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Contracting projected entangled pair states is average-case hard
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An accurate calculation of the properties of quantum many-body systems is one of the most important yet
intricate challenges of modern physics and computer science. In recent years, the tensor network ansatz has
established itself as one of the most promising approaches enabling striking efficiency of simulating static
properties of one-dimensional systems and abounding numerical applications in condensed matter theory. In
higher dimensions, however, a connection to the field of computational complexity theory has shown that the
accurate normalization of the two-dimensional tensor networks called projected entangled pair states (PEPS) is
#P-complete. Therefore an efficient algorithm for PEPS contraction would allow solving exceedingly difficult
combinatorial counting problems, which is considered highly unlikely. Due to the importance of understanding
two- and three-dimensional systems the question currently remains: Are the known constructions typical of states
relevant for quantum many-body systems? In this work, we show that an accurate evaluation of normalization
or expectation values of PEPS is as hard to compute for typical instances as for special configurations of highest
computational hardness. We discuss the structural property of average-case hardness in relation to the current
research on efficient algorithms attempting tensor network contraction, hinting at a wealth of possible further
insights into the average-case hardness of important problems in quantum many-body theory.
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I. INTRODUCTION

Determining the properties of quantum many-body sys-
tems is of paramount importance in our efforts to understand
conductance and thermodynamics of solid-state materials
[1,2], designing new sensors and devising novel quantum
technologies [3], inferring nuclear processes in stars or the
early universe [4,5]. However, oftentimes it is not possible
to find degrees of freedom enabling a concise description
of a given system in terms of an effective model featuring
essentially no interactions. In such a case, there is usually
no easy way out but to calculate numerically observables of
interest from a Hamiltonian description [6–12]. Here, how-
ever, we face a particular challenge namely that the state
space of quantum many-body systems demands a number
of parameters that grows exponentially with the amount of
constituents of the system. If so, even storing the state of
the system on a computer becomes impossible and hence one
seeks for efficient variational families of states. Tensor net-
works are a prime example of such an ansatz class [10,13–17].
Despite their spectacular success in one dimension [18–29] as
so-called matrix-product states [14,20,30], the most natural
tensor network ansatz in two-dimensions, called projected
entangled pair states (PEPS) [31], turned out to be burdened
by a peculiar difficulty: even to calculate the normalization
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of PEPS is computationally intractable as has been shown in
Ref. [32].

More precisely, the normalization or evaluation of a lo-
cal expectation value within the PEPS ansatz class is a
computational task which is complete for the complexity
class #P, i.e., is as hard as any other problem in this class
[33–35]. Paradigmatic #P problems consist in counting the
solutions to decision problems which are complete for the
class NP. Intuitively, counting the solutions to a hard problem
can only be harder. Within the current state of knowledge
in computer science the optimal runtime for NP-complete
problems is unknown. However, it is widely conjectured that
there are no algorithms with polynomial runtime solving
any NP-complete problem. For the famous SAT-problem,
there is even the exponential-time hypothesis [36], which
conjectures that an exponential runtime is optimal for the
problem.

Physically, one can invoke the Church-Turing-Deutsch
principle [37] that interprets computations as physical pro-
cesses. NP has been established to correspond to the cooling
of spin glasses [38]. These materials are known to sometimes
take an extremely long time to cool down. On the other
hand, very many solid-state materials seem to cool down
much faster. Indeed, insights in computer science suggest
that the hardness of NP-complete problems lies in few tough
instances with particularly rugged landscape. Phenomena like
this are described in the framework of average-case com-
plexity. While many NP-complete problems like 3-SAT are
unlikely to be hard on average for uniform distributions [39],
average-case hard problems are ubiquitous for the class #P.
Recently, first examples directly relevant to demonstrating
computational separation between classical and quantum de-
vices have been pointed out [40,41].
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There are several approaches for a rigorous theory of
average-case complexity. Arguably the most natural is
random self-reducibility, an immediate consequence of which
is that a machine powerful enough to solve, e.g., three
quarters of the instances would allow solving all instances.
Thus it becomes implausible to find heuristic algorithms that
solve significant numbers of instances as the self-reducibility
structure would imply efficiency even for those instances that
are particularly hard.

In this work, we provide strong complexity theoretical
indications that the latter is not the case for generic PEPS
due to a random self-reducibility structure that we uncover.
This extends the worst-case #P-hardness result [32] to the
average case and is an even more challenging obstruction to
overcome. Technically, we make an extensive use of the recent
insightful work in Ref. [41], where average-case hardness has
been established in the context of quantum circuits, and we
also employ some of the results established in Ref. [40]. Our
main result is the following theorem.

Theorem 1 (Informal). Contracting a subset making up a
3
4 + 1

poly(N ) fraction of the instances drawn from an entrywise
Gaussian distribution is #P-hard.

We explain in Sec. IV how this can be generalized to
many probability distributions that satisfy an autocorrelation
property. In particular a similar statement would hold if the
local tensors are drawn from a uniform distribution supported
on a bounded region, i.e., the overall “shape” is not crucial
as long as the distribution is not infinitely peaked or has
unusually broad tails. Firstly, this rules out the possibility
that the computational hardness could be hidden in particular
instances that are intractable, as it says that one could use the
algorithm O to construct an algorithm O′ that is efficient for
all inputs. Secondly, it is important to note that Theorem 1
requires exact computation [32] but a different variant of
Theorem 1 shows the following. Approximation up to errors
of the form 2−poly(N ) for N the system size, is also intractable
on average, however, under stronger requirements on the
algorithm O. Our choice of the probability distribution is
similar to that of Sec. 9.1 of Ref. [40], where the evaluation
of the so-called permanent is considered which is also a #P-
complete computational problem. Note that the result holds
for arbitrary graphs as well, though the statement is trivial in
one dimension [42].

In certain special instances fast algorithms might still be
feasible. For example it is known that matrix-product states
admit a polynomial time deterministic contraction algorithm
[42]. However, even in two dimensions, this can happen under
strong physical assumptions forcing the problem to admit a
local structure [43,44]. Additionally, for certain subclasses
some heuristic algorithms [42–63] (see Refs. [45,64] for
reviews) yield results of practical importance [65–74]. Our
average-case hardness result, however, suggests that these ap-
proaches could break down even for relevant PEPS instances
as otherwise difficult computational problems would admit
(quasi-) polynomial algorithms.

Physically, for disordered systems, one would expect any
accurate ground state approximation by a PEPS to inherit the
randomness of the Hamiltonian [75]. Hence in this setting,
we provide evidence of intractability. Oftentimes, however,
further physical assumptions are justified: While these com-

pletely generic PEPS are relevant for the study of strongly dis-
ordered systems, in many practically meaningful settings (in
particular in the study of topological order), the relevant PEPS
are translation-invariant. Remarkably, a worst-to-average case
reduction as described in this paper works just as well for
translation-invariant systems but we are unaware of a hardness
result in the worst case for such systems.

II. DISCUSSION

Before we formalize the above in a rigorous setting, we
discuss various aspects of this result.

A. Translation invariance

In many physical applications, e.g., in solid state materials
and specifically in systems admitting topological order, the
system of interest is translation-invariant. Hence, the data
specifying the PEPS efficiently should reflect this symmetry
and one would naturally set all local tensors to be equal. In
this case, we do not know the corresponding computational
problem to be #P-hard, for example the #P-hard instances in
Ref. [32] are not translation-invariant. However, our worst-to-
average case reduction works just as well in this special case,
simply by choosing (Q[v] )v = (Q)v , where Q is drawn from
the Gaussian distribution NC (0, σ )D4d . The same argument
and statement of the main theorem goes through. This leaves
us with two mutually exclusive options: If the translation-
invariant problem is hard for a complexity class C, then it
follows that the problem is C-hard on average in the sense
of our main theorem. If the problem is merely in P, then
it is enough to find a heuristic for about 3/4 of the inputs
to find a full randomized algorithm. On the other hand, if
C = #P, then even the translation-invariant PEPS contraction
problem would appear to be average-case intractable. We are
unaware of random self-reducibility results for complexity
classes other than #P. We thus expect a dichotomy: Either the
translation-invariant problem is in P or it is #P-complete.

B. Evaluation precision

As far as we know, it is state of the art in computer sci-
ence to prove random self-reducibility structures for problems
given the promise that O works with at least exponential pre-
cision. In fact, we can improve our main theorem for this case
too, at the cost of requiring O to function with a probability of
1 − 1

12N , where N denotes the system size. The reason for this
trade-off is that subtleties arise in the technical steps, where
the Berlekamp-Welch algorithm has to be replaced with a
noise-resistant method. However, in the bigger picture, it does
not seem possible to extend the seminal idea of Lipton to O
working with lower precision. The reason is that th method
crucially depends on the extrapolation of polynomials which
is highly sensitive to noise. Related questions of precision
relaxation are of interest in quantum information theory in
the context of searching for quantum speed-ups. Here, certain
precision relaxations are conjectured to be average-case hard
as well [40,41].

C. Expectation values

The computational problem is concerned with PEPS con-
tractions. The quantity that one computes is the norm of
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the respective PEPS. However, in most physical applications
the quantities of interest are expectation values of a local
observable Â

〈Â〉ψ = 〈ψ |Â|ψ〉
〈ψ/|ψ〉 , (1)

where |ψ〉 refers to the PEPS specified by local tensors. Notice
that this problem and its unnormalized version have both
been proven to be #P-complete in Ref. [32] as well. For any
algorithm that uses PEPS normalization as an intermediate
step our main theorem is directly of interest and reflects the
fundamental structure of the problem at hand. In the general
case we can prove a worst-to-average result for this quantity as
well. It is easy to see that our discussion of PEPS contraction
carries over to the discussion of unnormalized expectation
values. We show that a close analog of Theorem 1 holds
for this quantity as well. The normalized expectation value
is slightly more subtle in the following sense: the analog of
the function q is not a polynomial but a rational function q/p
where the degrees of both polynomials q and p are bounded
by 2N . We can then use interpolation for rational functions on
enough sampling points to obtain the respective coefficients.

D. Implications on practical tensor network algorithms

The results found here have interesting implications to the
performance of PEPS contraction algorithms aimed at solv-
ing condensed-matter problems [10,14,15]. There are three
insights that are important in this respect. Firstly, the results
laid out here relate average-case to worst-case complexity. In
that, they apply to any tensor network contraction algorithm as
the structure of random self-reducibility shows that if a given
method O has trouble at less than a quarter of instances, these
can in principle be treated with a small polynomial runtime
overhead by our construction of the randomized algorithm O′
(and, for that matter, our results also pertain to algorithms
in P). Secondly, it is known that PEPS contraction algo-
rithms often work well in practice for reasonable condensed-
matter systems [45,64] which may seem at first sight at odds
with the results presented here and in Ref. [32]. For this,
one has to acknowledge that many important problems have
additional structure that may render the PEPS contraction
feasible. Specifically, it has been proven in Ref. [44] that
local normalized expectation values of injective PEPS with
uniformly gapped parent Hamiltonian can be evaluated in
quasipolynomial time, i.e., faster than conjectured by the
exponential-time hypothesis. Following up on this observa-
tion, it seems conceivable that one can devise PEPS algo-
rithms that provide ground states of systems in a trivial phase
(possibly even with convergence proofs), by making use of
techniques of quasiadiabatic evolution [76,77], applying short
circuits to product states as ground states of trivial parents.
Having said that, any such approach would require keeping
track of ground states of families of Hamiltonians. Thirdly, in
most practical algorithms used in practice, in contrast, some
initial condition for the PEPS is chosen, which is iteratively
refined via sweeps, until a good convergence to the ground
state is encountered. In fact, in practice, the PEPS data are
initially often chosen randomly, following a refinement in
sweeps by iteratively minimizing the energy evaluated from

a local Hamiltonian. The results laid out here show that it
is crucial to devise meaningful schemes making reasonable
choices of these initial conditions. However, our average-case
hardness results of PEPS contraction indicate that one should
be particularly cautious when choosing such initial states.

III. PROBLEM SETTING

We now come to the technical section of this paper. In this
section, we describe the problem in a rigorous setting.

A. Projected entangled pair states

Here we recall the definition of PEPS [52] and review
the computational problem from Ref. [32] concerning the
contraction of PEPS. We consider a family of graphs G =
(V, E ) with |V | = N . Every vertex v stands for a local spin
system described by a Hilbert space Hv := Cd . The physical
Hilbert space is, thus, H := H⊗N

v = (Cd )⊗N . In the projec-
tive construction of PEPS, one thinks of every edge e ∈ E
as a maximally entangled state

∑D
i=1 |i〉|i〉 in a virtual D-

dimensional spin systems. A specific PEPS is then described
by linear operators P[v] : CD ⊗ · · · ⊗ CD → Cd , where the
number of copies of CD is the number of adjacent edges
for v. It is defined as the state vector in H resulting from
the application of all P[v] for all v ∈ V . Note that by this
the obtained PEPS is not necessarily normalized. The vir-
tual dimension is assumed to satisfy D = poly(N ) and is
called bond dimension. In our discussion, it will be crucial
to discriminate between the PEPS, which is a state vector in
H, and its specification (P[v] )v . We will refer to the latter
as PEPS data. A PEPS is called translation-invariant if the
local tensors satisfy P[v] = P[w] = P for all v,w ∈ V . These
states have already been proven to be immensely useful in
condensed matter research but the full regime of applicability
is still open. Here, we assume open boundary conditions but
our results carry over to the periodic case too.

B. PEPS evaluation

PEPS are described by polynomial data only. However,
the physical problem we want to tackle remains notoriously
difficult in that contraction of PEPS is computationally hard.
This is needed for obtaining physical quantities of interest
like expectation values of local observables. Specifically, the
following computational tasks are the essential ingredients of
PEPS contraction algorithms:

Problem 1 (PEPS-contraction). Input: A graph G and
corresponding finite PEPS data (P[v] )v describing an unnor-
malized state |ψ〉 and with bond dimension D = poly(N ).

Output: 〈ψ |ψ〉.
Problem 2 (PEPS-contraction:UEV). Input: The same in-

put as in Problem 1 and additionally a local observable Â.
Output: 〈ψ |Â|ψ〉.
Problem 3 (PEPS-contraction:NEV). Input: The same input

as in Problem 1 and additionally a local observable Â.
Output: 〈ψ |Â|ψ〉/〈ψ |ψ〉.
It is one of the key insights in Ref. [32] that these problems

are in fact #P-complete for the case that G is a square lattice.
In the following, we recall the arguments leading to this ob-
servation. The construction uses measurement based quantum
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computing [78–80]. Measurement based quantum computing
based on cluster states performs a computation by initializing
the cluster state on a square lattice and successively applying
local sharp (projective) measurements to the local qubits. This
is a universal model of a quantum computer and we can use
it to encode any quantum circuit in a PEPS with polynomially
bounded bond dimension. Notice first that the cluster state is
a PEPS with bond dimension D = 2. However, the outcome
of the quantum computation performed by the measurements
depends on the random outcomes. This is dealt with by
correcting the outcome with Pauli operators depending on the
random outcomes. The PEPS encoding the quantum circuit is
now obtained by applying an additional projector |a〉〈a|, where
a is the outcome that does not give rise to a nontrivial Pauli
correction. Hardness follows from encoding the problem of
counting solutions for a Boolean formula: Given a Boolean
formula f , finding #1( f ) := |{x, f (x) = 1}| is #P-complete.

We prove all results for two canonical choices: The first
is to draw entry-wise from a uniform distribution centered
around zero and truncated at some chosen threshold σ , which
we will denote by U = UC (0, σ ) and the product distribution
by P1 := UD4dN . Almost equivalently we could draw from a
Gaussian distribution. We will denote this Gaussian distribu-
tion with P2 := GD4dN := NC (0, σ )D4dN . This is reminiscent
to a discussion about the permanent with entries in the com-
plex numbers in Sec. 9.1 of Ref. [40]. More precisely, we
prove the following technical theorems.

Theorem 2 (Worst-to-average reduction). Suppose there
exists a machine O that solves Problem 1 or 2 within
precision 2−poly(N ) for square lattices in polynomial time with
a probability of 1 − 1

12N over the instance drawn from Pi

for i = 1, 2. Then, there exists a machine O′ that solves any
instance with precision 2−poly(N ) of the respective problem
in randomized polynomial time with exponentially high
probability.

We will prove this theorem first, as it requires the most
technical work. If we do not relax to exponential precision but
require perfect arithmetical evaluation of the machine O, we
obtain a much stronger worst-to-average reduction:

Theorem 3 (Stronger worst-to-average reduction). Supp-
ose it exists a machine O that solves Problem 1 or 2 exactly
for square lattices in polynomial time with a probability of
3
4 + 1

polyN drawn from Pi, with i = 1, 2. Then, there exists a
machine that solves any instance of the respective problem
in randomized polynomial time with exponentially high
precision.

Finally, requiring perfect evaluation, we obtain a worst-
to-average reduction for the normalized expectation value
problem as well:

Theorem 4 (Normalized expectation values). Suppose it
exists a machine O that solves Problem 3 exactly for square
lattices in polynomial time with a probability of 3

4 + 1
polyN

drawn from Pi with i = 1, 2. Then there exists a machine that
solves any instance of the respective problem in randomized
polynomial time with exponentially high precision.

C. Proof idea

There are several precise mathematical candidates for
a definition of average-case hardness. We find that PEPS

contraction is average-case hard in the same sense as cer-
tain combinatorial problems [40,81]: They admit a property
called random self-reducibility. A problem is randomly self-
reducible if the evaluation of any instance x can be reduced to
the evaluation of random instances y1, . . . , yk with a bounded
probability independent of the input. We will sketch how this
is done for the permanent and PEPS giving the essential proof
idea, see Ref. [41] for a particularly clear exposition in the
context of quantum circuits. The complete argument can be
found in Sec. IV.

In a seminal result, Ref. [81] has proven random self-
reducibility for the evaluation of the permanent, a function
that takes as an input a square matrix and outputs a number.
The permanent of an n×n matrix A over a finite field is defined
as the “determinant without signs”:

perm(A) :=
∑
σ∈Sn

n∏
i=1

Ai,σ (i) , (2)

where Sn is the symmetric group. However, very unlike the
determinant, the permanent turns out to yield a difficult com-
binatorial problem: Its evaluation has been proven to be #P-
complete in Ref. [82]. The proof of random-self reducibility
is rooted in the algebraic fact that the permanent defines a
polynomial of degree n in the entries of its input matrix A.
More precisely, the strategy is to take any (hard) instance A
that we want to compute, draw a uniformly random matrix B
and define

E (t ) := A + tB , (3)

for a parameter t in the finite field. Notice that E (t ) is
uniformly random for any t because B is, even though E (t )
and E (t ′) are correlated. The permanent of these matrices
is a polynomial q(t ) := perm(E (t )) of degree n. Even if the
algorithm O fails to accurately output perm(A) it will, by
assumption, likely correctly evaluate q(ti ) for a choice of ti.
The idea is to infer q(0) from the values at {ti} via polynomial
interpolation. We will explain this step in more detail in the
next paragraph for the setting of PEPS.

We sketch how the worst to average-case reduction works
for PEPS contractions. For a detailed and formal proof we
refer to Sec. IV. A major difference to Lipton’s result for the
permanent is that we work over the complex numbers, for
which there is no uniform distribution. Instead, we work with
an entry-wise Gaussian distribution.

Intuitively, we scramble independently the individual ten-
sors. Given a hard instance (P[v] )v , we draw random PEPS
data (Q[v] )v and define

(R(t )[v] )v := t (P[v] )v + (1 − t )(Q[v] )v. (4)

Thus (R(0)[v] )v = (Q[v] )v and (R(1)[v] )v = (P[v] )v . Notice
that PEPS data and PEPS since the above definition has
nothing to do with the addition of the corresponding states
This choice of a scrambled operator is suitable for us because
it allows us to deal with a subtlety arising from the fact that the
PEPS data (R(t )[v] )v is not Gauss-random even though (Q[v] )v
is. This is different to the setting of Ref. [81] but has been
worked out for boson sampling [40], where it was shown that
the difference is immaterial for small t . This carries over to
our case as we discuss in Sec. IV.
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IV. PROOFS

We can now provide rigorous proofs for Theorems 2–4.

A. Proof of Theorem 2

Before we turn to presenting the proof, we state a modifica-
tion of Lemma 48 in Ref. [40]. Let us denote with NC (μ, σ )
the normal distribution over the complex numbers with mean
μ and standard deviation σ . The lemma establishes that
products of normal distributions with small mean are close to
a product of the standard normal distribution with zero mean.

Lemma 5 (Autocorrelation of Gaussian distributions). For
the distributions

D1 := NR(0, (1 − ε)2σ )M, (5)

D2 :=
M∏

i=1

NR(vi, σ ) (6)

with v ∈ CM , it holds that

||D1 − NR(0, σ )M || � 2Mε, (7)

||D2 − NR(0, σ )M || � 1

σ
||v||1, (8)

where ||.|| denotes the total variation distance and v ∈ CM .
The same result holds if we substitute N with U .

Proof of Lemma 5. We prove the lemma for the Gaussian
case. The uniform can be obtained similarly. We obtain with
the triangle inequality for the total variation distance:

||D1 − GM || � M||NR(0, (1 − ε)2σ ) − NR(0, σ )||. (9)

With the relation between total variation distance and L1

norm, we obtain

||D1 − GM ||

� M

2

∫ ∞

−∞

∣∣∣∣ 1√
2πσ

e− x2

2σ2 − 1√
2πσ (1 − ε)

e− x2

2σ2 (1−ε)2

∣∣∣∣dx

= M

2
√

2πσ (1 − ε)

∫ ∞

−∞

∣∣∣(1 − ε)e− x2

2σ2 − e− x2

2σ2 (1−ε)2

∣∣∣dx

� Mε

2
√

2πσ (1 − ε)

∫ ∞

−∞
e− x2

2σ2

+ M

2
√

2πσ (1 − ε)

∫ ∞

−∞
e− x2

2σ2 − e− x2

2σ2 (1−ε)2 dx

= Mε

2(1 − ε)
+ M

2(1 − ε)
− M

2
= Mε

1 − ε
� 2Mε. (10)

The second inequality follows using again the triangle in-
equality:

||D2 − GM || �
M∑

i=1

||NR(vi, σ ) − NR(0, σ )||

=
M∑

i=1

1

2

∫ ∞

−∞

∣∣∣∣ 1√
2πσ

e− (x−vi )2

2σ2 − 1√
2πσ

e− x2

2σ2

∣∣∣∣dx

=
M∑

i=1

1

2
√

2π

∫ ∞

−∞

∣∣∣e− (x−vi/σ )2

2 − e− x2

2

∣∣∣dx

�
M∑

i=1

|vi|
σ

= ||v||1
σ

, (11)

where the last inequality follows from a straightforward
calculation. �

Proof of Theorem 2. For simplicity, we set σ = 1. Further-
more, we restrict to the case of Problem 1 as the proof for
the case of Problem 2 is completely analogous. Consider
Problem 1 and a hard instance defined by the data (P[v] )v , e.g.,
the encoding of a Boolean function as was done in Ref. [32].
It suffices to consider a (P[v] )v with all matrix entries being
bounded by 1 as all instances constructed in Ref. [32] admit
this form. Furthermore, we draw PEPS data from the standard
Gaussian distribution entrywise, denoted as (Q[v] )v ∼ GD4dN .
Analogously to Lipton [81], we define

(R(t )[v] )v := t (P[v] )v + (1 − t )(Q[v] )v. (12)

Now, let |ψ (t )〉 denote the PEPS corresponding to these data.
In analogy to the discussion of the permanent, we define the
function q(t ) := 〈ψ (t )|ψ (t )〉. Notice that this function is a
polynomial in t with degree r = 2N , which scales polyno-
mially in the input length. Before we can apply Theorem 8,
we have to deal with the fact that the (R(t )[v] )v are not
distributed according to the Gaussian distribution. We will
need only very small t bounded by some ε > 0, such that the
difference between the respective distributions is immaterial.
Specifically, the (R(t )[v] )v tensors are distributed according to

D =
D4dN∏
i=1

NC (t pi, (1 − t )2). (13)

Thus, from a triangle inequality and Lemma 5, we obtain

||D − GD4dN || � (4D4dN + 2D4dN )ε = (6D4dN )ε (14)

for |t | � ε, by identifying C with R2. It will suffice to set

ε := δ

6D4dN
(15)

and δ := 1
12N . This implies that for a small enough inverse

polynomial ε, we can make the total variation distance poly-
nomially small. Let {ti}i∈[r+1] be the set of r + 1 equidistant
points in [0, ε]. We will now use the assumption from the
theorem’s statement that the machine O works for a 1 − δ

fraction of the instances drawn from GD4dN . Using (14), we
obtain for the success probability of the machine evaluating at
the points ti accurately up to within precision 2−polyN

Pr[|O((R[v] )v (ti )) − q(ti )| � 2−polyN ]

� 1 − δ − ||D − GD4dN ||
� 1 − 2δ, (16)

where we used that the total variation distance is an upper
bound on the difference in probability the two distributions
could possibly assign to an event.
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Finally, we obtain the probability of r + 1 consecutive
successful evaluations as

Pr[|{i ∈ [r + 1], |O(ti ) − q(ti )| � 2−polyN }| = r + 1]

= (1 − 2δ)r+1 =
(

1 − 1

6N

)r+1

� 1 − 2N + 1

6N
= 2

3
− 1

6N
, (17)

by Bernoulli’s inequality. Here, we abbreviated O((R[v] )v (ti ))
with O(ti ). Given the evaluation values at the ti, we can solve
for the coefficients and obtain a polynomial q̃ which satisfies
|q̃(ti ) − q(ti )| � 2−polyN for all ti with high probability. The
machine O′ then evaluates q̃(1), which is an estimate for
q(1) = 〈ψ/|ψ〉.

To bound the error on this estimate we will use two
powerful results: The first on noisy extrapolations and the
second on noisy interpolations of polynomials. A version of
the following lemma was proven in Ref. [83], see also Sec. 9.1
in Ref. [40].

Lemma 6 (Paturi). Let p : R → R be a polynomial of de-
gree r and suppose |p(x)| � � for all x such that |x| � ε.
Then, |p(1)| � �e2r(1+1/ε).

The following result was proven in Rakhmanov [84].
Theorem 7 (Rakhmanov). Let Ek denote the set of k

equidistant points in (−1, 1). Then, for a polynomial
p : R → R with degree r such that |p(y)| � 1 for all y ∈ Ek ,
it holds that

|p(x)| � C log

(
π

arctan
(

k
r

√
R2 − x2

)
)

(18)

with

|x| � R :=
√

1 − r2

k2
. (19)

We will use the second result to bound the error between
the points and then use the first result to bound the error on
q̃(1). For the proof, we shift the polynomial p such that the
intervall of interest is centered around the origin. Furthermore,
we can straightforwardly implement that we work with a
smaller interval. We obtain that

R =
√

1 − r2

(r + 1)2

ε

2
=

√
4N + 1

(2N + 1)2

ε

2
. (20)

Restricting to the strict subinterval [−R
2 , R

2 ], we can ap-
ply Theorem 7 and obtain the following bound for all
t ∈ [−R

2 , R
2 ],

|p(t )| � 2−polyNC ln

(
π

arctan
(

k
r

√
R2 − x2

)
)

� 2−polyNC ln

(
π

arctan(2R)

)
� 2− 1

2 polyN . (21)

Finally, we can apply Lemma 6. This yields the desired bound
on the difference between the estimate q̃(1) and the actual
value q(1):

|q̃(1) − q(1)| = |p(1)| � 2− 1
2 polyN+4 log2(e)N (1+2/R)

= 2−poly′N (22)

for a sufficiently large poly. Finally, we remark that the suc-
cess probability can be exponentially amplified by repeating
the above procedure polynomially many times because of the
Chernoff bound. �

B. Proof of Theorem 3

The superior bound in Theorem 3 follows from the fact
that we can invoke the Berlekamp-Welch algorithm in the
interpolation step. The latter is a provably correct algorithm
for the interpolation of polynomials due to Ref. [85]. Compare
also Bouland et al. [41].

Theorem 8 (Berlekamp-Welch [85]). Let q be a degree-r
polynomial over any field F . Suppose we are given k pairs of
elements {(xi, yi )}i=1,...,k with all xi distinct with the promise
that yi = q(xi ) for at least max(r + 1, (k + r)/2) points. Then,
one can recover q exactly in poly(k, r) deterministic time.

As explained in Sec. III C, we arrive at a polynomial q(t ) =
〈ψ (t )/|ψ (t )〉 of degree r = 2N . Instead of r + 1 queries to
the machine O, we query it k = poly(N ) times. Berlekamp-
Welch requires that at least k+r

2 of obtained k data points are
correct in order to reconstruct the polynomial. We furthermore
assume that k > r. From Markov’s inequality and the union
bound, we obtain

Pr

[
|{i,O(ti ) = q(ti )}| � k + r

2

]
� 1 − 2E

k − r

� 1 −
2
(

1
4 − 1

polyN

)
k

k − r
= 1 − k

2(k − r)
+ 2k

poly(N )(k − r)

= 1

2
− r

2(k − r)
+ 2k

poly(N )(k − r)
, (23)

where we abbreviate the expectation value in question with E.
Thus, by choosing k polynomially large, we obtain an expres-
sion that is polynomially close to 1/2. Again, by repeating
the procedure a polynomial number of times and taking a
majority vote we can amplify this probability exponentially.
With this probability, the Berlekamp-Welch algorithm outputs
q exactly and we can simply evaluate q(1) without having to
worry about the error of extrapolation. It seems appropriate
to point out that we are in fact not drawing data from the
Gaussian distribution in this case but from a discrete analog of
it. However, this does not change the details of our analysis.

C. Proof of Theorem 4

We know that the function we are interested in can be de-
scribed by the quotient of two polynomials of degree at most
r = 2N . This leaves us with 4N + 1 unknown coefficients.
There is an equivalent of the Berlekamp-Welch algorithm
for rational functions [86]. Invoking this algorithm, the proof
proceeds analogously to the proof of Theorem 3.

V. EXPONENTIAL DEPENDENCE ON PEPS DATA

The argument in the main text emphasizes the demanding
precision that is required when specifying the PEPS data.
In this section, we stress that this is not merely done for
complexity-theoretic reasons: A pair of states can be defined
by very similar PEPS data, while their norms can be vastly
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different. In fact, to specify the norm of a PEPS, one needs
exponential precision in the PEPS data, as a moment of
thought reveals. This is already true in one spatial dimension
for matrix product states. Take D = 2, d = 2, an a translation-
invariant open boundary condition MPS, so that the vertex set
V is that of N sites, E reflecting nearest neighbor interactions.
The linear operators P[v] = P are for all v defined by

P[v] =
∑
i=1,2

D∑
α,β=1

A[i]α,β |i〉〈α, β|, (24)

where for the state vector |ψ〉 we take

A[0] := diag(1, 0), A[1] := diag(0, 1). (25)

The boundary conditions are taken open, as in the main text,
and fixed by vector |0〉 and the respective dual. Obviously,
this is a representation of the product |0, . . . , 0〉 with norm
〈ψ/|ψ〉 = 1. For |φ〉, we choose

B[0] := diag(1, 0), B[1] := diag(η, 1), (26)

with the same boundary conditions, for some η > 0. It is still
straightforward to compute the norm, invoking the transfer
operator

E := B[0] ⊗ B∗[0] + B[1] ⊗ B∗[1] = diag(1 + η2, η, η, 1).

(27)

This gives

〈φ/|φ〉 = 〈0|EN |0〉 = (1 + η2)N . (28)

Clearly, for the two states to feature norms that are the same up
to a constant, an in N exponentially small η > 0 is required. In
fact, even for a bond dimension D = 1 one could have come
to a similar conclusion. However, |ψ〉 and |φ〉 are even vastly
different in their entanglement properties, the latter featuring
an entanglement entropy of a symmetrically bisected chain
that is extensive in N .

VI. OUTLOOK

In this work, we presented the first average-case com-
plexity result in the context of quantum many-body sys-
tems, specifically tensor network states. Our main result is
structural, namely we prove that the hard instances of PEPS
contraction make up a significant fraction of all instances.
Physically, this means that contraction of PEPS with random
tensors is likely to be computationally hard to accurately
evaluate. Conceptually, we establish structural similarities to
the evaluation of the permanent. Our results hold under the
assumption of accurate or exponential precision. In Sec. V, we
stress that also on physical grounds, to demand exponential
precision is very much reasonable. However, in a physical
context it is often sufficient to evaluate observables up to poly-
nomial precision. The major open problem is thus to extend
the presented analysis to this case. For PEPS contractions
establishing such a result would have direct practical implica-
tions. Furthermore, we are not aware of any #P-completeness
result for translation-invariant PEPS. Thus the general open
question should be: what are the instances of PEPS for which
known contraction methods have convergence guarantees? It
is our hope that further research at the interface between com-
puter science and quantum many-body physics will provide
exciting insights to this question.
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