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Many-body localized systems in which interactions and disorder come together defy the expectations of

quantum statistical mechanics: In contrast to ergodic systems, they do not thermalize when undergoing non-

equilibrium dynamics. What is less clear, however, is how topological features interplay with many-body lo-

calized phases as well as the nature of the transition between a topological and a trivial state within the latter.

In this work, we numerically address these questions, using a combination of extensive tensor network calcu-

lations, specifically DMRG-X, as well as exact diagonalization, leading to a comprehensive characterization of

Hamiltonian spectra and eigenstate entanglement properties.

I. INTRODUCTION

The paradigm of many-body localization (MBL) uplifts

Anderson localization to a regime in which genuine interac-

tions matter.1,2 It manifestly breaks ergodicity and expecta-

tions from quantum statistical mechanics:3 once pushed out of

equilibrium,4–6 such quantum many-body systems will equi-

librate, but retain too much memory of the initial conditions

to fully thermalize. Indeed, the phenomenon of many-body

localization is multi-faceted, giving rise to a plethora of phe-

nomena that seem to have little in common at first sight. It is

accompanied by an extensive number of quasi-local constants

of motion,7 by eigenstates in the bulk that generically exhibit

entanglement area laws,8,9 and by a peculiar logarithmic dy-

namic growth of entanglement entropies.10,11 Reflecting this

rich phenomenology, it is no surprise that the transition be-

tween an ergodic and localized regime has moved into the fo-

cus of attention.12–16

What is less clear, at the same time, is how types of or-

der come to play in this state of affairs. It has been shown

that excited eigenstates can exhibit signatures of topological

order,17–19 yet the precise mechanism let alone the transition

to the ergodic regime are not fully understood. This is par-

tially due to a lack of methods to address this question. Ten-

sor network methods20–22 have been extended to be able to ad-

dress properties of highly excited states,23–25 prominently the

DMRG-X method,26 generalizing the density matrix renor-

malization group (DMRG) method27 to capture highly excited

states that feature an entanglement area-law.

In contrast, addressing the question how MBL and topolog-

ical properties compete or co-exist has only recently moved

into the center of attention. Naively, one would expect topo-

logical order to be absent in a regime in which disorder domi-

nates driving the system into a MBL state. However, recently

a model was proposed exemplifying that this is not always the

case.18,19 We elaborate on this question using a combination

of exact diagonalization of up to L = 16 sites as well as exten-

sive tensor network, specifically DMRG-X, approaches to de-

termine the topological properties in the presence of MBL. By

studying typical hallmarks of MBL physics as well as topol-

ogy, such as the energy level statics, fluctuations of local ob-

servables and entropy, we determine the phase diagram of the

model proposed in Refs. 19 and 28, with variants discussed

in Refs. 18 and 29. We do so in dependence of its genuine

interaction parameters, see Fig. 1.

II. MODEL, SIMPLE LIMITS

To be concrete, we focus on a specific model Hamiltonian,

yet one that clearly shows the signatures at the heart of our

argument. The system is governed by19,28

H =
∑

i

(

λiσ
z
i−1σ

x
i σ

z
i+1 + hiσ

x
i + Viσ

x
i σ

x
i+1

)

, (1)

where σx,y,z
i denote Pauli matrices supported on site i. Un-

less mentioned otherwise, we will work with a system of size

L and either open (OBC) or periodic (PBC) boundary condi-

tions. The real pre-factors λi, hi, and Vi are random variables

drawn from a Gaussian distribution with a standard deviation

of σλ,h,V , and all data is averaged over 100-500 disorder re-

alizations. We choose σλ = 1 for the rest of this work. Note

that for Vi = 0, the system can be mapped to non-interacting

fermions via a Jordan-Wigner transformation.

For hi = Vi = 0, the Hamiltonian of Eq. (1) takes the form

of a sum of mutually-commuting operators, H0 =
∑

i λiOi

with Oi = σz
i−1σ

x
i σ

z
i+1 and [Oi, Oj ] = 0.19 It can thus be

treated analytically. A system with open boundaries features

free spin-1/2 edge excitations generated by the Pauli opera-

tors Σx
L = σx

1σ
z
2 , Σy

L = σy
1σ

z
2 , Σz

L = σz
1 (and similarly at

the right end of the chain), which commute with H0. Each

eigenvalue of H0 is thus four-fold degenerate, and the system

is in a topological phase at arbitrary energies.

One can show that each eigenstate of H0 can be expressed

as a matrix-product state (MPS) with a bond dimension of

χ = 2 and hence features an entanglement area law,30 which

can be seen as a signature of localization. To this end, we

rewrite H0 = eihH̃0e
−ih†

with h =
∑

i σ
x
i σ

x
i+1 and H̃0 =

∑

i λiσ
z
i . The eigenstates of H̃0 are product states. The op-

erator eih simply acts as a product of mutually commuting
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FIG. 1. Top panel: Normalized distance ∆E between the highest

and lowest energies of four consecutive mid-spectrum (high-energy)

eigenstates as a function of σV for fixed σh = 0.05 and various sys-

tem sizes for OBC. The window from which the eigenstates are taken

ranges from 0.4 to 0.6 in terms of the reduced energy ǫ with ∆E be-

ing normalized against its maximum at σh = 0.05 and σV = 1.0.

The topological phase has a four-fold degenerate spectrum (associ-

ated with the edge excitations) and is characterized by ∆E → 0 in

the thermodynamic limit. The eigenstates are non-degenerate in the

trivial phase (∆E > 0). Bottom panel: High-energy (mid-spectrum)

phase diagram in the σh − σV plane for L = 14. This time, ∆E
is normalized against σh = 1.0 and σV = 1.0. The crossover be-

tween the topological and trivial phase (dashed line) is defined as

∆E = 0.2. The system remains many-body localized for any of

these parameters (see Fig. 2).

two-site quantum gates and transforms each product eigen-

state state into matrix product states with a bond dimension

of two upon conjugation: For every product state vector |P 〉,
eih|P 〉 is such a matrix product state vector. More formally

speaking, H0 is an example of a class of Hamiltonians that

feature exact matrix product eigenstates by construction. If

H̃0 is a 1-local Hamiltonian with product eigenstates and h a

k-local Hamiltonian consisting of mutually commuting terms,

then H0 = eihH̃0e
−ih†

is a 2k − 1 local Hamiltonian. Since

the eigenstates are obtained from products under conjugation,

each eigenstate is a matrix product state of bond dimension

at most 2(2k−1)/2, and hence strictly localized, satisfying an

exact entanglement area law for every Renyi entropy.30

In the converse limit where hi and Vi are large, the Hamil-

tonian takes the form of a classical Ising model whose eigen-

states are product states in the σx-basis; they are thus trivially

localized but do not feature topological properties. This sug-

gests that the system may be localized for any values of σh,V

but that a transition between a topological MBL phase and a

trivial MBL phase occurs when σh,V are increased. We will

now confirm this scenario explicitly using a combination of

exact diagonalization and DMRG-X numerics.

III. PHASE DIAGRAM FROM EXACT

DIAGONALIZATION

A. Topology: Spectrum degeneracy

We first show that the topological properties of highly-

excited states survive for hi 6= 0, Vi 6= 0. To this end,

Eq. (1) is solved for OBC by exact diagonalization. The topo-

logical phase features a spin-1/2 degree of freedom at each

edge and is thus characterized by a four-fold degeneracy of

the spectrum in the thermodynamic limit (finite systems fea-

ture exponential corrections). The trivial phase exhibits a non-

degenerate spectrum.

In the top panel of Fig. 1, we plot the normalized distance

between the four consecutive eigenvalues ∆E, which serves

as a measure for the degeneracy of the spectrum, as a func-

tion of σV for fixed σh = 0.05 and various system sizes L.

Here, ∆E is normalized against its maximum (at σh = 0.05
and σV = 1.0), with the phase boundary being defined at

∆E = 0.2 in this normalization. The disorder sampling has

been carried out such that the error is smaller than the symbol

size, and we limited ourselves to mid-spectrum (high-energy)

states in a window [0.4, 0.6] in terms of the reduced energy

ǫ = (E − Emin)/(Emax − Emin), with Emin and Emax the

minimum and maximum energy of the spectrum, respectively.

For small (large) σV , ∆E decreases (increases) with L. The

data of Fig. 1 thus indicates that a transition between a high-

energy topological phase and a trivial phase occurs around

σV ∼ 0.2. In the bottom panel of Fig. 1, we show the de-

generacy ∆E for fixed L = 14 in the σh − σV plane. The

phase boundary (dashed line) has been defined via ∆E = 0.2,

with ∆E again being normalized against its maximum (which

occurs at ∆E at σV = 1.0 and σh = 1.0).

B. Many-body localization: Adjacent gap ratio

As a next step, we provide strong evidence that the system

remains localized for arbitrary values of σh and σV . We first

focus on a system with PBC in order to remove the spectral

degeneracy associated with the edge degrees of freedom. In

Fig. 2, we show the distribution of the adjacent gap ratio31

(AGR) r for the mid-spectrum states ǫ ∈ [0.4, 0.6] for fixed

σh = 0.05, various σV = 0.1, 0.5, and L = 14. The distri-

bution always takes a Poissonian form, which is a hallmark of

localization.31

For a system with OBC, the AGR features a sharp peak at

r = 0 in the topological phase (see Fig. 3), which signals

the extensive number of quadruples of (close to degenerate)
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FIG. 2. Distribution of the adjacent gap ratio in mid-spectrum eigen-

states for fixed σh = 0.05, various σV , and L = 16 for PBC. The

AGR has a Poissonian form, which is a hallmark of localization. The

eigenstates are all from the interval [0.4, 0.6] in terms of the reduced

energy ǫ.

eigenstates associated with the edge excitations; the tail of the

distribution is always Poissonian. The relative weight of the

Poissonian tail as a function of σV for fixed σh = 0.05 is

shown in the bottom panel of Fig. 3. For small (large) σV , this

weight decreases (increases) with the system size, implying

that more (less) weight is shifted into the peak at r = 0. This

provides further evidence that a transition between a topolog-

ical and a trivial phase takes place around σV ∼ 0.2.

IV. ENTANGLEMENT PROPERTIES AND BI-PARTITE

FLUCTUATIONS FROM EXACT DIAGONALIZATION

Next, we turn to discussing physical properties of the sys-

tem such as the entanglement entropy or bi-partite fluctua-

tions. We first present ED data; our aim is to eventually use

the DMRG-X to access large system sizes of up to L ∼ 50
sites. We exclusively focus on systems with OBC from now

on.

In the topological phase with generic σh 6= 0, σV 6= 0, the

spectrum for finite L consists of almost-degenerate quadru-

plets associated with the spin-1/2 degrees of freedom at each

edge. It turns out that the left and right edge spins are cou-

pled in the eigenstates of a finite systems. Such a coupling

is not stable towards small perturbations. In order to ex-

tract the generic behavior of physical quantities, one can pur-

sue two different strategies: One can either compute bulk

properties which are not affected by a coupling between the

edges, or one can remove this coupling by switching on

a small edge field ±hEΣL,R which splits up the quadru-

plets in the thermodynamic limit. The latter is illustrated

in Fig. 4, which shows the two-point correlation function
1
4

∑
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FIG. 3. Top panels: The same as in Fig. 2, but for OBC. The topo-

logical phase features a sharp peak at r = 0 due to the quadrupel of

almost-degenerate eigenstates, the tail is always Poissonian. Bottom

panel: Relative weight of the Poissonian tail for fixed σh = 0.05
and various L for a system with OBC.

field.

We first investigate bulk properties which are not affected

by a potential coupling between the edges. The standard bi-

partite entanglement entropy is certainly no such quantity, and

it is generally not even well-defined in a system with a degen-

erate spectrum (i.e., in the thermodynamic limit) as it inter-

twines classical and genuine quantum correlations. From the

perspective of entanglement theory, the entanglement entropy

is a valid entanglement measure32,33 for pure but not for mixed

quantum states. For this reason, we resort to the logarithmic

entanglement negativity.34,35 Both the negativity and its log-

arithmic counterpart are faithful entanglement measures also

for mixed quantum states.36–38 It is defined as

EN (ρ) = log2 ‖ρ
Γ‖1 (2)

for a (pure of mixed) density operator ρ, where ρΓ denotes

the partial transpose of ρ in any basis of a distinguished sub-
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FIG. 4. Coupling between the spin-1/2 degrees of freedom associ-

ated with the two edges of a finite system with OBC. The spins can

be decoupled by switching on a small magnetic field hE at the ends

of the system.

system. We stress that the use of the entanglement negativity

instead of the entanglement entropy is required in any quan-

tum many-body setting in which degeneracies in sub-spaces

are becoming exponentially small in the system size.

In addition to the entanglement negativity, we study the bi-

partite fluctuations of {Oi} (the analogue of the bi-partite spin

fluctuations considered for the XXZ chain). Results for both

quantities are shown in Fig. 5 as a function of the system size

both with and without an additional edge field, confirming

that those bulk properties are indeed not affected by a po-

tential coupling between the edges. Concomitant with many-

body localization, we expected generic eigenstates to exhibit

an area (volume) law30 in a localized (ergodic) phase. For

small σV , we indeed observe an area law. At σV ∼ 0.1, both

quantities saturate around L = 14, and for even larger σV , we

see volume-law behavior on the accessible system sizes. Since

the AGR suggests that the system is still in a localized phase,

this indicates that the localization length becomes larger than

L for these parameters, which in turn casts doubts whether

or not the transition from the topological to the trivial phase,

which we observe for similar parameters (see Fig. 1), is an ar-

tifact of small system sizes and that the topological phase in

fact remains stable for larger values of σh and σV (note, how-

ever, that the system becomes a trivial insulator in the Ising

limit σh, σV → ∞).

V. DMRG-X

A. General idea

The DMRG-X method is a tensor network method that has

been introduced in Ref. 26 as a tool to determine the matrix

product state representation of a highly-excited but localized

eigenstate in a disordered system in one spatial dimension.

The fact that eigenstates generically satisfy area laws for en-
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FIG. 5. Scaling of the entanglement negativity (upper panel) and

the three-site spin fluctuations (lower panel) with the system size for

fixed σh = 0.05 and various σV both with and without an addi-

tional edge field which removes the coupling between left and right

spin-1/2 degrees of freedom. The localization length becomes larger

than L = 16 for σV ∼ 0.15 (the AGR indicates that the system is

localized for any σV , see Fig. 2).

tanglement entropies in the many-body localized regime3,8

renders the method applicable. The method has been devel-

oped and tested for the disordered XXZ chain governed by

H =
∑

i(σ
x
i σ

x
i+1 + σy

i σ
y
i+1 + σz

i σ
z
i+1 + hiσ

z
i ), where hi are

random fields for each i. The key idea is to prepare the sys-

tem in a random product state in z direction, which becomes

an eigenstate of H in the limit of large hi. Thereafter, DMRG

sweeps are carried out and the bond dimension χ is successi-

ley increased, but instead of choosing the lowest-energy state

during each 1 or 2-site DMRG step (as is done for a ground

state calculation), one picks the state which has maximum

overlap with the prior state. This accounts for the fact that

localized eigenstates which have similar energy differ vastly

in their spatial structure, and one can determine the matrix

product state representation of an excited eigenstate with up

to machine precision.

B. Application to our model

This DMRG-X method can be generalized straightfor-

wardly to the Hamiltonian at hand. One prepares the system

in an eigenstate of H0, each of which can be written as a ma-

trix product state with a bond dimension of χ = 2. In prac-

tice, these states can be constructed using a simple recursive

algorithm; we choose them such that the left and right edge

spins are not coupled (which is possible since all eigenstates

are strictly four-fold degenerate for σh = σV = 0 even in a

finite system).

We first focus on small systems and discuss whether or not

the states obtained by the DMRG-X are indeed exact eigen-
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current DMRG-X state has a non-zero overlap with (middle panel),

and the variance of the energy 〈H2〉 − 〈H〉2 (bottom panel) as a

function of the DMRG-X sweeps for a fixed disorder configuration.

The left and right edge spins are decoupled in the initial state. In the

absence of an edge field (hE = 0), the spins are coupled as the bond

dimension χ is increased during the sweeps, and one obtains an exact

eigenstate of the system. The spins stay decoupled for hE 6= 0. The

initial state and disorder configuration are identical in both cases.

states. As mentioned above, the left and right edge spins are

coupled in the eigenstates of a system with OBC for σh 6= 0
and/or σV 6= 0. One would expect that the DMRG-X, which

is a matrix-product state method and thus biased towards low-

entanglement states, does not couple the edges during the

sweeps if they are initially uncoupled and does thus not yield

exact eigenstates even for small systems. This is, however,

not true (see Fig. 6, left panel): As the bond dimension χ is

increased during the sweeps, the DMRG-X state couples the

left and right edges (top panel) and coincides with precisely

one state from the entire ED spectrum for χ ≥ 16 (middle

panel). There is, however, one important caveat: Usually, the

variance of the energy 〈H2〉 − 〈H〉2 is used to gauge conver-

gence. In our case, however, this variance drops to machine

precision before an exact eigenstate has been obtained (see

Fig. 6, bottom panel, χ = 8). Only if the DMRG-X proce-

dure is continued and the bond dimension is increased, one

eventually converges to an exact eigenstate.

Fig. 6 also shows the same comparison between the

DMRG-X and ED data in the presence of a finite hE which de-

couples the edges (both the initial state and the disorder con-

figuration are the same as before). In this case, the DMRG-X

yields an exact eigenstate even for small χ.

Our goal is to employ the DMRG-X to study large systems

which are not accessible by ED. In order to determine the na-

ture of the states obtained at the end of the sweeps, it is in-

structive to compare results obtained with and without an edge

field for identical initial states and disorder configurations (see

Fig. 7). It turns out that even for hE = 0, the edges do not get

coupled during the sweeps; thus, one does not obtain an ex-

act eigenstate but a state that is identical to the one calculated
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0.0

0.5

1.0
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FIG. 7. Comparison of DMRG-X data for a larger system obtained

with and without an edge field (solid blue and dashed orange lines,

respectively). The initial state and the disorder configuration are the

same in both cases. Both approaches yield the same state in which

the edge spins are not coupled.

for hE 6= 0 up to a local rotation of the left and right edge

spins. This is reasonable since for large L the bond dimension

cannot be chosen large enough to encode the entanglement

between the edges, and the DMRG-X is stuck with a low-

entanglement state with decoupled edges. Put differently, for

large L the DMRG-X automatically yields the physical state

in which the edge spins are not coupled even in the absence of

an edge field.

C. Results

We use the DMRG-X to compute physical quantities anal-

ogous to the ones shown in Fig. 5 for larger systems. The

energy variance of states obtained using the DMRG-X is ma-

chine precision.

We first investigate the behavior of the gap in the half-chain

entanglement spectrum as a function of the system size (note

that the entanglement negativity is not a pure-state measure

and is thus inaccessible). We apply a finite hE 6= 0 in order

to decouple the edge degrees of freedom. Results are shown

in the top panel of Fig. 8; ED data is shown for comparison

at small L. The entanglement gap decreases exponentially

with the system size – all eigenvalues of the reduced density

matrix are (almost) doubly degenerate. This provides further

evidence that the system is in the topological phase for these

parameters.

Secondly, we study the bi-partite fluctuations of Oi. Re-

sults are shown in the bottom panel of Fig. 8 and are again

consistent between DMRG-X and ED for the system sizes ac-

cessible to both. As mentioned above (see also Fig. 5), this

quantity is dominated by the bulk, and one expects that it is

not influenced by the fact whether or not the edges are cou-

pled. In order to demonstrate this explicitly, we show data ob-

tained with hE = 0 where the edges are coupled for small L
(for large L, the DMRG-X automatically decouples the edges;
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of the bi-partite entanglement spectrum (obtained using a finite edge

field hE to decouple the edge spins); this gap decreases exponentially

with L, which is a hallmark of the topological phase. Bottom panel:

The bi-partite spin fluctuations, which show a slow linear or loga-

rithmic increase despite the fact that the AGR suggests the system is

in a MBL phase (see the main text for details). The calculation was

performed both for hE = 0 and hE 6= 0; the results coincides, which

one expects for this bulk quantity.

see above).

For system sizes beyond those accessible by ED, one ob-

serves a slow growth of the bi-partite Oi-fluctuations, which

seems consistent with either logarithmic or linear growth in

system size. There are several possible interpretations for this

result: (i) The growth of fluctuations is linear and becomes

logarithmic or constant only at larger system sizes than ac-

cessible to us; this would however mean that the localization

length is very large (although the perturbations are very small)

or (ii) the localization length is actually small compared to the

system sizes we study and the behavior we see is truly loga-

rithmic, which is difficult to distinguish on the scales accessi-

ble.

VI. CONCLUSIONS

We have characterized the interplay of many-body localiza-

tion physics and topology in a spin model where these phases

can coexist instead of excluding each other using a combi-

nation of extensive exact diagonalization and DMRG-X cal-

culations. We mapped out the full phase diagram including

the topological-trivial transition with the many-body local-

ized spin system under scrutiny; the topological phase was

defined via a four-fold degeneracy of all eigenvalues of a sys-

tem with open boundaries, and MBL was characterized using

the adjacent gap ratio. Both entanglement properties and bi-

partite spin fluctuations feature area laws in the MBL phase;

the gap in the entanglement spectrum vanishes in the topolog-

ical phase.

Using the DMRG-X, we gain access to system sizes far

beyond the limitations of exact diagonalization and find a

sluggish growth of bi-partite fluctuations of local observables,

which is consistent with both linear or logarithmic behavior

(which is difficult to distinguish even on these larger system

sizes). This leaves two likely conclusions: either the behav-

ior is linear meaning that the localization length is surpris-

ingly large in the system studied or the behavior is logarith-

mic, which unambiguously can be proven only at even larger

system sizes and should be subject of future investigations. It

is the hope that the present work — bringing together ideas

of condensed matter and quantum information theory — pro-

vides a machinery to identify phases of matter and further

flesh out the interplay of disorder and topological signatures.
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