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Thermodynamic Relations at the Coupling Boundary
in Adaptive Resolution Simulations for Open Systems
Abbas Gholami, Felix Höfling, Rupert Klein, and Luigi Delle Site*

The adaptive resolution simulation (AdResS) technique couples regions with
different molecular resolutions and allows the exchange of molecules between
different regions in an adaptive fashion. The latest development of the
technique allows to abruptly couple the atomistically resolved region with a
region of non-interacting point-like particles. The abrupt set-up is derived
having in mind the idea of the atomistically resolved region as an open
system embedded in a large reservoir at a given macroscopic state. In this
work, starting from the idea of open systems, the authors derive
thermodynamic relations for AdResS which justify conceptually and
numerically the claim of AdResS as a technique for simulating open systems.
In particular, the relation between the chemical potential of the AdResS set-up
and that of its reference fully atomistic simulation is derived. The implication
of this result is that the grand potential of AdResS can be explicitly written and
thus, from a statistical mechanics point of view, the atomistically resolved
region of AdResS can be identified with a well-defined open system.

1. Introduction

The adaptive resolution simulation (AdResS) technique couples,
in a concurrent fashion, regions of space at different molecular
resolutions.[1–3] Recent developments are pushing themethod to-
ward a computational realization of an open system embedded in
a large reservoir of particles and energy.[4–11] The simulation set-
up is reduced to the very essential by abruptly coupling an atom-
istically resolved region to a reservoir of non-interacting point
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particles.[9] The simplified algorithmic pro-
tocol, explained in detail in the next sec-
tion, has the advantage of high compu-
tational efficiency and allows us to write
a total interaction potential without mak-
ing use of artificial, space-dependent, inter-
polations of atomistic and coarse-grained
forces or Hamiltonians.[1,12,13] The abrupt
coupling between the different regions may
give the impression, at a first glance, of be-
ing highly artificial; in reality, physical con-
sistency can be achieved by imposing spe-
cific numerical conditions. These latter as-
sure that theAdResS simulation reproduces
the results of the simulation of an equiva-
lent subsystem in a large fully atomistic sys-
tem of reference.[14,15]

In this perspective, the natural question
arising is whether one can translate the
numerical constraints in explicit thermody-
namic and statistical mechanics relations
occurring at the coupling region. This work

demonstrates that arguments relying on physical consistency in-
deed lead to explicit thermodynamic descriptions of the AdResS
set-up that positively pass specific numerical tests. The key re-
sult of the paper is the relation between the chemical potential
of the atomistically resolved subsystem and the chemical poten-
tial of the fully atomistic system of reference. Such a relation, in
turn, allows one to define the grand potential of the atomistic re-
gion of AdResS in terms of quantities that can be explicitly calcu-
lated from numerical simulations. The grand potential expresses
the essential thermodynamic and statistical mechanics features
of an open system. Thus, the possibility of concretely defining
the grand potential of AdResS at the microscopic level provides
a robust justification to the idea of AdResS as a physically con-
sistent numerical approach to open systems. The derivation of
the thermodynamic relation is developed under ideal conditions
which do not normally occur in standard simulations; however,
numerical tests suggest that the obtained relations can be applied
beyond the ideal conditions in which they have been derived.
The results of this paper enrich the thermodynamic and statis-
tical mechanics foundations of AdResS in its abrupt coupling ap-
proach and stimulate future deeper analysis of its several theoret-
ical and numerical implications. The abrupt coupling approach
allows for efficient simulations of complex systems such as, for
example, hydrated biological membranes.[16] While the standard
atomistic simulation would require a sizable computational ef-
fort, the AdResS simulation, due to the drastically reduced num-
ber of degrees of freedom, runs at a reduced computational cost.
It must be noticed that the initial calibration and validation of
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Figure 1. Simulation set up in the (a) AdResS system and (b) fully atom-
istic system. In panel (c) it is shown the x-direction along which the change
of resolution occurs and the vector n, normal to the coupling boundaries,
that defines the direction of the thermodynamic force. In AdResS particles
change resolution when crossing the border between the Δ and TR region
(reservoir with tracer particles). In both systems, the red boxes represent
the subsystem analyzed in this work. It must be underlined that the AT
region is the region of physical interest, the Δ region is an AdResS-artifact
through which the coupling to the non-interacting particle reservoir be-
comes technically possible. Here we extend the analysis to the Δ region
so that its coupling conditions can be rationalized in terms of thermody-
namic quantities of the joint AT ∪ Δ region.

AdResS requires reference data from fully atomistic simulations.
However, as for example in solvation studies, the largest portion
of the AT region represents bulk liquid and thus calibration and
validation of the parameters of AdResS can be done on smaller
systems whose size is sufficient to represent only the bulk. The
computational cost of such test systems, even at fully atomistic
level, is negligible (see e.g., refs. [16–18]).

2. Basic Principles of AdResS with a Reservoir of
Noninteracting Particles

Figure 1a illustrates the AdResS set-up; this latter consists of par-
titioning the simulation box into three regions: the region of in-
terest AT, with fully atomistic resolution, the interface region Δ,
with fully atomistic resolution but with additional coupling fea-
tures to the large reservoir, and TR, the large reservoir of non-
interacting particles (tracers). Molecules of the AT region interact
with atomistic potentials among themselves and with molecules
in Δ, and vice versa, while there is no direct interaction with
the tracer particles. Tracers and molecules in the Δ and TR re-
gions are subject to an additional one-body force Fth(x)n, named
thermodynamic force, acting along the direction n in which the
change of resolution takes place; it is a function of the distance
x from the atomistic region and n is the surface normal of the

coupling boundary (Figure 1c). Second, a thermostat acts on
the Δ and TR regions that compensates the heat introduced by
the change of resolution.[11,15] In essence, these are the coupling
condition between the Δ region and the reservoir TR.
Technically, also a force capping is imposed in the Δ region

since point-like particles arriving from the TR region and enter-
ing the Δ region may be unphysically close to one other. Due
to the abrupt switching of molecular degrees of freedom, close
molecules can experience forces between atoms which are arti-
ficially large. Admittedly the force capping is an artificial means
by which unphysically large forces are automatically relaxed to
the average force occurring in the equivalent fully atomistic sim-
ulation. The capping, however, is equivalent to a global modifi-
cation of the highly repulsive part of the interaction potentials,
which has marginal repercussions on the physical properties of
the fluid. The exact form of the force capping is given in the Ap-
pendix, where we also report numerical tests showing that its ef-
fects can be neglected. Recently in ref. [19] has been proposed
an alternative approach to circumvent the problem of unphysi-
cal large forces at the interface between Δ and TR. It is based
on an energy minimization procedure for the insertion of parti-
cles from the TR region to the Δ region, as originally suggested
in ref. [8]. Compared to the procedure employed here, the pro-
cedure of ref. [19] is computationally more demanding; however,
it can be useful for liquids composed of large molecules with a
complex chemical architecture.
In summary, the total potential of the AdResS set-up reads

UAd(xN) = U(xN) + ΦΔ(xN) +Ucap(xN) (1)

assuming that at a given instance in time ,N particles are found in
the AT ∪ Δ region with positions xN = {r1,… , rN}. Here, U(xN)
represents the total potential from atomistic interactions of par-
ticles in AT ∪ Δ among themselves; ΦΔ(xN) :=

∑
rj∈Δ

𝜑th(rj) col-
lects the contributions due to the potential 𝜑th of the ther-
modynamic force, Fth(x) = −∇x𝜑th(r) with 𝜑th = 0 at the AT/Δ
interface.[9] Finally,Ucap(xN) arises from the force capping and is
only present in the Δ region.
The effect of Fth(x) consists in enforcing a homogeneous

molecular density in the Δ region equivalent to the molecular
density 𝜚at in equilibrium of the reference fully atomistic system.
In practice, it is calculated self-consistently in an iterative process,
starting from F(0)th (x) = 0. The update between successive steps

k is F(k+1)th (x) = F(k)th (x) − c∇𝜚k(x), where the density profile 𝜚k(x)

was calculated from anAdResS simulation using F(k)th (x) and c > 0
is a suitable coefficient to control the speed of convergence. The
iteration stops when the deviation of 𝜚k(x) from a constant pro-
file is within a prescribed tolerance (details are given in the Ap-
pendix). After Fth(x) has been determined, it remains unchanged
in the whole AdResS production run without recalibration.[15,20]

The development of the abrupt computational set-up with
tracers became possible through the mapping of the algorithm
onto a theoretical model of open systems. Such a model fixes a
series of conditions that the AdResS simulation must fulfill to
be considered valid. Such conditions are sufficient to assure that
the physics of the AT region is correct and, in the limit of large
TR and AT regions compared to Δ, one has a Grand Canonical-
like ensemble for AT (GC-AdResS).[21] The application of the
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thermodynamic force in Δ is one of these conditions because
it assures that the particle density in Δ is equal to the atomistic
target density at equilibrium. Ideally one would want to make
sure that the interactions of particles near the boundary of the
AT region with their neighbors are statistically isotropic, that is,
independent of whether neighbors are located within the AT or
Δ region. Matching the densities between the AT and Δ region
is a necessary condition for achieving this.
Going one step further, it is required that the probability dis-

tribution p(N) of the number of particles in the AT region should
be the same, within some accuracy, as p(N) of the equivalent sub-
system in a fully atomistic simulation. The fulfillment of such
condition assures one that, in average, the exchange of particles
between the AT region and the reservoir occurs in the proper
manner. For a Gaussian distribution, it is sufficient to compare
the first two cumulants, which are related to the density and the
compressibility, where the latter provides a particular sensitive
test of the boundary conditions.[22] In the language of statistical
mechanics, the equivalence of the n-thmoments of p(N) between
AdResS and the reference system guarantees that the n-th deriva-
tives of the grand potentials of the two systems with respect to the
chemical potential agree and vice versa. Additionally,microscopic
structural consistency is assured by matching atom–atom radial
distribution functions in the AT region. Finally, one could also
verify that the interaction energy between molecules in AT and
molecules in Δ is negligible compared to the interaction energy
amongst the molecules in AT, so that the physics of the system
is determined only by the interactions between the molecules in
AT, that is the physical system of interest.

3. Relation between the Chemical Potential of
AdResS and of a Fully Atomistic System of
Reference

3.1. Principle of Equivalence for the Grand Potential

In an open system, the relevant thermodynamic state potential is
the grand potential Ω = −PV , where V and P denote the volume
and the pressure of the system. It has themicroscopic expression

Ω = −kBT ln

( ∞∑
N=0

e𝛽𝜇NQN

)
(2)

if the system is equilibrated at the chemical potential 𝜇 and the
temperature T ; as usual 𝛽 = 1∕kBT with kB Boltzmann’s con-
stant. The partition function at fixed number N of identical par-
ticles reads

QN = 1
h3NN! ∫ℝ3N ∫VN

e−𝛽HN (xN ,pN )dxNdpN (3)

where pN = {p1,… , pN} and xN = {r1,… , rN} are the momenta
and positions of theN particles, respectively. The Hamiltonian is
the sum of kinetic and interaction potential energies:

HN(xN, pN) =
N∑
i=1

p2i
2m

+U(xN) (4)

and m is the particle mass. It must be noticed that here the po-
tential U(xN) contains interactions only between particles in the
system and neglects any potential interaction with the exterior
(see e.g., ref. [23]).
For a subsystem S in a fully atomistic system of reference,

whose domain is equivalent to the S = AT ∪ Δ region of the
AdResS set-up, let us define the grand potential of the reference
system as

⟨Ωr⟩ = −kBT ln

( ∞∑
N=0

e𝛽𝜇rNQr
N

)
(5)

where we denoted the chemical potential of the reference subsys-
tem by 𝜇r and introduced the effective N-particle partition func-
tion

Qr
N :=

⟨
1

h3NN! ∫ℝ3N ∫SN
e−𝛽H

r
N (xN ,pN |x′M )dxNdpN

⟩
𝛿S

(6)

Here, the extended Hamiltonian

Hr
N(xN, pN|x′M) = N∑

i=1

p2i
2m

+U(xN) +U(xN, x
′
M) (7)

expresses the fact that the N molecules of the subsystem do not
interact only among themselves, but also with M molecules lo-
cated in a layer 𝛿S around the S region. The angular brackets
in Equation (6) denote an averaging operation over the positions
x′M ∈ 𝛿S of these reservoir particles, which, however, are corre-
lated with other particles of the reservoir outside 𝛿S. Mathemat-
ically, the probability density p𝛿S(x

′
M) of the positions in 𝛿S is ob-

tained by marginalization of the phase space density of the uni-
verse (subsystem plus reservoir) (see also ref. [10]). Later on, we
will actually specify how one performs the marginalization w.r.t.
the outer particles in a simulation whereM changes dynamically.
If we assume that U(x) is a potential with a sufficiently short in-
teraction range, so that the volumes obey |𝛿S| ≪ |S|, and thus
the integration over the M particles represents a surface effect,
we can, in good approximation, identify ⟨Ωr⟩ with the grand po-
tential of the S region (see also ref. [23]).
Next, we consider the S = AT ∪ Δ region of the AdResS set-up

without the thermodynamic force acting in the Δ region, that is,
without the potential energy contribution 𝜑th(x). Denoting by 𝜇0,
the chemical potential of this subsystem in absence of the ther-
modynamic force, and the corresponding grand potential Ω0

Ad is
defined as

Ω0
Ad = −kBT ln

( ∞∑
N=0

e𝛽𝜇0NQAd,0
N

)
(8)

with

QAd,0
N = 1

h3NN! ∫ℝ3N ∫SN
e−𝛽H

Ad,0
N (xN ,pN )dxNdpN (9)

and the Hamiltonian

HAd,0
N (xN, pN) =

N∑
i=1

p2i
2m

+U(xN) +Ucap(xN) (10)
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the latter follows from Equation (1). As argued above, the num-
ber of capping events is negligible and we will neglect the term
Ucap(xN) in the following, so that HAd,0

N reduces to HN as in
Equation (4).
The purpose of AdResS is to reproduce the physics of the ref-

erence fully atomistic simulation in the AT region. If the AdResS
set-up, with Hamiltonian HAd,0

N , was sufficient to this aim, one
should have: ⟨Ωr⟩ = Ω0

Ad, but it is easy to numerically verify that
this is never the case. However, as described in the previous sec-
tion, adding a one-particle potential in theΔ region of the AdResS
set-up is sufficient to enforce the physical consistency between
AdResS and its reference fully atomistic system. In the following
subsection, we will interpret the inclusion of the potential of the
thermodynamic force in AdResS through the idea of equivalence
of the grand potential between AdResS and its fully atomistic sys-
tem of reference.

3.2. Perturbation of the Potential Energy in the 𝚫 Region

Let us anticipate the thermodynamic limit so that the size of AT is
arbitrarily large and |AT| ≫ |Δ|. Under such conditions, we add
a small perturbation to the potential of the Δ region in AdResS.
Let us assume that such a perturbation can be designed in such a
way that we achieve the wished relation of thermodynamic equiv-
alence between the AdResS set-up and its reference simulation:

⟨Ωr⟩ = ΩAd (11)

equality holds also for all derivatives of the two grand potentials
w.r.t. the variables 𝜇, V, T .
In the actual AdResS numerical simulation, the potential of

the thermodynamic force 𝜑th(x) acting in Δ assures the approxi-
mate statistical equivalence between the AdResS simulation and
its fully atomistic simulation of reference within AT, at least for
the one-particle density and the pair (radial) distribution func-
tion. Thus, 𝜑th(x) is a reasonable approximation to the perturba-
tion needed. In the presence of a perturbation, one can assume
that physical quantities of interest in AT ∪ Δ remain, in first ap-
proximation, as they were in absence of the perturbation and that
the effect of the perturbation can be explicitly derived and added
to them. This argument allows us to write in good approximation
for the grand potential of the equilibrated AdResS set-up:

ΩAd = −kBT ln

( ∞∑
N=0

e𝛽(𝜇0+Δ𝜇)NQAd
N

)
(12)

with

QAd
N = 1

h3NN! ∫ℝ3N ∫SN
e−𝛽H

Ad
N (xN ,pN )dxNdpN (13)

in which HAd
N (xN, pN) = HAd,0

N (xN, pN) + ΦΔ(xN). Here, we have
denoted the chemical potential of the perturbed system by 𝜇0 +
Δ𝜇 and assumed, according to the above definition of perturba-
tion, that the difference Δ𝜇 = Δ𝜇[𝜑th] originates from the per-
turbation of the potential energy in QAd

N . In order to arrive at
an explicit thermodynamic relation between 𝜇r , 𝜇0, and Δ𝜇, we

will derive explicit expressions of Qr
N and QAd

N in the subsection
below.

3.3. Relation between 𝝁r , 𝝁0, and 𝚫𝝁

Following the standard arguments in statistical mechanics,[23]

the sum over N in the expressions of Equations (5) and (12) for⟨Ωr⟩ and ΩAd represents a major obstacle to the derivation of a
direct relation between 𝜇r , 𝜇0, andΔ𝜇. However, given the condi-
tions of the thermodynamic limit for S, we can assume that p(N)
is sharply peaked around N, with N being the average number
of particles in S. Under such assumption, the sum over N can be
approximated by its most relevant term, that is the term of the se-
ries corresponding to N. It follows that the condition ⟨Ωr⟩ = ΩAd
(Equation 11) implies:

−kBT ln
(
e𝛽𝜇rNQr

N

)
= −kBT ln

(
e𝛽(𝜇0+Δ𝜇)NQAd

N

)
(14)

or equivalently,

𝛽𝜇rN + lnQr
N
= 𝛽𝜇0N + 𝛽Δ𝜇N + lnQAd

N
(15)

which becomes exact in the thermodynamic limit. The error of
the approximation can be estimated by considering N ± ΔN as
upper and lower bounds on N in our calculations, with the stan-
dard deviation ΔN =

√⟨N2⟩ − ⟨N⟩2. One may ask whether the
hypothesis of p(N) sharply distributed around N is automatically
fulfilled in AdResS simulations. In general, this may not be the
case whenAT is not sufficiently large compared toΔ. In any case,
p(N) can be calculated in AdResS while the simulation runs with-
out additional costs and thus one can automatically check the de-
gree of validity of the hypothesis in actual simulations. Moreover,
as suggested above, the accuracy of Equation (15) can be tested by
considering the upper and lower bound ofN. The use ofN + ΔN
and N − ΔN in Equation (15) instead of N will lead to a relation
between 𝜇r , 𝜇0, and Δ𝜇 that quantitatively differs from the one
whereN is used. Once a threshold for the desired accuracy of the
simulation is given, the difference above can be used as an addi-
tional criterion of the validity of the original hypothesis, that is, to
decide whether or not p(N) is sharp enough. It follows that in an
AdResS simulation, the fulfillment of the hypothesis that p(N) is
sharply distributed around N is under control of the simulator at
any time.
In the next step, we will rewrite the expressions for the N-

particle partition functions Qr
N
and QAd

N
. Let us first consider the

partition sum of the equilibrated AdResS setup, given in Equa-
tion (13):

QAd
N

= 1

h3NN! ∫ℝ3N ∫SN
e−𝛽HN (xN ,pN )e−𝛽ΦΔ(xN )dpNdxN (16)

which is nothing else than a quantity proportional to the canoni-
cal average of e−𝛽ΦΔ(xN ) w.r.t. the region S, that is,

QAd
N

= QN⟨e−𝛽ΦΔ(xN )⟩ (17)
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The evaluation of Qr
N
, defined in Equation (6), implies the

knowledge of the statistics p𝛿S(x
′
M;M) of the values ofM and the

positions x′M in the shell 𝛿S. For the moment, let us assume that
it is known and the average w.r.t. x′M can be carried out. For Qr

N
,

this average is spelled out in integral form as

Qr
N
=

∞∑
M=0

∫
𝛿SM

1

h3NN! ∫ℝ3N ∫SN
e−𝛽HN (xN ,pN )

× e−𝛽U(xN ,x′M )dxNdpN p𝛿S(x
′
M;M) dx′M (18)

This expression can also be interpreted as a canonical average
of ⟨exp(−𝛽U(xN, x′M))⟩𝛿S over the positions and momenta of the

N particles in S, after dividing by a suitable normalization factor
that coincides with the N-particle partition function QN given in
Equation (3). We obtain

Qr
N
= QN

⟨⟨e−𝛽U(xN ,x′M )⟩𝛿S⟩ (19)

with the double brackets referring, first, to the average over the
statistics of M and the positions x′M ∈ 𝛿S and, second, to the
canonical average over xN ∈ S. In numerical simulations, the
statistics over M is extracted from a sufficiently long simulation
run and the corresponding average over the time series takes
properly into account the integration over x′M in Equation (18).
Collecting the results of this section and by substituting Equa-

tions (19) and (17) in Equation (14), one obtains

e𝛽𝜇rN⟨e−𝛽U(xN ,x′M )⟩ = e𝛽(𝜇0+Δ𝜇)N⟨e−𝛽ΦΔ(xN )⟩ (20)

and, one step further, an explicit formula that links 𝜇r , 𝜇0 andΔ𝜇:

𝜇r − (𝜇0 + Δ𝜇) = 𝜔Δ − 𝜔r (21)

Here, the energies

𝜔Δ := (𝛽N)−1 ln ⟨e−𝛽ΦΔ(xN )⟩ (22)

and

𝜔r := (𝛽N)−1 ln ⟨e−𝛽U(xN ,x′M )⟩ (23)

are, respectively, the contribution of the potential of thermody-
namic force and the pulled out interactions of particles in the
open system with those in the reservoir.
Interestingly, 𝜇r , 𝜇0, 𝜔Δ, and 𝜔r can be calculated numerically

within fully atomistic and AdResS simulations. In particular, 𝜔Δ
and 𝜔r contain the terms ⟨e−𝛽ΦΔ(xN )⟩ and ⟨e−𝛽U(xN ,x′M )⟩, which, as
for the sampling w.r.t. the x′M states discussed above, are calcu-
lated by sampling xN over a sufficiently long trajectory and aver-
aging over the time series. Since we have assumed to work under
the condition that p(N) is sharply distributed aroundN, the domi-
nant configurations in the sampling along the trajectory are those
with N particles in the subsystem. This means that we can iden-
tify with good approximation, ⟨e−𝛽ΦΔ(xN )⟩ and ⟨e−𝛽U(xN ,x′M )⟩ with⟨e−𝛽ΦΔ(xN )⟩ and ⟨e−𝛽U(xN ,x′M )⟩, respectively, calculated from the sim-
ulation.

The possibility of calculating numerically the quantities above
implies that indeed the grand potential of the AT region of
AdResS, ΩAd, within the assumptions made, can be explicitly
written. In turn, the explicit definition of the grand potential from
amicroscopic (first principle of statistical mechanics) perspective
legitimates the definition of AdResS as amethod of open systems
that is well-founded on statistical mechanics.

4. Numerical Experiments

Numerical experiments to test Equation (21) are performed by
molecular dynamics simulations of Lennard–Jones (LJ) fluids
for a range of densities so that we gather information for dif-
ferent thermodynamic state points. An additional simulation of
liquid water has been carried on to check the applicability of
Equation (21) for a system with chemically structured molecules,
where the passage from the tracer region to the Δ region im-
plies the drastic reintroduction of molecular (atomistic) degrees
of freedom. Moreover, liquid water is one of the most relevant
examples in molecular simulation and AdResS has been shown
to handle such systems in a very satisfactory way (see e.g., [9]);
thus, it is an ideal test bed for Equation (21). Technical details of
the simulations and the numerical validation of AdResS w.r.t. the
reference fully atomistic simulation are reported in the Appendix.

4.1. Numerical Protocol for the Calculation of 𝚫𝝁

The total chemical potential of a liquid can be separated into the
kinetic and potential contributions 𝜇 = 𝜇id + 𝜇ex. In this relation,
𝜇id originates from the probability distribution of the momenta
only, ∝ exp(−𝛽

∑N
i=1 p

2
i ∕2m), thus it is equivalent to the chemical

potential of an ideal gas at the given (uniform) particle density
𝜚 = N∕V :

𝜇id = kBT ln(𝜚Λ3) (24)

with the thermal wavelength Λ = h∕
√
2𝜋mkBT . The contribu-

tion 𝜇ex is called excess chemical potential and originates from
the position-dependent part of the N-particle phase space den-
sity ∝ e−𝛽U(xN ) (ref. [24]). According to the above separation of the
chemical potential, Equation (21) is rearranged to:

Δ𝜇 = 𝜇ex
r − 𝜇ex

0 + 𝛾 id − 𝜔Δ + 𝜔r (25)

with 𝛾 id = 𝜇id
r − 𝜇id

0 = kBT log(𝜚r∕𝜚0), where 𝜚0 is the particle den-
sity in the AT region in the initial iteration of the thermodynamic
force calculation, that is when no corrections are added to the po-
tential yielding the unbalanced density (Figure 2).
All the ingredients needed to explicitly calculate Δ𝜇, that is,

the unknown perturbation in the chemical potential generated
by the thermodynamic force, are now available. First, 𝜇ex

r can be
calculated by, for example, Widom’s test particle insertion[25] in
the fully atomistic simulation of the reference system. Second,
𝜇ex
0 instead is the chemical potential the systemwould have in the
AT region if AdResS runs without the thermodynamic force in
the transition region Δ. It can be determined from also Widom’s
test particle insertion either in the AT region of the initial AdResS
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Figure 2. Density profiles 𝜚(x) across the AdResS set-up along the direction of change of resolution, which is chosen as x-axis. Lines show the equilibrium
profiles generated at the initial and final steps of the iterative calculation of the thermodynamic force Fth(x). The initial choice F(0)

th
(x) = 0 leads to

considerable variations in the density (blue), which are forced to a flat profile (red) within a tolerance of 2% relative to the constant equilibrium profile
𝜚(x) = 𝜚∗ (black) by application of the finally obtained Fth(x) (Figure 4). The panels show data for Lennard–Jones fluids at the same temperature T∗ = 1.5
and at four reduced densities as indicated. The transition regions are marked by the gray shadings.

set-up or in a standard MD simulation at the density 𝜚0, that is,
the density of the AT region in the AdResS set-up without any
correction measures. The latter occurs as the density in the first
iteration run for finding the thermodynamic force (see Figure 2
of the Appendix), since we are assuming that the AT region is
infinitely large.

4.2. Numerical Results

All terms contributing to Equation (25) can be determined from
the fully atomistic simulation of reference (𝜇ex

r and 𝜔r), the
AdResS simulation (𝛾 id and 𝜔Δ), and a mix of both simulations
(𝜇ex

0 ) in a straightforward manner as described. Here, after vali-
dating the case studies for the AdResS simulation, that is, inves-
tigating their capability for preserving structural and statistical
properties of the fluids compared to the reference set-up (see Ap-
pendix), we have tested our derivations for four different LJ fluids
at different state points (different densities).
Simulation results for each contribution to the excess chem-

ical potential relation stated in Equation (25) are reported in
Table 1. Δ𝜇 can be interpreted as the difference between the
chemical potential of the fluid within a fully atomistic simula-

tion and the one computed from an AdResS simulation. Inter-
estingly, one would expect that Δ𝜇 → 0 as |AT| → ∞ because the
atomistic region would behave as a closed, infinite fully atomistic
systemwith 𝜇0 → 𝜇r ,𝜔Δ → 0, and𝜔r → 0. The numerical results
of the current simulations are for finite systems with sizes typi-
cal of routine AdResS simulations and they actually show that
Δ𝜇 ≈ 0 even when 𝜔Δ and 𝜔r are not negligible. This is an in-
teresting result because it allows us to state that the numerical
experiments over different densities actually suggest an effective
formula:

𝜇r − 𝜇0 = 𝜔Δ − 𝜔r (26)

or,

𝜇ex
r − 𝜇ex

0 = −𝛾 id + 𝜔Δ − 𝜔r (27)

The relative deviation of 𝜇ex
r calculated from Equation (27) w.r.t.

the reference value from fully atomistic simulations is near or
below 1% in all cases. In particular, the two values coincide
within their specified statistical uncertainties (Figure 3). Yet, we
note that the reference values systematically lie slightly below the

Adv. Theory Simul. 2021, 4, 2000303 2000303 (6 of 10) © 2021 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Table 1. Breakdown of the chemical potential relation into AdResS-related contributions (Equation (25)) for the investigated Lennard–Jones fluids at
temperature T∗ = 1.5 and number density as given in the first column. The values for the density 𝜚0 (entering 𝜇

ex
0 and 𝛾 id) and the free energy contribution

𝜔Δ related to the thermodynamic force were obtained from AdResS simulations (columns 3 to 5), whereas the results for 𝜇ex0 and 𝜔r (columns 3 and
6) as well as for the reference value for 𝜇exr (second column) stem from fully atomistic simulations. The values for 𝜇exr in column 8 were calculated
according to Equation (27). Chemical potentials and free energies are given in units of 𝜀 for the LJ fluids and in units of KJ mol−1 for water. Numbers in
parentheses give the uncertainty in the last digit(s).

𝜚∗ 𝜇exr 𝜇ex0 𝛾 id 𝜔Δ 𝜔r Δ𝜇 𝜇exr acc. Equation 27

0.198 −1.255(2) −1.532(3) −0.385(3) 0.125(2) 0.222(3) −0.011(11) −1.244(11)

0.247 −1.487(3) −1.789(4) −0.411(3) 0.160(3) 0.256(3) −0.013(16) −1.474(13)

0.296 −1.686(4) −1.938(5) −0.384(3) 0.192(3) 0.306(3) −0.018(18) −1.668(14)

0.370 −1.912(5) −2.032(5) −0.268(3) 0.233(3) 0.365(3) −0.016(19) −1.896(14)

water −24.8(1) −21.9(1) −0.203(3) 0.210(4) 3.1(1) −0.2(3) −24.6(3)

Figure 3. Excess chemical potential of LJ fluids at temperature T∗ = 1.5
as a function of the number density 𝜚. Values obtained from AdResS
simulations (red circles) via Equation 27 are compared to reference data
from Widom’s test particle insertion in standard MD simulations (black
squares). The quantity 𝜇ex0 (blue triangles) refers to the AT region of the
AdResS set-up with the thermodynamic force switched off, which results
in the modified density 𝜚0 (see Figure 2). The data points correspond to
columns 1, 2, 3, and 8 of Table 1.

AdResS values, which has a possible source in the neglected con-
tribution due to the capping of unduly large interparticle forces.
We also tested Equation (25) for liquid water as a system

routinely simulated with AdResS for biological systems such as
membranes.[16] This is a far more complex liquid compared to
the Lennard–Jones systems and the simulation set-up is far from
mimicking the thermodynamic limit, yet we find that the equa-
tion still holds. In this case, the dominant correction is 𝜔r , while
Δ𝜇 is comparable with 𝛾 id and 𝜔Δ and these terms contribute
with less than 1% to the sum in Equation (27). The possibility to
reconstruct the excess chemical potential 𝜇ex

r with high accuracy
from an AdResS simulation provides a first-principles confirma-
tion of the physical consistency of AdResS as an open system.

5. Conclusions

We have analyzed the coupling region of the AdResS set-up from
the microscopic point of view. We have shown the possibility of
explicitly writing the grand potential of the atomistically resolved

region in terms of quantities that can be determined from simu-
lations. In particular, we have found the relation (21) between the
chemical potential of AdResS and the chemical potential of its ref-
erence fully atomistic simulation. The derivation is done under
the ideal condition of the thermodynamic limit for the atomisti-
cally resolved region, with the coupling conditions considered as
small surface effects. The obtained thermodynamic relation was
then tested in several numerical experiments; they show that its
actual range of validity extends to finite systems with sizes typi-
cal of standard AdResS simulations. Accepting thatΔ𝜇 = 0 holds
also for a finite (yet not too small) AT ∪ Δ region implies that the
equilibrated AdResS (i.e., with Fth switched on) and the subsys-
tem S of the fully atomistic reference simulation are open sys-
tems at different chemical potentials, 𝜇0 and 𝜇r , that otherwise
exhibit the same physical properties.
The numerical confirmation of the validity of the thermody-

namic relations in AdResS provides a statistical mechanics vali-
dation of themethod as a reasonable numerical approximation of
an open system embedded in a reservoir of particles and energy.
In conclusion, we have shown that although the abrupt coupling
may suggest that a high degree of seemingly artificial conditions
are required for the technique to work properly, in effect the nu-
merical conditions are consistent with the statistical mechanics
principles of an open system.

6. Appendix

6.1. Technical Details and Validation of AdResS

For validation of AdResS, a variety of LJ fluids with different state
points along with a water model at biological conditions have
been studied. The LJ fluid particles are of mass m and inter-
act pairwise with the sharply truncated and shifted LJ potential
U(r) = ULJ(r) −ULJ(rc) for r < rc andU(r) = 0 otherwise; the cut-
off distance was chosen as rc = 2.5𝜎 and the original LJ poten-
tial reads ULJ(r) = 4𝜀

[
(r∕𝜎)−12 − (r∕𝜎)−6

]
. The parameters 𝜀 and

𝜎 serve as intrinsic units for energy and length, respectively; the
unit of time is set to 𝜏 :=

√
m𝜎2∕𝜀. For the case of water, in ad-

dition to the mentioned pair interactions, electrostatic potentials
are also included with a cut-off radius of 1.2 nm.
The LJ fluids were kept at the (dimension-reduced) temper-

ature T∗ := kBT∕𝜀 = 1.5, which is well above the liquid–vapour
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Figure 4. Thermodynamic force Fth(x) (left) and its potential 𝜑th(x) (right) used in the AdResS set-ups for Lennard-Jones fluids at the same temperature
T∗ = 1.5 and at four reduced densities. The thermodynamic force is zero in the AT region by construction and vanishes rapidly inside of the TR region.

critical point, and we investigated four different number densi-
ties 𝜚∗ := 𝜚𝜎3 ≈ 0.20, 0.25, 0.30, and 0.37, corresponding to par-
ticle numbers N = 8 k, 10 k, 12 k, and 15 k, where k stands for
the SI prefix for 103. In the case of water, 58 990 water molecules
(i.e., 176 970 atoms) at a biological temperature of 323 k have
been considered for simulations.
In the corresponding AdResS set-ups, the same particle num-

bers were used for the total of LJ and tracer particles. The LJ parti-
cles were confined to a cuboid simulation box of size 45𝜎 × 30𝜎 ×
30𝜎 (for the case of water: 33.09 nm × 7.37 nm × 7.37 nm), with
periodic boundaries imposed at all faces. For the AdResS set-up,
the width of the transition regionΔ along the x-axis was set to the
cut-off radius, LΔ = rc, which provides sufficient space and time
for the proper equilibration of particles that entered from the
Δ/TR border and changed their resolution abruptly before they
reach the AT region of interest. The width of the AT region was
chosen as LAT = 6𝜎 for LJ cases and LAT = 10 nm for water sim-
ulation, which is small enough to reduce the computational cost
significantly compared to a fully atomistic simulation and large
enough to be able to mimic and reproduce the thermodynam-
ics and structure of the fluid under study. The remaining part of
the simulation box (LTR = 34𝜎 for LJ cases and LTR = 20.69 nm
for water) is filled with noninteracting particles (tracers). For the
fully atomistic simulations serving as reference, the same geom-
etry of the simulation box was used (Figure 1a) and observables
were computed only in a subvolume of width LAT along the x-axis,
corresponding to the AT region of the AdResS set-up.
All simulations were carried out with the GROMACS

software[26] using the stochastic leap-frog integrator with
timestep 0.002𝜏, which acts as a Langevin-type thermostat with
the time constant set to 0.05𝜏. Production runs covered 103𝜏 to
calculate thermodynamic and statistical properties within the
AdResS simulation. The threshold for capping the force on a
particle in the Δ region was set to Fcap = 500𝜀∕𝜎 and was applied
separately for each Cartesian component of the force. Excess
chemical potentials were computed in standard MD simulations
using Widom’s method,[25] in particular, 10 k test particles were
inserted after each interval of 2𝜏.
In case of the AdResS set-up and for each density, the thermo-

dynamic force Fth(x) was calculated iteratively as described above
with the stopping criterion chosen as max |𝜚(x) − 𝜚∗|∕𝜚∗ ⩽ 2%;

themaximum is taken across the whole simulation box. The ther-
modynamic force Fth(x) was parameterized in terms of a cubic
spline interpolation with knot distance 0.3𝜎. On average, 10–15
iterations were needed for this scheme to converge, and each it-
eration involved a simulation run over 200𝜏.
The resulting curves for Fth(x) are shown in Figure 4 along

with the corresponding potentials 𝜑th(x) obtained from integra-
tion of the force. The main feature of the potentials is a mini-
mum in the Δ region, close to the Δ/TR boundary (x = 5.5𝜎),
with the depth increasing by a factor of 2 as the density of the flu-
ids is increased from 𝜚∗ = 0.20 to 𝜚∗ = 0.37. Inside the TR region,
the potential converges within a distance of ≈ 1𝜎 from the Δ/TR
boundary to a constant 𝜑TR ≈ −0.45𝜀, that is, below the value in
the AT region. The value of 𝜑TR varies only mildly with the den-
sity. Note that its sign is opposite to the case of liquid water at
room conditions.[9] The physical action of the potential well in
𝜑th(x) is that tracer particles are pulled into the denser fluid in
the Δ region, whereas LJ particles are kept from escaping to the
TR region. Effectively, it yields a flat density profile at the equilib-
rium density 𝜚∗ of the corresponding LJ fluid, that is, the AdResS
set-up reproduces the density of a fully atomistic reference simu-
lation within the prescribed tolerance (Figure 2). In the absence
of the thermodynamic force, Fth(x) = 0, the AT and TR regions
are unbalanced, generating an excess of particles on one side of
the AdResS interface and a depletion on the other. In the specific
examples, the density in the center of the AT region, denoted by
𝜚0, is increased by 20–30%, which is compensated by a diminu-
tion of the amount of tracer particles.
As further checks that the AdResS set-up reproduces the

structural and statistical characteristics of the fully atomistic sim-
ulation, we compared the radial distribution function g(r) from
both approaches, which yield a perfect match (data for 𝜚∗ = 0.37
are shown in Figure 5). Second, we tested the permeability of the
AT/Δ boundary by inspecting the probability distribution p(N)
for findingN particles in the AT region and in the corresponding
subvolume of the fully atomistic simulation (Figure 6). Both dis-
tributions superpose closely and resemble a Gaussian; the small
shift of the peak positions is related to the allowed tolerance on
𝜚(x) in the computation of the thermodynamic force. For the
density 𝜚∗at = 0.37, we obtained mean values ⟨N⟩ = 2000 and
2024 for the reference and for AdResS, respectively. Similarly, the
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Figure 5. Radial distribution function g(r) obtained from the AT region
of the AdResS set-up (red symbols) and the corresponding subvolume of
the fully atomistic reference (blue line). Data for a Lennard–Jones fluid at
temperature T∗ = 1.5 and number density 𝜚∗ = 0.37, using 15 k particles
in total.

Figure 6. Probability distribution p(N) of finding N particles in the region
of interest (AT), which is an open system. Comparison of results from the
AdResS set-up (red squares) and the fully atomistic reference simulation
(blue discs) for a Lennard–Jones fluid at temperature T∗ = 1.5 and num-
ber density 𝜚∗ = 0.37. Solid lines are fits to a Gaussian distribution. The
inset shows a close-up of the sharp peak seen in the main panel.

standard deviations std(N) = 40.6 and 40.1, being a measure of
the compressibility, differ by only 1.3%. We conclude that the AT
region of the AdResS set-up used here is a good representation
of an open subvolume of a fully atomistic simulation.

6.2. The Capped Energy is Negligible

The force capping acting in the Δ region takes care of the diver-
gent interaction potentials, which is technically needed due to
the sudden introduction of new interactions upon tracer parti-
cles entering the atomistically resolved region. Given a certain
configuration of molecules in the AT ∪ Δ region, the force cap-
ping would renormalize the interaction energy of two molecules,
located at the very interface between the Δ region and the tracer

Figure 7. Number of incidences of force capping per MD integration step,
relative to the total number of pair interactions in the transition region Δ
as a function of time, the latter number was estimated to 2 × 104 for the
LJ fluid at the density 𝜚∗ = 0.37.

region, which have a distance that cannot occur in a fully atom-
istic simulation. However, this term is negligible compared to
the other contributions as evidenced numerically for the LJ fluid
at the density 𝜚∗ = 0.37, which exhibits the highest frequency of
force capping incidences in this study (Figure 7). The number of
incidences of force cappings rarely exceeds a value of 20 in each
MD integration step, which is three orders of magnitude smaller
than the total number of pair interactions in the Δ region, esti-
mated to 2 × 104 based on the particle density and the radial dis-
tribution function (Figure 5). Furthermore, the capping is equiv-
alent to a global modification of the highly repulsive part of the
interaction potentials, which has marginal repercussions on the
physical properties of the fluid; specifically for the LJ potential
and the choice for Fcap = 500𝜎∕𝜀 used here, the capping corre-
sponds to a modification of the potential for distances shorter
than rcap ≈ 0.82 𝜎 or potential energies U(r) ≳ 28 𝜀.
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