerk level in Table 7.2 is calculated according to Equation 4.3
where x refers to the travel distance of the longitudinal movement of the vehicle. The

heading jerk level is computed based on:

T(s(t)) = + /t 2t (7.3)

0

where k refers to the curvature of the trajectory. It is noteworthy that in practice the
discretized state samples of the trajectory are applied in the calculation as is shown in

Equation 7.4:

N 1 (077 —Qt
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E=T (7.4
Je(0) = b % (R - 0)

where « refers to acceleration. For comparison purposes, the performance of the path
planner (cf. [1] [88]) that is currently deployed on MIG is also shown in Table 7.2. Several

issues are noteworthy for comprehending the displayed data:

e The distance jerk level calculated according to the acceleration samples provided
by the simulator reflects a comprehensive effect of the planner, the controller and
the simulated vehicle model. In comparison, the distance jerk level computed
based on the jerks expected from the controller indicates only the performance of
the planner. The controller for the motion planner extracts the expected jerks from
the plans, while the controller for the path planner issues the throttle actuation
command based on the current speed and the desired speed. The desired speed is
calculated by the controller for the path planner according to some considerations,
such as the speed limit of the current road and the physical limits of the vehicle.
As a result, there is no explicitly intended jerk from the path planner and its
controller, which makes it impossible to calculate the expected-jerk based jerk

level of the path planner.

e As can be seen from Table 7.2, there are huge discrepancies between the expected-

jerk based jerk level and the simulation-based jerk level. That is due to the failure
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of the controller in guiding the vehicle according to the expected acceleration. One
phenomenon that contributes a lot to the discrepancy is shown in Figure 7.19,
where the acceleration has to oscillate about the zero axis in order for the vehicle

to maintain a constant speed.

The controller for the path planner issues actuation commands at an interval of
0.04seconds, while the controller for the motion planner sends actuation commands
every 0.001 seconds. The simulator updates the vehicle states every 0.02 seconds.
The effect resulting from the arrangement of the update periods can be observed
through the oscillation periods of the acceleration shown in Figure 7.19. Conse-
quently, the calculation of the jerk level which is based on discrete state samples

must be affected by the update periods.

According to the two issues mentioned above concerning the effectiveness of the
calculation method of the distance jerk levels, it is actually hard to compare the
distance jerk levels of the trajectories designed by the motion planner and the
path planner plus its controller based on the jerk levels calculated in that way.
Consequently, the data related to distance jerk levels displayed in Table 7.2 cannot
be used to compare the two planners; instead, they are demonstrated to give a hint
as to how large the distance jerk levels can be and to compare the real performance

of the vehicle with what the motion planner expects.

As the model of the vehicle lateral movement is rather ideal in the simulation,
the heading jerk level calculated based on the discretized curvatures provided by
the simulator can reflect the heading performance expected from both planners.
However, it should always be kept in mind that the amounts of heading jerk levels
calculated with the method presented in this thesis are still subject to the update

periods of the controllers.
can be concluded from Table 7.2 that:

The heading jerk level of the path planner is always lower than that of the motion
planner. Although the quantities of the discrepancies are questionable according
to what is discussed above, their existence reflects what can be observed in the
experiments; that is, the path planner tends to be better than the motion planner
in terms of heading jerk levels. That is because the planning horizon of the path
planner is four or five times more extensive than that of the motion planner.
Consequently, the path planner tends to distribute the change of heading over
a longer distance, which leads to a smaller heading jerk. Besides, the limited
connectivity pattern of the motion planner also prevents it from achieving lower

heading jerk level.
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e Due to the factors that can affect the calculation result of the distance jerk levels
mentioned previously, it is hard to tell exactly from the calculated results which
planner performs better in terms of distance jerk level. Nonetheless, the jerk level
of the motion planner can be further decreased when the jerk level criterion is
introduced to the evaluation of the trajectories. Besides, once the restrictions of
the computational complexity gets further relaxed, the planning horizon of the
motion planner can be further extended, which will enhance its performance in
terms of jerk levels. In contrast, the path planner does not have the potentials
of the motion planner illustrated above because it can only generate plans in the

spatial space.

e The substantial discrepancy between the simulation-based and the expected-jerk
based jerk levels conveys a message that only with a capable controller can the full

potential of the motion planner be explored.

Figure 7.20 illustrates an example of the reactions of the planner to the surrounding
traffic participants. The vehicle can respond to the moving traffic reasonably given
proper guidance from the scenario reasoning module. Without adjustment of the weight
of the cost criterion for promoting time efficiency, the behaviour of the vehicle might
tend to be unreasonably conservative or aggressive.

It is noteworthy that the simulated traffic participants cannot interact with the ego-
vehicle, and the planner treats all the traffic participants, either behind or in front of the
ego-vehicle, equally. It should also be pointed out that the future routes of the vehicle
obstacles are known a priori from the perspective of the planner in the experiments.
That is, the planner predicts the future trajectory of the vehicle obstacle according to the
same rule applied in the traffic simulation. For example, the simulated vehicle obstacle
always keeps at the center of the travelling lane; when confronted with road branches,
it will travel onto the first branch that is returned by the branch search function. In
this sense, only the speed, the shape and the initial position of the obstacles at the
beginning of each planning cycle keep in accordance with the perception result of the
simulated scanning sensors; the prediction of future route is not based on the sensed
heading direction of the vehicle obstacle. Such relatively ideal prediction strategy has
to be taken because the currently available obstacle prediction module can only predict
the future route of the obstacle based on the assumption of a straight line movement.
That is, it does not take into account the shape of the road where the vehicle obstacle is
running. Such prediction method is rather insufficient for supporting a motion planner
whose planning result relies largely on the prediction of the surrounding obstacles. A
good prediction of the future route of the obstacle is necessary, but devising such a
module that can fulfil the task is beyond the scope of this work. Consequently, the

aforementioned a priori prediction strategy is designed and utilized in the experiments.
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In Figure 7.20, the sensed obstacles (cyan boxes) are the looks of the real obstacles
from the perspective of the planner at the assumed starting time ( tyed—start—assumed) Of
the red plan. Let the time when the simulated sensors located the obstacles be denoted
as tscan—begin, and it takes dtgcan—generate for the simulated sensors to generate the scan-
ning information and send it to the obstacles processing modules. Let tseqn_eng denote
the time when the sensor data is generated. It follows that fscun—end = tscan—begin +
Otscan—generate- 1N the current implementation of sensor simulation, 0tscan—generate 18
ignored. That is, it is assumed that tscan—pegin 15 equal to tocan—end- AS tscan—end can
be obtained directly, it is assumed that the obstacles were located by the sensors at
tscan—end Tather than the real time tsqn—pegin- At the beginning of the planning cycle,
the planner predicts the locations of the sensed obstacles at time t,cq—start—assumed and
outputs the predicted obstacles to the display module. At the time when the snapshots
of the figures in Figure 7.20 are made, the red plan is already ready, and the planner is
deliberating about the next plan. Let the difference between the time of the snapshot and
the assumed starting time of the red plan be denoted as 0t,qssed— from—red—start—assumed-
The displacements sy, of the displayed cyan boxes from where the real obstacles were

at tscan—begin are:

58boa: = (tred—sta'rt—assumed - tscan—end) X Vgssumed (75)

where vgssumed refers to the speeds of the obstacles from the perspective of the planner.
In comparison, the displacements ds,pstacie Of the displayed real obstacles from where

they were at tscan—pegin are:

ISobstacte = (tred—start—assumed + Otpassed— from—red—start—assumed — Lscan—begin) X Ureal
(7.6)
where v, refers to the real speeds of the obstacles. It is straightforward that 6tscan—generate,
0t passed— from—red—start—assumed and the difference between vyssumed and vy.eq result in the
location differences between the displayed cyan boxes and real obstacles. In future work,
Otscan—generate Should be taken into account in the specification of the time when the

obstacles are scanned.

7.4 Comparison to the State of the Art

As it is difficult to compare the performances of different motion planning strategies
in the same experimental setting, the planners are compared with each other here only
in terms of some specific features which play an important role in determining the
performance of motion planners in handling traffic scenarios. In [22], there is a thorough
discussion about the important features of motion planners and a detailed comparison

of the motion planners that exist at the moment when the work proposed in [22] came
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Track Vehicle | Speed | Travel | Duration] Examples
obstacles | limit | distance (s)
(m/s) | (m)

Avus-0 (Figure 7.16) 33 30 18963 1312 Figure 7.20
Avus-1 (Figure 7.16) 0 30 19473 1040 | Figure 7.21
Avus-2 (Figure 7.16) 0 50 19512 882 Similar to
Figure 7.21

Dahlem (Figure 7.17) 0 30 4414 390 Figure 7.22
Freiburg (Figure 7.18) 0 30 6555 1476 | Figure 7.23

Table 7.1: General information of the road network experiments. The demon-
strated travel distance and duration are an average of those covered by the
motion planner and the path planner. The slight variation of the coverages of
the two planners can be ignored.

Track Distance Distance Distance Heading Heading
jerk level jerk level jerk level jerk level jerk level
(motion (motion (path (motion (path
planner, planner, planner, planner) planner)
expected- simulation- | simulation-
jerk based) based)
based)
Avus-0 0.46 63 61 0.173 0.000833
Avus-1 0.34 65 21 0.00235 0.000105
Avus-2 0.54 59 105 0.0049 0.000124
Dahlem 0.59 35 15 0.0008 0.000159
Freiburg 0.358 136 30 0.0033 0.00027

Table 7.2: Jerk levels of the trajectories generated by the proposed motion

The

planner and the path planner in driving the vehicle in road networks.
demonstrated jerk level is generated by normalizing the jerk level calculated
based on Equation 7.4 by the travel duration.

into being. Figure 7.24 compares different motion planners that are still active in the

literature and relatively mature at the moment when this thesis is written.

7.5 Summary

This chapter assessed the proposed motion planner according to the common criteria for
evaluating motion planning strategies. Some experiments were carried out to examine
the capability of the proposed planner in dealing with time-critical traffic scenarios and
navigating the vehicle around the road networks. A comparative evaluation was also
conducted to compare the proposed planner with the state of the art.

As is observed in the experiments, the generation of the simulated sensor data is

slowed down by the application of the motion planner. That is because both of the
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sensor simulation and the state lattice construction exploit the computational resources
of the GPU. Future work may consider using separate GPU devices for these two tasks.

It should be pointed out that the realistic level of the simulation determines the
reliability of the validation result. As mentioned earlier, some physical properties of
the vehicle that are demonstrated when it is running at high speed are not yet taken
into account in the simulation model of the vehicle. Consequently, the cost functions
and their parameters adopted in the current implementation of the planner might still
be subject to further adaptations according to the result of real-life tests. Besides, the
absence of a noise model in the simulated sensors contributes to the unrealistic level of
the sensor data, which should be addressed in future work.

In sum, the proposed motion planner demonstrates flexible and robust performance
in most experiments. However, the computational complexity is still not so satisfactory

which requires further improvements.
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(a) A pedestrian leaps into the view of the vehicle suddenly (a snapshot from
the perspective of the vehicle).

(b) The trajectories that are currently executed by the vehicle at the moment when
the pedestrian is located.

(e) The vehicle at the end of the evasive manoeuvre.

Figure 7.10: The trajectories generated by the proposed planner in handling an
emergency scenario. In each picture, the red line refers to the plan generated
by the last planning cycle and is currently executed by the vehicle. The cyan
line is the plan that is a planning cycle older than the red one. The green point
indicates the predicted starting position of the vehicle for the red plan. The
cyan box is the bounding box of the pedestrian used in the construction of the
cost map of obstacles. The several layers of points are the spatial samples of
the planning horizon where the red plan is generated.
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Figure 7.11: The trajectories of curvature, speed, acceleration and jerk for the
double lane change. The green and blue curves correspond to the red and cyan
plans in Figure 7.10(c), respectively. The short red curves record the five-second

tracking result of the vehicle.

-

Figure 7.12: An example scenario where the ego-vehicle is required to merge
into the traffic on the neighbouring lane.
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()

Figure 7.13: The merging behaviour when there is no designated lane for the
planner, and the criterion of time efficiency is given top priority. See Figure 7.10
for the meanings of the points and curves.

Figure 7.14: The merging behaviour when the neighbouring lane of the accel-
eration lane is designated to the planner as the target lane. See Figure 7.10 for
the meanings of the points and curves.
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Figure 7.15: The trajectories of curvature, speed, acceleration and jerk cor-
responding to the plans shown in Figure 7.14(a). The green and blue curves
correspond to the red and cyan plans in Figure 7.14(a), respectively.

Figure 7.16: Road network Awvus.
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Figure 7.17: Road network Dahlem.

Figure 7.18: Road network Freiburyg.
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(a) The acceleration oscillation caused by the (b) The acceleration oscillation caused by the
controller for the motion planner. controller for the path planner.

Figure 7.19: The acceleration oscillation that appears when the controller tries
to keep the vehicle at a constant speed.
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Figure 7.20: The vehicle traverses through the moving traffic along road network
AVUS. See the notes of Figure 7.10 and Figure 7.11 for the meanings of the
points and curves.
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Figure 7.21: A trajectory example generated when the vehicle runs in road
network Avus with no obstacles. The speed limit is 30 m/s. The points located
on the trajectories are the spatial samples that compose the underlying paths of
the trajectories. See the notes of Figure 7.10 and Figure 7.11 for the meanings
of other points and curves.
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Figure 7.22: A trajectory example generated when the vehicle runs in road
network Dahlem with no obstacles. The speed limit is 30 m/s. See the notes of
Figure 7.21 for the meanings of the points and curves.
40 — Speed
32 _|
24 _|
16 __|
8 _]
o t(s)
I | -
o 1 2 4 5
: 7 Acceleration
3 _]
2
-  E—
¢ — == -
=1 I [ I |
S0 1 2 4 5
4
-5

Figure 7.23: A trajectory example generated when the vehicle runs in road
network Freiburg with no obstacles. The speed limit is 30 m/s. See the notes
of Figure 7.21 for the meanings of the points and curves.
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Proposed
planning cMuU/ CMU/ CMU/ Karlsruhe
strategy Mcnaughtonf Xu Gu & Stanford

Deliberative approach;
explicitly evaluate Yes Yes Yes Yes Yes
candidate trajectories

Contain multiple lateral

. S . Y
shifts in one trajectory Yes Yes Yes Yes o

Contain multiple phases of
deceleration and acceleration Yes Yes Yes Yes Yes
in one trajectory

Possibility of scaling

performance with parallel Yes Yes Yes Yes Yes
computation
Hard real-time response Yes Yes Yes Yes Yes

Planing consistently in road
networks with various Yes Some N/A N/A Yes
road layouts

Smooth trajectories Yes Some Yes Yes Yes

Figure 7.24: Comparison of the proposed planner (the fist column) against the
state of the art. “CMU/Mcnaughton” , “CMU/Xu”, “CMU/Gu” refer to the
works proposed in [22], [24] and [25] respectively. “Karlsruhe & Stanford” refers
to the similar planners presented in [16] and [15].






Chapter 8

Conclusions

8.1 Conclusions

The proposed motion planner can generate reasonable plans in most simulated traf-
fic scenarios. It employs a state lattice to construct tens of thousands of candidate
trajectories and selects the best constraint-abiding one based on a set of cost criteria.
The candidate trajectories can vary from one represented by a straight path associated
with a single acceleration profile to one containing multiple lateral shifts and multiple
phases of acceleration and deceleration. Such trajectory diversity can help to enhance
the flexibility of the planner and the extent of global optimality of its plans.

The spatial planning horizon specified by the planner may not have a uniform width
along its lateral reference. That is, it can consist of multiple segments whose widths can
be different from each other. This feature helps the planner to adapt to various road
layouts easily and to generate plans consistently.

During the construction of the state lattice, the path edges are associated with the
acceleration profiles to generate trajectory edges. The types of the applied acceleration
profiles and the association strategy play an important role in determining the feasibility
of the constructed trajectories. Acceleration cubic polynomials and constant accelera-
tions are applied in the proposed planner. The adopted association scheme makes it
possible to span one acceleration profile over several trajectory edges, which, together
with the applied smooth acceleration profiles, helps to enhance the feasibility of the
trajectories.

In the construction of cost maps of obstacles for the trajectory evaluation, the ob-
stacles need to be dilated to compensate for the vehicle shape. The dilation scheme
proposed in [22] is adopted in this work. The main idea of this dilation strategy is that
the maximum deviation of the heading direction of the vehicle from parallel to the center
line of the travelling road is assumed to be six degrees. A novel approach is proposed
in this work to analyse the sufficiency of this dilation strategy from the perspective of

excluding all the trajectories that are practically not traversable.

159
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As the experiments in which the performance of the proposed planner is evaluated
are conducted in a simulation environment, the reliability of the evaluation depends
largely on the realistic level of the simulation. To that end, the scanning sensors are
also simulated for the experiments. The simulated sensor data can be used by the
obstacle detection and tracking modules in the same way as the real-life sensor data.
In this way, more realistic judgements about the surrounding traffic can be generated
which can help to explore the real performance of the planner. The simulation uses
the programmable shaders in the rendering pipeline of OpenGL to record sensor-related
data. Such implementation takes advantage of the parallel processing power of the GPU
and thus enhances the computational efficiency of the generation process of the simulated
sensor data. A novel macro-micro approach is proposed which can increase the accuracy
of the simulated sensor data without hampering the computational efficiency.

An obvious next step is to design and embed a scenario reasoning module in the
current planning architecture. Such scenario reasoning module is necessary for provid-
ing far-sighted guidance for the short-sighted planner. In addition, the current obstacle
prediction module should be further improved in order to provide sufficient prediction
of the future route of the traffic, which is crucial for the effectiveness and safety of the
trajectories generated by the motion planner. Besides, a more sophisticated controller
that can translate a constraint-abiding plan into a sequence of effective actuation com-
mands is also necessary. As is mentioned in Chapter 5, the controller designed in this
work can only be effective in controlling a nonholonomic vehicle model. Consequently,
it cannot be tested whether the trajectories generated by the proposed planner can be
well followed by the vehicle dynamics at very high speed. Theoretically, as long as the
plans satisfy the constraints of vehicle dynamics, they should be correctly executed by
the vehicle. What will exactly happen practically and what constraints should be taken
into account are still subject to further investigations. Only with a high advanced vehi-
cle model or even a real vehicle can the limits of the vehicle and the planner be further
tested. In order for more realistic experiments to be carried out safely and effectively,
a sound scenario reasoning module, a good enough module for predicting the future
routes of the traffic participants and an advanced controller are necessary. The feed-
backs gathered in the experiments can guide the further improvements of the proposed

planner.

8.2 Future Work

Several advices have been suggested for future work in the previous chapters. The main

ideas of them are summarised in the following.
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8.2.1 Adaptive State Lattice

The state lattice is constructed based on the spatial horizon. The principles that guide
the current method of specifying the spatial horizon might sometimes result in a spatial
horizon with segments that are unnecessarily short. Specific heuristics can be designed
to remove such segments in future work.

A non-uniform sampling of the spatial horizon should be considered for the construc-
tion of the state lattice in future work. Such non-uniform sampling should make sure
that all the center lines of the lanes in the spatial horizon should be sampled, which is
beneficial in improving the consistency of successive state lattices. It should also guar-
antee that it is easy to incorporate arbitrary position into the set of spatial nodes, which
is useful for designing trajectories that can reach a target speed at a target location.

It is necessary to make the sampling units and connectivity patterns of the state
lattice adjustable in runtime. In this way, a feasible and traversable trajectory can be

discovered as much as possible, which helps to guarantee a certain level of completeness.
8.2.2 [Efficient, Effective and Consistent Cost Maps

The analysis of the sufficiency of the assumed amount of dilation needs to be automated.
Once it is automated, it can be employed to discover the minimum number of dilations
that are required to provide sufficient safety checking. Based on such information,
a minimum number of cost maps are necessary to be constructed. In this way, the
efficiency and effectiveness of the cost maps can be improved.

Further, it is better to apply adaptive sizes of the submaps of the cost maps. The
small, fixed submap size applied in the current implementation of the proposed planner
is not necessary when, for example, the vehicle drives on a straight road.

Measures should be taken to guarantee a certain level of consistency between the
cost maps for successive planning horizons where it is possible to do so. This is helpful

in improving planning consistency.
8.2.3 Trajectory Feasibility

Only curvature cubic polynomials are applied in the current implementation of the
proposed planner. Higher-degree polynomials should be considered for representing the
path edges as the trajectories composed of them can achieve the continuity in higher-
order derivatives of the curvature with respect to arclength.

As for the speed trajectory, more diversified acceleration profiles should be consid-
ered, such as the acceleration profile for the vehicle following behaviour. The practical
duration necessary for the vehicle to transit from one acceleration to another needs to
be further identified.

A lightweight post-optimization of the generated trajectories should be implemented

to further increase their smoothness.
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A proper compensation for the planning latency is necessary for guaranteeing a
certain level of consistency between the trajectories generated in successive planning
horizons. At the moment, the amount of compensation is fixed, which is a flawed
assumption. Heuristics need to be discovered that can be used to predict the planning
duration using the information such as the starting state of the vehicle and the road
layout. More accurate compensations can thus be applied. Besides, the latency caused
by the controller and the vehicle’s execution of the actuation commands should be

identified and considered in the forward simulation of the vehicle dynamics.
8.2.4 Computational Efficiency

In future work, all the planning phases within one planning cycle should be implemented
on the GPU, such as the constructions of cost maps and path edges. The computational
cost of the construction of the state lattice should be further decreased. The execution
parallelism and the instruction output of the threads launched for constructing and
evaluating the trajectory edges need to be further maximized in order to make full use
of the parallel computing power of the GPU.

Regarding the simulation experiment, the frequency of the generation of the simu-
lated sensor data is still intolerably low when the number of objects that are present
in the simulated scenario is large. Simulation strategies that can further decrease the
computational cost should be developed.

As both of the planner and the simulation of the scanning sensors exploit the com-
putational resources provided by the GPU, when they work at the same time, both of
them are somehow slowed down. Consequently, future work can consider executing the

two tasks on separate GPUs.
8.2.5 Realistic Simulation

The simulation consists of modelling the vehicle dynamics, the traffic environment and
the scanning sensors. These three aspects all require further improvements.

The simulation of the vehicle dynamics should take into account the complicated
vehicle dynamics at high speed, the delay in executing the actuation commands, etc.

Regarding the simulation of the traffic environments, more realistic interactions be-
tween the traffic participants should be considered.

In terms of the simulation of the scanning sensors, the first task might be validating
the simulated sensor data against the real-life sensor data. Should the discrepancy
between the simulated and virtual sensor data turn out to be intolerably large, a full-
featured simulation that can consider the potential effect of physical phenomena on
the returned signals can be designed. Another alternative is to simulate the sensor data
based on given ground truth data. Furthermore, noises should be added to the simulated

sensor data to increase the realistic level of uncertainty of the sensing system.
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8.2.6 Realistic and Complicated Experiments

As is mentioned in the previous section, a scenario reasoning module which can provide
long-term goals for the planner to follow is necessary for adapting the behaviour of the
planner to scenario-dependant requirements. Embedding the scenario reasoning module
in the planning architecture is a task in future work. The embedding strategy that is
suggested in Section 5.2 can be employed. To design an effective scenario reasoning
module, the requirements of various traffic scenarios should be investigated. Besides,
testing and adjusting the optimal parameters of the cost functions for each scenario
requires a lot of engineering efforts. To that end, this process needs to be automated
using techniques such as machine learning.

Besides, a module that can give a rather accurate prediction of the future route of
the moving traffic is necessary. Such module is essential for an effective motion planner.
As a matter of fact, one of the major advantages of a motion planner in comparison
with a path planner is its capability in handing time-critical traffic scenarios, where an
accurate prediction of the future trajectories of the traffic participants is indispensible.

In addition, a more advanced controller is necessary that can consider the compli-
cated vehicle dynamics at high speed in its generation of the actuation commands. Fur-
ther, an emergency handling module should be designed and equipped as a safety layer
in the planning architecture. With a wise scenario reasoning module, a sophisticated
controller and a powerful emergency handling module, more realistic and complicated

experiments can be effectively and safely carried out.
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