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Abstract

This work concerns the zero Mach number limit of the compressible primi-

tive equations. The primitive equations with the incompressibility condition are
identified as the limiting equations. The convergence with well-prepared initial
data (i.e., initial data without acoustic oscillations) is rigorously justified, and the

C

onvergence rate is shown to be of order O(e), as ¢ — 0t, where ¢ represents

the Mach number. As a byproduct, we construct a class of global solutions to the

C

ompressible primitive equations, which are close to the incompressible flows.
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1. Introduction

1.1. The Compressible Primitive Equations

The compressible primitive equations [see (CPE)] are used by meteorologists to

perform theoretical investigations and practical weather predictions (see, e.g., [45]).
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In comparison with the general hydrodynamic and thermodynamic equations, the
vertical component of the momentum equations is missing in the compressible
primitive equations. Instead, it is replaced by the hydrostatic balance equation [see
(CPE)3], which is also known as the quasi-static equilibrium equation. From the
meteorologists’ point of view, such an approximation is reliable and useful for two
reasons: the balance of gravity and pressure dominates the dynamics in the ver-
tical direction, and the vertical velocity is usually hard to observe in reality (see,
e.g., [59, Chapter 4]). On the other hand, by formally taking the zero limit of the
aspect ratio between the vertical scale and the planetary horizontal scale, the au-
thors in [22] derive the compressible primitive equations from the compressible
hydrodynamic equations. Such a deviation is very common in planetary scale geo-
physical models, which represents the fact that the vertical scale of the atmosphere
(or ocean) is significantly smaller than the planetary horizontal scale. We refer, for
more comprehensive meteorological studies, to [59,66].

As far as we know, there are very few mathematical studies concerning the
compressible primitive equations (referred to as CPE hereafter). Lions, Temam,
and Wang first introduced CPE into the mathematical community in [45]. They for-
mulated the commonly known primitive equations (referred to as PE hereafter) with
the incompressibility condition as the representation of the compressible primitive
equations in the pressure coordinates (p-coordinates) instead of the physical ones
with the vertical spatial coordinate. On the other hand, as mentioned before, the
authors in [22] introduce these equations with a formal deviation, and a rigorous
justification is still an open question for now. In [22], the stability of weak solu-
tions is also investigated (see also [63]). The stability is meant in the sense that a
sequence of weak solutions, satisfying some entropy conditions, contains a subse-
quence converging to another weak solution, i.e., a very weak sense of stability.
The existence of such weak solutions is recently constructed in [49,65] (see also
[21,30] for the existence of global weak solutions to some variant of compress-
ible primitive equations in two spatial dimension). In [50], we also construct local
strong solutions to CPE in two cases: with gravity but no vacuum; with vacuum but
no gravity.

In analogy to the low Mach number limit in the study of compressible hydrody-
namic equations, this and our subsequent works are aiming to study the low Mach
number limit of the compressible primitive equations without gravity and Coriolis
force. It is worth mentioning that while taking into account the Coriolis force would
not change much our proof, considering gravity in our system causes challenging
difficulties. Let & denote the Mach number, and let p® € R, v¢ € R2, w® € R be
the density, the horizontal and the vertical velocities, respectively. System (CPE),
is obtained by rescaling the original CPE, which is similar to the rescaling of the
compressible Navier—Stokes equations (see, e.g., [27]): in 5 x 2T:

9; p% + divy, (p%v%) + 9, (p°w®) = 0,
9 (pv®) + divy (p°v® ® v°) + 3 (p°w*v®)
1
+ 8—2VhP(,0£) = divy S(v®) + 9;;v%,
9;P(p®) =0,

(CPE)
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where P(pf) = (p°)” and S(v¥) = u(Vyve —i—VJvE) + (A — w)divy, veI, represent
the pressure potential and the viscous stress tensor, respectively, with the shear and
bulk viscosity coefficients . and A — . + %M =i— % 1. The physical requirements
of u, ,y are A — %/L > 0, u > 0 and y > 1. Moreover, we focus our study
on the case when €, := T? C R?, and we study (CPE) subject to the following
symmetry:

v® and w® are even and odd, respectively, in the z-variable. (SYM-CPE)

Consequently, solutions to (CPE) satisfy the following physical stress-free and
impermeability physical boundary conditions:

3,0 =0, w’| =0. (BC-CPE)

z=0,1 z=0,1

Hereafter, we have and will use Vy, divy, and Ay, torepresent the horizontal gradient,
the horizontal divergence, and the horizontal Laplace operator, respectively; that
is,
Ox . .
\ 5. ) divy, =V}, Ap :=divy V.
y

We recall the incompressible primitive equations: in €25, x 2T,

divy vy + 0w, =0,
00 vp +vp - Vv, + wpdsvp) + Vi(cZpor)

. (PE)
= uApvp + AVidivy vy + 9;,0p,
8.(c2p1) = 0,
subject to the following symmetry:
v, and w), are even and odd respectively in the z variable. (SYM-PE)

We will show that the asymptotic system of (CPE), as ¢ — 07, is the incom-
pressible primitive equations (PE), with cs2 = ypg ~!and po = constant. Here p;
is the Lagrangian multiplier for the constraint (PE); satisfying

/ o1 dx = 0. (1.1)
Q x2T

In addition, due to the conservation of linear momentum of (PE), we can impose
the following condition for v):

/ vp dxdydz = 0, (12)
Q) x2T

for any time ¢ = 0 as long as the solution exists.

Historically, the limit system (PE), besides acting as the representation of the
CPE in the p-coordinates, is introduced as the limit system of Boussinesq equations
(referred to as BE hereafter) when the aspect ratio between the vertical scale and the
horizontal scale is very small, while the Boussinesq equations are the limit equations
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Fig. 1. The PE diagram

of the full compressible hydrodynamic equations with small Mach number and
low stratification (see, e.g., [44]). That is to say, starting from the compressible
hydrodynamic equations, by taking the low Mach number limit and then the small
aspect ratio limit (referred to as LMSAR), one will arrive, formally, at the BE and
then at the PE. On the other hand, by taking the small aspect ratio limit and then
the low Mach number limit (referred to as SARLM), at least formally, the limit
system of the compressible hydrodynamic equations is also the PE with the CPE
as a middle state. Depending on the order of asymptotic limits, this gives us two
directions from the hydrodynamic equations to the PE, which we will refer to as
the PE diagram (see Fig. 1). The LMSAR part of the PE diagram has been shown
to hold on solid ground in various settings (see, e.g., [3,28,41,55,57]). However,
the validity of the SARLM part is relatively open. In order to fully justify the
PE diagram, we investigate the low Mach number limit of the CPE in this work,
which, as mentioned above, leads to the PE as the limit system. We remark that,
the stratification effect of the gravity has been neglected in this work.

Each of the equations in the PE diagram has its own significance and has been
studied separately in a large amount of the literature. It would certainly be too
ambitious to review all of those works. We refer readers to the study of compressible
hydrodynamic equations in, e.g., the books [23,47,48,54]. As the limit system of
the PE diagram, the primitive equations (PE) have been investigated intensively
since they were introduced in [43-45]. For instance, the global weak solutions
are established in [44]. Local well-posedness with general data and global well-
posedness with small data of strong solutions to the PE in three spatial dimensions
were studied in [33] by Guillén-Gonzélez, Masmoudi and Rodriguez-Bellido. Petcu
and Wirosoetisno in [56] investigated the Sobolev and Gevrey regularity of the
solutions to the PE. In [36], in a domain with small depth, the authors address
the global existence of strong solutions to PE. The well-posedness of unique global
strong solutions was obtained by Cao and Titi in [12] (see, also, [7-11,13,15,31,34]
and the references therein for related studies). Considering the inviscid primitive
equations, or hydrostatic incompressible Euler equations, the existence of solutions
in the analytic function space and in the H® space are established in [5,40,53].
Renardy in [58] showed that the linearization of the equations at certain shear flows
is ill-posed in the sense of Hadamard. Recently, the authors in [6,67] constructed
a finite-time blowup for the inviscid PE in the absence of rotation (i.e., without the
Coriolis force).
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In this work, we show that the PE can be viewed as the limit system of the CPE
with the zero Mach number limit. The zero Mach number limit of the compress-
ible hydrodynamic equations is a vast subject which has been studied for decades.
Fruitful results have been obtained since the early works of Klainerman and Majda
in [38,39], where the authors investigate the vanishing Mach number limit of com-
pressible Euler equations with well-prepared initial data (see also [61,62]). Later
Ukai [64], the theory of low Mach number limit of compressible Euler equations
extended to ill-prepared initial data (or called general data in some literatures). We
remark here that the difference between the well-prepared and ill-prepared initial
data is that the well-prepared initial data have excluded the acoustic waves, while
the ill-prepared initial data allow the interaction of the solutions with the high-
frequency acoustic waves. In R”, n = 2, 3, such high-frequency acoustic waves
disperse as shown in [64], which implies strong convergences as the Mach num-
ber goes to zero. This can be also proved by applying Strichartz’s estimate (see,
e.g., [4,14,32,37,42]) for linear wave equations to the acoustic equations (see, e.g.,
[20]). In T", n = 2, 3, the high-frequency acoustic waves interact with each other
and lead to fast oscillations and weak convergences when taking the low Mach
number limit. Such a fast oscillation phenomenon was first systematically studied
in [29,60] for hyperbolic and parabolic systems, and by Lions and Masmoudi for
compressible Navier—Stokes equations in [46]. We refer, for the comparison of the
whole space case, i.e., in R" and the periodic domain case, i.e., in T", to [52]. See
also [16—-18] for the studies in the Besov spaces. We acknowledge that the discus-
sion here barely unveils the theory of the low Mach number limit, and we refer the
reader to [1,2,19,24-28,55] and the references therein for more comprehensive
studies and recent progress.

In this work, we will focus on investigating the low Mach number limit of
(CPE) with well-prepared initial data. The convergence of the solutions of the CPE
to the solution of the PE is in the strong sense. Furthermore, we are also able to
obtain explicit convergence rate (see Theorem 1.2). In particular, we obtain a class
of global large solutions to (CPE) with & small enough.

We remark that in an upcoming paper [51], we will consider the low Mach
number limit of (CPE) with ill-prepared initial data, i.e., initial data with large,
high-frequency acoustic waves.

1.2. The Low Mach Number Limit Problem and Main Theorem

In order to describe the aforementioned asymptotic limit, we study (CPE) with
(0, v®, w®) close to an asymptotic state (oo, v, wp), Where (g, v, w)) satisfies
(PE). For any ¢ > 0, the following ansatz is imposed:

p° = po +e&°p1 +&°,
Ve =, + PO, (1.3)
w® = w, + Y.
Recall that p; has zero average in the domain [see (1.1)]. This is motivated by [35].
The term &2 p; is to capture the cancelation in system (1.4). In addition, we shall
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employ the notation
¢ = e?p1 +£° = p° — po.
For the sake of convenience, from time to time hereafter, we may drop the
superscript ¢ from the functions. Consequently, from (CPE) and (PE), the new
unknown (£, ¥", ¥%) is governed by the following system:

€ + po(divy Y" + 8,97 = —(divy (Ev) + 9:(Ew))
— e2(d;p1 + divy, (p1v) + 3-(p1w)) in © x 2T,
PV + pv - V! + pwd " + V(e T2 (p? — pf — e*cipr))
= wApY" + AVidivy Y + 39" + oy (21 + £)
x (Vi(c2p1) — pApvp — AVpdivy vy — 9:20,)

— pyY" - Vyv, — p¥r?d,v), in ©;, x 2T,
0,£=0 in 5, x 2T.
(1.4)

Observe that, owing to the symmetry in (SYM-CPE) and (SYM-PE), the following
conditions hold automatically:

(v, ;0. 9:9™)|_py =0, (W, wp, Y|, =0, (1.5)
for smooth enough functions. Recalling that c? = y,og ! , we note that

o

—1 _

P’ —py —ectoi=vypl (p—p)+yy =D [ (p—y)y' Pdy—ecip
00

= 035 +R,

where

o
R=R@&) =y - 1)/ (p— Wy 2dy SCP S ClE* o + 80, (L6)
P0

with C = C( H pY 2 H oo | pg_z H 10)- Therefore, by denoting

0, = py  (Vi(cpr) — nApvp — AVidivy vy — 32,0p),
F1:=¢0,,

Fri=—pyh. Vv — prto,vp, (1.7)
G1 = —(divy (¢v) + & (Ew)),

Gy 1= —&2(3,p1 + divy, (p1v) + - (p1w)),

we can write system (1.4) as

& + po(divy, ¥ + 3,95 =G + G in Q x 2T,
POY" + pv - Vi + pwd Y + Vi(e77ciE) = pApy”

+ AV divy, Y + 0t + Fi + Fr — Vi (e 2R) in ), x 2T,
3,6 =0 in Q) x 2T.

(1.8)
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In order to recover the vertical velocity perturbation yr%, we introduce the fol-
lowing notations, for any function f in €2;, x 2T, which is also even in the z-variable:

1 ~
Ty 1) :=/O Fry. 2 0)dZ and T = f— 7.

The periodicity and symmetry of f imply that f(x, y, 1) = kk+] fx,y,7,0)d

for any k € Z. Notice that from (CPE)s3, p is independent of the vertical variable z.
Then by averaging (CPE); over the vertical direction, thanks to (1.5), one will get
d:p + divy (pv) = 0, and after comparing with (CPE)1,

divy, (o) + 9;(pw) = 0.

In particular, from the above, the vertical velocity w is determined through p, v by
the formula, thanks to (1.5):

Zz _
pw = —/ (pdivh vp + pdivy wh — pdivy, Y +v - Vyp
0

— V- Vyp)dZ, and therefore (1.9
z —_
ot == [ (@ (o3 + 3, - Vi) ' (1.10)
0

where we have substituted the following identity thanks to (PE); and (1.5),

Z
wy = —/ divy, v, dz’. (1.11)
0

Such facts imply that in (CPE), (PE) and (1.8), the vertical velocities and the vertical
perturbation, i.e., w®, w,, ¥**, are fully determined by v*, v, p°. Therefore, there
is no need to impose initial data for w®, w,, ¥**.

System (1.8) (or equivalently (1.4)) is complemented with initial data,

E VM| _y = En. vl € HA () x 2Ti R) x H* () x 2T; R?), where

0.&, =0, and wi}; is even in the z-variable,
(1.12)
with the compatibility conditions

Eint = —po(divy Yl + 8:¥5) + Grin + Gain  in 2 x 2T,
PinWin,t OV - Vi + iy wi, 020, + V(eT2¢18) = nany,
+ AVdivy Yl 4+ 09t Fiin + Fain — Vi(e™*R)  in @ x 2T,
8Z§i,, =0and azém,] =0 in Qh X ZT,
with (&1, Yl ) € L2 x 2T) x L2(Q x 2T),
(1.13)
where pf, = po + €2p1,in + &in, V5, = Vpin + ¥l WE = wpin + ¥, and ¥,
is given by

Z —_—~
P = — /0 (divi (P, W) + Tpin - Vipl,) dz'.
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Here vy in, P1,ins PL,in,1> Wp,in, Gi,in, Fiin are initial values of v, p1, 0;p1, wp,
Gi, Fi,i € {1, 2}, respectively, while w, ;, is givenby w ;, = — foz divy vp in dz’.

It is worth stressing that we will choose the initial time derivatives of the pertur-
bations, i.e., (s’]ém,l, wi}; ) in (1.13), to be bounded, uniformly in ¢ [see (1.14)
and Theorem 1.2]. The reason for such choices of initial data is to exclude the
high-frequency acoustic waves which corresponds to the fact that our initial data
are well-prepared.

We denote the initial energy functional by

Ein = 11V g2 + Nevhallie + e 8l + 6 172 (14)

Remark 1. (o}, v;,) is the corresponding initial datum of (p®, v®) for system
(CPE). v, is the initial datum of v, for system (PE). Accordingly, po1,;n =
PLin(X,¥), Plin.1 = P1,in,1(x, y) are determined by the following elliptic prob-
lems:

1 5. . .
—c2Anp1in = po Jy divy (divy (Up.in ® Vp.in)) dz in p,
Ja, P1indxdy = 0;

1 .. .
—c2Anp1in1 =20 fy diva (divy (Vp.in ® Vpin,1)) dz
in 2, th Pl,in,1 dxdy =0,

where v, ;1 is the initial value of d;v,, determined by

POVp,in,1 = _:OO(Up,in : thp,in + wp,inazvp,in) - Vh(Cz;Ol,m)
+ ARV in + AVipdivy vy in + 02Vp s In Q2 X 2T.

As we stated before, we focus in this work on the asymptotic limit as & — 0.
We have the following global regularity of the limit system (PE):

Theorem 1.1. (Global regularity of the PE) For A < 4u < 12X, suppose that (PE)
is complemented with initial data v) i, € Hl(Qh x 2T), which is even in the
z-variable, and satisfies the compatibility conditions

/‘ Vp.in dX =0, divy, Ty in = 0. (1.15)
Q% 2T

Then there exists a solution (v, p1), with fol divy vy dz = Oand w), given by (1.11),
to the primitive equations (PE). Moreover, there is a constant Cp, i, depending only
H Vp,in H 1 such that

2 2 > 2
o (Il + o) + [ (170

(1.16)
+H&%aw;)m§cwm
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Moreover, 5 5
—ct
[op® 12 = Ce [vpin] 2
for some positive constants ¢, C. In addition, if vy, € H* (R x 2T) for any
integer s 2 2, there is a positive constant C, i, s, depending only on || Vp.in
such that

sup (Ion) 5+ oy 2) + [ (1200
< 0

0sr<oo

s

(1.17)
+ || vy (1) ||i]v1> dr = Cplins-

Proof. The local well-posedness of solutions to (PE) in the function space H® has
been established in [56]. What is left is the global regularity estimate, which is a
direct consequence of Proposition 3. O

Remark 2. We only have to be careful about the different estimates caused by the
viscosity tensor. In particular, it is the L9 estimate of v p» below in Section 5, that
requires the constraints on the viscosity coefficients. For solutions with H? initial
data, the result can be found in [41]. The new thing we treat here is the case when
Vp,in € HY, fors > 2.

Remark 3. The regularity of p; can be obtained by solving elliptic problem (4.1).
Now we can state our main theorem in this work.

Theorem 1.2. (Low Mach number limit of the CPE) For A < 4u < 12X, sup-
pose vpin € H* (2, x 2T), with integer s 2 3, and it satisfies the compatibility
conditions (1.15). Also, we complement (1.8) with initial data (&°, 1//8'h)|t=0 =
Ein, 1) € H2(Qy x 2T) x H*(Qp x 27T) as in (1.12), which satisfies the com-
patibility conditions (1.13). Recall that we also require vy ip, 1//1.};! to be even in the
z-variable. Then there exists a positive constant gy € (0, 1) small enough, such that
ife € (0, g0) and &, < €2, there exists a global unique strong solution (£°, y&™)
to system (1.8). In particular, the following regularity is satisfied:

£° € L(0, 00; H* (S x 2T)),

35 € L0, 00; L2(2, x 2T)) N L2(0, 00; L* (2 x 2T)),

ViE® € L0, 00; H' () x 2T)), ¥*" € L¥(0, 00; H*(Q4 x 2T)),

S € L0, oo; L2(Q2, x 2T)) N L2(0, oo; H' (924 x 2T)),

vyl e L2(0, 0o; H2(S2, x 2T)).

In addition, we have the following estimate:

sup {W”(r)ﬂ?{z +[leay= @) || 32 + |7 E 0| 32

0=r<oo

+||8zég<t>||iz}+f0 {||w€’h<r>||§,z+||aatw8*h<z>;|§,l (118)

+ eI Vig @ || 5 + | agc @) lliz} dr < Cé?,
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for some positive constant C depending only on || Up.in H 3> Which is independent
of e. In particular, (p%, v&, w®) as in (1.3) is a globally defined strong solution to
(CPE) and the following asymptotic estimate holds:

sup { |5 (1) = vp ) || 32 + || 050 = 0] 32
0<r<00

(1.19)
+ - w0 ] < 0

for some positive constant C depending only on || Vp.in H 3> Which is independent

of &, where w®, w, are given as in (1.9), (1.11), respectively.

Remark 4. According to (1.18), the time derivatives, in comparison to the spatial
derivatives, have larger perturbations. However, thanks to the well-prepared data
setting, they are bounded.

This work will be organized as follows: in Section 2, we summarize the notations
which will be commonly used in later paragraphs. Section 3 focuses on the &-
independent a priori estimates, which are the foundation of the low Mach number
limit. In Section 4, we focus on the proof of Theorem 1.2. This will be shown
through a continuity argument. Finally in Section 5, we summarize the proof of
Theorem 1.1.

2. Preliminaries

We use the notations

/-dfé:/ -dx ::/ ~dxdydz, / -dxdy
Q,x2T Qpx2T Q

to represent the integrals in €2 and €2, respectively. Hereafter, 05, € {0y, dy} repre-
sents the horizontal derivatives, and 9, represents the vertical derivative.

We will use | ) HH to denote norms in €, C R? and €, x 2T c R3,
respectively. After applying Ladyzhenskaya’s and Agmon’s inequalities in €2, and
Q, directly we have

Fle S CLALZ I + |l [ f ] S CLELE AL
[FaPeXd F E A s A

for the function f with bounded right-hand sides. Also, applying Minkowski’s and
Holder’s inequalities yields

@2.1)

o 1
PR RVCIPEEL i PR
and hence ”me < CHfHL‘i’ q €[1, c0).
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Weuse § > Otodenote aarbitrary constant which will be chosen later adaptively
small. Correspondingly, Cs is some positive constant depending on 4. In addition,
for any quantities A and B, A < B is used to denote that there exists a positive
constant independent of the solutions such that A < CB.

The following energy and dissipation functionals will be employed:

ED =W O |5 + vt O3+ e E0 |5 + &3, 22)
D) = |V D) |5 + [[evl @ || 5 + e Vag ) ||
+ &0 |7 2.3)

Then £(0) = &, where &, is as in (1.14). In this work, we shall use Q(&) to
denote a polynomial quantity, with positive coefficients, of V& and Q(0) = 0. In
general, Q(-) is a generic polynomial quantity, with positive coefficients, of the
arguments and Q(0) = 0.

3. e-Independent A Priori Estimate

This section is devoted to show the following:

Proposition 1. For any T > 0, t € [0, T, suppose that the solution (vp, p1) with
w) given by (1.11) to (PE) satisfies

lop@ s [vpe @ 20 [o1® s [To15 O || 21 [[wp @[] 1 = €

T
/O (lopO 35 + vpe O3 + 1ot O |22 + [l |3 G
+ @ |32+ [wp@ |32 + [0p® ]| 42) at < €

for some positive constant C, and
1
P00 <P < 2p0 in (2, x 2T) x [0, T). (3.2)

Then any solution (", €) to (1.8), with initial data as in (1.12), provided that it
exists in the time interval [0, T'], with * given by (1.10), satisfies

T
sup E(1) —i—/ D) dr < '€ O Pozisr 8(1)){82 + Ein
0<t<T 0

T (3.3)

T
+ <82+(82+1)Q( sup 5(;)))/ D(t)dt}
0

0<:t<T

for some positive constant C' depending only on the bounds in (3.1). In particular,
C' is independent of € and T.
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Remark 5. We remark here that, from the definition of £(¢) in (2.2) and (1.3), (3.2)
automatically holds for ¢ small enough if Supg<,<r E(t) < oo and (3.1) holds.

Throughout the rest of this section, it is assumed that (&, ¥"*) with ¥ given
by (1.10) is a solution to (1.8) which is smooth enough such that the estimates
below can be established. To justify the arguments, one can employ the local well-
posedness theory and the standard different quotient method to the corresponding
lines below (replaced the differential operators by different quotients, for example);
see, for instance, similar arguments in [49,50].

We denote by &, () a polynomial, with positive coefficients, quantity of the
arguments

lop@ s [vpe @ 2 [ 21O - ([0 O[] 21 [[0p @] 1.

and

9,0 = [ vpO |3 + [0ps O3 + || 210 || 32 + || 01,0 || 350

(3.4)
+ o152 + [wp@ |52 + 0@ || -

In particular, (3.1) of Proposition 1 is equivalent to

T
sup & ,(1) +/ Hp®)dt < C
0<t<T 0

for some positive constant C. For the sake of convenience, we will shorten the
notations &, = &,(1), H, = H,(t), below. We also remind the reader that we
have assumed that (3.1) and (3.2) hold throughout this section.

3.1. Temporal Derivatives

We start by performing the time derivative estimate to the solutions to system
(1.8). Applying 9; to system (1.8) we will have the following system:

d& + po(divy ¥ + 8,97 = Gi. + Gas in Q; x 2T,
PIYT + pv - Viyl + pwd Yl + Vi (e722E) = nAp Yl
+ AVpdivy Y + 8,0 + Fri 4+ Foy — Vi(e72Ry) +H, in Q) x 2T,
(3.5)
where
Hy = =¥y — (orv + pvr) - V" — (pow + pwy)d . (3.6)

We will show the following:

Lemma 1. In addition to the assumptions in Proposition 1, suppose that (&, y"),
with ¥* given by (1.10), is a smooth solution to (1.8) in the time interval [0, T].
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We have

d
LU 2ot I+ 2] + w2

+ o [ledivi v |12+ [leocvl |7 < sl 12 + levu! ||
+ el 12+ VY [ 50) +2Cs () + &) [[o:" | o
+CE(ew! |52+ V" |3 + & 1172)

+C5(QE) +1+6,)9,([[w" | 3 + [|ev |2 + ).

(3.7)

Proof. Take the L>-inner product of (3.5), with szwth. After applying integration
by parts and substituting (CPE); and (3.5);, we have the following:

d (1 2 o 2 2
Lo ewt I el + lleviost I

waedivi vl 2+ leacwd |2 = [ Al

2 hg= o, —12 = 12 - (3.8)
+ | e F v dx +py cs | EGridx +py oy | &G dx

6
+/82H,~1//,hd)_c'—/vh72t-wthdi =y I
i=1

Next we estimate the right-hand side of (3.8). After substituting (3.6) into /5, it can
be written as

2 - -
—[cz|ew,h| dx —/(e%v VY Yl + v Vi) di
— /(SQC,wSth Yl pwd "yt dE = 4+ 1+ 1L

Notice that ¢ = £2p; + £ is independent of the z variable. Then, for every § > 0
there exists a positive constant Cs such that

1 1
B Nalle [ vt Bodz < s [ (1ontluslemuntlys + lowd ) o
S PR A A PR B PSR A
R PRI P PROTEA

where we have applied the Minkowski, Holder’s, the Sobolev embedding and
Young’s inequalities. On the other hand, I’ can be estimated directly using Holder’s,
the Sobolev embedding and Young’s inequalities:

1 <8 evyl | 5o+ o|evl |72+ Co@E (| Vav |7 + [lewl|172)
+C(QE) + 1+6,) 9, ([|v" |52 + [lew!]|72)-
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On the other hand, from (1.9) (or (1.10)), we have the identities

z _
w=w, —/ (divh Yh 47V, logp> dz/,
0 _ (3.9)
W =wp, — / (divh Ul +7, - Vi log p + 7 - Vi (log p),) dz’.
0

Therefore, I.” can be written as

z ~
1Y = —/sz(g‘twl, +,owp,t)(az1ph Yy di + /|:82f0 (divy, yh

Z ~
+7 - Vylogp)dz x (¢ a 9" - wt")i| dx + /[82/ (pdivy ¥}
0
3
+ T - Vip + p¥ - Viy(log p)) dz’ x (39" - wf')} d =) 15"
i=1

Then, we plug in identity (1.11) and apply the Holder, Minkowski and Young
inequalities to infer

1 b4
15”,/1 S 8/0 [(/0 |VhUP|L8 dz/) X (|§T|L2|azwh|L8|8wth|L4):| dz

1 z

+8/0 [</0 |UN|L2 dZ/) x (|Vhé-|L8|8th|L8|€¢Ih|L4)i| dz
T/ e

+8/0 [(/() |v1’»’|L4 dZ/) X (|p|L00|azvhwh|Lz|8lﬂth|L4

+ o]0 lazllf”\L4\8Vhwf'|Lz)] dz < 8levyl || 7.+ 6 evl |72
+C5(0E) +146,)9,|[v" ]| %

On the other hand, a straight forward estimate shows that

1 1
e [ (1900 ot ol 9 ) [ el sl

Solevl |7 +8llew! |72 + Cso@© [ a:v" ||,
+Cs(QE) + 1+ 6,)9, || v" |72

To estimate /5", we apply integration by parts as follows:
H 2 [T TR ~ o
1§ = /[8 /0 (pdivy ¥/ + 07 - Vip — 50+ Vi log p — §divy, D) dz

x (99" - xp,”)} dx — /[82/(; Gvdz - V(99" w,h)] dx,
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from which we infer
25 [ (1ol et leu e ) o
[ ot lewt vz + [ focr et
S N CORINCE PR I
[ (10 e o+ 90 et )

[ el alol
< 8llevav Iz + 8]l |72 +€2Co (@) + 8,) [ 9! |32
+C @ ([ [+ [1:0" [ 5) + Co(2E) + 1+ 8,)9,
< ([[0" 152+ llewi [172).
Therefore, we have shown
Is £ 8|V |7 8] e |72 +2Co(QE) + &) [ W 2
+Cs0@E (v |12+ V" [[3) (3.10)
+Cs(Q@) +1+8,)9,([[v" |17 + [lev? [|72).
Next, after substituting (1.7) into I, it follows that

L=- / e (p¥" - Vivp + G¥" - Vv, + p¥) - Vi) - 9 dX
- / e (Y 0,0 + G0, + pYidLv,) Yl dY = I+ 1Y

Similarly to before,

15 ol o I Vmvp || pollewt Il s lewi Il 2 +e Nl o oo 1 Vivps | 2
<N o 0 s + e l1Vmop [ e 0" s Nl o llewi 1] s

< Nell e 1mopll 2 (lewt 152 eVt 12+ llewt]172)
e | [ Vavpll 2 (w12 evur 12+ vl ] o)

el Vv L 1" e el 2 w12 v 12 + evi'l] )

<8 eVl || o+ Cs0©) ||evl |72 + C5(QE) + 1+ 8,)9, | vl |3
+&%Cs9,.

On the other hand, after substituting (3.9), I;’ can be written as

z ~
4 =/[52/0 (divh Yh +7.V, logp> dz x ((,oazvp,, + £10;v)) - w,h):| dx
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V4 —~
+ /[82/ (divh Ul + 0, - Vylogp +7- V;,(logp)z) dz
0

 (stcu, b | a5 = 13, + 11

Then we have the following estimate:

1 1
By 5 [ (1900 ol el e [ (oo
el 2 3oy ) o1 ) 2 S 89|

+ G0 | e¥ |72+ Co(QE) + 1+ 8,)5, || ewl |72 + €2Cs5,.

To estimate Ié/ »» we first apply integration by parts as follows:

Z —~
Iy, =f|:€2/0 <,0dth Y+ 0 - Vip — 40 - Vi log p — ¢divy, 5) dz

x (3,0, - w{')} dx — /[sZ(f g,i?dz> V(v - w,h)] dx,
0

which yields, similarly to the estimate of /5",

1
5y 5 [ (1ol W0t 2+ low] e[ ic 1 )
1 1
[ ocvalalevt s dz+ [ ocoplalen?] oo
1
< [ (slelus ol Vs L + el 2ol ) 0
1
# [ (Il e+ Bty e )

1
< [ elalalol o
< o||eVavl |72 + Cs@ ||ew! |72+ C5(QE) + 1+ 6,)9,
x (v |72 +€2).

Therefore,

5 <8 evyl |2+ CsoE) || ev? ||

o (.11
+C5(QE) +1+8,)9,(|[ v || 2 + &%)
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Now, we will estimate /3, which reads as
Iz = —pOICEf(Stdth (:v) + &divy (§vr) + &9 (5rw)

2
+staz<swr>> dx = —;—s f |& | divy, ¢ dx
£0
(3.12)
—py ' f (ézfdth AR AT vhs) d%

<ollevyl 152 +allew! 7 + ol Va2 + Cs0© & |15
+&2Cs9,.

Here we have employed the facts that £ is independent of the z-variable and that

fol divyvpdz = fol divy vp,rdz = 0. The rest is straightforward. For instance,
substituting (1.7) in 7 yields

I :pa] /egt(vh(cfpl) — wApvp — AVydivy v, — 8ZZUP) 'mﬁlh dx

+ ,00_1 /Si(vh(Cfpl,t) — AUy — AVRAiV, Uy — OrzUp ) - eyl d¥

=/oo_1 /s;,(Vh(cfm) — uApvp — AVidivy v, — 8zzvp) . 81/fth dx
—1 2 . h . h
— Py /<8csm,zdwh (Cey,) —euVpvp, : Vi(Gey,)
— exdivy v, divy (Cey!) — 0,0, - az(gewﬁ)) dx
2 2

S8\ evyl || o +8lew! || 2 + &2Cs(QE) + 1+ 8,)H,.

(3.13)
‘We list estimates for 14, I as follows:

Iy = —/00105282/<§r(,01,n + p1,divy " 4+ v - Vipr )

+ & (prdiv Y + v - Vhﬂl)) i S 8)\& 7
+ 5] Vil |2 + 8| V" || o + E2C5(QE) + 14+ 8,)9,,  (3.14)
Io < Nl e el 2 Va2 S 8]V |2
+Cs( o[ + 75 152) E lorells + (15 115): (3.15)
where we have used the fact that from (1.6)

p
R =y =D | ey’ 2dy| < lyoe” ™ =0y~ H| £ Cla|g].
PO

Summing up inequalities (3.10), (3.11)—(3.15) and (3.8) completes the proof. O
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The next lemma follows directly from system (1.8), and it shows the estimates
of the temporal derivatives of £, 1" in terms of the spatial derivatives.

Lemma 2. Under the same assumptions as in Lemma 1,

1€ 1|72 < C || Vaw" |52 + 2@ ([ Vav" | 3 + |67 Vg | 30)

+e2C(QE) +1+6,)9,, (3.16)
oot (|72 = Clle™"Vag || 7 + 2C | VU | 3 + 2 Q@) ([l Vit | 3
+ [ VY [130) + £2C(0E) + 1+ &,)9,, (3.17)

for some positive constant C independent of €.
Proof. Indeed, after integrating (1.8); in the z variable, we have, thanks to (1.5),

04 + podiviy Y = —divy, (D) — &% (@ p1 + divy (p1)).
Then (3.16) follows easily after applying the Minkowski, Holder and Sobolev em-
bedding inequalities.

On the other hand, (3.17) follows from (1.8); after substituting
z ~
pwd " = pw,d Y — / pdivy Y1 +7 - V0 dzd y",
0

and applying the Minkowski, Holder and Sobolev embedding inequalities. O

3.2. Horizontal Derivatives

We derive the required estimates for the horizontal derivatives in this subsection.
After applying 9y, = 8,% to system (1.8), we obtain the following system:

d&nn + po(divy ¥y, + 395, = Gran + Gonn in Q,
P, + pv - VYl + pwd Yl + Vi (e 722 En)

A . " " (3.18)
= pnApy, + AVdivy, Yo + 0¥y, + Finh
+ Fanh = V(€2 Run) + Hun in 2,
where
Mo = —onn ¥t = (o0)n - Vid" = (ow)nnd " = 20191, (3.19)
—2(00)1 - Vi — 2(pw)nd: V.-
Lemma 3. Under the same assumptions as in Lemma 1, we have
d 1y 1p,n 2 <y 2 ho||2
AR P Ry e A R LA
hl2 -1 2 h 2
S8V e + e Vnk [ + [le vy (|2 (3.20)

+[lew! 132) + Cs @@ (|| Vo™ | 50 + | e Vg | 31)
+Co(QE) +1+6,) 9, (| v |52+ |78 ] 72 +€2)

for some positive constant C, 3, which is independent of e.
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Proof. Take the inner product of (3.18), with ’»”;IZh and integrate the resultant over
Q. Similarly to before, we will have the following:

d (1 2y
AL P PR P P R A

e r v vl 2+ 100ty = [ P - ol at
+ff2,hh'w;?h d97+,00_103[8_2$hh91,hh dx (3.21)

+py ¢t / &£ 26 Go.nn X + / Hin - iy A3
12

—/vh(e—27zhh)-1p,’;h d¥ =: ) 1.

i=7

Then the lemma follows from careful estimates on the right-hand side of (3.21),
which are similar to those in the proof of Lemma 1. Therefore, details are omitted
here. 0O

Next, we will derive the required estimate of &,. After integrating (1.8), over
z € (0, 1), we have the following equation, thanks to (1.5):

o 1
PO YT +f (ov - Vg — pwzy") dz + Vi(e2cl6)
0

| (3.22)

= wARY" + AVhdivy Y7 — Vi(eTPR) + /(; (F1 + F2) dz.

After applying 9, to (3.22), one has

e eIV = —Lpd Yt — Py

Ry

1
_/o (Chv SVt 4 poy - Viu 4 pu- Vh%?) dz

Ry

1
+/(; (ghwzwh + Pwhzwh + pwzd’}?) dz

R3

N R 1
+ /LAhlﬂ;l' + AV divy, lﬁfl’ - Vh(&‘_th) +/ (.7:1,}1 + .7'—2,;,> dz.
0

Ry

Rs
(3.23)
What we need is to estimate the LZ-norm of the terms on the right-hand side
of (3.23). In fact, after applying the Minkowski, Holder and Sobolev embedding
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inequalities, one has

1 1
e R e PN LA e A

x (a1 v 12+ o | 2) + oll o a2
S Va2 + (e | g + &5 lleor ] o) e0 9" | 2,

1
Rolyx % [ (18] lol e 190+ ol o 7+ D
ol 812 ) 02 5 1€ e+ ) o e 5307

1
Ral 2 5 [ 190" o0z 62l ol + [21[30) S 190
R Y PR P B

On the other hand, after substituting (3.33), and the identity

Whz = Wp.hz — (divy Y +0n - Valog p+7 - Vi(log p)n) = wpne + Vi, (3.24)

we have
1 —
Ry = fo ([wp,z — (divy ¥ + T - Vi log )| (cn " + o)) + p¥" [wp e
— (divy, ¥ + 3 - Vi log p + T - Vj(log p)h)]> dz.

Therefore, one has

1
Ralyo % [ (ol 4 19007 o+ ol i )

X (|§h|L4|wh|L°Q + |p|L°°|w;zl|L4) + |p|L°°|wh|L°°
< (|wpone| 2 + | Vawr | 2 + |va] 4| Vit | 4
+ ol o+ e 1) ) o
S OO Vav" | o +elle Vit | ) + (QE) + 14 6,)5,/%.

After substituting (1.7) and (1.10) and applying integration by parts, we obtain
1

Rs = / (;th +EQpn = " - Vivp — oY - Vivp — p¥" - Vhvpn
0

— (divy Y7 + T Vi log p) (Grvp + ppa)

— (divy, Y+, - Vilogp + 7 - Vi (log p)h)pv,,) dz.
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Hence, applying the Minkowski, Holder and Sobolev embedding inequalities im-
plies

[Rs|,2 S (Q© +14+8,)9,2([v" || 2 +e)-
Summing up these estimates, we get the following inequality from (3.23),
le™ & l72 < &2fe 28ml72 < [levaw" |7,
+ &2 | vyl | 5 + €20 ([|e7 ik [ 3 + [ V9" |15

+[leaw" | 32) + (2 + 14 8,)9,.
(3.25)
We summarize the result in the following:

Lemma 4. Under the same assumptions as in Lemma 1, the following holds:
[E ]
< Cllevay! |2+ e[| Vo' | 7
+e2CO@E(||e™ Ve [ + [ V9" [0 + e[ 12)
+C2HQE) +1+6,)9,,

for some positive constant C independent of €.

(3.26)

Proof. This is the direct consequence of (3.25) and the Poincaré inequality. O

3.3. Vertical Derivatives Estimates

Now we turn to the required estimates of vertical derivatives. To do so, we first
apply 9, to system (1.8) and write down the resultant system as follows:

podivy Y2 + 0,91 = Gi .+ Ga. in Q,
P+ pv - Vg + pwd ylt = pARY! + AVdivy, ! (3.27)
+ Y+ Fi o+ Fo +H, in Q,
where
M. = —pv: - Vpy" — pw . y". (3.28)
Then we apply 9 to system (3.27) again and obtain the following system:
PO(dth wzhz + 8zwé‘lz) = gl,zz + g2,zz in €2,
PV + pv - Vil + pwd Yl = pAyyl + AVidivy, Yl (3.29)
+ azzwzhz + Flzz + Fozz + He in €,
where

Hee i= —pvze - V" = 200, - Vi)' — pwzd " = 2pw .97 (3.30)

Notice, here we have employed the fact that p, &, p1, R are independent of the z
variable. Also (3.29), is a parabolic equation of llfzhz~ Now we perform standard L2
estimate on system (3.29).
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Lemma 5. Under the same assumptions as in Lemma 1, we have
d
A AR LA
2
=Sl 78 ] 7 &3
+C0E VI |7+ Co(QE) + 1+ 6,) 5, ([ 9" |72 + %)

for some positive constant C,, ; independent of ¢.

Proof. After taking the L2-inner product of (3.29), with 1//22, we have the follow-
ing:
d

1 .
L e g e o

2 - -
+[|o:wl || 72 = f Fic - Yl di+ / Foo - Yl di (3.32)

+/sz : 1//zhz dx =: I;3+ La + Iis.

Again, we shall estimate the terms on the right-hand side of (3.32). We begin
with the term /;5. Notice first, after taking 9., 9., to (1.9), we have the following
identities:

w, = wp . — (divy " + 7 Vi log p) = wy - + V7,
Wzz = Wp,zz — (divh Iﬂ? +7; -V, log :0) = Wpzz + 1/,ZZZ
Consequently, after substituting (3.33) in /15, we have that:

(3.33)

hs S e ||¢?ZHL3<||vzz||Lz IV [ o + Noe o [ 9n2 | 2
+ ” Wp,zz ”Lz || 8zwh H Lo + H Vhwzh || L? || azwh H Lo
+ Vi [ s vzl o 199" || o + Nlwp.e |l o 302 ] 1
+ Va0 " || o ll0:92 | o+ [ 9n | o | oo [ 82907 IILz)
S8 vk +slvkl
+C0© | VY 2+ Cs(QE) + 14 8,)5, v [
The estimates of the terms /3, I14 are as follows:
113 = /ng,zz : 1pzhz d)_é = _/gQP,Z ' Ipzﬁzz d)? 5 8”1#?ZZ Hiz
+C5(Q(E) +8,)9,¢2,
ha S 8|Vl |7 + 8] vkl
+C5(QE) + 14+,)9, (| v" |7 + &7 [ e[| + &%),

After summing the estimates for I3, /14, I15, above, and (3.32), we conclude
(3.31). O
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3.4. Mixed Horizontal and Vertical Derivatives Estimates

What is left is to estimate the L2 norm of d;,,v". We apply 9, to (3.27) and
write down the resultant system:

po(divy ¥y + 0.9 1) = Ginz + Gaz in Q,
Py, + P - Vil + pwdsy = nAny, (3.34)
+ AVpdivy Y, 4 0.0, + Fione + Fone + Hiz in Q,

where
Hiz 1= —Chd Wl — chv, - V" — p(uz - Vi — guw, 0. y"
— pwd Y = Chv - Vil — pup - iyl — Gyl (3.35)
- pwhazlpzh.

Lemma 6. Under the same assumptions as in Lemma 1, we have

d
L0202+ Cun | W

<s(| V" 12 + w122 (3.36)
+ [[eva” I72) + cse@ | v |,
+Co(QE) + 1+ .8,)9,(e7 + [[v"][3,2):
for some positive constant C, 3, which is independent of e.

Proof. Take the L? inner produce of (3.34), with 1//[[2. It follows that

d (1 i
L 2 b s+ 2 i

2 - -
+ v ;. = /ﬂ,hz.w,’; dx+/f2,hz-¢;jz dx (3.37)
+[th . sz dx =: Iie + L17 + I1s.

Then the lemma follows from careful estimates of the right-hand side of (3.37),
which we omit here again, since they are similar to those we have done before. 0O

3.5. Proof of Proposition 1

After applying similar arguments as in the proofs of Lemmas 3, 5 and 6, one
can easily check that the following inequalities hold:

d 1 C2 _
F3 100 s gl e+ sl 9w

<s(| Vet |12 + 7' Vng | 50) + Cse@ (| Vo ||
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|6 VaE | 3) + €5 (QEE) + 1+ ,)9, (e + [ ]| 3a):
d|1 _
A P A P A B LV
< (V212 + e g [ + lewd [172)
+COEO([VY" 51+ e Vg [170)
+C(QE) +1+6,)8, (% + | [13);
d
1o v+ Cua | VU (12 < 8" (17 + (w2172
+[[eary™ || 72) + Cs 0@ | V¥ |13

+C5(QE) +146,)9,(e2 + ||| %)

Therefore, the above inequalities, together with (3.7), (3.16), (3.17), (3.20), (3.26),
(3.31) and (3.36), imply that there exist positive constants ¢;, i € {1,2...10},
such that

j—teLM + Dy £ (8+€*Cs(QE) + 1+ &) + (Cs + ) Q(E))D

(3.38)
+Cs5(QE) + 14 8,)9,(* + &),
where we denote
Evm = Eun @) 1= 2| o Peul |7+ 5 ac Sl L PP R A
ch e “Vhslle+cs||p”21/fzzlhz+C4||0”2Vw 172
+3llp‘/zwhlhz o 20 1% T |72+ coll 0L |72
2+ S g 2 (339)

Dy =Dru(®) :=ci[|eVy; H R A Al PR A e
|V 72 + s [ VI 1T+ eo [ VL |12

+ 07| VU1 + esll& 1 22 + o 7 Vak [ n + Crollepvr! | 2
(3.40)

Under the assumption (3.2), it is easy to check that
ESEm SE DSDm $D, (3.41)

where £ = £(t) and D = D(¢) are defined in (2.2) and (2.3), respectively. Therefore
(3.38) can be written, after choosing § small enough, as

j—té‘m + Doy = (£2°CQE) +1+E,) + (1 +HQ(E))Dru
C(QE) +14+,)9,(e* + ELum).

(3.42)
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Then after applying Gronwall’s inequality to (3.42), one concludes that

T
sup Epm(t) +/ Dru@)dt < echT(Q(g)“J“@”)ﬁ”dt
0St<T 0

T
x {82 + ELm(0) +f [[SZC(Q(S) +1+6,)
0

+(1+ sz)Q(e)]DLM] dr}.

Under the assumptions of Proposition 1, this completes the proof of (3.3).

4. Low Mach Number Limit

In this section, we will establish the asymptotic behavior of (§, yhy = (&8, yoh)
as ¢ — 07, In particular, we prove Theorem 1.2 in this section.
First, as a consequence of Theorem 1.1, we have the following:

Corollary 1. Under the same assumptions of Theorem 1.1, consider any integer
s 2 3. Then (3.1) holds true for v, € H*(Q x 2T), with the compatibility
conditions as in (1.15).

Proof. Directly from the conclusion of Theorem 1.1, fors 2 3 and v, ;, € H* ()
as stated in the theorem, one has

s (0l + om0l + [ (1o + o,

0Sr<oo
0] ) 1 = Cpana 1,

where we have used the Gagliardo—Nirenberg interpolation inequality

[ Y PP R Y P PRCT AR

o0
_c 1/2
5/ e~ 51 dr x Cp{in,3 < Cpins+1.
0

Moreover, applying the Minkowski and Holder inequalities to the expression of w,
asin (1.11) yields

[IA

sup ||lwp®) || g1 £ sup [Jvp) ]| 2 £ Cpinz + 1,
0<t<o0 0<t<o0

[ @l < [0 dr < Cpna

‘What is left is to estimate

o 2 2 2
P1|| g2s || PLe]| 725 Pl |72+ || PLe]|| g1+ || PL]| 52) dt.
o]l g lorell /0 (lorae 22 + [lore |7 + [ o1 [ 2) d
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To do this, we write down the elliptic problem for p;, which is obtained by taking
average over the z-variable and then taking divj, in (PE),, as follows

1
—cfAhpl = ,oof divy, (divh (vp ® vp)) dz in Q, / p1dxdy =0. 4.1
0 Qh

Then the L? estimate of the Riesz transform implies, that together with the Minkowski,
Holder and Sobolev embedding inequalities,

lotll e < lole < Mooz S Nop e

Consequently, for s = 2,

o0
swp 10+ [ i@ Gadr S s o]l
0<t<o0 0 0<r<o00

) o ) 4.2)
+ <Sup || vp(t) || H2 X /é || Up(l) || H2 dt g (I+ Cp,in,l)cp,in,2-

0st<oo

Furthermore, after taking time derivatives of (4.1), we have the following elliptic
problems:

—c2Anp1s = 2p0 fol divy, (divy (vp ® vp,0)) dz in Qp, 43)

th o1, dxdy = 0;

—2Anpra =200 [y divy (divi (Vp @ Vit + vp @ v))) dz 44)
in , th p1.1: dxdy = 0.

Thus similarly, one has, for s = 3,
vl 2 < llvp L g2 llvp || 12 S Cpuinea.

o 2 2 [ 2
[ o lars s ople [ llopallidr < G

0sSr<oo

o 2 2 o 2 2
[Thoalias s ol [~ lonallZaars s fonl

0=Sr<oo 0sr<oo

00 ’ - o] 2 )
[ ona 3 S Coma [ gl + s
4.5)
On the other hand, after taking time derivative of (PE),, we have the identity

POVp 1t = _)OO(Up - Vpvp + wpazvp)t - Cgvhpl,t
+ wWARVp s + AV, v+ 0z 0p

Therefore, directly one has,

Fopell 2 S ol + opi |2+ vp ll s ol s
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where we have applied the Minkowski, Sobolev embedding and Holder inequalities,
and the following inequalities as the consequence of (1.11):

<

lwp [ = vp s =

|wPJHL2 = ||”p,t “Hl'

Consequently, one concludes that, for s = 3,

o 2 o 2 2
| lonallizars [ onlar+ 0+ s o)
0 0 0<t<o0
o 2
<[ om0 S Cina + (14 Cpina)Cina

where we have substituted inequality (4.5);. Thus, (4.5)3 yields

00
/0 || P1,tt H 22 5 Clz,’l‘nj + Cp,in,Z(C[ZLin,z + 1+ Cp,in,3)Cp,in,3) < 0Q0.

This completes the proof. O

Now, given v, ;, € H*(Q2, x 2T), for any integer s = 3, which is even in
the z-variable and satisfies the compatibility conditions (1.15), one can apply the
conclusion of Proposition 1 to establish the global bound of the perturbation energy
&, provided it is initially small. This is done through a continuity argument. We
state first the proposition concerning the local well-posedness of solutions to system
(1.8) with &;;, small enough.

Proposition 2. Let v, be the solution to system (PE), as stated in Theorem 1.1
with initial data vy ;, € H*(Q, x 27T), for an integer s 2 3. Consider the initial
data (&in, ') € H*(Qy x 2T) x H*(Q, x 2T) as in (1.12) and satisfying the
compatibility condition (1.13). There is a positive constant g € (0, 1), small enough,
and a positive time Ts € (0, 00), such that if ¢ € (0, &) and &;;,, < &, there exists
a unique strong solution (€5, ") € L>®(0, Ts; H*(2, x 2T)), with 5% as in
(1.10), to system (1.8) in the time interval [0, T;]. The existence time Tz depends
onlyoné and H Up.in || 3 and is independent of €. Here &;, is as in (1.14). Moreover,
NES, dYeN € L0, Ts; L2(Qy x 2T)), p € (300, 2p0) in 2 x [0, T;), and there
is a constant C" > 0, independent of & such that

sup E(t) = C"&y,
OéléTg

where E(t) is as in (2.2).
The proof of Proposition 2 can be done via a fixed point argument similar to that

in our previous work [50] and it is omitted here.
Now we are ready to establish the proof of Theorem 1.2
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Proof of Theorem 1.2. Consider s 2 3 and ¢ € (0, &) with & € (0, 1) as given in
Proposition 2. Let the initial data (&, ¥/") € H*(Q4) x H*(, x 2T) satisfy
(1.12), the compatibility conditions (1.13), and &;, < &2, where &, is as in (1.14).
Then &;,, < &, and there is a strong solution to system (1.8) as stated by Proposition
2 in the time interval [0, T3], for some 75 € (0, 00), independent of ¢. The strong
solution satisfies

1 .
pE (5,00, 2pp) in (2, x 2T) x [0, T¢],

and  sup &) < C"E, < CE%
Oél‘éTg
Such estimates, together with Theorem 1.1 and Corollary 1, imply that the as-

sumptions in Proposition 1 hold true in the time interval [0, 7;]. Therefore applying
(3.3) yields

Tz 7"
sup E(t)+/ D(t)dt < CeCTR(C"e 2>{ + &2
Oél‘éTg 0

T3

+ (52 + (2 + l)Q(CNSZ)) D(t) dt}

, 1 (%
<206 + 5/ D(t) dz},
0

provided ¢ € (0, 1) C (0, &), where ¢; is small enough such that Q(C”e%) <’
and C'e?C (e + (¢ + 1) Q(C"e})) < 1/2. This inequality yields that

sup E(t) —i—/ D@)dt £ C"e? <&, (4.6)
0<St<T;

where C” = 4C’¢C’, and provided & is small such that C"”’ 8% < &. In particular,
E(T:) < €. We apply Proposition 2 again in the time interval [Tz, 275], which states
that there exists a strong solution satisfying

1 .
p e (Epo, 2po) in (2, x 2T) x [Tz, 2T¢],

and  sup (1) S C'E(T:) £ C'CMe7
T <t<2T;

Together with (4.6), this implies that

sup (1) < C"e? with € = max{C”, C"C"}.
051 <2T;

Consequently, Proposition 1 applies. In particular, (3.3) yields

2T;
sup  E(r) + D(t)dt < e T0(C 2){82 + &2
05t <2T;
27T

+ (52 + (2 + 1)Q(c””82)> D(t) dt},
0
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As above, this implies

2T:
sup  E(1) + D(t)dt < C"e? <&, 4.7
OétézTg 0

provided that ¢ € (0,&2) C (0,&1) C (0, ¢), for &, small enough such that
Q" 8%) < o’ 8%). Then inductively, without needing to determine the small-
ness of ¢ again, the arguments from (4.6) to (4.7) hold true for T3, 2T; replaced
by nTz, (n + 1)Tz, n = 2, respectively. In particular, (4.7) holds true for 27; re-
placed by (n + 1)T5. Recall that T3 is independent of ¢. This concludes the proof
of (1.18). (1.19) is a direct consequence of (1.18), (1.3), (1.9), (1.11) and the fact
that H 01 H 2 < 00 as in (4.2). Therefore let g = €5, and we complete the proof
of Theorem 1.2. O

5. Global Regularity Estimates of the Solution to the Primitive Equations

Let us recall the primitive equations (PE) first. We shorten the notations v =
Vp, W = W, in this section. Recall that

divpv+d,w =0 in 5 x 2T,

p0(8tv+v-th+w81v)+Vh(c3p1) = uAnv (PE)
+ AV,divy v + 9;,v in 5, x 2T,

3. (c2p1) =0 in Q x 2T,

where u > 0, A > %M > (. Here the symmetry (SYM-PE) and the side condition
(1.1) are imposed. We will make further assumptions on the viscous coefficients
later.

In this section, we will study the global regularity of the solution (p1, v, w) to
(PE) with initial data v, ;, € H*(82; x 2T) for arbitrary integer s € {1,2,3...},
with v, ;, being even in the z-variable and satisfying the compatible conditions as
stated in Theorem 1.1.

We will show the following proposition:

Proposition 3. For0 < . < 4 < 124, suppose (PE) is complemented with initial
data vy, € H 1(9;, x 2T') as above. Then the unique solution v, to the primitive
equations (PE) satisfies the estimates as stated in Theorem 1.1.

As in [41], we focus on the a priori estimates below. In fact, the local-in-time
regularity in Sobolev and analytic function spaces has been studied in [56], and
therefore following a continuity argument, one can check the validity of the proof
below.
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Basic Energy Estimate

Take the L2-inner product of (PE), with v. We have

d

SRl + ool aaiv ol 3+ ool =0,

Integrating the above equation in the time variable yields

sup {%||u<r)||iz}+/o <u||vhv<r>||iz+k||diwa V|72

0<t<o0

(5.2)
+ o032 ) ar = 2 vpn

Moreover, under the assumption (1.2), after applying the Poincaré inequality in
(5.1), we have the inequality

d 2 2

g el +elvlzz <o
for some positive constant c. Thus one can derive from above that

lo@ 17 < e opan 2 (53)

for all ¢ € [0, 00).

H'! Estimate

After applying 9, to (PE),, we write down the following equation:

p0(0rvz + v - Vavz + wizvz) = wApvz + AVpdivy vz + 920,

5.4
= po(vz - Vv + wz0;v).

Then take the L inner product of (5.4) with v_. It follows, after substituting (1.11),
that

d

S Bl |l e+ v+ e

(5.5)
= —p()/(vz - Vpv) - v dX + ,Oo/divh v(0,v - v;)d¥ =: Ly + Lo.

After applying integration by parts, one will have
L= ,00/‘(1)Z . thz) -vdx + po/(v . vz)divh v, dX,

L, = —2,0()/(1) . thz) v, dX.

Therefore, let p, g be some positive constants, to be determined later, satisfying

1 1 1
—+ — ==, 2< p <6 (equivalently g > 3). (5.6)
p q 2
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After applying Holder’s, the Gagliardo—Nirenberg interpolation and Young’s in-
equalities, one has

o A Y e e MY o

< [[Vavell allvll o < 80 Ve |72 + o v 72
2 -3
=8| Vue |72 + Calo 22 015

H H4p/(6 p)

Hence, after choosing § > 0, sufficiently small, in the above estimate, we have

d | p u . 1
G Bl S e+ i e+ 5 e

< el z2 ol
Integrating the above inequality in the time variable yields

swp oo+ [T vl s fuoli

0=t<oo 0<t<c0

q 3 (57)

o S R I e el

<00
X ||Upyin ||L2 + ””p,inyz ||L2

for g € (3, c0), where we have substituted (5.2).
On the other hand, after applying 9y to (PE)>, one gets the equation

P0(Brvn + v - Vi + wdvp) + Vi(cZorn) = ARy

. (5.8)
+ AVudivy vy + 9;v8 — po(vh - Vv + wpo;v).
Then after taking L2-inner product of (5.8) with vy, we have
d .
R R e P P Y

= —po/(vh . th) cvpdx — po/wh(azv . vh) dx =: L3 + L.

Now we estimate the terms on the right-hand side of the above equality. As before, let
q >3, % + é = 1 After applying integration by parts and the Holder, Gagliardo—
Nirenberg interpolation and Young inequalities, one has

L3 S 190l V3wl 2 1o o < 81990 |2
+ G [[viv | 72 [l ]l 787

On the other hand, after substituting (1.11) in the term L4 and applying the Minkowski,
Holder’s, the Gagliardo—Nirenberg interpolation and Young’s inequalities, one has

z 1
Ly = ,00/</ divy, vy, dz) X (Bzv . vh) dx §/ |V}%U|L2 dz
0 0
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/ el onl s d < | Vo o flve 12 1w ]

1/2 1/2

< ol [ 9non ] 15 < 81 9ol 72 + s e 72

x ([ Vive |72 on | 72

Similarly, take the L? inner product of (PE), with v;. One has,

d

Ayl 1
SE1w 5 + Sl vll 3+ 5 ol ]+ mlla

(5.10)
= —po /(v - Vo) - v dX — po f w(d,v - v)dX =: Ls + Le.

As before, applying the Holder, Minkowski, Gagliardo—Nirenberg interpolation
and Young inequalities yield, for g > 3, l + l = 1

Ls < HthHLP ||UZ||L2 ” ”Lq < ||Vh ||3/p 1/2||vv H3/2 3/p
x ol vl o S 8(0uellFe + 119901 32)
+ G || Vav |22 o157,

Lo < 8([[ve 172 + VivlIZ2) + Co o 72 11 9oe | 52 [ 9o 7o

After summing (5.9), (5.10) and the estimates of L3, L4, Ls, Le above with suffi-
ciently small §, one has

d 2 :
E{@thuzﬁﬁ|<vhv>|iz+—||dmv|>iz+—||azvlliz}

T o A P e Y P A

o8 A2 12 Y e T Y AN 8 HthHLz-

Then after applying the Gronwall’s inequality, it follows that

sup |90+ [ (190013 + Javo |2 ) or

0<t<o0
< i ol dr(nwp,mnzz
/ Vi@ |72 de x sup [lo)| 7 > (5.11)
0<t<o0

L e o e T (e

29
ol sw Juo]l5)
<t<oo

for some positive constant C and g € (3, c0), where we have substituted (5.2) and
(5.7).
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L1 Estimate

We take the L2-inner product of (PE), with |v|q72v. It follows that

) _ i ﬁ
ot e [ (200l + 2ol 250 )

+A/}v|q2|divhv|2d5c'+/<|v|q2|azv}2

(5.12)
+ (g —2|v]" o] |2> d¥ = /cszpldivh (o] *v) d¥
— Mg — 2)/]1)\‘1‘3(1; - Vi|v|)divy vd¥ =: L7 + Ls.
By using the Cauchy—Schwarz inequality, it holds that
Ls < ig-2) /|U|‘f—2|vh|v| ||div v] dF < A/|v|q_2|divh o2 dz
Ag —2)? - .
+ 222 2w Pas.
Therefore, (5.12) implies
d | po q $-1g, 1|2 §-1g 112
P2 S A R ) PR | Ll R
d _
S 21t + [ (a2 wir
2 (5.13)
+ (nlg —2) - =1=) |v|q2|Vh|UH2> dx
+ /<|U|q—2|azv|2 T (g = 2)[o] 2o o] |2> 0 < Lo,
provided
g—220and u — +g=2) >0, orequivalently, 2 < g < 4T,u +2. (5.14)

In order to estimate L7, we first derive an estimate for the “pressure” p1. Recall the
elliptic problem (4.1):

1
—cApp = ,00/ divy, (divy (v ® v)) dz in Qp, with f p1dxdy = 0.
0

Qp



738 X. Ly, E. S. TiT1

Now we consider the LP! estimate of p;. In fact, as a consequence of the L’
estimate of the Riesz transform, one has

1 1 1
m=wum5/mﬂmu=ﬁhﬁma5AMMMwmﬂmz

.
L4G=pD) m)

o]

2

/| A A e AT ™
2
< Pl Il el B ol o 127
(5.15)
provided
p1>2,1<i<l+l,q§2, (5.16)

4 p1oq 4
where we have applied the Minkowski, Holder and Gagliardo—Nirenberg interpo-
lation inequalities. Let g1 > 0 be such that

1+1 1
rroq 2

Then we have, after applying the Minkowski, Holder and Gagliardo—Nirenberg
interpolation inequalities,

% [l ] 4 5 o]
1
) /0 ||U|%_1th|L2||v|%_l|qu dz= | ot| Lo
Loe g =2
[ 0l S 45 o]

(5.17)
[l Sl
q 2
P P [ A e T A i
S B li2 1ol 20l ol o,
q_
=) [ETER /2 PRt e T A Y R
provided
1 1 1 ) 1 1
0 < — < = — —, orequivalently, — < — andg > 2, (5.18)
@ 2 g q n

where we have substituted (5.15) in the second but last inequality. Therefore after
combining (5.14), (5.16), (5.18), for ¢ satisfying

4
2<q§7“+2, (5.19)
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we conclude from (5.13) and (5.17) that

d|[p " q_ q_
T e e A TR Y
S A A T P

after choosing § sufficiently small above. Applying Gronwall’s inequality to the
above inequality implies, for2 < g < 4TM + 2,

o0
sup [[o |2, + [ 1ol Voo | o
0<t<T 0

< qucfom [l v ]| i2 (| Vv || 22 Wl yyinl a (5.20)

4
< quc||vp,,-n .2 vpin %
for some positive constant C and C, depending on gq.

Therefore, after summing up the inequalities (5.2), (5.7), (5.11), (5.20), for
A < 4p < 12, one will have

sop [0t [ (19000 [ + 130000 2 ) o

0<t<o0 (5.21)
= Cp,in(” Up.in H H H Up.in || Lq)7
for some positive constant C), ;, depending on || Up.in H His || Vp.in H 14 with
4n 4n
< = Il
3<q:)\+2, }\e(l,12).
In particular, it suffices to take
4 if 4—“ €[4, 12),
4= 4y 4 such that g € [2, 6],
T+2 if o e (1,4),
and therefore
Cpin([|vpin || g [vpinll 1) = CpinC[|vpin || 4o (5.22)

depends only on || Vp.in H A by noticing that || Vp.in || L4 < || Vp,in in this case.

The estimate of d,v,, follows directly from (5.21) and (PE),.

Il
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H?S Estimates

Next, we will show the global regularity of the solution v to system (PE) with
more regular initial data v, ;,. That is, we complement (PE) with the initial data
Vp.in € H*(R2),withs = 2.Infact, we will use the mathematical induction principle
to show (1.17). Notice, the case when s = 1, i.e., (1.16), has been shown in (5.21).

First, for integer s 2= 1, it is assumed that (1.17) holds true. Our goal is to show
that the same estimate is also true for s replaced by s + 1. In order to do so, we apply
951t to (PE), with 8 € {0y, 0y, 9;} and denote the k-order derivative by - := ak.
forany k € {0, 1,2...s5 + 1}. Then we have the following equation:

P00 V541 + v - Vg + wo vg41) + Vh(cfpl,sﬂ)
= UApvsy1 + AVpdivy, Vg1 + OzzUs41 (5.23)
— po (3 (v - Vi) — v - Vyvgr + 8T (wdv) — WO Vg41).

Take the L2-inner product of (5.23) with vs1. It follows,

d
T 2 e 3 el e 3+ v v )

+ [ 8:ve1 || 72 = o0 / (v Vivspr = - V) cugpr di - (5.29)
+ pO/(wazvs+l - as-‘r](wazv)) * Us+1 dx =: K1 + K».

We estimate K, K7 on the right-hand side of (5.24). First, notice that K|, K, can
be written as

s l . N
K =_POZ(S-1-_ )/(Us+li'vhvi)’v.s+l dx =12K1,i,
i=0

i=0
N + 1 S
s .
K> = —po Z( ; ) /ws+l—i8zvi Vg1 dx =: Z K ;.
i=0 i=0

We consider the estimates of K;;, for j € {1,2} andi € {0,1,2...5} in three

cases:
2<iZ<sy,

{i:l,

i=0.

In the case when i = 2, we have
s+1—-i<s—-1,3514+i<s+1.

Therefore, applying the Holder, Sobolev embedding and Young inequalities implies

Kii S [Jvssi=i || s [ Vivi | o vser [l 2 S ol gssas ([0l gise [rosea | 2

S vl s vert | 72

ol groallvser 2 € 8]0l + Co o1 |
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Similarly, we apply the Minkowski, Hélder, Sobolev embedding and Young in-
equalities to estimate K5 ;. On the one hand, if wsy_; = 3t~ w = BE’L]_’w,
we have, thanks to (1.11),

s+1 sri—if [© 5 / .
Kai=po| R 5 divy, vdz') x (3.v; - vs41) ) dX

1 1
5/0 |vs+2—i|1L/22|vs+3—i|lL/22dZ/ X/(; |azvi|i/22|azvi+l|1L/22|Us+l|L2 dz

2 172 2
S ol ol o ol g s [l S 8l vl e
+ Cs || oot [lvs1 |72
On the other hand, if ws41—; = d,ws—;, we have

s+ 1 . -
Ky = PO( i )/dlvh Vs—i 0z 0; « Vgy1 dX

< 8flol G + Collvll G use [

In the case when i = 1, direct application of the Holder, Sobolev embedding
and Young inequalities yields

K1 S 0]|v[ G + ool [l -

Meanwhile, to estimate K> 1, we will again apply the Minkowski, Holder, Sobolev
embedding and Young inequalities. If wy = d; w, we have, after substituting (1.11),

Z
K271 = po(s —il_ 1) / <</0 dth 821) dZ/> X (azvl : US+1)> dx

1 1
< /0 [div, o] 2| Vadivi v | 2 d7’ /0 1301 2 01| 2 Vhvsn |2 d

<o 2 G0l o 2

et [V sz vl e < 8] ]

If wy = 9, wy_1, we have

K1 S 8[[0 ] fgesa + Co [l 2 0] g

Finally, in the case when i = 0, we apply the Holder, Sobolev embedding and
Young inequalities to get

2 2 2
K10 580 [ 5ea + Csllo |2 [vssr 172
When w41 = 8;,'+1w, applying the Minkowski, Holder, Sobolev embedding and
Young inequalities yields, after substituting (1.11),

s+1 s+1 o / -
Kao=po| 9y 5 divy vdz' ) x (3.0 ve4p) | dX

1 1
S [ Tocsal2 02 [ ool o]
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32

1/2 1/2 1/2
< el s |2 el ol e

2 2
S 8[| vll 3o+ Cs ol 1o 3 v 1122
When w41 = 9, ws, we have, after substituting (1.11),

kao=om(* ") [aivh o vesr 0 S oo e Vol sl

<80l + Collv el [

From the above estimates, one can conclude from (5.24) that for any integer
s 21,

d

Dl + e Tavua 17 + v v
+ v |2 S 8| Vot 2+ G+ G0 3 [0l 2 O
+ Co([[v e+ ol 2 o 22) st |2

Here we have used the notation || Vs+1 ||L2 to denote Zde (95,0,.0:) || 95ty HL2
Then after taking § > 0 small enough and applying Gronwall’s inequality, together
with the inequalities (1.17) and (5.21), we have

sup H v(t)|

0<t<oc0

< 0 Pt oo I oo )

+A (+ v |0

2 2
Hs+1 + Cp,in,s + Cp,m,s),

mﬂ+f ECY

2
| vp.in || s (5.26)

| U([) H i[S+l dt) 5 gCPJn,s‘l’C,z,”,n’l

< ([lvp.in]

where C in.1 = Cpin(||vp.in || ;1) is as in (5.22).
On the other hand, after replacing s + 1 by s in (5.23), we have the identity

Podivs = =V (c3 p1.s) + wARVs + AVidiv vy + 0220

) ’ (5.27)
= P09 (v - Vi) — pod” (wd;v).

After taking the L?-inner product of (5.27) with 9;vs and noticing the fact that

= [ @b, d = [ o divi v, 07 = 0

this implies
oo [ < 4+ ol e o]l esa- (528)

where we have applied that since s = 1,

o Fvsi 152 < Mo a1 9vsi o < Mol [0 -
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2 2
S ” v H Hs+l H v ” Hs+2>

lwidzvei (172 S [lw s [0 psvas S N0l ol psras
2 2
S ol ol e,

due to the fact that from (1.11),

Z
ol e = 1 [ v 0z | e S 10l s

Here we have applied the Minkowski, Holder and Sobolev embedding inequalities.
Similarly, taking s = s — 1 in (5.28) yields

larvsi 172 < (0 ol ol G (529)

Integrating (5.26) in the time variable, together with (5.28), (5.29), implies (1.17)
with s replaced by s + 1. This finishes the mathematical induction. Hence, this
concludes the proof of Proposition 3.
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