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The compelling original idea of a time crystal has referred to a structure that repeats in time as well as in space,

an idea that has attracted significant interest recently. While obstructions to realize such structures became

apparent early on, focus has shifted to seeing a symmetry breaking in time in periodically driven systems, a

property of systems referred to as discrete time crystals. In this work, we introduce Stark time crystals based

on a type of localization that is created in the absence of any spatial disorder. We argue that Stark time crystals

constitute a phase of matter coming very close to the original idea and exhibit a symmetry breaking in space and

time. Complementing a comprehensive discussion of the physics of the problem, we move on to elaborating on

possible practical applications and argue that the physical demands of witnessing genuine signatures of many-

body localization in large systems may be lessened in such physical systems.

INTRODUCTION

Time crystals are structures that repeat periodically in both

space and time [1, 2]. While phases of matter that sponta-

neously break the continuous spatial translations symmetry in

such a way are ubiquitous in nature, the corresponding break-

ing of time translation symmetry has been met with skepti-

cism despite its earlier proposal by Wilczek in 2012 [3]. An

early setback to this idea came in the form of a no-go theorem

by Oshikawa [4, 5] which states that ground states of local

Hamiltonians cannot host such symmetry breaking in time.

Two loop-holes remain, however: abandoning the assump-

tions of a local interaction or that of being in equilibrium. In-

deed, when giving up the former [6] a continuous time crystal

can be found, albeit at the expense of highly intricate and en-

gineered and largely unphysical long-ranged interactions. In

the latter case, one resorts to driving the system periodically

which explicitly breaks the continuous time-translation invari-

ance down to a discrete one. However, this discrete symmetry

can further be broken spontaneously, e.g., by period doubling

[7] or beyond [8, 9], and a so-called discrete time-crystal is

found [10–13], going back to the seminal work Ref. [10]. This

second pathway of resorting to non-equilibrium has been re-

alized experimentally [14–17] with a particular focus on one

spatial dimension [13, 18, 19], but with significant steps to-

wards the numerical exploration of such phases in two spatial

dimensions having been taken [20].

However, in all the realizations above, the focus has shifted

to finding evidence of translation symmetry breaking only in

time. And there are good reasons for this. The only practical

way to overcome the no-go theorem as we discussed above is

periodic driving. With periodic driving comes runaway heat-

ing and thermalization to infinite temperature in the generic

case [21]. Such an infinite temperature state cannot host in-

teresting time crystalline phases. A known way to overcome

heating was put forward in the context of many-body local-

ization [22, 23], where localization even in the presence of

interactions is induced by quenched, quasi-periodic or binary

disorder [24–34]. With runaway heating suppressed in these

situations discrete time-crystals can emerge. However, the use

of such strong disorder, particularly for the purpose of time

crystals is subtle. The disorder configurations are realization

dependent due to which it has to be averaged over many num-

ber of draws. This increases the numerical and experimental

effort and makes the setting less reliable.

Even more importantly, conceptually speaking, sponta-

neous symmetry breaking in space in such disordered lattices

is not well defined and as a consequence the spatial symmetry

breaking in discrete time crystals has not gathered much at-

tention. Only when one does not break spatial symmetry “by

hand”, one can hope to observe genuine symmetry breaking

both in space and time, conceptually an intriguing situation.

Another problem arising from disorder is the issue of the in-

stability of such disordered configurations due to the presence

of rare ergodic regions in higher dimensions as well as in sys-

tems with interactions that decay slower than exponential in

space [35, 36].

All of these points lead us to the pressing question of

whether one can have a clean and more stable setting where

the concept of symmetry breaking both in space and time can

be realized, at least for long times in a pre-thermal sense of

the term and possibly for all times. In this work, we answer

this question to the affirmative by introducing Stark time crys-

tals – discrete time crystals protected from runaway heating

by Stark many-body localization, a mechanism we will briefly

outline next.

WANNIER-STARK LOCALIZATION

Wannier-Stark localization – the notion that non-interacting

particles on a lattice will be localized upon applying a linear

potential – implies many confounding consequences [37]. Re-

cently, it was shown that this localization can survive even in
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the presence of interactions [38–42]. Therefore, such a system

displays many similarities to a many-body localized one fea-

turing genuine disorder. Wannier-Stark-like localization in the

presence of interactions was thus dubbed Stark many-body lo-

calization [38, 39]. One of the similarities that is inherited by

Stark many-body localized systems is barred thermalization

and we show here that by a similar suppression of runaway

heating as in the many-body localized case a time crystalline

structure can be induced.

Stark many-body localization can thus be exploited to re-

alize a quantum time crystal in the absence of any disorder

and we explicitly construct such a Stark quantum time crystal

and study its stability. First steps in this direction, albeit for

a few spins and concentrating on cases where energy gradi-

ents and quenched disorder coexists have been undertaken in

Ref. [43]. In contrast, here we aim at exploring the spatio-

temporal structure of the time-crystalline phase (for which

a large number of spins is required) and aim to explore the

dynamics in a purely Stark many-body localized time-crystal

without any disorder terms. By this we add a localized time-

crystal without spatial disorder or quasi-periodic potentials to

the list of accessible phases of matter [20, 44–46]. We re-

port that the spatio-temporal behaviour of such a Stark time

crystal is intriguingly rich and displays filaments of local pe-

riod doubling extending further and further in time and finally

condensing at the critical point where the time-crystalline be-

haviour is stabilized. Such spatio-temporal features have been

inaccessible previously due to the requirement of disordered

lattice potentials (outside of alternative routes to circumvent

heating such as the presence of symmetry [47] or dissipation

[48, 49]). We furthermore identify an effect unique to Stark

quantum time crystals: By resonance of the external drive

with the potential difference defining Stark localization, the

drive which induces the time-crystal coherently destroys [50]

the localization and therefore the time-crystalline behaviour

itself (at large enough potential difference this effect can be

linked to the few-spin dynamics reported in Ref. [43]). This

leads to a periodic weakening of the time crystal state when

the potential difference is tuned to integer multiples of the

driving frequency. Furthermore, we discuss technological ap-

plications and how time crystalline behaviour can actually be

used as a witness to distinguish a many-body localization from

Anderson localization.

The main findings are summarized in the phase diagram

of Fig. 1 for two different initial states, being either ferro-

(main panel) or anti-ferromagnetic (inset). The quantity M
shown in the false color plot, defined in Eq. (3), quantifies

the rigidity of the time crystal (see below). We find that for

sufficiently large potential difference h the time-crystal phase

can be stabilized by Stark many-body localization even for a

non-zero perturbation in the driving ǫ (defined below). How-

ever, when the potential difference coincides with an integer

multiple of Ω = 2π/T = πJ highlighted by dashed white

lines for 2π and 3π, we find coherent self-destruction of the

time-crystalline behaviour and M is decreased drastically.

FIG. 1. Phase diagram of the discrete time-crystalline phases for

the initial state being either ferro- (main panel) or anti-ferromagnetic

(lower right inset). The false color plot shows M , a quantity measur-

ing the strength of the symmetry breaking in time (see Eq. (3) for the

definition), in dependence of the potential difference h and the imper-

fection of drive ǫ. A dotted red line serves as a guide to the eye sepa-

rating regions of rigid symmetry breaking from those where no rigid

time-crystalline behaviour is found (quantified by M = 0.5). At

h/J being 2π or 3π (white vertical dashed line), the time-crystalline

phase is weakened substantially. This is due to the coherent destruc-

tion of the localization by the external drive. The other parameters

are U/J = 1, L = 100 and JT/2 = JT1 = JT2 = 1.

MODEL

Following the work of Ref. [13], we aim at probing the ex-

istence of a Stark quantum time crystal in a one-dimensional

chain of L spin-1/2 particles by considering a stroboscopic

Floquet Hamiltonian with period T = T1+T2. The time evo-

lution operator for one period is taken as U(T ) = e−iHFlipT2 ·
e−iHStarkT1 , with

HStark =

L−1
∑

i=1

(

JSx
i S

x
i+1 + JSy

i S
y
i+1 + USz

i S
z
i+1

)

+h

L
∑

i=1

iSz
i

(1)

and HFlip = (π/T2 − ǫ)
∑L

i=1 S
x
i . This entails that the to-

tal Hamiltonian is time periodic with period T , where within

one period of t ∈ [0, T ), first only HStark is active for times

t ∈ [0, T1), while for the second part of the period t ∈ [T1, T )
only HFlip acts on the systems. Here, HStark is the Hamilto-

nian that describes a nearest-neighbor interacting spin chain

subject to a linear potential difference h from site to site (non-

linearities in this gradient are analyzed in the appendix). This

part exhibits Stark many-body localization in the right pa-

rameter regime [38, 39]. It is also translationally invariant

in the gauge choice where the hoppings are time dependent

(adding another Floquet type driving to the system). But even
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FIG. 2. Spatio-temperal structure of the symmetry breaking for a domain-wall initial state. We consider the modified correlation function

C̃zz(t) which in time remains close to one for a perfect time-crystal (yellow in false color plot). Deviations from yellow show that the

time-crystal structure is broken. At h/J = 0 no time-crystal forms due to the lack of Stark many-body localization. Ballistic jets are found

propagating from the domain-wall kink highlighted by a white dashed line. Those jets are barely visible on a linear color scale, but very

pronounced on a logarithmic one, see also the appendix. As the energy-gradient h, localizing the system, is increased filaments of time-

crystalline structure (yellow structures extended in time) are found with a filament density linearly increasing with h. When the density of

filaments fills the entire system in space a time-crystal is established (compare also the appendix). At this point the transport originating from

the domain wall is logarithmic (highlighted by dashed black line for h/J = 4). For values of h close to integer multiples of Ω = 2π/T = πJ
(such as h/J = 6), the time crystal is weakened again, which relates to coherent self-destruction. The other parameters are U/J = 1,

L = 100, ǫ/J = 0.2 and JT/2 = JT1 = JT2 = 1.

without this gauge choice, the physics of the Hamiltonian is

translation invariant in the sense that a particle is governed

by the same local Hamiltonian when placed at site i or site

i + r as the overall energy does not enter. HFlip describes

a spin rotation around the x-axis. If ǫ = 0, this part of the

Hamiltonian performs a perfect 180◦ rotation (flip) of the spin

over the time T2. A quantum time crystal is found if the

breaking of the underlying discrete time-translation symme-

try (e.g., period doubling) is robust to perturbations ǫ 6= 0
(i.e., the deviation from the perfect flip). As initial state vec-

tors, we test different configurations being either ferromag-

netic |. . . , ↑, ↑, ↑, ↑, . . . 〉, a domain wall |. . . , ↓, ↓, ↑, ↑, . . . 〉 or

anti-ferromagnetic |. . . , ↑, ↓, ↑, ↓, . . . 〉. Starting from a ferro-

magnetic configuration we thus first introduce one phase slip

(domain wall) and then an extensive number of L/2 phase

slips (anti-ferromagnetic).

METHODS

We solve the dynamics of the system starting from these

different initial states using a numerically exact density ma-

trix renormalization group approach set up in matrix product

states [51–53]. We propagate the system in real time using a

fourth order Suzuki-Trotter decomposition with J∆t = 0.05
and adaptive bond-dimension such that the summed trun-

cated error throughout the total time-evolution remains be-

low 10−5 for which converged results, on the scale of ev-
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FIG. 3. Coherent self-destruction of a Stark time crystal. Top Panel:

the time-averaged strength of the time-crystal M in dependence of

the localization strength h in units of the drive frequency Ω = 2π/T
for two different drive imperfections ǫ. Bottom panels: Zoom into

the region where h is an even (left) or odd (right) multiple of Ω.

As h approaches integer multiples of Ω = 2π/T = πJ the time-

crystal structure is weakened in a resonant fashion. The weakening

is stronger for h being an even than for h being an odd integers of Ω.

The other parameters are U/J = 1, L = 100 and JT/2 = JT1 =
JT2 = 1.

ery plot, are obtained. For detecting the time crystalline

behaviour, we broaden the notion of long-ranged order of

local order parameters O(i, t), which for spatial crystals is

present in equal-time correlations in space Ct
OO(i, i

′) =
lim|L|→∞〈O(i, t)O(i′, t)〉 6= 0 to equal-space correlations in

time

Ci
OO(t, t

′) = lim
|L|→∞

〈O(i, t)O(i, t′)〉 = f(t, t′). (2)

Our system is called a time-crystal if (for ǫ 6= 0) f(t, t′)
shows a long time t ≫ t′ non-trivial (ordered) behaviour that

breaks the discrete time-translation symmetry of the drive of

the Hamiltonian. We would like to point out here that our

definition of the ordered parameter f(t, t′) is equivalent to

the one introduced in Ref. [4] in the presence of long-ranged

order for a Floquet time crystal. We then concentrate on

the particular case where O = Sz
i and t′ = 0.The corre-

sponding correlation function Ci
SzSz (t, 0) can now be writ-

ten as Ci
zz(t). For simplicity of depiction, we also introduce

C̃i
zz(nT ) = (−1)nCi

zz(nT ) evaluated at stroboscopic times

t = nT (n being an integer) as well as the space averaged

quantities Czz(t) = (1/L)
∑

i C
i
zz(t) and analogously for

C̃zz(t). The former definition of C̃i
zz(nT ) is useful, as it mon-

itors period doubling, staying close to 1 when the time-crystal

persists. We also introduce the time-averaged quantity (over

50 periods) [54]

M =
1

50

50
∑

n=0

C̃zz(nT ), (3)

which is a useful single number measure for the quality of the

period-doubling time-crystal (being close to 1 if a rigid time-

crystal is found).

RESULTS AND DISCUSSION

The main result of the phase diagram of the time crystal, us-

ing M as a metric, is summarized in the discussion of Fig. 1

above. The time-crystalline phase is a many-body effect and

is absent without interactions (see also the appendix). In fact,

this is one of the crucial features of our study. As we have

seen, the many-body interaction is essential to see robust fea-

tures of the time crystal. This means that Anderson localiza-

tion alone is not sufficient to realize a time crystal. This leads

us to believe that such robust features of time crystal can in-

deed be used as witness to distinguish many-body localiza-

tion from the Anderson localization case, just as it bears wit-

ness to the Wannier-Stark versus a Stark many-body localized

case. As no programming of disorder is required, such wit-

nessing of many-body localization may be significantly more

feasible than one based on logarithmic entanglement growth

[26, 27, 55, 56] or the behaviour of two-point correlation func-

tions [57]. We complement these findings by considering the

correlation functions C̃zz and Czz at stroboscopic and non-

stroboscopic times more closely in the appendix.

Next, we reveal the intricate spatio-temporal structure of a

Stark time-crystal, a major feature that was not explored be-

fore, due to the limited system size [43] (for an analysis of sys-

tem size effects, see the appendix). In Fig. 2, we summarize

results for the space resolved correlation function C̃zz(nT )
varying h/J in a series of plots (for more data varying ǫ and L
see the appendix). We concentrate on the domain-wall initial

state where we can clearly separate the features arising from

the phase-slips in the initial state and the dynamics of the (im-

perfect) spin-flips. In the case of h = 0 ballistic jets emanate

from the phase slip (seen clearly only on a log scale, see the

appendix), while with the onset of Stark many-body localiza-

tion this transport becomes blocked. This behaviour is super-

imposed by the way the time-crystal emerges at increased h:

filaments of time-crystalline structure (yellow structures ex-

tended in time) extend over longer times and their density in-

creases linearly with h. As the density of filaments condenses

in space, a time-crystal with also spatial symmetry breaking is

established (see also the appendix for further analysis). How-

ever, we also report here that for h close to integer multiples

of Ω = 2π/T (such as h/J = 6), the time crystal is weakened

again and darker regions (M deviates from 1) show up in the

time crystal.

This effect relates to coherent self-destruction and is sum-

marized in Fig. 3. We show horizontal slices of Fig.1 for two
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value of ǫ and a domain-wall initial state. Here, we scale h
with respect to Ω, which highlights the fact that at integer mul-

tiples of h = nΩ, the time-crystal is weakened. We can under-

stand the reported behaviour by using Floquet theory in which

copies of the original Hamiltonian but shifted in energy by in-

teger multiples of Ω need to be considered [58, 59]. In this

language, levels that are n sites apart from each other (with

energy difference of nh) become resonant in the n-th Floquet

replica. Another way to view this is to consider, that a particle

at one site can absorb n “photons” of the driving field and is

then resonant with a level being n sites away. Such a resonant

process destroys localization and thus the time-crystalline be-

haviour [43, 50]. A more detailed study of the even-odd ef-

fects reported in the coherent self-destruction shown in Fig. 3

is left for future work.

We would like to point out that the above discussed spatio-

temporal features are absent in the case of a time crystal real-

ized with disorder (shown in the appendix). To the best of our

knowledge such a symmetry breaking in both space and time

has not been realized before rendering our setting closer to the

original proposal of time crystals. In the future, it would be

analyze to associate an order parameter that is defined in both

space and time.

CONCLUSION AND OUTLOOK

We have analyzed the emergence and stability of a Stark

quantum time-crystal where the many-body localization is in-

duced solely by a linear potential. Since our clean setting

does not involve any disorder, we can find symmetry breaking

emerging in both space and time. We find that Stark quan-

tum time crystals showing spontaneous period doubling can

be robust as long as the potential difference from site to site

remains off resonant with processes arising from absorptions

of the underlying drive. We have also discussed the possibil-

ities of using time crystals as MBL witness. We will explore

this in more detail in the future. Another interesting route of

future study should address the question whether using such

a Stark quantum time crystal, novel quantum pumps (attach-

ing reservoirs to the time crystal structure) can be realized and

whether such pumps are, e.g., useful in quantum metrological

applications: It has been suggested that a time crystal could

beat the Heisenberg limit in quantum metrology [60], an ap-

plication significantly more plausible in the absence of disor-

der. It is the hope that the present work not only sheds new

light into the conceptual foundations of symmetry breaking in

space and time, but also stimulates such technological appli-

cations.
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APPENDIX

This appendix provides additional data on Stark quantum

time crystals. In Fig. 4, we compare the dynamics found

for the three different initial states considered (three different

columns of the figure). In the second and third row we show

Czz(nT ) and C̃zz(nT ), respectively. These rows indicate that

for h = 0 a (decaying) beating pattern in Czz(nT ) and a os-

cillating/decaying form for C̃zz(nT ) is found. In marked con-

trast for h/J = 8 a time-crystalline behaviour is stabilized by

Stark many-body localization (for more data on different in-

teractions strength see the appendix). Czz(nT ) shows a robust

period doubling and C̃zz(nT ) stays close to 1. The fourth row

shows the fast Fourier transform of Czz(nT ). In the case of

a time crystal (h/J = 8) we find a robust frequency feature

at Ω/2 (period doubling), while at h/J = 0 this peak is not

robust to perturbations and splits up.

0 25 50
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1

0

1

C
zz
(t)

0 25 50
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0

1
C

zz
(t)
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C
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C
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C
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FIG. 4. Comparison of the time-crystalline behaviour for a fer-

romagnetic, domain-wall or anti-ferromagnetic initial state (left to

right columns) for two values of h/J = 0 and h/J = 8. The

first row shows the different initial states considered. The second

row gives the correlation function Czz(t) which displays the spon-

taneous period doubling only when the system is Stark many-body

localized (h/J = 8). The third row demonstrates the modified corre-

lation function C̃zz(t) measuring the stability of the period doubling

(time-crystal). The fourth row displays the fast Fourier transform of

Czz(t). Period doubling (signal at frequencies ω = Ω/2) is robust

for all initial states only in the presence of Stark many-body localiza-

tion (h/J = 8). The other parameters are U/J = 1, L = 100 and

JT/2 = JT1 = JT2 = 1.

In Fig. 5 we show the correlation function Czz(t) stud-

ied in the main text only at stroboscopic times also at non-
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0 20 40
Jt

1.0

0.5

0.0

0.5

1.0

C
zz
(t) h/J=10

h/J=0

FIG. 5. Typical time evolution showing all times calculated (instead

of only the stroboscopic ones which we concentrate on in the main

text) of the correlation function Czz(t) for two values of h/J being

in the time-crystalline or trivial region. The other parameters are

U/J = 1, L = 100, ǫ/J = 0.2 and JT/2 = JT1 = JT2 = 1.

0 5 10
h/J

0.00

0.25

0.50

0.75

1.00

M
filament

FIG. 6. Comparison between the filament density ρfilament, defined

by the number of filaments found in Fig. 2 of the main text divided

by half the system size, and the quantity M quantifying the stability

of the time crystal. As the density of filaments ρfilament approaches

unity the time-crystal condenses and M ≈ 1. The parameters are the

one of Fig. 2 of the main text.

FIG. 7. The same as in Fig. 2 of the main text, but using from a

ferromagnetic initial state instead of a domain wall and comparing

two system sizes L = 100 (top row) and L = 200 bottom row, for

two values of h/J = 0.05 (left column) and h/J = 0.25 (right

column).

stroboscopic times. In Fig. 10 we numerically substantiate

the claim, made in the main text, that small non-linearities in

FIG. 8. The same as in the topmost left panel of Fig. 2 of the main

text, but instead of showing C̃i

zz(t) we show the log of the absolute

value of one minus this quantity. In this way of depiction of the data,

the ballistic jets mentioned in the main text are clearly visible.

0 1 2 3 4
h/

0.0

0.2

0.4

0.6

0.8

1.0

M

L=100
L=50

L=20
L=10

0.0 0.11/L

0.00

0.25

0.50

FW
HM

FIG. 9. Main panel: Same as Fig. 3 of the main text but for different

system sizes L. Inset: Full width at half maximum (FWHM) of the

peak centered at h/Ω = 2. System sizes of L ≈ 50 are needed

to correctly capture the transition at small h/Ω. The central peak

structures relating to coherent self-destruction scale as 1/L. At small

system sizes L ≈ 10 the central features are washed out to large

degree.

0 25 50 75
Jt

0.0

0.5

1.0

C
zz
(t)

h/J=10 =0.0
h/J=10 =0.5
h/J=0 =0.0
h/J=0 =0.5

FIG. 10. Stability of the results with respect to variations in the lin-

earity of the gradient α. The findings are insensitive. The other

parameters are U/J = 1, L = 100, ǫ/J = 0.2 and JT/2 = JT1 =
JT2 = 1.

the energy gradient do no affect the time-crystalline behaviour

reported. For this we add the term

Hnon−lin = αJ

L
∑

i=1

(i/L)2Sz
i (4)
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Jt

0.0

0.5

1.0

C
zz
(t) U/J=0

U/J=1
U/J=4

FIG. 11. Demonstration that the time-crystalline behaviour is inter-

action induced. The other parameters are h/J = 10, L = 100,

ǫ/J = 0.2 and JT/2 = JT1 = JT2 = 1.

to HStark and compare α = 0 to α 6= 0. In Fig. 11 we study

the influence of varying U . For U = 0 where the system can

be mapped to non-interaction fermions by a Jordan-Wigner

transformation [61], the time-crystalline behaviour is lost.

Fig. 12 provides the same as Fig. 2 of the main text but for

larger ǫ/J = 0.4. Fig. 6 shows the density of filaments found

in Fig. 2 of the main text compared to M showing that when

M approaches unity, signalling the onset of the time crystal,

the density of filaments approaches unity as well. Before that

the density of filaments increases linearly with h. Fig. 7 shows

a comparison of two different values of the system size L and

Fig. 8 shows the light cone, ballistic jets reported for h = 0 in

Fig. 2 of the main text on a logarithmic scale.

Finally, Fig. 9 shows the same as Fig. 3 of the main text

but for different system sizes L. A system size of L = 50 is

needed to capture the transition point into the time crystalline

phase correctly at small h/Ω and to clearly see the effects

of coherent self-destruction. For comparison Fig. 13 shows

the same as Fig. 12 but for quenched random disorder drawn

uniformly from [0, h).
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