
Chapter 1

Introduction

1.1 Knowledge Discovery in Databases

To facilitate analysis of huge amounts of data the interdisciplinary �eld of Knowledge Discov-

ery in Databases (KDD) emerged. KDD is de�ned as the non-trivial process of identifying

valid, novel, potentially useful, and ultimately understandable patterns in large data collec-

tions [Fayyad et al., 1996]. It provides techniques which extract interesting patterns in a

reasonable amount of time at the cross point of machine learning, statistics and database

systems. Figure 1.1 shows a schematic representation of the di�erent steps that need to be

accomplished for KDD:

1. Data Selection: Integrate a priori knowledge about the data to select reasonable

data as input source.

2. Data Preprocessing: Minimize background noise and transform data into a compu-

tationally manageable format.

3. Data Mining: Recognize interesting patterns and regularities within the data.

4. Data Interpretation and Evaluation: Visualize data, reduce redundant informa-

tion and draw appropriate and sensible conclusions.

The core step within the process of KDD is data mining. Here, machine learning or statis-

tical approaches like Neural Networks, Evolutionary Algorithms, Support Vector Machines,

Bayesian Networks or Hidden Markov Models are used to accomplish di�erent goals. The

most common among them are:
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Figure 1.1: Di�erent Steps of Knowledge Discovery in Databases. 1. Integrate a priori knowledge about
the data to select reasonable data as input source. 2. Preprocess data to minimize background noise and
transform data into a computationally manageable format. 3. Mine data to recognize interesting patterns
and regularities. 4. A good visualization and reduction of redundant information helps interpretation and
evaluation of the data.
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� Classi�cation: which separates data objects into prede�ned classes, e. g. automatic

recognition of handwritten postal codes.

� Clustering: which �nds groups of items that are similar based on their features, e. g.

encoding data in a compressed form (image compression).

� Association Rules: which identify co-occurrence of data objects in the same trans-

action with a certain probability, e g. identifying groups of items commonly purchased

together.

Most approaches can be separated into supervised or unsupervised learning. Supervised

learning requires a training set of samples along with the desired classi�cation of each of

these samples. Unsupervised learning does not require information about the classi�cation

of these training samples. This lack of control may result in the cognition that there is no

interesting knowledge within the selected features. However, this unbiased approach may

also be of advantage, because it may recognize previously unconsidered patterns.

One form of supervised learning is classi�cation, the process of separating data objects into

prede�ned classes. Therefore, a classi�er is trained with a labeled set of trainings objects

specifying each class. The main goal of this supervised learning approach is to �nd a good

general mapping that can predict the class for unknown data objects with high accuracy. It

also tries to �nd a compact understandable class model for each of those classes. A recent

example of classi�cation is analyzing mass spectra data to improve diagnosis and biomarker

discovery [Prados et al., 2004].

A form of unsupervised learning is clustering, which identi�es groups of similar items without

previous knowledge about the classi�cation of the training data. It separates data objects

into previously unspeci�ed groups in a way that maximizes similarity of features of data

objects within the group and minimizes similarity between groups. Clustering can help to

categorize vast amounts of data and thereby provide a good overview of the data. It may also

reveal previously unconsidered patterns. A prominent clustering method for text-mining is

WEBSOM. It orders a collection of textual items according to their contents, and maps

them onto a regular two-dimensional array of map units (Kohonen Map). Documents that

are similar on the basis of their whole contents will be mapped to the same or neighboring

map units [Lagus et al., 2004].
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1.2 Biological Background

Advances in genomics and proteomics research led to improved molecular biology analytical

and computational technologies. Accordingly, an exceptional amount of new bioinformatic

databases has arisen. More than 700 key databases containing relevant biological, medical

and gene related information have been listed in the NAR database issue of 2005 [Galperin,

2005]. Among others, those databases contain deoxyribonucleic acid (DNA), ribonucleic

acid (RNA) and protein sequences, information about protein structure, metabolic and

signalling pathways, gene expression, disease related information as well as other genomics

and proteomics data. The completion of the deciphering of the human genome in June

2000 was considered a 'milestone in history of mankind' [Lander et al., 2001; Venter et al.,

2001]. It contains the 'blueprint of life' in its most condensed form and therefore forms an

essential key to understanding complex molecular processes underlying biological systems.

This sequence information is now readily available in nucleic and protein sequence databases

like EMBL, GenBank®, RefSeq or UniProt [Bairoch et al., 2005; Benson et al., 2005; Kanz

et al., 2005; Pruitt et al., 2005].

1.2.1 Central Dogma of Molecular Biology

The central dogma of molecular biology is the �ow of genetic information in all living cells

from DNA via RNA to protein (see Figure 1.2). Protein synthesis is composed of two di�er-

ent steps: DNA is transcribed to RNA (gene expression) and RNA is translated to protein

(protein expression) (see Figure 1.3(a)). Those proteins interact with genes, small molecules

and each other forming complex interwoven webs termed molecular pathways. Combination

of those pathways leads to destinct phenotypes, e. g. eye color.

Transcription

In the �rst step of protein synthesis an enzyme called RNA polymerase transcribes one

strand of a DNA double helix into messenger RNA (mRNA). In contrast to prokaryotes

(unicellular organisms without a nucleus) the more complex eukaryotes (animals, plants,

fungi and protists) contain a membrane-bound nucleus, which separates the location of

transcription and translation. This enables a more complex regulation of protein synthesis.

Here, DNA is not translated directly into mRNA but into a precursor mRNA (pre-mRNA).
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Figure 1.2: Central Dogma of Molecular Biology. Genetic information �ows from DNA via RNA to protein.

The pre-mRNA includes small coding regions (exons) that are separated by non-coding

regions (introns). In a process termed splicing the introns are removed from the pre-mRNA,

merging remaining exons to the �nal mRNA, which is transported out of the nucleus. With

help of alternative splicing (di�erent combinations of exons) many di�erent mRNAs and

�nally many di�erent unique proteins can be created from one gene.

Translation

In the second step of protein synthesis, an organelle called ribosome translates mRNA into

protein. The mRNA is composed of four di�erent nucleotides (adenine, cytosine, guanine,

uracil). Transfer-RNA (tRNA) matches to exactly three consecutive nucleotides, called a

codon, on the mRNA. Each tRNA has attached to it a particular amino acid that corresponds

to the particular codon on the mRNA. The ribosome �ts the matching tRNA to the mRNA,

thereby attaching the amino acid to the nascent polypeptide chain. Then, it releases the

tRNA and steps forward to the next codon. Step by step the codons of the mRNA are

translated into its corresponding amino acids, translating it into protein (see Figure 1.3(b)).

Regulation

Depending on the speci�c needs of di�erent cell types, only a fraction of the approximately

20,000-25,000 protein-coding human genes are expressed [International Human Genome Se-

quencing Consortium, 2004]. Changes in qualitative (on/o�) as well as quantitative (in-

creases/decreases) gene expression are the means by which the cell responds to di�erent
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(a) protein synthesis

(b) translation

Figure 1.3: Di�erent Steps of Protein Synthesis. Protein synthesis is composed of transcription and trans-
lation. (a) In the �rst step mRNA polymerase transcribes DNA into mRNA. During this step, (eukaryotic)
mRNA is spliced, i. e. non-coding sequences are eliminated. In the next step, the mRNA is translated into
protein. Image taken from from the Science Primer (http://www.ncbi.nlm.nih.gov/About/Primer), a work
of the NCBI, part of the NIH. (b) During translation of the mRNA into Protein, tRNAs align at the ri-
bosome adding their attached amino acid to the nascent polypeptide chain. Image taken from the Talking
Glossary of Genetic Terms (http://www.genome.gov/10002096), a work of the NHGRI.

6



1.3. BIOLOGICAL CHALLENGE

stimuli. It gives the cell the broadest control over structure and function. Disruption of this

regulation is responsible for many diseases.

1.2.2 Gene Expression

Several methods have been established to access qualitative and quantitative information

about expressed genes within the cell, e. g. Reverse Transcription Polymerase Chain Reaction

(RT-PCR), Quantitative Polymerase Chain Reaction (QPCR), Northern Blot, Expressed

Sequence Tags (EST), Serial Analysis of Gene Expression (SAGE) and Microarrays (e. g.

A�ymetrix® GeneChip® Arrays).

Expressed Sequence Tags

ESTs are small fractions of DNA sequences generated by sequencing genes expressed in tissue

samples [Boguski et al., 1993]. As mRNA is unstable, all mRNAs present in the tissue sample

at biopsy are reversely transcribed into stable complementary DNA (cDNA). Those cDNAs

are sequenced from both ends to obtain the ESTs. ESTs of various tissues are clustered to

approximately 115,000 unique gene (UniGene) clusters [Wheeler et al., 2004], representing

di�erent splice variants of the approximately 20,000 to 25,000 protein-coding human genes.

As of June 2004, more than �ve million ESTs from nearly eight thousand cDNA libraries

have been compiled in the database of NCI's Cancer Genome Anatomy Project (CGAP)

[Strausberg et al., 2002] for Homo sapiens alone.

1.3 Biological Challenge

Despite the progress made by various data mining procedures [Huminiecki and Bicknell,

2000; Vasmatzis et al., 1998], there is still a large gap between the amount of available

expression data and the availability of data related to the function of those genes. For

many genes, expression data can be easily extracted from databases; however, their biolog-

ical function is not de�ned, which is indicated by di�erent sources of genomic information

like the Gene Ontology Annotation from the European Institute of Bioinformatics [Camon

et al., 2004]. Recently, novel technologies have been set up, which speed up the functional

assignment of genes. Examples of these techniques are the functional genomics screens that
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have been devised by Human Genome Sciences, Inc., [Fiscella et al., 2003] or by Xantos

Biomedicine AG [Grimm and Kachel, 2002; Koenig-Ho�mann et al., 2005; Zitzler et al.,

2004]. However, improved in silico analyses are desired to complement the existing in silico

and experimental approaches for discovery of disease relevant target genes.

Most recently gene expression data was mainly investigated in a quantitative manner. Re-

search was focused on comparison of di�erentially expressed genes in pathological or healthy

tissue samples. Unfortunately, homogeneous tissue samples of high quality are necessary for

this approach. Furthermore, the in�uence of post-translational regulation on the expression

level of biologically active proteins, like degradation or protein folding, is neglected by these

approaches.

1.3.1 Common Denominator Concept

The key concept of this thesis is to address these problems by exploiting qualitative instead

of quantitative gene expression information on system level, i.e. investigating expression

data of as much di�erent and diverse tissue samples as possible instead of using selected

samples. The idea is mainly in�uenced by a novel interdisciplinary �eld called systems

biology which attempts to understand biology on system level. The core concept of systems

biology is to utilize all data retrieved from analysis of individual components to understand

the whole system.

The novel in silico approach presented here extracts phenotype-associated genes from gene

expression centered databases. Underlying the approach is the observation that proteins par-

ticipating in a molecular pathway linked to a particular phenotype, generally are expressed

in the same place or close proximity at about the same time. Likewise, post-translationally

regulated proteins of common pathways should display similar qualitative expression pro-

�les. Even secreted factors that trigger speci�c pathways are frequently produced in close

proximity to their corresponding e�ector molecules [Alberts et al., 2002]. Therefore, soluble

proteins are also likely to be co-expressed in a de�ned tissue sample (as long as the samples

were not microdissected). The method for identifying phenotype- or pathway-associated

genes via data mining utilizes the fact that any given tissue sample should contain most of

the mRNAs encoding proteins participating in active pathway of that tissue. Provided with

data from a su�cient number of di�erent tissue samples with the same pathway activated,
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it should be possible to identify proteins participating in that pathway. Their participating

components are the common denominator of those samples as they should be present in

each of them.

1.3.2 Phenotype Angiogenesis

Particular combinations of pathways manifest themselves in corresponding phenotypes.

Therefore, it should be possible to detect not only pathway-related but also phenotype-

related genes due to their co-expression. A particular interesting phenotype is angiogenesis.

Angiogenesis, together with vasculogenesis participates in the development of the new blood

vessels. The Gene Ontology [Harris et al., 2004], a controlled vocabulary in which each term

is related to one another in a polyhierarchical manner, de�nes vasculogenesis (Gene Ontology

identi�er: GO:0001570) as di�erentiation of endothelial cells from progenitor cells during

blood vessel development. It occurs primarily during embryogenesis and is responsible for

the formation of the primary vasculatory net. Angiogenesis (GO:0001525) is de�ned as blood

vessel formation when new vessels emerge from the proliferation of pre-existing blood vessels.

Angiogenesis also plays a major role during embryonic development, and additionally also

during postnatal organ growth [Beck and D'Amore, 1997; Risau, 1997; Risau and Flamme,

1995]. Physiological angiogenesis is almost completely down-regulated in the adult with the

exception of the female reproduction system [Augustin, 2000; Reynolds et al., 1992]. There-

fore, therapeutic stimulation as well as inhibition of angiogenesis in angiogenesis related

diseases should be disease-speci�c and thus lead to minimal side e�ects. Pathological angio-

genesis arises during cancer and various ischaemic and in�ammatory diseases [Carmeliet and

Jain, 2000]. Pathological angiogenesis may be desirable (e. g. in the case of wound healing)

or undesirable (e.g in the case of tumor growth). In the case of tumor-angiogenesis it was

already shown in 1971 that tumors generally have to initiate angiogenesis to enable a growth

above a size of 1-2mm3 [Folkman, 1971]. As angiogenesis plays an important role in tumor

development, progression and formation [Folkman, 1990] the inhibition of tumor growth by

attacking the tumor's vascular supply has become a primary target for an antiangiogenic

therapy [Barinaga, 1997; Ellis, 2003; Gastl et al., 1997; Harris, 1997]. Classical cancer thera-

pies that target the tumor itself have to su�er from newly developed resistance of the tumor.

As angiogenesis is a physiological mechanism of the host development of resistance is not

expected [Boehm et al., 1997]. Another advantage of a angiogenesis related treatment of
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tumors is its direct contact to the circulatory network, enabling good access to therapeutic

agents. Finally, each tumor capillary potentially supplies hundreds of tumor cells, indicating

a possible potentiation of the antitumorigenic e�ect through its destruction.

Avastin� as angiogenesis suppressing drug

On February 26th 2004 the U. S. Food and Drug Administration (FDA) approved the an-

giogenesis inhibitor Avastin� (bevacizumab; Genentech®/Roche®) in combination with in-

travenous 5-FU-based chemotherapy for the indication of �rst-line treatment of metastatic

colorectal cancer (FDA press release P04-23). Thus, Avastin� is the �rst antiangiogenic

cancer treatment. The monoclonal antibody targets and inhibits the function of the pro-

angiogenic growth factor VEGF [Ferrara et al., 2004; Leung et al., 1989; Willett et al., 2004].

The Avastin FDA approval was based on data from a phase III clinical trial where a statisti-

cally signi�cant and clinically meaningful improvement in survival (20.3 months versus 15.6

months) among patients with metastatic colorectal cancer was shown [Hurwitz et al., 2004].

Other indications for the usage of Avastin� like metastatic non-small cell lung, kidney and

breast cancers are already in late-stage clinical trials [Johnson et al., 2004; Ramaswamy and

Shapiro, 2003; Rini et al., 2004].

1.4 Outline

In this thesis a novel Java� application is introduced, which uses the CGAP Expression Data

to rank UniGene clusters by their co-occurrence with pre-de�ned phenotype- or pathway-

speci�c genes. This novel data mining procedure is called Common Denominator Pro-

cedure (CDP). The following Systems and Methods chapter contains implementation and

calculation details of the CDP. The �rst time reader is recommended to skip this chapter

and proceede with the Results chapter. There, three di�erent versions of the CDP are

described and explained on the phenotype angiogenesis:

� basic Common Denominator Procedure (bCDP)

� genetic algorithm based Common Denominator Procedure (gaCDP) and

� indicator genes based Common Denominator Procedure (igCDP).
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A generalized version of the CDP is debated in the Discussion, extending it beyond the

usage of CGAP Expression Data.
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