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Coupling a quantum many-body system to an external environment dramatically

changes its dynamics and offers novel possibilities not found in closed systems. Of

special interest are the properties of the steady state of such open quantum many-body

systems, as well as the relaxation dynamics towards the steady state. However, new com-

putational tools are required to simulate open quantum many-body systems, as methods

developed for closed systems cannot be readily applied. We review several approaches

to simulate open many-body systems and point out the advances made in recent years

towards the simulation of large system sizes.
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I. INTRODUCTION

A. The open quantum many-body problem

Open quantum many-body systems have witnessed a
surge of interest in recent years, chiefly for two reasons.
On the one hand, these systems offer the exciting possi-
bility to use controlled dissipation channels to engineer
interesting quantum many-body states as the stationary
state of their dynamics (Diehl et al., 2008; Verstraete
et al., 2009; Weimer et al., 2010). On the other hand,
open quantum many-body systems are attractive from
a fundamental perspective, as their dynamics exhibits a
wide range of features not found in equilibrium systems.
As in the case of closed quantum systems, the complex-
ity of the problem scales exponentially with the size of
the system, requiring the use of sophisticated simulation
methods to obtain useful results.
Interestingly, open quantum many-body systems are

even harder to simulate on classical computers than
closed systems, while at the same time the station-
ary state of an open quantum system is much eas-
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ier to experimentally prepare than the ground state of
a closed system. These properties make open quan-
tum systems one of the prime candidates to show a
quantum advantage of quantum simulators over clas-
sical methods within noisy intermediate-scale quantum
devices (Preskill, 2018). However, this requires a thor-
ough assessment of the capabilities of classical simulation
methods, which we will provide in this review.

In our review, we first provide a general introduction
to open quantum many-body systems, laying particular
emphasis on the key differences compared to simulating
closed quantum systems and on the paradigmatic models
that have emerged to benchmark simulation methods for
open systems. In the main part, we first review stochas-
tic methods commonly known as wave-function Monte-
Carlo techniques, which are based on a numerical exact
treatment of the total Hilbert space of the problem. We
then turn to tensor network simulation techniques aim-
ing to describe the “physical corner” of the Hilbert space,
i.e., the quantum states that are most relevant to de-
scribe the dynamical evolution and steady states of open
quantum many-body systems. Subsequently, we review
variational methods that employ very similar strategies,
including variational methods that are based on a tensor
network description. We also cover phase space methods
and closely related counterparts. Finally, we have added
a section on linked cluster expansion. Within our review,
we will not cover methods derived from a field-theoretical
description of open quantum systems within the Keldysh
formalism, as this has already been extensively covered in
a previous review article (Sieberer et al., 2016). We will
also not cover integrable models (Foss-Feig et al., 2017;
Guo and Poletti, 2018; Medvedyeva et al., 2016; Prosen,
2011a,b, 2008) for which analytical techniques such as
the Bethe ansatz can be employed.

B. The Markovian quantum master equation

The state of an open system is described by its den-
sity operator ρ, which can be described as a statistical
ensembles of pure states,

ρ =
X

i

pi|ψiihψi|, (1)

where pi denotes the probability to find the system in the
state |ψii. Note that the decomposition into pure states
is not unique. In our review, we will limit ourselves to the
discussion of Markovian systems, i.e., dynamical systems
in which the generator of the dynamics L[ρ] (commonly
called the Liouvillian) depends only on the state at the
present time t and not on the state at earlier times. Such
Markovian systems form a dynamical semigroup and can
be described by a quantum master equation in Lindblad

form

d

dt
ρ = L[ρ]

= −i [H, ρ] +
X

µ

(

LµρL
†
µ − 1

2
L†
µLµρ−

1

2
ρL†

µLµ

)

,

(2)

where H is the Hamiltonian of the system and {Lµ, L
†
µ}

the Lindblad operators responsible for the incoherent dy-
namics arising from the coupling to an external envi-
ronment, which are also known as the jump operators
(Gorini et al., 1976; Lindblad, 1976).
The validity of the Lindblad master equation Eq. (2)

for a concrete physical system crucially depends on the
separation of several timescales. Considering a system
of interest coupled to a larger environment, one first as-
sumes a weak coupling between system and environment,
such that the entanglement between system and environ-
ment remains low. Furthermore, the environment must
not retain any memory of the system degrees of free-
dom. The approximations related to these conditions are
commonly refered to as the Born-Markov approximation
(Breuer and Petruccione, 2002) and require that the cor-
relation time of the environment τE is much smaller than
the relaxation time of the system τR. Finally, the differ-
ences in eigenfrequencies in the system ωs has to be large
compared to the inverse relaxation time τ−1

R .
These approximations are well justified in quantum op-

tical systems, in particular atoms coupled to electroni-
cally excited states (Barreiro et al., 2011; Baumann et al.,
2010; Krauter et al., 2011; Malossi et al., 2014; Raitzsch
et al., 2009). There, the optical frequencies of the tran-
sition leave a large time scale to observe the complete
relaxation to its equilibrium state. Additionally, the re-
laxation of the electronic excitation into the vacuum of
the radiation field as the correlation time of the radia-
tion field is related to the photon frequency (Breuer and
Petruccione, 2002), which again is much larger than the
relaxation rate τ−1

R . Artificial atomic systems such as the
nitrogen-vacancy center in diamond (Dutt et al., 2007;
Jelezko et al., 2004; Robledo et al., 2011) offer similar
benefits.
Another advantage of quantum optical systems for

studying open quantum many-body systems is the pos-
sibility to drive them with time-dependent laser fields.
Importantly, if all the jump operators in the master equa-
tion describe transitions between the eigenstates of the
Hamiltonian, the resulting steady state of the system is
guaranteed to be a thermal state (Breuer and Petruc-
cione, 2002). However, if an oscillatory driving term is
added to the system Hamiltonian, it is possible to observe
non-equilibrium steady states in the rotating frame of the
driving. Optically excited atoms can also exhibit strong
interactions when excited to Rydberg states (Saffman
et al., 2010), which can be used to realize a rich variety
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of driven-dissipative quantum many-body systems (Ates
et al., 2012; Carr and Saffman, 2013; Glaetzle et al., 2012;
Lee et al., 2011; Lemeshko and Weimer, 2013; Rao and
Mølmer, 2013).

There are also interesting solid state platforms to study
strong interaction and dissipation. One example is that
of semiconductor polaritonic systems see, e.g., (Caru-
sotto and Ciuti, 2013)), where semiconductor microstruc-
tures are used to embed quantum wells or quantum dots,
becoming a photonic resonator where strong interactions
can be induced. Another example is that of circuit-QED
systems (Fitzpatrick et al., 2017; Ma et al., 2019), where
superconducting circuits can be used to construct Bose-
Hubbard lattices of microwave photons, and where dissi-
pation can be engineered, so that one can have a tailored
reservoir.

It is important to remark that the Lindblad opera-
tors are usually considered to be local, but this approx-
imation holds only in the weak-coupling limit. To be
more precise, a Markovian master equation with quasi-
local Lindblad operators holds as long as the coupling
between the system and the environment is weak, which
in practice amounts to (1) a slow development of corre-
lations between system and environment, (2) fast decay
of excitations of the environment, and (3) neglect of fast-
oscillating terms when compared to the typical system
timescale. One should be careful, however, since when
dealing with strongly correlated systems, strong interac-
tions within the system of interest may lead to a break-
down of the local Lindblad dissipation (Beaudoin et al.,
2011; Wichterich et al., 2007). In these cases, it may
be necessary to consider additional steps to derive the
correct Lindblad operators (Reiter and Sørensen, 2012).
For the purpose of our review, we assume that the correct
Lindblad form has already been derived.

C. Steady state solution versus time evolution

Typically, there are two different aspects that are of in-
terest when studying open quantum many-body systems.
First, one wishes to understand the properties of one or
several steady states that the system reaches in the long
time limit. This is similar to understanding the ground
state properties of a closed many-body system. Second,
one is interested in the dynamical evolution of the system
towards the steady state. The latter is particularly in-
teresting when the system exhibits several steady states
that can be reached depending on the initial condition of
the system.

While the requirements for the appearance of a unique
steady state are well understood for finite systems
(Spohn, 1976), many-body systems add the additional
complication that the long time limit and the thermody-
namic limit do not necessarily commute. In some cases,
even when chiefly interested in the steady state, it is more

efficient to compute the full time evolution of the sys-
tem. This is comparable to imaginary time evolution
algorithms to find the ground state of a closed many-
body system. In our review, we will contrast the two
approaches and address this distinction when discussing
individual simulation methods in the main part of our
review.

Investigating the full time evolution also offers the pos-
sibility to investigate interesting many-body effects dur-
ing the relaxation dynamics. For instance, it is possible
for open many-body systems exhibiting a quite trivial
steady state, while the relaxation behavior is dominated
by complex glassy quantum dynamics (Olmos et al.,
2012).

D. Differences to equilibrium problems

To find the steady state of an open quantum many-
body system, it might first be tempting to take well es-
tablished methods for ground state calculations for closed
systems and try to adapt it to the open case. Unfortu-
nately, this approach fails in many cases. For example,
quantum Monte-Carlo methods that are highly successful
for ground state calculations, require to rewrite the par-
tition function of the quantum system to a correspond-
ing classical system. However, for the steady state of
an open system it is unclear a priori (and often incor-
rect (Sieberer et al., 2013)) whether the steady state of
the system is a thermal state that can be described in
terms of a partition function. The same argument holds
for density functional theory approaches trying to mini-
mize the ground state energy; usually, the steady state of
an open system is completely different from the ground
state of the Hamiltonian. This is even true in the limit of
infinitely weak dissipation, as the strength of the dissipa-
tion will predominantly control the relaxation rate rather
than the properties of the steady state.

Some methods from the study of closed quantum sys-
tems out of equilibrium can be adopted to open systems;
we will discuss these cases in detail. In general, the sim-
ulation of an open quantum system is computationally
much harder than for a closed system due to the statis-
tical nature of the state.

Additionally, one can benefit to some extent from the
vast body of works commited to the study of classical
non-equilibrium dynamics. For example, the importance
of the symmetries of the open quantum many-body dy-
namics is equally important as in the classical case (Ho-
henberg and Halperin, 1977) and allows for the classifi-
cation of dissipative phase transitions in terms of their
universality classes.
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E. Paradigmatic models

Within the analysis of ground state many-body prob-
lems, there is a number of particular models that have
found especially wide interest and are often used as a first
example to benchmark a numerical method. These mod-
els include, e.g., the Ising model in a transverse field,
the Heisenberg model, and the Hubbard model (both
bosonic and fermionic). A similar observation can be
made about open quantum many-body problems, where
these paradigmatic models are often derived from the cor-
responding ground state counterparts, i.e., the Hamilto-
nian dynamics is the same. However, adding dissipation
to a closed many-body model can be done in different
ways and can lead to drastically different results. In the
following, we present and briefly discuss the two most
promiment dissipative many-body models; we will pro-
vide a more detailed discussion in later sections when re-
ferring to particular numerical strategies to tackle them.

One of the most widely studied open many-body mod-
els in recent years is the transverse field Ising model with
longitudinal dissipation (Lee et al., 2011). Its Hamilto-
nian is of the form of the conventional Ising model, given
in terms of Pauli matrices σα by

H =
h

2

X

i

σ(i)
x +

V

4

X

〈ij〉

σ(i)
z σ(j)

z , (3)

where h is the strength of the transverse field and V
accounts for the Ising interaction. The dissipation is
incorporated in terms of jump operators of the form
ci =

√
γσ−, with γ being the rate of dissipative flips from

the spin up to the spin down state. An important aspect
is that the dissipation breaks the Z2 Ising symmetry of
the Hamiltonian, i.e., the quantum master equation does
not exhibit such a symmetry. The model is also relevant
to ongoing experiments in the field of interacting Ryd-
berg atoms (Carr et al., 2013; Malossi et al., 2014).

Within a mean-field calculation (Lee et al., 2011), the
model is predicted to support a large range of h values
for which the system exhibits two stable steady states.
We will discuss in later sections of our review how dif-
ferent numerical approaches address the question on the
existence of such a bistable thermodynamic phase. Ac-
cording to mean-field theory, the bistable region ends in
a critical point that belongs to the Ising universality class
(Marcuzzi et al., 2014).

Another important dissipative model is the driven-
dissipative Bose-Hubbard model. While there are differ-
ent ways to generalize the famous Bose-Hubbard model
(Fisher et al., 1989) to the dissipative case, the most com-
monly studied one involves a dissipative particle loss that
can be countered by a coherent driving term (Carusotto
and Ciuti, 2013; Le Boité et al., 2013). Its Hamiltonian

is given by

H = −J
X

〈i,j〉

b†i bj +
X

i

[

U

2
n2
i −∆ωni + F

(

bi + b†i

)

]

.

(4)
In this model, J describes the hopping of bosons between
sites, while the on-site interaction U involves the square
of the density operator ni = b†i bi. Furthermore, ∆ω is
the chemical potential for the bosons, and F describes
the aforementioned coherent driving. Finally, the quan-
tum jump operators capturing the loss of a single bo-
son are given by ci =

√
γbi. While the dissipation term

also breaks the U(1) symmetry of the conventional Bose-
Hubbard model, here, the symmetry is already broken
on the level of the Hamiltonian by the inclusion of the
driving term F .
As with the dissipative Ising model, the driven-

dissipative Bose-Hubbard model has a very intriguing
mean-field phase diagram, where several islands of mul-
tistability occur in a way that is somewhat reminiscent
of Mott lobes (Le Boité et al., 2013), see Fig. 1. The
stability of the mean-field solutions has been evaluated
by considering density matrices of the form

ρ =
∏

i

(ρMF
i + δρi), (5)

with ρMF
i being the mean-field solution for the steady

state. Expanding the quantum master equation up to
first order in δρi allows to evaluate the stability by check-
ing whether none of eigenvalues of the Liouvillian has a
positive real part.

II. STOCHASTIC METHODS

Upon first glance, the computational complexity of an
open quantum system in terms of the Hilbert space di-
mension d appears to be at least O(d2), as there are
O(d2) independent entries in the density matrix ρ. How-
ever, the density matrix at an initial time t0 can be
written as a statistical ensemble of pure states, ρ(t0) =
∑

i pi|ψi(t0)ihψi(t0)|. Instead of propagating the entire
density matrix, the key strategy is to propagate the in-
dividual pure states |ψii to the time t and then calculate
observables according to

hOi = Tr {Oρ} =
X

i

pihψi|O|ψii. (6)

The probability distribution pi can then be sampled
using standard Monte-Carlo techniques, which is why
the approach is often called the wave function Monte-
Carlo method. In practice, the most common strategy
is to start from an initial pure state |ψ0i and perform
M = 1/pi numerical simulations. Since the trajecto-
ries |ψii are independent from each other, the statisti-
cal error associated with the observable will behave as
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FIG. 1 Mean-field phase diagram of the driven-dissipative
Bose-Hubbard model. The numbers inside the plot represent
the number of stable mean-field solutions. The yellow region
exhibits two mean-field solutions, one of which is unstable.
From (Le Boité et al., 2013).

∆O ∼ 1/
√
M . The entire computational cost will be

O(Md), which is considerably lower than d2 already for
quite modest system sizes. Importantly, the requirement
to repeat the simulation M times results in the simula-
tion time being significantly longer than for a comparable
closed quantum system. Depending on the observable,
M ≈ 1000 is a reasonable choice to get the statistical
error down to a few percent. For spin 1/2 systems, this
essentially means that the system sizes that can be stud-
ied in an open system consist of log2M ≈ 10 particles
less than in a closed system.
The central question is now how can a single trajectory

|ψii be propagated such that the ensemble of all trajecto-
ries satisfies ρ(t) =

∑

i pi|ψi(t)ihψi(t)|. One possiblity is
to describe the evolution of the density operator in terms
of a quantum state diffusion approach (Gisin and Perci-
val, 1992; Percival, 1998), in which the incoherent dy-
namics from the Lindblad operators is captured in terms
of a stochastic Schrödinger equation,

dψi(t) = −iHeff |ψi(t)idt+
X

j

Mj |ψi(t)idWj , (7)

where the dWj refer to Wiener increments. The effective
Hamiltonian Heff describes the drift of the state vector
in the Hilbert space,

Heff = H +
X

j

2hc†jicj − c†jcj − hc†jihcji. (8)

The diffusion operators Mj describe the random fluctu-
ations arising from each associated jump operator cj ,

Mj = cj − hcji. (9)

This stochastic Schrödinger equation conserves the norm
of the state vector and can be solved by standard tech-
niques for stochastic differential equations.
An alternative strategy to propagate a single trajec-

tory is the quantum jump method (Dalibard et al., 1992;
Dum et al., 1992; Mølmer et al., 1993; Plenio and Knight,
1998). This approach has been recently reviewed exten-
sively in (Daley, 2014), so we will only cover the basic
strategy. Within the quantum jump method, the dynam-
ics is split into to parts. First, the state |ψii is propagated
under an effective non-Hermitian Hamiltonian HNH ,

HNH = H − i

2

X

j

c†jcj . (10)

Once the norm of the state drops below a previously
drawn random number r, a quantum jump occurs. Which
quantum jump occurs is drawn from the probability dis-
tribution

pj = Nhψi|c†jcj |ψii, (11)

with N being a normalization factor. While the high
order integration of HNH is straightforward, a high or-
der simulation of the quantum jumps requires a more
subtle identification of the time the jump operator needs
to be applied. For instance, the popular QuTiP library
(Johansson et al., 2012, 2013) uses a logarithmic secant
method to numerically solve the equation hψi(t)|ψi(t)i =
r for the time t.
No matter which approach is used to propagate a single

trajectory, the computations can be highly parallelized
since the trajectories are independent from each other
by construction. Doing so, it is possible to simulate open
many-body spin 1/2 models with up to 20 spins (Raghu-
nandan et al., 2018). The relatively small system sizes
when compared to equilibrium problems demand the de-
velopment of new data analysis techniques, e.g., concern-
ing finite size scaling methods. One possiblity is to use
anisotropic system sizes to obtain more data points for a
reliable finite size scaling extrapolation. Close to a phase
transition, the susceptibility χ of a system may be ex-
pressed as

χ = Nαχ̃(λ), (12)

where N is the number of particles and α is an exponent
associated with the underlying phase transition (Binder
and Wang, 1989). The reduced susceptibility χ̃ is only
a function of the anisotropy λ of the system and can be
determined by symmetry considerations as well as nu-
merical data (Raghunandan et al., 2018).

The wave-function Monte-Carlo method has been used
to analyze the one-dimensional dissipative Ising model of
Eq. (3) (Ates et al., 2012; Hu et al., 2013). While these
works have not found a bistable phase as predicted by
mean-field theory, a significant increase in the spin cor-
relations has been reported in the same region (Hu et al.,
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2013). Additionally, finite size scaling of a similar two-
dimensional model believed to lie in the same universality
class as the dissipative Ising model has found evidence for
a first order transition (Raghunandan et al., 2018).

III. TENSOR NETWORK METHODS

A. One spatial dimension

We would, first, like to describe the important nu-
merical techniques that has been developed for studying
open quantum many-body systems using Matrix Prod-
uct States (MPS) which is the one-dimensional ansatz
of the tensor network (TN) family. MPS, by far, is the
most successful and widely used ansatz in comparison
to other ansatz of the Tensor network family, thanks to
the success of the density matrix renormalization group
(DMRG) (White, 1992, 1993) and related techniques (Vi-
dal, 2004; Vidal, 2003). Not only are its properties very
well understood, contraction of MPS tensors can be done
efficiently and exactly unlike the case for its higher di-
mensional counterparts (Haferkamp et al., 2018; Schuch
et al., 2007). For these reasons, MPS have been used
extensively producing extremely accurate results, how-
ever, mostly in the context of ground state calculations
of many-body systems (Schollwöck, 2005). For a detailed
review on MPS and other tensor networks in general,
we ask the readers to refer to (Biamonte and Bergholm,
2017; Cirac and Verstraete, 2009; Eisert, 2013; Orus,
2014; Orus, 2018; Schollwöck, 2011; Verstraete et al.,
2008). The application to open quantum systems, mean-
while, is more rare and there are only a few known ap-
proaches one can take for such systems. Not only are
open systems more computationally challenging (since
we need to deal with matrices in place of vectors for the
pure states), there are also several intrinsic bottlenecks
such as the positivity, hermiticity in the numerical op-
timization of the density matrix. Nevertheless, many of
the ideas in the pure state formalism have been success-
fully applied in the context of open systems using the
concept of Matrix Product Operators (MPOs) or Matrix
Product Density Operators (MPDOs) (Cirac et al., 2017;
Pirvu et al., 2010). These appraches have also been used
to study thermodynamic properties of 1d systems. We
discuss them below.
In 2004, (Verstraete et al., 2004) introduced the con-

cept of MPDO which extended the MPS formalism from
pure to mixed states. Let us recall that an MPS can be
written in the following form

|ψi =
d
X

s1,...,sN=1

As1
1 . . . AsN

N |s1, . . . , sN i (13)

where the A’s are matrices whose dimension is bounded
by some fixed number D (also called the bond di-
mension χ) and d is the physical dimension of the

|ψi ρ(a) (b)

Ak

Ak A∗
k

FIG. 2 (a) Writing a wave function |ψ〉 as an MPS for 6
sites. Each site has a physical dimension d. (b) A density
matrix ρ can be written as an MPDO, an extension of the
MPS formalism. Such a construction automatically ensures
positivity of the density matrix.

Hilbert space. An MPDO ρ of N d-level particles with
(D1, D2, . . . , DN )-dimensional bonds is then defined as

ρ =

d
X

s1,s′1,...,sN ,s′
N
=1

(M
s1,s

′

1

1 . . .M
sN ,s′N
N )|s1, . . . , sN i

× hs′1, . . . , s′N |, (14)

where M
sk,s

′

k

k are D2
k × D2

k+1 matrices that can be de-
composed as

Ms,s′

k =

dk
X

a=1

As,a
k ⊗ (As′,a

k )∗. (15)

where dk is at most dDkDk+1 and the matrices As,k
k are

of size Dk × Dk+1. Such a construction of MPDOs au-
tomatically ensures the positivity of the reduced density
matrix ρ. This is shown in Fig. 2. This MPDO can be
expressed in terms of a pure state MPS by defining it over
a larger Hilbert space and using the concept of purifica-
tion (Nielsen and Chuang, 2000). This can be done by
associating an ancilla with a Hilbert space of dimension
dk with each physical system. One can then choose an
orthonormal basis |sk, aki for these physical and ancilla
indices. The corresponding MPS for this system can be
written as

|Ψi =
X

s1,...,sN

X

a1,...,aN

As1,a1

1 . . . AsN ,aN

N |s1a1, . . . , sNaN i

(16)
The MPDO ρ can be obtained by tracing over the ancil-
las i.e. ρ = Tra (|ΨihΨ|). This process is illustrated in
Fig. 3. The original Ak matrices can be recovered from
Mk by doing some eigenvalue decomposition. To deter-
mine the evolution of a Hamiltonian of a mixed state
in real and imaginary time, they simply simulated the
evolution of the purification by updating the Ak matri-
ces using an iterative procedure similar to the standard
DMRG in this technique. The purification could then
be used to reconstruct the density operator at any time
and compute the expectation values of the observables.
Such a purification scheme can be used for mixed state
evolution under dissipation as well as for thermal equi-
librium and can be implemented irrespective of periodic
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(a)

(b)

|Ψi

|ΨihΨ|

ρ = Tra (|ΨihΨ|)(c)

FIG. 3 (a) Defining an MPS |Ψ〉 over the enlarged Hilbert
space using ancilas (in red) (b) Taking the projector of the
MPS with ancillas (c) Tracing out the ancillas from the pro-
jector to obtain the MPDO ρ.

or open boundary conditions, finite or infinite systems.
The main source of errors in this procedure, like most
other TN techniques are (i) Trotter error and (ii) trunca-
tion error. Such an approach with ancillas was also ap-
plied to study the thermodynamic properties of several
spin chains in Ref. (Feiguin and White, 2005). Although
the MPDOs in Ref. (Verstraete et al., 2004) are positive
by construction, it was shown in Ref. (las Cuevas et al.,
2013) that such a MPDO descriptions of mixed states
are not exactly equivalent to the one obtained using lo-
cal purification schemes. In particular, it was shown that
the bond dimension of the locally purified MPS D′ is not
upper bounded by the bond dimension of the MPDO D.
In fact, the local purification techniques can be much
more costly than the MPDO form itself. Thus, the au-
thors concluded that a description of mixed states which
is both efficient and locally positive semi definite does
not exist and that one can only make approximations.

Around the same time, (Zwolak and Vidal, 2004) pro-
posed another technique to study the mixed state dy-
namics in one dimensional lattice systems. Their tech-
nique, which is also based on MPS, used the Time Evolv-
ing Block Decimation (TEBD) to simulate the real time
Markovian dynamics given by a master equation with
nearest-neighbor couplings. At the heart of this algo-
rithm, lies the concept of ‘Choi isomorphism’. It is more
of a mathematical trick and it states that one can rewrite
the coefficients of a matrix as those of a vector. In other
words, this is simply turning a bra index into a ket index
for a density matrix (understanding the coefficients of ρ
as those of a vectorized density matrix denoted by |ρi♯).
And in the language of TN diagrams, it can be regarded
as reshaping one of the legs and gluing it with the other
(Fig. 4). Once vectorized, |ρi♯ now lives in the n-fold
tensor product of Cd2 and the master equation can be
written in the vector form. The mixed state will now
look like as follows

|ρi♯ =
d2−1
X

i1=0

· · ·
d2−1
X

iN=0

ci1···iN |i1i♯ ⊗ · · · ⊗ |iN i♯. (17)

ρ |ρi♯

FIG. 4 Choi isomorphism: vectorizing a density matrix writ-
ten in terms of an MPO. In TN diagram, it is simply reshaping
one of the indices and gluing it with the other thereby giving
us an MPS.

where |ili♯ is an orthonormal basis of Cd2 for site l.
Further assuming that the Liouvillian superoperator L
can be decomposed into terms involving at most nearest-
neighbors i.e. L[ρ] =∑l Ll,l+1[ρ], one could in principle
use the usual TEBD algorithm to solve Eq. 2 by start-
ing from some initial Matrix Product Operator (MPO)
(shown in in the left side of Fig. 4). This was the ba-
sic idea behind the technique in Ref. (Zwolak and Vidal,
2004). One of the first applications of this technique was
the study of the driven-dissipative Bose-Hubbard model
in the context of optical resonators (Hartmann, 2010).
More detailed explanation of this vectorization process
will be explained later when we discuss the case for higher
dimensional systems. Although the technique proved to
be extremely simple and efficient, the issue of positivity
still remained at large. In fact, checking the positivity
of a reduced density matrix is known to be a very hard
problem in physics (Kliesch et al., 2014).
Another approach was taken in Ref. (Werner et al.,

2016) to solve the problem of positivity. In this approach,
instead of expressing ρ directly as an MPO, at every stage
of the algorithm, ρ was kept in its locally purified ρ =
XX†, where the purification operator X is decomposed
as a variational tensor network.

[X]s1,...,sNr1,...,rN =
X

m1,...,mN−1

A[1]s1,r1
m1

A[2]s2,r2
m1,m2

. . . A[N ]sN ,rN
mN−1

(18)
where 1 ≤ sl ≤ d , 1 ≤ rl ≤ K and 1 ≤ ml ≤ D. A[l]

are rank-four tensors with physical dimension d, bond di-
mension D and Kraus dimension K. Then, a technique
similar to the usual TEBD was used to update the ten-
sors. Such an approach never required to contract the
two TN layers (X and X†) together, thereby ensuring
positivity at all times during the evolution. The tech-
nique also provided more control of the approximation
error with respect to the trace norm.
In Ref. (Cui et al., 2015), a very interesting and dif-

ferent approach based on MPO was taken for finding the
steady states of dissipative 1D systems governed by the
master equation of the Lindbladian form, dρ

dt = L[ρ],
where L is the Liouvillian superoperator. In this tech-
nique, instead of doing the full real time evolution of
the Liouvillian, they proposed a variational method that
searches for the null eigenvector of L which is, by def-
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inition, the steady state of the master equation in the
Lindbladian form. Their results were based on the prin-
ciple that if ρs is the steady state of the Lindbladian mas-
ter equation satisfying L̂|ρsi♯ = 0, then |ρsi♯ will also be

the ground state of the non-local Hamiltonian L̂†L̂ (since
it is Hermitian and positive semi-definite) where |ρsi♯ is
the vectorized form of the steady state density matrix.
Then using a variational algorithm, they directly tar-
geted the ground state of L̂†L̂ to find the steady state of
the Lindbladian master equation for a finite chain. One
of the reasons why directly targeting the ground state
of L̂†L̂ might be advantageous is that unlike imaginary
time evolution, where the sequence of states visited by
the algorithm is unimportant, the simulation of a master
equation requires us to follow real time evolution. There-
fore, if there are errors in the intermediate states visited
by the algorithm, it may lead to problems in the con-
vergence of our steady state. For example, some of the
intermediate states may require large bond dimensions
of the MPO although it is known that the final steady
state can be well-represented by an MPO of small bond
dimensions (Bonnes et al., 2014; Cai and Barthel, 2013).
Also, one doesn’t need to worry about the large entan-
glement growth of real time evolution. A very similar
approach was taken in Ref. (Mascarenhas et al., 2015)
where the algorithm instead of doing a time-evolution,
searched for the null eigenvalue of the Liouvillian super-
operator L by sweeping along the system. Their method
claimed to work even in the weakly dissipative regime
by slowly tuning the dissipation rates along the sweeps.
However, it needs to be noted that such techniques, while
advantageous numerically, cannot be used for obtaining
the transient states.

In another paper (Gangat et al., 2017), this idea was
applied to infinite 1D systems (i.e. the thermodynamic
limit) using a hybrid technique of both imaginary and
real time evolution. They took a local auxiliary Hamil-
tonian H whose ground state is a good approximation
to the ground state of the nonlocal Hamiltonian L̂†L̂ by
taking its kth root as

H =
X

r∈Z

(L̂†
rL̂r)

1/k (19)

where L̂ =
∑

r∈Z
L̂r since L̂ is a translationally invari-

ant local operator. The kth root was taken in order to
yield faster convergence. The idea is that if the gap be-
tween the two lowest eigenvalues of L̂†

rL̂r is less than
one, then k > 1 will increase the gap since L̂†

rL̂r is pos-
itive semi definite, thereby achieving faster convergence
to the ground state. The authors then performed a real
time evolution to obtain a more accurate steady state.
In quick summary, the main steps of the algorithm is:

(i) Imaginary time evolution of the auxiliary Hamilto-
nianH starting from some vectorized initial density

matrx |ρ0i

|ρGi ≈ lim
τ→∞

e−Hτ |ρ0i
||e−Hτ |ρ0i||

(20)

(ii) Real time evolution of the Liouvillian superopera-
tor starting from |ρGi

|ρSi ≈ lim
T→∞

eLT |ρGi
||eLT |ρGi||

(21)

where |ρSi is the desired steady state of the Liouvillian
master equation. Imaginary time evolution in step(i) en-
sures that one does not pass through highly entangled
transient regime. Step(ii) increases the accuracy of the
stationary state since |ρGi is the ground state of H which
is a truncated approximation of the non local Hamilto-
nian L̂†L̂.
It is worth mentioning that in one spatial dimension,

many of the above techniques and their combinations
have been used for studying not only other important
disspative models (Carollo et al., 2019; Höning et al.,
2012; Mascarenhas et al., 2015; Pižorn, 2013), including
the dissipative Ising model of Eq. (3) (Höning et al., 2013;
Mendoza-Arenas et al., 2016), but also in dissipative
preparation of topologically ordered materials (Iemini
et al., 2016) as well as in the energy transport (Guo et al.,
2015). Very recently, MPO based techniques have been
applied to study vibronic states which extends the ap-
plication to quantum biology and organic photo voltaics
(Somoza et al., 2019). and also to study the dynam-
ics of photonic circuits with time delays and quantum
feedback (Pichler and Zoller, 2016). We do not discuss
the later two works due to the non-Markovian nature of
the problem which is beyond the scope of this review.
Similar MPS based techniques that go beyond the Lind-
blad master equation (Xu et al., 2019) or the markovian
approximation (Guo et al., 2018) are also not discussed
here.

B. Extensions to higher dimensions

Unlike the case for 1d, the generalization of MPS in
higher dimensions, also known as Projected Entangled
Pair States (PEPS) or Tensor Product States (TPS)
comes with some serious limitations and there are still
many open problems (Cirac et al., 2019). Not only do
the PEPS algorithm require serious programming effort,
exact contratcion of PEPS is known to be a mathemati-
cally hard problem (Haferkamp et al., 2018; Schuch et al.,
2007). To achieve this, one requires additional PEPS
contraction algorithms (Jordan et al., 2008; Orús, 2012;
Orús and Vidal, 2009) that are nevertheless known to
give very accurate results, in particular, for gapped sys-
tems. Even for critical systems with algebraically de-
caying correlations, the PEPS contraction schemes are
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known to provide reasonably accurate results with suf-
ficiently high bond dimension of the environment (Orús
and Vidal, 2009). In fact, recently, techniques have been
introduced to capture the infinite correlation length of 2D
critical systems using iPEPS based on finite correlation
length scaling (Corboz et al., 2018; Rader and Läuchli,
2018). Thus, despite the higher requirement of numerical
dedications and limitations, PEPS algorithms are becom-
ing state of the art numerical tools for strongly correlated
two dimensional systems. Recently, PEPS provided the
best variational energy for the 2D Hubbard model (Cor-
boz, 2016a), have offered several new insights on paradig-
matic models and real materials in the lab (Corboz and
Mila, 2014; Kshetrimayum et al., 2019; Liao et al., 2017;
Matsuda et al., 2013). The successes of PEPS so far, how-
ever, is mostly confined to ground state calculations and
partially to thermal states (Czarnik et al., 2012; Czarnik
and Dziarmaga, 2015; Czarnik et al., 2016; Dai et al.,
2017; Kshetrimayum et al., 2019) using the concept of
Projected Entangled Pair Operators (PEPOs) or Ten-
sor Product Operators (TPOs), which we will discuss in
more detail later, and, more recently, to time evolution
(Czarnik et al., 2019; Hubig and Cirac, 2019; Kshetri-
mayum et al., 2019). For the context of open dissipative
quantum system, so far there is only one known approach
using PEPS (Kshetrimayum et al., 2017) and another
one using a Corner Space Renormalization method (Fi-
nazzi et al., 2015). We describe them below. We will
also discuss briefly other potential implementation tech-
niques and possible issues while using PEPS formalism
in particular for such open systems.
The Corner Space Renormalization method (Finazzi

et al., 2015) solves the master equation in a corner of the
Hilbert space through an iterative procedure. It starts by
finding the steady state density matrix for small lattice
systems (say ρA and ρB for systems A and B respec-
tively). This can be done by a brute force integration of
the master equation since the system size is very small.
The steady state density matrices can be diagonalized
and written as

ρA =
X

i

pAi |φAi ihφAi |,

ρB =
X

i

pBi |φBi ihφBi |,
(22)

where the states |φAi i form an orthonormal basis for
HA (the Hilbert space corresponding to system A) and
pAi are the corresponding probabilities. Similar nota-
tion follows for system B. The two systems are then
merged and the χ most probable product states span-
ning the so-called corner space are selected i.e. we only
keep the subspace generated by the orthonormal basis
{|φAi1i|φBi′1i, |φAi2i|φBi′2i, . . . , |φAiχi|φBi′χi} where the prod-
uct of the probabilities of the two systems are arranged in
decreasing order of magnitude. In this way, we only keep
the χ most probable pair of states. The steady state of

(a) ρA
ρA =

X

i

pAi |φA
i ihφA

i |

ρB =
X

i

pBi |φB
i ihφB

i |
ρB

(b) ρA ⊗ ρB

Truncate

ρ(χ) = {|φAi1i|φBi′1i, |φAi2i|φBi′2i, . . . , |φAiχi|φBi′χi}

ρ(χ)

Diagonalize

Diagonalize

FIG. 5 (a) Steady state density matrices of two systems A
and B are first obtained using brute force. They are then
expressed in their respective diagonal forms. (b) We then
merge the two systems and keep only the χ most probable
pair of states. The process is repeated for different χs until
we get some convergence. Larger systems can be simulated
by merging more systems in step (b).

the density matrix in this corner space can be determined
either by direct numerical integration in time (for small
χ) or by using a stochastic wave function Monte Carlo
algorithms for large χ, see Sec. II. One can then increase
the size of the corner χ until convergence in some ob-
servables is reached. Larger systems can be simulated by
merging more systems as we discussed in the initial steps.
A simplified summary of the steps involved is shown in
Fig. 5.

The proposed CSR method was used to study the
driven-dissipative Bose-Hubbard model in 2D in both pe-
riodic and open boundary conditions for system sizes up
to 16 × 16 lattice sites. The technique has also been
used to study the critical Heisenberg model (Rota et al.,
2017) for system size up to 6 × 6 lattice sites and more
recently the critical regime in the Bose Hubbard model
(Rota et al., 2019) for up to 8 × 8 lattices. The size of
the lattice that can be simulated using this technique de-
pends on the entanglement of the steady state. Even if
not obvious at first sight, the structure of the density op-
erator generated by the Corner Space Renormalization
method amounts to that of a Tree Tensor Network (Shi
et al., 2006). As such, this particular method, even if un-
derstood in terms of TNs, is tailored to driven-dissipative
systems of finite size. For generalizing it to the thermo-
dynamic limit or for non-driven non-dissipative systems,
one needs to use more general TN techniques. We will
discuss one such technique which we developed recently
below.

In (Kshetrimayum et al., 2017), we make use of the
concept of PEPO by vectorizing them. PEPOs are sim-
ply the operator version of PEPS, in the same way that
an MPO is the operator version of MPS for the 1d case.
Hence, PEPOs are used to represent mixed states ρ in
2D, even beyond dissipative systems, e.g., for thermal
states (Czarnik et al., 2012; Czarnik and Dziarmaga,
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ρ D

d

D

{

d2

|ρi♯

FIG. 6 TN diagram for the PEPO of ρ on a 2d square lattice,
with bond dimension D and physical dimension d. When vec-
torized, it can be understood as a PEPS for |ρ〉♯ with physical
dimension d2

2015; Czarnik et al., 2016; Kshetrimayum et al., 2019).
As mentioned before, such a construction of density ma-
trices using PEPOs does not automatically guarantee the
positivity of the density matrix. However, for simulations
targeting the steady states, this lack of exact positivity is
not a bottleneck if the fixed point is not very highly en-
tangled. For the moment, we will restrict our discussion
to this case. Once we have our PEPO, we vectorize it
i.e. rewrite the coefficients of the PEPO as a PEPS (also
called Choi’s isomorphism). Once vectorized, the PEPO
ρ can be understood as a PEPS of physical dimension d2

and bond dimension D (now called |ρi♯), as shown also
in Fig. 6. The vectorized form of the Lindblad master
equation Eq. (2) can be written as

d

dt
|ρi♯ = L♯|ρi♯ (23)

where the vectorized Liouvillian operator is given by

L♯ ≡ −i
(

H ⊗ I− I⊗HT
)

+
X

µ

(

Lµ ⊗ L∗
µ − 1

2
L†
µLµ ⊗ I− 1

2
I⊗ L∗

µL
T
µ

)

.
(24)

H is the Hamiltonian of the system and I corresond to
the identity operator. Lµ and L†

µ correspond to the
on-site Lindblad/jump operators, responsible for dissi-
pation. The tensor product ⊗ separates the operator
acting on the ket and bra index of ρ before the vectoriza-
tion. When the vectorized Liouvillian superoperator L♯

is independent of time, Eq. 23 can be integrated as

|ρ(t)i♯ = eL♯t|ρ(0)i♯, (25)

where |ρ(0)i♯ is some vectorized initial density matrix,
written as a PEPS. In the limit of t → ∞, we obtain the
non-equilibirum steady state (NESS) as the fixed point
of the master equation which we denote by |ρs〉♯. From
Eq. 23, it is also obvious that |ρs〉♯ is the right eigen
vector of L♯ with zero eigen value so that

L♯|ρs〉♯ = 0. (26)

For a Liouvillian L consisting of local terms say L[ρ] =
∑

〈i,j〉 L
[i,j][ρ], the vectorized form of the Lindblad equa-

tion Eq. (2) yields a parallelism with the calculation of

ground states of local Hamiltonians by imaginary-time
evolution, which we detail in Table I. Given the paral-

Ground states Steady states

H =
∑

〈i,j〉 h
[i,j] L♯ =

∑
〈i,j〉 L

[i,j]
♯

e−Ht eL♯t

|e0〉 |ρs〉♯

〈e0|H|e0〉 = e0 ♯〈|ρs〉L♯|ρs〉♯ = 0

Imaginary time Real time

TABLE I Ground state calculation in a closed quantum sys-
tem (left) and Steady state calculation in an open quantum
system (right). The former one requires an imaginary time
evolution while the latter follows a real time evolution. Both
the Hamiltonian H and the vectorized Liouvillian L♯ can be
decomposed as a sum of local terms. |e0〉 is the ground state
of the many-body Hamiltonian with e0 as its ground state.
|ρs〉♯ is the non-equilibrium steady state of the Liouvillian in
their vectorized forms.

lelism above, it is clear that one can adapt, at least in
principle, the methods to compute imaginary time evo-
lution of a pure state as generated by local Hamiltoni-
ans, to compute also the real time evolution of a mixed
state as generated by local Liouvillians. This was, in fact,
the approach taken in Ref.(Zwolak and Vidal, 2004) for
finite-size 1d systems, using Matrix Product Operators
(MPO) to describe the 1d reduced density matrix, and
proceeding as in the Time-Evolving Block Decimation
(TEBD) algorithm for ground states of 1d local Hamil-
tonians (Orús and Vidal, 2008; Vidal, 2004; Vidal, 2007,
2003) as we have discussed previously. In (Kshetrimayum
et al., 2017), we extended this implementation for the
case of 2D systems using the concept of PEPO with phys-
ical dimension d and bond dimension D, see Fig.6. For
the case of an infinite-size 2d system, this setting is ac-
tually equivalent to that of the infinite-PEPS algorithm
(iPEPS) to compute ground states of local Hamiltonians
in 2d in the thermodynamic limit. Thus, in principle,
one can use the full machinery of iPEPS to tackle as well
the problem of 2d dissipation and steady states.
There seems to be, however, one problem with this

idea: unlike in imaginary-time evolution, we are now
dealing with real time. In the master equation, part of
the evolution is generated by a Hamiltonian H, and part
by the Lindblad operators Lµ. The Hamiltonian part cor-
responds actually to a unitary “Schrödinger-like” evolu-
tion in real time, which typically increases the “operator-
entanglement” in |ρ〉♯, up to a point where it may be too
large to handle for a TN representation (e.g., 1d MPO
or 2d PEPO) with a reasonable bond dimension. In 1d
this is the reason why the simulations of master equa-
tions are only valid for a finite amount of time. In 2d,
simple numerical experiments indicate that in a typical
simulation the growth of entanglement is even faster than
in 1d. Luckily, this is not a dead-end: if the dissipation
is strong compared to the rate of entanglement growth,
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FIG. 7 Operator entanglement entropy Sop for a block of 2×2
unit cell for real time evolution of the master equation for
different values of dissipation strength. Stronger dissipation
implies lower entanglement growth and faster convergence to
the NESS. Figure taken from (Kshetrimayum et al., 2017) for
the dissipative Ising model.

then the evolution drives the system into the steady state
before hitting a large-entanglement region. In fact, even
if there is too much entanglement for the TN at inter-
mediate times, the dissipation may still drive the evolu-
tion towards a good approximation of the correct steady
state. In short, dissipation limits the growth of entangle-
ment if the fixed point attractor is strong enough. This
can be verified numerically by plotting the operator en-
tanglement entropy for different dissipation strengths as
it flows into the NESS. This is shown in Fig. 7. De-
tails on how to compute this quantity can be found in
(Kshetrimayum, 2017; Kshetrimayum et al., 2017).

Hence, one can apply the iPEPS machinery to com-
pute the time evolution in 2d with a local Liouvillian L
and some initial state. This procedure was used to in-
vestigate the dissipative Ising and the XYZ model, con-
firming and offering several insights that were inaccesible
before using mean field and other techniques. For exam-
ple, for the dissipative Ising model of Eq. (3), given by

the Hamiltonian H = V
4

∑

〈i,j〉 σ
[i]
z σ

[j]
z + hx

2

∑

i σ
[i]
x and

Lindblad operators Lµ =
√
γσ

[µ]
− . The phase diagram

is controversial with some papers suggesting the exis-
tence of a bistable steady state (Lee et al., 2011; Marcuzzi
et al., 2014) and others supporting a first order transition
(Maghrebi and Gorshkov, 2016; Weimer, 2015a,b). Our
technique found bistability for low bond dimensions of
the PEPO (D = 1, 2) which was replaced by a first order
transition for higher Ds, thus confirming that the bista-
bility is an artifact of mean field. This is shown in Figure
8. Furthermore, some studies suggested the existence of
an antiferromagnetic region in the presence of the trans-
verse field hx (Lee et al., 2011; Weimer, 2015a). Once
again, while our technique found evidence of such an AF
region, it eventually shrank with increasing bond dimen-
sion until it finally disappears for large enough D. Re-

hx/γ

FIG. 8 Our study, based on iPEPO found bistability in the
phase diagram of the dissipative Ising model for low bond di-
mensions D = 1, 2. The bistability is replaced by a first order
transition for higher Ds. Figure taken from (Kshetrimayum
et al., 2017) for the dissipative Ising model.

sults of the dissipative Ising model have been reproduced
independently using a different update scheme (Czarnik
et al., 2019) compared to the one used in (Kshetrimayum
et al., 2017). While the technique also employed vector-
ization along with iPEPS, the update scheme is based on
maximizing the fidelity between two consecutive steps of
the update of the iPEPS tensors. For the case of the
dissipative Heisenberg model (Lee et al., 2013) with the
Hamiltonian

H =
X

〈i,j〉

(

Jxσ
i
xσ

j
x + Jyσ

i
yσ

j
y + Jzσ

i
zσ

j
z

)

(27)

and the same Lindblad operators as before, our studies
found no phenomenon of re-emergence in the phase di-
agram, confirming a prediction by studies using cluster
mean-field approaches (Jin et al., 2016).
To the best of our knowledge, we have discussed most

of the state-of-the-art numerical techniques based on TN
for the study of open quantum many-body systems in
both one and two spatial dimensions. We would, now,
like to discuss some of the possible ideas that could be
helpful in improving the existing algorithm and possible
new implementation techniques specially in 2d. First of
all, we remark that the 2d algorithm suggested above
does not guarantee the positivity of the density matri-
ces. This problem can be solved by starting from an
initial state that is positive by construction, for example
taking the product of two PEPOs which are the conju-
gate of each other (A and A∗). One can then think about
using a positivity preserving algorithm such as the one in
(Werner et al., 2016). Such an algorithm will ensure the
positivity of the density matrix at all times of the evolu-
tion. We can call this initial density matrix as Projected
Entangled Pair Density Operator (PEPDO) as shown in
Figure 9. While such an approach may avoid the problem
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A

A∗

FIG. 9 TN diagram for the PEPDO of ρ on a 2d square
lattice, with bond dimension D and physical dimension d.
When vectorized, it can be understood as a PEPS for |ρ〉♯
with physical dimension d2

of negative eigenvalues of the density matrix, in practice,
it may require very high bond dimension of the PEPDO
and one, therefore, needs to consider the practical aspect
of the implementation.

The other possibility would be to target the ground
state of the Hermitian and positive semidefinite operator
L†
♯L♯. This ground state could be computed, e.g., by an

imaginary time evolution. However, there are two major
hurdles associated with this approach. First, the crossed
products in L†

♯L♯ are non-local, and therefore the usual
algorithms for time evolution are difficult to implement
unless one introduces extra approximations in the range
of the crossed terms. Another option is to approximate
the ground state variationally, e.g., via the Density Ma-
trix Renormalization Group (White, 1992, 1993) in 1d,
or variational PEPS in 2d (Corboz, 2016b). In the ther-
modynamic limit, however, this approach does not look
very promising because of the non-locality of L†

♯L♯ men-
tioned before. In any case, one could always represent
this operator as a PEPO (in 2d), which would simplify
some of the calculations, but at the cost of introducing a
very large bond dimension in the representation of L†

♯L♯.
For instance, if a typical PEPO bond dimension for L♯

is ∼ 4, then for L†
♯L♯ it is ∼ 16, which in 2d implies ex-

tremely slow calculations. Another option would be to
target the variational minimization of the real part for
the expectation value of L.

IV. VARIATIONAL METHODS

Variational techniques are often very powerful tools to
analyze quantum many-body systems, as demonstrated
by the successes of density functional theory (Kohn,
1999) and matrix product state approaches (Schollwöck,
2011) for ground state problems. As we will discuss in
this section, variational methods can also be successfully
applied to open quantum many-body systems.

A. The variational principle for open quantum systems

Variational methods generically consist of two steps.
The first step is a paramterization of the state of the sys-
tem in terms of a set of variational parameters {αi}. For
open quantum system, it is convenient to parameterize
the density matrix, i.e., ρ = ρ({αi}), although parame-
terizations based on statistical ensembles of pure states
are also possible (Transchel et al., 2014). The second
step is to identify a suitable functional that can be op-
timized by tuning the variational parameters. For open
quantum systems, it is very natural to apply a variational
principle to find the steady state of the quantum master
equation, which can be found by solving the equation
ρ̇ = 0. Importantly, the exact steady state can no longer
be determined after the variational parametrization, as
the steady state will generically lie outside the variational
manifold. Hence, the best possible option is to find the
variational parameters that will minimize the functional
||Lρ|| for a suitable norm (Weimer, 2015b).

The correct norm for the variational optimization can
be identified as the trace norm ||Lρ|| = Tr{|ρ̇|}, i.e.,
the sum of the absolute values of the eigenvalues of ρ̇

(Weimer, 2015b). This choice can be motivated on dif-
ferent grounds. First, the trace distance being the nat-
ural distance measure for density matrices (Nielsen and
Chuang, 2000) is highly suggestive of the trace norm be-
ing the natural norm for the tangent space ρ̇. This can
be formalized in the sense that the trace norm describes
an optimal measurement to distinguish ρ̇ from the zero
matrix (Gilchrist et al., 2005). A second way to mo-
tivate the trace norm is to consider classes of possible
alternatives. It can be shown that all Schatten p-norms
of the form (|ρ̇|p)1/p are inherently biased towards the
maximally mixed state for all values of p > 1 (Weimer,
2015b). Since functionals with p < 1 do not constitute
proper norms, this leaves the trace norm as the only valid
choice. One can also understand the variational princi-
ple as a direct solution of the overdetermined steady state
equation Lρ = 0 in terms of a trace norm minimization.

In general, the evaluation of the variational functional
is still an exponentially hard problem, as the computa-
tion of the trace norm requires the diagonalization of
the matrix ρ̇. However, it is possible to construct upper
bounds to the variational norm that retain the variational
character (Weimer, 2015b) and appear to introduce only
small quantitative deviations even close to phase tran-
sitions (Weimer, 2015a). The upper bound depends on
the variational manifold and its tangent space, i.e., the
degree of additional correlations that can be build up by
applying the Liouvillian to states within the variational
manifold. For example, for a variational class of product
states of the form ρ =

∏

i ρi, the upper bound D can be
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given as

D =
X

ij∈T

Tr {|ρ̇ij |} , (28)

where T contains pairs of sites that are connected to each
other by the Liouvillian (Weimer, 2015b).
The variational principle has been applied to find the

steady states of the dissipative Ising and Bose-Hubbard
models introduced in Eqs. (3) and (4), respectively
(Weimer, 2015a,b), as well as dissipative Ising models
including a Z2 symmetry (Overbeck et al., 2017), purely
dissipative Heisenberg models (Weimer, 2017), dissipa-
tive Rydberg gases (Weimer, 2015a), dissipative ensem-
bles of nitrogen-vacancy centers (Raghunandan et al.,
2018), entanglement generation in cavity QED arrays
(Lammers et al., 2016), and dissipative Fermi-Hubbard
models (Kaczmarczyk et al., 2016). In the latter case,
the study of fermionic models was realized by employing
a two-dimensional Jordan-Wigner transformation, where
the appearance of nonlocal Wigner strings was ruled out
by the choice of the variational manifold.
In the case where the steady state of the system is

close to criticality, it is possible to construct a dissipa-
tive Ginzburg-Landau theory based on the variational
principle (Overbeck et al., 2017). The essential step is
to perform a series expansion of the variational norm of
Eq. 28 in terms of an order parameter field φ(x) and its
spatial gradient ∇φ(x), leading to

D[φ] =

∫

dx
X

m

vm[∇φ(x)]m +
X

n

un[φ(x)]
n. (29)

All the coefficients vn and un can be calculated from the
microscopic quantum master equation. The series can be
truncated at low orders ofm and n, as higher order terms
are irrelevant close to criticality. In the case of steady
states with thermal statistics due to the presence of a
dynamical symmetry (Sieberer et al., 2013), it is possible
to construct a Ginzburg-Landau-Wilson functional inte-
gral for an effective partition function (Hohenberg and
Krekhov, 2015), given by

Zeff =

∫

Dφ exp (−βeffD[φ]) . (30)

Here, the effective inverse temperature βeff can be de-
rived from the u0 coeffecient, as this coefficient captures
the strength of fluctuations beyond a spatially homoge-
neous order parameter field (Overbeck et al., 2017). The
subsequent statistical field theory of Eq. (30) can then
be analyzed using standard techniques such as the per-
turbative renormalization group.
Finally, the variational principle can also be extended

towards the full time evolution of open quantum sys-
tems (Overbeck and Weimer, 2016), following very simi-
lar ideas discussed in the context of the time-dependent

variational principle (Kraus and Osborne, 2012; Tran-
schel et al., 2014). There, the variational functional is
replaced by a variational integration of the quantum mas-
ter equation for small time steps τ . For example, in the
lowest order Euler approximation, it is given by

D = Tr {|ρ(t+ τ)− ρ(t)− τLρ(t)|} , (31)

where ρ(t+ τ) is the density matrix containing the vari-
ational parameters. Higher-order schemes exist as well,
but constructing an upper bound similar to Eq. (28) re-
quires to consider higher-order correlations due to multi-
ple applications of the Liouvillian to the density matrix.
A good compromise is the implicit midpoint method,
which is exact up to second order in τ while only re-
quiring a single application of the Liouvillian (Overbeck
and Weimer, 2016).

B. Comparison with mean-field methods

For equilibrium problems, the variational method
based on product states is exactly equivalent to a mean-
field decoupling of the interaction terms. Remarkably,
this is not the case for open quantum systems. Within
the mean-field approach to open systems (Diehl et al.,
2010a; Tomadin et al., 2010), a set of effective single site
master equations is considered that is obtained by tracing
out the rest of the system. For the ith site, the mean-field
master equation reads

d

dt
ρi = Tr 6i

{

d

dt
ρ

}

= −i[HMF
i , ρi] +Di(ρi), (32)

where HMF
i and Di are the mean-field Hamiltonian and

the mean-field dissipators, respectively. This set of equa-
tion is then solved self-consistently, while for translation-
ally invariant systems it is often sufficient to consider an
effective single site problem.
Due to the nonlinear structure of the mean-field equa-

tions of motion, it is possible to have two or more inde-
pendent solutions for the steady state (Lee et al., 2011),
see Fig. 10. This also occurs within mean-field theory
for equilibrium systems close to first order transitions.
However, there one can always resort to the free energy,
which has to be minimal in thermal equilbrium. Unless
one invokes the variational principle, one cannot decide
which of the solutions of mean-field theory are stable and
which ones are not. Interestingly, the solution according
to the variational principle and mean-field theory are only
identical in the limit of infinite dimensions, where both
approaches become exact (Weimer, 2015b).
Mean-field theory predicts bistability for a wide range

of models, including the dissipative Ising model (Lee and
Cross, 2012; Lee et al., 2011; Marcuzzi et al., 2014) or ex-
tended spin models (Parmee and Cooper, 2018), as well
as driven-dissipative Bose-Hubbard models (Jin et al.,
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FIG. 10 Comparison of the solutions according to the vari-
ational principle (solid), the mean-field decoupling (dashed),
and wave-function Monte-Carlo simulations for 4× 4 lattices
for the up-spin density nr of the dissipative Ising model. The
mean-field solution displays a region of bistability, while the
variational solution correctly predicts a first order transition.
From (Weimer, 2015a).

2013; Le Boité et al., 2013, 2014; Mertz et al., 2016).
So far, mean-field bistability has been found in the ab-
sence of symmetries in the underlying master equation,
i.e., the two solutions are not connected by a symmetry
transformation. These properties have led to speculation
that bistability could be a genuine nonequilibrium phase,
which has stimulated several investigations whether this
could indeed be the case. However, the results of these
investigation have all been negative so far. Specifically,
the variational principle predicts that bistability is re-
placed by a first order transition both in the dissipa-
tive Ising and in the driven-dissipative Bose-Hubbard
model (Weimer, 2015b). For the dissipative Ising model,
the existence of the first order transition has been con-
firmed in tensor network simulations, where bistability is
found for low bond dimensions, but a first order transi-
tion appears for higher bond dimensions (Kshetrimayum
et al., 2017), see Sec. III.B. In the case of the driven-
dissipative Bose-Hubbard model, the first order transi-
tion has also been found in a field-theoretic treatment
based on the Keldysh formalism (Maghrebi and Gor-
shkov, 2016), again confirming the variational prediction.
These results underscore that the conventional argument
of mean field theory becoming qualitiatively correct if the
spatial dimension becomes large enough appears to be in-
correct for open quantum systems. On the other hand,
this argument seems to be much more justified when ap-
plied to the variational principle (especially, when con-
sidering the connection to equilibrium statistical physics
through the existence of the dissipative Ginzburg-Landau
theory of Eq. (29)), however, even there one may have
possible counterexamples (Mesterházy and Hebenstreit,
2017), which are not yet fully understood.

Nevertheless, these findings do not rule out genuine
bistability in open quantum systems per se, but only

that such mean-field results need to be taken with cau-
tion. Classical models exhibiting extended coexistence
regions (Muñoz et al., 2005) might still exhibit bistabil-
ity after including quantum fluctuations. The situation
is similar when it comes to limit cycles of open quan-
tum many-body systems (Chan et al., 2015), which have
been predicted to exist in sufficiently high-dimensional
systems (Owen et al., 2018).

One systematic extension of mean-field theory is clus-
ter mean-field theory, where the trace in Eq. (32) is not
carried out over all but one site but results in a larger
cluster that has again to be solved self-consistently (Jin
et al., 2016). This strategy is in close analogy to the
cluster mean-field theory for statistical mechanics and
ground state problems (Bethe, 1935; Oguchi, 1955). Es-
sentially, cluster mean-field approaches treat the short-
range physics more accurately than bare mean-field the-
ory, leading to better quantitative estimates for phase
transitions. However, the qualitative limitations of bare
mean-field theory remains, as these are resulting of long-
range fluctuations in the system. For open quantum
many-body models, cluster mean-field theory has been
used to calculate the phase diagram of the dissipative
Heisenberg model given by Eq. 27 (Jin et al., 2016) and
dissipative Ising models with and without a Z2 symmetry
(Jin et al., 2018).

Finally, it is also possible to systematically go beyond
the mean-field approximation using open system dynam-
ical mean-field theory (DMFT). DMFT is a mapping of a
many-body lattice model onto a single impurity problem
that has to be solved in a self-consistent way (Georges
et al., 1996). Within DMFT, the approach is to start
with an effective dynamical Green’s function G0, which
serves as a time-dependent version of a mean-field cou-
pling. Considering the Fermi-Hubbard model as an ex-
ample, G0 can used to express the effective action of a
single site as

Seff =−
β
∫

0

dτ

β
∫

0

dτ ′
X

σ

f†
σ(τ)G−1

0 fσ(τ
′)

+ U

β
∫

0

f
†
↑f↑f

†
↓f↓ , (33)

where fσ annihilates a fermion with spin σ, β is the in-
verse temperature, and U is the on-site interaction. The
central idea of DMFT is to consider a self-consistent so-
lution that repoduces the dynamical Green’s function G0.
This constraint is satisfied by the solution to the DMFT
equations for the local Green’s function G0, the dynami-
cal Green’s function G0, and the self-energy Σ evaluated
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at the Matsubara frequencies ωn = (2n+ 1)π/β,

G0(iωn) = hcσ(iωn)c
∗
σ(iωn)iSeff

(34)

G0(iωn) =
[

G0(iωn)
−1 − Σ(iωn)

]−1
(35)

G0(iωn) =

∫

dǫ
N(ǫ)

iωn + µ− Σ(iωn)− ǫ
, (36)

where µ is the chemical potential and N(ǫ) is the den-
sity of states (Kollar, 2011). The first step in bringing
DMFT to open systems has been to use effective Lindblad
master equations have to describe quantum transport in
closed quantum systems using DMFT (Arrigoni et al.,
2013; Titvinidze et al., 2015, 2016). Recently, this ap-
proach has been extended to the case where already the
initial many-body problem describes an open quantum
system (Panas et al., 2019).
A different method to systematically extend mean-field

theory is to use projection operator methods. The cen-
tral idea is to consider a single site of the many-body
problem, with the rest of the system forming a non-
Markovian environment. This non-Markovian master
equation is then solved using standard projection oper-
ator techniques such as the Nakajima-Zwanzig method
or the time-convolutionless master equation (Breuer and
Petruccione, 2002). Initially, this approach has been
used to describe the relaxation dynamics of local observ-
ables in a closed quantum system (Weimer et al., 2008),
which has later been extended to the Lindblad dynamics
of open systems (Degenfeld-Schonburg and Hartmann,
2014). There, the initial step is to introduce corrections
∆L to the mean-field Liouvillian LMF are introduced ac-
cording to

L = LMF +∆L. (37)

The projection P removes all correlations and projects
the system onto a product state, i.e.,

Pρ =
∏

i

ρi. (38)

If the initial state at time t0 is also a product state,
the projected Lindblad master equation may be formally
written as

P d

dt
ρ(t) = LMFPρ(t) + P∆L

t
∫

0

dt′K(t, t′)Pρ(t′), (39)

where the generator K has been introduced (Degenfeld-
Schonburg and Hartmann, 2014). The generator K may
then be expanded in terms of a power series of the beyond
mean-field corrections ∆L. This projection operator ap-
proach has been used to investigate both dissipative XY
models (Degenfeld-Schonburg and Hartmann, 2014) and
the dissipative Heisenberg model (Owen et al., 2018). Re-
markably, in the latter case a limit cycle behavior has

been reported, which for sufficiently large spatial dimen-
sions also survives under inclusion of the terms beyond
mean-field. Consequently, it would be interesting to learn
whether the projection operator approach is also capable
to correctly identify the replacement of mean-field bista-
bility by a first order transition in the dissipative Ising
model.

C. Variational tensor network methods

Given the successes of tensor network methods dis-
cussed in Sec. III, it appears natural to combine them
with variational methods for the study of open quan-
tum many-body systems. However, the main challenge
is that the natural trace norm for constructing the varia-
tional principle cannot be calculated efficiently in a ten-
sor network respresentation. This has led to the use of
different norms as possible alternatives (Cui et al., 2015;
Mascarenhas et al., 2015), see Sec. III.A.
On the one hand, the choice of the norm is not really

relevant if the value of the norm is very low (i.e., compa-
rable to the machine precision of the numerical simula-
tion), as then the solution is almost exact from any point
of view. On the other hand, choosing a non-natural norm
is a potential source of errors that is not under control of
the variational algorithm. In practice, this difficulty will
mostly manifest itself for higher-dimensional problems,
as there the bond dimensions that can be reached are sev-
erly constrained by the compuational resources (Kshetri-
mayum et al., 2017). But even for one-dimensional sys-
tems, there are computationally challenging problems in-
volving long relaxation times (Carollo et al., 2019), where
an arbitrarily low variational norm might not be reach-
able.
A way out of this problem can be realized by represent-

ing the density matrix in terms of an ensemble of pure
states and use a variational tensor network formulation
for these pure states (Transchel et al., 2014). In this case,
the density matrix is parametrized according to

ρ =

∫

p(α, ᾱ)|ψ(α)ihψ(α)|dαdᾱ, (40)

where |ψ(α)i is a variational wave function with varia-
tional parameters α and p(α, ᾱ) is the associated proba-
bility distribution. Crucially, the variational norm asso-
ciated with the effective Hamiltonian of the master equa-
tion Heff = H − i/2

∑

i c
†
i ci can now be calculated as

DH = |Heff|ψ(α)i|2. (41)

This expression can both be computed efficiently using
tensor network methods and corresponds to the natu-
ral trace norm when evaluated over the full ensemble.
The quantum jump terms of the master equation can be
treated in a similar fashion (Transchel et al., 2014).
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D. Variational quantum Monte-Carlo methods

The central idea behind quantum Monte-Carlo meth-
ods is to rewrite a quantum many-body problem in terms
of a sampling over a classical probability distribution
(Batrouni and Scalettar, 2011). However, the existence of
destructive interference in quantum mechanics can lead
to corresponding classical probabilities that are negative,
which is the root of the famous sign problem. One com-
mon workaround is to sample over the absolute value of
the probability distribution instead, but this comes at
the price of the complexity of the computation increas-
ing exponentially with the system size (Troyer andWiese,
2005). Open quantum many-body systems are especially
prone to the sign problem since the eigenvalues of the Li-
ouvillian can even be complex (Nagy and Savona, 2018).
Nevertheless, Monte-Carlo sampling can be useful even
in the presence of the sign problem, if the required re-
sources for the Monte-Carlo sampling are lower than for
a full solution of the problem.

The first quantum Monte-Carlo simulation of an open
quantum many-body problem has been based on a non-
variational full-configuration-interaction Monte Carlo al-
gorithm (Nagy and Savona, 2018), which is better
equipped to deal with the sign problem without com-
pletely negating it. For the magnetization of a dissipative
XYZ model on small lattices, the quantum Monte-Carlo
simulation is in excellent agreement with wave-function
Monte-Carlo results.

Recently, variational Monte-Carlo methods have been
applied to open quantum systems (Hartmann and Car-
leo, 2019; Nagy and Savona, 2019; Vicentini et al., 2019a;
Yoshioka and Hamazaki, 2019). These approaches are in-
spired by using variational wave function corresponding
to restricted Boltzmann machines (RBMs) (Carleo and
Troyer, 2017), which were first introduced in the context
of neural network simulations. The main idea behind
RBM wave functions is shown in Fig. 11, where an ad-
ditional hidden layer introduces variational parameters
associated with the quantum correlations of the many-
body state. The entries of the vectorized density matrix
are then given by

♯hσ, τ |ρi♯ =
1

Z

X

{hj}

exp





X

ij

Wijσihj +W ∗
ijτihj





× exp





X

i

aiσi + a∗i τi +
X

j

bjhj



 , (42)

where the Wij , ai, and hj are variational parameters.
Interestingly, there is a close connection between RBM
wave functions and matrix product states (Chen et al.,
2018; Deng et al., 2017), however, RBMs are potentially
also capable to describe long-range entangled quantum
states.

FIG. 11 Node structure of a restricted Boltzmann machine
for open quantum systems. The vectorized density matrix is
realized in terms of a physical layer σi, corresponding to a
set of spin 1/2 variables. These are coupled to the nodes of
a hidden layer hi, which are again coupled to the third layer
τi, which represents the adjoint of the physical layer.

For the variational Monte-Carlo samplings, different
norms have been put forward. One possibility is to con-
sider the Hilbert-Schmidt norm of the time evolution
(Hartmann and Carleo, 2019) or the steady state (Vi-
centini et al., 2019a). Interestingly, in the latter case,
the variational norm D has been normalized according
to the purity Tr{ρ2}, i.e.,

D =
Tr
{

ρ̇2
}

Tr {ρ2} . (43)

This norm is not biased towards the maximally mixed
state as mentioned above. An alternative approach to
construct a suitable norm is to mimize the Hermitian
L†L in close analogy to a ground state problem (Yoshioka
and Hamazaki, 2019). Finally, it is possible to consider
the equivalent of an expectation value for vectorized den-
sity matrices according to ♯hρ|L♯|ρi♯/♯hρ|ρi♯ (Nagy and
Savona, 2019). With the respect to the more natural
trace norm for density matrices, the RBM approaches
behave similarly to the tensor network simulations dis-
cussed in Sec. IV.C. However, since RBMs can be applied
to two-dimensional models in a straightforward way, it
will be very interesting to see how these methods perform
for the investigation of dissipative phase transitions, in
particular in critical systems.

V. PHASE SPACE AND RELATED METHODS

Other methods have also been used with relative suc-
cess in the study of open quantum systems, such as phase
space methods, as well as methods based on hierarchy
equations. In this section we explain two of such ex-
amples, namely, truncated Wigner approximations and
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archies. The resulting methods are very general in pur-
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pose, and can be applied to a wide variety of systems,
yet in what follow we discuss concrete examples.

A. Truncated Wigner approximation

In the context of phase-space related methods, trun-
cated Wigner approximations were first used in (Caru-
sotto and Ciuti, 2005) to driven-dissipative microcavity
polariton system coherently driven into the optical para-
metric oscillator regime, also reviewed in (Carusotto and
Ciuti, 2013) and revisited in (Dagvadorj et al., 2015) as
an example of a 2d driven-dissipative non-equilibrium
phase transition. The Hamiltonian for the system is given
by

HS =

∫

d~r
(

ψ†
X ψ†

C

)

(

−∇2

2mX
+ gX

2 |ψX |2 ΩR

2
ΩR

2
−∇2

2mC

)(

ψX

ψC

)

,

(44)
with cavity and photon field operators ψX,C(~r, t), spa-
tial coordinate ~r = (x, y), mX,C the exciton and photon
masses, gX the exciton-exciton interaction strength, and
ΩR the Rabi splitting. One introduces the effect of an ex-
ternal drive (pump) as well as incoherent decay by adding
a system-bath Hamiltonian given by

HSB =

∫

d~r
(

F (~r, t)ψ†
C(~r, t) + h.c.

)

+
∑

~k

∑

l=X,C

(

ξl~k

(

ψ†

l,~k
(t)Bl,~k + h.c.

)

+ ωl,~kB
†

l,~k
Bl,~k

)

,

(45)

with ψl,~k(t) the Fourier transform of the field operators

in real space, Bl,~k and B†

l,~k
the bath’s bosonic anihilation

and creation operators with energy ωl,~k, which describes
the decay for both excitons and cavity photons. The de-
cay is compensated by an external homogeneous coherent

pump F (~r, t) = fpe
i(~kp·~r−ωpt), injecting polaritons with

momentum ~kp and energy ωp.
By using standard quantum optical methods, one can

trace out the bath within the Markovian approximation
and obtain a Master equation for the system. There
is, however, an alternative approach by means of phase-
space techniques. In particular, one can represent the
quantum fields as quasiprobability distribution functions.
The Fokker-Planck partial differential equation that gov-
erns the dynamics of such distributions can be mapped
to a stochastic differential equation, which can be solved
using different techniques. For the example that we are
discussing, one solves the equation on a finite grid with
lattice spacing a. The most suitable quasiprobability dis-
tribution for this example is the Wigner representation,
which is also the most suitable one for numerical im-
plementation. By truncating the corresponding Fokker-
Planck equation in the limit (gX/κX,Ca

2) ≪ 1, with

κX,C the exciton and photon decay rates, and keeping up
to second-order derivatives only, one obtains the stochas-
tic differential equation

id

(

ψX

ψC

)

=

(

H ′
HF

(

ψX

ψC

)

+

(

0

F

))

dt+i

(√
κXdWX√
κCdWC

)

.

(46)
In this equation, dWl=X,C are Wiener noise terms, and
H ′

MF is given by

H ′
MF =

(

−∇2

2mX
+ gX

(

|ψX |2 − 1
a2

)

− iκX
ΩR

2
ΩR

2
−∇2

2mC
− iκC

)

(47)
The resulting stochastic differential equation can then be
solved using standard methods and softeare packages for
this purpose.
Let us add that recently, this method has also been

used to study critical slowing down in photonic lattices
(Vicentini et al., 2018), as well as extended to disor-
dered quantum many-body system (the so-called optical
stochastic unraveling for disordered systems) (Vicentini
et al., 2019b).

B. BBGKY hierarchy equations

It is also possible to study open quantum systems via
the so-called Bogoliubov-Born-Kirkwood-Yvon hierarchy
(Liboff, 2003). In a nutshell, this is a hierarchy of equa-
tions aimed to describe a system of a large number of
interacting particles. As such, the idea is very generic.
But as shown in (Navez and Schützhold, 2010), it can
also be applied directly in the context of open dissipative
systems in order to obtain a hierarchy of equations for
the different reduced density matrices.
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The way this approach works is quite intuitive. Con-
sider the reduced density matrices for one lattice site
ρµ, for two lattice sites ρµν , and so on. We separate
the correlated parts as ρµν = ρcµν + ρµρν , as well as
ρµνλ = ρcµνρλ + ρcµλρν + ρcνλρµ + ρµρνρλ, and so on. The
method that will be discussed in what follows in based
on the scaling hierarchy of correlations

ρcS = O
(

Z1−|S|
)

, (48)

with |S| the number of lattice sites in set S. The different
reduced density matrices can also be computed using the

generating functional F(αµ) = log Tr(ρ
∏

µ(Iµ + αµ)),
with αµ an arbitrary operator acting on site µ. Using
such a functional one has ρµ = ∂F/∂αµ|α=0, as well
as ρcµν = ∂2F/∂αµ∂αν |α=0, and so on. Next, the Li-
ouville operators Lµ and Lµν acting on one and two
sites are introduce via the dissipation equation i∂tρ =
[H, ρ]+

∑

µ Lµρ+
∑

µν Lµνρ/Z, with Z the coordination
number of the Hamiltonian (e.g., the number of tunneling
neighbours at any given site for a Hubbard-like Hamilto-
nian). Following these equations, the time evolution of
F is given by

i
∂

∂t
F(α) =

∑

µ

Trµ

(

αµLµ
∂F
∂αµ

)

+
1

Z

∑

µν

Trµν

(

(αµ + αν + αµαν)Lµν

(

∂2F
∂αµ∂αν

+
∂F
∂αµ

∂F
∂αν

))

. (49)

Using this equation, one can take derivatives and obtain a set of equations for the correlated density matrices,

i
∂

∂t
ρcS =

∑

µ∈S

Lµρ
c
S +

1

Z

∑

µν∈S

Lµνρ
c
S +

1

Z

∑

k/∈S

∑

µ∈S

Trk



LS
µkρ

c
S∪k +

P∪P̄=S\{µ}
∑

P⊆S\{µ}

LS
µkρ

c
{µ}∪Pρ

c
{k}∪P̄





+
1

Z

∑

µν∈S

P∪P̄=S\{µ,ν}
∑

P⊆S\{µ,ν}



Lµνρ
c
{µ}∪Pρ

c
{ν}∪P̄ − Trν



LS
µν



ρc{µ,ν}∪P̄ +
Q∪Q̄=P̄
∑

Q⊆P̄

ρc{µ}∪Qρ
c
{ν}∪Q̄







 ρc{ν}∪P



(50)

with LS
µν = Lµν + Lνµ. This hierarchy of equations for

the reduced density matrices is preserved in time. More-
over, it allows us to write explicit equations for the one-
and two-site density matrices. For the one-site matrix
one gets

i
∂

∂t
ρµ = Lµ +

1

Z

∑

k

Trk
(

LS
µk

(

ρcµk + ρµρk
))

, (51)

and for the two-site matrix one has

i
∂

∂t
ρµν = Lµρ

c
µν

1

Z
Lµν

(

ρcµν + ρµρν
)

+
1

Z

∑

k 6=µ,ν

Trk
(

LS
µk

(

ρcµνk + ρcµνρk + ρcνkρµ
))

− ρµ
Z

Trµ
(

LS
µν

(

ρcµν + ρµρν
))

+ (µ↔ ν). (52)

By combining the above expressions with Eq.(48), one
can expand in powers of 1/Z and obtain different ap-
proximations for the one- and two-particle behaviour.

This approach can be implemented for a variety of sys-
tems (spins, bosons, fermions...) and has the advantage
of being independent of the dimensionality of the system.

For instance, in (Navez and Schützhold, 2010) it was ap-
plied to a lattice Bose-Hubbard model. The method can
be used to obtain analytical expansions, as well as to
facilitate efficient numerical simulations.

VI. LINKED CLUSTER EXPANSION METHODS

Methods based on linked-cluster expansions have also
been recently put forward in the study of open quantum
many-body systems, so far focusing on the study of two-
dimensional spin systems with incoherent spin relaxation
(Biella et al., 2018). The method numerically targets
expectation values of observables in the steady state (at
long times) of the master equation.
Mathematically, the procedure is as follows: let us as-

sume (without loss of generality) that the Liouvillian can
be expanded as a sum of two-body terms, i.e.,

L =
∑

〈i,j〉

αijLij , (53)

with αij some local coupling strength. For the sake of
simplicity let us define k ≡ (i, j) as a combined index.
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The expectation value O of an observable Ô can be ex-
panded in terms of powers of αk, i.e.,

O({αk}) =
∑

{nk}

O{nk}

∏

k

αnk

k , (54)

with nk running over all non-negative integers for all k.
It is clear that all possible polynomials in αk are included
in the above expression, which can be reorganized in clus-
ters as follows:

O =
∑

c

W[O](c), (55)

with c a non-empty set of k-indexes identifying the sites
belonging to the cluster. The cluster weightW[O](c) con-
tains all the terms in the expansion with at least one
power of αk, for all k in c, and no powers of αk of k
does not belong to c. These terms obey the recurrence
relation

W[O](c) = O(c)−
∑

s⊂c

W[O](s), (56)

with

O(c) = Tr(Ôρs(c)) (57)

being the expectation value of the observable in the
steady-state ρs(c) for the finite cluster c. Taking into
account symmetries in the system, the expectation value
per site in the thermodynamic limit can be written as

O

L
=

∞
∑

n=1

(

∑

cn

l(cn)W[O](cn)

)

, (58)

with L → ∞ the size of the system, the outer sum run-
ning over all possible cluster sizes n, and the inner sum
over all topologically different clusters cn of size n, with
l(cn) their multiplicity. This series expansion can be
truncated up to a cluster size R, thus giving rise to a
plausible approximation method also valid for open sys-
tems.
The linked cluster expansion works very well for the

dissipative Heisenberg model (Biella et al., 2018), where
an exact product state solution can be used as a starting
point of the expansion. In this case, it is even possible
to calculate phase boundaries and critical exponents of
a dissipative phase transition between a paramagnet and
a ferromagnet. The situation is quite different for the
dissipative Ising model, where the expansion series failed
to converge even for a 10th order expansion (Jin et al.,
2018).

VII. SUMMARY AND OUTLOOK

The enormous effort to develop novel simulation meth-
ods to investigate open quantum many-body systems has

enabled us to review a large variety of numerical meth-
ods. To be more specific, in this review we considered
methods for the Markovian quantum master equation
(assuming a weak-coupling limit), including mean-field,
stochastic methods, tensor networks, variational meth-
ods, quantum Monte-Carlo, truncated Wigner approxi-
mation, BBGKY hierarchy equations, and linked cluster
expansions. While so far, no method has emerged that
is universally optimal for all cases, there have been sev-
eral very promising developments with different methods
for different regimes. Even with such major technical
advances discussed in this review, there are still many
open problems which are inacessible with these state-of-
the-art numerical techniques. To give concrete exam-
ples of actual physical problems, one may consider a very
common setting in the context of Rydberg atoms where
the interaction is often long-ranged and cannot be ap-
proximated with just a nearest-neighbour Hamiltonian
(Browaeys et al., 2016; Labuhn et al., 2016; Schachen-
mayer et al., 2015). Even TN techniques will face a diffi-
cult challenge specially in 2D while encountering such
problems although there has been promising develop-
ments even in this direction recently (O’Rourke and Kin-
Lic Chan, 2019). Other challenging problems include the
existence of AF order in 3D dissipative Ising model which
is an open question that appears hard to answer. This
is again relevant to ongoing experiments with Rydberg
atoms, which one cannot reliably simulate at the mo-
ment (Carr et al., 2013; Helmrich et al., 2018; Malossi
et al., 2014). Phase transitions and universality classes
of dissipative models is another class of problem which
has proven to be quite difficult for numerical techniques
(Biondi et al., 2017; Carmichael, 2015; Diehl et al., 2010b;
Fink et al., 2017).

Certainly, the largest confidence in a simulation re-
sult can be achieved if it is reproducible using a comple-
mentary simulation approach. Despite these caveats, one
can make several key observations about the particular
methods covered in this review. The first observation is
that mean-field methods are considerably less reliable for
open system than their counterparts for closed systems,
although the reason for this discrepancy is still an open
question. Furthermore, tensor network methods have
demonstrated their ability to successfully tackle many
hard problems surrounding open many-body systems and
resolve long-standing open questions. A particularly in-
teresting and promising case is that of open 2d systems,
which is unexplored territory to a great extent. As for
the variational methods discussed in this review, there
appears to be a tradeoff between the formal suitability
of the norm and its efficient computability. It will be in-
teresting to see if and how this tradeoff will be resolved
in future work. We provide a summary in Tab. II com-
paring the different techniques we have discussed above.

The progress in recent years in simulating open quan-
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WFMC TN Variational Principle VQMC CMF TWA

System size 20 TDL TDL 16 TDL 400

Dimensions 1D,2D 1D,2D anya any anyb any

Local Hilbert space small small large large small large

Fermionic systems Yes Yes partially No partially unknown

Inhomogeneous systems good good bad good good good

Critical exponents good good goodc unknown bad unknown
a Works better in higher dimensions
b Works better in higher dimensions
c For states with thermal statistics

TABLE II Table comparing the different simulation methods discussed in this review. We differentiate the methods by the
system sizes that can be simulated, the spatial dimensions, contraints on the local Hilbert space dimension, whether fermionic
systems can be treated, the simulation performance for inhomogeneous systems, and whether the correct critical exponents of
phase transitions can be obtained.

tum systems has brought the field to a level where one
has a wide range of tools at hand to systematically com-
pare to experimental results, in particular in the context
of quantum simulations. Combined with the experimen-
tal ease of preparing the steady state of an open quantum
system, these are good reasons to believe that the study
of strongly-correlated open quantum many-body systems
will become a research topic with impact in other areas
of science, such as material design and quantum compu-
tation.
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and P. Zoller (2008), “Quantum states and phases in driven
open quantum systems with cold atoms,” Nature Phys. 4,
878–883.

Diehl, Sebastian, Andrea Tomadin, Andrea Micheli, Rosario
Fazio, and Peter Zoller (2010a), “Dynamical phase transi-
tions and instabilities in open atomic many-body systems,”
Phys. Rev. Lett. 105, 015702.

Diehl, Sebastian, Andrea Tomadin, Andrea Micheli, Rosario
Fazio, and Peter Zoller (2010b), “Dynamical phase transi-
tions and instabilities in open atomic many-body systems,”
Phys. Rev. Lett. 105, 015702.

Dum, R, P. Zoller, and H. Ritsch (1992), “Monte carlo simu-
lation of the atomic master equation for spontaneous emis-
sion,” Phys. Rev. A 45, 4879–4887.

Dutt, M V G, L. Childress, L. Jiang, E. Togan, J. Maze,
F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin
(2007), “Quantum Register Based on Individual Electronic
and Nuclear Spin Qubits in Diamond,” Science 316, 1312–
1316.

Eisert, J (2013), “Entanglement and tensor network states,”
Mod. Sim. 3, 520.

Feiguin, Adrian E, and Steven R. White (2005), “Finite-
temperature density matrix renormalization using an en-
larged hilbert space,” Phys. Rev. B 72, 220401.
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