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The Augmented Jump Chain

Alexander Sikorski,* Marcus Weber, and Christof Schütte

Modern methods of simulating molecular systems are based on the
mathematical theory of Markov operators with a focus on autonomous
equilibrated systems. However, non-autonomous physical systems or
non-autonomous simulation processes are becoming more and more
important. A representation of non-autonomous Markov jump processes is
presented as autonomous Markov chains on space-time. Augmenting the
spatial information of the embedded Markov chain by the temporal
information of the associated jump times, the so-called augmented jump
chain is derived. The augmented jump chain inherits the sparseness of the
infinitesimal generator of the original process and therefore provides a useful
tool for studying time-dependent dynamics even in high dimensions.
Furthermore, possible generalizations and applications to the computation of
committor functions and coherent sets in the non-autonomous setting are
discussed. After deriving the theoretical foundations, the concepts with a
proof-of-concept Galerkin discretization of the transfer operator of the
augmented jump chain applied to simple examples are illustrated.

1. Introduction

The last decade of theoretical treatment of simulation methods
was characterized by the analysis of autonomous Markov pro-
cesses. The uniform concept of Markov operators and infinitesi-
mal generators was investigated for these purposes which has led
to a rich development of analysis tools in mathematics. In order
to be able to benefit from these tools also in the non-autonomous
case, a broader uniform theoretical framework is required to deal
with non-autonomous as well as autonomous methods and pro-
cesses (not only) in molecular simulation.
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Physical models often arise from the
principle of the cause-and-effect relation-
ship. To think of a process as a sequence of
causes and effects straightforwardly leads
to the formulation of a Markov process, a
process where the future only depends on
the present. Thus, due to their flexibility
Markov processes have become an impor-
tant cornerstone for the modeling of many
complex systems.[1,2] Although the dynami-
cal law of the state evolution, e.g. a differen-
tial equation with a first-order derivative of
the time variable, might be highly nonlin-
ear, the mathematical object that accounts
for the transfer of probability densities of
system states is a linear transfer operator
(the “adjoint” continuous counterpart of a
transition matrix of a Markov chain). The
formulation of Markov processes in terms
of transfer operators has proven to be a
powerful tool for their analysis. Techniques
like transition path theory,[3] reaction

coordinates[4,5] and coarse graining,[2] clustering[6] and coherent
set analysis[7,8] are just a fewmethods building on this formalism.
However, the computational cost of these approaches grows

with increasing numbers of states and quickly becomes infeasi-
ble for high-dimensional problems. Their corresponding formu-
lation in terms of infinitesimal generators or rate matrices[9,10]

promises to alleviate computational costs by making use of the
sparse structure in many real world problems, where instanta-
neous state changes are restricted by a locality assumption. We
want to be able to exploit this sparsity also for non-autonomous
processes. If one were to find a generator-like object for non-
autonomous processes, then corresponding methods could be
transferred directly.
Physicalmodelsmostly refer to self-contained systems that can

be isolated in the laboratory and which, therefore, allow for the
analysis of autonomous processes, often after equilibration of the
system. However, if we want to study the influence of external
forcing (e.g., of external control), transient dynamics or the pro-
duction rate of catalytic cycles, then non-autonomous (i.e., hav-
ing a time-dependent, changing law of state evolution) and non-
equilibrium systems play an important role.
While there are extensions to the non-stationary regimes[8,11]

we do not know of any such approach inheriting the sparse-
ness of the generator and thus facilitating the analysis of high-
dimensional complex systems.
In this article we focus on Markov jump processes which are

memoryless stochastic processes continuous in time and discrete
in space and have been successfully used in reaction kinetics,
queueing theory, Markov state models and network analysis.
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Aiming at a sparse approach to non-autonomous dynamics
we develop a novel representation of time-dependent Markov
jump processes. Inspired by recent developments in physics[12,13]

which look at time emerging from the order of events rather than
as a constantly evolving exogenous entity we look at the process
as a series of jumps in space and time such that every change
that takes place in the system is a change in the spatial and in the
time domain. Formally this amounts to the extension of the ideas
of the embedded Markov chain[14] or semi-Markov processes[15]

to the time-dependent setting and will lead us to an autonomous
process in space-time, the augmented jump chain. In contrast
to semi-Markov processes, however, we have an explicit time-
dependence resulting in non-homogeneous exponential holding
times, whereas semi-Markov processes become time-dependent
implicitly due to (autonomous) non-exponential holding times.
Despite these differences, recent large deviation results[16,17]

might provide a link between metastable/coherent sets con-
sidered in this article and large deviations for the empirical
measure.
A realization of the augmented jump chain, consisting of a se-

quence of space-time points, corresponds to the time-continuous
trajectory of the original process. Imagine tracking an ensemble
of particles, all starting at the same time in their individual
spatial states. We observe their respective jumps which take
place in space and time. The transfer operator (of the augmented
jump chain) maps the distribution of such an ensemble to the
distribution after its next jump while retaining the local nature of
the original process: particle states still only jump to their “neigh-
boring” states. Although this operator evolves the classical time
in a concurrent manner, we can reconstruct the whole family of
Perron–Frobenius operators (for each fixed time) by means of
an iterative procedure which we will denote as synchronization.
What is more interesting though is that we can compute the
action of its dual, the Koopman operator, directly by solving a lin-
ear boundary value problem akin to the Chapman–Kolmogorov
equation. This linear problem furthermore resembles the com-
putation of classical committor functions and we show how it
naturally leads to an extension of the committor framework
to the non-autonomous regime with the Koopman operator
being a special case of such a non-autonomous committor.
We conclude by deriving a (sparse) finite-time Galerkin projec-
tion of the transfer operator and applying it to two illustrative
examples.

2. Background

In this section, we will introduce the notation and recall some
basic results needed for the subsequent sections.
Let the set𝕏 = {xi}i=1,…,N denote a finite state space and {Xt}t∈𝕋

a time-continuous Markov chain (also called Markov jump pro-
cess) on 𝕏 with 𝕋 = ℝ+

0 denoting the time domain. It is well
known[2] that this process can be described by means of its as-
sociated stochastic transition kernel

k(x, s, y, t) = ℙ(Xt = y|Xs = x) (1)

denoting the conditional transition probabilities. This kernel
gives rise to a family of important transfer operators, the prop-

agator (or Perron–Frobenius operator)  : L1(𝕏) → L1(𝕏) acting
on densities f[ s,tf

]
(y) =

∑
x∈𝕏

k(x, s, y, t)f (x) (2)

and the adjoint Koopman operator : L∞(𝕏) → L∞(𝕏) acting on
observables g[s,tg

]
(x) =

∑
y∈𝕏

k(x, s, y, t)g(y) (3)

These two are adjoint in the sense that <  s,tf, g >=< f,s,tg >
with< ⋅, ⋅ > denoting the corresponding dual pairing. This equal-
ity illustrates that evolving a density f forward in time via  and
measuring the observable g in the future is the same as pulling
the observable g back in time via and applying it to the current
state f . Therefore the propagator and Koopman operator are also
called forward and backward transfer operator, respectively.
Note that we are explicitly interested in time-dependent (non-

autonomous) processes and as such the above objects in gen-
eral depend on both, the starting time s and the end time t. In
contrast to the time-independent (autonomous) regime, where
the transfer operators merely depend on the elapsed time t − s
and thus form a one-parameter semi-group  t−s :=  s,t, the non-
autonomous pendant does not allow for such a simple construc-
tion.
We can nevertheless define the time-dependent infinitesimal

generator at each time t by

Q(t) = lim
Δt↘0

Pt,t+Δt
t u − u

Δt
(4)

We can denote the generator as a matrix Q(t) = (qij(t)) com-
posed of the transition rates from state xi to xj,

qij(t) :=
[
Q(t)𝟙xi

]
(xj), 1 ≤ i, j ≤ N (5)

with 𝟙 denoting the indicator function.
We furthermore introduce the shorthand notation for the out-

bound rate

qi(t) := −qii(t) =
∑
j≠i

qij(t), 1 ≤ i ≤ N (6)

where the latter equality follows from the fact that our system
is (probability) mass conserving. In the case of autonomous sys-
tems, that is,Q(t) ≡ Q , we will denote these quantities simply by
qij and qi.
The generator is of special interest for systems which satisfy

the so-called locality assumption, that is, states only interact with
a few other states, as in that case the generator can be represented
as a sparse matrix. This diminishes the computational cost in
the analysis of many real-world systems, e.g. spatial diffusion
processes, where particles can only jump to spatially neighbor-
ing cells.
The definition of the infinitesimal generator motivates the for-

mal linear equation

d
dt
 s,t = Q(t) s,t,  s,s = I (7)

with I denoting the identity operator.
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For the autonomous case where Q(t) ≡ Q , we indeed know
that  t = etQ . This has very useful applications in practice: Since
 t and Q are related via the exponential map, their eigenvectors
are the same. Hence they share many statistics, such as their in-
variant distributions.
One might hope to extend this relationship to the non-

autonomous regime by replacing the exponent tQ with its inte-
grated analogue[18]

Ω(t) = ∫
t

0
Q(u)du (8)

but this does not hold for noncommutative Q(t). There exist per-
turbative approaches to the solution of this problem such as the
Dyson andMagnus series adjusting for the noncommutativity by
computing nested commutators, but these will in general not re-
main sparse. We will tackle the problem from the perspective of
the jump chain (also called embedded Markov chain) and extend
it to the time-dependent regime while still inheriting the sparse
structure of Q(t).
Let us therefore recall the classical construction of the jump

chain.

Definition 1. Let Xt be a Markov jump process.
For n = 0, 1, 2,… define the jump times of Xt to be

J0 = 0, Jn+1 = inf
{
t : t > Jn, Xt ≠ XJn

}
(9)

if the infimum is attained or∞ otherwise. The corresponding holding
times are defined as

Hn = Jn − Jn−1 (10)

Furthermore define the jump chain (also called the embedded chain)
of Xt to be

Yn = XJn
(11)

This construction decomposes the original jump process Xt in
two components: the temporal component in form of the jump
times Jn, which amount to the times at which Xt changes its state,
as well as the spatial component in form of the jump chain Yn
which keeps track of these states. The holding times, that is, the
differences between the jump times, amount to the time each
state remains in the same position.
The original process can then be reconstructed by

Xt = Yc(t) (12)

with the jump count given by

c(t) = max{n ∣ Jn ≤ t} (13)

and Jn =
∑

i≤n Hn.
The following theorem allows us to characterize both compo-

nents explicitly in terms of the infinitesimal generator for the
case of an autonomous process:

Theorem 1 ([19]). Let Xt be an autonomous Markov jump process
with infinitesimal generator Q = (qij).

Then the jump chain Yn is a Markov chain with transition proba-
bilities ℙ(Yn+1 = xj ∣ Yn = xi) = q̃ij given by

q̃ij =

{
qij∕qi, if j ≠ i and qi ≠ 0
0, if j ≠ i and qi = 0

q̃ii =

{
0, if qi > 0
1, if qi = 0

(14)

Furthermore the holding times H1, H2,… are independent expo-
nential random variables with parameters qY0 , qY1 ,…, respectively.

Using this decomposition for sampling, that is, drawing the
next state from the Markov chain Yt and the exponentially dis-
tributed holding time Hn leads to the well known Gillespie
(Stochastic Simulation) Algorithm[20] for sampling from Markov
Jump chains.

3. The Augmented Jump Chain

In this section we describe the construction of the main object
of this study, the augmented jump chain for non-autonomous
processes. Similar to the jump chain of autonomous processes,
we decompose the process into its spatial and temporal parts, re-
spectively, by conditioning either on a specific time or location.
Unlike in the autonomous regime, however, both parts now ex-
plicitly depend on time. By combining both components, that is,
augmenting the spatial with the temporal component, we arrive
at an autonomous process on space-time, represented by a new
transfer operator, the jump operator , encoding the original pro-
cess Xt. We then show how to use this operator to reconstruct the
classical, non-autonomous transfer operators  s,t, s,t and dis-
cuss a more general application for time-dependent committors.

3.1. Construction

Definition 2. Define the augmented jump chain to be the tuple

(Y, J)n = (Yn, Jn)n for n = 0, 1, 2,… (15)

where the jump chain and jump times are defined as in Definition 1.

We call this the augmented jump chain since its state space
is that of the original process Xt (or its jump chain Yn) aug-
mented by the time component. Note, however, that unlike in
classical augmentation schemes (e.g. the augmentation of non-
autonomous differential equation) the “internal” time compo-
nent Jn does not evolve linearly with the “external” time n of the
augmented jump chain, see Figure 1.
The augmented jump chain now gives us a tool to analyze the

time-continuous spatially-discrete Markov process Xt by means
of a discrete-time Markov chain (Y, J)n on the product space 𝕏 ×
𝕋 , that is, to look at the process on a per-jump basis. Analogous to
the autonomous case we can transfer forth and back between the
two representations, either by the definition of the augmented
Markov chain (15) or the evaluation of the jump chain (12) at the
time-corresponding jump counts (13).
Due to the time dependent structure of the process Xt the tran-

sition rules change compared to the autonomous case (Theo-
rem 1):
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Figure 1. Illustration of the Jump chain
Depicted (horizontal lines) is a realization of the Markov process Xt in
space time. It can be decomposed into its spatial component in form of
the jump chain Yn (dashed lines) and its temporal component, the jump
times Jn. Gluing both together we end up with the augmented jump chain
in space-time (curved arrows).

Theorem 2. The augmented jump chain (Y, J)n is a time-
homogeneous/autonomous Markov chain on 𝕏 × 𝕋 with transition
kernel

k(xi, s, xj, t) = q̃ij(t)qi(t) exp
(
−∫

t

s
qi(u)du

)
(16)

for s < t or k = 0 otherwise with q̃ij(t) being defined as the time-
dependent equivalents of Equation (14).
The corresponding transfer operator is given by the jump operator

 : L1(𝕏 × 𝕋 ) → L1(𝕏 × 𝕋 )

[ 𝜌](y, t) = ∫T

∑
x∈𝕏

k(x, s, y, t)𝜌(x, s)ds (17)

and its adjoint  † : L∞(𝕏 × 𝕋 ) → L∞(𝕏 × 𝕋 ) by

[ †𝜌
]
(x, s) = ∫T

∑
y∈𝕏

k(x, s, y, t)𝜌(y, t)dt (18)

Proof. Since Jn+1 > Jn by definition we have k = 0 for s ≥ t. Let
us therefore consider the case of s < t.
Since Xt is Markovian, the jump location at a specific jump

time depends solely on the generator at that time, so similar to
the autonomous case we have

ℙ
(
Yn+1 = xj ∣ Yn = xi, Jn+1 = t

)
= q̃ij(t) (19)

Unlike in the autonomous case the jump times now depend
on the time-dependent rates. We therefore replace the homoge-
neous exponential distribution with its non-homogeneous com-
plement, which is also known as the risk of mortality/hazard
function (c.f. appendix):

ℙ
(
Jn+1 = t ∣ Jn = s, Yn = xi

)
= qi(t) exp

(
−∫

t

s
qi(u)du

)
(20)

Putting these together, we end up with the desired result

k(xi, s, xj, t)

= ℙ(Yn+1 = xj, Jn+1 = t ∣ Yn = xi, Jn = s)

= ℙ(Yn+1 = xj ∣ Jn+1 = t, Yn = xi, Jn = s)

× ℙ(Jn+1 = t ∣ Yn = xi, Jn = s)

= q̃ij(t)qi(t) exp
(
−∫

t

s
qi(t)du

)
(21)

□

The given theorem allows us to sample realizations of the aug-
mented jump chain by successively generating samples from the
probability density

(Yn+1, Jn+1) ∼ k(Yn, Jn, Yn+1, Jn+1) (22)

by drawing the jump time from the inhomogeneous exponential
distribution followed by the jump location from the embedded
Markov chain at that time. This procedure for sampling from
time-dependent Markov Jump processes is also known as the
temporal Gillespie algorithm.[21]

Having the transition kernel it is natural to look at the associ-
ated transfer operators which in this case evolve space-time den-
sities. In the following subsections we will show how they enable
us to reconstruct the transfer operators , of the original pro-
cess Xt.
Let us denote all space-time distributions 𝜌 ∈ L1(𝕏 × 𝕋 ) which

have all their mass at a single time-slice t0 as spacelike. Given
some spacelike initial distribution 𝜌 for the augmented jump
chain (Y0, J0) ∼ 𝜌 its subsequent space-time states are distributed
according to

(Yn, Jn) ∼  n𝜌, for n = 0, 1, 2,… . (23)

3.2. Reconstruction of the Propagator

The application of the jump operator  to a spacelike initial den-
sity 𝜌 returns the density of the locations of its next jump events in
space-time. While the initial density’s location in time was fixed
by construction, its image under , that is, the location of the next
jump, is spread out in time; one may regard the result as desyn-
chronized. This leads to the question what can be said about the
distribution at a future fixed time-slice𝕏 × {t}. Starting from the
jump-activity, the superposition of all subsequent jumps, and ac-
counting for the probability to remain in place (i.e., not jump)
until the target time we return to the synchronized view by recon-
structing the classical propagator  from the augmented jump
chain.

Definition 3. The jump-activity E : 𝕏 × 𝕋 → 𝕏 is given by

Ef :=
∞∑
n=0

 nf (24)

Starting with a spacelike distribution f , the corresponding
jump-activity Ef is the density of all induced jump events, sim-
ilar to the activity of a Geiger-counter over time. In the general
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case Ef can be interpreted as the density of jumps induced by a
superposition of spacelike distributions.
Note that E admits the form of a Neumann-series, that is, E =

(Id −  )−1.
Definition 4. Define the survival probability from time t0 to time t1
at point xi ∈ 𝕏 as

S(xi, s, t) := ℙ[Jn+1 > t|Yn = xi, Jn = s] = exp
(
−∫

t

s
qi(u)du

)
(25)

Define the synchronization operator St : L1(𝕏 × 𝕋 ) → L1(𝕏) at time
t by:

 tf (y) = ∫s≤t
f (y, s)S(y, s, t)ds (26)

The synchronization operator takes a space-time density and
projects it onto a specific time by weighting each point with its
probability to survive until that time. Starting from a space-like
density we are now in the position of constructing all consequent
jumps and synchronizing them to a specific time, thereby recon-
structing the action of the classical propagator Perron–Frobenius
operator:

Theorem 3. Let f̄ ∈ L1(𝕏) and f (x, t) = 𝛿(t)f̄ (x) ∈ L1(𝕏 × 𝕋 ) its
spacelike embedding. The measurement operator t =  tE recon-
structs the action of the classical propagator  , that is,
tf =  tEf = 0,t f̄ (27)

Proof. The probability to be in point x at time t is equal to the
sum of the probabilities to jump to x just before time t for every
jump time n:

(0,t f̄
)
(x) = ℙ[Xt = x ∣ X0 ∼ f̄ ]

=
∞∑
n=0

ℙ[Yn = x, Jn ≤ t < Jn+1 ∣ Y0 ∼ f̄ , J0 = 0]
(28)

which can be further decomposed to jumping to x at time s and
staying there

(0,t f̄
)
(x) =

∞∑
n=0

∫s≤t

(
ℙ
[
Yn = x, Jn = s ∣ Y0 ∼ f̄ , J0 = 0

]
⋅

ℙ
[
Jn+1 > t ∣ Yn = x, Jn = s

])
ds

=
∞∑
n=0

∫s≤t
 nf (x, s)S(x, s, t)ds

= ∫s≤t
Ef (x, s)S(x, s, t)ds

=  tEf

(29)

□

3.3. Reconstruction of the Koopman Operator

Instead of solving the propagator directly by computing all pos-
sible jumps, as done in the section above, we can solve for the
transition kernel of the process Xt with a single jump. Similar to
the Kolmogorov backward equation we will transport the transi-
tion kernel k(x, s, y, t) for fixed y, t backwards in time. This enables
us to obtain the propagator by solving a family of boundary value
problems. Furthermore we can compute its adjoint, the Koop-
man operator, by solving just a single boundary value problem
(BVP).

Theorem 4. Let

f y,t(x, s) := ℙ(Xt = y ∣ Xs = x) (30)

Then f y,t satisfies the inhomogeneous linear boundary value problem

f y,t(x, s) =  †f y,t(x, s) + S(x, s, t)𝛿xy, for s < t

f y,t(x, s) = 𝛿xy, for s = t
(31)

with 𝛿xy denoting the Kronecker delta.

Proof. Define

c(t) = max{n ∣ Jn ≤ t} (32)

to be the last index of the jump chain before crossing time t. Us-
ing the law of total probability we see that we can decompose the
probability f y,t into the cases of either jumping or staying

f y,t(x, s) = ℙ(Xt = y ∣ Xs = x) = ℙ(Yc(t) = y ∣ Y0 = x, J0 = s)

= ℙ(Yc(t) = y, c(t) = 0 ∣ Y0 = x, J0 = s)

+ ℙ(Yc(t) = y, c(t) > 0 ∣ Y0 = x, J0 = s)

(33)

The first part reduces to

ℙ(Yc(t) = y, c(t) = 0 ∣ Y0 = x, J0 = s)

= ℙ(c(t) > 0 ∣ Y0 = x, J0 = s)ℙ(Yc(t) ∣ Y0 = x, J0 = s, c(t) = 0)

= S(x, s, t)𝛿xy

(34)

For the second part, since c(t) > 0, we can decompose the jump
event as

ℙ(Yc(t) = y, c(t) > 0 ∣ Y0 = x, J0 = s)

=∫ ℙ(Yc(t) = y ∣ Y1 = z, J1 = u)

× ℙ(Y1 = z, J1 = u ∣ Y0 = x, J0 = s)dzdu

=∫ ℙ(Yc(t) = y ∣ Y1 = z, J1 = u)k(x, s, z, u)dzdu

= †f y,t(x, s)

(35)
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where the last equality follows from

f y,t(z, u) = ℙ(Yc(t) = y ∣ Y0 = z, J0 = u)

= ℙ(Yc(t) = y ∣ Y1 = z, J1 = u)
(36)

which holds due to (Y, J) being homogeneous.
Putting it all together and treating the special case of s =

t implying c(t) = 0 we arrive at the stated boundary value
problem. □

Since f y,t is just the transition kernel (1) of the original process
for fixed (y, t), that is,

f y,t(x, s) = k(x, s, y, t) (37)

we can represent the propagators  and the Koopman operators
 in terms of f y,t as

 s,tg(y) = ∫ f y,t(x, s)g(x)dx

s,tg(x) = ∫ f y,t(x, s)g(y)dy

(38)

Note that the evaluation of the propagator requires the solution
of the BVP (31) for each y, which corresponds to solving for the
fundamental matrix of the system. The evaluation of the Koop-
man operator on the other hand can be computed by solving a
single BVP:

Corollary 5. The evaluation of the Koopman operator K(x, s) =
s,tg(x) satisfies the inhomogeneous linear boundary value problem

K(x, s) =  †K(x, s) + S(x, s, t)g(x), for s < t

K(x, t) = g(x), for s = t
(39)

Proof. This follows immediately from

K(x, s) = ∫ f y,t(x, s)g(y)dy (40)

by integration of the product of BVP (31) and g over y and the
linearity of  †. □

3.4. Connections to Committor Functions

Formally the approach above is very similar to the computation
of committor functions c(x) giving the probability to hit some set
A before some other set B conditioned on starting in x. Classi-
cally the stationary committor function for the sets A, B ⊂ 𝕏 is
the function c : 𝕏 → [0, 1] satisfying the boundary value problem

c = tc, in 𝕏 ⧵ (A ∪ B) (41)

with prescribed boundary values c|A ≡ 1 and c|B ≡ 0.[2] This ap-
proach was recently extended to non-autonomous dynamics for
finite-time and periodic systems.[22]

Generalizing furthermore to time-dependent target sets it may
be useful to think of committor functions on space-time. Indeed

the Koopman operator (39) applied to an indicator function of
some set G ⊂ 𝕏 can then be interpreted as such a generalized
committor function, that is, the probability to hit space-time set
A = G × {t} before B = 𝕏∖G × {t} (see sketch 3 of Figure 2):

K(x, s) = s,t𝟙G (42)

By generalizing the BVP (39) to a wider class of boundary val-
ues, wemay be able to compute such space-time committors, that
is, committors of non-autonomous systems with time-dependent
target sets A, B ⊂ 𝕏 × 𝕋 .
Depending on the choice of these targets this may then al-

low to compute many interesting quantities such as the station-
ary committor, finite-time hitting probabilities or arbitrary space-
time committors (Figure 2).
Besides extending the boundary to appropriate space-time do-

mains special care has to be taken regarding the distinction of
jumping or staying (33) as well as w.r.t. the dependence of the
survival probabilities S on the boundary. Thus, while the jump
chain formalism offers a sparse formulation (c.f. Section 4.2)
and is therefore preferable to the classical time-augmentation for
computational reasons, the derivation in this framework is more
technical due to its asynchronous nature and it may therefore be
beneficial to develop the space-time committor theory in the clas-
sically time-augmented setting first. This, however, is beyond the
scope of this work and will be addressed in future work.

3.5. Connections to Coherence

In the context of stationary Markov processes, metastabilities,
that is regions of space A ⊂ 𝕏 which are almost-invariant under
time-evolution,

𝟙A ≈ 𝟙A (43)

have proven to be a very useful notion for gaining understanding
as well as dimensionality reduction of the system.
Extending this approach to the time-dependent regime the

analogue to metastability is given by coherence.[8] A set A ⊂ 𝕏 is
forward-backward coherent if there exists a set B ⊂ 𝕏 such that

s,t𝟙A ≈ 𝟙B and t,s
− 𝟙B ≈ 𝟙A (44)

where t,s
− is the appropriately defined Koopman operator of the

backward process. This definition asserts that A stays ”coher-
ent” under time-evolution from s to t in the sense that the space-
regions A and B at times s resp. t have an almost-certain one to
one correspondence. Note that forward-backward coherence also
implies that (almost) nomass in setB came from outside of setA.
The augmented jump chain naturally gives rise to a further

possible notion of coherence in terms of almost-invariant space-
time regions:

 †𝟙C ≈ 𝟙C, C ⊂ 𝕏 × 𝕋 (45)

While this only implies what we would call forward coherence
this notion may suffice for many applications and a similar
construction involving a backward operator to study forward-
backward coherence should pose no difficulties.
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Figure 2. Sketches of sets for space-time committors
By choosing suitable space-time sets A and B we can construct different interesting committor-like objects. From left to right: The classical (stationary)
committor, a finite-time hitting probability, fixed time hitting probability (Koopman operator), (fully) non-autonomous committor.

Moreover, we can formally introduce a probabilistic notion of
coherence in the form of coherent functions:

Definition 5. Let f : 𝕏 × 𝕋 → [0, 1]. We call f a forward coherent
function if it satisfies

 †f ≥ f (46)

The coherent function f allows for the interpretation as a prob-
ability density for a space-time region belonging to (observing)
the coherent regime described by f . If a point has high density,
that is, probably belongs to the coherent regime, this probably
will not decrease with the temporal evolution, that is, it will likely
stay in that coherent regime.
We easily see that these functions are not unique by adding

a probability in ”the future”, e.g. f ′(x, s) = f (x, s) if s < T and
f ′(x, s) = 1 otherwise. This, however, weakens the notion of the
corresponding coherent regime, since from time T anything be-
longs to it. So there is a whole family of coherent functions and
depending on the context they may allow to model many require-
ments leading to optimization problems such as for example
finding the spatially ”most concentrated” coherent function los-
ing the least amount of mass per time or the ”most certain” func-
tion coming from some source and hitting some target region in
space-time and many more.
Moreover, due to its integral approach of time the augmented

jump chain allows not only for coherence with respect to fixed
starting and end times but may allow to find coherent regimes
for the intrinsic time scales of the process. Finally it might be
interesting to decompose the space-time into coherent regimes
to obtain a coarse-grained description of the system.

4. Numerical Discretization

The jump operator acts on the space-time 𝕏 × 𝕋 which due to
the continuity of time is an infinite space. In order to allow for
numerical computations we will discretize the space-time 𝕏 × 𝕋
and the jump operator  . In the case of spatially sparse genera-
tors their sparsity will carry over to the matrix representation of
 .
A straightforward approach would be to discretize time into

M intervals Tl := [ti−1, ti). One could then compute the transition
probabilities.

ℙ(Yn+1 = xj, Jn+1 ∈ Tl ∣ Yn = xi, Jn = tk) (47)

Note, however, that we had to assume a fixed starting point (tk),
since we have lost the information about the distribution inside
an interval. One can interpret this as shifting all the particles that
jump into a time-interval to the beginning of that interval. In or-
der to compensate for that error, we will work with an Galerkin
discretization onto indicator functions of these intervals (also
called Ulam discretization):

4.1. Ulam–Galerkin Projection

Definition 6. Partition the finite time-interval [0, T ] into M dis-
joint intervals Tk := (tk−1, tk] of size ΔTk = |Tk|, with t0 = 0, tM = T.
Define ̂ : L2(𝕌) → L2(𝕌) to be the Galerkin projection of  onto
𝕌 = span{𝟙il}1≤i≤N; 1≤l≤M:

̂ikjl :=
⟨
𝟙jl, 𝟙ik

⟩
⟨𝟙ik, 𝟙ik⟩ (48)

where i, j ∈ {1,… , N}, k, l ∈ {1,… ,M} and

𝟙ik(x, s) =

{
1 if x = xi, s ∈ Tk

0 else
(49)

These entries correspond to the assumption of a uniform prior
 for the starting time of the particles inside the intervals:

̂ikjl = ℙ(Yn+1 = xj, Jn+1 ∈ Tl ∣ Yn = xi, Jn ∼  (tk)) (50)

The following proposition shows how to compute the entries
assuming a finite time horizon and a generator which is piece-
wise constant on each time interval:

Proposition 6. Assume the generator Q(t) is constant on each Tk. We
then have

̂ikjl =
⎧⎪⎨⎪⎩
ΔT−1

k q̃ij(tl)qi(tk)
−1(1 − sik)(1 − sil)

∏
k<m<l

sim if k < l

ΔT−1
k q̃ij(tk)qi(tk)

−1(sik + ΔTkqi(tk) − 1
)

if k = l
0 else

(51)

where sik := exp(−ΔTkqi(tk))
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Proof. We have

̂ikjl =
⟨
𝟙jl, 𝟙ik

⟩
⟨𝟙ik, 𝟙ik⟩

= ΔT−1
k ∫Tl

∫Tk

k(xi, 𝜏0, xj, 𝜏1)d𝜏0d𝜏1

= ΔT−1
k ∫Tl

∫Tk

q̃ij(𝜏1)qi(𝜏1) exp
(
−∫

𝜏1

𝜏0

qi(𝜏)d𝜏
)
d𝜏0d𝜏1

(52)

For k < l we decompose the integral in the exponent on the
time intervals

∫
𝜏1

𝜏0

qi(𝜏)d𝜏 = ∫
tk

𝜏0

qi(𝜏)d𝜏 +
∑
k<m<l

∫
tm

tm−1

qi(𝜏)d𝜏 + ∫
𝜏1

tl−1

qi(𝜏)d𝜏

= (tk − 𝜏0)qi(tk) + (𝜏1 − tl−1)qi(tl) +
∑
k<m<l

ΔTmqi(tm)

(53)

Furthermore computing

∫Tk

exp(−(tk − 𝜏0)qi(tk))d𝜏0

= ∫
ΔTk

0
exp(−𝜏qi(tk))d𝜏 = (1 − exp

(
−ΔTkqi(tk)

)
)qi(tk)

−1

(54)

and similarly for the ∫Tl part leads us to

̂ikjl = ΔT−1
k q̃ij(tl)qi(tl) exp

(
−
∑
k<m<l

ΔTmqi(tm)

)
× (1 − sik)qi(tk)

−1(1 − sil)qi(tl)
−1

(55)

In the case of k = l we have to take care that the ar-
rival time must be larger than the initial time (t0 > t1 implies
k(xi, t0, xj, t1) = 0) and we hence compute

̂ikjl = ΔT−1
k q̃ij(tk)qi(tk)∫

tk

tk−1
∫

tk

𝜏0

exp
(
−∫

𝜏1

𝜏0

qi(tk)d𝜏
)
d𝜏1d𝜏0

= ΔT−1
k q̃ij(tk)qi(tk)

(
sik + ΔTkqi(tk) − 1

)
qi(tk)

−2

(56)

For k > l it follows that ̂ikjl = 0. □

Using a space-major indexing scheme we can rearrange the
discretization to a matrix J = (Jab)a,b∈{1,…,NM} via

Ji+(k−1)M,j+(l−1)M := ̂ikjl (57)

as illustrated in Figure 3. Since the Galerkin projection of the
adjoint is the transpose of the Galerkin projection the matrix J
corresponds to  as well as  † when applying the vectors from
either the left resp. the right side.
We would like to note that this is a very crude proof-of-concept

discretization providing themeans to compute above posed prob-
lems numerically. The assumption of piecewise constant inho-

Figure 3. Matrix representation of the Galerkin discretization in space-
major order (the outer indices denote the time and the inner ones the
space). A row of thematrix represents the probabilities to jump to a space-
time point when starting at a fixed space-time position. The probabilities
are decreasing (non-homogeneous) exponentially with the time blocks.
The sparsity structure in each time-block corresponds to that of the gener-
ator at that time. We have a tridiagonal block structure since particles only
move forward in time.

mogeneityQ(t) may be dropped when solving the corresponding
integrals (53) either analytically or by quadrature. In the case of
varying implicit timescales 0 < qi ≪ qj we expect adaptive time-
discretizations to be of aid. Since the survival times are expo-
nentially decaying a cutoff may reduce complexity for long time-
horizon calculations. As always with Galerkin methods one can
adapt this method with different ansatz functions.[23] Although
these are important questions the discretization is not the focus
of this manuscript and we defer them for later research.

4.2. Sparseness and Complexity

We constructed the augmented jump chain with the goal of spar-
sity in mind. We can see that the transition kernel (16) of the
jump chain is given in terms of the rates q̃ij(t). Therefore the spar-
sity of the infinitesimal generator, a property very common in
many applications, is inherited by this representation. This con-
cept is also reflected in our discretization:Whenever qij(tl) is zero,
̂ikjl and the corresponding entry in the matrix J is zero as well.
While the matrix J is much bigger (NM × NM) than e.g. the

generator of an autonomous system (N × N), some increase
in complexity is to be expected when going from the non-
autonomous to the autonomous regime. We hence might com-
pare our approach to the classical augmentation of the transfer
operator. The classical augmentation leads to a band diagonal
block matrix where the first off diagonal blocks are composed
of the transition matrices between the individual time points tk.
While the number of non-zero blocks, (M), is much smaller
than in our suggested approach, (M2), each of these blocks
is dense.
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Figure 4. Illustration of the augmented jump chain for a two-state system. Left: Discretized jump operator. Right: Jump activity (top) and recovered
probability density (bottom) when the system starts in state A at time 0.

This difference becomes crucial when considering very big,
sparse systems, such as e.g. diffusion or molecular dynamics
on high-dimensional spaces: Using a regular grid of L subdivi-
sions in each of the D space dimensions we end up with N = LD

Markov states. However, since each of those only interacts with
one of its 2D neighbors the generator has only 2DLD nonzero
entries. Therefore, while the augmented transition matrix has
ML2D non-zero entries, the augmented jump chain matrix J has
only O(M2DLD) entries. Although regular grids are not feasible
in high dimensions this example shows how the cost for the addi-
tional blocks is outweighed by their respective sparsity for higher
dimensions, a property we expect to hold as well for more sophis-
ticated discretizations.

5. Numerical Examples

In this section, we will first illustrate the developed concepts on a
simple time-dependent two-state model and then compute basic
error statistics for the jump operator discretization of the over-
damped Langevin dynamics in a 2D potential landscape.

5.1. A Simple Two-State Model

For the first example, we consider two states, 𝕏 = {A, B} on the
time interval 𝕋 = [0, 8]. The dynamics of the jump process at
each time is fully determined by the respective rates of transi-
tions from A → B and B → A, respectively. Aiming for a non-
autonomous but simplistic example we define the process to con-
sist of two phases. In the first half of the time interval it is possible
to transition from A to B at rate 1 whereas B is absorbing and in
the second half we reverse the roles:

Q(t) =
(
−𝟙t<4 𝟙t<4
𝟙t≥4 −𝟙t≥4

)
(58)

We then compute the Galerkin discretization of the jump oper-
ator as in section 4.1. Partitioning the time interval into M = 8
uniform intervals we obtain the jumpmatrix J depicted in the left
of Figure 4. Since we used space-major ordering for space-time
states each 2 × 2 block represents the transitions from and into
a time-slice whereas the position inside the blocks determines
the spatial start- and end-positions (see also Figure 3. Looking at

the upper row of blocks we observe that for the initial two time
blocks the dominant transitions are those from space-state A to
B. This switches in the second half of the time interval, that is,
for the blocks on the right half of the matrix. That is, trajectories
that started at time 0 in state B will most likely jump after t = 4,
when B is no longer absorbing. We can also recognize the expo-
nential decay of the probabilities with time. The following rows
of blocks encode the behavior for the jumps starting from later
times andmimic the qualitative behavior of the top row although
with different densities.
Starting from an initial distribution we are now in the position

to look at the induced jump activity, its synchronization and the
resulting Koopman operator. Let us start with a space-time distri-
bution f ∈ ℝ2×8 with allmass in stateA at the initial time interval,
that is, fx,t = 𝛿x,A𝟙t∈{0,1}. We then compute the jump activity from
Equation (24) truncating the sum at n = 100 for reasons of com-
putability. The top right of Figure 4 depicts the resulting activity
Ef which can be understood as the amount of space-time jumps
happening into each space-time cell akin to a Geiger counter.
Looking at the first time-interval we can recognize the initial den-
sity (corresponding to the 0th jump) in state A as well as the fol-
lowing jumps to B. The intensity decays with time until t = 4
since less and less particles remain available for the transition
fromA → Bwhereas the other direction is inhibited by the 0 rate.
This changes at t = 4 where we switch the reaction rates and ob-
serve a similar pattern in the reverse direction. Note the asymetry
between the two temporal halves of the experiment. Due to the
discretization we don’t start at time t = 0 but uniformly in the
first time-cell. This is why the activity in B during t ∈ (0, 1) is
lower than in A during t ∈ (4, 5). This, however, could be alle-
viated by a finer temporal discretization of the initial condition.

5.2. Diffusion Process with Changing Temperature

In order to illustrate the applicability to molecular dynamics we
now consider a diffusion processwith drift induced by a potential.
We reduce the temperature in time, akin to the process in sim-
ulated annealing. More precisely, we consider the overdamped
Langevin equation in ℝ2,

dYt = −∇V(Yt)dt +
√
2𝛽(t)−1dWt (59)
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Figure 5. 2D diffusion process with decreasing temperature. Left: Discretized jump operator. Right: Sparsity pattern.

with a triple well potential V with 2 deep wells at (−1, 0), (1,0)
and a shallow well at (0, 3

2
) as in [22].Wt denotes standard Brow-

nian motion and 𝛽(t) is the varying inverse of the temperature /
the coldness.
We discretize the state-space on the domain [−2, 2] × [−1, 2] by

dividing it into a square grid of nx = 9 horizontal and ny = 7 ver-
tical points. In order to obtain the spatially discrete jump process
approximation to the originally space-continuous process, we use
the square-root approximation (SQRA).[10] The SQRA estimates
a generator matrix on the space of states identified with the grid
points by linearly interpolating the potential between neighbor-
ing points and calculating the resulting rates for a given temper-
ature. It is called SQRA since it can be expressed in terms of the
square root of the Boltzmann weights as follows:

Qij = ΦAij

√
exp(−𝛽Vj)

exp(−𝛽Vi)
(60)

where Aij denotes the adjacency matrix of the grid points, Vi the
potential at grid point i and the diagonal Qii is set to satisfy row
sum zero. The factor Φ amounts to the transition rate in a flat
potential and depends on the 𝛽 as well as the spatial grid-size h
by Φ = 𝛽−1h−2.[24]

For the time domain, we chose T = [0, 2] which we subdivide
into nt = 6 uniform time cells of size ΔT = 1

3
and we impose an

annealing protocol by starting with high temperature in the first
half, 𝛽(t) = 1 for t ∈ [0, 1), and decreasing it in the second half,
𝛽(t) = 10 for t ∈ [1, 2].
The left of Figure 5 shows the corresponding discretization

of the space-time jump operator J. We can recognize the high-
temperature regime on the left half of the matrix by the rather
uniform distribution of transition probabilities inside each block,
as well as by the fast timescale of the reactions indicated by a high
amount of temporal self-transitions on the diagonal blocks, with
quickly decaying transitions to the future time blocks (almost
none for the second off-diagonal). On the other hand, the right
half of the matrix encodes the behavior of the low temperature-
regime. The distribution of transitions inside each block is more
peaked as the potential-induced drift dominates the now small
noise. We also see that the process slowed down since we have

Figure 6. Approximation error of the propagator reconstructed from the
Galerkin approximation w.r.t. the temporal step size.

more transitions to the future blocks on the off-diagonal corre-
sponding to particles that remain in place for longer times.
Whereas the matrix has (nxnynt)

2 = 142884 entries only 4620
of these are nonzero, leading to a sparsity factor of 3.1%. The
sparsity pattern is depicted on the right of Figure 5.
The approximation error of the spatial discretization of the

process by means of the SQRA is discussed in ref. [25]. We can
analyze the approximation error 𝜖 of the temporal Galerkin ap-
proximation by comparing the reconstruction of the propagator
t (Section 3.2[26]) to the exact propagator 0,t of the Markov
jump process obtained from the matrix exponential of Q (which
is piecewise constant) by means of the L2 operatornorm at the
end-time t = 2:

𝜖 = ‖‖2 − eQ(0)eQ(1)‖‖ (61)

Figure 6 shows the resulting error for our example for temporal
step sizes between 0.01 and 1 and we observe convergence close
to order 1.
Although these examples mainly serve to display the concept

of the space-time augmented jump chain and merely recompute
already known quantities, they also illustrate its main strength,
that is, dealing with non-autonomous processes in a sparse way
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while encoding structural properties such as themixing behavior
and timescales of the underlying problem.

6. Conclusion

We extended the known representation of autonomous Markov
jump processes as embedded Markov chain (Theorem 1) to the
non-autonomous regime. Augmenting the state space with the
time dimension allows us to encode the temporal dependence of
the embedded chain in the new space-time state space. There-
fore we end up with a time-independent representation for the
system.While the augmentation is a common technique for non-
autonomous systems, the novelty of our approach is that we only
look at the jump events themselves. This allows us to move from
a non-autonomous continuous-time Markov process to an au-
tonomous discrete-time Markov chain (Theorem 2), albeit on a
more complex state space. We call this Markov chain the aug-
mented jump chain and characterize it through its transition ker-
nel and evolution operator, the jump operator.
This approach leads to an interesting perspective on time:

Whereas classically time progresses uniformly, we now have a
description where the process jumps through time concurrently.
While it is possible to revert to the classical picture through a
synchronization, that is, by assigning a membership along each
space-fiber of the augmented system towards a specific time-
point in uniform time, it is interesting to see that many prob-
lems can be tackled in the augmented regime directly.We showed
how the evaluation of the Koopman operator, that is, the evo-
lution of an observable through time, can be solved directly in
the ”desynchronized” regime in the form of an inhomogeneous
linear boundary value problem on space-time (Corollary 5). This
problem structurally resembles the one for the computation of
committor functions in stationary systems.
We discuss connections of our representation to the compu-

tation of committors for time-independent target sets but non-
autonomous dynamics. The time-augmented perspective fur-
thermore allows for a natural extension to a wide class of time-
dependent targets and eventually a non-autonomous committor
theory. We furthermore discuss the application of the augmen-
tation to the theory of coherence where it seems to provide a
promising view on capturing time-invariant structures.
The defining principles of our proposed approach are twofold.

For one the well-known technique of augmentation allows us to
treat non-autonomous systems and extend common notions of
analysis (committors,metastability) in a unifyingway to the time-
dependent regime. The other, however, is far less understood:
By focusing on the jump events as main principle of evolution
in contrast to the usual focus on time, we arrive at a descrip-
tion where the classical time evolves concurrently. We show how
this leads to a representation inheriting the sparsity of the in-
finitesimal generator. This in itselfmay prove to be very useful for
the computational analysis of (especially high-dimensional) non-
autonomous systems. However, interpreting the concurrency as
uncoupling of different time-scales requires further research and
we believe that it becomes a cornerstone for the analysis of com-
plex dynamics with multiple-timescales.
All in all, we hope for the augmented jump chain to en-

hance the numerical capabilities for complex systems on the ap-

plied side as well as opening doors to new perspectives for time-
dependent jump processes on the theoretical side.

Appendix A

A.1. The Non-Homogeneous Exponential Distribution

Although what we call the non-homogeneous exponential dis-
tribution may very likely be already known, e.g. in the field of
survival analysis, we could not find any published references.
We therefore present a short derivation based on an answer on
stackexchange[27]:
Define the non-homogeneous exponential distribution (NED)

with rate q : ℝ+ → ℝ+ by the cumulative distribution function
(CDF)

ℙ[t > T ] = F(t) = 1 − exp
(
−∫

t

0
q(s)ds

)
, (A1)

where T is the NED distributed random time. Note that F indeed
is a CDF:

F(0) = 0, lim
t→∞

F(t) = 1. (A2)

Then its derivative is the probability distribution function (PDF)

f (t) = dF
dt
(t) = q(t) exp

(
−∫

t

0
q(s)ds

)
. (A3)

Now consider the conditional probability

pΔt(t) = ℙ(t + Δt > T ∣ T > t) =
F(t + Δt) − F(t)

1 − F(t)
(A4)

and its rate, that is, the limit for Δt → 0

𝜆(t) = lim
Δt→0

pΔt
Δt

(t) =
F′(t)

1 − F(t)
=

f (t)
1 − F(t)

= q(t) (A5)

The homogeneous exponential distribution (HED) with rate q
is a special case of the NED with q ≡ q(t). Hence the NED has
the same conditial rate as the HED for an event occurring at
each time t, that is, is the consistent generalization to non-
autonomous rates.
Furthermore the survival probability satisfies

S(t) = ℙ[t < T ] = 1 − F(t) = exp
(
−∫

t

0
q(s)ds

)
. (A6)
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